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ABSTRACT 

DNA is exposed to chemical and physical agents that represent a continuous threat to its 

integrity by formation of DNA lesions. Despite the existence and efficiency of DNA repair 

systems in cells, some lesions may not be removed, and interfere not only with the fidelity of 

DNA replication but also with DNA transcription. In fact, RNA polymerase can bypass non-

bulky lesions, such as 8-oxoguanine (8-oxoG) and O6-methylguanine (O6-meG) and, due to 

base misincorporation, lead to the production of mutated RNA through a process referred to 

as transcriptional mutagenesis (TM). Although the concept of TM is well known, the 

biological consequences are still a recent discovery. While the few existing studies of TM 

have begun to shed light on the process, the role these seemingly transient errors might play 

in disease processes, especially in tumorigenesis, is currently unknown. The overall aim of 

this thesis was to explore to which extent lesion-induced TM influences protein function and 

how this may affect cellular homeostasis in vivo. Using plasmids containing single site-

specific DNA lesions placed within probe genes with established links between specific 

mutations and subsequent phenotypes, we confirmed that 8-oxoG and O6-meG induced TM 

in mammalian cells. Further, we explored the effects of TM on splicing fidelity in vivo (Paper 

I) and found that TM in regulatory sequences of splicing signals resulted in activation of 

alternative splicing sites, thus leading to the production of disease associated splice forms 

and/or disrupting physiological ratios between alternatively spliced isoforms. In addition, we 

examined effects of TM on p53 and its tumor suppressor function in human cells (Paper II). 

We found that expression of mutant R248W p53 due to TM was sufficient to reduce p53’s 

transactivation capacity of several target genes, which are required for its tumor suppressive 

function. Moreover, we showed that TM of p53 reduced its tumor suppressor function by 

impairing both proper cell cycle control and induction of apoptosis resulting in stimulated 

proliferation and survival. A genome-wide gene expression analysis further revealed that TM 

of p53 at codon 248 deregulated both the transactivation and downregulation of numerous 

target genes, which are crucial for its tumor suppressor function (Paper III). These 

deregulated genes were involved in regulation of several cellular processes, such as cell-cycle 

arrest, apoptosis, and DNA damage response. To conclude, the work presented here shed 

light on biological effects of TM in vivo and provides evidence for possible mechanisms by 

which TM might contribute to human disease development. We showed for the first time that 

lesion-induced TM could activate alternative splicing sites in vivo, thus reducing splicing 

fidelity and resulting in aberrant splicing. In addition, the work presented in this thesis, 

together with the results from other studies, strongly suggest that TM could be a contributing 

mechanism in the multistep process of tumorigenesis by inactivating a tumor suppressor or 

activating an oncogene thus stimulating proliferation and survival of an already initiated pre-

neoplastic cell. 
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1 INTRODUCTION 

Homeostasis can be defined as the property of cells, tissues, and organisms to maintain and 

regulate stable and constant internal conditions required for a proper function when dealing 

with external changes. The word homeostasis, literally meaning “staying the same”, derives 

from the Greek with words homoios meaning “similar” and stasis meaning “standing still” or 

“stable”. At the cellular level, an intricate network of well-orchestrated regulatory 

mechanisms maintains the balance. Components of the network monitor changes of the 

environment, both internal and external, integrating a variety of signals through modulation 

of gene expression to adjust multiple cellular processes enabling a proper response to the 

stimulus. Gradual loss of proper homeostasis is a reason of many diseases and aging (Hartl, 

2016).  

The core of homeostasis maintenance is termed as the concept of the central dogma of 

molecular biology (introduced by Crick in 1958), which describes that the genetic 

information stored in DNA is transcribed into complementary RNA transcripts, which are 

subsequently translated into proteins (Figure 1). After discovery of reverse transcriptases and 

RNA viruses this concept has been extended to also include that information can be 

transferred from RNA to DNA and from RNA to RNA. 

 

Figure 1. Flow of genetic information in biological systems –the central dogma of molecular biology. 

By Narayanese at English Wikipedia - Own work, Public Domain. 

Transcription of genetic information into complementary RNA is a fundamental cellular 

process that characterizes identity and phenotype of a cell. This process can be modified by 

environmental factors, and thus impact on physiological processes within the cell. So, as for 

DNA replication, the regulation and fidelity of transcription is essential for proper 

maintenance of cellular homeostasis and the survival of all living organisms.  

1.1 EUKARYOTIC TRANSCRIPTION 

Each genome, a long sequence of DNA, contains all of the information needed to build and 

maintain the organism that carries it. The information stored in the genome is decoded into 

molecules of complementary RNA by RNA polymerases (RNA Pols) during a process called 

transcription that occurs in the nucleus of a cell (Lewin et al., 2011). The messenger RNAs 

(mRNAs), produced from protein-coding genes, are used as the templates for ribosomes to 
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instruct protein synthesis, whereas other non-coding RNAs, such as transfer RNA (tRNA), 

ribosomal (rRNA), microRNA, and small interfering RNA (siRNA), possess structural, 

regulatory, and catalytic functions. Transcription is the first event of gene expression and 

must therefore be regulated accurately and effectively to ensure proper homeostasis of all 

living organisms (von Hippel, 1998).  

RNA Pols are conserved in all organisms and exhibit remarkable structural similarities 

(Ebright, 2000). These enzymes are large multisubunit protein complexes that catalyze 

synthesis of different RNAs. In contrast to single RNA Pol-containing prokaryotes, three 

different types of RNA Pols, named RNA Pol I, II, and III, exist in eukaryotic cells, but each 

is responsible for transcription of different type of genes. RNA Pol I transcribes the genes 

encoding most of the rRNA, whereas RNA Pol III transcribes DNA to synthesize ribosomal 

5S RNA, tRNA that play a key role in the translation process, and some small nuclear 

regulatory RNA (snRNA). RNA Pol II synthesizes precursors of mRNA, most of snRNA, 

microRNA, and siRNA (Lewin et al., 2011). RNA Pol II is the most studied eukaryotic RNA 

Pol and is the focus of the thesis. Therefore, only the mammalian enzyme and its mRNA 

product transcribed from protein coding genes are further reviewed. 

1.1.1 Phases of transcription 

It is needed to mention that before eukaryotic transcription can begin and proceed, the 

chromatin has to be in an open configuration for general transcription factors to access the 

core promoter of the transcribed gene, which is accomplished by the recruitment of 

chromatin-remodeling complexes. Moreover, nucleosomes has to be removed from the 

promoter and displaced or relocated as RNA Pol II moves along the gene by mechanisms that 

are not fully resolved (Kulaeva et al., 2013). However, this section gives a brief overview of 

the current eukaryotic transcription model of RNA Pol II without focus on the impact of 

chromatin.  

Transcription is a multistep process typically divided into distinct phases, initiation, promoter 

clearance, elongation, and termination. 

Transcription initiation requires the binding of general transcription factors (GTFs), named 

TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, to the core promoter in a defined order 

recruiting RNA Pol II at the transcription start site (TSS), resulting in the assembly of the 

closed preinitiation complex (PIC) (Orphanides et al., 1996). The RNA Pol II core promoters 

are structurally and functionally diverse regulatory sequences, but share several common 

sequence motifs, including an Initiator (Inr) region that encompasses the TSS, a TATA box 

which is usually located ~25 bp upstream of the TSS, and downstream promoter elements 

(DPEs) (Juven-Gershon and Kadonaga, 2010). TFIID, which consist of TATA binding 

protein (TBP) and a dozen of TAF (TBP-Associated Factor) subunits, recognizes and binds 

to the core promoter via TATA box recruiting components of the PIC (Burley and Roeder, 

1996). Recognition of TATA-less core promoters for PIC assembly is mediated by the TAF 

subunits. In the generally accepted model of the PIC assembly, TFIIA and TFIIB 
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simultaneously bind next to further stabilize the interaction between TFIID and promoter 

DNA, which is followed by recruitment of RNA Pol II likely associated with TFIIF (Nogales 

et al., 2017; Roeder, 1996). Finally, formation of a transcriptionally competent PIC is 

completed by positioning of TFIIE and TFIIH, of which the latter is responsible for DNA 

melting. Then, TFIIH, using its ATP-dependent DNA helicase activity, causes ~10 bp region 

of duplex DNA to unwind upstream of the TSS allowing access to single-strand DNA 

template and resulting in the formation of an open initiation complex referred to as the 

“transcription bubble”(Kim et al., 2000). 

Before RNA Pol II can enter a productive elongation phase, it must complete a phase known 

as a promoter clearance. The mechanism for the transition from transcriptional initiation to 

elongation phase is not fully elucidated, but several important sequential processes have been 

clarified. Once the open initiation complex is formed, RNA pol II catalyzes the 

phosphodiester bond formation between the first few nucleoside triphosphates (NTP) 

complementary to the template strand sequence yielding an initial RNA product (Lewin et al., 

2011). When a ~10-12 nt transcript is synthesized, the 5′-end is separated from the template 

strand and enters the RNA exit channel stabilizing the transcription complex and the 

promoter clearance can occur (Luse, 2013; Sims et al., 2004). At the same time, 

phosphorylation of the RNA Pol II carboxyl-terminal repeat domain (CTD) is activated 

further inducing the promoter clearance (Svejstrup, 2004). Further phosphorylation of the 

CTD allows for recruitment of elongation stimulating factors, such as Spt4/5, Elf1, and 

TFIIS, to form a stable processive elongation complex (EC) that drives transcription 

elongation (Ehara et al., 2017).  

At elongation phase, the EC reads the template (non-coding) DNA strand in 3′→5′ direction 

catalyzing the addition of new nucleotides via phosphodiester bond formation to the 3′-end of 

the growing transcript. Elongation rates of RNA Pol II are not constant and vary not only 

throughout the gene, but also between genes ranging ~1-6 kb per minute (Jonkers and Lis, 

2015). A key rate-limiting step for transcription is pausing of EC 30-60 nt downstream of the 

TSS that is potentially subject to regulatory control. Moreover, the elongation process is 

tightly coupled to mRNA processing, including pre-mRNA capping, splicing (see Section 

1.1.2), and even 3′-end polyadenylation (Proudfoot et al., 2002). 

The last phase of the transcription process, termination, occurs when RNA Pol II dissociates 

from the DNA template downstream of the 3′-end of the transcript. RNA Pol II terminates at 

varying distances from the 3′-end of the mature mRNA and is directly coupled to 3′-end 

processing. The 3′-ends of mRNAs are generated by cleavage and subsequent synthesis of 

poly(A) tail to protect the transcript from degradation. The proper 3′-end processing reaction 

depends on multi-subunit protein complexes associated with the EC. For simplicity, cleavage 

stimulatory factor (CstF) complex recognizes consensus poly(A) motif and triggers the 

cleavage and polyadenylation specific factor (CPSF) complex to cleave the mRNA, whereas 

poly(A) polymerase (PAP) subsequently synthesizes poly(A) (Lewin et al., 2011; Richard and 

Manley, 2009).  
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The present model of transcription termination is a combination of allosteric/anti-terminator 

(Logan et al., 1987) and torpedo models (Connelly and Manley, 1988) and is described below 

(Richard and Manley, 2009). The model explains how the release of a full-length mature 

transcript triggers transcription termination by RNA Pol II. At the end of the transcribed 

gene, transcription past consensus poly(A) motif (AAUAAA) and the subsequent RNA 

cleavage ~10-30 nt downstream the poly(A) motif lead to the conformational changes of the 

EC. These changes may induce shedding off some of the elongation factors while recruiting 

termination factors. After cleavage, the resulting uncapped 5′-end of the RNA can be bound 

by specific exonuclease (Xrn2) that degrade it faster than the still bound RNA is being 

transcribed. Upon “catching up” with RNA Pol II, Xrn2 establishes interactions with RNA 

Pol II and triggers the dissociation of RNA pol II causing transcription to terminate (Lewin et 

al., 2011). 

1.1.2 mRNA splicing 

Pre-mRNA splicing is an essential step in the expression of nearly all eukaryotic genes. The 

vast majority of protein coding genes in all genomes from yeast to humans (and some 

prokaryotes) are discontinuous, containing a varying number of coding exons interrupted by 

noncoding sequences, called introns. Pre-mRNA splicing is a conserved process, in which 

introns are removed and flanking exons are joined together to form a mature mRNA, and 

occurs simultaneously with transcription (Brody and Shav-Tal, 2011; Proudfoot et al., 2002). 

Coupling splicing to transcription allows not only for temporal RNA processing before the 

completion of transcription, but also enables sequential recognition of RNA processing 

signals on nascent transcripts providing another means for gene expression regulation (Pandit 

et al., 2008).  

Splicing is a tightly regulated process and requires extreme precision that highly depends on 

proper recognition of exons that can be buried within a sea of nucleotides. Various mutations 

either in consensus sequences of splice sites or auxiliary regulatory elements can disrupt both 

splicing and alternative splicing resulting in aberrantly spliced mRNA transcripts with 

deleterious consequences to the organism. Indeed, a broad range of human diseases is caused 

by mutations affecting splicing (Cooper et al., 2009; Ward and Cooper, 2010). Different types 

of RNA splicing, such as splicing executed by spliceosome, self-splicing introns or 

ribozymes, which are capable to catalyze their own excision from precursor RNA, tRNA 

splicing, and recursive splicing, occur in organisms. In this section, a metazoan splicing 

model of the major spliceosome is reviewed.  

1.1.2.1 Splicing mechanism 

The basic mechanism of splicing has been studied in detail and is well characterized (Figure 

2). The process of splicing is dependent on special sequence motifs within introns that are 

recognized by different components of the large splicing apparatus, named spliceosome 

(described below). These sequences, called splicing signals, are the 5′ splice site, branch point 

and highly conserved polypyrimidine tract and 3′ splice site (5′ SS, 3′ SS, BPS and Py in 
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Figure 2) (Lewin et al., 2011; Sharp, 1987). The excision of introns from pre-mRNA occurs 

at exon-intron junction boundaries called splice sites. For the majority of mammalian introns, 

the 5′ splice site at the 5′ end of the intron is defined by a well-conserved GU dinucleotide 

encompassed within a less conserved sequence. The 3′ end region of the intron contains 

several splicing signals (Moore, 2000). The branch point, which always contains an 

adenosine at a proper position, but otherwise is less conserved, lies 18-40 nt upstream 3′ 

splice site followed by the highly conserved polypyrimidine tract. A terminal AG 

dinucleotide at the 3′ end of the intron defines 3′ splice site. The important role of the branch 

site is to form an RNA lariat structure that identifies the nearest 3′ splice site for targeted exon 

joining (Reed and Maniatis, 1988). 

Figure 2. Schematic representation of spliceosome assembly and pre-messenger RNA splicing. Image 

reused from Suñé-Pou et al, 2017, with permission from Genes under Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

The spliceosome is a large multi-component splicing machinery consisting of both proteins 

and RNAs. The spliceosome that removes the vast majority of introns contains five small 

nuclear RNAs (snRNAs) associated with proteins in their natural state forming small 

ribonucleoproteins (snRNPs, pronounced as snurps), named U1, U2, U5, U4 and U6, and 

hundreds of other supplementary proteins (Lewin et al., 2011; Sharp, 1987). Assembly of the 

catalytically active spliceosome onto the pre-mRNA initiated by the recognition of splice 
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sites within the intron is a dynamic process requiring a series of structural rearrangements 

coordinated by multiple RNA–RNA, RNA–protein and protein–protein interactions.  

Briefly, assembly of the spliceosome begins when U1 snRNP is recruited at 5′ splice site via 

base pairing between splice site and U1 snRNA and 3′ splice site is bound by a special set of 

proteins simultaneously (Figure 2). Thus the first relatively stable complex, named 

commitment complex or E complex, is formed. Next, in an ATP-dependent manner, U2 

snRNP binds the branch site (involving base pairing between the sequence in U2 snRNA and 

the branch point) to form pre-spliceosome complex (A complex). The A complex is 

subsequently joined by a trimer containing U5 and U4/U6 snRNP converting the pre-

spliceosome to a mature spliceosome (B complex). Finally, a series of complicated 

rearrangements result in the establishment of an activated spliceosome with a catalytic site for 

the splicing reaction to take place (Hastings and Krainer, 2001; Rino and Carmo-Fonseca, 

2009; Schellenberg et al., 2008).  

Once the activated spliceosome is formed, the splicing of pre-mRNA occurs in a two-step 

sequential reaction (Complex C, Figure 2) (Chiara and Reed, 1995). During the first reaction, 

the conserved adenosine within the branch site initiates a nucleophilic attack on the 5′ splice 

site. As a result, the upstream exon is released as a linear molecule and a branched or lariat 

splicing intermediate is formed through a new phosphodiester bond establishment. In the 

second reaction, the newly formed 3′ end of the exon attacks the 3′ splice site phosphodiester 

liberating the intron as a lariat and covalently joining the exons. (Lewin et al., 2011).  

1.1.2.2 Alternative splicing 

The architecture of the interrupted gene assists  the process of alternative splicing to generate 

various combinations of mature mRNA including or excluding particular exons and even 

introns from an individual protein coding gene (Black, 2003). The basic patterns of 

alternative splicing include e.g. exon skipping, intron retention, alternative 5′and 3′splice site 

selection, and mutually exclusive exons, all of which coordinate the differential exclusion or 

inclusion of sequences of pre-mRNA into the mature mRNA and thus generating multiple 

mRNA variants (Black, 2003). In addition to basic patterns, many complex alternative 

splicing patterns also exist in the transcriptome (Vaquero-Garcia et al., 2016). Moreover, it is 

a major mechanism by which complex organisms regulate protein expression and 

dramatically increase the diversity of the transcriptome and proteome than what would be 

expected from the human genome containing roughly 20,000-25,000 genes (Black, 2003; 

Nilsen and Graveley, 2010; Stein, 2004). High-throughput RNA sequencing led to the 

estimation that ~95% of human multi-exon genes undergo alternative splicing (Pan et al., 

2008; Wang et al., 2008). The resulting mRNA variants from alternative splicing can have 

divergent properties affecting gene expression in the cells (Matlin et al., 2005). Most 

alternative splicing events affect the coding sequences of mRNA resulting in the expression 

of different protein isoforms, which may have related, distinct or even opposing biological 

functions, e.g. different isoforms of Fas receptor produced by alternative splicing have 

opposing effects on apoptosis (Cascino et al., 1995). In addition, alternative splicing can also 
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change properties of mRNA itself, such as stability and localization, by introducing or 

removing important regulatory sequences (Lewin et al., 2011). 

Short consensus splicing signals within the pre-mRNA that function to direct the splicing 

machinery can be separated by long sequences, therefore it is not surprising that additional 

sequence elements outside of the splice sites exist and can strongly affect pre-mRNA 

splicing. Indeed, both introns and exons contain additional cis-acting elements, such as 

intronic or exonic splicing enhancers (ISE or ESE) or silencers (ISS or ESS), that strongly 

affect assembly of spliceosome. These elements can recruit a large number of specific RNA-

binding trans-acting splicing factors (Wang and Burge, 2008) that positively or negatively 

modulate the splice site selection affecting the outcome. Alternative splicing and splicing in 

general is a tightly regulated and extremely accurate process that can be specific to a cell 

type, developmental stage or even signaling pathway (Fox-Walsh and Hertel, 2009). 

Selection of splice site and differential use of most exons are orchestrated by a dynamic 

interplay between positive and negative cis-acting RNA elements and trans-acting regulators 

as well as the relative functional strength of splice site (House and Lynch, 2008; Matlin et al., 

2005). 

1.2 FIDELITY OF TRANSCRIPTION 

Even though information transfer during replication, transcription and translation is 

conducted with remarkable precision, errors are inevitable and can have deleterious 

consequences for the organism especially when they affect protein-coding sequences. The 

majority of research has focused on the impact of replicative mutations to determine the 

importance of replication fidelity for organismal homeostasis. As a result, the contributions 

of replicative errors to various diseases, especially cancer, are well established (Bielas and 

Loeb, 2005; Hanahan and Weinberg, 2011; Loeb and Loeb, 2000). However, the impact of 

transcriptional errors has received much less attention than replication fidelity because 

transcription errors are transient and inheritable, remains hard to detect and quantify due to 

need of technically challenging and specialized methods. Consequently, transcription error 

rates (spontaneous, or in the absence of known DNA lesions) in different organisms as well 

as the mechanism of RNA Pol fidelity are still poorly investigated. The rate of transcription 

errors has so far been reported in RNA viruses (Acevedo et al., 2014), E. coli bacteria 

(Traverse and Ochman, 2016), S. cerevisiae yeast (Gout et al., 2017; Reid-Bayliss and 

Loeb, 2017; Shaw et al., 2002) and C. elegans nematodes (Gout et al., 2013) and ranges 

between 10−5–10–6 per nucleotide, but is yet to be determined in higher organisms. In 

contrast, replicative fidelity has been well studied and characterized in a variety of species 

and environmental conditions. DNA Pol error rates have been roughly estimated to be 10–8–

10–10 per base per generation in various species and tissues (Bielas and Loeb, 2005; Lynch, 

2010).  

In addition, little is known about the RNA Pol II subunits that contribute to transcription 

fidelity. Only a few clues about mechanisms that ensure transcription fidelity have been 

revealed. RNA Pol fidelity is achieved through a stepwise process and involves two major 
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strategies: a correct substrate selection via induced fit mechanism and an intrinsic 

proofreading that involves the recognition and removal of a misincorporated nucleotide 

(Gamba and Zenkin, 2018; Sydow and Cramer, 2009). RNA Pol II selects correct NTP 

substrate firstly by discriminating NTPs from dNTPs by the recognition of 2′-OH group of 

the ribose. Secondly, NTPs that correctly base pair with the base on the DNA template 

strand and induce folding of the Trigger loop are incorporated into the transcript. The 

Trigger loop is a flexible domain of the RNA Pol active center and is required for the 

catalysis of phosphodiester bond formation (Yuzenkova et al., 2010).  

Despite these mechanisms to ensure the selection of the correct substrate, misincorporations 

still occur. In the case of misincorporation, the intrinsic proofreading is initiated. The 

absence of proper base pairing with the template, the DNA:RNA heteroduplex can be 

destabilized which impairs the catalysis of the subsequent nucleoside monophosphate. 

Removal of the mismatched nucleotide involves backtracking of RNA Pol II and cleavage 

by an intrinsic 3′→5′ nuclease activity, resulting in a new RNA 3′-OH group at the active 

site, allowing RNA synthesis to resume. Several lines of evidence have identified that RNA 

Pol II subunit Rpb9 may affect transcriptional proofreading and thereby fidelity (Knippa 

and Peterson, 2013; Nesser et al., 2006). Additionally, various organisms possess factors 

that assist proofreading of transcription by stimulating hydrolysis of incorrect base, e.g. 

TFIIS for RNA Pol II (Gamba and Zenkin, 2018). Proofreading mechanisms are one major 

contributor to the overall transcription fidelity; however, backtracking induces pauses to 

elongating RNA Pol which poses other threats to the cells, such as conflicts with replication 

forks (Dutta et al., 2011). 

As shown above, transcription error rates are several orders of magnitude higher compared 

to replication error rates, thus alterations in RNA sequence are also expected to produce 

transcripts that encode misfolded or malfunctioning proteins, although the production might 

be transient compared to fixed mutations in the genome. However, each mRNA molecule 

can be translated multiple times (Schwanhausser et al., 2011) resulting in further 

amplification of the error. As a result, a large pool of misfolded and malfunctioning 

proteins can burden the cells with potentially harmful consequences. Still very little is 

known about how transcriptional errors may affect cellular phenotypes and homeostasis, 

especially in higher eukaryotes, and about their possible contributions to disease 

development. Indeed, several studies in various organisms have revealed that transcription 

errors may affect protein function consequently leading to profoundly altered cellular 

phenotypes. Transcription errors can generate abnormal proteins in patients with non-

familial Alzheimer’s disease and Down syndrome (van Leeuwen et al., 1998), accelerate 

cellular aging in yeast (Vermulst et al., 2015), or even contribute to oncogenic pathways in 

mammalian cells (Brulliard et al., 2007). In recent years, next-generation sequencing 

approaches have allowed studies of genome-wide transcription fidelity (Carey, 2015; Gout et 

al., 2013; Gout et al., 2017; Reid-Bayliss and Loeb, 2017; Traverse and Ochman, 2016) that 

confirmed adverse effects of transcriptional errors on protein function and cellular 

homeostasis (Gout et al., 2017). These studies revealed a previously unappreciated role for 
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transcriptional fidelity in cellular homeostasis presenting a new mechanism by which cells 

can acquire disease phenotypes (Gordon et al., 2015; Vermulst et al., 2015). To date there 

are no genome-wide studies on transcription errors in mammalian cells, thus the extent of 

transcription errors as wells as the consequences of these events for cellular homeostasis in 

higher organisms are still unknown. 

1.3 DNA DAMAGE AND TRANSCRIPTION 

Cells transcribe thousands of genes simultaneously to direct synthesis of proteins required for 

maintenance of normal physiological processes. Even a small temporal distortion in gene 

expression can thus have detrimental consequences. As motivated above, RNA Pols require 

undamaged DNA templates, to produce correct and functional RNA transcripts. However, 

and in addition to inherent properties of fidelity, various exogenous and endogenous agents 

continuously damage DNA and pose a constant threat to the genome integrity. Thus, 

encounters of elongating RNA Pol II with DNA lesions in the template strands of expressed 

genes most likely occur frequently. This encounter has two possible outcomes: arrest of RNA 

Pol II elongation, which further can induce several distinct responses (Svejstrup, 2002), or 

bypass of RNA Pol II with a correct or incorrect nucleotide insertion event (Figure 3) 

(Doetsch, 2002).  

 

Figure 3. Schematic representation of alternative outcomes of encounters between elongating RNA 

Pol II and DNA lesion. 

DNA lesions can have profound effects not only on RNA Pol fidelity, but also on the survival 

of cells. Therefore, to protect against deleterious consequences, cells have evolved a specific 

repair mechanism connected to transcription. RNA Pols II, which are arrested by DNA 

lesions, initially recruit proteins of the transcription-coupled repair (TC-NER) pathway (see 

Section 1.3.1 for details), a specialized nucleotide-excision repair (NER) pathway, that 

removes the hindering lesion to ensure continuation of transcription (Mellon et al., 1987; 

Tornaletti and Hanawalt, 1999). Alternatively, in the absence of sufficient rescue, the 
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irreversibly obstructed RNA Pol can be polyubiquitinated resulting in a rapid degradation by 

the proteasome through a process viewed as a “last resort” mechanism (Svejstrup, 2002; 

Svejstrup, 2007). Thus, the gene is freed for transcription by the next RNA Pol II and allows 

global genomic repair (GG-NER) to recognize and remove the lesion (Figure 3). Mechanisms 

and consequences of dissociation (prokaryotes) or degradation (eukaryotes) of irreversibly 

arrested RNA Pol are not within the scope of the thesis and are thus not covered in this 

review (reviewed in (Svejstrup, 2007)). 

The role of RNA Pol II in DNA repair is well-established and allows for the preferential 

removal of DNA lesions in the template strand of active genes (Mellon et al., 1987; 

Svejstrup, 2010). Thus, RNA Pol II serves as a specific signal not only for DNA repair, but 

also for sensing DNA damage in general to protect the cells and maintain the integrity of 

genome (Derheimer et al., 2007; Ljungman and Lane, 2004). Indeed, RNA Pols have been 

proposed as the most specific DNA lesion recognition protein (Lindsey-Boltz and Sancar, 

2007). In contrast to the well-established responses by stalled RNA Pol, far less is known 

about consequences of DNA lesion bypass by an elongating RNA Pol. A few studies have 

shown that different types of DNA lesions can be bypassed with various degrees of efficiency 

by the elongating RNA Pol II resulting in various extents of misincorporation that generates 

mutant transcripts via a process termed transcriptional mutagenesis (TM) (Brégeon and 

Doetsch, 2011; Doetsch, 2002). Thus, TM can lead to the production of mutant proteins that 

could affect cellular homeostasis in many ways (see Section 1.4 for details). In summary, in 

addition to spontaneous errors made by RNA Pol itself, RNA Pol fidelity is greatly 

influenced by the presence of DNA lesions. The impact of DNA lesions on transcription 

fidelity could be even more severe and could play an important role in slowly growing or 

non-dividing cells, in which global DNA repair is greatly diminished or absent (e.g. in 

terminally differentiated mammalian cells) (Dreij et al., 2010; Nouspikel and Hanawalt, 

2002).  

1.3.1 Transcription-coupled repair  

As described above, an encounter of elongating RNA Pol II with a DNA lesion can have 

severe consequences for the cells as the irreversibly blocked RNA Pol II can induce p53 

accumulation and subsequently apoptosis (Derheimer et al., 2007; Ljungman and Lane, 

2004). Thus, the removal of DNA lesions from actively transcribed genes is a matter of high 

priority. Indeed, it was demonstrated some 30 years ago that DNA lesions on the template 

strand of an actively transcribed gene was preferentially repaired compared to the non-

transcribed strand of the same gene or non-transcribed regions of the genome indicating 

involvement of RNA Pol II in DNA repair (Mellon et al., 1987). The latter DNA lesions are 

independently recognized and removed by global genome repair pathway (GG-NER) 

(Hanawalt, 2002). Transcription-coupled repair (TC-NER) has evolved preferentially to 

target lesions that impede elongating RNA Pol II and was originally documented for UV-

induced cyclobutane pyrimidine dimers (CPD) (Mellon et al., 1987). The importance of TC-

NER is strengthened by the fact that individuals with mutated TC-NER genes have defects in 
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repair of lesions in actively transcribed genes and suffer from a severe developmental or 

neurological hereditary disorder Cockayne’s syndrome (CS) (Rapin et al., 2000) and a milder 

disorder UV sensitive syndrome (UVsS), primarily characterized by skin photosensitivity 

(Itoh et al., 1994). 

Both GG-NER and TC-NER are subpathways of NER and share many protein components 

except for the initial recognition of a DNA lesion (XPC and DDB for GG-NER, and CSA and 

CSB for TC-NER). In general, NER is one of the most versatile repair systems and removes a 

variety of structurally unrelated DNA lesions with an apparent preference for helix-distorting 

lesions (Hanawalt, 2002; Nouspikel, 2009; Svejstrup, 2002). While TC-NER is initiated by 

irreversibly stalled RNA Pol II, which is an established sensor for DNA damage on the 

transcribed strand, GG-NER pathway is triggered by sensing DNA helix distortions elicited 

by DNA lesions rather than direct lesion recognition (Ljungman and Lane, 2004; Yang, 

2007). The core mechanism of NER is well understood and constitutes a number of 

sequential enzymatic steps, including recognition of a lesion in DNA; opening of 

denaturation bubble, incisions of the damaged strand one on each side of the lesion, removal 

of the oligonucleotide containing the lesion, gap filling using the complementary DNA strand 

as template, and finally, ligation. 

The transcription-coupled repair proteins, CSB and CSA, recognize arrested RNA Pols II and 

are responsible for recruiting the basal NER factors, chromatin remodelers as well as proteins 

required for subsequent repair-dependent DNA synthesis (reviewed in (Lagerwerf et al., 

2011; Mullenders, 2015; Spivak, 2016). CSB, a member of the SWI/SNF protein family, has 

intrinsic ATP-dependent chromatin remodeling activity, which might be required to open 

chromatin around lesions thereby stimulating repair (Citterio et al., 2000; van den Boom et 

al., 2002). In addition, an ubiquitin-binding domain (UBD) has been identified at the C-

terminal part of CSB, which is essential for its function in TC-NER (Anindya et al., 2010). 

CSB is a prerequisite factor that recognizes stalled RNA Pol II, recruits NER proteins 

(TFIIH, RPA, XPA and two structure specific endonucleases XPG and XPF/ERCC1), histone 

acetyltransferase p300 and the CSA-E3-ubiquitin ligase complex to the stalled RNA Pol II 

(Fousteri et al., 2006; Lagerwerf et al., 2011). How CSB identifies stalled RNA Pol II is not 

fully elucidated, but some evidence suggested CSB being associated with the elongating 

transcription machinery and that prolonged stalling stabilizes the interaction (Beerens et al., 

2005; van den Boom et al., 2002). 

CSA is a member of the WD-40 repeat family of proteins, a motif known to be involved in 

protein-protein interactions, and associates with a cullin-4A containing E3-ubiquitin ligase 

complex (Groisman et al., 2003; Henning et al., 1995). Assembly of the CSA complex is 

required for the recruitment of additional TC-NER factors, such as XPA binding protein 2 

(XAB2), the high-mobility group nucleosome binding domain 1 (HMGN1) protein, and 

TFIIS to stalled RNA Pol II/CSB complexes (Fousteri et al., 2006). Moreover, CSB has been 

shown to be degraded in a CSA-dependent manner, establishing a functional link between 

CSA and CSB proteins (Groisman et al., 2006). In addition, UVSSA (causative gene for 
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UVsS) and its partner USP7 have recently been identified having essential roles in regulation 

of TC-NER, specifically in response to UV induced DNA damage, by stabilizing CSB and 

facilitating CSA- and CSB-dependent ubiquitination of stalled RNA Poll II at the DNA lesion 

site (Fei and Chen, 2012; Nakazawa et al., 2012; Schwertman et al., 2012). 

1.4 TRANSCRIPTIONAL MUTAGENESIS 

Transcriptional mutagenesis (TM) is a replication-independent process for generating mutant 

transcripts and proteins. In this process, an elongating RNA Pol bypass a DNA lesion on the 

template strand leading to incorrect nucleotide incorporation opposite the lesion and 

production of mutant transcripts (Deotsch, 2002). Thus, as long as the DNA lesion remains 

unrepaired, TM has the potential to generate a substantial population of mutant transcripts, 

which could be amplified by orders of magnitude during translation, leading to the production 

of a relatively large amount of the mutant protein (Schwanhausser et al., 2011). As observed 

in this thesis and by others, the error frequency can increase three-to-four orders of magnitude 

in the presence of DNA lesions depending on the status of DNA repair compared to the 

transcription error rate of eukaryotic RNA Pol (10-5). The resulting pool of mutant proteins 

with potentially altered functions could induce major changes in the cellular homeostasis with 

a number of deleterious consequences, especially in non-proliferating cells as the capacities 

of certain DNA repair pathways in such cells are attenuated (Brégeon and Doetsch, 2011; 

Nouspikel and Hanawalt, 2002). Thus, TM has been proposed to play an important role in 

human disease development, including tumorigenesis and neurodegeneration (Basu et al., 

2015; Brégeon and Doetsch, 2011; Morreall et al., 2013).  

TM was discovered almost 30 years ago when researchers investigated how small DNA 

lesions which do not activate TC-NER affected the transcription machinery. Purified 

bacteriophage and/or prokaryotic RNA Pols and DNA templates containing single site-

specific DNA lesions were used to determine the effects of DNA lesions on transcription 

elongation in vitro. These early studies demonstrated that RNA Pol can bypass DNA lesions 

(similar to DNA Pol) to different extent and that the bypass can be mutagenic (Liu et al., 

1995; Zhou and Doetsch, 1993). Currently, a number of studies have assessed the impact of 

various DNA lesions on elongating RNA Pol revealing that the extent of TM can vary and 

depends on different factors. Frequently occurring non-bulky DNA lesions, which induce 

only small changes to the bases and their base-pairing properties within the DNA, do not 

block RNA Pol, but are efficiently bypassed to varying extent both in vitro and in vivo 

(summarized in (Dreij et al., 2010). These lesions are formed by spontaneous deamination, 

depurination, alkylation, and oxidation of the bases in DNA and include e.g. O6-

methylguanine (O6-meG ) (Burns et al., 2010; Dimitri et al., 2008; Ezerskyte et al., 2018; 

Viswanathan and Doetsch, 1998), 8-oxoguanine (8-oxoG) (Bregeon et al., 2003; Paredes et 

al., 2017; Saxowsky et al., 2008), uracil and abasic sites (Bregeon et al., 2003; Kuraoka et al., 

2003; Liu et al., 1995; Zhou and Doetsch, 1993).  

The mechanism of TM has been investigated using various approaches, such as in vitro 

transcription using DNA templates, structural function analysis or in silico modeling, and 
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revealed that the size and conformation of the DNA lesion are important factors influencing 

the extent of misincorporation (Damsma and Cramer, 2009; Dimitri et al., 2008; Dreij et al., 

2010; Walmacq et al., 2015). In addition, TM can be strongly modulated by sequence 

context, such as strength of the promoter driving the transcription, sequence flanking the 

lesion and/or distance from the promoter (Bregeon et al., 2009; Pastoriza-Gallego et al., 

2007). For example, in vitro studies showed that O6-meG partially blocks human RNA Pol II 

elongation, and when the lesion was bypassed (40% of total) and full-length transcripts were 

obtained, cytidine and uridine were incorporated opposite the lesion at a 3:1 ratio (Dimitri et 

al., 2008). In silico modeling showed that adaptation of an anti-conformation around the O6-

meG glycosidic bond with the methyl group in a proximal orientation allowed for 

transcriptional bypass (Dimitri et al., 2008). Moreover, in the study presented in Paper II, we 

found that 14.7% of the transcripts contained uridine opposite the lesion in human cells with 

inactive AGT (Ezerskyte et al., 2018).  

In case of 8-oxoG, in vitro studies showed no blockage of the elongating RNA Pol II with 

cytidine insertions opposite to this lesion being favored, although adenosine 

misincorporations (8%) were also detected (Charlet-Berguerand et al., 2006). A study in 

murine cells demonstrated that 14% of the transcripts contained a misincorporated adenosine 

opposite the 8-oxoG (Saxowsky et al., 2008). In addition, structural analysis of 8-oxoG 

revealed that misincorporated adenosine forms a Hoogsteen base pair with 8-oxoG, which 

requires an uncommon syn-conformation (Damsma and Cramer, 2009). In contrast, bulky 

lesions, such as cyclobutane pyrimidine dimers, were shown to arrest RNA Pol, thus 

initiating TC-NER in vivo (Selby et al., 1997). However, it was reported that even bulky 

lesions, such as thymine dimers and 8,5'-cyclo-2'-deoxyadenosine, could be bypassed by 

human RNA Pol II in vivo in mammalian cells, although at low frequency resulting in the 

production of mutant transcripts (Marietta and Brooks, 2007; Nagel et al., 2014). New studies 

continuously emerge investigating the potential of different DNA lesions to perturb 

transcription in vitro and in human cells (Xu et al., 2017; You et al., 2015). 

A plethora of studies have focused on the mutagenic potential and consequences of DNA 

lesions during DNA replication to genomic instability and a variety of diseases, including 

cancer (Hanahan and Weinberg, 2011). In contrast, still very little is known about the impact 

of TM and these seemingly transient changes in cellular homeostasis. Early in vivo studies in 

bacterial systems using E. coli demonstrated that various DNA lesions could be bypassed 

leading to misincorporation and production of mutant proteins based on luciferase reporters 

(Bregeon et al., 2003; You et al., 2000). Thus, TM was proposed to enable bacteria to escape 

from growth restricted environments, and/or to acquire antibiotic resistance (Clauson et al., 

2010). Later, using reporter-based systems with site-specific lesions, TM was shown to occur 

in mammalian cells resulting in the production of proteins with altered functions and 

suggesting changes in cellular homeostasis due to TM also in higher organisms (Bregeon et 

al., 2009; Burns et al., 2010). Based on these studies, it was suggested that TM could have 

detrimental impact on human health by contributing to the etiology of human diseases, 

including tumorigenesis, aging and neurodegeneration (Brégeon and Doetsch, 2011). Indeed, 
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accumulating evidence strongly suggests that TM could be a mechanism contributing to 

tumorigenesis by inactivating tumor suppressors or activating oncogenes as supported by two 

studies to date (Ezerskyte et al., 2018; Saxowsky et al., 2008). We demonstrated (Paper II and 

III) that 14.7% of mutant transcripts containing uridine due to O6-meG-induced TM resulted 

in the production of mutant p53 (R248W) protein which was sufficient to attenuate its tumor 

suppressor function (Ezerskyte et al., 2018). In addition, Saxowsky et al., demonstrated that 

transcripts containing adenosine due to TM induced by 8-oxoG resulted in the production of 

constitutively active RAS (Q61K) protein with subsequent activation of downstream MAPK 

signaling (Saxowsky et al., 2008). Interestingly, a recent study developed high-throughput 

assays to investigate individual differences in DNA repair capacity and detected different 

levels of TM induced by O6-meG in cells of same origin but from different individuals 

without known DNA repair deficiencies (Nagel et al., 2014). Moreover, we have shown that 

TM might affect translation outcome not only by changing the coding specificity of the 

mutated codon, but also by changing regulatory sequence at a splicing site, thus affecting 

splicing fidelity (Paredes et al., 2017). 

1.5 INTRODUCTION TO THE STUDY 

In this thesis, the impact of O6-meG and 8-oxoG-induced TM on mRNA splicing fidelity and 

protein function and the consequent effects on regulation of cellular homeostasis has been 

investigated. In order to determine levels and biologically relevant consequences of TM in 

mammalian cells, tumor suppressor p53, lamin A and proteolipid protein 1 were used as gene 

and/or protein probes. The methodology, types of DNA lesion and probes are described and 

discussed below. 

1.5.1 How to study transcriptional mutagenesis 

The first studies investigating TM were performed using in vitro transcription systems 

comprised of purified components and/or cellular extracts from various types of cells 

sufficient to initiate and push forward transcription reaction on a DNA template (Chen and 

Bogenhagen, 1993; Kuraoka et al., 2003; Viswanathan and Doetsch, 1998). A summary of 

various in vitro and in vivo studies addressing distinct facets of TM induced by a number of 

different DNA lesions is provided in review article by Brégeon and Doetsch (Brégeon and 

Doetsch, 2011). RNA Pols from bacteriophages, bacteria or mammals were employed in 

these in vitro studies to assess whether various lesions allow bypass of RNA Pol and whether 

bypass results in misincorporation producing a mutated product. Linear DNA templates for 

transcription contained single, well-characterized DNA lesions at specific positions. In vitro 

studies can be a useful and fast tool to quickly examine if particular DNA lesions exert 

mutagenic or blocking effects during transcription. 

In order to address the same questions and what the subsequent biological consequences of 

TM are in vivo, the expression constructs need to contain well-characterized DNA lesions at 

specific positions in genes/proteins of interest. Such experimental systems have to meet two 

requirements. The first requirement is to design a plasmid encoding a reporter protein whose 
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activity could be easily monitored biochemically, e.g. luciferase or red fluorescent protein 

(RFP) (Burns et al., 2010; Shaw et al., 2002) or functionally, e.g. RAS or p53 tumor 

suppressor (Ezerskyte et al., 2018; Saxowsky et al., 2008). Secondly, to ensure that the 

measured activity of the reporter protein is induced by TM and not due to a mutation that is 

fixed within the sequence after DNA replication. To eliminate the latter problem in bacterial 

systems, cells can be maintained in non-growing conditions, in which only transcription 

occurs, by the use of antibiotics, whereas, in eukaryotic systems, plasmids without known 

origins of replication should be used (Brégeon and Doetsch, 2011).  

Several protocols with different advantages and limitations have been developed to produce 

sufficient quantities of plasmid to study the effects of an individual lesion in vivo (Bregeon 

and Doetsch, 2004; Burns et al., 2010; Luhnsdorf et al., 2012; You et al., 2012; You et al., 

2000). Two different well-established strategies, “gapped duplex” and “primer extension”, 

were used in this thesis to produce reporter plasmids to study effects of DNA lesion-induced 

TM in mammalian cells (see Section 3.1 for detailed description). 

In addition to transcription reporter plasmids containing site-specific DNA lesions in target 

genes, advances of next-generation RNA sequencing technology provides another approach 

to determine multiple facets of TM at a genome-wide level. Several recent studies employing 

RNA-seq have already provided with insights about the spectrum of spontaneous 

transcriptional errors due to RNA Pol infidelity and effects of these errors to proteostasis and 

subsequently to cellular homeostasis (Gout et al., 2017). 

1.5.2 DNA damages and their repair 

1.5.2.1 O6-methylguanine 

Even though O6-methylguanine (O6-meG) is not the most abundant DNA lesion, it is a highly 

mutagenic lesion induced by both endogenous (e.g. S-adenosyl methionine [SAM]) and 

exogenous (e.g. N-nitroso-N-methylurea [MNU], N-methyl-N′-nitro-N-nitrosoguanidine 

[MNNG], chemotherapeutics temozolomide) alkylating agents (De Bont and van Larebeke, 

2004; Hemminki, 1983; Rydberg and Lindahl, 1982; Tisdale, 1987). O6-meG can cause base 

mispairing and thus instructs DNA Pol to incorporate thymidine instead of cytidine opposite 

the lesion, resulting in GC → AT transitions during replication (Abbott and Saffhill, 1979; 

Singh et al., 1996). In addition, it has been shown that O6-meG can be bypassed by RNA Pol 

II in vitro and in vivo directing the insertion of uridine instead of cytidine into a nascent RNA 

transcript (Burns et al., 2010; Dimitri et al., 2008; Ezerskyte et al., 2018; Viswanathan and 

Doetsch, 1998). While primarily considered as a mutagenic lesion, O6-meG is also cytotoxic 

in certain circumstances. If not repaired by AGT, replication of DNA containing O6-meG 

gives rise to O6-meG:T mispairing, which invokes DNA mismatch repair (MMR) pathway. 

However, MMR generates a long gap in the newly synthesized strand and synthesis results in 

regeneration of the O6-meG:T base pair via process referred to as a futile MMR cycle that 

ultimately produces double strand DNA breaks and induces apoptosis (Kaina et al., 2007; 

Margison and Santibanez-Koref, 2002). 
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Figure 4. Chemical structure of O6-methylguanine. 

The severe impact of this lesion to the genomic stability is supported by the fact that O6-meG 

is directly eliminated in a single-step error-free reaction by the ubiquitous repair protein, O6-

alkylguanine-DNA alkyltransferase (AGT), which has been identified in all studied 

organisms and is encoded by the MGMT gene in humans (Margison and Santibanez-Koref, 

2002). This protein is referred to as a suicidal protein and it accepts the alkyl group from the 

lesion to a cysteine residue in its active site in the single-step stoichiometric reaction (Tano et 

al., 1990). Following the transfer of the alkyl group, the active site is not regenerated and the 

inactive enzyme is ubiquitinated and degraded by the proteasome (Margison and Santibanez-

Koref, 2002; Mishina et al., 2006). AGT is highly efficient in suppressing point mutations 

and genotoxicity induced by O6-meG in vitro and in vivo and the most important defense 

against its tumorigenesis (Kaina et al., 2007). However, expression of AGT varies 

extensively in different human tissues as well as in tumors. Repression of MGMT gene 

expression due to hypermethylation of the MGMT gene promoter is the major reason for 

inactivation of O6-meG repair in cell lines and tumors, such as brain or lung, rather than a 

mutation within the gene (Christmann et al., 2011; Halford et al., 2005). In addition, tumors 

that overexpress MGMT are resistant to chemotherapeutic O6-alkylating agents, such as 

temozolomide. 

1.5.2.2 8-oxoguanine 

The most mutagenic and best-characterized lesion formed by reactive oxygen species (ROS) 

is 8-oxoguanine (8-oxoG) (Lindahl, 1993). 8-oxoG is highly mutagenic as it can assume a 

syn-conformation mimicking thymidine and base pair with adenosine resulting in GC → TA 

transversion mutation during replication (Cheng et al., 1992; Damsma and Cramer, 2009; 

Shibutani et al., 1991). Additionally, 8-oxoG can be bypassed by RNA Pol both in vitro and 

in vivo, resulting in cytidine or mutagenic adenosine incorporations opposite the lesion, as 

well as -1 deletions of transcripts (Bregeon et al., 2003; Bregeon et al., 2009; Chen and 

Bogenhagen, 1993; Damsma and Cramer, 2009; Kuraoka et al., 2003; Paredes et al., 2017; 

Saxowsky et al., 2008; Viswanathan and Doetsch, 1998).  

Various small, non-helix-distorting oxidative DNA damages, such as 8-oxoG, are recognized 

and removed by DNA glycosylases, which initiate the base excision repair (BER) pathway. 

DNA glycosylases hydrolyze the N-glycosylic bond forming an apurinic/apyrimidinic (AP) 

site in DNA which is further processed by other types of enzymes which are part of the BER 

pathway (Krokan et al., 1997). 8-oxoG is the primary physiological substrate for the 8-
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oxoguanine DNA glycosylase (OGG1) (Tchou et al., 1991). Increased accumulation of 8-

oxoG in DNA was detected in OGG1 defective mice compared with wild type OGG1 mice. 

Defective mice were also found to have a higher risk for developing spontaneous lung 

adenoma/carcinoma (Sakumi et al., 2003). In human cancers, BER repair pathway can be 

inactivated by the downregulation of OGG1 gene expression (Jiang et al., 2006). A study has 

discovered that OGG1 expression was deregulated epigenetically by both hyper- and 

hypomethylation of promoter regions in different breast tumor samples (Fleischer et al., 

2014). 

 

Figure 5. Chemical structure of 8-oxoguanine. 

Although TC-NER is activated by DNA damages that pose an irreversible arrest for 

elongating RNA Pol II, it has also been reported that oxidative damage, such as 8-oxoG, 

could be subjected to TC-NER in mfd-deficient E. coli or in CSB-deficient mouse embryonic 

fibroblasts (Bregeon et al., 2003; Pastoriza-Gallego et al., 2007). However, to date evidence 

is lacking to support this hypothesis, as a number of key articles supporting oxidative damage 

repair by TC-NER have been retracted (Hanawalt and Spivak, 2008). In addition, a study 

with cells defective for both TC-NER and the repair of oxidative lesions, revealed that 8-

oxoG is not repaired by TC-NER pathway (Bregeon et al., 2009). 

1.5.3 Reporter proteins 

1.5.3.1 The guardian of the genome - p53 protein 

In the thesis, we used one of the most important tumor suppressor proteins as a probe to study 

cellular effects of TM induced by O6-meG. The p53 protein, the guardian of the genome, 

primarily functions as a transcription factor regulating expression of numerous target genes 

and mediating a variety of cellular responses, such as cell cycle arrest and apoptosis (Horn 

and Vousden, 2007). Different cellular stresses, such as DNA damage or oncogene activation, 

stabilize and activate p53. Critical to the tumor suppressor function of p53 is its ability to 

bind sequence-specific DNA sites, thus making p53 a susceptible target for mutations. 

Indeed, biological consequences of mutations in the TP53 gene are evident since mutant p53 

is detected in more than half of all human tumors. Moreover, the vast majority of these 

mutations are missense point mutations with dominant-negative properties abrogating ability 

of p53 to transactivate its target genes (Bullock and Fersht, 2001; Petitjean et al., 2007).  
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As a probe to study effects of O6-meG-induced TM on p53 function, the arginine to 

tryptophan mutation at codon 248 (c. 742 C>T, R248W) was used. This well-studied hot spot 

mutation with dominant-negative phenotype is commonly found in several human cancers 

and thus of high significant biological relevance (Petitjean et al., 2007). We placed a single 

O6-meG lesion at a defined position within codon 248 (G*CC on the template strand and 

CGG coding sequence) of TP53 gene in an expression construct. Bypass of the lesion by 

RNA Pol II during transcription could have two possible outcomes. If the lesion directs 

insertion of cytidine, codon CGG for arginine is produced subsequently resulting in synthesis 

of wild type p53. However, if RNA Pol II misreads at the site of lesion and inserts uridine, 

the transcript with the codon UGG for tryptophan is synthesized that subsequently is 

translated into mutant R248W p53 protein. Thus, events of TM induced by O6-meG can 

produce a pool of wild type and mutant p53 within a cell. Two control vectors encoding for 

wild type and mutant R248W p53 were also constructed for cellular responses to the 

expression of p53 variants. The expression construct also encoded GFP that served as an 

internal control for transfection and assisted in the analysis. Studies have shown that mutant 

R248W p53 abrogates the tumor suppressor function of p53 affecting expression of target 

genes, which, in turn, results in deregulated cell cycle control (Willis et al., 2004). Thus, p53 

is a suitable probe protein to study effects of TM induced by O6-meG in mammalian cells and 

to characterize the potential link between TM and cancer etiology. 

1.5.3.2 Lamin A and proteolipid protein 1 

As discussed above, alternative splicing is a highly regulated process that requires extreme 

precision. Effects of splicing infidelity can have detrimental biological consequences that are 

reflected by a large number of severe diseases associated with aberrant splicing (Ward and 

Cooper, 2010). Indeed, transcriptional errors might affect translation outcome not only by 

changing the coding specificity of a codon, but also by changing the sequence of a splicing 

signal that would affect the recognition of the splice site. The ability of RNA Pol errors to 

significantly affect splicing fidelity has been proposed before (Doetsch, 2002; Fox-Walsh and 

Hertel, 2009), and recently suggested from data obtained measuring RNA Pol fidelity using 

RNA sequencing data (Carey, 2015). However, the impact of lesion-induced TM on splicing 

fidelity has not yet been investigated. To study the impact of TM on splicing fidelity we 

chose two relevant human genes, lamin A (LMNA) and proteolipid protein 1 (PLP1), with 

established links between aberrant splicing and disease (Eriksson et al., 2003; Hobson et al., 

2006).  

Lamin A proteins, encoded by the LMNA gene in humans, also known as intermediate 

filaments, are structural proteins that provide a scaffold for the cell nucleus and form the 

nuclear lamina, which plays crucial roles in cell division, DNA replication, repair, gene 

transcription and chromatin remodeling and are thus very import regulators of cellular 

functions (Davies et al., 2009). Mutations in LMNA gene or defective posttranslational 

processing cause the majority of human genetic diseases termed laminopathies. Missense 

mutations are a major reason for diseases. Hutchinson-Gilford progeria syndrome (HGPS), 
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characterized by premature aging, is caused by a mutant prelamin A that cannot be processed 

to a mature lamin A (Eriksson et al., 2003). HGPS individuals most commonly carries de 

novo heterozygous C to T base substitution (c.1824C>T) in codon 608 leading to a silent 

G608G mutation within exon 11 (CAG′GTGGGT). This mutation increases the usage of a 

cryptic splice site resulting in the removal of additional 150 nucleotides, which cause a 

deletion of 50 aa near the C-terminus of lamin A producing a protein called progerin 

(Eriksson et al., 2003). We utilized this mutation as a probe in this thesis to study effects of 

O6meG on splicing fidelity in mammalian cells. We placed O6-meG in codon 608 on the 

template strand (CCG*, coding sequence GGC). During transcription, transcripts containing 

either the wild type GGC codon or the mutated GGU codon due to uridine misincorporation 

opposite O6-meG, causing the same splicing defect as in HGPS, should be produced.  

Proteolipid protein 1 (PLP1) is the major myelin protein of the central nervous system (CNS) 

(Woodward and Malcolm, 1999). PLP1 and its splicing variant DM20, both simultaneously 

expressed, are transmembrane proteins playing an important role in myelination process. 

Both forms are generated from the same primary transcript by joining two competing 5' splice 

sites in exon 3 to the same 3' splice site by alternative splicing (Hobson et al., 2006). Changes 

in the dosage between the two splice variants and mutations in PLP1 can cause the 

Pelizaeus–Merzbacher disease (PMD) (Woodward and Malcolm, 1999). To study the impact 

of 8-oxoG-induced TM on splicing fidelity, we employed the threonine to lysine mutation at 

codon 116 (T116K) within exon 3 (AAG′GTAACA) that is caused by a single C to A base 

substitution (c.347C>A). This mutation promotes alternative placing of DM20 which is 

associated with PMD (Nance et al., 1996). The 8-oxoG was placed in codon 116 on the 

template strand (TG*C, coding sequence ACG), which during transcription could produce 

transcripts containing either the wild type codon ACG encoding threonine or the mutated 

AAG codon due to adenosine misincorporation directed by 8-oxoG.  
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2 AIM OF THE STUDY 

Despite numerous mechanistic studies revealing that various DNA lesions are efficiently 

bypassed by elongating RNA Pol, biologically relevant consequences of TM that could affect 

cellular homeostasis remain to be fully elucidated. The overall aim of this thesis was to 

characterize the occurrence and to shed some light on the impact of TM on cellular homeostasis 

that could possibly play a role in disease and tumor development. 

The specific aims were as follows: 

- To develop a GFP-based minigene splicing reporter system containing a site-specific 

O6-meG and 8-oxoG (Paper I)  

- To construct a plasmid based on the TP53 and GFP genes with a site-specific O6-meG 

(Paper II) 

- To investigate the impact of lesion-induced TM on splicing fidelity in mammalian cells 

(Paper I) 

- To examine the impact of O6-meG-induced TM on p53 function as a tumor suppressor 

in human cells (Paper II) 

- To investigate the impact of O6-meG-induced TM on the p53 transactivation ability at a 

genome-wide level (Paper III) 
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3 METHODS AND CONSIDERATIONS 

This section provides a brief overview of methods used in the constituent publications of this 

thesis with the focus on their advantages as well as limitations. Detailed protocols of the 

techniques and methods are presented in the Materials and Methods of each constituent 

article. 

3.1 CONSTRUCTION OF DAMAGED PLASMIDS 

Non-replicative transcription templates containing a single DNA lesion at a defined position 

in the transcribed strand of a reporter gene are required to study biologically relevant effects 

of mutated transcripts generated through TM. For the study in Paper I, we produced two 

minigene splicing reporter systems using LMNA and PLP1 to study effects of TM induced by 

O6-meG and 8-oxoG, respectively, on splicing fidelity. In Paper II and III, in order to study 

effects of TM induced by O6-meG on protein function, we constructed plasmids using TP53 

as a reporter. Each reporter expression system contained three plasmids that encoded the 

wild-type sequence of the reporter gene, the mutated sequence with specific point mutation, 

or the wild-type sequence with a DNA lesion positioned within a codon of interest, thus 

mutagenic bypass of the lesion would result in the production of mutant protein. 

Development of control plasmids containing wild-type or mutant reporter sequences will not 

be described here as detailed protocols can be found in the constituent publications. The well-

established techniques, “primer extension” and “gapped duplex”, which were used for 

construction of the site-specifically damaged plasmids are discussed below. Detailed 

description of reagents and procedures are provided in appended publications. Both 

approaches provided a versatile tool using simple standard DNA manipulation techniques to 

alter a defined site within a region of a plasmid that could be used in many applications. 

However, both methods are time-consuming and challenging multistep procedures. 

Conversion of ssDNA to modified dsDNA is inefficient and always incomplete and requires 

further purification steps, such as cesium chloride density gradient centrifugation.  

3.1.1 Minigene reporter constructs  

Minigene splicing reporter plasmids containing site-specific DNA damage for LMNA and 

PLP1 were constructed using the well-established “primer extension” approach as described 

previously (Bregeon and Doetsch, 2004; Zoller and Smith, 1983). The main steps of “primer 

extension” method are summarized in Figure 6. The principle of the method is the extension 

of an oligonucleotide primer annealed to a single stranded template by DNA Pol. Briefly, 

modified oligos (O6-meG oligo for LMNA and 8-oxoG oligo for PLP1) in molar excess were 

annealed to purified wild-type ssDNA, which was propagated in bacteria infected with helper 

phage, and extension of the complementary strand was performed. Then closed circular 

dsDNA (cc dsDNA) was formed by ligation. Different steps of this protocol were optimized 

by Bregeon and Doetsch to improve yields of site-specifically modified cc dsDNA, that 

micrograms of the final product can be produced (Bregeon and Doetsch, 2004). However, 

this method has several drawbacks. First, there is a risk, especially with larger plasmids, that 
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the damaged oligo could anneal unspecifically to a similar sequence at another region of the 

plasmid. Additionally, the size of plasmid could also be a limiting factor for a successful 

second strand synthesis and even the final ligation reaction might be sequence context 

dependent and impossible to achieve. Moreover, purified DNA Pol has a high error 

frequency, thus additional mutations outside the modified oligo may be expected. However, 

this approach requires relatively small amounts of starter material as few purification steps 

are performed.  

 

Figure 6. Schematic presentation of the major steps of the “primer extension” method to produce a 

site-specific lesion containing minigene splicing reporter plasmid. 

Worth noting, the protein specific exon-intron-exon sequences for each probe protein were 

used in combination with an EGFP open reading frame in our study. Alternative splicing is 

activated for each gene when specific mutations (C>T or C>A) occur in their splicing signal 

sequences as described above (see 1.5.3.2). In order to detect the activation of alternative 

splicing due to TM, the minigene reporters were constructed in a way that EGFP is only 

expressed if alternative splicing has occurred. This was achieved by introducing a STOP 

codon at the end of the first exon containing the alternative donor splice site (Figure 7). When 

alternative splicing occurs due to misincorporation event of U (induced by O6-meG) or A 

(induced by 8-oxoG) into pre-mRNA during transcription, the STOP codon is removed 

together with adjoining intron. As a result, GFP is expressed and can be detected to evaluate 

activation of alternative splicing. To compare cellular responses to expression of different 

protein variants, two control vectors containing either wild-type or corresponding mutated 

sequences for both reporters were constructed. 
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Figure 7. Schematic presentation of the minigene splicing reporters containing site-specific DNA 

lesions with their resulting pre-mRNA used in this study. Image reused from Paredes et al., 2017 with 

modifications. 

3.1.2 p53 TM plasmid 

Synthesis of a p53 plasmid containing a site-specific O6-meG was accomplished using the 

“gapped duplex” method as described previously (Burns et al., 2010; Kramer and Fritz, 1987; 

Tornaletti et al., 1997) with some modifications. A summary of main steps of the “gapped 

duplex” protocol is presented in Figure 8. The principle of the method is the formation of 

ssDNA/DNA heteroduplex that contains a gap by use of the oscillating phenol emulsion 

reassociation technique (OsPERT) as previously described (Bruzel and Cheung, 2006). In our 

system, the gapped duplex contained an 11 nucleotide gap to which an 11-bp oligomer with a 

site-specific damage was annealed and ligated to form cc dsDNA. With this procedure up to 

100 µg pure cc dsDNA could be produced. However, this approach has some drawbacks 

when compared to the above discussed “primer extension” approach. Most importantly, this 

method requires large amounts of starting material (milligrams of ssDNA) as the annealing 

process to form gapped duplex DNA is highly inefficient and additional purification steps are 

required. However, annealing of the damaged oligo is targeted and very specific compared to 

the other method and helps to minimize unwanted side reactions.  
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Figure 8. Schematic presentation of the major steps of “gapped duplex” method to produce a site-

specific lesion containing plasmid. 

3.2 CELL LINES 

We used WI-38 fibroblasts that are a normal diploid human cell line derived from lung tissue 

of 3 months gestation female fetus (Hayflick, 1965). WI-38 cells have a finite number of 50 

(±10) population doublings and are not tumorigenic. Fibroblasts were purchased from ATCC 

and maintained in MEM supplemented with 1 mM sodium pyruvate, 10% FBS, and 

antibiotics according to the provider’s guidelines. WI-38 fibroblasts were selected to study 

impact of O6-meG-induced TM on splicing fidelity (Paper I), as these non-tumorigenic cells 

with normal cellular morphology are suitable for transfections yielding acceptable 

efficiencies. Furthermore, it is a biologically relevant model reflecting to some extent in vivo 

environment as lungs are one of human organs that can be heavily affected by air-borne 

alkylating agents from tobacco smoke or environmental pollution. 

Mouse embryonic fibroblasts, MEFs, both wild-type OGG1 and OGG1-/- were obtained from 

Dr Pablo Radicella, The French Alternative Energies and Atomic Energy Commission 

(CEA), France. These MEFs were originally generated from mouse embryos 13.5 days 

(E13.5) after gestation by Prof Arne Klungland (Klungland et al., 1999). They are 

characterized by a finite lifespan of several population doublings and very limited expansion 

capacity. MEFs were maintained according to the provider’s guidelines in DMEM/F:12 (3:1) 

supplemented with 10% FBS. 2 mM L-glutamine, 1 mM sodium pyruvate and antibiotics. 

MEFs were used to determine levels of 8-oxoG-induced TM and to study impact of TM on 

splicing fidelity in mammalian cells (Paper I). To study the importance of DNA repair in 

preventing TM, the activity of OGG1 enzyme has to be impaired using either an OGG1 

inhibitor or OGG1 deficient cells. The MEF model was chosen for its particular suitability to 
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the scope of the study, even though they are murine cells. Potent and selective OGG1 

inhibitors are still under development and, to the best of our knowledge, no OGG1-null cells 

of human origin have been generated. 

The human embryonic kidney cell line, HEK293, was obtained from Dr Katarina Johansson, 

Karolinska Institutet. HEK293 cells were generated after immortalization of normal human 

embryonic kidney cells by adenovirus type 5 sheared DNA (Graham et al., 1977). These cells 

are described as hypotriploid with the modal chromosome number 64 occurring in 30% of 

cells. Furthermore, HEK293 is tumorigenic cell line forming tumors in nude mice, however 

with low efficiency (Graham et al., 1977). HEK293 cells were cultured in MEM 

supplemented with 1 mM sodium pyruvate, non-essential amino acids, 10% FBS, and 

antibiotics according to the manufacturer’s guidelines. This cell line was chosen in Paper I for 

its fast growth and high transfection efficiencies to determine levels of TM induced by O6-

meG and 8-oxoG and to investigate the impact of TM on splicing fidelity in human-derived 

cells as a reference cell line to WI-38 and MEFs.  

The H1299 human non-small cell lung carcinoma cell line was purchased from ATCC and 

used in Paper II and Paper III. H1299 were derived from a lymph node metastasis of the lung 

from a patient who had received prior radiation therapy (Giaccone et al., 1992). These cells 

possess a capacity to divide indefinitely. H1299 cells were grown according to the 

manufacturer’s instructions in DMEM supplemented with 10% FBS, 1 mM L-glutamine, and 

antibiotics. These cells are TP53-null and do not express p53 protein. The H1299 model was 

chosen to study consequences of O6-meG-induced TM on p53 function as a tumor suppressor 

to avoid any interference from endogenous p53 when interpreting results.  

3.3 TRANSFECTION 

Transfection is the process of artificial delivery of nucleic acids (DNA or RNA) into 

eukaryotic cells by physical (e.g. electroporation), chemical (e.g. cationic lipids) or biological 

(e.g.viruses) approaches. Each transfection method has advantages and drawbacks, but the 

most important criteria for choosing are an optimal balance between high transfection 

efficiency, low cytotoxicity, versatility, and convenience. Various factors, such cell type or 

plasmid size, are known to influence transfection efficiencies. For this reason, trial 

experiments using various methods and reagents were performed to find optimal transfection 

method for each cell type leading to satisfying balance between transfection efficiency and 

cytotoxicity.  

To study the effects of TM in mammalian cells, the constructed reporter plasmids were 

introduced into cells by transfection. In Paper I, transient transfections of WI-38 fibroblasts 

and MEFs delivering LMNA and PLP1 minigene splicing reporters, respectively, were 

accomplished using the Amaxa Nucleofector 2B (Lonza) electroporation-based system in 

accordance with the manufacturer’s protocols. Nucleofection is a physical electroporation-

based transfection method that uses a combination of specific voltage parameters generated 

by a Nucleofector device and cell-type specific reagents to transfer substrate into the cell 
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nucleus and the cytoplasm. High-voltage electrical pulses applied for a short time perturb the 

plasma membrane creating temporary pores and allowing nucleic acids to enter the cells 

(Neumann et al., 1982). It is a rapid technique allowing transfection of a large number of all 

cell types in a short time, but can be tedious to determine optimal conditions and can cause 

substantial cytotoxicity. 

In Paper I, HEK293 cells were transfected with all minigene splicing reporter plasmids using 

Lipofectamine 3000 (Invitrogen) following manufacturer’s instructions. In Paper II and III, 

delivery of p53 TM plasmids into H1299 cells was performed using Lipofectamine 2000 

(Invitrogen) according to manufacturer’s guidelines. Cationic lipids, such as Lipofectamine 

2000 or 3000, facilitate DNA delivery to the cells by binding spontaneously to the negatively 

charged DNA and forming complexes that are attracted to the cell membrane and internalized 

(Pack et al., 2005). This method is easy to perform and yields in relatively high transfection 

efficiencies; however, it works only with limited number of cell types and can be cytotoxic.  

3.4 FLOW CYTOMETRY 

Flow cytometry is a powerful laser-based technology to analyze multiple characteristics of a 

single cell, such as size and granularity, as the cell travels in suspension. Scattered lights at 

several angles and fluorescence emissions from thousands of cells per second colliding with a 

laser beam are detected and the signal is transformed into statistical data that can be presented 

in various graphic formats. Forward scatter (FSc) is collected along the same axis as the laser 

beam and gives information about cell size, whereas internal complexity and granularity of 

the cell is represented by side scatter (SSc) (Bakke, 2001). Flow cytometry is a widely used 

method with a numerous applications, such as analysis of cell size, characterization of 

different cell types in a heterogeneous cell population, immunophenotyping, cell isolation, 

assessing the purity of isolated subpopulations, cell cycle analysis, and proliferation assay. 

The two greatest advantages of flow cytometry are its ability to analyze thousands of cells in 

a matter of seconds while measuring a large number of parameters on the same sample. The 

major limitations of flow cytometry are difficulties to differentiate cell subpopulations that 

express similar markers and loss of information on tissue architecture and cell-cell 

interactions due to the requirement of a single cell suspension for analysis. Moreover, use of 

multiple fluorophores can be limited due to fluorescence spillover, which is sometimes 

impossible to compensate. 

Transfection efficiencies of the plasmids were measured by flow cytometry using BD Accuri 

C6. For the p53 plasmids, we used the co-expressed GFP as a marker (Paper II and III). To 

determine transfection efficiencies of minigene splicing reporter plasmids that contain 

modified GFP gene, simultaneous co-transfections with a plasmid encoding mCherry, a 

monomeric red fluorescent protein, were performed (Paper I). Equimolar concentrations of 

plasmids were used in co-transfections. In addition, flow cytometry was used to determine 

whether O6-meG- and 8-oxoG-induced TM influences splicing fidelity in mammalian cells 

transfected with minigene splicing reporter plasmids. The GFP was expressed in the 

transfected cells only if TM occurred activating an alternative splicing site. Changes in GFP 
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fluorescence intensities after gating GFP-positive cells relative to untransfected cells in 

response to different conditions were measured with BD Accuri C6.  

Fluorescence-activated cell sorting (FACS) was used to purify transfected cells based on the 

fluorescence signal of the GFP reporter 6h and 24h after transfection (Paper II and III). Cell 

sorting was performed at the Flow Cytometry Core Facility, Karolinska institutet using 

MoFlo XPD, BD FACSVantage Diva, BD FACSAria™ III, and BD FACSAria™ Fusion.  

Furthermore, we used flow cytometry to perform a bivariate cell cycle analysis of sorted 

GFP-positive cells (Paper II) in order to examine the effect of p53 TM on cell-cycle control. 

Cell cycle analysis using PI to quantify DNA content was one of the earliest application of 

flow cytometry (Krishan, 1975) and remains a widely used application of flow cytometry. To 

investigate the impact of p53 TM on induction of apoptosis (Paper II), mitochondrial 

membrane potential (MMP) in live cells was measured using tetramethylrhodamine ethyl 

ester (TMRE) staining with BD Accuri C6. The signal of GFP expression was used to gate 

for transfected cells following discrimination of dead cells and doublets. 

3.5 QUANTIFICATION OF TM 

Two different methods were applied in order to determine levels of TM in mammalian cells 

in this thesis. We employed Sanger sequencing of RT-PCR products with or without 

additional PCR-based pre-screening of mutated transcripts and RNA sequencing. Both 

methods are valid for determination of TM levels and the choice depends on the scope and 

aims of the study. The screening of cellular transcripts by sequencing of PCR products is a 

cost-effective but laborious method that can be performed with standard laboratory 

equipment, whereas RNA sequencing is a rapid but relatively expensive method, which 

requires special sequencing instruments and expertise in bioinformatics to analyze obtained 

data. On the other hand, RNA-seq is a high-throughput approach, which enables analysis of 

thousands of transcripts and provides information about the whole transcriptome at a single 

nucleotide level in a single run, which cannot be obtained with other approaches. 

Sequencing of RT-PCR products was used to determine levels of TM induced by both site-

specific O6-meG and 8-oxoG in LMNA and PLP1 minigene reporters, respectively, in 

mammalian cells. For LMNA reporter, transformed bacteria colonies with cloned RT-PCR 

products of cellular transcripts were directly subjected to Sanger sequencing, whereas pre-

screening step was performed for PLP1 reporter utilizing tetra-primer ARMS-PCR (Ye et al., 

2001). This approach included colony PCR using specially designed set of primers and 

product resolving on agarose gel to screen for mutated transcripts. Colonies that amplified 

with mutant-specific primers were further confirmed by Sanger sequencing. In addition, high 

levels of p53 TM induce by O6-meG at early time-point in Paper III were confirmed by 

sequencing of RT-PCR products with pre-screening step of tetra-primer ARMS-PCR to 

screen for mutated transcripts as described above. 

RNA sequencing approach (method described in Section 3.6) was used to determine levels of 

TM induced by site-specific O6-meG in TP53 gene in human H1299 cells (Paper II and III). 
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In addition, in vitro transcription assay was performed utilizing DNA templates with a site-

specific lesion and RNA pol II from HelaScribe nuclear extract to determine TM levels in 

vitro. Results from in vitro transcription assay might not reflect in vivo scenario but is one of 

the ways to show quickly that a particular DNA lesion could induce TM.  

3.6 RNA SEQUENCING 

RNA-seq is a powerful technique of next-generation sequencing (NGS) that allows the entire 

transcriptome of any biological sample to be analyzed in a high-throughput and quantitative 

manner. RNA-seq has versatile application possibilities, as this method does not require 

knowing the sequence a priori, thus facilitating the discovery of novel transcripts. Compared 

to previous low-throughput technologies, such as microarray- or Sanger sequencing-based 

approaches, RNA-seq provides high coverage and a single base resolution, very low 

background noise and large dynamic range (>8000-fold), and is able to distinguish different 

isoforms or even sequence variations (SNPs) (Kukurba and Montgomery, 2015; Wang et al., 

2009). In addition, RNA-seq enables monitoring of gene expression between various samples 

(e.g. disease and normal tissues), conditions or developmental stages and has become an 

invaluable tool in disease diagnostics as well as research. 

A typical RNA-seq experiment includes the following main steps: 

• cDNA library preparation 

• cluster amplification 

• sequencing by synthesis (Illumina) 

• alignment and data analysis 

Briefly, the first step in cDNA library preparation is the isolation of RNA from a biological 

sample, which then is reverse transcribed to produce cDNA. Following subsequent second 

strand synthesis, adaptors specific for each cDNA library and enabling simultaneous 

sequencing of multiple cDNA libraries are ligated to each end of ds cDNA fragment. Then, 

the library is enriched by a PCR reaction using adaptor sequences as primers; finally, a 

quality control is performed followed by normalization and pooling of the libraries if several 

samples are being sequenced. 

Next, for the Illumina sequencing platform that was used in this thesis, library is loaded into a 

flow cell where the generated fragments hybridize complementary to the surface-bound 

oligomers. Each fragment is then amplified into distinct, clonal clusters through bridge 

amplification. The Illumina platform uses sequencing by synthesis approach. Once cluster 

generation is complete, sequencing starts when primers attach and the first fluorescent 

labelled terminators, which are version of nucleotides that stop DNA synthesis and each of 

the four bases have unique emission, are incorporated allowing imaging of the fluorescence 

signal before another nucleotide addition. The emission wavelength and intensity are used to 

identify incorporated bases and the cycle continues to create a read length of particular 

number of bases. The sequencing can be performed single read mode (from one end of the 
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fragment) or paired-end read mode (from both ends of the fragment). The latter results in 

more accurate read alignment especially across repetitive regions of sequence, while some 

approaches are best served by single read mode sequencing (Illumina, 2017). RNA-seq was 

performed in Paper II and III. 

After sequencing, generated read data is then aligned to a reference genome if available or de 

novo assembly is performed. Then the mapped reads can be assembled into transcripts and a 

quantification of gene expression levels can be performed by counting the number of reads 

that mapped to full transcripts (Kukurba and Montgomery, 2015). Then, this data can be used 

to perform a differential gene expression analysis using several available RNA-seq software 

packages. In this thesis we used the DESeq2 package that uses counts as input data and 

negative binomial approach (Love et al., 2014). Further, downstream analysis can be 

performed to put the differentially expressed genes into a biological context. Gene ontology 

(GO) term enrichment is another type of commonly used downstream analysis tool that 

identifies significantly enriched ontologies for three domains: Biological Process, Cellular 

Components, and Molecular Function. In addition, commercial software Ingenuity Pathway 

Analysis (IPA) allows identification of canonical pathways and signaling networks that are 

significantly altered in the analyzed dataset. We carried out GO term analysis of Biological 

Processes and IPA in Paper III.  

3.7 CELL CYCLE ANALYSIS 

Cell cycle analysis is a widely used method that utilizes flow cytometry to discriminate cells 

in different cell cycle phases by measuring DNA content. For univariate analysis, cells are 

treated with a fluorescent dye, such as propidium iodide (PI) or 4,6-diamidino-2-phenylindole 

(DAPI), that binds DNA stoichiometrically and the fluorescence intensity thus correlates with 

the DNA amount they contain. Fluorescence intensities of individual cells are then 

represented in a histogram allowing identification of relative frequency (percentage) of cells 

in G0/G1, S phase, and G2/M phases. Multiparameter analysis combining simultaneous 

measurement of DNA content with other counterstained cellular components or features, such 

as RNA or proteins, can also be performed by flow cytometry. Another common and 

especially useful assay is a concurrent measurement of DNA content and 5-bromo-2'-

deoxyuridine (BrdU), which is readily incorporated in replicated DNA instead of thymidine. 

Subsequent immunodetection of BrdU using a specific fluorescent-labeled antibody together 

with measurement of counterstained DNA allow accurate identification of cells in S phase of 

the cell cycle. In Paper II, we used bivariate PI stained DNA/BrdU analysis of cell cycle to 

examine effects of p53 TM on its control of cell-cycle arrest with emphasis on S phase.  

Even though the cell cycle analysis by flow cytometry is a very useful method applied in a 

number of fields, it can have various limitations. PI, which was used in this study, stains 

RNA in addition to DNA and is unable to pass through plasma membrane. These two 

disadvantages of PI staining can be easily solved by RNase treatment and permeabilization of 

the plasma membrane by fixation/detergent treatment. However, in this study, standard 

fixation step with ethanol was not compatible with GFP reporter expressing cells, as GFP 
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signal is lost following fixation. To solve this issue, transfected cells were sorted based on the 

signal of GFP reporter expression and then were immediately subjected to fixation with 

ethanol. 

3.8 GENE AND PROTEIN EXPRESSION 

In this thesis, we used reverse transcription quantitative PCR (RT-qPCR) and reverse 

transcription PCR (RT-PCR) to detect and analyze gene expression in response to different 

conditions in Paper I and Paper II. In addition, Western blot technique was applied in Paper II 

to detect proteins of interest in response to different conditions. 

3.8.1 Real time qPCR and reverse transcription PCR 

Polymerase chain reaction (PCR) is a technique widely used to exponentially amplify a 

specific segment of DNA or RNA for a broad spectrum of applications. The versatility of 

PCR has resulted in numerous variants of this technique. RT-qPCR technique is often applied 

to quantitatively analyze alterations of gene expression levels in real time. The use of 

fluorescent dyes, such as SYBR® Green, enables monitoring the accumulation of amplified 

product as the PCR reaction progresses. Then, relative quantification is based on internal 

reference genes to determine fold-change in expression of the target genes. RT-PCR, another 

variant of PCR, is commonly used to qualitatively identify gene expression through the 

synthesis of complementary DNA (cDNA) from purified RNA, which then is amplified by 

traditional PCR. The simple technique is highly sensitive and produces results rapidly 

providing sufficient amounts of product that can further be used for sequencing and cloning. 

The PCR approach has an advantage as it needs only a pair of primers to carry out the 

amplification and is cost-effective; however, sequence of the target fragment is needed a 

priori to generate primers, which can be a limiting factor. For initial reverse transcription, 

random hexamers are used to synthesize cDNA from all transcripts present in a sample. In 

addition, high sensitivity to contamination often leads to the production of misleading results.  

Both of these methods were used in paper I in order to quantitatively and qualitatively 

determine the expression of the different splicing isoforms of LMNA and PLP1 mRNA as a 

result of TM. RT-qPCR was used in Paper II to determine the impact of p53 TM on gene 

expression levels of p53 target genes. 

3.8.2 Western blot 

Western blot or protein immunoblot is an analytical technique extensively used to identify a 

specific protein of interest within mixture of proteins obtained from e.g. cell lysates and 

measure relative changes of protein expression between different conditions. In Paper II, two 

different detection techniques were used to detect and semi-quantify expression levels of 

various regulators of cell cycle and apoptosis following standard procedures. Direct detection 

of most proteins was performed using secondary antibodies labeled with IRDye near-infrared 

(NIR) fluorescent dyes with Odyssey CLx (LI-COR) system. However, we experienced 

problems detecting p21 enzyme with Odyssey CLx system that could not be resolved, thus 
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detection of p21 protein in cellular lysates was performed using enhanced 

chemiluminescence (ECL) technique. Secondary antibodies conjugated with horseradish 

peroxidase (HRP) that reacts with a detection substrate are used to detect proteins by ECL 

technique. The light generated during enzymatic reaction is captured on a photographic film, 

whereas the signal emitted from fluorescent-labeled antibodies is directly captured in the 

form of light by Odissey CLx (LI-COR) system. Fluorescence detection has gained 

popularity for its advantages over traditional (ECL) detection. The main drawbacks of ECL 

system are limited linear and dynamic range of detection resulting in saturated films and 

underestimation of protein abundance, even though it is more sensitive. In addition, 

fluorescent western blot detection is time and cost-effective method with a wide dynamic and 

linear range that offer data reproducibility and quantification.  

3.9 MITOCHONDRIAL MEMBRANE POTENTIAL 

Mitochondrial membrane potential (ΔΨm) is a key indicator of cell health or damage. In 

healthy cells, ΔΨm is an essential component in the process of ATP synthesis through 

oxidative phosphorylation. The collapse of the ΔΨm leads to the opening of mitochondrial 

pores and the subsequent release of cytochrome C into the cytosol triggering downstream 

events in the apoptotic cascade. Permeant cationic fluorescent dyes is a commonly used tool 

for measuring ΔΨm to monitor mitochondria function (Perry et al., 2011). Accumulation of 

fluorescent dyes in the negatively charged mitochondrial matrix of healthy cells is then 

detected by variety of instruments, thus allowing qualitative or semi-quantitative comparative 

assessments of the ΔΨm among experimental conditions.  

In Paper II, a permeant cationic fluorescent dye, TMRE, was used to monitor changes of the 

ΔΨm in response to different conditions by flow cytometry. This technique was applied to 

investigate the impact of p53 TM on the induction of apoptosis. Carbonyl cyanide m-chloro 

phenyl hydrazine (CCCP), which depolarizes mitochondria by increasing their permeability 

to protons, was used as a positive control to validate the approach in our experimental system. 

The main reason for choosing TMRE in this study was its compatibility with our 

experimental system. Transfected cells express GFP reporter, whereas TMRE emits red 

fluorescence in healthy cells. In addition, cells with depolarized mitochondria fail to sequester 

TMRE resulting in diminished levels of red fluorescence, whereas other dyes, such as m-MPI 

or JC-1, result in fluorescence emission shift, which is incompatible with our experimental 

setup. In general, other features, such as the lowest mitochondrial binding and inhibition of 

respiratory electron transport chain, thus being the least toxic to mitochondria, or readily 

accumulation in active mitochondria, strong fluorescence signal at low concentrations, makes 

TMRE being preferred for many studies (Nicholls and Ward, 2000). 

3.10 CASPASE-3/-7-LIKE ACTIVITY ASSAY 

Caspase activity assays with colorimetric or fluorescent output provides simple and 

convenient means to measure the activity of various activated caspases in cell lysates 

containing apoptotic cells. In particular, the Caspase-3/-7-like activity assay utilizes a 
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fluorogenic substrate (N-AcetylAsp-Glu-Val-Asp-7-amino-4-methylcoumarin or Ac-DEVD-

AMC). The substrate is cleaved between DEVD and AMC by activated caspases that share 

the same substrate sequence, such as caspase-3 or caspase-7, releasing highly fluorescent 

AMC that can be detected using a fluorescence reader (Ex 380 nm / Em 420 - 460 nm) (CST, 

2012). Such assays are a quick and convenient method to assess caspase activation in cells. 

However, cleavage specificities of caspases overlap and identification of a single specific 

caspase is highly limited as the substrate in a given assay can be recognized by several 

caspases. Both caspase-3 and -7 are effector caspases responsible for execution of apoptosis. 

Caspase-3/-7-like activity assay was performed further to investigate effects of p53 TM on 

the induction of apoptosis in Paper II by measuring activity of effector caspases. 

3.11 AGT ACTIVITY ASSAY 

AGT activity assay is a well-established sensitive method to detect functional activity of 

AGT, which repairs O6-meG, in cell or tissue extracts. Since repair by AGT is a 

stoichiometric reaction, this method involves measuring [3H]methyl group transfer to AGT 

protein (Watson and Margison, 2000). Briefly, cellular extracts are incubated with 

radioactively labeled [3H]-methylated DNA substrate until the reaction is complete. The 

radioactivity in the protein fraction is measured by liquid scintillation counting and the 

specific activity can be expressed as fmoles AGT per mg protein in the extracts. In this thesis 

to show that AGT is indeed suppressed by O6-benzylguanine (O6-bzG) at experimental 

conditions, AGT activity with and without O6-bzG treatment was assessed in cell extracts. 

O6-bzG is a synthetic derivative of guanine that inhibits AGT enzyme and interrupts DNA 

repair. The main disadvantage of this assay is the use of the radioactive substrate; however, 

no convenient, highly sensitive alternatives to quantify active AGT have been established. 

3.12 CELL VIABILITY ASSAY 

Alamar blue assay is a widely used method to study cell viability and cytotoxicity of 

compounds. When cells are alive, they maintain a reducing intracellular environment that can 

be directly monitored by a redox indicator Alamar blue. When added to living cells, the 

active compound resazurin (blue, non-fluorescent) is reduced to resorufin (red, fluorescent) 

(Lancaster and Fields, 1996). Healthy cells continuously convert resazurin to resorufin, thus 

increasing overall fluorescence and change in color of the media can be detected by 

measuring fluorescence (Ex 530-560 nm / Em 590 nm) or absorbance (570 nm and 600 nm), 

respectively, with the fluorescence detection being more sensitive. This cost-effective assay is 

similar to traditional tetrazolium reduction (MTT) assay but it is more sensitive, requires 

fewer steps, offers time-course monitoring and can be combined with other methods, such as 

caspase activity measurement. The disadvantages of Alamar blue assay are the possibilities of 

fluorescent interference from compounds being tested and direct toxic effects on the cells 

(Rampersad, 2012). The Alamar blue assay was used to in Paper II to evaluate cytotoxicity of 

inhibitor O6-bzG. 
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4 RESULTS 

This section provides a summary of the main findings in Papers I-III. For details and 

comprehensive discussions, the reader is referred to the respective publication.  

4.1 PAPER I: TRANSCRIPTIONAL MUTAGENESIS REDUCES SPLICING 
FIDELITY IN MAMMALIAN CELLS 

Knowledge about effects and consequences of transcriptional errors on splicing fidelity is 

scarce in general. Analysis of RNA sequencing data on RNA Pol II fidelity has suggested that 

transcriptional errors have the potential to significantly affect splicing fidelity and may 

contribute to disease development (Carey, 2015). Notably, the impact of TM on splicing 

fidelity had not yet been investigated. We hypothesized that TM events induced by a DNA 

lesion could change the recognition specificity of a splicing signal in pre-mRNA activating an 

alternative splice site and subsequently resulting in aberrant splicing in mammalian cells. 

With this study, we aimed to investigate the effects of both O6-meG and 8-oxoG induced TM 

on splicing fidelity by assessing activation of alternative splicing using LMNA and PLP1 

minigene constructs as probes (Figure 7). 

Firstly, we constructed two non-replicative minigene splicing reporter systems using the 

probe genes, LMNA and PLP1, with established links to severe human diseases caused by 

aberrant splicing due to a single base substitution within each gene. Each reporter system 

consisted of three plasmids. One of the control plasmids contained either wild type LMNA or 

PLP1 sequences and the other contained the mutated sequences with the specific c.1284C>T 

or c.347C>A substitutions. The third plasmid contained either a site-specific O6-meG at 

codon 608 for LMNA gene or 8-oxoG at codon 116 for PLP1. The presence of O6-meG and 

8-oxoG was confirmed either by sequencing of the plasmids or by an Fpg nicking assay.  

Next, mammalian cells (HEK293, WI-38, wild type and OGG1-/- MEFs) were transiently 

transfected or nucleofected with the reporter constructs to determine the extent of TM and the 

effects of TM on splicing fidelity. In order to determine levels of TM induced by both 

lesions, cellular transcripts from the damaged reporter were analyzed by sequencing of RT-

PCR products. Our results demonstrated that the presence of O6-meG and 8-oxoG on the 

transcribed strand induced TM in these cells to similar extent ranging 1–4%. Moreover, levels 

of TM increased by one order of magnitude when repair was compromised either by 

inhibition of AGT or OGG1 deficiency (20% in HEK293 induced by O6-meG and 40% in 

OGG1-/- MEFs by 8-oxoG). 

Further, we investigated to what extent these misincorporation events in pre-mRNA affected 

splicing fidelity since they changed the recognition specificity of the splicing signal. As 

described above, these minigene reporters were constructed in a way that GFP was only 

expressed if alternative splicing occurred. Thus, fluorescence intensities were measured with 

flow cytometer and revealed that lesion-induced TM indeed activated alternative 5′ splice 

sites for both probe proteins (Figure 9). Notably, TM activated alternative splicing in 

HEK293 with active DNA repair, but not in WI-38 or MEFs. As expected, the levels of 
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alternative splicing increased substantially in all cell types when DNA repair of each lesion 

was impaired, which is in agreement with the observed higher frequency of TM. 

 

Figure 9. Box plots of distributions of fluorescence intensity in different cells transfected with the 

LMNA or PLP1 minigene reporters. **** in comparison to the WT reporter, #### in comparison to the 

O6-meG reporter. Image adapted from Paredes et al., 2017. 

In addition, flow cytometry results were further confirmed by quantitative and qualitative 

PCR. With this approach wild type LMNA and progerin transcripts were detected in both 

HEK293 and WI-38 cells with active or inactive DNA repair, the latter being substantially 

higher, as expected. This further confirmed that O6-meG-induced TM affected splicing of 

LMNA pre-mRNA by activation of the cryptic splice site. In case of PLP1 reporter, where 

both PLP1 and DM20 splicing isoforms can be expressed simultaneously under physiological 

conditions, the effects of 8-oxoG-induced TM on splicing fidelity were not as clear. Such 

effects were reflected by changes in the ratio between the two isoforms. Semi-quantitative 

PCR analysis was carried out and revealed that 8-oxoG-induced TM affected splicing fidelity 

of PLP1 pre-mRNA by increasing the selection of alternative splicing site in all cell types, 

except for wild type MEFs.  

To summarize, the results of this study showed that the presence of O6-meG and 8-oxoG on 

the template strand of a gene induces TM if left unrepaired. This is in agreement with 

previous in vivo studies and extends the knowledge about the impact of DNA damage on 

transcription fidelity. We also demonstrated for the first time that lesion-induced 

transcriptional misincorporations could change the recognition and selection patterns of 

splicing sites, thus activating alternative splicing and resulting in the production of 

alternatively spliced RNA isoforms in mammalian cells. Our results indicate, TM may not 
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only change translational outcome of a gene by affecting the coding specificity of a codon, 

but also by changing regulatory sequences, such as splicing signals, and thereby altering the 

recognition of splice sites. The present study indicates that TM could contribute significantly 

to the burden of mutant proteins within a cell by reducing splicing fidelity, thereby inducing 

adverse effects on cellular homeostasis. 

4.2 PAPER II: O6-METHYLGUANINE-INDUCED TRANCRIPTIONAL 
MUTAGENESIS REDUCES P53 TUMOR-SUPPRESSOR FUNCTION 

Previous studies have reported that mutated transcripts may be produced due to lesion-

induced TM in vivo and that these transcripts can be translated into proteins with altered 

functions (Bregeon et al., 2009; Burns et al., 2010; Saxowsky et al., 2008). At the time this 

study was conducted, there was only one previous study reporting biologically relevant 

effects of TM in mammalian cells. A study in murine cells demonstrated that 8-oxoG bypass 

during transcription resulted in activation of RAS protein and subsequent MAPK downstream 

signaling (Saxowsky et al., 2008). This demonstrated the ability of TM to activate oncogenic 

signaling pathway and suggesting a link between TM and tumorigenesis. With this in mind, 

we aimed to investigate the biologically relevant effects of TM induced by O6-meG on 

protein function and downstream signaling using p53 tumor suppressor as a probe protein and 

with the focus on two main functions of p53: cell cycle regulation and apoptosis. 

Firstly, a non-replicative TM reporter plasmid containing TP53 gene with a site-specific O6-

meG placed in codon 248 and GFP gene for an internal transfection control was constructed. 

Two plasmids encoding either wild type p53 or mutant p53 with c.742C>T (R248W) 

substitution were additionally constructed to serve as controls for cellular responses to the 

expression of p53 variants. The presence of O6-meG was confirmed employing restriction 

enzyme assay based on the fact that presence of O6-meG blocks the cleavage. 

To determine the levels of p53 TM and to study the effects of p53 TM on cellular 

homeostasis, we transiently transfected human p53-null H1299 cells either treated or 

untreated with O6-bzG, thereby also allowing us to examine the impact of DNA repair. This 

particular cell line was chosen in this study to avoid any interference from endogenous levels 

of p53 allowing the interpretation of obtained data. Moreover, H1299 cells are common 

model to study the effects of p53 mutagenesis (Willis et al., 2004). RNA sequencing revealed 

that O6-meG induced very low levels of uridine misincorporation (0.14%) at codon 248 in 

p53 transcripts from H1299 cells, but increased hundred-fold (14.7%) when DNA repair was 

impaired.  

We continued to investigate if expression of mutated p53 transcripts due to TM induced by 

O6-meG would produce p53 proteins with altered functions. qPCR analysis of several p53 

target genes, including CDKN1A and BBC3, was performed and showed that the 

transactivation capacity of p53 was significantly reduced due to TM. The obtained gene 

expression results strongly suggested that TM at codon 248 deregulated p53-mediated cell 

cycle control by disrupting the p21-regulated functional G1/S checkpoint. In addition, gene 
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expression data also indicated that TM of p53 reduced the capability to activate the intrinsic 

apoptosis pathway.  

Results from immunoblotting confirmed that O6-meG induced TM of p53 reduced protein 

levels of p21. Previous studies have shown that p21 is crucial for p53-dependent control of 

cell cycle arrest and for the effective tumor suppressor function of p53 (el-Deiry et al., 1994). 

Loss of functional G1/S checkpoint due to p53 TM was further verified by deregulated levels 

of other G1/S checkpoint regulatory proteins. In addition, disrupted control of G1/S 

checkpoint was confirmed by bivariate cell cycle analysis. Results showed that O6-meG-

induced TM of p53 reduced the tumor suppressor function to arrest the cell cycle by allowing 

a large population of cells to transit into S phase. 

Ultimately, we checked the effects of p53 TM induced by O6-meG on the potential to induce 

apoptosis. The consequences of p53 TM on two hallmarks of apoptosis, loss of mitochondrial 

membrane potential and caspase activation, were evaluated. Results revealed that TM 

impaired the induction of apoptosis as was shown by a reduced loss of mitochondrial 

membrane potential and reduced level of caspase activation, thus attenuating the effective 

function of p53 as a tumor suppressor.  

To summarize, our results showed that the presence of O6-meG on the template strand of 

TP53 gene can induce TM in human cells when AGT is lacking. More importantly, the level 

of expression of mutant p53 protein from the resulting mutated transcripts was sufficient to 

attenuate the tumor suppressor function and disrupt downstream signaling that is crucial for 

functional cell cycle checkpoints and apoptosis. As summarized in Figure 10, findings of the 

present study shed light on the consequences of lesion-induced TM and provide evidence that 

TM could have detrimental consequences on cellular homeostasis supporting the proposed 

contributions of TM to human disease development, and especially tumorigenesis.  

 

Figure 10. O6-meG-induced transcriptional mutagenesis can reduce p53 tumor suppressor function 

by impairing control of cell cycle arrest and apoptosis. Image reused from Ezerskyte et al., 2018. 
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4.3 PAPER III: TRANCRIPTIONAL MUTAGENESIS DRAMATICALLY ALTERS 
GENOME-WIDE P53 TRANSACTIVATION LANDSCAPE 

In Paper II, we have demonstrated that O6-meG-induced TM of p53 reduced its tumor 

suppressor function, which is exerted mainly through transcriptional activation of numerous 

target genes. We examined the effects of TM on p53 transactivation capacity only on a 

limited number of target genes, but p53 has been shown to regulate expression of a few 

hundred genes related to numerous cellular processes to maintain homeostasis. In this study, 

we aimed to determine time-dependent formation of TM induced by O6-meG in p53 

transcripts and further to expand the assessment of the effects of TM on p53 transactivation 

of target genes at a genome-wide level.  

We used the same expression constructs containing a TP53 gene with a site-specific O6-meG 

and p53-null H1299 cells as in Paper II. Human H1299 cells either treated or untreated with 

O6-bzG were transiently transfected and RNA sequencing was carried out on samples from 

an early (6 h) and late (24 h) time points. First, we determined the extent of O6-meG-induced 

TM in p53 transcripts at codon 248 at the two time points. In agreement with previous study, 

results of RNA-seq revealed that transcription past O6-meG in cells with active AGT resulted 

in low levels of uridine incorporation opposite the lesion. In contrast, levels of uridine 

misincorporation increased by two orders of magnitude when AGT was inhibited at both time 

points. Furthermore, levels of TM at the early time point were almost 3-fold higher than at 

the later time point (47% of p53 transcripts contained uridine at 6 h, whereas at 24 h only 

18%). High levels of uridine misincorporation at the early time point were further confirmed 

using a PCR-based approach. 

Next, differential gene expression analysis was further performed to investigate if there were 

any p53 status-dependent differentially expressed genes (DEGs). Results revealed that the 

total number of DEGs increased over-time in response to all vectors when compared to the 

control without expression of p53, except for the R248W mutant p53, which did not induce 

any DEGs (not including TP53 expressed from the plasmid). 

Furthermore, we measured transactivation levels of 346 high-confidence p53 target genes 

(HCGs) previously described in 16 genome-wide data sets and one literature-based data set 

that met the criterion of a target gene (Fischer, 2017). TM of p53 reduced expression levels of 

97.6% and 64% of the wild type p53 induced HCGs at early and late time points, 

respectively. Moreover, time-dependent effects of TM on p53-dependent transactivation of 

HCGs were observed revealing three clusters: early repression (e.g. BAX was repressed only 

at the early time point), continuous repression (e.g. CDKN1A was repressed at both time 

points), and late repression (e.g. CAV1 was repressed only at the late time point). 

In order to further elucidate which cellular processes were affected by p53 TM in time-

dependent manner, we sought to perform gene ontology (GO) term analysis of Biological 

Processes associated with the HCGs identified in each cluster. As expected, genes annotated 

as being involved in p53 signaling and apoptotic signaling were represented in all three 

clusters. Furthermore, cellular processes regulated by the genes identified in both early and 
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continuous repression clusters clearly overlapped and included GO terms related to DNA 

damage response (e.g. Signal transduction in response to DNA damage) and regulation of cell 

cycle (e.g. Cell cycle checkpoints) (Figure 11). In agreement with the TM reduced 

transactivation of CDKN1A at both time points, repression of transcriptional downregulation 

of numerous genes was observed at the late time point, but no GO term enrichments could be 

found. Pathway analysis using IPA revealed that the E2F transcription factor family was 

among the most important upstream regulators of these genes. 

 

Figure 11. Over-represented GO terms in each temporal cluster. Image adapted from Ezerskyte et al., 

manuscript. 

To summarize, we showed that TM of p53 deregulated the transactivation or downregulation 

of numerous target genes involved in several canonical signaling pathways in a time-

dependent manner. All these pathways are crucial for the effective p53 tumor suppressor 

function and maintenance of cellular homeostasis. Overall, these findings further support the 

possible contribution of TM in the multistep process of tumor development. 
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5 GENERAL DISCUSSION 

Undamaged DNA template is required for both essential cellular processes – DNA replication 

and transcription. Despite numerous repair mechanisms, both enzymes can encounter DNA 

lesions on DNA templates resulting in mutations. Mechanisms and consequences of 

mutagenesis from DNA replication past DNA damage are well characterized and have been 

shown to be highly important for genetic variability, evolution, hereditary diseases and 

tumorigenesis in mammalian systems (Bregeon et al., 2009; Lynch, 2010). DNA lesion-

induced TM has the potential to produce a population of mutated transcripts as long as the 

lesion remains unrepaired, which subsequently can be translated into mutant proteins. Thus, 

TM can adversely affect cellular homeostasis. The extent to which lesion-induced TM 

influences protein function and the role of these seemingly transient changes in cellular 

homeostasis in disease development remains unclear (Figure 12) and was one of the 

questions this thesis wanted to address.  

 

Figure 12. Schematic presentation of the consequences of mutagenic bypass of DNA lesion by 

elongating DNA and RNA Pols. 

Issues with methodologies 

Gradual loss of proper homeostasis is a reason of many diseases as well as aging (Hartl, 

2016). A pool of mutant proteins can be produced due to lesion-induced TM and thereby 

substantially contribute to the burden of aberrant proteins in a cell with potentially adverse 

effects on cellular homeostasis. The impact of mutagenesis during transcription (TM) may 

not have received an adequate attention due to several reasons. TM induced errors are 

presumably transient and present in only a fraction of the proteins produced. They are 

moreover inheritable, so detection and quantification of these errors are technically 

challenging and require specialized methods, thus limiting studies of TM. 
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Several approaches have been developed to study the effects of DNA lesions on elongating 

RNA Pol during transcription and to investigate the potentially detrimental effects on cellular 

homeostasis. The first in vitro studies used RNA pols purified from various sources with 

DNA templates containing site-specific DNA lesions and revealed that TM indeed occurs. 

Most of the early studies focused on the effects of bulky helix-distorting DNA lesions that 

generally arrest elongating RNA Pols which led to the discovery of TC-NER (Mellon et al., 

1987). Later, to study effects of TM on protein function in vivo, protocols were developed to 

produce non-replicative reporter constructs that are introduced into bacterial or mammalian 

cells and contained a site-specific DNA lesion in a gene of a protein with biochemically 

detectable activity (Bregeon et al., 2003; Bregeon and Doetsch, 2004; Shaw et al., 2002; You 

et al., 2000). However, this approach does not provide information on possible effects on 

cellular homeostasis. To investigate how lesion-induced TM could affect cellular 

homeostasis, DNA lesions were instead placed at defined positions in gene sequences that 

would result in proteins harboring mutations associated with disease phenotypes and which 

function could be biochemically measured (Ezerskyte et al., 2018; Saxowsky et al., 2008). 

Reporter plasmids containing site-specific DNA lesions in target genes is a powerful and 

informative tool allowing to examine effects of TM induced by any DNA lesion in any 

sequence of interest. However, the most limiting step in this system is the production of large 

amounts of reporter constructs containing DNA lesions at defined positions as plasmids have 

to be generated in vitro. Although it is theoretically feasible to introduce any DNA lesion into 

transcription templates, such protocols are time-consuming and technically challenging, thus 

resulting in limited yields of pure plasmids suitable for transfections.  

Although experiments investigating individual loci or using reporter constructs have provided 

a foundation for the study of TM, they do not represent a genome-wide extent of TM. To 

establish the role of TM in disease development, especially tumorigenesis, it is important to 

determine the genome-wide extent of these events in mammalian cells under various 

conditions. Now, next-generation RNA sequencing technology enables analysis of the entire 

cellular transcriptome of any organism and provides another approach to determine multiple 

facets of TM. However, standard protocols cannot accurately determine true levels of 

transcriptional errors on genome-wide level because of the high error rates of cDNA 

synthesis and the sequencing reaction. As a result, protocols were improved to overcome 

these limitations and to enable sensitive determination of transcriptional errors induced by 

both the inherent RNA Pol II infidelity and by DNA lesions throughout the transcriptome of 

any organism. Several novel approaches, including the mining of RNA-seq data for splicing 

errors (Carey, 2015), the high-resolution sequencing method (Imashimizu et al., 2013), the 

replicated sequencing method (Gout et al., 2013), and the circle-sequencing method 

(Acevedo and Andino, 2014), with different advantages and drawbacks have revolutionized 

the field allowing determination of the extent of both spontaneous transcriptional errors due 

to RNA Pol II infidelity and misincorporations due to TM at the genome-wide level (for an 

review of these methods, see (Gordon et al., 2015)). Indeed, a recent study presented a novel 

method, referred to as ARC-seq, which was developed to detect misincorporation events due 



 

 43 

to lesion-induced TM with high accuracy, and applied it to determine if oxidative stress 

elevated levels of TM in yeast (Reid-Bayliss and Loeb, 2017).  

Effects of TM 

After confirmation that also TM can result in the production of proteins with altered functions 

in vivo, a possible role of TM in aging and pathogenesis of various human diseases, including 

cancer and neurodegeneration, has been proposed (Bregeon et al., 2003; Saxowsky and 

Doetsch, 2006). Increasing lines of evidence suggest that TM could be a mechanism which 

contributes to various stages of tumorigenesis by inactivation of tumor suppressors or 

activation of oncogenes that could potentially stimulate proliferation of an initiated neoplastic 

cell or allow it to escape growth-inhibitory signals (Brégeon and Doetsch, 2011; Morreall et 

al., 2013; Saxowsky and Doetsch, 2006). Somatic mutations, which are detected in human 

tumors, are consistent with those occurring due to lesion-induced TM, supporting the 

hypothesis that TM is one possible route of tumorigenesis. These mutations can lead to the 

constitutive activation of proliferation and survival signaling by inactivating negative 

regulators of proliferation, including p53, or activating oncogenes, such as RAS (Morreall et 

al., 2013). As shown in Figure 13, mutations in e.g. RAS and TP53 genes are key genetic 

alterations driving progression of colorectal cancer (Markowitz and Bertagnolli, 2009). 

Although transient, the deregulation of these key regulators due to TM could provide the 

initiated neoplastic cell with growth and survival advantage and possibly result in the fixation 

of the mutation in the genome following replication if the DNA lesion remains unrepaired. 

Indeed, this concept of retromutagenesis has previously been proposed but is yet to be shown 

in mammalian cells (Brégeon and Doetsch, 2011; Morreall et al., 2015). 

 

Figure 13. Classical pathway of colorectal cancer progression from normal epithelium. Image 

adapted from Davies et al. 2005, with permission from Springer Nature. 

In addition, it has previously been suggested that TM could be a contributing mechanism to 

anomalies during development, especially neurodevelopmental deficits, where exposures to 

DNA damaging agents could have devastating effects due to TM on transcriptional outcome 

of genes required for normal development and function (Saxowsky and Doetsch, 2006; Wells 

et al., 2009). One could also speculate that DNA lesion-induced TM could affect spatial and 

temporal gene expression patterns leading to disturbances of precisely orchestrated p53-

dependent apoptosis during development with detrimental consequences. This is, however, 
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still to be shown. Besides, TM is also implicated to play a role in the etiology of 

neurodegenerative disorders that are characterized by aggregates of misfolded proteins, such 

as Parkinson’s and Alzheimer’s diseases (Basu et al., 2015). Analysis of patient samples 

revealed that altered proteins originate from mutated RNA transcripts without detectable 

mutations in genomic DNA indicating that mutations within proteins have arisen as errors 

during transcription due to increased oxidative DNA damage in ageing brain (van Leeuwen et 

al., 1998). 

Notably, despite the proposed contributions in pathogenesis of various diseases, the potential 

of transient TM errors due to unrepaired lesions to affect cellular homeostasis is virtually 

unknown. To date only a few studies have investigated the impact of TM on cellular 

homeostasis and provided direct evidence that TM can lead to synthesis of proteins with 

changed function that are able to activate oncogenic signaling pathway or affect splicing 

fidelity by changing the recognition of the splice site (Ezerskyte et al., 2018; Paredes et al., 

2017; Saxowsky et al., 2008). The first direct evidence supporting the involvement of TM in 

tumorigenesis came from a study using a non-replicating construct containing a site-specific 

8-oxoG lesion in the transcribed strand of the RAS gene. Bypass of the lesion resulted in 

approximately 14% of the transcripts being mutated in OGG1-/- MEFs, which resulted in 

production of constitutively active mutant (Q61K) RAS protein. This was sufficient to 

activate downstream effector ERK, thus demonstrating the ability of TM to initiate oncogenic 

signaling pathway (Saxowsky et al., 2008). Our study in Papers II-III further confirmed the 

role of TM in tumorigenesis. We showed that O6-meG-induced TM resulted in 14.7% of 

mutated transcripts in human cells with impaired DNA repair and that the subsequent 

expression level of mutant R248W p53 was sufficient to impair tumor suppressor function of 

p53 by deregulating cell cycle control and activation of apoptosis. Further investigation at a 

genome-wide level revealed that TM of p53 deregulated expression of numerous p53 target 

genes. 

As discussed above, alternative splicing is a highly regulated process that requires extreme 

precision. Effects of splicing infidelity can have detrimental biological consequences that are 

reflected by a large number of severe diseases associated with aberrant splicing (Ward and 

Cooper, 2010). The ability of spontaneous RNA Pol errors to significantly affect splicing 

fidelity has been proposed before (Doetsch, 2002; Fox-Walsh and Hertel, 2009) and recently 

suggested from RNA-seq data mining analysis (Carey, 2015), but never tested in vivo. In 

addition, the impact of TM on splicing fidelity has not yet been investigated. We have 

revealed for the first time that DNA lesion-induced TM can lead to specific mutations in pre-

mRNA molecules that deregulate splicing thus reducing splicing fidelity in mammalian cells. 

This indicates that TM could contribute to the mutant protein burden within the cells 

affecting cellular homeostasis; however, the extent and the effects of these events on cellular 

homeostasis are unknown and require further investigation. In certain pathogenesis, such as 

tumor progression, alterations in alternative splicing patterns can be a critical component for 

disease development and have been found to drive cancer (Carstens et al., 1997; Sveen et al., 

2016). This emphasizes the impact of lesion-induced TM on splicing fidelity resulting in 
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aberrant splicing and supports TM as a contributing mechanism in tumorigenesis. In addition, 

accurate transcription is necessary for normal development (Wells et al., 2009). Reduced 

splicing fidelity in response to DNA lesions due to TM could possibly have detrimental 

consequences at any developmental stage. 

Interesting observations 

The results of the present work are summarized and discussed in detail in their respective 

articles. Nonetheless, two interesting observations in the present work are worth discussing 

further. First, several studies have shown that dominant-negative p53 mutants, such as the 

R248W p53, are capable of altering gene expression patterns not simply due to loss of 

function of wild type p53, but also due to gain of new functions. Thus, in addition to loss of 

function and dominant-negative effects, it has been proposed that several p53 mutants can 

exhibit oncogenic gain of function (GOF) phenotypes that promote tumorigenesis (O'Farrell 

et al., 2004; Scian et al., 2004; Strano et al., 2007; Willis et al., 2004). Several mechanisms 

for GOF phenotype, which is characterized by enhanced proliferation, resistance to anticancer 

treatment, increased invasiveness, migration, and genomic instability, have been proposed 

(Strano et al., 2007). Some studies have proposed that mutant p53 exhibit changed binding 

preferences for target response elements compared to wild-type p53, through which it 

regulates numerous genes, allowing transactivation of different genes (Resnick and Inga, 

2003). While others propose that mutant p53 can interact, sequester, and inactivate other 

proteins and change their transactivation ability resulting in altered gene expression patterns 

(Strano et al., 2007). However, in addition to scarce knowledge of the GOF molecular 

mechanism, evidence for additional oncogenic properties of different p53 mutants remains 

inconsistent. Recent genome-wide approaches showed no evidence for gain of function 

phenotype of dominant-negative p53 mutants in patient-derived lymphocytes (Zerdoumi et 

al., 2017). This is further supported by our RNA-seq data presented in Paper III, where we 

could not detect any mutant-specific differentially expressed genes in response to the R248 

p53 expression in H1299 cells compared to both the control (no p53 expression) and the wild 

type p53 at both early and late time points. Contradictory results may have arisen due to 

nature of earlier studies that greatly relied on microarray hybridization analysis and chromatin 

immunoprecipitation (ChIP) assays. Thus, high-throughput RNA-seq analysis of gene 

expression profiles of different p53 mutants is required and will provide more insight about 

mutant p53 capabilities to specifically alter gene expression patterns. 

Another interesting observation is the time-dependent decrease of mutated transcripts with 

uridine misincorporation induced by O6-meG in H1299 cells when AGT repair is 

compromised (Paper III). We reported that 47% of p53 transcripts contained uridine at 6 h, 

whereas only 18% were mutated at 24 h, the latter being in agreement with our previous 

study (Ezerskyte et al., 2018). To assure that the surprisingly high level of TM at the early 

time point is not an artifact or a technical experiment mistake, we further confirmed this by 

another PCR-based approach, which showed similar 51% uridine incorporation opposite the 

lesion in cells with inactive AGT. In addition, we confirmed the inhibition potential of O6-

bzG and showed that more than 95% of the AGT activity was inhibited in the presence of O6-
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bzG (10 µM) for up to 24 h. This eliminated the possible explanation of insufficient 

inhibition resulting in repair of the lesion by residues of active AGT. Furthermore, we also 

considered if the elimination of a damaged plasmid due to cell death could explain this 

finding. Increased levels of apoptosis were observed in cells expressing wild-type p53. In this 

case, an increase of TM levels could actually be expected, as the wild type p53 expressing 

cells from the damaged plasmid would induce apoptosis and die, leaving the cells in the 

culture that express mutant p53 due to TM. After considering all, this might indicate that 

other repair pathways, such as BER or NER could play a backup role for AGT or even yet an 

unidentified homologue of AGT in human cells could repair the lesion. Indeed, an in vitro 

study have shown that both E. coli and human excinucleases belonging to NER pathway were 

able to remove O6-meG, however with low efficiencies (Huang et al., 1994), although this 

pathway is primarily thought to function in the repair of DNA-helix distorting lesions. 

Moreover, several alkylation adducts are recognized and repaired by the BER pathway 

(Kaina et al., 2007). Interestingly, E. coli possesses two alkyltransferases Ada and Ogt with 

slightly different preferences for substrate; however, both are capable to eliminate O6-meG 

lesion indicating that human cells could also possibly have homologue proteins able to repair 

O6-meG in addition to AGT, but yet to be discovered (Sassanfar et al., 1991). This is 

supported by the fact that residual activity of AGT was detected in MGMT–/– mice liver and 

MEFs, however these mice displayed no obvious phenotypic or pathological abnormalities 

suggesting the existence of additional methyltransferase activity (Glassner et al., 1999). In 

addition, alkyltransferase-like proteins (ATLs), so far identified in prokaryotes and lower 

eukaryotes, have been recently revealed by in silico analysis with functional motif similarities 

to AGT and abilities to bind alkylated DNA and to trigger the NER pathway (Margison et al., 

2007; Tubbs et al., 2009). Additionally, it has been suggested that TC-NER could possibly 

play an auxiliary role in the clearance of this lesion as O6-meG partially blocks RNA Pol II, 

however, this needs to be further investigated (Dimitri et al., 2008). 

To summarize, the work presented in this thesis sheds some light on the impact of TM on 

cellular homeostasis, which may have been initially underestimated due to transient nature of 

the transcripts and challenging approaches of detection and quantification. However, many 

issues have yet to be addressed and further thorough investigation is required to fill the gap in 

scientific knowledge about possible mechanisms by which TM might contribute to human 

disease development. This can be achieved by combined use of both reporter-based DNA 

templates containing site-specific DNA lesions and RNA-seq. 
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6 CONCLUSIONS AND FUTURE OUTLOOK 

The extent to which lesion-induced transcriptional mutagenesis (TM) influences cellular 

homeostasis and its contributions to development of human diseases is not well understood. 

A number of studies have shown that various DNA lesions can induce misincorporations 

during transcription and generate mutated transcripts. With the present work, we wanted to 

shed some light on the biological consequences of TM and provide evidence that lesion-

induced TM can adversely affect cellular homeostasis and require further investigation. 

In agreement with previous studies, we conclude that both 8-oxoG and O6-meG present on 

the template strand of an actively transcribed gene are mutagenic during transcription if left 

unrepaired and instruct the misincorporation of A and U opposite the lesion to a high degree 

in vivo (Paper I-III). 

We show for the first time that lesion-induced TM at a splice site can significantly reduce 

splicing fidelity in vivo leading to the production of disease associated splice forms and/or 

disrupting ratios between alternatively spliced isoforms. (Paper I). 

We show that expression of the dominant-negative R248W mutant p53 due to O6-meG-

induced TM in human cells is sufficient to significantly reduce p53 tumor suppressor 

function, resulting in deregulated downstream signaling. We show that attenuation of p53 

function due to TM impairs its control of cell cycle checkpoints and induction of apoptosis 

(Paper II). So far, it is the second publication showing biologically relevant effects of TM on 

cellular homeostasis strongly suggesting TM as a contributing mechanism in tumorigenesis 

by inactivation of tumor suppressors or activating oncogenes.  

We conclude that O6-meG-induced TM of p53, on a genome-wide level deregulates the 

transactivation or downregulation of many target genes involved in the regulation of cellular 

processes, such as cell-cycle arrest, apoptosis, and DNA damage response, all of which are 

crucial for its tumor suppressor function (Paper III).  

Even though TM has been proposed to be involved in pathogenesis of various human 

diseases, only a few studies recently started to shed light on biologically relevant 

consequences of lesion-induced TM in vivo. The work presented in this thesis together with 

the results from other studies strongly suggest a possible role of TM in the multistep process 

of tumorigenesis by impairing the function of proteins, such as tumor suppressors or 

oncogenes, which are crucial for controlling cellular homeostasis in an already initiated 

neoplastic cell. In general, it seems that the effects of these transient and inheritable RNA 

mutations on cellular homeostasis may have been underestimated. Furthermore, in recent 

years, next-generation sequencing approaches have allowed studies of transcription fidelity 

on a genome-wide level, confirming adverse effects on protein function and cellular 

homeostasis. All these experiments together reveal a previously unappreciated role of 

transcriptional errors due to both RNA Pol infidelity and TM in deregulating cellular 

homeostasis and present new mechanisms by which cells can acquire disease phenotypes. To 

date there are no genome-wide studies on transcriptional errors in mammalian cells, thus the 
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extent of transcription errors as wells as the consequences of these events to the cellular 

homeostasis in higher organisms are unknown. 

More research within this field is highly necessary to establish mechanisms of how TM could 

contribute to disease development. The genome-wide RNA-seq technology offers new 

opportunities to study this virtually untouched field in-depth, which will provide researchers 

with invaluable data and possibly will lead to intriguing discoveries. Of high interest, RNA-

seq could be used to determine extent of TM in response to various genotoxic agents and in 

cells or tissues with different DNA repair capacities. Worth repeating that terminally 

differentiated cells have attenuated repair capacities, but rely on transcription to maintain 

their homeostasis. Moreover, intriguing results could be expected from various tumor 

samples of patients or model organisms and monitoring of the extent of TM during different 

tumor development stages. However, a major challenge of the genome-wide RNA-seq will be 

to connect these errors directly to the changes in cellular function and monitor their effect on 

cellular health. Even though RNA-seq provides a powerful tool to study the genome-wide 

extent of TM in any organism under any conditions, the more traditional transcription 

template approach, as was used here, remains the extremely useful and informative tool. 

Primarily because this approach allows to investigate effects of a specific DNA lesion on 

transcription machinery and to evaluate these effects specifically on cellular homeostasis in 

vivo. The impact on elongating RNA Pol II has been investigated only for a small number of 

lesions. Given the variety of lesions that can be induced in an organism by a plethora of 

agents, extensive research is further required to shed light on possible perturbations to RNA 

synthesis exerted by other DNA lesions.  
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