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ABSTRACT 

Following the Human Genome Project, many genomic approaches have been developed in 

genetic epidemiology to investigate the genetic influences on human complex traits. This 

thesis aims to answer four genetic epidemiological questions for cardiometabolic biomarkers/ 

traits, by using classical twin studies and novel genomic methods. 

Whether the dominant genetic effects are important for “missing heritability”? Heritability is a 

population specific estimate reflecting the relative importance of genes (versus environment) 

for human complex traits. “Missing heritability” is the proportion of heritability that remains 

unexplained by single nucleotide polymorphisms (SNPs). For 24 cardiometabolic traits, the 

univariate (study I) and bivariate (study II) heritabilities were estimated by using both twin 

and SNP models, within the same study base (10,682 twins in TwinGene). Study I supports 

that the main genetic influences on these traits are additive genetic effects (A), but significant 

contributions from dominant genetic effects (D) are also identified for certain traits. D effects 

are often masked by shared environment (C) in twin studies, thus D might have a more 

prominent role than what the estimates often suggest. It is difficult to distinguish D from A in 

too small twin studies, so the “missing heritability’’ might be overestimated if all genetic 

influences (A and D) are erroneously attributed to the narrow-sense heritability.  

What’s the pattern of genetic and environmental contributions to the covariation between cardiometabolic 

traits? Study II demonstrates that the pattern varies by different clusters of cardiometabolic 

traits. Additive genetic effects (A) and non-shared environment (E) influence the covariation 

between blood pressure traits. Besides A and E, dominant genetic effects appear to be 

important for the covariation between obesity traits. However, shared environmental contri-

butions seem generally to be weak between cardiometabolic traits in TwinGene samples. 

Which genetic variants are associated with the novel cardiometabolic biomarker — immunoglobulin M 

against phosphorylcholine (IgM anti-PC)? By performing genome-wide association study (GWAS) 

in four Swedish cohorts (total n=3,648), study III identified a haplotype block at 11q24.1 close 

to the GRAMD1B gene to be the top locus shared between anti-PC and chronic lymphocytic 

leukemia (CLL). Prediction from bioinformatics suggests that the SNP rs35923643-G in this 

locus might be the functional variant by impeding the transcription factor binding. A small 

nested case-control study indicates a potential reverse causation between anti-PC and CLL.   

Whether the associations between blood lipids and amyotrophic lateral sclerosis (ALS) are causal? By 

using summary GWAS results (~100,000 individuals for blood lipids and ~30,000 for ALS) 

in the polygenic risk score and Mendelian randomization settings, study IV tested the 

association and causality between blood lipids and ALS. It supports that high levels of low-

density lipoprotein (LDL) and total cholesterol (TC) are risk factors for ALS. Based on current 

assumptions and evidence, it also suggests potential causal effects of LDL and TC on ALS. 

In summary, this thesis quantified the proportion of genetic contributions to the variation 

(study I) and covariation (study II) for 24 traditional cardiometabolic biomarkers/traits; it 

identified the genetic variants (common SNPs) associated with novel biomarker IgM anti-PC 

(study III); it also tested whether polygenic evidence supports the association and causality 

between blood lipids and ALS (study IV). In general, the thesis suggests that twin studies have 

continuing important values for genetic epidemiology in the genomic era.  
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1 BACKGROUND 

1.1 Cardiometabolic traits: diseases and biomarkers 

According to the latest fact sheets from the World Health Organization, cardiometabolic 

diseases have been the largest global mortality burden during 2000-2015 [1]. Cardiovascular 

diseases (CVDs) account for ~30% of deaths around the world, in which ischemic heart 

disease and stroke contribute most, with 15 million deaths in 2015 [2]. Diabetes, a common 

metabolic disease, is the sixth strongest killer accounting for 1 million deaths in 2000 and 

1.6 million deaths in 2015 [1].  

Cardiometabolic traits, including different types of cardiovascular and metabolic diseases, 

as well as a large number of related risk factors/biomarkers (e.g. high blood lipids, 

abdominal obesity) and complications (e.g. dyslipidemia, hyperglycemia, hypertension, 

insulin resistance, and declined kidney function) [3], display a lot of overlaps and 

interdependencies (Figure 1.1). During 1980-2010, high levels of four cardiometabolic 

biomarkers [blood pressure, fasting glucose, serum cholesterol and body mass index (BMI)] 

contributed to 65% of global mortality due to three major chronic/cardiometabolic diseases: 

CVD, chronic kidney disease and diabetes [4].  

 
Figure 1.1. Venn diagram over cardiometabolic traits 

Biomarkers are efficient indicators for the development of diseases [5], and some of them 

also constitute modifiable risk factors for the prevention and management of diseases [6]. 

To date, many cardiometabolic biomarkers are well established in current guidelines and 

widely used in clinical practice [7]. At the same time, novel biomarkers, reflecting different 

pathophysiological processes or displaying potential values in the clinical diagnosis and 

prevention, have been discovered for cardiometabolic diseases [8, 9].  
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1.1.1 Blood lipids, dyslipidemia, and ASCVD 

In blood, lipids (mainly fatty acids and cholesterol) are bound by apolipoproteins (apo) and 

transported as lipoproteins. Dyslipidemia usually refers to the dysregulation of blood lipids, 

which is the primary modifiable risk factor for atherosclerotic CVD (ASCVD) such as 

myocardial infarction (MI) [10]. Several types of blood lipids have been used for the clinical 

management of CVD [7]: including triglycerides (TG), total cholesterol (TC), low-density 

lipoprotein (LDL), high-density lipoprotein (HDL), apoA1, apoB and lipoprotein (a) 

[Lp(a)]. Lp(a) is an LDL-like particle that also contains apo(a), high level of Lp(a) is 

suggested to be an independent risk factor for CVD [11].  

 

1.1.2 Inflammatory biomarkers and atherosclerosis 

Atherosclerosis is the predominant pathological process underlying ASCVD, in which 

plaques are mainly formed by the accumulation of lipids and immune competent cells [2]. 

Nowadays, atherosclerosis is regarded as a lipids-driven chronic inflammation process [12]. 

Atherosclerosis is initiated by the intracellular LDL accumulation, the LDL is susceptible 

to be oxidized into oxLDL by oxygen radicals or enzymes [13]. C-reactive protein (CRP) 

and fibrinogen are two inflammatory biomarkers recommended in current guidelines, but 

the specificity and sensitivity of them appear to be low for CVD diagnosis [7]. The 

lipoprotein-associated phospholipase A2 (Lp-PLA2) produced by inflammatory cells can 

bind to apoB on LDL, playing pro-inflammatory role in atherosclerosis [14]. The activity 

and mass of Lp-PLA2 are associated with coronary artery disease (CAD) and stroke [15]. 

 

1.1.3 Other metabolic biomarkers 

Metabolic disorders occur in a wide range of metabolic processes (e.g. the biosynthesis and 

catabolism of carbohydrates, proteins and also lipids). Metabolic syndrome is a cluster of 

risk factors like abdominal obesity, hyperglycemia, hypertension, and dyslipidemia [16].  

Waist circumference is the key measurement for abdominal obesity. Other obesity traits 

include weight, body mass index (BMI), hip circumference, waist-hip ratio (WHR) and so 

on. Most of them are important risk factors or predictors for cardiometabolic diseases [17]. 

Glycated hemoglobin (HbA1c) is not only the long-term biomarker for diabetes, but also a 

strong and independent risk factor for CAD [18].   

Four blood pressure measurements are commonly used in clinics: systolic blood pressure 

(SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and pulse pressure       
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(PP). In the latest guideline issued in 2017 [19], blood pressure (in mmHg) has been 

categorized into normal (SBP<120 and DBP<80), elevated (SBP 120-129 and DBP<80), 

stage I hypertension (SBP 130-139 or DBP 80-89), and stage II hypertension (SBP≥140 or 

DBP>90). 

Homocysteine (HCY) is involved in different processes of atherosclerosis, and high level of 

HCY indicates increased CAD risk [20]. Two blood biomarkers reflecting kidney function, 

cystatin C (Cys C) and creatinine (Crea), are also reported to be positively associated with 

the risk of MI and stroke [21]. 

 

 

1.2 Genetic epidemiology of cardiometabolic traits 

Cardiometabolic traits, influenced by both genes and environment, are among the most 

commonly studied human complex phenotypes. Since 1980s, genetic epidemiology has 

been developed as an interdisciplinary subject to investigate the genetic influences on human 

complex traits; by using theories, designs and methodologies from the genetics, medical 

epidemiology and biostatistics. However, genetic epidemiology is also a special research 

field that mainly focus on genetic factors and family aggregation at the population level [22]. 

In the past decades, genetic epidemiological studies have been performed for many 

traditional cardiometabolic traits. The relative importance and identification of the genetic 

factors shed more lights on the genetic etiology and the molecular mechanisms linking 

biomarkers and diseases. The association and causality tested by genetic epidemiological 

methods also provide less biased genetic evidence for the observational findings [23, 24].  

 

 

1.2.1 Whether genetic factors are important for a single trait? 

This is the most basic “nature versus nurture” question in genetic epidemiology. Heritability 

is a concept to reflect the relative importance between genes and environment, which is 

defined as the proportion of the phenotypic variation attributed to genetic effects [25].  

 

1.2.1.1 Heritability estimation 

Heritability can be estimated from several methods: either based on family designs to 

compare the phenotypic similarities among relatives [26], or based on genomic methods to 

compare the phenotypic and genotypic similarities in related or unrelated subjects [27, 28]. 
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The classical twin study is the most common family-based approach to estimate heritability 

[29]. Heritabilities of more than 17,800 human complex traits have been estimated among 

2,800 twin studies during the past fifty years [30]. In the classical twin study, the observed 

resemblance between monozygotic (MZ) and dizygotic (DZ) twin pairs are compared. 

Interpretations of the results rely on three basic assumptions: co-twins within the MZ pair 

share 100% while co-twins within the DZ pair share 50% of their segregating genes; co-twins 

within MZ and DZ pair share their raising environment to the same extent (equal environment 

assumption, EEA) [29, 31]. Therefore, classical twin-based structural equation model (SEM) 

usually decompose the phenotypic variation of each trait into three components: additive 

genetic effects (A), common/shared environmental effects (C) and unique/non-shared environmental 

effects (E). The proportion of A to the sum of A, C and E is defined as the narrow-sense 

heritability (h2), but most often referred to as just “heritability”. From the meta-analysis of 

twin studies in the past fifty years, the average estimates of heritability are ~40% for cardio-

vascular traits and ~60% for metabolic traits; and the average estimates of shared 

environmental variance (c2) are less than 20% for these traits (Figure 1.2). 

Single nucleotide polymorphisms (SNPs)-based methods have been developed to estimate the 

heritability since 2010. Because SNPs are genotyped by using gene chip (DNA microarray), 

the SNP-based estimate of genetic variance is called “chip heritability” [24]. So far, there are 

two common SNP-based methods to estimate chip heritability: genomic-relatedness-matrix 

restricted maximum likelihood (GREML) and linkage disequilibrium score (LDSC) regression. 

By comparing the genotypic and phenotypic similarities within the unrelated individuals, 

GREML can exclude C and just estimate the A and E [28]. LDSC regression can estimate 

the SNP-based heritability by using the LD scores from the reference population and mean 

χ2 statistics from the genome-wide association study (GWAS) in target population [32]. However, 

the heritability estimated from either GREML or LDSC just represents the phenotypic 

variation explained by SNPs, which is lower than the twin-based estimate that represents 

all genetic factors. The gap between twin- and SNP-based estimates of heritability is the 

main topic in the “missing heritability” debate. 

 

1.2.1.2 Missing heritability 

The term missing heritability was coined in 2008, originally referring to the observation that 

genome-wide significant SNPs identified from GWAS explained an extremely small 

proportion (~5%) of the variation of human complex traits [33]. In 2010, GREML, which 

includes contributions from all common SNPs was developed [28]. The method captures 
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much larger parts of the total genetic variation and provides larger estimates of SNP-based 

heritability (∼30% to 50%) [34]. However, the gap between twin- and SNP-based heritability 

still remains large (the proportion of h2
SNP/h2

Twin is usually less than 50%). So far, two major 

explanations have been proposed and further investigated: 1) the numerator h2
SNP is 

underestimated, because current SNP-based methods haven’t included the rare SNPs or 

other types of genetic variants (e.g. copy number variations, insertions and deletions), nor 

accounting for gene-environment interactions [35]; 2) the denominator h2
Twin is overestimated 

in classical twin studies, due to potential violation of EEA, or falsely ascribing true non-

additive effects to A (and thereby the narrow-sense heritability is overestimated) [36-38]. 

 
Figure 1.2. Twin-based estimates for cardiometabolic traits in the past 50 years 

Data are from the MaTCH (Polderman TJ, et al. Nature Genetics, 2015 [27]), re-plotted by the author. 

SSDZ: same-sex dizygotic twins; OSDZ: opposite-sex dizygotic twins; rMZ, rDZ: intra-pair correlation coefficients 

in MZ and DZ, respectively; M: male; F: female; SS: same-sex; h2: heritability; c2: shared environmental variance. 
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1.2.1.3 Non-additive genetic effects  

Non-additive genetic effects are the genetic interactions between alleles. Two types of non-

additive genetic effects are usually defined: 1) dominance or dominant genetic effects (D), 

representing the interactions between two alleles within the same locus; 2) epistasis, 

representing the interactions between alleles from different loci [39]. Because the classical 

twin study only can estimate a maximum of three variance components and D is dependent 

on additive genetic effect (A) of each allele, it is not possible to estimate C and D within the 

same model. Therefore, the phenotypic variation of each trait can be decomposed in either 

ACE, or ADE, or AE model in classical twin study. The proportion, (A+D)/(A+D+E) is 

defined as the broad-sense heritability (H2). 

Most classical twin designs and GWASs assume that the individual effect of each allele is 

additive. The latest meta-analysis of 50 years’ twin studies suggests that the twin 

resemblance for 69% of 17,804 traits are only from additive genetic effects [30]. The newly 

developed GREML(dominant, d) method also find that SNP-based estimates of dominant 

genetic variance (d2) are too small (~3%) to be able to explain the “missing heritability” [40]. 

However, certain classical- (with larger sample size) and extended- (including more family 

members) twin studies have identified significant and considerable d2 (~30%) for many 

cardiometabolic traits [41-43].  

herefore, two questions arose and motivated our study I:  

— Why is there such a big difference between twin- and SNP-based estimates of d2?  

— Whether D is really not important for the “missing heritability”?  

 

 

1.2.2 Which proportion of genetic factors is shared between traits? 

The genetic and environmental contributions to the covariation between two traits can also 

be estimated from the twin- and SNP-based bivariate models [44].  

 

1.2.2.1 Bivariate heritability and genetic correlation 

Bivariate heritability is defined as the proportion of two traits’ phenotypic correlation 

explained by genetic factors; genetic correlation reflects the overlap of genetic factors between 

two traits [26]. Similar with the univariate heritability, the SNP-based estimates of bivariate 

heritability are notably lower than twin-based estimates (before our study II, comparisons 

were however only available between estimates obtained from different populations).  

T 
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1.2.2.2 Heritability is a population specific estimate 

Heritability often varies by age, sex and other factors of the population samples. To the best 

of our knowledge, our study I might have been the first study to compare the twin- and SNP-

based univariate heritabilities within the same population.  

Moreover, our study I and other studies have indicated that small sample size might hamper 

accurate quantification of A, C or D and E contributions to the variation for certain traits. 

For example, no matter in large or small classical twin studies, ACE is usually the best-fitted 

model for human height (a2≈80%, c2≈10% and e2≈10%); and the SNP-based estimate of a2 

is from 45% (using directed genotyped SNPs, [34]) to 56% (including more imputed SNPs, 

[45]). Therefore, the gap between twin- and SNP-based h2 for height is just 30%-40%. While 

for BMI, AE or ACE is the most frequently reported model in small twin studies (a2≈70% 

and e2≈30%) [46]; but ADE model is reported in certain studies with larger samples 

(a2≈30%, d2≈40% and e2≈30%) [42]. The particular pattern including different types of 

genetic and environmental contributions to the covariation between cardiometabolic traits 

haven’t been comprehensively identified. 

hen, two questions were further illuminated in our study II:  

— How A, C or D, E contribute to the covariation between cardiometabolic traits?  

— Whether the bivariate twin- and SNP-based estimates also differ a lot?  

 

 

1.2.3 Where are the important genetic factors? 

After quantifying the relative importance of genetic factors to the phenotypic variation and 

covariation, the natural next step in genetic epidemiology is to try to find the particular 

genetic factors.  

 

1.2.3.1 GWASs for traditional cardiometabolic traits 

GWAS is a hypothesis-free and efficient design to identify the genetic factors (from genome-

wide common SNPs) associated with human complex traits [47]. Since the first GWAS on 

age-related macular degeneration in 2005 [48], more than 68,000 SNP-trait associations 

have been identified from ~5,000 GWASs [47, 49]. Numerous genome-wide significance 

loci (association P-value<5×10-8) have also been identified for traditional cardiometabolic 

traits. Current results show: ~100 loci for blood lipids [50] and CAD [51, 52]; ~20 loci for 

CRP [53] and fibrinogen [54, 55]; ~10 loci for Lp-PLA2 [56-58]; ~60 loci for HbA1c [59]; 

T 
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~30 loci for fasting insulin and glucose [60]; ~20 loci for type I [61] and type II diabetes 

[62]; ~10 loci for HCY [63];  ~15 loci for Cys C and CKD [64]; ~80 loci for blood pressure 

[65]; hundreds of loci have also been identified for human anthropometric traits (e.g. height, 

BMI and so on) from large-scale studies [66]. 

 

1.2.3.2 IgM anti-PC, a potential novel cardiometabolic biomarker  

Phosphorylcholine (PC) is an exposed antigen on apoptotic cells, oxLDL and Streptococcus 

pneumoniae [67]. As shown in Figure 1.3, PC links to immunity, apoptosis, atherosclerosis, 

pathogens and chronic lymphocytic leukemia (CLL). Immunoglobulin M against PC (IgM 

anti-PC) induced by PC immunization can inhibit the uptake of oxLDL through 

macrophages, thus preventing the development of atherosclerosis [68]. In recent years, 

several studies have reported that IgM anti-PC is inversely associated with ASCVD risk and 

displays potential value for the prevention, diagnosis and therapy of atherosclerosis [69, 70]. 

However, the association between IgM anti-PC level and CLL risk has never been tested.   

 
Figure 1.3. Schematic overview of previous literature about IgM anti-PC 

Line with arrow means positive association/effect; Line with —| means inhibition. Ab: antibodies; M: macrophage. 

 

A study including 1,018 complete twin pairs has estimated the heritability for serum level 

of IgM anti-PC and found that about 40% of its phenotypic variation is explained by genetic 

effects [71]. However, no studies (before our study III) had identified specific genetic 

variants associated with IgM anti-PC.  
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hus, our study III addressed two questions about IgM anti-PC:  

— Which genetic variants are associated with serum level of IgM anti-PC? 

— What is the association between IgM anti-PC and CLL? 

 

1.2.4 What can we learn from the important genetic factors? 

The genetic variants identified from GWASs can be used to increase the understanding 

about the genetic etiology of human complex traits and molecular mechanisms of diseases 

[47]. Moreover, thanks to the continuous development of polygenic methods, these genetic 

variants can now also be used to test the association and causality previously reported from 

traditional epidemiological studies [24].  

 

1.2.4.1 Association tested by polygenic risk score analysis 

GWASs and the “missing heritability” phenomenon indicate that most human complex 

traits are highly polygenic, which means that they are influenced by numerous genetic 

variants with small effects [24]. Polygenic risk scores (PRSs) are calculated in target samples by 

weighting the risk alleles identified from GWASs. The number of alleles to be used depends 

on a flexible threshold of GWAS P-value [72]. In recent years, as a complement to 

traditional biomarkers, PRSs based on risk alleles of biomarkers have been investigated as 

predictors of diseases [73]. 

 

1.2.4.2 Causality of the association tested by Mendelian randomization study 

Because alleles are randomly assigned during meiosis and generally unchanged throughout 

human life, they can be used as instrumental variables (IVs) to test causality in the Mendelian 

randomization (MR) study [74]. However, the causal inference of MR study is based on three 

core assumptions: 1) IVs are only specifically associated with the exposure; 2) IVs are 

independent of any measured or unmeasured confounders; 3) the influences of IVs on the 

outcome only go through the exposure [75]. 

 

1.2.4.3 PRS and MR studies between cardiometabolic biomarkers and diseases 

Many associations between the risk factors/biomarkers and cardiometabolic diseases 

(suggested from previous observational studies) have been tested by PRS studies [76]. In the 

MR studies, LDL and TG are supported to be causal for CAD [77], while HDL is not [78, 

79]. It is well in line with the clinical treatment outcomes: statins are still the most effective 

drug to prevent ASCVD, because they inhibit LDL biosynthesis by blocking the 3-hydroxy-

T 
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3-methylglutaryl-coenzyme A reductase [80]; but niacin fails to prevent ASCVD by 

increasing HDL levels. By using IVs of WHR adjusted for BMI, PRS and MR analyses 

support that abdominal adiposity is causal for type II diabetes and CAD [81]. 

 

1.2.4.4 Controversial associations between blood lipids and ALS  

Whether dyslipidemia is a risk or protective factor for amyotrophic lateral sclerosis (ALS) has 

been debated for more than 10 years [82-89], perhaps because less than 500 ALS cases were 

included in previous observational studies. Currently, the summary statistics from large-

scale GWASs on blood lipids (in ~100,000 individuals, [90]) and ALS (including 12,577 

ALS cases and 23,475 controls, [91]), are publicly available. 

hereby, two questions about blood lipids and ALS were addressed in study IV: 

— Whether polygenic evidence support the association between blood lipids and ALS?  

— If so, which direction and whether the association is causal? T 
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2 AIMS 

The general aim of this thesis is to investigate the genetic epidemiology of cardiometabolic 

biomarkers, by using classical twin studies and current SNP-based genomic methods.  

 

The specific aim of each study: 

 

Study I aims to illuminate the role of dominant genetic effects in the “missing heritability”. 

 

Study II aims to quantify the genetic and environmental contributions to the covariation 

between cardiometabolic traits. 

 

Study III aims to identify the genetic variants associated with serum level of IgM anti-PC. 

 

Study IV aims to test the association and causality between blood lipids and ALS. 
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3 STUDY DESIGN 

The study design for each study is summarized in the Table and outlined in this chapter. 

More details about materials and methods used in each study can be found in the published 

papers I-IV [92-95]. 

Table. Study design for each study 

Study Materials Methods 

I Same study base: 10,682 twins in TwinGene (3,870 

complete twin pairs; 5,779 unrelated individuals) 

Phenotypes: 24 cardiometabolic biomarkers 

Genotypes: directly genotyped 700K SNPs 

Covariates: age, sex, 10 principle components 

Univariate twin-based SEM 

 and SNP-based GREML(d) 

 

II Bivariate twin-based SEM 

 and SNP-based GREML(d) 

 

III Subjects in four Swedish cohorts (total n=3,648) 

Phenotype: serum level of IgM anti-PC 

Genotypes: ~8 million SNPs after imputation  

Covariates: age, sex, 2-4 principle components 

GWAS, Meta-analysis 

PRS 

Bioinformatics’ prediction  

Nested-case control study 

 

IV Summarized GWAS results of lipids and ALS: 

nLDL=95,454; nTC=100,184; nTG=96,598; 

nHDL=99,900; nALS=36,052 (12,577 cases) 

PRS 

MR 

 

 

3.1 Materials  

3.1.1 Phenotypes and genotypes in cohorts 

TwinGene from the Swedish Twin Registry 

TwinGene is a Swedish population-based cohort including ~12,000 twins born between 

1911 and 1958, the medical records of TwinGene participants are accessed from the national 

registers in Sweden [96]. Blood samples and health check-up information were collected 

during 2004-2008, blood biomarkers and genotypes were measured by methods described 

in our paper I and II [92, 93].  

Study I and II used the same materials from TwinGene: 10,682 twins with both genotypes 

(644,556 directly genotyped autosomal SNPs passed quality control) and 24 traditional 

cardiometabolic biomarkers available. From the same study base, 3,870 complete twin pairs 

were used for twin-based SEM and 5,779 unrelated individuals were used for SNP-based 

GREML(d) . 
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IgM anti-PC was measured in 1,018 complete twin pairs (2,036 twins) randomly selected 

from TwinGene to estimate the heritability [71]. After quality control (QC), 1,175 twins 

with both IgM anti-PC measurements and genotypes (~8 million autosomal SNPs after 

imputation and QC) were used for GWAS in study III. For the nested case-control study in 

study III, CLL cases were identified from TwinGene Biobank (serum and DNA samples 

from ~12,000 twins) by using the International Classification of Diseases (ICD) code 

(ICD7/8/9: 204.1; ICD10: C91.1). For each CLL case, three age- and sex- matched controls 

were also randomly selected from the biobank.  

 

PIVUS  

Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort was 

established in 2001, including 1,106 seventy-years-old individuals who lived in Uppsala 

community [97]. IgM anti-PC was measured and genomic DNA was genotyped for all 

PIVUS participants. After QC and phenotype-genotype matching, 945 individuals were 

used for IgM anti-PC GWAS in study III.  

 

MDC  

Malmö Diet and Cancer (MDC) cohort includes ~30,000 individuals living in Malmö city 

[98, 99]. Within a nested case-control study for CAD, IgM anti-PC was measured in 1,042 

individuals [100], from which 882 individuals with both IgM anti-PC and genotypes 

available were used for GWAS in our study III.  

 

PRACSIS  

During 1995-2001, Prognosis and Risk in Acute Coronary Syndromes in Sweden 

(PRACSIS) cohort was established to recruit acute coronary syndromes patients [101]. IgM 

anti-PC was measured for 1,185 patients and genomic DNA was genotyped for 1,268 

patients. Finally, 646 subjects with both IgM anti-PC and genotypes were used for GWAS 

replication in study III. 

 

 

 

3.1.2 Summary statistics from GWASs 

In study III and IV, summary GWAS results (from the European-ancestry populations) for  

CLL, immunoglobulins, blood lipids, CAD and ALS were used for PRS or MR analyses. 
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CLL and immunoglobulins in study III 

Full summary GWAS results of CLL (from 3,100 unrelated cases and 7,677 controls) were 

accessed from the InterLymph Consortium [102]. Public GWAS results of immunoglo-

bulins (~19,000 individuals) only are ~5,000 SNPs with association P-value<1×10-6 [103].  

 

Blood lipids, CAD and ALS in study IV 

Summary GWAS results of blood lipids (TG, TC, LDL and HDL) were based on 2.69 

million SNPs among ~100,000 Europeans [90]. Because the association and causality 

between blood lipids and CAD have been clearly tested, CAD was used as a “reference 

outcome” in MR study. GWAS results of CAD (including 22,233 cases and 64,762 controls, 

with 2.42 million SNPs) were accessed from the CARDIoGRAMplusC4D Consortium 

[51]. Summary statistics for ALS were from the latest GWAS in 2016, including 8.71 million 

SNPs for 12,577 cases and 23,475 controls [91]. 

 

 

3.2 Methods 

3.2.1 Classical twin design 

Based on human consanguinity (degree of kinship or biological relationship), the classical 

twin study compares the phenotypic similarities between MZ and DZ twins [29]. Falconer’s 

formula can roughly quantify the additive genetic effects (A), common/shared (C) and 

unique/non-shared (E) environmental effects, by using the monozygotic and dizygotic 

intra-pair correlations (rMZ, rDZ) in the following equations: 

① Similarity between MZ twin is due to the shared A (100%) and C (100%), rMZ=A+C; 

② Similarity between DZ twin is from the shared A (50%) and C (100%), rDZ=0.5A+C; 

③ Dissimilarity between MZ twin is because of non-shared environment, E=1-rMZ. 

Therefore, A=2(rMZ-rDZ), and C=2rDZ-rMZ.  

Falconer’s formula assumes that all genetic effects are additive and that the phenotypic 

variance is only due to contributions of A, C and E. Thus, the heritability can be simply 

calculated as A/(A+C+E).  

 



___________________________________________________________________   S t u d y  D e s i g n 

16 | P a g e  
 

3.2.2 Twin-based SEM 

Although Falconer’s formula provides an easy way to obtain point estimates, more 

sophisticated model fitting approaches are needed to evaluate statistical significance, to 

obtain confidence intervals and to test more complex models.   

By using the OpenMx package (version 2.8.3) in R (version 3.4.1) [104], the observed 

variance-covariance matrices were constructed for MZ and DZ pairs. We constructed ACE 

model, ADE model and AE model for each trait, respectively. The model fitting was 

evaluated by the Akaike information criterion (AIC), considering the model with the lowest 

AIC value as best-fitted [105].  

 

3.2.3 SNP-based GREML(d) 

In the tool of Genome-wide Complex Trait Analysis (GCTA), GREML(d) fit all SNPs as 

random effects within a mixed linear model, in which the empirical genetic resemblance 

between “unrelated individuals” (to exclude the shared environmental effects) were 

compared [28].  

In this thesis, the “unrelated individuals” were selected from the same study base in the 

following steps: 1) one twin within each MZ pair and both twins in DZ pairs were 

genotyped; 2) one twin within each DZ pair was randomly removed; 3) among the 

remaining individuals, related individuals were further removed based on the genetic-

related-matrix (cut-off value for relatedness was 0.025).  

 

For the 24 traditional cardiometabolic biomarkers in our study I and II, the univariate and 

bivariate twin-SEM and SNP-GREML(d) were performed and compared within the same 

study base (10,682 twins from TwinGene), respectively. 

 

3.2.4 A direct test for effects from shared environment 

The self-reported contact frequency (in four levels: 1-contact less than once per year, 2-

yearly contact, 3-monthly contact, 4-weekly contact), and separation age were used to test 

the existence of shared environmental effects. The t-test on their mean levels between MZ 

and DZ twins was used to test the EEA (that co-twin within MZ and DZ pairs share 

environment to the same extent). The potential relation between the degree of shared 

environment and the intra-pair trait difference was also investigated by estimating their 

correlation in MZ pairs for each trait. 



S t u d y  D e s i g n___________________________________________________________________ _ 

17 | P a g e  
 

3.2.5 Genome-wide association study 

All four cohorts in the IgM anti-PC GWAS used the same analysis procedure, as below: 

Phenotype: IgM anti-PC raw values were adjusted for age at blood sampling and sex in the 

linear regression model, outliers [individuals with the residuals beyond ±4 standard 

deviations (SDs) from the mean] were removed, then residuals were rank order normalized 

(to achieve standard normal distribution) and used as the phenotype in GWAS.  

Genotype: directly genotyped SNPs and imputed SNPs by using the 1000 Genome 

reference panel (GRCh 37/hg 19, Phase 1, Version 3); QC details can be found in Paper III.  

Model:  linear regression model. 

Covariates: the first 4 genetic principal components (the first 2 genetic principal 

components in PIVUS). The relatedness in TwinGene participants was handled by using 

the “--within” option in PLINK. 

 

3.2.6 Polygenic risk score analysis 

In study III and IV, PRS analyses were performed by using summary GWAS data in the 

PRSice tool [106]. Independent SNPs were kept in the base data by LD clumping (reference 

panel: HapMap_ceu_all, release 22), with the following settings: clumping threshold 

p1=p2= 0.5, LD threshold r2=0.05 and distance threshold=300Kb. Then independent SNPs 

were grouped into quantiles with gradually increasing P-value threshold (PT). The quantile 

explaining the largest trait variance in the target sample is denoted the best-fitted, and the 

corresponding PT is defined as the best-fitted PT.        

 

3.2.7 Mendelian randomization study 

In study IV, MR was performed if PRS analyses identified significant polygenic association 

between blood lipids and ALS. Independent SNPs that were only associated with the 

exposure (P-value<5×10-8) but not with any other traits (P-value>5×10-8) in the 

PhenoScanner database were used as IVs [107]. By using “gtx v0.0.8” package in R 3.2.5, 

the causal effect of the exposure on the outcome was tested by the inverse-variance weighted 

method [74]. CAD was used as a reference outcome.
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4 RESULTS AND DISCUSSION 

The main results and interpretations of study I-IV are briefly presented here, more details 

and supplemental information can be found in the published paper I-IV [92-95]. 

 

4.1 Study I 

4.1.1 Intra-pair correlation and model fitting 

The intra-pair correlation coefficients in MZ and DZ (rMZ, rDZ) are plotted in the figure 

below. For height and apoA1, rMZ<2rDZ, indicating contributions from C; while 

rMZ>2rDZ for all other 22 biomarkers, which indicates some potential dominant 

deviations from the pure additive model. From the model fitting according to AIC, ACE 

was the best-fitted model for height; AE was the best-fitted model for apoA1, HDL, PP, 

DBP and MAP; while ADE was the best-fitted model for all other biomarkers (Figure 4.1.1). 

 
Figure 4.1.1. Intra-pair correlation and model fitting 

Among the 24 cardiometabolic biomarkers, intra-pair MZ and DZ twin correlations (rMZ, rDZ) indicate dominant 

deviation from additive model for 22 biomarkers, ADE model is best-fitted for 18 of them. 

 

4.1.2 Twin- versus SNP-based univariate heritability  

The decomposing of phenotypic variation of each trait by twin and SNP model is presented 

in Figure 4.1.2. Twin-based estimate of shared environmental variance (c2) was 9% for height. 

The SNP-based estimates of additive genetic variance (a2) for SBP, DBP and MAP were not 

significant, but all twin- and SNP-based a2 and unique environmental variance (e2) were 

significantly estimated for other 21 traits. Significant contributions from the dominant 

genetic effects were identified for 13 traits in twin model, while SNP-based estimates of the
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dominant genetic variance (d2) were significant just for TG (28%, 95%CI 10%-46%) and 

waist circumference (19%, 95%CI 1%-37%). 

 
Figure 4.1.2. Phenotypic variation partitioned by twin and SNP models 

Twin-based SEM identifies significant dominant genetic influences (D) on the phenotypic variation of 13 

biomarkers, while SNP-based GREML just identifies significant D for 2 biomarkers. Statistically significant 

estimates (P-value<0.05) are labeled in solid line, the percentage values on the top of bars represent h2
SNP/h2

Twin. 

For the 13 traits with significant estimates of d2, the average value of h2
SNP/h2

Twin was 76%; 

while for the 5 AE best-fitted traits, the average value of h2
SNP/h2

Twin was 28%.  

 

 

4.1.3 Test for shared environment 

The mean values of contact frequency (in four levels: 1, 2, 3, 4) and separation age (years 

spent together in raising household) were significantly higher in MZ pairs (3.03±0.82, 

19.80±3.43 years) than SSDZ (2.71±0.82, 18.55±3.59 years) and OSDZ (2.45±0.69, 

18.25±3.75 years) pairs, which indicate potential violation of the equal environment 

assumption for co-twins within MZ and DZ pairs.  

However, the correlations between trait difference and shared environment (contact 

frequency and separation age) were weak within MZ pairs, the absolute values of correlation 

coefficient were less than 0.1 (Figure 4.1.3); from which significant correlations were found 

between these two shared environmental factors and 8 cardiometabolic traits (all five obesity 

traits: weight, BMI, waist circumference, hip circumference, WHR; SBP, PP and HDL). 
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Figure 4.1.3. Correlations between intra-pair trait difference and degree of 

shared environment (separation age and contact frequency) in MZ pairs 

Statistically significant estimates (P-value<0.05) are labeled in solid lines. ACE, ADE and AE represent the best-

fitted model for each trait in the univariate twin-based structural equation model.   

 



R e s u l t s  &  D i s c u s s i o n_________________________________________________________   _ 

21 | P a g e  
 

4.2 Study II 

4.2.1 Phenotypic correlations 

Among the 276 pairs of correlations between the 24 cardiometabolic biomarkers/traits, 27 

pairs with the absolute phenotypic correlation coefficient larger than 0.40 were further 

investigated in study II. In line with the biological knowledge, the genetic and 

environmental contributions to their phenotypic covariation can be illuminated in four 

clusters: blood lipids, metabolic biomarkers, obesity traits and blood pressure (Figure 4.2). 

 

4.2.2 Covariation decomposition by twin and SNP model  

Among the bivariate twin-SEM for these 27 correlated pairs of cardiometabolic traits, the 

AE model was best-fitted for 7 pairs (TG-HDL, TC-apoB and all 5 pairs in the blood 

pressure cluster); ACE was the best-fitted model for 4 pairs (HDL-apoA1, LDL-apoB, apoB-

nonHDL, CysC-eGFR), but estimates of c2 were close to zero; ADE was the best-fitted 

model for the remaining 16 pairs, in which significant bivariate d2 were identified for 13 

pairs (including all the 9 pairs in the obesity cluster).  

The SNP-based estimates of bivariate a2 were non-significant for weight-WHR, BMI-WHR 

and 4 blood pressure pairs (SBP-DBP, SBP-MAP, DBP-MAP, MAP-PP), and SNP-based 

estimates of bivariate d2 were neither significant for any pairs. 

In general, the SNP-based bivariate a2 (~19% on average) were lower than twin-based 

bivariate a2 (~36% on average); the SNP- and twin-based estimates of additive genetic 

correlation (rA) were highly similar (both were 0.67 on average). The estimates of 

phenotypic correlation (rP) and environmental correlation (rE) showed only small 

differences between twin and SNP models. 

 

4.3 Study III 

4.3.1 GWAS meta-analysis, PRS and functional prediction 

The meta-analysis of three individual discovery GWASs found two SNPs in 1p31.3 and six 

SNPs in 11q24.1 that achieved the genome-wide significance. The six SNPs close to 

GRAMD1B gene in 11q24.1 were successfully replicated in the fourth cohort. Based on the 

meta-analysis of four cohorts, rs35923643-G was the top allele, with the combined beta 

=0.19 rank order normalized SD of IgM anti-PC per allele (P-value=4.34×10-11, Figure 4.3).  
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Figure 4.2. Genetic and environmental contributions to cardiometabolic pairs 
Bivariate twin-SEM and SNP-GREML(d) are performed for 27 highly correlated pairs (absolute phenotypic 
correlation coefficient |rP|≥0.4). Twin-based estimates are in the upper triangle, and SNP-based estimates are in 
the lower triangle. Statistically significant estimates (P-value<0.05) are in bold. NA: not available because of the 
weak phenotypic correlation. 

 

The SNP rs35923643-G and its proxy variant rs735665-A are also the top risk alleles for 

CLL. In the PRS analysis, the top variant in 11q24.1 explained the largest variance of CLL 

(Nagelkerke r2=0.006, P-value=1.2×10-15). Based on bioinformatics tools and databases, our 

functional predictions suggested that rs35923643-G might be the functional variant affecting 

the transcription factors binding, especially impeding the binding of tumor suppressor 

RUNX3. 

 
Figure 4.3. Association of the top allele rs35923643-G with IgM anti-PC in four 

Swedish cohorts 
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4.3.2 Nested case-control study 

The small nested case-control study found that IgM anti-PC level was significantly lower in 

7 prevalent CLL cases than in 21 matched controls (P-value=0.006); IgM anti-PC was also 

lower in the 23 incident CLL cases than in 69 matched controls, but the difference was not 

statistically significant (P=0.227). The hazard ratio from the stratified Cox proportional 

hazards model indicated an inverse association between IgM anti-PC and incident risk of 

CLL, hazard ratio estimate was 0.75 (95% CI 0.40-1.39) but not significant (P-value=0.354). 

 

4.4 Study IV 

4.4.1 Bi-directional PRS analyses 

When using blood lipids as the base and ALS as the target in the PRS analyses, PRSs based 

on the increasing alleles of LDL or TC (PRSLDL or PRSTC) were significantly associated with 

ALS risk. The estimates and predictions for ALS were very similar between PRSLDL and 

PRSTC, likely reflecting the strong phenotypic correlation between them (LDL is the major 

type of TC). For the best-fitted PRSLDL and PRSTC, the PT was the same (=5×10-5), and effect 

sizes were also quite similar (log OR=0.15 for PRSLDL calculated from 233 independent risk 

alleles; log OR=0.14 for PRSTC calculated from 270 independent risk alleles). However, no 

significant association with ALS risk was identified for PRSs based on TG increasing alleles 

or PRSs based on HDL increasing/decreasing alleles.  

In the reverse PRS analysis, no significant association was identified between PRSs based 

on ALS risk alleles and any of the studied lipids. Perhaps because the sample size of ALS 

GWAS was a bit small (12,577 cases and 23,475 controls) compare with blood lipids 

(~100,000 individuals).  

As a reference comparison, the PRSs based on large-scale CAD GWAS (22,233 cases and 

64,762 controls) was significantly but also weakly associated with blood lipids (|log OR| 

≤0.01, P-value<2×10-25). 

 

4.4.2 MR study 

The association between LDL, TC and ALS was suggested to be causal (β=0.23, P=0.03), 

by using 13 independent SNPs that are specially associated with both LDL and TC (but not 

associated with any other traits) as instrumental variables in the MR study.
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5 STRENGTHS AND LIMITATIONS 

Study I and II have the possibility to compare the twin- and SNP-based estimates within 

the same study base. This provides a straightforward way to control for population 

differences (extra variances or “noises”) arising from age, sex, ethnicity, life-style and other 

factors. TwinGene is a population-based cohort of the Swedish Twin Registry, in which 

elderly Swedish born twins living all over Sweden were invited without selections besides 

willingness to participate. Thus, the geographic and demographic distribution provides a 

homogenous genetic background of the sample, which is a valuable feature in genetic 

studies. All the blood samples are collected, extracted, and stored by the same biobank using 

the same procedures. The same laboratory, using the same methods, measured all the 

clinical biomarkers and measurements in the same procedure. These features are of vital 

importance in order to diminish the risk of biases due to batch effects.  

Study III is the first GWAS for IgM anti-PC and it is also the first study to investigate the 

shared genetics and phenotypic relationship between IgM anti-PC and CLL. All individuals 

from the four cohorts used in study III were European-ancestry and born in Sweden, 

providing low heterogeneity (population or genetic stratification). The TwinGene cohort is 

also linked to several national health registers in Sweden, which enabled us to identify 

diseases (e.g. CLL) and test the associations with many biomarkers/factors. 

Study IV is the first polygenic analysis between blood lipids and ALS, which also provides 

polygenic evidence to support the causal effects of LDL and TC on ALS risk.   

 

 

However, there are also some limitations needed to be noted: 

Sample size is more likely a limitation than strength from the overview of this thesis.  

— Although 3,870 complete twin pairs were used in our study I and II, which are larger 

than the average sample size of previous twin studies (≤2,104 pairs per study in the past 

fifty years [30]), the power to identify significant bivariate estimates in study II is still 

not adequate. Such situation is also the same for SNP-based GREML, 5,779 unrelated 

individuals are too small to get enough power for estimating additive genetic variance 

for SBP, DBP and MAP (and even harder for estimating dominant genetic variance) 

from genome-wide common SNPs.
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— In study III, sample size of IgM anti-PC GWAS is also small (3,002 individuals in the 

discovery phase and 646 individuals for replication), thus only one locus 11q24.1 is 

successfully identified. In the PRS analysis between anti-PC and CLL, the quantile 

including the single top variant explains larger (actually the largest) variance of CLL 

than all other quantiles including more SNPs across the genome, perhaps also because 

of the small base data (IgM anti-PC GWAS). 

— Similarly, the nested case-control study in study III is also small (7 prevalent and 23 

incident CLL cases were identified among all ~12,000 TwinGene participants). There 

is also a lack of detailed information about the CLL stage, therapy and stereotyped B-

cell status for the CLL cases; further impeding the possibility to draw firm conclusion 

about the association between IgM anti-PC and CLL. 

— In the reverse PRS analyses in study IV, PRSs based on ALS risk alleles are not 

significantly associated with any studied lipids (and explain 0% of the variance), one 

potential explanation is also the relatively small base data (ALS GWAS). 

Generalizability is also a potential concern for study I and II. Because heritability is 

population specific, the reported contribution for cardiometabolic traits might only 

represent the baseline measurements in TwinGene (old Swedish twins born between 1911 

and 1958). Since the relative importance of genes and environment might vary by different 

factors like age at blood sampling/measuring, more efforts are needed to further assess the 

generalizability of our conclusions.
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6 ETHICAL CONSIDERATIONS 

The first three studies in this thesis were mainly performed in TwinGene cohort from the 

Swedish Twin Registry. Ethical permits for TwinGene project had been approved in 2007 

(Dnr: 2007/644-3) and amended in 2012 (Dnr: 2012/257-32). Study IV is based on the 

public summary GWAS results from consortia, so ethical permit is not required. 

 

Privacy 

By using questionnaires and interviews, the participants were asked to answer questions 

about certain personal information. They have also received some physical examinations, 

donated their blood for research purposes to biobank. Biomarkers in their serum/plasma 

have been measured; genomic DNA which carries all the genetic information has been 

isolated and genotyped. From certain analyses, we can identify participants that carry 

genotypes associated with increased risk of certain diseases. That means the researchers can 

even know more private information of the participant than themselves. How to handle 

these informative and sensitive data is also a crucial aspect we should consider. 

 

Right to know 

Since most of our studies can get certain predictive information, telling such information to 

the participants might bring both harmful and beneficial effects, which also can raise ethical 

dilemmas. There are three examples: 1) the zygosity was previously identified by the 

answers from the questionnaires, then a more accurate genotype-based method was used. 

Although these two methods were mostly consistent (95-98% match), some twins have their 

zygosity re-classified; 2) genotypes can be used to estimate polygenic risk for several 

complex traits/diseases. Such estimate has a market value and is offered by commercial 

companies. However, the clinical value is very limited and it is very difficult to 

communicate such information in an adequate way; 3) we might occasionally observe 

participants who carry risk alleles for certain diseases (e.g. breast or ovarian cancers). Should 

we inform and suggest them to adopt some prevention strategies?  

 

Causality  

As mentioned in the third point above, genetic variants are only associated with higher risk 

of disease, but mostly we do not have enough evidence to declare the causality between 

them. This is also a problem raised in our study III: because IgM anti-PC has been regarded 

as an atheroprotective biomarker, monoclonal antibodies targeting PC have been produced  
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and planned to be evaluated as therapy to decrease CVD risk. Our GWAS results indicated 

that the haplotype which were significantly associated with increased anti-PC is also 

strongly associated with CLL risk. If this genetic sharing would reflect a causal relation 

between anti-PC and CLL, the suggested therapeutic treatment by increasing anti-PC levels 

might come with harmful side-effects. However, our nested case-control study gave no 

support for a positive association between anti-PC and CLL. Instead a weak negative 

association was detected.  

Furthermore, associations between anti-PC and CLL may be due to confounding. One 

possible confounder is S. pneumoniae infection, which can increase anti-PC level due to the 

human innate immune response to the PC antigen on S. pneumoniae; pneumonia is also 

associated with increased risk of CLL [108]. If association is due to confounding only, 

artificially increasing anti-PC would not affect the CLL risk.     

Nevertheless, it is very important to further investigate the causality among anti-PC, CVD 

and CLL, to provide useful scientific evidence for the clinical translation of IgM anti-PC. 
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7 CONCLUSIONS  

Study I finds that significant contribution of dominant genetic effects (D) to the variation of 

most cardiometabolic biomarkers in TwinGene samples; it also indicates that the missing 

heritability (1-h2
SNP/h2

twin) becomes smaller when the twin model has enough power to 

distinguish true D from additive genetic effects (A). 

 

Study II suggests that D also contribute to the covariation between certain blood lipids, 

metabolic biomarkers and all obesity traits in TwinGene samples. 

 

Study III identifies that SNP rs35923643-G is the top genetic variant shared between IgM 

anti-PC and CLL risk, and it is also the potential functional variant affecting the binding of 

transcription factors.  

 

Study IV provides polygenic evidence to support the positive associations between LDL, 

TC and ALS risk, such positive associations are also suggested to be causal based on current 

assumptions and evidence. 
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8 FUTURE PERSPECTIVES 

For future studies to quantify the genetic and environmental effects on human complex 

traits, the following aspects are worth to be considered:   

1) Larger sample size is quite vital for both twin and SNP model to get enough power to 

quantify and also distinguish the additive and non-additive genetic effects;  

2) Extended model including more family members/relationships enables estimation of 

more components within the same model;  

3) Multivariate model can be considered to capture the common A, C, D, E components 

shared among more than two correlated traits within clusters (like LDL-TC-apoB-

nonHDL, weight-BMI-waist circumference-hip circumference-WHR);  

4) Longitudinal model is useful to investigate the continuous changes of A, C, D, E 

contributions across the lifespan; 

5) More types of genetic variants as well as gene-environment interactions and 

correlations can also be considered in future molecular/genomic methods. 

 

More samples are needed for IgM anti-PC GWAS to identify more associated genetic 

variants. In order to further illustrate the relationship between IgM anti-PC and CLL, the 

nested case-control study also need more CLL cases and longer follow-up time. 

Confounders (e.g. Pneumonia or other infections) between IgM anti-PC and CLL are worth 

to be investigated. More functional experiments following the GWAS findings also need 

to be done, such as allele specific chromatin immunoprecipitation-sequencing and in silico 

approaches to validate the binding affinity of transcription factors.  

 

Similarly, larger samples of GWAS on common SNPs are also critical for the MR causal 

inference between cardiometabolic biomarkers and ALS. Besides inverse-variance weighted 

method, other types of MR methods (e.g. MR-Egger) can be used to test or validate the 

causality between blood lipids and ALS. Since ALS is a rare disease, deeper sequencing for 

rare variants might also be essential for “missing heritability” and genetic mechanisms 

between dyslipidemia and ALS. In parallel, functional experiments are also needed to 

validate the pathogenic mechanisms related to the pathways suggested by polygenic 

evidence. 
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