Thesis for doctoral degree (Ph.D.)
2018

Genetic Epidemiology of Cardiometabolic
Biomarkers: Twin Studies in the Genomic Era

Xu Chen

S :
de-g s Karolinska
22 8= ¢ Institutet

e

Wrno 18%°



From the Department of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm, Sweden

GENETIC EPIDEMIOLOGY OF
CARDIOMETABOLIC BIOMARKERS:
TWIN STUDIES IN THE GENOMIC ERA

éS\LA INJ’)»
Karolinska
aj? @ Institutet

Stockholm 2018



All previously published papers were reproduced with permission from the publishers.
Front cover and all figures are illustrated by the author.

O MUEA R A VAR B B AL IRAT 3 2 i DRI AL AR U A F1iE 7/ R, 2018.6.15
Published by Karolinska Institutet.
Printed by E-Print AB 2018.
ISBN 978-91-7831-037-1

9" 789178 " 310371 © Xu Chen, 2018




Genetic Epidemiology of Cardiometabolic Biomarkers:
Twin Studies in the Genomic Era

THESIS FOR DOCTORAL DEGREE (Ph.D.)

Public defense at the lecture hall Petrén, Nobels vag 12B,
Solna campus, Karolinska Institutet, Stockholm, Sweden

June 15" 2018, Friday, 09:00
by
Xu Chen

Principal Supervisor:

Patrik K. E. Magnusson
Associate Professor; PhD
Karolinska Institutet

Department of Medical Epidemiology
and Biostatistics

Co-supervisors:

Nancy L. Pedersen

Professor; PhD

Karolinska Institutet

Department of Medical Epidemiology
and Biostatistics

Sara Higg

Associate Professor; PhD
Karolinska Institutet

Department of Medical Epidemiology
and Biostatistics

Johan Frostegard

Professor; MD, PhD

Karolinska Institutet

Institute of Environmental Medicine

Per Svensson

Associate Professor; MD, PhD

Karolinska Institutet

Department of Clinical Science and Education
Sodersjukhuset, Department of Cardiology

Opponent:

Kerrin Small

Senior Lecturer; PhD

King's College London

Department of Twin Research and Genetic
Epidemiology

Examination Board:

Liming Li

Professor; MD, MPH

Peking University Health Science Center
School of Public Health

Department of Epidemiology and Biostatistics

Lars Ronnegard

Professor; PhD

Dalarna University, Section of Statistics

The Swedish University of Agricultural Sciences
Department of Animal Breeding and Genetics

Karin Broberg

Professor; PhD

Karolinska Institutet

Institute of Environmental Medicine



To-all who- appeared invthe past thirty years of my life
mkgn BB A A T =T A

In memory of my deoawest “waipo”
I A0 R B 55 B R - Bl U R ) A1 25




ABSTRACT

Following the Human Genome Project, many genomic approaches have been developed in
genetic epidemiology to investigate the genetic influences on human complex traits. This
thesis aims to answer four genetic epidemiological questions for cardiometabolic biomarkers/
traits, by using classical twin studies and novel genomic methods.

Whether the dominant genetic effects are important for “missing heritability”’? Heritability is a
population specific estimate reflecting the relative importance of genes (versus environment)
for human complex traits. “Missing heritability” is the proportion of heritability that remains
unexplained by single nucleotide polymorphisms (SNPs). For 24 cardiometabolic traits, the
univariate (study I) and bivariate (study II) heritabilities were estimated by using both twin
and SNP models, within the same study base (10,682 twins in TwinGene). Study I supports
that the main genetic influences on these traits are additive genetic effects (A), but significant
contributions from dominant genetic effects (D) are also identified for certain traits. D effects
are often masked by shared environment (C) in twin studies, thus D might have a more
prominent role than what the estimates often suggest. It is difficult to distinguish D from A in
too small twin studies, so the “missing heritability’’ might be overestimated if all genetic
influences (A and D) are erroneously attributed to the narrow-sense heritability.

What’s the pattern of genetic and environmental contributions to the covariation between cardiometabolic
traits? Study II demonstrates that the pattern varies by different clusters of cardiometabolic
traits. Additive genetic effects (A) and non-shared environment (E) influence the covariation
between blood pressure traits. Besides A and E, dominant genetic effects appear to be
important for the covariation between obesity traits. However, shared environmental contri-
butions seem generally to be weak between cardiometabolic traits in TwinGene samples.

Which genetic variants are associated with the novel cardiometabolic biomarker — immunoglobulin M
against phosphorylcholine (IgM anti-PC)? By performing genome-wide association study (GWAYS)
in four Swedish cohorts (total n=3,648), study III identified a haplotype block at 11q24.1 close

to the GRAMDIB gene to be the top locus shared between anti-PC and chronic lymphocytic

leukemia (CLL). Prediction from bioinformatics suggests that the SNP rs35923643-G in this

locus might be the functional variant by impeding the transcription factor binding. A small

nested case-control study indicates a potential reverse causation between anti-PC and CLL.

Whether the associations between blood lipids and amyotrophic lateral sclerosis (ALS) are causal? By
using summary GWAS results (~100,000 individuals for blood lipids and ~30,000 for ALS)
in the polygenic risk score and Mendelian randomization settings, study IV tested the
association and causality between blood lipids and ALS. It supports that high levels of low-
density lipoprotein (LDL) and total cholesterol (TC) are risk factors for ALS. Based on current
assumptions and evidence, it also suggests potential causal effects of LDL and TC on ALS.

In summary, this thesis quantified the proportion of genetic contributions to the variation
(study I) and covariation (study II) for 24 traditional cardiometabolic biomarkers/traits; it
identified the genetic variants (common SNPs) associated with novel biomarker IgM anti-PC
(study IID); it also tested whether polygenic evidence supports the association and causality
between blood lipids and ALS (study IV). In general, the thesis suggests that twin studies have
continuing important values for genetic epidemiology in the genomic era.
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1 BACKGROUND

1.1 Cardiometabolic traits: diseases and biomarkers

According to the latest fact sheets from the World Health Organization, cardiometabolic
diseases have been the largest global mortality burden during 2000-2015 [1]. Cardiovascular
diseases (CVDs) account for ~30% of deaths around the world, in which ischemic heart
disease and stroke contribute most, with 15 million deaths in 2015 [2]. Diabetes, a common
metabolic disease, is the sixth strongest killer accounting for 1 million deaths in 2000 and

1.6 million deaths in 2015 [1].

Cardiometabolic traits, including different types of cardiovascular and metabolic diseases,
as well as a large number of related risk factors/biomarkers (e.g. high blood lipids,
abdominal obesity) and complications (e.g. dyslipidemia, hyperglycemia, hypertension,
insulin resistance, and declined kidney function) [3], display a lot of overlaps and
interdependencies (Figure 1.1). During 1980-2010, high levels of four cardiometabolic
biomarkers [blood pressure, fasting glucose, serum cholesterol and body mass index (BMI)]
contributed to 65% of global mortality due to three major chronic/cardiometabolic diseases:

CVD, chronic kidney disease and diabetes [4].

Metabolic
diseases

Cardiovascular
diseases (CVDs

Atherosclerotic CVDs:
CAD/CHD, Stroke, PAD
(CRP, Fibrinogen, Lp-PLA2,
oxLDL, HCY, Crea, CysC,
IgM anti-PC)

\ Heart Failure '
Rheumatic heart disease
l Congenital heart disease .

—

Figure 1.1. Venn diagram over cardiometabolic traits

- Abdominal
obesity
(Waist
circumference,
BMI, WHR)

- Dyslipidemia
(TG, TC, LDL, HDL,
apoAl, apoB)

- Hypertension
(SBP, DBP, PP, MAP)

- Hyperglycemia
(Fasting glucose

Diabetes

Biomarkers are efficient indicators for the development of diseases [5], and some of them
also constitute modifiable risk factors for the prevention and management of diseases [6].
To date, many cardiometabolic biomarkers are well established in current guidelines and
widely used in clinical practice [7]. At the same time, novel biomarkers, reflecting different
pathophysiological processes or displaying potential values in the clinical diagnosis and

prevention, have been discovered for cardiometabolic diseases |8, 9].
1|Page
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1.1.1 Blood lipids, dyslipidemia, and ASCVD

In blood, lipids (mainly fatty acids and cholesterol) are bound by apolipoproteins (apo) and
transported as lipoproteins. Dyslipidemia usually refers to the dysregulation of blood lipids,
which is the primary modifiable risk factor for atherosclerotic CVD (ASCVD) such as
myocardial infarction (MI) [10]. Several types of blood lipids have been used for the clinical
management of CVD [7]: including triglycerides (TG), total cholesterol (TC), low-density
lipoprotein (LDL), high-density lipoprotein (HDL), apoAl, apoB and lipoprotein (a)
[Lp(a)]. Lp(a) is an LDL-like particle that also contains apo(a), high level of Lp(a) is
suggested to be an independent risk factor for CVD [11].

1.1.2 Inflammatory biomarkers and atherosclerosis

Atherosclerosis is the predominant pathological process underlying ASCVD, in which
plaques are mainly formed by the accumulation of lipids and immune competent cells [2].
Nowadays, atherosclerosis is regarded as a lipids-driven chronic inflammation process [12].
Atherosclerosis is initiated by the intracellular LDL accumulation, the LDL is susceptible
to be oxidized into oxLDL by oxygen radicals or enzymes [13]. C-reactive protein (CRP)
and fibrinogen are two inflammatory biomarkers recommended in current guidelines, but
the specificity and sensitivity of them appear to be low for CVD diagnosis [7]. The
lipoprotein-associated phospholipase A2 (Lp-PLA2) produced by inflammatory cells can
bind to apoB on LDL, playing pro-inflammatory role in atherosclerosis [14]|. The activity
and mass of Lp-PLA2 are associated with coronary artery disease (CAD) and stroke [15].

1.1.3 Other metabolic biomarkers
Metabolic disorders occur in a wide range of metabolic processes (e.g. the biosynthesis and
catabolism of carbohydrates, proteins and also lipids). Metabolic syndrome is a cluster of

risk factors like abdominal obesity, hyperglycemia, hypertension, and dyslipidemia [16].

Waist circumference is the key measurement for abdominal obesity. Other obesity traits
include weight, body mass index (BMI), hip circumference, waist-hip ratio (WHR) and so

on. Most of them are important risk factors or predictors for cardiometabolic diseases [17].

Glycated hemoglobin (HbA1c) is not only the long-term biomarker for diabetes, but also a
strong and independent risk factor for CAD [18].

Four blood pressure measurements are commonly used in clinics: systolic blood pressure

(SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and pulse pressure

2|Page
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(PP). In the latest guideline issued in 2017 [19], blood pressure (in mmHg) has been
categorized into normal (SBP<120 and DBP<80), elevated (SBP 120-129 and DBP<80),
stage I hypertension (SBP 130-139 or DBP 80-89), and stage II hypertension (SBP>140 or
DBP>90).

Homocysteine (HCY) is involved in different processes of atherosclerosis, and high level of
HCY indicates increased CAD risk [20]. Two blood biomarkers reflecting kidney function,
cystatin C (Cys C) and creatinine (Crea), are also reported to be positively associated with
the risk of MI and stroke [21].

1.2 Genetic epidemiology of cardiometabolic traits

Cardiometabolic traits, influenced by both genes and environment, are among the most
commonly studied human complex phenotypes. Since 1980s, genetic epidemiology has
been developed as an interdisciplinary subject to investigate the genetic influences on human
complex traits; by using theories, designs and methodologies from the genetics, medical
epidemiology and biostatistics. However, genetic epidemiology is also a special research

field that mainly focus on genetic factors and family aggregation at the population level [22].

In the past decades, genetic epidemiological studies have been performed for many
traditional cardiometabolic traits. The relative importance and identification of the genetic
factors shed more lights on the genetic etiology and the molecular mechanisms linking
biomarkers and diseases. The association and causality tested by genetic epidemiological

methods also provide less biased genetic evidence for the observational findings [23, 24].

1.2.1 Whether genetic factors are important for a single trait?
This is the most basic “nature versus nurture” question in genetic epidemiology. Heritability
is a concept to reflect the relative importance between genes and environment, which is

defined as the proportion of the phenotypic variation attributed to genetic effects [25].

1.2.1.1 Heritability estimation
Heritability can be estimated from several methods: either based on family designs to
compare the phenotypic similarities among relatives [26], or based on genomic methods to

compare the phenotypic and genotypic similarities in related or unrelated subjects [27, 28].

3|Page
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The classical twin study 1s the most common family-based approach to estimate heritability
[29]. Heritabilities of more than 17,800 human complex traits have been estimated among
2,800 twin studies during the past fifty years [30]. In the classical twin study, the observed
resemblance between monozygotic (MZ) and dizygotic (DZ) twin pairs are compared.
Interpretations of the results rely on three basic assumptions: co-twins within the MZ pair
share 100% while co-twins within the DZ pair share 50% of their segregating genes; co-twins
within MZ and DZ pair share their raising environment to the same extent (equal environment
assumption, EEA) [29, 31]. Therefore, classical twin-based structural equation model (SEM)
usually decompose the phenotypic variation of each trait into three components: additive
genetic effects (A), common/shared environmental effects (C) and unique/non-shared environmental
effects (E). The proportion of A to the sum of A, C and E is defined as the narrow-sense
heritability (H*), but most often referred to as just “heritability”. From the meta-analysis of
twin studies in the past fifty years, the average estimates of heritability are ~40% for cardio-
vascular traits and ~60% for metabolic traits; and the average estimates of shared

environmental variance (c°) are less than 20% for these traits (Figure 1.2).

Single nucleotide polymorphisms (SNPs)-based methods have been developed to estimate the
heritability since 2010. Because SNPs are genotyped by using gene chip (DNA microarray),
the SNP-based estimate of genetic variance is called “chip heritability” [24]. So far, there are
two common SNP-based methods to estimate chip heritability: genomic-relatedness-matrix

restricted maximum likelihood (GREML) and linkage disequilibrium score (LDSC) regression.

By comparing the genotypic and phenotypic similarities within the unrelated individuals,
GREML can exclude C and just estimate the A and E [28]|. LDSC regression can estimate
the SNP-based heritability by using the LD scores from the reference population and mean
X’ statistics from the genome-wide association study (GWAS) in target population [32]. However,
the heritability estimated from either GREML or LDSC just represents the phenotypic
variation explained by SNPs, which is lower than the twin-based estimate that represents
all genetic factors. The gap between twin- and SNP-based estimates of heritability i1s the

main topic in the “missing heritability” debate.

1.2.1.2 Missing heritability

The term missing heritability was coined in 2008, originally referring to the observation that
genome-wide significant SNPs identified from GWAS explained an extremely small
proportion (~5%) of the variation of human complex traits [33]. In 2010, GREML, which

includes contributions from all common SNPs was developed [28]. The method captures
4| Page
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much larger parts of the total genetic variation and provides larger estimates of SNP-based
heritability (~30% to 50%) [34|. However, the gap between twin- and SNP-based heritability
still remains large (the proportion of /#’syp/H 1. is usually less than 50%). So far, two major
explanations have been proposed and further investigated: 1) the numerator h%yp is
underestimated, because current SNP-based methods haven’t included the rare SNPs or
other types of genetic variants (e.g. copy number variations, insertions and deletions), nor
accounting for gene-environment interactions [35]; 2) the denominator h’r,, is overestimated
in classical twin studies, due to potential violation of EEA, or falsely ascribing true non-

additive effects to A (and thereby the narrow-sense heritability is overestimated) [36-38].

Cardiovascular traits Intra-pair correlation Metabolic traits

Nrtraits  Npars 0.5 1 0 0.5 Nrraits  Npairs
MZ,, 380 41669 ° . 912 210189
MZyae 248 20620 * o 503 85950
MZeemae 184 18539 . ® 523 105444
DZ,y 268 25543 . . 464 197920
DZaie 233 19012 . . 495 89631
DZremaie 170 20370 . J 513 110325
ssDZ 190 21526 . ° 618 168091
0osbz 97 4468 - . 236 73929

Least squares estimates

Nreits  Npairs 0 0.5 1 0 05 Nrraits  Npairs
2(rpz-roz)an 380 67212 . . 912 408109
2(ryz-roz)m 248 39632 e 1o 503 175581
2(ryz-rpz)e 184 38909 o 1ol 523 215769
2(ryz-rpz)ss 380 63195 o . 912 378280
(2rpz-rpz)an 380 67212 e . 912 408109
(2roz-rmz)m 248 39632 e . 503 175581
(2rpz-rmz)e 184 38900 e ] 523 215769
(2rpz-rmz)ss 380 63195 e - 912 378280

Reported ACE estimates

Nreaits  Npairs 0 0.5 1 0 05 Nrraits  Npairs
h% 56 21194 . . 355 512800
h%vale 48 12975 o1 . 256 142295
hZcemate 51 27642 o . 279 136043
h%s 36 15354 o o 87 36849
can 59 21194 o . 355 514138
62Ma|e 48 12975 Ll L 257 143027
cremate 50 27192 o . 267 131373
css 36 15354 . o 87 36849

Figure 1.2. Twin-based estimates for cardiometabolic traits in the past 50 years
Data are from the MaTCH (Polderman TJ, et al. Nature Genetics, 2015 [27]), re-plotted by the author.

SSDZ: same-sex dizygotic twins; OSDZ: opposite-sex dizygotic twins; rMZ, rDZ: intra-pair correlation coefficients
in MZ and DZ, respectively; M: male; F: female; SS: same-sex; hZ heritability; cZ shared environmental variance.

5|Page



Background

1.2.1.3 Non-additive genetic effects

Non-additive genetic effects are the genetic interactions between alleles. Two types of non-
additive genetic effects are usually defined: 1) dominance or dominant genetic effects (D),
representing the interactions between two alleles within the same locus; 2) epistasis,
representing the interactions between alleles from different loci [39]. Because the classical
twin study only can estimate a maximum of three variance components and D is dependent
on additive genetic effect (A) of each allele, it is not possible to estimate C and D within the
same model. Therefore, the phenotypic variation of each trait can be decomposed in either
ACE, or ADE, or AE model in classical twin study. The proportion, (A+D)/(A+D+E) is
defined as the broad-sense heritability (H).

Most classical twin designs and GWASs assume that the individual effect of each allele is
additive. The latest meta-analysis of 50 years’ twin studies suggests that the twin
resemblance for 69% of 17,804 traits are only from additive genetic effects [30]. The newly
developed GREML(dominant, d) method also find that SNP-based estimates of dominant
genetic variance (d°) are too small (~3%) to be able to explain the “missing heritability” [40].
However, certain classical- (with larger sample size) and extended- (including more family
members) twin studies have identified significant and considerable d* (~30%) for many

cardiometabolic traits [41-43].

herefore, two questions arose and motivated our study I:
—  Why is there such a big difference between twin- and SNP-based estimates of &7

—  Whether D is really not important for the “missing heritability”’?

1.2.2 Which proportion of genetic factors is shared between traits?

The genetic and environmental contributions to the covariation between two traits can also

be estimated from the twin- and SNP-based bivariate models [44].

1.2.2.1 Bivariate heritability and genetic correlation

Bivariate heritability 1s defined as the proportion of two traits’ phenotypic correlation
explained by genetic factors; genetic correlation reflects the overlap of genetic factors between
two traits [26]. Similar with the univariate heritability, the SNP-based estimates of bivariate
heritability are notably lower than twin-based estimates (before our study II, comparisons

were however only available between estimates obtained from different populations).
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1.2.2.2 Heritability is a population specific estimate
Heritability often varies by age, sex and other factors of the population samples. To the best
of our knowledge, our study I might have been the first study to compare the twin- and SNP-

based univariate heritabilities within the same population.

Moreover, our study I and other studies have indicated that small sample size might hamper
accurate quantification of A, C or D and E contributions to the variation for certain traits.
For example, no matter in large or small classical twin studies, ACE is usually the best-fitted
model for human height (a?>~80%, c*~10% and e’~10%); and the SNP-based estimate of a’
is from 45% (using directed genotyped SNPs, [34]) to 56% (including more imputed SNPs,
[45]). Therefore, the gap between twin- and SNP-based h? for height is just 30%-40%. While
for BMI, AE or ACE is the most frequently reported model in small twin studies (a*>~70%
and €*~30%) [46]; but ADE model is reported in certain studies with larger samples
(@’=30%, d*~40% and e*~30%) [42]. The particular pattern including different types of
genetic and environmental contributions to the covariation between cardiometabolic traits

haven’t been comprehensively identified.

hen, two questions were further illuminated in our study II:
— How A, Cor D, E contribute to the covariation between cardiometabolic traits?

—  Whether the bivariate twin- and SNP-based estimates also differ a lot?

1.2.3 Where are the important genetic factors?
After quantifying the relative importance of genetic factors to the phenotypic variation and
covariation, the natural next step in genetic epidemiology is to try to find the particular

genetic factors.

1.2.3.1 GWAS:s for traditional cardiometabolic traits

GWAS is a hypothesis-free and efficient design to identify the genetic factors (from genome-
wide common SNPs) associated with human complex traits [47]. Since the first GWAS on
age-related macular degeneration in 2005 [48], more than 68,000 SNP-trait associations
have been identified from ~5,000 GWASs [47, 49]. Numerous genome-wide significance
loci (association P-value<5x10?®) have also been identified for traditional cardiometabolic
traits. Current results show: ~100 loci for blood lipids [50] and CAD [51, 52]; ~20 loci for
CRP [53] and fibrinogen [54, 55]; ~10 loci for Lp-PLA2 [56-58]; ~60 loci for HbAlc [59];
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~30 loci for fasting insulin and glucose [60]; ~20 loci for type I [61] and type II diabetes
[62]; ~10 loci for HCY [63]; ~15 loci for Cys C and CKD [64]; ~80 loci for blood pressure
[65]; hundreds of loci have also been identified for human anthropometric traits (e.g. height,

BMI and so on) from large-scale studies [66].

1.2.3.2 IgM anti-PC, a potential novel cardiometabolic biomarker

Phosphorylcholine (PC) is an exposed antigen on apoptotic cells, oxLDL and Streptococcus
pneumoniae [67]. As shown in Figure 1.3, PC links to immunity, apoptosis, atherosclerosis,
pathogens and chronic lymphocytic leukemia (CLL). Immunoglobulin M against PC (IgM
anti-PC) induced by PC immunization can inhibit the uptake of oxLDL through
macrophages, thus preventing the development of atherosclerosis [68]. In recent years,
several studies have reported that IgM anti-PC is inversely associated with ASCVD risk and
displays potential value for the prevention, diagnosis and therapy of atherosclerosis [69, 70].

However, the association between IgM anti-PC level and CLL risk has never been tested.

* Total IgM or IgG were not signifianctly affeced
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Figure 1.3. Schematic overview of previous literature about IgM anti-PC
Line with arrow means positive association/effect; Line with —| means inhibition. Ab: antibodies; M: macrophage.

A study including 1,018 complete twin pairs has estimated the heritability for serum level
of IgM anti-PC and found that about 40% of its phenotypic variation is explained by genetic
effects [71]. However, no studies (before our study III) had identified specific genetic

variants associated with IgM anti-PC.
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hus, our study III addressed two questions about IgM anti-PC:
—  Which genetic variants are associated with serum level of IgM anti-PC?

—  What is the association between IgM anti-PC and CLL?

1.2.4 What can we learn from the important genetic factors?

The genetic variants identified from GWASs can be used to increase the understanding
about the genetic etiology of human complex traits and molecular mechanisms of diseases
[47]. Moreover, thanks to the continuous development of polygenic methods, these genetic
variants can now also be used to test the association and causality previously reported from

traditional epidemiological studies [24].

1.2.4.1 Association tested by polygenic risk score analysis

GWASs and the “missing heritability” phenomenon indicate that most human complex
traits are highly polygenic, which means that they are influenced by numerous genetic
variants with small effects [24]|. Polygenic risk scores (PRSs) are calculated in target samples by
weighting the risk alleles identified from GWASs. The number of alleles to be used depends
on a flexible threshold of GWAS P-value [72]. In recent years, as a complement to
traditional biomarkers, PRSs based on risk alleles of biomarkers have been investigated as

predictors of diseases [73].

1.2.4.2 Causality of the association tested by Mendelian randomization study

Because alleles are randomly assigned during meiosis and generally unchanged throughout
human life, they can be used as instrumental variables (IVs) to test causality in the Mendelian
randomization (MR) study | 74]. However, the causal inference of MR study is based on three
core assumptions: 1) IVs are only specifically associated with the exposure; 2) IVs are
independent of any measured or unmeasured confounders; 3) the influences of IVs on the

outcome only go through the exposure |75].

1.2.4.3 PRS and MR studies between cardiometabolic biomarkers and diseases

Many associations between the risk factors/biomarkers and cardiometabolic diseases
(suggested from previous observational studies) have been tested by PRS studies [76]. In the
MR studies, LDL and TG are supported to be causal for CAD |[77], while HDL is not |78,
79]. It is well in line with the clinical treatment outcomes: statins are still the most effective

drug to prevent ASCVD, because they inhibit LDL biosynthesis by blocking the 3-hydroxy-
9|Page



Background

3-methylglutaryl-coenzyme A reductase [80]; but niacin fails to prevent ASCVD by
increasing HDL levels. By using IVs of WHR adjusted for BMI, PRS and MR analyses
support that abdominal adiposity is causal for type II diabetes and CAD [81].

1.2.4.4 Controversial associations between blood lipids and ALS

Whether dyslipidemia is a risk or protective factor for amyotrophic lateral sclerosis (ALS) has
been debated for more than 10 years [82-89], perhaps because less than 500 ALS cases were
included in previous observational studies. Currently, the summary statistics from large-
scale GWASs on blood lipids (in ~100,000 individuals, [90]) and ALS (including 12,577
ALS cases and 23,475 controls, [91]), are publicly available.

hereby, two questions about blood lipids and ALS were addressed in study IV:
—  Whether polygenic evidence support the association between blood lipids and ALS?

— If'so, which direction and whether the association is causal?
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2 AIMS

The general aim of this thesis is to investigate the genetic epidemiology of cardiometabolic

biomarkers, by using classical twin studies and current SNP-based genomic methods.

The specific aim of each study:

Study I aims to illuminate the role of dominant genetic effects in the “missing heritability”.

Study IT aims to quantify the genetic and environmental contributions to the covariation

between cardiometabolic traits.

Study III aims to identify the genetic variants associated with serum level of IgM anti-PC.

Study IV aims to test the association and causality between blood lipids and ALS.
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3 STUDY DESIGN

The study design for each study is summarized in the 7able and outlined in this chapter.

More details about materials and methods used in each study can be found in the published

papers I-IV [92-95].

Table. Study design for each study
Study Materials Methods
I Same study base: 10,682 twins in TwinGene (3,870 Univariate twin-based SEM
complete twin pairs; 5,779 unrelated individuals) ~ and SNP-based GREML(d)
Phenotypes: 24 cardiometabolic biomarkers
II Genotypes: directly genotyped 700K SNPs Bivariate twin-based SEM
Covariates: age, sex, 10 principle components and SNP-based GREML(d)

IIT  Subjects in four Swedish cohorts (total n=3,648) GWAS, Meta-analysis

Phenotype: serum level of IgM anti-PC PRS
Genotypes: ~8 million SNPs after imputation Bioinformatics’ prediction
Covariates: age, sex, 2-4 principle components Nested-case control study

IV Summarized GWAS results of lipids and ALS: PRS
np1=95,454; nrc=100,184; nr5=96,598; MR
Nupr =99,900; nars=36,052 (12,577 cases)

3.1 Materials
3.1.1 Phenotypes and genotypes in cohorts

TwinGene from the Swedish Twin Registry

TwinGene 1s a Swedish population-based cohort including ~12,000 twins born between
1911 and 1958, the medical records of TwinGene participants are accessed from the national
registers in Sweden [96]. Blood samples and health check-up information were collected
during 2004-2008, blood biomarkers and genotypes were measured by methods described

in our paper I and IT [92, 93].

Study I and II used the same materials from TwinGene: 10,682 twins with both genotypes
(644,556 directly genotyped autosomal SNPs passed quality control) and 24 traditional
cardiometabolic biomarkers available. From the same study base, 3,870 complete twin pairs
were used for twin-based SEM and 5,779 unrelated individuals were used for SNP-based

GREML(d).
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IgM anti-PC was measured in 1,018 complete twin pairs (2,036 twins) randomly selected
from TwinGene to estimate the heritability [71]. After quality control (QC), 1,175 twins
with both IgM anti-PC measurements and genotypes (~8 million autosomal SNPs after
imputation and QC) were used for GWAS in study III. For the nested case-control study in
study III, CLL cases were identified from TwinGene Biobank (serum and DNA samples
from ~12,000 twins) by using the International Classification of Diseases (ICD) code
(ICD7/8/9:204.1; ICD10: C91.1). For each CLL case, three age- and sex- matched controls

were also randomly selected from the biobank.

PIVUS

Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort was
established in 2001, including 1,106 seventy-years-old individuals who lived in Uppsala
community [97]. IgM anti-PC was measured and genomic DNA was genotyped for all
PIVUS participants. After QC and phenotype-genotype matching, 945 individuals were
used for IgM anti-PC GWAS in study III.

MDC

Malmo Diet and Cancer (MDC) cohort includes ~30,000 individuals living in Malmo city
[98, 99]. Within a nested case-control study for CAD, IgM anti-PC was measured in 1,042
individuals [100], from which 882 individuals with both IgM anti-PC and genotypes
available were used for GWAS in our study III.

PRACSIS

During 1995-2001, Prognosis and Risk in Acute Coronary Syndromes in Sweden
(PRACSIS) cohort was established to recruit acute coronary syndromes patients [101]. IgM
anti-PC was measured for 1,185 patients and genomic DNA was genotyped for 1,268
patients. Finally, 646 subjects with both IgM anti-PC and genotypes were used for GWAS
replication in study III.

3.1.2 Summary statistics from GWASs

In study IIT and IV, summary GWAS results (from the European-ancestry populations) for
CLL, immunoglobulins, blood lipids, CAD and ALS were used for PRS or MR analyses.
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CLL and immunoglobulins in study III

Full summary GWAS results of CLL (from 3,100 unrelated cases and 7,677 controls) were
accessed from the InterLymph Consortium [102]. Public GWAS results of immunoglo-
bulins (~19,000 individuals) only are ~5,000 SNPs with association P-value<1x10° [103].

Blood lipids, CAD and ALS in study IV

Summary GWAS results of blood lipids (TG, TC, LDL and HDL) were based on 2.69
million SNPs among ~100,000 Europeans [90]. Because the association and causality
between blood lipids and CAD have been clearly tested, CAD was used as a “reference
outcome” in MR study. GWAS results of CAD (including 22,233 cases and 64,762 controls,
with 2.42 million SNPs) were accessed from the CARDIoGRAMplusC4D Consortium
[51]. Summary statistics for ALS were from the latest GWAS in 2016, including 8.71 million
SNPs for 12,577 cases and 23,475 controls [91].

3.2 Methods

3.2.1 Classical twin design

Based on human consanguinity (degree of kinship or biological relationship), the classical
twin study compares the phenotypic similarities between MZ and DZ twins [29]. Falconer’s
formula can roughly quantify the additive genetic effects (A), common/shared (C) and
unique/non-shared (E) environmental effects, by using the monozygotic and dizygotic

intra-pair correlations (rtMZ, rDZ) in the following equations:

(@ Similarity between MZ twin is due to the shared A (100%) and C (100%), tMZ=A+C;
(2 Similarity between DZ twin is from the shared A (50%) and C (100%), rDZ=0.5A+C;
(3 Dissimilarity between MZ twin is because of non-shared environment, E=1-rMZ.
Therefore, A=2(rMZ-rDZ), and C=2rDZ-rMZ.

Falconer’s formula assumes that all genetic effects are additive and that the phenotypic
variance is only due to contributions of A, C and E. Thus, the heritability can be simply
calculated as A/(A+C+E).
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3.2.2 Twin-based SEM

Although Falconer’s formula provides an easy way to obtain point estimates, more
sophisticated model fitting approaches are needed to evaluate statistical significance, to

obtain confidence intervals and to test more complex models.

By using the OpenMx package (version 2.8.3) in R (version 3.4.1) [104], the observed
variance-covariance matrices were constructed for MZ and DZ pairs. We constructed ACE
model, ADE model and AE model for each trait, respectively. The model fitting was
evaluated by the Akaike information criterion (AIC), considering the model with the lowest
AIC value as best-fitted [105].

3.2.3 SNP-based GREML(d)

In the tool of Genome-wide Complex Trait Analysis (GCTA), GREML(d) fit all SNPs as
random effects within a mixed linear model, in which the empirical genetic resemblance
between “unrelated individuals” (to exclude the shared environmental effects) were

compared [28].

In this thesis, the “unrelated individuals” were selected from the same study base in the
following steps: 1) one twin within each MZ pair and both twins in DZ pairs were
genotyped; 2) one twin within each DZ pair was randomly removed; 3) among the
remaining individuals, related individuals were further removed based on the genetic-

related-matrix (cut-off value for relatedness was 0.025).

For the 24 traditional cardiometabolic biomarkers in our study I and II, the univariate and
bivariate twin-SEM and SNP-GREML(d) were performed and compared within the same
study base (10,682 twins from TwinGene), respectively.

3.2.4 A direct test for effects from shared environment

The self-reported contact frequency (in four levels: 1-contact less than once per year, 2-
yearly contact, 3-monthly contact, 4-weekly contact), and separation age were used to test
the existence of shared environmental effects. The t-test on their mean levels between MZ
and DZ twins was used to test the EEA (that co-twin within MZ and DZ pairs share
environment to the same extent). The potential relation between the degree of shared
environment and the intra-pair trait difference was also investigated by estimating their

correlation in MZ pairs for each trait.
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3.2.5 Genome-wide association study

All four cohorts in the IgM anti-PC GWAS used the same analysis procedure, as below:
Phenotype: IgM anti-PC raw values were adjusted for age at blood sampling and sex in the
linear regression model, outliers [individuals with the residuals beyond %4 standard
deviations (SDs) from the mean] were removed, then residuals were rank order normalized
(to achieve standard normal distribution) and used as the phenotype in GWAS.

Genotype: directly genotyped SNPs and imputed SNPs by using the 1000 Genome
reference panel (GRCh 37/hg 19, Phase 1, Version 3); QC details can be found in Paper I11.
Model: linear regression model.

Covariates: the first 4 genetic principal components (the first 2 genetic principal
components in PIVUS). The relatedness in TwinGene participants was handled by using

the “--within” option in PLINK.

3.2.6 Polygenic risk score analysis

In study III and IV, PRS analyses were performed by using summary GWAS data in the
PRSice tool [106]. Independent SNPs were kept in the base data by LD clumping (reference
panel: HapMap_ceu_all, release 22), with the following settings: clumping threshold
pl=p2=0.5, LD threshold 1*=0.05 and distance threshold=300Kb. Then independent SNPs
were grouped into quantiles with gradually increasing P-value threshold (Pr). The quantile
explaining the largest trait variance in the target sample is denoted the best-fitted, and the

corresponding Pr is defined as the best-fitted Pr.

3.2.7 Mendelian randomization study

In study IV, MR was performed if PRS analyses identified significant polygenic association
between blood lipids and ALS. Independent SNPs that were only associated with the
exposure (P-value<5x10®) but not with any other traits (P-value>5x10%) in the
PhenoScanner database were used as IVs [107]. By using “gtx v0.0.8” package in R 3.2.5,
the causal effect of the exposure on the outcome was tested by the inverse-variance weighted

method | 74]. CAD was used as a reference outcome.
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4 RESULTS AND DISCUSSION

The main results and interpretations of study I-IV are briefly presented here, more details

and supplemental information can be found in the published paper I-IV [92-95].

4.1 Study |

4.1.1 Intra-pair correlation and model fitting

The intra-pair correlation coefficients in MZ and DZ (rfMZ, rDZ) are plotted in the figure
below. For height and apoAl, rMZ<2rDZ, indicating contributions from C; while
rMZ>2rDZ for all other 22 biomarkers, which indicates some potential dominant
deviations from the pure additive model. From the model fitting according to AIC, ACE
was the best-fitted model for height; AE was the best-fitted model for apoAl, HDL, PP,
DBP and MAP; while ADE was the best-fitted model for all other biomarkers (Figure 4.1.1).
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Figure 4.1.1. Intra-pair correlation and model fitting
Among the 24 cardiometabolic biomarkers, intra-pair MZ and DZ twin correlations (rMZ, rDZ) indicate dominant
deviation from additive model for 22 biomarkers, ADE model is best-fitted for 18 of them.

4.1.2 Twin- versus SNP-based univariate heritability

The decomposing of phenotypic variation of each trait by twin and SNP model is presented
in Figure4.1.2. Twin-based estimate of shared environmental variance (c?) was 9% for height.
The SNP-based estimates of additive genetic variance (a?) for SBP, DBP and MAP were not
significant, but all twin- and SNP-based a* and unique environmental variance (e?) were
significantly estimated for other 21 traits. Significant contributions from the dominant

genetic effects were identified for 13 traits in twin model, while SNP-based estimates of the
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dominant genetic variance (d*) were significant just for TG (28%, 95%CI 10%-46%) and
waist circumference (19%, 95%CI 1%-37%).
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Figure 4.1.2. Phenotypic variation partitioned by twin and SNP models

Twin-based SEM identifies significant dominant genetic influences (D) on the phenotypic variation of 13

biomarkers, while SNP-based GREML just identifies significant D for 2 biomarkers. Statistically significant

estimates (P-value<0.05) are labeled in solid line, the percentage values on the top of bars represent h2sxe/h?ruin.
For the 13 traits with significant estimates of d?, the average value of h%sp/h’yi, Was 76%;

while for the 5 AE best-fitted traits, the average value of h’sxp/h’ryin Was 28%.

4.1.3 Test for shared environment

The mean values of contact frequency (in four levels: 1, 2, 3, 4) and separation age (years
spent together in raising household) were significantly higher in MZ pairs (3.03£0.82,
19.80+3.43 years) than SSDZ (2.71%£0.82, 18.55%£3.59 years) and OSDZ (2.45%0.69,
18.25+3.75 years) pairs, which indicate potential violation of the equal environment

assumption for co-twins within MZ and DZ pairs.

However, the correlations between trait difference and shared environment (contact
frequency and separation age) were weak within MZ pairs, the absolute values of correlation
coefficient were less than 0.1 (Figure 4.1.3); from which significant correlations were found
between these two shared environmental factors and 8 cardiometabolic traits (all five obesity

traits: weight, BMI, waist circumference, hip circumference, WHR; SBP, PP and HDL).
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Figure 4.1.3. Correlations between intra-pair trait difference and degree of
shared environment (separation age and contact frequency) in MZ pairs
Statistically significant estimates (P-value<0.05) are labeled in solid lines. ACE, ADE and AE represent the best-
fitted model for each trait in the univariate twin-based structural equation model.
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4.2 Study Il

4.2.1 Phenotypic correlations

Among the 276 pairs of correlations between the 24 cardiometabolic biomarkers/traits, 27
pairs with the absolute phenotypic correlation coefficient larger than 0.40 were further
investigated in study II. In line with the biological knowledge, the genetic and
environmental contributions to their phenotypic covariation can be illuminated in four

clusters: blood lipids, metabolic biomarkers, obesity traits and blood pressure (Figure 4.2).

4.2.2 Covariation decomposition by twin and SNP model

Among the bivariate twin-SEM for these 27 correlated pairs of cardiometabolic traits, the
AE model was best-fitted for 7 pairs (TG-HDL, TC-apoB and all 5 pairs in the blood
pressure cluster); ACE was the best-fitted model for 4 pairs (HDL-apoA1, LDL-apoB, apoB-
nonHDL, CysC-eGFR), but estimates of c* were close to zero; ADE was the best-fitted
model for the remaining 16 pairs, in which significant bivariate d*> were identified for 13

pairs (including all the 9 pairs in the obesity cluster).

The SNP-based estimates of bivariate a? were non-significant for weight-WHR, BMI-WHR
and 4 blood pressure pairs (SBP-DBP, SBP-MAP, DBP-MAP, MAP-PP), and SNP-based

estimates of bivariate d* were neither significant for any pairs.

In general, the SNP-based bivariate a> (~19% on average) were lower than twin-based
bivariate a’ (~36% on average); the SNP- and twin-based estimates of additive genetic
correlation (rA) were highly similar (both were 0.67 on average). The estimates of
phenotypic correlation (rP) and environmental correlation (rE) showed only small

differences between twin and SNP models.

4.3 Study llI

4.3.1 GWAS meta-analysis, PRS and functional prediction

The meta-analysis of three individual discovery GWASs found two SNPs in 1p31.3 and six
SNPs in 11g24.1 that achieved the genome-wide significance. The six SNPs close to
GRAMDIB gene in 11q24.1 were successfully replicated in the fourth cohort. Based on the
meta-analysis of four cohorts, 1s35923643-G was the top allele, with the combined beta
=0.19 rank order normalized SD of IgM anti-PC per allele (P-value=4.34x10", Figure 4.3).
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Figure 4.2. Genetic and environmental contributions to cardiometabolic pairs

Bivariate twin-SEM and SNP-GREML(d) are performed for 27 highly correlated pairs (absolute phenotypic
correlation coefficient |rP|=0.4). Twin-based estimates are in the upper triangle, and SNP-based estimates are in
the lower triangle. Statistically significant estimates (P-value<0.05) are in bold. NA: not available because of the
weak phenotypic correlation.

The SNP rs35923643-G and its proxy variant rs735665-A are also the top risk alleles for
CLL. In the PRS analysis, the top variant in 11q24.1 explained the largest variance of CLL

(Nagelkerke r*=0.006, P-value=1.2x10"°). Based on bioinformatics tools and databases, our

functional predictions suggested that rs35923643-G might be the functional variant affecting

the transcription factors binding, especially impeding the binding of tumor suppressor

RUNX3.

Swedish cohorts

Beta [ 95% Cl ]

rs35923643-G on IgM anti-PC

TwinGene —. 0.15[0.06, 0.25]
PIVUS —=——  026[0.16,0.37)
MDC - 0.10[-0.02, 0.22]
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Summary

T - 0.19[0.13,0.24]
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Association P-value= 4.33589925563617e-11
Heterogeneity P-value= 0.15881900390646

Figure 4.3. Association of the top allele rs35923643-G with IgM anti-PC in four
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4.3.2 Nested case-control study

The small nested case-control study found that IgM anti-PC level was significantly lower in
7 prevalent CLL cases than in 21 matched controls (P-value=0.006); IgM anti-PC was also
lower in the 23 incident CLL cases than in 69 matched controls, but the difference was not
statistically significant (P=0.227). The hazard ratio from the stratified Cox proportional
hazards model indicated an inverse association between IgM anti-PC and incident risk of

CLL, hazard ratio estimate was 0.75 (95% CI 0.40-1.39) but not significant (P-value=0.354).

4.4 Study IV

4.4.1 Bi-directional PRS analyses

When using blood lipids as the base and ALS as the target in the PRS analyses, PRSs based
on the increasing alleles of LDL or TC (PRS;pr. or PRStc) were significantly associated with
ALS risk. The estimates and predictions for ALS were very similar between PRS;p; and
PRSqq, likely reflecting the strong phenotypic correlation between them (LDL is the major
type of TC). For the best-fitted PRS;p; and PRS+c, the P was the same (=5%107%), and effect
sizes were also quite similar (log OR=0.15 for PRS; ;. calculated from 233 independent risk
alleles; log OR=0.14 for PRStc calculated from 270 independent risk alleles). However, no
significant association with ALS risk was identified for PRSs based on TG increasing alleles

or PRSs based on HDL increasing/decreasing alleles.

In the reverse PRS analysis, no significant association was identified between PRSs based
on ALS risk alleles and any of the studied lipids. Perhaps because the sample size of ALS
GWAS was a bit small (12,577 cases and 23,475 controls) compare with blood lipids
(~100,000 individuals).

As a reference comparison, the PRSs based on large-scale CAD GWAS (22,233 cases and
64,762 controls) was significantly but also weakly associated with blood lipids (|log OR |
<0.01, P-value<2x10®).

4.4.2 MR study

The association between LDL, TC and ALS was suggested to be causal (§=0.23, P=0.03),
by using 13 independent SNPs that are specially associated with both LDL and TC (but not

associated with any other traits) as instrumental variables in the MR study.
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5 STRENGTHS AND LIMITATIONS

Study I and II have the possibility to compare the twin- and SNP-based estimates within
the same study base. This provides a straightforward way to control for population
differences (extra variances or “noises”) arising from age, sex, ethnicity, life-style and other
factors. TwinGene is a population-based cohort of the Swedish Twin Registry, in which
elderly Swedish born twins living all over Sweden were invited without selections besides
willingness to participate. Thus, the geographic and demographic distribution provides a
homogenous genetic background of the sample, which is a valuable feature in genetic
studies. All the blood samples are collected, extracted, and stored by the same biobank using
the same procedures. The same laboratory, using the same methods, measured all the
clinical biomarkers and measurements in the same procedure. These features are of vital

importance in order to diminish the risk of biases due to batch effects.

Study III is the first GWAS for IgM anti-PC and it is also the first study to investigate the
shared genetics and phenotypic relationship between IgM anti-PC and CLL. All individuals
from the four cohorts used in study III were European-ancestry and born in Sweden,
providing low heterogeneity (population or genetic stratification). The TwinGene cohort is
also linked to several national health registers in Sweden, which enabled us to identify

diseases (e.g. CLL) and test the associations with many biomarkers/factors.

Study IV is the first polygenic analysis between blood lipids and ALS, which also provides
polygenic evidence to support the causal effects of LDL and TC on ALS risk.

However, there are also some limitations needed to be noted:

Sample size 1s more likely a limitation than strength from the overview of this thesis.

— Although 3,870 complete twin pairs were used in our study I and II, which are larger
than the average sample size of previous twin studies (<2,104 pairs per study in the past
fifty years [30]), the power to identify significant bivariate estimates in study II is still
not adequate. Such situation is also the same for SNP-based GREML, 5,779 unrelated
individuals are too small to get enough power for estimating additive genetic variance
for SBP, DBP and MAP (and even harder for estimating dominant genetic variance)

from genome-wide common SNPs.
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— In study III, sample size of IgM anti-PC GWAS is also small (3,002 individuals in the
discovery phase and 646 individuals for replication), thus only one locus 11g24.1 is
successfully identified. In the PRS analysis between anti-PC and CLL, the quantile
including the single top variant explains larger (actually the largest) variance of CLL
than all other quantiles including more SNPs across the genome, perhaps also because
of the small base data (IgM anti-PC GWAS).

— Similarly, the nested case-control study in study III is also small (7 prevalent and 23
incident CLL cases were identified among all ~12,000 TwinGene participants). There
is also a lack of detailed information about the CLL stage, therapy and stereotyped B-
cell status for the CLL cases; further impeding the possibility to draw firm conclusion
about the association between IgM anti-PC and CLL.

— In the reverse PRS analyses in study IV, PRSs based on ALS risk alleles are not
significantly associated with any studied lipids (and explain 0% of the variance), one

potential explanation is also the relatively small base data (ALS GWAS).

Generalizability 1s also a potential concern for study I and II. Because heritability is
population specific, the reported contribution for cardiometabolic traits might only
represent the baseline measurements in TwinGene (old Swedish twins born between 1911
and 1958). Since the relative importance of genes and environment might vary by different
factors like age at blood sampling/measuring, more efforts are needed to further assess the

generalizability of our conclusions.
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6 ETHICAL CONSIDERATIONS

The first three studies in this thesis were mainly performed in TwinGene cohort from the
Swedish Twin Registry. Ethical permits for TwinGene project had been approved in 2007
(Dnr: 2007/644-3) and amended in 2012 (Dnr: 2012/257-32). Study IV is based on the

public summary GWAS results from consortia, so ethical permit is not required.

Privacy

By using questionnaires and interviews, the participants were asked to answer questions
about certain personal information. They have also received some physical examinations,
donated their blood for research purposes to biobank. Biomarkers in their serum/plasma
have been measured; genomic DNA which carries all the genetic information has been
isolated and genotyped. From certain analyses, we can identify participants that carry
genotypes associated with increased risk of certain diseases. That means the researchers can
even know more private information of the participant than themselves. How to handle

these informative and sensitive data is also a crucial aspect we should consider.

Right to know

Since most of our studies can get certain predictive information, telling such information to
the participants might bring both harmful and beneficial effects, which also can raise ethical
dilemmas. There are three examples: 1) the zygosity was previously identified by the
answers from the questionnaires, then a more accurate genotype-based method was used.
Although these two methods were mostly consistent (95-98% match), some twins have their
zygosity re-classified; 2) genotypes can be used to estimate polygenic risk for several
complex traits/diseases. Such estimate has a market value and is offered by commercial
companies. However, the clinical value 1s very limited and it is very difficult to
communicate such information in an adequate way; 3) we might occasionally observe
participants who carry risk alleles for certain diseases (e.g. breast or ovarian cancers). Should

we inform and suggest them to adopt some prevention strategies?

Causality

As mentioned in the third point above, genetic variants are only associated with higher risk
of disease, but mostly we do not have enough evidence to declare the causality between
them. This is also a problem raised in our study III: because IgM anti-PC has been regarded
as an atheroprotective biomarker, monoclonal antibodies targeting PC have been produced
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and planned to be evaluated as therapy to decrease CVD risk. Our GWAS results indicated
that the haplotype which were significantly associated with increased anti-PC is also
strongly associated with CLL risk. If this genetic sharing would reflect a causal relation
between anti-PC and CLL, the suggested therapeutic treatment by increasing anti-PC levels
might come with harmful side-effects. However, our nested case-control study gave no
support for a positive association between anti-PC and CLL. Instead a weak negative

association was detected.

Furthermore, associations between anti-PC and CLL may be due to confounding. One
possible confounder is S. pneumoniae infection, which can increase anti-PC level due to the
human innate immune response to the PC antigen on S. pneumoniae; pneumonia is also
associated with increased risk of CLL [108]. If association is due to confounding only,

artificially increasing anti-PC would not affect the CLL risk.

Nevertheless, it is very important to further investigate the causality among anti-PC, CVD

and CLL, to provide useful scientific evidence for the clinical translation of IgM anti-PC.
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7 CONCLUSIONS

Study I finds that significant contribution of dominant genetic effects (D) to the variation of
most cardiometabolic biomarkers in TwinGene samples; it also indicates that the missing
heritability (1-h%xp/h%.in) becomes smaller when the twin model has enough power to

distinguish true D from additive genetic effects (A).

Study II suggests that D also contribute to the covariation between certain blood lipids,

metabolic biomarkers and all obesity traits in TwinGene samples.

Study III identifies that SNP rs35923643-G is the top genetic variant shared between IgM
anti-PC and CLL risk, and it is also the potential functional variant affecting the binding of

transcription factors.
Study IV provides polygenic evidence to support the positive associations between LDL,

TC and ALS risk, such positive associations are also suggested to be causal based on current

assumptions and evidence.
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8 FUTURE PERSPECTIVES

For future studies to quantify the genetic and environmental effects on human complex

traits, the following aspects are worth to be considered:

1) Larger sample size is quite vital for both twin and SNP model to get enough power to
quantify and also distinguish the additive and non-additive genetic effects;

2) Extended model including more family members/relationships enables estimation of
more components within the same model;

3) Multivariate model can be considered to capture the common A, C, D, E components
shared among more than two correlated traits within clusters (like LDL-TC-apoB-
nonHDL, weight-BMI-waist circumference-hip circumference-WHR);

4) Longitudinal model is useful to investigate the continuous changes of A, C, D, E
contributions across the lifespan;

5) More types of genetic variants as well as gene-environment interactions and

correlations can also be considered in future molecular/genomic methods.

More samples are needed for IgM anti-PC GWAS to identify more associated genetic
variants. In order to further illustrate the relationship between IgM anti-PC and CLL, the
nested case-control study also need more CLL cases and longer follow-up time.
Confounders (e.g. Pneumonia or other infections) between IgM anti-PC and CLL are worth
to be investigated. More functional experiments following the GWAS findings also need
to be done, such as allele specific chromatin immunoprecipitation-sequencing and in silico

approaches to validate the binding affinity of transcription factors.

Similarly, larger samples of GWAS on common SNPs are also critical for the MR causal
inference between cardiometabolic biomarkers and ALS. Besides inverse-variance weighted
method, other types of MR methods (e.g. MR-Egger) can be used to test or validate the
causality between blood lipids and ALS. Since ALS is a rare disease, deeper sequencing for
rare variants might also be essential for “missing heritability” and genetic mechanisms
between dyslipidemia and ALS. In parallel, functional experiments are also needed to
validate the pathogenic mechanisms related to the pathways suggested by polygenic

evidence.
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