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ABSTRACT

Atherosclerosis is an inflammatory disease of large to intermediate-sized arteries, character-
ised by retention of modified low-density lipoprotein within the vessel wall; this evokes an
inflammatory response. Low-density lipoprotein carries lipids such as fatty acids, triglycer-
ides and cholesterol, from the liver to peripheral tissues. The lipids carried by lipoproteins can
be mobilised for metabolic processes, or if excessive, be stored in intracellular depots called
lipid droplets. When imbalances in lipoprotein transport and/or cellular lipid metabolism oc-
cur, the risk for metabolic disorders, atherosclerosis and cardiovascular disease increases.
Perilipins are lipid droplet-associated proteins, which regulate lipid mobilisation and metabo-
lism from lipid droplets by allowing lipases access to the lipids within the lipid droplet.
Macroautophagy, generally referred to as “autophagy”, regulates cholesterol metabolism in
macrophage foam cells of atherosclerotic plaques. This is a parallel mechanism by which
cells can mobilise lipids, distinct from the traditional dogma that cytosolic lipases mobilise
intracellular lipid storages. Further, it contributes to the regulation of inflammation of athero-
sclerosis-afflicted vessels and it has been shown that ablation of core autophagy genes exac-
erbates atherosclerosis in murine disease.

In this thesis we describe a protein variant in perilipin-2, which reduces plasma triglyceride
levels, alters intracellular lipid metabolism and is protective of subclinical atherosclerosis. By
adopting a molecular genetic approach, including a well-defined recruit-by-genotype proto-
col, we clearly demonstrate that perilipin-2 constitutes a hub between cholesterol metabolism
and autophagy by fine-tuning liver-X-receptor activity. We also show that liver-X-receptor
and autophagy are responsible for their reciprocal activation and that 27-hydroxycholesterol
drives this feed-forward loop between liver-X-receptor activity autophagy — the mechanism
by which the protein variant in perilipin-2 exerts its beneficial effects on subclinical athero-
sclerosis.

Further we determine the presence of the autophagy-related proteins ATG16L1 and
MAPILC3A in human carotid atherosclerotic plaques where they are associated to plaque
inflammation and vascular smooth muscle cell phenotypic switch, respectively. Ultimately,
the presence of autophagy-related proteins in human carotid atherosclerotic plaques modu-
lates plaque stability.

Collectively, data presented herein, extend on the existing murine data and suggest that de-
regulated autophagy is a feature of human atherosclerosis. Treatment options targeting au-
tophagy in the treatment of atherosclerosis are still hampered by specificity of treatment and

timely intervention.



POPULARVETENSKAPLIG SAMMANFATTNING

Ateroskleros, eller aderforfettning, dr en inflammatorisk kérlsjukdom som karaktériseras av
att kolesterol som transporteras med lipoproteiner i blodet fastar i kirlviggen och tas upp av
vita blodkroppar som initierar en inflammatorisk reaktion. Ateroskleros &r den underliggande
orsaken till de flesta hjért-kérlsjukdomar, t.ex. hjértinfarkt och stroke. Att kolesterol trans-
porteras med hjilp av lipoproteiner beror av att kolesterol och andra lipider (fetter) inte &r
16sliga 1 blodet. Olika lipoproteiner har olika roll i transporten av kolesterol. LDL och HDL &r
tvd lipoproteiner som bér kolesterol och dessa har vitt skilda roller. LDL-buret kolesterol ar
traditionellt kallat ”det onda” kolesterolet, medan HDL-buret kolesterol ar kallat ’det goda”.
Detta beror pa att LDL-kolesterol transporteras frén levern till perifera vdvnader, vilket
mdjliggdr att kolesterolet fastnar i kdrlviggen och resulterar i att en aderforfettning startar.
HDL-kolesterol & andra sidan, transporterar kolesterol fran perifera viavnader till levern, dér
det istéllet tas om hand om for att avsondras fran kroppen.

Samtliga celler i kroppen har kapacitet for att lagra fetter och kolesterol, detta i sa kallade
lipid-droppar och eftersom fetterna inte &r vattenldsliga, maste dessa lipid-droppar stabiliseras
med hjilp av proteiner som kallas perilipiner. Ett av dessa proteiner &r perilipin-2. Da nivéer-
na av lipider Okar, okar ockséd nivderna av perilipin-2 och detta protein finns det gott om i
kérlvaggens inflammatoriska celler vilka bidrar mest till 4derforfettning. Perilipin-2 reglerar
ocksd inlagringen av lipider samt huruvida lipider mobiliseras och senare anvéndas som en-
ergikilla for cellerna.

Autofagi, grekiska for sjilv-dtande, dr ocksa ett sitt for celler att mobilisera lipider, som
skiljer sig frdn den mer traditionella vig som regleras av perilipiner.

Eftersom perilipin-2 spelar en sddan central roll i att stabilisera lipid-droppar i celler som
bidrar till aderforfettning, sé stillde vi hypotesen att en vanlig forédndring i strukturen av peril-
ipin-2 paverkar inlagringen av det onda kolesterolet i dessa celler. Individer rekryterades till
vér studie med avseende pa deras variant av perilipin-2 och vi visar att en vanlig protein-
forandring 1 perilipin-2 pdverkade inte bara inlagringen av kolesterol i inflammatoriska celler,
utan dkade dven nivderna av autofagi, vilket resulterade i att transport av kolesterol till HDL
Okade. Parallellt med 6kad kolsterol-transport mot HDL, som anses vara skyddande for ader-
forfettning, sa minskade kérlvdggens tjocklek (ett matt av &derforfettning) i en europeisk
population med hog risk for hjért-kdrlsjukdom hos de individer som bar péd protein-
forandringen. Vidare visar vi att autofagi ingar 1 ett intrikat molekylért forhallande med det
maskineri som forser HDL-partiklarna med kolesterol, ndgot som aldrig tidigare visats.
Sammantaget, pekar dessa data pd att en vanlig variant av perilipin-2 dr skyddande mot dder-
forfettning.

I avhandlingens tva sista delarbeten visar vi att tvd autofagi-relaterade proteiner ar vanligt
forekommande i aderforfettning av halspulsddern (ocksa kallat plack) hos svenskar som ge-
nomgatt kirurgi for att ta bort dessa plack. Om plack spricker, kan detta innebdra att en
hjértinfarkt eller stroke uppstér. Deras risk for att spricka har namngivits termen stabilitet”.
Dessa autofagi-relaterade proteiner paverkar plackens stabilitet genom att reglera inflamma-

tion samt funktionen av muskelceller som finns i kirlviggen. Funktionen hos dessa muskel-



celler bidrar till kérlens elasticitet/styvhet. Mer inflammation och en styvare kirlvigg ar
karaktdrsdrag hos ett mindre stabilt plack vilket har hog risk for spricka.

Avhandlingen i sin helhet pekar pa att autofagi spelar en central roll i dderforfettning genom
att reglera bade sjélva inlagringen av kolesterol i kdrlviggen, inflammationens utstrickning
och till slut kirlviggens muskelcellers funktion. Sammantaget paverkar detta stabiliteten av
de sa kallade placken som &derforfettningen utgor, vilket paverkar en individs risk att raka ut
for en hjartinfarkt eller stroke. Behandling av aderforfettning med avseende pa autofagi, kan
komma att vara invecklad da tidsramen for behandlingen med storsta sannolikhet dr snidv och

maste definieras val.



POPULAR SCIENCE SUMMARY

Atherosclerosis is an inflammatory disease of blood vessels that is driven by the retention of
cholesterol within the vessel wall. Atherosclerosis is the underlying cause of most cardiovas-
cular diseases, including heart attack and stroke. Retained cholesterol evokes an inflammato-
ry response by white blood cells that are present within the vessel wall. Since cholesterol and
lipids (fats) are not soluble in water, they are carried by lipoproteins. Different lipoproteins
serve different functions. For example, cholesterol carried by low-density lipoprotein, also
referred to as the “bad cholesterol”, is delivered to peripheral tissues from the liver. This fa-
cilitates the retention of cholesterol at sites where it should not be, i.e. the vessel wall. Cho-
lesterol carried by high-density lipoprotein on the other hand, transports cholesterol in the
reverse direction, and reduces the risk of cholesterol retention in vessel walls. This is why it is
considered to be the “good cholesterol”.

Virtually any cell (our body’s smallest single unit making up all our organs) has the capabil-
ity of storing lipids and cholesterol. Cells store lipids in lipid droplets, and since lipids are not
soluble in water, these droplets are stabilised by proteins called perilipins. Perilipin-2 is such
a protein. Perilipin-2 plays a central role in stabilising the lipid droplet and is abundant in the
white blood cells, which contribute to the development of atherosclerosis. As lipid levels in-
crease in a cell, so do the levels of perilipin-2. This in turn regulates the mobilisation or usage
of lipids as an energy source for the cell.

Autophagy, Greek for self-eating, is yet another mechanism by which a cell can regulate its
fat metabolism, independent of perilipins.

Since perilipin-2 plays such a central role in lipid metabolism and is abundant in cells con-
tributing most to atherosclerosis, we hypothesised that a common structural variation in this
protein alters lipid metabolism, atherosclerosis and risk of cardiovascular disease. Individuals
were recruited to our study based on their structure of perilipin-2. We were able to show that
an altered structure of perilipin-2 brings about a reduced cholesterol accumulation in white
blood cells and increased autophagy coupled to cholesterol transport to high-density lipopro-
tein. In parallel, a European population at high risk of cardiovascular disease had their vessel
walls measured by ultrasound. The vessel walls’ thickness was reduced in those individuals
carrying the altered structure of perilipin-2, which indicates a lower risk of cardiovascular
disease. Further, we were able to demonstrate that autophagy is interconnected with the ma-
chinery that loads cholesterol onto the high-density lipoprotein particle in an intricate molecu-
lar fashion, something that has never been revealed before. Collectively, data suggest that a
structural variant in perilipin-2 and the increase in autophagy that it brings about, is protective
of atherosclerosis.

In the two subsequent studies of this thesis, two autophagy-related proteins were abundant in
atherosclerotic lesions (also called “plaques”) of human carotid arteries that were surgically
removed from patients suffering from atherosclerosis in the attempt to prevent cardiovascular
disease. A plaque may rupture if it grows too much. This will result in a heart attack or
stroke. A plaque’s inherent risk of rupturing has been termed “stability”. The presence of
these autophagy-related proteins modifies the stability of the plaques by altering the inflam-



matory responses and the function of the muscle cells of the vessel wall that contribute to its
elasticity/stiffness. More inflamed and stiffer vessel walls are characteristics of a more vul-
nerable or less stable plaque with high risk of rupturing.

The thesis in its entirety emphasises the role of autophagy in atherosclerosis by regulating the
retention of cholesterol, extent of inflammation within the vessel wall and the function of
muscle cells in the vessel wall. Taken together, all this influences the stability of the athero-
sclerotic plaques, which alters an individual’s risk of suffering a heart attack or stroke.
Treatment of atherosclerosis which targets autophagy may be challenging, since timely
treatment is essential and the optimal time-frame for treatment is in all likelihood slim and yet
to be defined.
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1 INTRODUCTION

1.1 CARDIOVASCULAR DISEASE

Cardiovascular disease (CVD), including conditions such as coronary artery disease (CAD),
peripheral vessel disease and stroke, remain the major causes of mortality and morbidity,
accounting for around one third of all deaths worldwide. The underlying cause of the vast

majority of CVD is atherosclerosis .

1.1.1 Risk factors

Risk factors of atherosclerosis and overt CVD include age, male sex, obesity, insulin re-
sistance (IR), type II diabetes (T2D), dyslipidaemia, smoking, socio-economic status, hyper-
tension and family history of CVD. Many risk factors are modifiable and/or preventable; for

example controlling IR, T2D, obesity and hyperlipidaemia reduce CVD risk .

1.1.2 Public health burden

Not only is CVD the most common cause of death worldwide, with over 17 million people
dying from CVD in 2015 , but additional estimates suggest that more than 1.9 billion adults
were overweight and more than 10% of the world’s adult population was obese in 2014 @
With these numbers in mind and a dramatic increase in IR and T2D, in concert with the in-
crease in incidence of other CVD risk factors, the incidence of CVD is expected to rise over
the next decade. This will have devastating consequences on public health.

1.1.3 Genetics

Although most CVD risk factors are modifiable, we all carry an intrinsic risk of developing
CVD within our genome. Genome-wide association studies (GWAS) have unravelled well
over 100 loci robustly associated with cardiovascular risk factors including T2D, IR, hyper-
lipidaemia as well as overt CVD ©). GWAS comprise a completely unbiased scan of the ge-
nome, aiming at identifying loci associated to essentially any trait. Traditionally, GWAS were
advantageous in identifying rather common loci associated with common diseases. A candi-
date gene approach is in complete contrast to GWAS in that a biological rationale supports
the study of a particular locus in relation to a trait; this kind of approach can also be applied
on common traits. The latter approach has been adopted in the two first constituent papers of
this thesis.



1.2 ATHEROSCLEROSIS

Atherosclerosis involves lesion formation in intermediate-size and large arteries, character-
ised by lipid retention in the vessel walls, inflammation, cell death and fibrosis @ A mala-
daptive immune response to modified lipids retained in the vessel wall engages innate as well
as adaptive immune mechanisms, initiating the formation of an atherosclerotic plaque “?. As
the disease progresses, flow-limiting stenosis may develop, clinically manifesting as angina
pectoris in the event that coronary arteries are afflicted (Figure 14). Modulation of the nature
of shear stress and its magnitude on the shoulder-region of the plaque may contribute to
plaque rupture, exposing pro-thrombotic material from the highly inflammatory core of the
plaque. The exposure of pro-thrombotic material initiates the activation of the coagulation
cascade, resulting in clot formation and potential complete occlusion of the vessel. If located
in a coronary artery, this gives rise to a myocardial infarction (MI) * . Many factors con-
tribute to the risk of plaque rupture. Generally large necrotic cores and thin smooth muscle
cell-rich fibrous caps are features of a prone-to-rupture or unstable plaque, also called thin-
cap fibroatheroma ¥, In some instances, the clot dislodges from the vessel wall, enters the
circulation as an embolus, adheres at another location and occludes a distant vessel. This is a
frequent mechanism of ischaemic stroke.

A plethora of immune and non-immune cells contribute to atherosclerosis development and
progression. The macrophage foam cell is perhaps the cell that traditionally has defined ath-
erosclerosis, and vascular smooth muscle cells are considered to modulate plaque stability.
This thesis will therefore focus on these two cell types in atherosclerosis and how autophagy
in these cells regulates their phenotype, atherosclerosis development and progression as well
as cardiovascular risk.

1.2.1 The macrophage foam cell in atherosclerosis

The subendothelial retention of lipoproteins, constituting the very initiation of atherosclerosis,
triggers a maladaptive immune response, resulting in a non-resolving inflammatory process
driving disease progression '), Lipoproteins are susceptible to modification (e.g. aggrega-
tion, acetylation or oxidation) when within the vessel wall, and this induces the overlying
endothelial cells to become activated. Once activated, the endothelium mediates the recruit-
ment of monocytes, which differentiate to macrophages in the subendothelial space '". With-
in the atherosclerotic plaque, macrophages are the predominating immune cells 2. A set of
receptors, called scavenger receptors, internalise the modified lipoproteins, rendering macro-
phages, which are turning into foam cells, massively engorged with lipids. Different scaven-
ger receptors may have different specificities for different kinds of low-density lipoprotein
(LDL) modifications. Scavenger receptors Al and All account for the vast majority of inter-
nalisation of acetylated LDL and have some specificity for extensively oxidised LDL (ox-
LDL) *'9 Contrasting, CD36 binds moderately oxLDL with high affinity, whereas it does
not bind with acetylated LDL or extensively oxidised LDL "* ' The LDL-receptor-
independent uptake of atherogenic lipoproteins is devastating since it is not subjected to nega-
tive feedback, allowing enormous amounts of lipids to enter the progressively growing popu-
lation of macrophage foam cells '¥. The substantial accumulation of cholesterol within the



macrophage foam cell has not only repercussions on cholesterol metabolism, but also on acti-
vation of innate immunity, cell death and efferocytosis 192 igure IB).

Despite macrophages in atherosclerosis being described as rather deleterious, not all macro-
phages may be. The secretion of cytokines accompanies the retention of monocytic cells in
the vessel wall and their subsequent differentiation to macrophages. The cytokine profile of
monocyte-derived macrophages within the vessel wall, in concert with their cholesterol ac-
cumulation and gene expression profile, may describe the macrophage’s role or subtype.
Crudely, and probably quite controversially, one can divide macrophages into two subtypes;
M1 (pro-inflammatory) and M2 (pro-resolving) macrophages. These two macrophage sub-
types localise to different areas of the atherosclerotic plaque, and display distinct roles in the
atherosclerotic process “*. M1 and M2 macrophages can be polarised in vitro and, studies on
these in vitro systems together with mouse models of atherosclerosis, have created a simpli-
fied dogma that M1 macrophages promote plaque inflammation and M2 macrophages re-
solve plaque inflammation. For example, removing the transcriptional programme resulting
in the differentiation of M2 macrophages, potentiates the differentiation of M1 macrophages
@4 Ultimately, forcing macrophages into the inflammatory M1 phenotypes exacerbates ath-
erosclerosis *> 2. Conversely, promoting an M2 phenotype results in a halted atherogenesis,
and it has been shown that M2 macrophages are enriched in regressing plaques of atheroscle-
rotic mice receiving an intense regimen of lipid-lowering drugs “”*®. Naturally, the assort-
ment of macrophage phenotypes in vivo is likely to be much more complex than this binary
model, not at least since macrophages encounter an array of microenvironment signals that
may both coerce a specific phenotype, but also sometimes oppose each other.

1.2.2 Smooth muscle cells in atherosclerosis

Vascular smooth muscle cells (VSMCs) are very plastic, and in part, their phenotype depends
on their origin. Lineage tracing studies have determined numerous developmental origins,
which give rise to VSMCs . Although lineage-specific VSMCs present distinct pheno-
types, there are still considerable phenotypic similarities ®”. Considering these phenotypic
differences between different VSMC lineages, care has to be taken when choosing an in vitro
VSMC model system, as well as translating results obtained in vitro to clinical observations.
Normal, arterial VSMCs express an array of smooth muscle cell (SMC) markers. Conven-
tionally, SMC myosin heavy-chain (MYH11), transgelin (TAGLN or SM22a), alpha-actin 2
(ACTA2) and smoothelin (SMTN) amongst others, have been considered markers of VSMCs.
In atherosclerosis, as well as in vitro, VSMCs lose their expression of these markers and ac-
quire capacities such as cytokine production, proliferation, migration and extracellular matrix
(ECM) protein secretion “*®. This phenomenon has recently been termed, phenotypic
switching of VSMCs. Phenotypic switching causes VSMC:s to lose their contractility and this
phenomenon has a significant impact on atherosclerosis development and plaque stability.
Loss of contractile genes has proven to increase atherosclerosis, inflammation and neointimal
macrophage infiltration in vivo 7.

Exposing VSMCs to cholesterol in vitro drives a phenotypic switch towards a macrophage-
like phenotype; this also induces an increased expression of macrophage markers and down-



regulation of contractile VSMC genes ©*. Shankman et al. showed that these events were
dependent on Kruppel-like factor 4 (KLF-4), which can be used as a marker for phenotypic
switching of VSMCs. Significantly, macrophage-like VSMCs are distinct from macrophages
in that macrophages are professional phagocytes, and thus have a decreased phagocytic activ-
ity as compared to macrophages ©?.

By modulating VSMC phenotypes, autophagy is an important determinant of atherosclerosis
progression. Transmission electron microscopy has generated ultrastructural data supporting
the notion that the autophagic process is engaged in dying VSMCs of both human and rabbit
atherosclerotic plaques “% *". Upon vascular injury, VSMCs modify their phenotype from a
contractile to a proliferative one, a feature stimulated by growth factors such as platelet-
derived growth factor (PDGF). By treating VSMCs with PDGF, one is able to induce autoph-
agy through what seems to be an AMPK- and mTOR-independent mechanism “?. Converse-
ly, inhibition of autophagy by 3-methyladenine (3MA) incapacitates phenotypic switching
“2) Recently, autophagy has been identified as a novel mechanism that protects against phos-
phate-induced VSMC calcification “3) Drugs activating autophagy have been shown to pro-
tect VSMCs from becoming calcified through a transforming growth factor beta 1 (TGF-$1)-

@9 as well as foam cell formation “?. Defective autophagy in VSMCs

dependent process
affects their contractile capacity by altering Ca*" homeostasis and mobilisation, resulting in
vascular reactivity and alterations of the contractile apparatus “®. Taken together, these data
demonstrate that modulation of autophagy plays a pivotal role in VSMC plasticity and pheno-

typic switching.
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Figure 1 A) Illustration of the progression from a healthy vessel (upper left panel) to a fatty streak (upper right panel) to an
atherosclerotic plaque (lower left panel) and finally plaque rupture (lower right panel). B) Exemplifies the events taking place
within the plaques leading to the uptake of modified lipids and the foam cell formation.

1.3 LIPID METABOLISM AND CARDIOVASCULAR DISEASE

Lipids such as triglycerides (TGs), cholesterol esters and fatty acids, are important sources of
energy. Lipids may be acquired and released into the circulation by dietary intake or endoge-
nous production (release from storages). In the circulation, lipids are carried by lipoproteins
which solubilise neutral lipids such as cholesterol esters and/or triglycerides so that they can
be transported to tissues “”. Lipids are transported to peripheral tissues by two lipoproteins;
chylomicrons in the case of dietary lipids or very low-density lipoprotein (VLDL) in the case
of endogenous mobilisation from the liver. When at their destination (e.g. adipose tissue or



skeletal muscles), the lipoproteins interact with lipoprotein lipase (LPL), which hydrolyses
triglycerides to free fatty acids (FAs) and glycerol for uptake by the tissue.

1.3.1 Lipoprotein metabolism

As the lipoprotein particles interact with LPL, neutral lipids are removed and the composition
of the lipoprotein particle changes. In the case of VLDL, this particle forms the highly ather-
ogenic LDL particle “**”. Modified LDL particles contribute to foam cell formation and the
build-up of an atherosclerotic plaque. In addition to the uptake of FAs and glycerol by pe-
ripheral tissue, the whole lipoprotein particle can also be taken up through, for example, the
LDL-receptor.

1.3.2 Intracellular lipid metabolism

Once in the cell, FAs may be re-esterified to form triglycerides, and stored within lipid drop-
lets. Alternatively, FAs may form acetyl coenzyme A through the process of beta-oxidation
and participate in the citric acid cycle, yielding large quantities of energy. From here the tri-
glyceride building blocks may end up in cholesterol production used for membrane for-
mation, for example. The modified lipoproteins subsequently end up in the endolysosomal
compartment, where cholesteryl esters of the lipoproteins are hydrolysed to free cholesterol
and fatty acids. Free cholesterol may undergo re-esterification by acetyl-coenzyme A acetyl-
transferase 1 (ACATI) to generate cytoplasmic cholesteryl esters, which creates the foamy
appearance of the macrophage foam cell ' *”. The liver-X-receptor (LXR) is a transcription
factor, which controls numerous genes involved in lipid and cholesterol metabolism. LXR-
dependent upregulation of cholesterol transporters such as ATP-binding cassette transporter
Al (ABCALI) and ATP-binding cassette transporter G1 (ABCG1) results in efflux of choles-
terol to extracellular acceptors. This is an important process through which macrophages ex-
pel their excess cholesterol ©". Mouse model studies have proposed that LXR-dependent
cholesterol efflux from macrophages is a major determinant of susceptibility to atherosclero-
sis ©* % Corroborating these data, the ability of plasma to accept cholesterol expelled from
macrophages via, for example, the ABCA1-mediated pathway, has been shown to be inverse-
ly associated with the incidence of cardiovascular events G This ability has been designated
the term “cholesterol efflux capacity”.

1.3.3 Implication for cardiovascular disease

As plasma levels of atherogenic lipoproteins rise, so does the risk of retention of these parti-
cles within the vessel wall, and consequently also the risk for atherosclerotic plaque build-up.
Deregulated intracellular lipid and cholesterol metabolism may result in the inability of mac-
rophage foam cells to expel their excessive cholesterol, ultimately initiating a vicious cycle
where excessive amounts of cholesterol are taken up, but none expelled. Finally, cholesterol
levels may rise to cytotoxic levels, exacerbating plaque formation by activation of maladap-
tive innate and adaptive immune responses as well as efferocytosis in macrophage foam cells
(1922 This gives rise to larger lipid-rich, inflamed necrotic cores, which aggravate the risk for

plaque rupture, resulting in a cardiovascular event.



1.4 AUTOPHAGY

Autophagy, Greek for self-eating, was first described in the 1960’s and is considered to be a
cell survival mechanism. Macroautophagy, henceforth simply referred to as autophagy, in-
volves the formation of a double membrane vesicle, sequestering parts of the cytoplasm
and/or damaged organelles for degradation through the later fusion with the lysosome ©”.

The process of autophagy has been implicated in numerous physiological as well as patho-
physiological processes. Traditionally, autophagy has been considered a cell survival mecha-
nism, protecting the cell from a plethora of stressful stimuli ©®°”. Under normal conditions,
autophagy may serve as means by which misfolded proteins or damaged organelles are dis-

(55)

posed of ®¥. Apart from being involved in the removal of intracellular bacteria ®>, autophagy

has been implicated in chronic inflammation, cancer, diabetes, cardiovascular disease, neuro-
degenerative diseases like Huntington’s and Parkinson’s disease, as well as ageing ®*°. It is
not surprising that over-stimulated autophagy may be overwhelming for the cell, and ulti-
mately result in cell death %%,

Early studies in yeast unravelled a complex autophagy molecular machinery involving modi-
fications and interactions of numerous proteins, which are homologues of products of human
autophagy-related genes (ATGs). Since it was first described, the molecular machinery of
autophagy has been well characterised and now we know that numerous ATGs are well con-
served from yeast to human and absolutely pivotal for functional autophagy ©* 7 (Figure
2). Ohsumi and colleagues worked extensively to map the autophagy machinery, which start-
ed in yeast. Ohsumi was awarded the Nobel Prize in 2016 for his great contributions to the
field. Despite almost 60 years of autophagy research, its pleotropic effects in cellular homeo-
stasis and metabolism, and by extension human disease, is still partly eluding us. Although
autophagy is being targeted in a number of conditions, timely treatment is essential and fre-

quently disregarded, potentially resulting in overlooked adverse effects.
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Figure 2. Visualisation of the autophagy process; from the initiation of the isolation membrane to the vesicle breakdown
taking place in the autolysosome.

1.4.1 Induction of autophagy

The autophagy process consists of five distinct stages, initiated by the nucleation of the au-
tophagosomal membrane, involving ATGs such as the unc-51-like kinase 1 (ULK1) and be-
clin 1 (BECNI1) complexes. The location of the ULK1 complex determines the source of the



autophagosomal membrane, which has been shown to be either the endoplasmatic reticulum
(ER), mitochondria or cell membrane ®.

The master gatekeeper of autophagy is the mammalian target of rapamycin (mTOR), which
constitutively inhibits the activation of the ULK1 complex. This is accomplished by the
phosphorylation of ULKI itself as well as ATGI3. Inhibition of mTOR, and thus
dephosphorylation and consequential disinhibition of the ULK1 complex, readily induces
vesicle nucleation and activation of the autophagic machinery “* ™. This can be accom-
plished by physiological cues such as nutrient deprivation or hypoxia, or pharmacologically
by, for example, everolimus or rapamycin " . Pharmacological inducers of autophagy
have lately been given immense attention since inducing autophagy may be beneficial in sev-
eral disease states. Metformin, a T2D drug, activates adenosine monophosphate-activated
protein kinase (AMPK), which results in activating phosphorylation of early autophagy relat-
ed genes ULK1 and BECNI. Similarly, statins are also known to activate AMPK and thereby

induce autophagy .

1.4.2 Molecular machinery of autophagy

Autophagosomal elongation and later maturation are governed by two parallel ubiquitin-like
conjugation systems; the ATG5-12-16L1 system and the ATG7-ATG3 system. Ultimately,
the complexing of these ATGs and consequential activation, results in the conjugation of
phosphatidylethanolamine (PE) to the cytosolic form of the microtubule-associated protein 1
light chain 3 (LC3), converting LC3-I to its membrane-bound counterpart LC3-II T LC3-11
indicates autophagosome formation, and has therefore become the mainstream readout in
investigation of autophagy. LC3-I is first cleaved by ATG4 then, ATG7 and ATG3 (which
are E1- and E2-like enzymes, respectively), which accomplishes PE conjugation to LC3 by
their sequential activation ">"?. Concurrently, ATG7 and ATG10 together mediate the cova-
lent binding of ATGS5 to ATG12. The recently formed ATG5-12 complex subsequently com-
plexes with ATG16L1, and the ATGS5-12-16L1 complex dimerises and can act as an E3-like
ligase to conjugate PE to LC3 77,

Conveniently, PE-conjugation of LC3 (also referred to as lipidation of LC3) causes a down-
ward shift of LC3-II from LC3-I on sodium dodecyl sulphate-polyacrylamide gel electropho-
resis (SDS-PAGE), giving rise to a double-band at approximately 18 and 16 kDa 7. There-
fore, western blotting for LC3-II has emerged as one of the golden standards for measuring
autophagic activity. However, once the autophagosome has fused with the lysosome, LC3-II
will be recycled into the cytoplasm and reconverted into LC3-1. Effectively, both increases
and decreases of LC3-II may be indicative of high autophagic activity. Therefore, blockers of
autophagosome-lysosome fusion (e.g. chloroquine and bafilomycin A1) are efficient in inhib-
iting the LC3-recycling and results in an accumulation of LC3-II during high autophagic ac-
tivity, allowing for a semi-quantitative determination of autophagic activity using western
blot. The LC3-II expression, relative to an endogenous control, with or without the supple-
mentation of a blocker of autophagosome-lysosome fusion is used to measure autophagic flux
(7-80) LC3-II may form a complex with sequestosome 1 (SQSTM1 or p62), which is attached



to the target selected for degradation. Levels of p62 are, in contrast to LC3-II levels, inversely
correlated with autophagic activity .

1.4.3 Variations of autophagy

There are several variations of autophagy, including microautophagy, chaperone-mediated
autophagy, lipophagy, mitophagy and xenophagy. This section will cover the variations rele-
vant to the research project.

1.4.3.1 Lipophagy

Lipophagy is a form of macroautophagy where the autophagosome specifically degrades lipid
droplets in order to mobilise lipids from intracellular storages. Under basal conditions, au-
tophagy sequesters both lipid droplets and other organelles targeted for destruction via the
lysosome. When cells are subjected to an acute increase in intracellular lipids, rates of lipoph-
agy are increased to buffer the increased lipid load and thereby maintain cellular homeostasis
(68 81 However, when lipid levels are chronically increased, levels of both lipophagy and
autophagy may be reduced ®". Several lines of evidence disseminate the importance of au-
tophagy in lipid homeostasis. Case in point, mice deficient of proteins essential for liver au-
tophagy show massive hepatic steatosis @D In macrophage foam cells, cholesterol efflux is

facilitated by autophagy and is believed to protect from oxidative stress 2.

1.4.3.2 Chaperone-mediated autophagy

Chaperone-mediated autophagy (CMA) is a process by which cargo is directly delivered to
the lysosome for degradation. It is distinct from microautophagy, where invaginations of the
lysosome facilitate the transfer of cargo into the lysosome, in that only proteins can be target-
ed and the target needs a chaperone for its delivery to the lysosome.

CMA targets contain a pentapeptide motif that is biochemically similar to Lys-Phe-Glu-Arg-
Gln (frequently referred to as the KFERQ-motif) ®*, which can be recognised by heat shock
protein family A 70 (Hsc70), a constitutive cytosolic chaperone delivering target proteins to
the lysosomal surface ®¥. Once the substrate-chaperone complex is situated at the lysosomal
surface, it interacts with the receptor lysosome-associated membrane protein type 2A
(LAMP2A), which multimerises and forms a translocation complex carrying out the transfer
of the substrate into the lumen of the lysosome ®**.

CMA has been assigned functions in cellular quality control, cellular energy metabolism,
neuronal survival, kidney growth, antigen presentation and transcription regulation. Failure of
CMA in any of these processes may give rise to increased susceptibility to stress, neuro-
degeneration, kidney disorders and altered immunity ©®*°". CMA is also a means by which
the cell is able to mobilise lipids. Several proteins involved in lipid metabolism are CMA
targets, including perilipin-2 (PLIN2) and perilipin-3 (PLIN3) “?. Most significant for the
purpose of this thesis is the targeting of the lipid droplet-associated proteins PLIN2 and
PLIN3. Kaushik and Cuervo elegantly showed that PLIN2 and PLIN3 are not only CMA
targets but also that their degradation through CMA allows cytosolic lipases (e.g. ATGL)

access to the lipid droplet, thereby facilitating lipolysis > **.



1.4.4 Autophagy in atherosclerosis

As previously stated, autophagy has been shown to serve as an important regulator of intra-
cellular lipid homeostasis and macrophage reverse cholesterol transport. Thus, autophagy is a
crucial regulator of atherosclerosis initiation — foam cell formation > °®. In VSMCs, autoph-
agy regulates phenotypic switching, and may thereby modulate plaque stability. While basal
levels of autophagy may be atheroprotective, based on in vitro experiments by Ouimet and
colleagues, excessive autophagy activity may contribute to a more unstable atherosclerotic
plaque phenotype, by promoting autophagic smooth muscle cell death ©©. In advanced dis-
ease, disruption of macrophage autophagy by ablating Atg5 has been shown to enhance apop-
tosis, efferocytosis and oxidative stress in advanced atherosclerotic lesions ©”. Despite at-
tempts to link deregulated autophagy to disease initiation and progression in vitro and in vivo,
the role of autophagy in human clinical atherosclerosis and CVD remains poorly studied.
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2 HYPOTHESES

21 GENERAL HYPOTHESES

PLIN2 is a central player in lipid metabolism. A functional single nucleotide polymorphism
(SNP) in PLIN2 has repercussions on plasma lipid profiles, which may modulate foam cell
formation and cardiovascular risk. Further, since PLIN2 is located in the crossroads between
autophagy and lipid metabolism, the functional SNP in PLIN2 may also alter autophagy ac-
tivity. This may be the means by which this SNP mediates its effects on foam cell formation.

Despite efforts in trying to delineate the involvement of autophagy in atherosclerosis, data on
the contribution of autophagy on human atherosclerosis development, progression and plaque
stability are largely lacking. This thesis expands on existing data from animal studies and in
vitro systems, which have implied that autophagy plays a significant role in foam cell for-

mation, cholesterol metabolism and murine atherosclerosis.

2.2 SPECIFIC HYPOTHESES

2.2.1 Ser251Pro polymorphism in PLIN2 influences plasma lipid profiles and
intracellular lipid metabolism

We hypothesised that the Ser251Pro polymorphism alters plasma lipid profiles and intracellu-

lar lipid metabolism.

2.2.2 Subclinical atherosclerosis and its progression are modulated by
PLIN2 through a feed-forward loop between LXR and autophagy

In light of previous data generated by our laboratory, we hypothesised that the Ser251Pro

polymorphism modulates macrophage foam cell formation and cardiovascular risk measured

as carotid intima-media thickness.
2.2.3 ATG16L1 Expression in Carotid Atherosclerotic Plaques is Associated
with Plaque Vulnerability

We hypothesised that ATG16L1 is expressed in atherosclerotic plaques, affects plaque vul-
nerability and is upregulated during foam cell formation.

2.2.4 Repression of MAP1LC3A during atherosclerosis progression plays an
important role in regulating vascular smooth muscle cell phenotype

We hypothesised that the autophagy-related Microtubule Associated Protein 1 Light Chain 3
Alpha/Beta (MAP1LC3A4/B) are expressed in advanced atherosclerotic plaques and modulates
plaque vulnerability and subsequent symptom development.
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3 METHODOLOGY

3.1 SEQUENCE ANALYSIS AND STRUCTURE MODELLING

The U.S. National Center for Biotechnology Information (NCBI; Bethesda, MD, USA) En-
trez Protein database was used to download the PLIN2 protein sequence (NP_00112.2/ GI:
34577059) and the ClustalW programme “® was adopted for sequence comparison across
several species. The 3D-JigSaw software was utilised to predict the secondary protein struc-
ture of PLIN2 ®. Protein images were created using the University of California-San Fran-
cisco (UCSF) Chimera package from the Resource for Biocomputing, Visualization, and In-

formatics 1%,

3.2 PRIMARY HUMAN MONOCYTE-DERIVED MACROPHAGES

Human monocytes were isolated either from fresh buffy coats of healthy donors (Blood
Transfusion Centre, Karolinska University Hospital, Stockholm, Sweden), as described
elsewhere, or from whole blood from healthy donors recruited by genotype "°". Where the
Ser251Pro polymorphism in PLIN2 has been studied, monocytes were isolated from whole
blood from healthy donors using a high-purity protocol outlined below. Briefly, human
peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats by endotoxin-
free Ficoll density gradient centrifugation. Monocytes were then separated from lympho-
cytes by high-density hyper-osmotic Percoll density gradient centrifugation and separated
from platelets and dead cells on a low-density iso-osomotic Percoll density gradient.

The high-purity protocol separates monocytes from PBMCs using a magnetic beads isola-
tion kit from Miltenyi Biotec, which was carried out according to the manufacturer’s in-
structions (Pan Monocyte Isolation Kit, #130-096-537). Monocytes were cultured in RPMI-
1640 medium (Invitrogen) supplemented with penicillin-streptomycin, L-glutamine (2 mM)
and 5% FBS (Invitrogen). The cells were seeded in 6-well plates at a density of 0.75x10°
cells/mL and differentiated to macrophages in the presence of human recombinant macro-

phage colony stimulating factor (M-CSF, 100 ng/mL; PeproTech) over seven days.

3.3 LIPID DROPLET AND FOAM CELL FORMATION IN HUMAN MONOCYTE-
DERIVED MACROPHAGES

Lipid droplet (LD) formation was induced in monocyte-derived macrophages by treating
them with oleic acid (OA; 360 uM), complexed to fatty acid-free bovine serum albumin
(BSA). Total RNA was isolated from mononuclear cells and reversely transcribed according
to standard protocols.

In Paper II, where the beneficial effect of the Ser251Pro SNP in PLIN2 was studied, human
primary monocyte-derived macrophages were treated with oxLDL for 24 hours at 25
pg/mL. Untreated monocyte-derived macrophages served as controls. For autophagy flux
assessment, the cells were pre-treated for 2 hours with bafilomycin A1 (100 nM, Sigma-
Aldrich).

In Paper III, where the role of ATGI16L1 in atherosclerosis was studied, human primary
macrophages were treated with oxLLDL at different time points (2, 6, 24 or 48 hours) and at
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different doses (25, 50 or 100 pg/mL). Monocyte-derived macrophages treated with native
LDL (indicated as oxLDL dose 0), served as controls. For autophagy flux assessment, cells
were pre-treated for 2 hours with bafilomycin A1 (100 nM, Sigma-Aldrich).

3.4 LIPID DROPLET STAINING AND SUBSEQUENT LIPID QUANTIFICATION

In order to quantify intracellular LDs in monocyte-derived macrophages, cells were plated on
coverslips, and after treatment fixed with formaldehyde (4%) in phosphate-buffered saline
(PBS), and stained with oil red O (OrO) and haematoxylin as described previously ©”. Sam-
ples were scanned using the BioPix software (Biopix AB) "°?. Intracellular TG content was

quantified by high-performance liquid chromatography as described previously %,

3.5 PLIN2 CONSTRUCTS AND STABLY TRANSFECTED HEK293 CELLS

To generate human PLIN2 expression constructs, PLIN2 cDNA was amplified from the im-
age clone IOH5658 (Invitrogen), using primers containing the Nhel and Notl restriction en-
zyme sites. The fragments were then inserted into pcDNA3.1" plasmid using the Nhel and
Notl restriction sites, generating a pPLIN2 containing plasmid. A fragment containing the
IVS and IRES (IIRES) from pIREShyg (Clontech) was amplified and inserted into the
pPLIN2-TIIRES plasmid using Notl and Xbal restriction sites. Finally, EGFP from pEGFP-1
(Clontech) was amplified and inserted into the pPLIN2-IIRES plasmid using Agel and Xbal
restriction enzyme, generating a pPLIN2-IIRES-EGFP construct.

The QuickChange II site-directed mutagenesis kit (Stratagene) was used to introduce the
r$35568725 missense polymorphism (Ser251Pro) in the pPLIN2-IIRES-EGFP construct. Mu-
tated PLIN2 clones (Pro251) were identified and verified by sequencing and inserted directly
into the pPLIN2-IIRES-EGFP vector using Nhel and Notl restriction sites, replacing the
wild-type PLIN? fragment. Fragments generated by PCR (Pfu Ultra; Stratagene) were all
subcloned into pCR2.1 TOPO and positive clones were then identified by restriction analysis
and verified by sequencing.

Human embryonic kidney 293 (HEK293) cells were stably transfected with human pPLIN2-
IIRES-EGFP constructs containing the wild-type sequence (Ser251) or the minor allele se-
quence (Pro251) lipofectamine 2000 (Invitrogen). Stable clones were selected by culturing
transfected cells with 600 pg/mL Geneticin (Invitrogen) and then maintained in 50 pg/mL
Geneticin. Clones were selected by assessing PLIN2 protein expression (Western blot).
HEK293 cells were cultured in DMEM (Invitrogen) supplemented with 10% iron-
supplemented calf serum (JRH Biosciences), 100 U/mL penicillin G sodium, and 100 mg/mL
streptomycin sulfate (Invitrogen). Where indicated, the cell culture medium was supplement-
ed with 360 uM OA (Nu-Check Prep) complexed to fatty acid-free BSA.

All manipulations of autophagy and/or LXR activity followed an OA treatment, which was
used to stabilise PLIN2.

3.6 IMMUNOCYTOCHEMISTRY AND CONFOCAL MICROSCOPY

PLIN2 immunocytochemistry was performed on monocyte-derived macrophages using a
polyclonal antibody (Fitzgerald Industries) and Alexa488 goat anti-guinea pig secondary an-
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tibody (Invitrogen), as described previously ‘®”. In stably transfected HEK293 cells, immu-
nofluorescent detection of LDs and LD-associated proteins were performed, as described
previously (105) Briefly, cells were treated in 4-chamber culture slides, and then fixed in for-
maldehyde 4% for 30 mins. To detect the LDs, the cells were stained with BODIPY493/503
(Invitrogen) for 10 mins. To assess the localisation of PLIN2 and PLIN3, immunocytochem-
istry against PLIN2 was carried out and/or PLIN3 using a mouse monoclonal antibody
against PLIN3 (Progen Biotechnik) at 1:500. The secondary antibodies were AlexaFluor 594
goat antiguinea pig and AlexaFluor 488 donkey anti-mouse, respectively (Invitrogen).

Images were obtained using a Leica SP5 confocal laser microscope using an %63 oil, 1.4 NA
objective lens (Leica Microsystems). Each image consisted of a Z stack of 10 to 20 optical
slices taken at 0.2 um intervals. The 2D images of flattened Z stacks consisted of 10 repre-
sentative cells per condition in four separate experiments. The number, diameter, and area of
the LDs were obtained using the spot detection module of the Imaris 7.2 software (Bitplane
AGQG). The threshold of LD detection was automatically adjusted according to the absolute
intensity of green pixels with an estimated LD diameter of 0.5 um (average obtained by man-
ual measurement on 10 cells) but including only spots larger than 0.2 um. For colocalisation
studies, undeconvoluted datasets were analysed using the Imaris software (Bitplane). The
statistics modules in the Imaris colocalisation package determined quantitative data of colo-
calisation events. Intensities were given as the sum of all colocalised voxels. For quantitative

analysis of colocalisation, Pearson’s correlation coefficients were calculated.

3.7 TRANSMISSION ELECTRON MICROSCOPY

Cells were fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) at room tempera-
ture for 30 mins and then overnight at 4°C. Samples were postfixed in 2% osmium tetroxide
in 0.1 M imidazole buffer (pH 7.4), at 4°C for 2 hours, dehydrated in ethanol followed by
acetone, and embedded in LX-112 (Ladd). Ultrathin sections (40-50 nm) were cut with a
Leica EM UC 6. Sections were contrasted with uranyl acetate followed by lead citrate and
examined in a Tecnai 12 Spirit Bio TWIN transmission electron microscope (Fei Co.) at 100
kV. Digital images were acquired with a Veleta camera (Olympus). Images and LD size were
analysed using Image].

3.8 ISOLATION OF LIPID DROPLETS AND SILVER STAINING OF LIPID
DROPLET-ASSOCIATED PROTEINS
LDs were isolated from cultured cells as described previously '°°. OA-treated HEK293 cells
were scraped into cold PBS, pelleted, and resuspended in Hepes buffer. Samples were incu-
bated on ice for 10 mins and homogenised with a 25-gauge needle. Cell homogenates were
overlaid with Hepes buffer and centrifuged at 26,000 g for 30 mins. To remove contaminat-
ing cytosolic proteins, floating LDs were adjusted to 25% sucrose and transferred on top of a
60% sucrose cushion. The samples were overlaid with Hepes buffer and centrifuged again at
26,000 g for 30 mins. To further concentrate the samples, LDs were collected from the top
and spun at maximum speed for 20 mins. The amount of protein in each sample was deter-
mined with the Bradford Protein Assay (Bio-Rad, Hercules). An equivalent amount of LD
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protein from each cell line was separated on 11% polyacrylamide gels and visualised by sil-
ver staining.

3.9 LIPOLYSIS

Lipolysis experiments were performed as described previously ‘", Briefly, cells were plated
in 24-well dishes and loaded with 360 uM OA complexed to fatty acid-free BSA for 24 hours
to promote LD formation. *H-OA (0.4 pCi/well) was added as a tracer. Under these loading
conditions, OA is stored intracellularily as TGs in LDs, and OA released upon lipolytic stim-
ulation originates from these storages '*Y. Cells were washed in PBS containing 4% BSA,
followed by incubation with an efflux medium during the lipolysis experiment. Efflux medi-
um contained 2.5 pM of the acyl-CoA synthethase inhibitor Triacsin C (Sigma-Aldrich), to
prevent re-esterification of OA, and 1% fatty acid-free BSA, as acceptor. The efflux of *H-

OA into medium was determined by scintillation counting.

3.10 THE STOCKHOLM COHORT AND OXFORD BIOBANK

The Stockholm cohort consists of 620 healthy 50-year-old males who are permanent residents
of Stockholm and of northern European descent. This study was designed to carry out de-
tailed studies on biochemical and molecular genetic mechanisms of atherosclerosis. Men
identical in age were selected in order to minimise confounding factors. The participants have
been extensively characterised with respect to anthropometric, metabolic and inflammatory
parameters. The study population has previously been described . The Oxford Biobank
consists of an age-stratified random sample of men and women (aged 30 to 50 years) from
Oxfordshire, UK. All participants are of white European origin. Data collection has been de-
scribed in detail previously !'?. DNA was isolated and stored, and written informed consents
were obtained to allow subsequent genotyping for SNPs of potential importance. Physical,
demographic and laboratory data, as well as DNA were available for 1,493 individuals. Both
studies were approved by local ethics committees.

3.11 GENOTYPING

The rs35568725 (Ser251Pro) SNP was genotyped by TagMan technology (Life Technolo-
gies) using tailored primers and probes. In all cohorts adopted, the genotype frequency ad-
hered to Hardy-Weinberg equilibrium.

3.12 ISOLATION AND MODIFICATION OF HUMAN LIPOPOTEINS

Lipoproteins used for foam cell formation as well as for cholesterol efflux assays were isolat-
ed from human plasma obtained from the blood bank at Karolinska University Hospital
through sequential ultracentrifugation. Briefly, plasma was ultracentrifuged for >22 hours at
40,000 rpm at 4°C. The uppermost phase containing chylomicrons and VLDL was discarded
and the intermediate phase containing LDL and high-density lipoprotein (HDL) was collect-
ed. The density of the LDL/HDL phase was adjusted to 1.063 g/mL with potassium bromide
(Sigma-Aldrich) and ultracentrifuged as described. The upper phase containing LDL was
collected and desalted using a PD-10 column (GE Healthcare). LDL was oxidised overnight
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at 37°C using 20 uM copper sulphate [CuSO4] (Merck). The reaction was stopped using 1
mM ethylenediaminetetraacetic acid (EDTA) (Sigma-Aldrich). The lower phase containing
HDL was desalted, sterile-filtered and diluted to a concentration of 2 mg/mL. The resulting
diluted HDL was used as an acceptor in cholesterol efflux assays. For cholesterol efflux as-
says, copper-oxLDL was labelled with 2 pCi/ml *H-cholesterol (Perkin Elmer) at 4°C over-
night, followed by removal of excess *H-cholesterol using a PD-10 column.

3.13 QUANTIFICATION OF INTRACELLULAR CHOLESTEROL AND LIPIDS

Upon termination of the foam cell formation assays, intracellular cholesterol and triglycerides
were measured. Assessment of intracellular cholesterol and triglycerides were carried out at
the Division of Clinical Chemistry, Karolinska University Hospital, Huddinge. Briefly, lipids
were extracted from the cell monolayers by adding 2 mL hexane/isopropanol (3:2, v/v). Tri-
glyceride (TG), total cholesterol (TC) and unesterified cholesterol (UC) mass was measured
by enzymatic assays using commercially available kits (Roche Diagnostics GmbH, Mann-
heim and Wako Chemicals, Richmond, VA). The difference between TC and UC content was
used to estimate cholesteryl esters. Data were corrected for cell protein content, measured
according to the Lowry method in cell monolayers digested with 1 M NaOH. 27-
hydroxycholesterol (27HC) levels were quantified by isotope dilution mass spectrometry, as

previously described 'V,

3.14 CHOLESTEROL EFFLUX ASSAY

Monocyte-derived macrophages were loaded with *H-oxLDL in Roswell Park Memorial In-
stitute (RPMI) medium (+1% foetal bovine serum (FBS) and 0.1% Penicillin-Streptomycin
(PEST)) for 24 hours. Cells were equilibrated for 2 hours with 0.5 mL RPMI medium with or
without the supplementation of 100 nM bafilomycin Al in order to inhibit autophagy. After
equilibration, cells were washed with 3x1 mL PBS (Invitrogen, Stockholm, Sweden) and 0.3
mL RPMI medium containing the indicated acceptors (20 pug/mL apoA-1 (Sigma), 100
pg/mL HDL from human plasma or 1% total human serum) were added. RPMI medium
alone was used as a control. Efflux was measured over 24 hours, after which, the medium
was collected from each well and cells were lysed with 300 uL of 0.1 M NaOH. The collect-
ed medium and cell lysates were centrifuged at 12,000 rpm for 10 mins and cholesterol efflux
was determined by scintillation counting. Protein measurements of the cell lysates were con-
ducted according to the micro Bradford assay in accordance with the manufacturer’s instruc-
tions (BioRad). Cholesterol efflux data were adjusted to the total protein content in lysates
and presented as % efflux/pg protein.

3.15 INFLAMMATORY PHENOTYPING OF MACROPHAGE FOAM CELLS

Cytokine production profiles were used to assess the inflammatory response of macrophage
foam cells. Cell culture medium samples were taken at 0, 6 and 24 hours after oxLDL stimu-
lation. Multiplexed enzyme-linked immunosorbent assay (ELISA) was carried out on centri-
fuged medium supernatants using the Meso-Scale Discovery (MSD) Human Proinflammato-
ry Panel 1 kit, simultaneously quantifying 10 cytokines (INF-y, IL-1p, IL-2, IL-4, IL-6, IL-8,
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IL-10, IL-12p70, IL-13 and TNF-a). All diluents, calibrators and samples were prepared and

the assays were carried out according to the manufacturers’ instructions.

3.16 THE IMPROVE STUDY

The IMPROVE study (acronym for “carotid Intima-Media Thickness and IMT-Progression
as predictors of Vascular Events in a high risk European population™) is a pan-European
prospective, multicentre, longitudinal, observational study, designed to investigate whether
cross-sectional carotid intima-media thickness (cIMT) and cIMT progression are useful
predictors of cardiovascular events in European individuals at high risk of cardiovascular
disease. The study comprises 3,711 participants, aged between 54 and 79 years, 48% of
whom are male. Inclusion criteria were: presentation of >3 classical cardiovascular risk
factors and absence of previous cardiovascular events at enrolment.

All participants underwent state-of-the-art high-resolution carotid ultrasound examinations
following an established protocol applied at all recruitment centres. In brief, the mean and
maximum cIMT measurements of the common carotid at the first centimeter proximal to
the bifurcation, the common carotid (excluding the first centimeter proximal to the bifurca-
tion), the carotid bifurcation and the internal carotid arteries were taken. cIMT is defined as
the thickness of the vessel wall, measured from the leading edge of the lumen-intima inter-
face to the leading edge of the media-adventitia interface. Segment-specific cIMT meas-
urements were used to generate composite cIMT measurements; mean cIMT, maximum
cIMT and the mean of the maximum cIMT “'* ¥ The entire cohort was genotyped for
Ser251Pro single nucleotide polymorphism in PLIN2 using TagMan probes as previously
described "'?. Local research ethics review boards approved the study.

3.17 HUMAN ATHEROSCLEROTIC TISSUES

Human carotid atherosclerotic plaques from the Carotid Plaque Imaging Project (CPIP) were
studied. This biobank includes carotid plaques from patients undergoing carotid endarterec-
tomies at Skane University Hospital, Malmo. Indications for surgery were: plaques associated
with ipsilateral symptoms (transient ischaemic attack, stroke or amaurosis fugax) and stenosis
higher than 70%, or plaques not associated with symptoms but with stenosis larger than 80%.
Each patient gave informed consent to participate in the study. Assessment of cytokines, ma-
trix metalloproteinases (MMPs) and cleaved caspase-3 was performed by ELISA in plaque
homogenates, as previously described *'?.

mRNA and protein expression levels were studied in 127 human carotid atherosclerotic
plaques, including 10 control non-atherosclerotic iliac arteries, from the Biobank of Karolin-
ska Endarterectomies (BiKE) study. Briefly, patients undergoing surgery for symptomatic or
asymptomatic, high-grade (>50% NASCET) carotid stenosis at the Department of Vascular
Surgery, Karolinska University Hospital, Stockholm, Sweden, were consecutively enrolled in
the study and clinical data recorded upon admission. The BiKE study cohort demographics,
details of sample collection, processing and microarray analyses have previously been de-
scribed in detail ' The microarray dataset is available from Gene Expression Omnibus

(GSE21545). In addition, atherosclerotic plaques from 18 patients (matched for male gender,
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age and statin medication) were analysed using LC-MS/MS, as previously described !'”.

As indicated, five human mammary arteries free from atherosclerosis were obtained from the
Advanced Study of Aortic Pathology (ASAP), which served as controls. This biobank in-
cludes tissue biopsies from patients undergoing elective open-heart surgery for aortic valve
disease and/or ascending aortic disease, as previously described *'¥.

Local research ethics review boards approved the studies.

3.18 IMMUNOHISTOCHEMISTRY

After surgical removal, carotid plaques were snap-frozen, and 1 mm fragments from the most
stenotic region were obtained for histology. Transversal cryosections from the fragments
were stained for plaque histology markers a-SMC-actin, CD68, OrO and Masson trichrome,
as described previously "' and total core area was estimated. When ATG16L1 expression
was studied, primary antibody polyclonal rabbit anti-ATG16L1 (PM040, MBL International
Corporation) and secondary antibody polyclonal goat anti-rabbit (DakoCytomation, Glostrup,
Denmark) were used. Areas of the different stainings in the plaque (% area) were quantified
blindly using Biopix iQ 2.1.8 after scanning with ScanScope Console Version 8.2 (LRI imag-
ing AB) and photographed with Aperio image scope v.8.0.

3.19 IMMUNO-ELECTRON MICROSCOPY

After surgical removal, another | mm fragment of the carotid plaque (the most stenotic re-
gion), consecutive to the one used for histology, was fixed in 3% paraformaldehyde in 0.1
M phosphate buffer, washed and then infiltrated into 2.3 M sucrose and finally frozen in
liquid nitrogen. Ultra-thin sectioning was achieved at -95°C and placed on carbon-
reinforced formvar-coated, 50 mesh nickel grids. Grids were placed on droplets of 2% BSA
(Sigma Fraction V) and 2% fish gelatin (GE Healthcare) in PBS to block non-specific bind-
ing. Sections were incubated in a humidified chamber at room temperature overnight with
anti-ATG16L1 antibody in PBS containing 0.1% BSA and 0.1% gelatin. The sections were
washed in phosphate buffer and bound antibodies were detected with protein A coated with
10 nm gold particles (Biocell). Sections were washed and fixed in 2% glutaraldehyde and
contrasted with 0.05% uranyl acetate. They were subsequently embedded in 1% methyl-
cellulose and examined in a Tecnai 10 microscope (FEI) at 100 kV. Digital images were
taken with a Veleta camera (Soft Imaging System GmbH).

3.20 MOUSE MODEL OF ATHEROSCLEROTIC PLAQUE VULNERABILITY

mRNA expression analyses were performed in an atherosclerotic carotid plaque rupture
model in ApoE-deficient mice involving carotid ligation with a contralateral, unligated con-
trol carotid artery of the same mouse "**. Briefly, the model consists of an partial ligation
(Vicryl 5-0 suture) of the common right carotid artery (just below the bifurcation) retained
for four weeks. This triggers intimal hyperplasia and non-ruptured carotid atherosclerotic
lesions. To provoke rupture of the developed plaque, a conical polyethylene cuff is placed
proximal to the ligation site for four days “*" and roughly 50% of the 16-week old male
mice display features of ruptured plaques. These features include endothelial cracks or ul-
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cers, and/or intraluminal thrombus formation. After sacrifice, injured and control carotid
arteries were embedded for sectioning (Cryomount, Histolab AB) and snap-frozen. The
Stockholm Regional Board for Experimental Animal Ethics approved all experiments, and

institutional guidelines for animal welfare were followed.

3.21 RAT MODEL OF INTIMAL HYPERPLASIA

Carotid artery balloon injury was performed on male Sprague-Dawley rats, as previously

described 17> 122

and mRNA expression analysis of Maplic3a was performed. The left
carotid artery was dissected under isoflurane inhalation anaesthesia, an arteriotomy was
performed in the external carotid artery and the common carotid artery de-endothelialised
three times with a 2F Fogarty catheter. Animals were euthanised with isoflurane directly
after injury (0 hours) or after 2 hours, 20 hours, 2 days, 5 days, 2 weeks, 6 weeks and 12
weeks after vascular injury. Both the left (injured) and right (uninjured) common carotid
arteries were harvested (n=6 or n=7 animals at each time point). Arteries were washed with
PBS to remove blood. Eight additional animals were sacrificed and uninjured carotid arter-
ies used as controls (intact). Arteries were divided in a proximal segment used for RNA
isolation and a distal segment used for histology. Total RNA was used for microarray anal-
ysis with Affymetrix GeneTitan Rat Gene ST v1.1 arrays. Experiments were performed
according to the protocols approved by the Stockholm Regional Board for Experimental

Animal Ethics, and institutional guidelines for animal welfare were followed.

3.22 IMMUNOFLUORESCENCE

In human and mouse atherosclerotic plaques, double immunofluorescent staining was used
to identify which cell type contributes most to plaque expression of autophagy-related pro-
teins. In short, acetone-fixed cryosections were incubated at 4°C overnight with rabbit pri-
mary antibodies against the autophagy-related protein of interest, followed by AlexaFluor
594 labelled goat anti-rabbit secondary antibodies for one hour. Subsequently, the sections
were incubated overnight with mouse antibodies directed towards cell-specific markers
followed by incubation with AlexaFluor 488 labelled goat anti-mouse antibodies, with sub-
sequent staining of the nuclei using 4',6-diamidino-2-phenylindole (DAPI). Images were
obtained using a Zeiss LSM700 confocal laser microscope using %20, 0.8 NA objective
lens (for the atherosclerotic lesions). Each image consisted of a Z-stack of 15 to 20 optical
slices taken at 0.3 um intervals.

Fluorescent triple-staining was used to identify which cell types contribute to MAP1LC3A
expression in human atherosclerotic plaques. Four per cent paraformaldehyde-fixed cryo-
sections were incubated with a monoclonal rabbit anti-LC3A antibody at 4°C overnight,
followed by incubation with an anti-rabbit AlexaFluor 647 secondary antibody (Jackson
Immunoresearch) for 90 mins. Subsequently, sections were incubated overnight with anti-
bodies against relevant cell-specific markers, followed by an incubation with anti-mouse
AlexaFluor 488 secondary antibodies (Jackson Immunoresearch). Staining of the nuclei
was accomplished using Hoechst. Fluorescence microscope images were acquired on a

Vslide scanning microscope (MetaSystems) using %20 objectives and appropriate filter sets.

20



Whole microscope slides were scanned at x2.5 and tissues were detected based on the
Hoechst signal. After generating a position map, all tissue-covered areas were scanned us-
ing x20 primary objective. Individual field of view images were stitched to generate a large
3-channel fluorescence image of the entire specimen with microscopic resolution. Images
obtained with Vslide were analysed using Metaviewer (MetaSystems). The specificity of
antibodies was confirmed by incubation with isotype-matched control IgG.

3.23 IN VITRO MODEL OF HUMAN VASCULAR SMOOTH MUSCLE CELL
TRANS-DIFFERENTIATION

Primary human carotid artery VSMCs from Cell applications were cultured in SMC medi-
um (SmGM-2, Lonza), supplemented with PEST, L-glutamine (2 mM) and 5% FBS. Hu-
man carotid VSMCs (40,000/well) were plated one day before transfection on 6-well plates
and transfected at 40% confluence for 48 hours. They were then treated for either 48 or 72
hours with copper-oxidised oxLDL or with a calcification medium (CaPi), as previously
described '** (2.7 mM CaCl,, 2.5 mM inorganic phosphate in M199 medium). Transfec-
tions were performed using Lipofectamine RNAIMAX (Invitrogen) according to the manu-
facturer’s instructions. Scrambled- (Lot#: ASO107MI), human MAPILC3A4- (ref: s39157)
and MAPI1LC3B-small interfering RNAs (ref: s224886) were purchased from Ambion. All
experiments were carried out in cell passages 3-6 and in biological as well as technical trip-
licates. To assess autophagy flux, cells were pre-treated for 2 hours with bafilomycin Al
(100 nM, Sigma-Aldrich), as indicated.

3.24 GENE EXPRESSION ANALYSES AND WESTERN BLOTTING

Total RNA and whole cell lysates were isolated from all the ex vivo/in vitro systems de-
scribed above. In short RNA was reversely transcribed using Superscript III (Life Technol-
ogies). Polymerase chain reaction (PCR) amplification was carried out in 96-well plates in
a 7,900 HT real-time PCR system (Applied Biosystems), using TagMan® Universal PCR
Master Mix (Applied Biosystems) and indicated TagMan® Gene Expression Assays (Table
I). Results were normalised to the housekeeping gene RPLPO. The relative amount of tar-

get gene mRNA was calculated by 274

method and presented as a fold change.

A full transcriptome was obtained from the foam cell formation assay, where individuals
were recruited by their genotype in the PLIN2 locus, using the Affymetrix Clariom D plat-
form. Data were RMA-normalised, annotated to the Genome Reference Consortium human
genome build hg19 and differential expression was assessed using non-parametric statistics.
Co-expression analyses were carried out using Spearman rank correlation coefficients. All
downstream analyses were carried out using Bioconductor in R.

Protein expression was analysed by immunoblotting on whole cell lysates. Briefly, cell ly-
sates were migrated on either a 10% or 14% SDS polyacrylamide gel. Proteins were elec-
trophoretically transferred to polyvinylidene difluoride (PVDF) membranes, after which
immunoblotting was carried out with indicated antibodies (7able 1).
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3.25 STATISTICS

As a general rule, non-parametric statistics have been applied to the data unless an assump-
tion of normality of data has been fulfilled. In practice, this means that in vitro data has been
analysed using Mann-Whitney tests and correlations displayed are Spearman rank correlation
coefficients.

For genetic associations, the Plink software was utilised, and standard parametric linear mod-
els were generated assuming a recessive model.

P<0.05 was considered significant, and multiple testing adjustments were applied as appro-

priate.
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Key Resources

Product Company Identifier Application  Paper/s
Anti-PLIN2 antibody Fitzgerald Industries AP002 IF, WB I
PLIN2 assay Life Technologies Hs00605340_m1 TagMan qPCR I-11
RPLPO assay Life Technologies Hs99999902_m1 TaqMan qPCR -1V
Anti-B-actin antibody Sigma-Aldrich A1978 WB -1V
Anti-PLIN2 antibody Origene Cat# TA307596 WB II
P e Cmi gByiOte‘:hn‘)l' Cat# 5¢-28359 WB 1
ABCAL assay Life Technologies Hs01059137_ml1 TaqMan qPCR II
CYP27A1 assay Life Technologies Hs0107992 gl TagMan qPCR II
SREBPIc assay Life Technologies Hs00231674_ml TaqMan qPCR II
Anti-LC3 antibody Novus Biologicals Cat# NB100-2220 IF, WB II-IvV
Anti-ATG16L1 antibody MBéolrr;t:rr;?;fnal PMO040 IHC, IF, WB 1
Anti-CD68 antibody DAKO Clone KP1 IF I
Ami'“'sfocd';“i“ anti- DAKO Clone 1A4 IF 11
Anti-CD31 antibody DAKO Clone JC70A IF I
Anti-F4/80 antibody Abcam Clone BMS8 IF I
Anti":lzxﬁ,‘izisl’ase'3 Cell Signalling 9961 IF |
Anti-caspase-3 antibody Cell Signalling 9962 WB I
LB A RN oo o eloa A11029 IF I
ary antibody
AlexaFluor 394 second- 1 2o 1o hnologies A11012 IF I
ary antibody
Anti-ATG16L1 antibody MBéoﬁfrr;?gﬁnal M150-5 IF 1L
Anti'MAgégym A anti- Abcam Ab62720 IHC, IF, WB v
MAPILC3A assay Life Technologies Hs01076567 g1 TagMan qPCR v
MAPI1LC3B assay Life Technologies Hs00797944 sl TaqMan qPCR v
MYOCD assay Life Technologies Hs00538071_ml TagMan qPCR v
ACTA2 assay Life Technologies Hs00426835_g1 TaqMan qPCR v
BMP2 assay Life Technologies Hs00154192 m1 TagMan qPCR v
GABARAPL2 assay Life Technologies Hs00371854 ml TagMan qPCR v
GABARAP assay Life Technologies Hs00925899 gl TagMan qPCR v
GABARAPLI assay Life Technologies Hs00740588 mH TagMan qPCR v

Table 1. List of key resources, producers, their identifiers and application. The “Paper/s” column indicates the papers in which the

specific products were used. IF=Immunofluorescence; IHC=Immunohistochemistry; WB=Western blotting.
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4 RESULTS

41 PAPERI

Selection of a PLIN2 protein variant for functional studies of the C-terminal 4-helix bun-
dle

Since little is known about the physiological functions of the C-terminal 4-helix bundle do-
main of PLIN2, we sought to identify protein variants of PLIN2 that could be used as tools to
delineate the function of this region. The NCBI database for single nucleotide polymorphisms
was adopted to find amino acid variants in the region spanning amino acid 220437 of
PLIN2. Fourteen protein missense variants in this particular region of PLIN2 have been re-
ported to the SNP database. The Ser251Pro (rs35568725) was the only variant that had a re-
ported minor allele frequency >1% and heterozygosity >5%, which allows for recruitment by
genotype through the reasonable high likelihood of finding carriers of the SNP. A Ser251Pro
variant is also particularly interesting due to the substitution of serine to proline, which has a
significant impact on the chemical properties of the peptide likely to ultimately influence the
secondary structure of the protein. The serine residue at position 251 in PLIN2 is conserved
across species. The PLIN2 secondary structure was created using 3D-JigSaw for modelling
and the UCSF Chimera package for visualisation. The substitution of serine to proline at 251
was predicted to disrupt the a-helix between Thr225 and Phe262 located in a 4-a-helix bun-
dle. The proline residue ablates the potential of making hydrogen bonds with the previous
turn of the helices, resulting in conformational changes to the secondary structure. As helical
distortions imposed by proline residues in a peptide chain may impact the biological function
of the protein, we hypothesised that the Ser251Pro polymorphism would bring about an al-

tered intracellular lipid metabolism.

The Pro251 protein variant of PLIN2 alters lipid accumulation, lipolysis and lipid droplet
composition

Individuals carrying either variant of PLIN2 were recruited by genotype and primary mono-
cyte-derived macrophages were prepared from whole blood. Monocyte-derived macrophages
were treated with OA and lipid accumulation was assessed. Cells carrying the minor Pro251
displayed approximately a 1.75-fold increase in intracellular lipids as measured by OrO
(p=0.026). This was replicated in an in vitro system of stably transfected HEK293 cells,
where intracellular lipids increased more than 1.5-fold in cells carrying Pro251 (p=0.04). Al-
so, TG content as assessed by high-performance liquid chromatography was increased 2-fold
in cells carrying Pro251 (p=0.002). Significantly, no changes to PLIN2 protein or PLIN2
mRNA were detected.

PLIN? influences plasma lipid profiles

The Pro251 PLIN2 protein variant, which was shown to modulate lipid accumulation and
lipolysis, was hypothesised to influence plasma lipid and lipoprotein profiles. Since plasma
lipid and lipoprotein levels are largely dependent on intracellular lipid handling in hepato-
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cytes, in concert with previous data herein, there was a clear rationale for studying the effects
of Ser251Pro on plasma lipid profiles in humans. By using a dominant model, we show that
the minor Pro251 allele was significantly associated with decreased plasma VLDL-TG con-
centration in a well-characterised Stockholm cohort (p=0.029). Since the number of homozy-
gotes for the minor Pro251 allele is very low, a joint analysis combining the Stockholm co-
hort and the Oxford Biobank was performed. In the combined analysis, the minor Pro251
allele was significantly associated with decreased plasma TG concentration, using both a re-
cessive (p=0.042) and a dominant (p=0.012) model. VLDL-TG concentrations were not used
since this data was unavailable in the Oxford Biobank.
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4.2 PAPERII

PLIN2 modulates atherosclerosis development and plaque growth

Since we previously reported that the Pro251 variant of PLIN2 is associated with a more
profitable plasma lipid profile and PLIN2 is involved in the initiation of murine atherosclero-
sis, we investigated whether PLIN2 modulates the development of human atherosclerosis. A
high-risk pan-European population, which had undergone high-resolution ultrasonographic
investigation of intima-media thickness (IMT) in carotid arteries, was genotyped for the
PLIN2 Ser251Pro polymorphism. The minor Pro251 allele was associated with decreased
carotid IMT at several levels of the carotid artery tree compared to the major Ser251 variant.
Most prominently, the Pro251 protein variant was associated with decreased carotid IMT
measured as Mean-Max IMT at baseline (f=-0.013, p=0.03) and internal carotid (f=-0.012,
p=0.003), as well as mean carotid artery IMT (B=-0.0046, p=0.05) after 30 months of follow-
up compared to the major Ser251 allele (7able 2).

cIMT at Baseline
CHR SNP BiEDe Wi Gl MAF BETA SE P
allele allele phenotype
9 1$35568725 Ser251 Pro251 Mean Max IMT 0.05 00128 0006 003
cIMT at 30 months Progression
CHR SNP BiEne Wi Gl MAF BETA SE P
allele allele phenotype
9 1$35568725 Ser251 Pro251 Mean IMT 0.05 00046 0002 005
9 1$35568725 Ser251 Pro251 Mean ICA IMT 0.05 0012 0004  0.003

Table 2. rs35568725 is significantly associated with decreased cIMT both at baseline and at 30 months follow-up in a high-risk pan-European
population. CHR=Chromosome; cIMT=carotid Intima-Media Thickness; MAF=Minor Allele Frequency; SE=Standard Error; SNP=Single
Nucleotide Polymorphism.

Carotid atherosclerotic plaques originating from patients undergoing carotid endarterectomy
were analysed for inflammatory and plaque stability markers. Carriers of the minor Pro251
variant of PLIN2 presented with a reduced plaque core area and plaque CD68 content. These
data, in combination with the findings on cIMT, suggest that the 251Pro variant of PLIN2
indeed possesses properties protective of atherosclerosis development and plaque progres-

sion.

PLIN2 modulates cholesterol accumulation, autophagy-dependent choelstero efflux activa-
tion, and LXR activation with repercussions on macrophage immunophenotypes

Since PLIN2 has a central role in lipid accumulation, we used the functional Ser251Pro pro-
tein variant in PLIN2 as a genetic tool to investigate whether this protein influences foam cell
formation. Monocyte-derived macrophages carrying either variant of PLIN2 were treated

26



with oxLDL in order to induce foam cell formation. The PLIN2 protein variant did not alter
the expression levels of PLIN? itself. However, cells carrying the Pro251 variant displayed
reduced levels of cholesteryl esters, increased 270H-cholesterol (27HC) and augmented au-
tophagy activity. Additionally, Pro251 PLIN2 increased the cholesterol efflux from oxL.DL-
loaded monocyte-derived macrophages (Figure 3). This was coupled with an increase in
SREBPIc expression and significant co-expression between PLIN2 and cholesterol transport-
ers, all of which are LXR target genes. Human primary monocyte-derived macrophage foam
cells carrying the rare Pro251 protein variant of PLIN2 produced increased levels of the anti-
inflammatory cytokine IL-10 and autophagy blockade ablated the differences between the
two protein variants. Furthermore, Pro251 PLIN2 mRNA was co-expressed with mRNA of
IL10 and ARGI, which are markers of M2-macrophages. Contrasting, Ser251 PLIN2 mRNA
was co-expressed with M1-macrophage markers /L6 and CD68. Data suggest that PLIN2,
through LXR and autophagy activation, may modulate the immunophenotype of macrophage
foam cells by coercing an M2-phenotype. PLIN2 is located in the crossroads of lipid metabo-
lism and autophagy and when investigating the influence of autophagy on these parameters,
we demonstrated that autophagy modulates the response pertaining to these measurements.
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Figure 3. Human primary monocyte-derived macrophages were treated with oxXLDL over 24 hours. PLIN2 expression (A-B), cholesterol
accumulation and efflux (C-E), as well as autophagy activity was assessed (F). Cells carrying the Pro251 variant of PLIN2 display with
decreased cholesteryl esters, increased 27HC, cholesterol efflux and autophagy activity, while PLIN2 expression remains constant.
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Since the Pro251 variant in PLIN2 was displayed with higher levels of 27HC, a modulation
of LXR target gene expression, and increased cholesterol efflux, we thus sought to investigate
whether the two variants of PLIN2 presented with different levels of LXR activation. Stably
transfected HEK293 cells carrying either variant of PLIN2 were transfected with a luciferase
reporter construct carrying an LXR responsive element. The LXR agonist GW3965 induced
SREBPIc mRNA expression and the response was 2-fold higher in cells carrying Pro251
compared to non-carriers. Conversely, LXR antagonism resulted in negligible mRNA levels
of SREBPIc. Bafilomycin A1l supplementation blunted the response of GW3965 in cells car-
rying the Pro251 variant from a 6-fold increase to a 5-fold increase, suggesting that autopha-
gy modulates stimulation of LXR. Firefly luciferase activity was readily induced by treatment
with GW3695. Analogous to previous data herein, the response was significantly higher in
cells carrying the Pro251 protein variant. Interestingly, early autophagy blockade using 3MA
resulted in a dampened response to the LXR agonist. Notably, HEK-cells carrying the Pro-
variant of PLIN2 presented with roughly 3-fold increase in autophagy flux when LXR is acti-
vated, an effect ablated by LXR antagonism (Figure 4).
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Figure 4. LXR activity as well as SREBP]c expression (A-B) is increased in HEK293 cells carrying the Pro251 variant of PLIN2. As sug-
gested by previous data presented herein, the increased LXR activity was responsible for the observed augmentation in autophagy activity in
cells carrying Pro251 (C-D).
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LXR and autophagy are interconnected in a feed-forward loop through 27HC

LXR stimulation in human primary monocyte-derived macrophages induced the mRNA ex-
pression of both SREBPIc and ABCAI, whereas LXR inhibition significantly reduced their
expression. Concurrent with the upregulation of LXR target genes, LXR stimulation resulted
in a significant increase in autophagy activity whereas LXR inhibition resulted in blunted
autophagy activity. Since we were able to substantially increase 27HC through foam cell
formation and autophagy activation, and autophagy inhibition resulted in blunted levels of
27HC, we demonstrate that autophagy-driven LXR activity observed in human primary mon-
ocyte-derived macrophages was carried by 27HC (Figure 5).
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Figure 5. LXR stimulation results in increased expression of LXR target genes and autophagy activity in human primary monocyte-derived
macrophages (A-C). Conversely, autophagy stimulation results in increased expression of LXR target genes and production of the endoge-
nous LXR ligand 27HC (D-F). LXR and autophagy are responsible for their reciprocal activation, which is mediated by the endogenous LXR
ligand 27HC (G-I).
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4.3 PAPERIII

ATGI16L1 expression patterns in human carotid plaques

Immunohistochemistry micrographs of human carotid plaques were studied and ATG16L1
expression localised to the shoulder region, areas surrounding the necrotic core and rup-
tured healed regions of the vessel. ATG16L1 expression was homogenous across the entire
vessel of mammary control arteries, which were free from atherosclerosis (Figure 6). While
the amount of ATG16L1 staining was similar between symptomatic and asymptomatic pa-
tients, ATG16L1 correlated positively with the amount of lipids retained within the vessel
wall (OrO staining, r=0.341, p<0.005) and the phagocytic marker CD68 (r=0.455,
p<0.005). Furthermore, ATG16L1 expression correlated with pro-inflammatory cytokines
IL-6 (r=0.280, p<0.005) and MCP-1 (r=0.296, p<0.005), and extracellular matrix degrading
proteins.

Immunofluorescent staining and immunogold electron microscopy were adapted in order to
determine which cell types are main contributors to ATG16L1 expression in human carotid
atherosclerotic plaques. Immunofluorescence staining suggested that CD68+ and CD31+
cells were main contributors of ATG16L1 expression. VSMCs and mast cells contributed
to ATGI6L1 expression to a lesser extent. Electron microscopy corroborated immunofluo-
rescence data in that macrophages and endothelial cells (CD68- and CD31-positive cells,
respectively) were sources of ATG16L1 expression. However, in contrast to immunofluo-
rescence, some ATGI6L1 expression was indeed observed in VSMCs containing lipid
droplets.

Figure 6
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Figure 6. Micrograph of ATG16L1 expression (brown) in frozen sections of human carotid atherosclerotic plaques of different phenotypes
and a human mammary artery free of atherosclerosis.
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ATGI16LI1 in plaque vulnerability

Analysis of Atgl6l1 expression and localisation was performed in a carotid plaque vulnera-
bility model in atherosclerotic ApoE-deficient mice using immunofluorescence. The model
consists of an incomplete ligation of the common right carotid artery (just below the bifurca-
tion). Kept as such for four weeks, triggering intimal hyperplasia and non-ruptured carotid
atherosclerotic lesions. Placing a conical polyethylene cuff proximal to the ligation site for
four days provoked plaque rupture. Approximately 50% of mice develop atherosclerotic
plaques with similar phenotype of a ruptured plaque upon cuff placement. Significant intimal
hyperplasia was observed in carotid arteries developing stable fibrous caps upon cuff place-
ment, which coincided with an increase in Atgl6ll expression. Atgl6ll did not colocalise
with the macrophage marker F4/80 in stable and vulnerable fibrous caps. Contrasting,
Atgl6l11 showed a colocalisation with a-SMC-actin in stable fibrous caps only, (Figure 7).

Figure 7
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Figure 7. Double immunofluorescence labelling of Atgl6ll (red) and o-SMC-actin (green) demonstrate a colocalisation between Atgl6ll
and a-SMC-actin in murine stable fibrous caps. Nuclei are stained with DAPI (blue).
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ATGI16L1 and apoptosis activation

Since the stability and degradation of ATG16L1 can be regulated by apoptosis through
caspase-3 activation, we sought to explore the relationship between ATG16L1 and caspase-3
in human atherosclerosis and foam cell formation. Plaque ATG16L1 expression showed a
significant correlation with plaque cleaved caspase-3 content (r=0.186, p=0.026). Macro-
phage foam cell formation was induced in primary human monocyte-derived macrophages,
and protein expression levels of ATG16L1, caspase-3 and MAP1LC3 were determined using
western blotting. ATG16L1 expression increased over time (up to 48 hours of treatment) in
macrophage foam cells receiving a low dose of oxLDL (25 pg/mL). This was concurrent with
a gradual increase in autophagy activity. However, macrophage foam cells receiving a high
dose of oxLDL (100 pg/mL) showed both decreased ATG16L1 levels as well as impaired
autophagy. No changes to caspase-3 levels were detected in whole cell protein extracts and
cleaved caspase-3 was undetected using western blotting. However, treating primary human
monocyte-derived macrophages with a high dose (100 pg/mL) of oxLDL for 48 hours result-
ed in an increased caspase-3 cleavage, which was dependent on autophagy, as bafilomycin
Al blockade reduced caspase-3 cleavage. ATG16L1 did not colocalise with cleaved caspase-
3.

4.4 PAPERIV

MAPILC3A expression is downregulated in mouse and human atherosclerosis and relates
to clinical atherosclerosis manifestation

A time-dependent analysis of Mapllc3a and Mapllc3b mRNA expression in aortas of ather-
osclerotic mice was carried out. The atherosclerotic mouse model is known to trigger lipid
accumulation to induce atherosclerosis. A sustained MapIlc3a, but not Map1lc3b, downregu-
lation was observed in atherosclerotic mouse aortas over time, starting from 30 weeks.
Mapllc3a downregulation coincided with a drastic growth of the lesion area, assessed by
Sudan IV staining at 30 to 40 weeks of age. In a carotid ligation and cuff-placement mouse
model, re-enacting a plaque rupture significantly reduced Mapllc3a mRNA expression.

In the BiKE biobank, MAPILC34 mRNA was significantly downregulated in human carotid
plaques compared to healthy iliac control arteries. Symptomatic compared to asymptomatic
patients displayed lower MAPILC3A4 expression. Mass-spectrometry quantification of
MAPILC3A protein levels substantiated the finding that MAPILC3A4 is reduced in athero-
sclerosis, particularly symptomatic atherosclerosis. In addition, a delayed time-to-surgery,
which has been suggested to reflect plaque phenotype and vulnerability, displayed with a
trend towards lower MAPILC34 mRNA expression.

By adopting the CPIP biobank, we determined that MAP1LC3A was abundantly expressed in
the shoulder regions and areas surrounding the necrotic core of human carotid atherosclerotic
plaques. Further, plaque MAP1LC3A content was lower in patients who had suffered postop-
erative cardiovascular events either one or two years after endarterectomy compared to pa-

tients who did not present with any postoperative cardiovascular events.
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Collectively, data support the notion that MAPILC3A is involved in atherosclerosis progres-
sion and plaque rupture.

Vascular smooth muscle cells are main contributors of MAPILC3A expression in human

and murine atherosclerosis

Co-expression analyses in BiKE revealed that MAPILC34 was co-expressed with VSMC
markers MYHI1, SMTN, ACTA2 and TAGLN, both on the mRNA and protein level. Concur-
rently, MAPILC3A showed negative or no co-expression with inflammatory markers. Addi-
tionally, by using triple-staining of human atherosclerotic plaques from the CPIP cohort, we
demonstrate that MAP1LC3A was abundantly expressed in VSMCs expressing a-SMC-actin,
cells expressing the phagocytic marker CD68 and VSMC:s positive for CD68.

Since VSMCs are important contributors of MAPLC3A expression, and intimal hyperplasia in
response to vascular injury predominantly involves VSMC migration and proliferation, we
sought to investigate the role of MAPILC3A in intimal hyperplasia. In a balloon-injury in-
duced rat carotid intimal hyperplasia model, Mapllc3a mRNA expression showed a gradual,
transient downregulation from 20 hours up until 5 days post-injury as compared to the ex-
pression pre-injury. Moreover, uninjured control carotids displayed a stable, unchanged
Mapllc3a expression over time. Taken together, data support a role for MAPILC3A in
VSMC biology.

MAPILC3 depletion results in defective autophagy and deregulation of phenotypic switch
in human carotid vascular smooth muscle cells

By adopting a VSMC in vitro system we investigated whether depletion of MAPILC3A4 was
associated with defective autophagy. We first tested that no compensatory mechanisms were
observed between MAPILC3A and MAPILC3B. Silencing MAPILC34 mRNA expression
levels by more than 90% did not upregulate MAPILC3B mRNA expression and vice versa.
Significantly, simultaneous silencing of MAPILC3A4 and MAPILC3B did not affect GABA-
RAP, GABARAPLI, GABARAPL?2; three autophagy genes known to be functionally redun-
dant to MAP1LC3. However, MAPILC3A4 and MAPILC3B depletion abolished MAP1LC3
protein levels. Importantly, after bafilomycin supplementation, silencing of MAPILC3A and
MAPILC3B led to an increase in p62, an autophagy marker known to accumulate when au-
tophagy is defective.

In order to re-enact the heterogeneity of the VSMC phenotypes present in an advanced ather-
osclerotic plaque and coerce a switch of VSMCs from a contractile to a synthetic phenotype,
we adopted a human carotid VSMC trans-differentiation model in vitro. Human VSMCs
were treated with either oxLDL or CaPi. Concurrent silencing of MAPI1LC3A allowed us to
determine the role of MAPILC3A4 in VSMC phenotypic switching. Consistent with previous
findings, coercing a phenotypic switch induced autophagy flux, as seen by MAP1LC3 lipida-
tion after bafilomycin supplementation. Silencing of MAPILC34 mRNA resulted in a transi-
ent compensatory upregulation of ACTA2 and MYOCD mRNA expression at 48 hours com-
pared to scramble in untreated controls. Forcing VSMCs towards a synthetic phenotype sub-
stantiated this effect, at least in part. Bone Morphogenetic Protein 2 (BMP2), a marker for
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VSMC calcification "*¥, was analysed in calcified VSMCs and MAPILC3A depletion re-
duced its mRNA expression 0.5-fold.

Data demonstrate that MAPILC3A4 impacts VSMCs’ phenotypic switch, which likely owes to
the destabilising properties of low MAPILC3A expression in human and murine atheroscle-

rotic lesions.
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5 DISCUSSION

5.1 MODULATION OF PLAQUE VULNERABILITY BY AUTOPHAGY

As previously stated large necrotic cores, inflammation and thin fibrous caps are features of a
prone-to-rupture or unstable atherosclerotic plaque *®. Cholesterol efflux halts atherosclero-
sis by decelerating macrophage foam cell formation, a feature modulated by autophagy > °>
%) If foam cell formation is interrupted, so is the build-up of the necrotic core of the athero-
sclerotic plaque; this results in a plaque, which is less likely to rupture. Paper II clearly
demonstrates that modulation of autophagy has repercussions on early macrophage foam cell
formation, the inflammatory state of foam cells and cholesterol efflux, which has ramifica-
tions on both human subclinical atherosclerosis as well as plaque progression.

Atherosclerosis is an inflammatory disease of intermediate-size; large arteries and more in-
flamed atherosclerotic plaques are at higher risk of rupturing " ®. Paper III reveals that
ATGI16L1 expression within the atherosclerotic lesion correlates with inflammatory markers.
Concurrently, ATGI6L1 expression is increased in monocyte-derived macrophages treated
with extended and high-dose exposures of oxLDL, which is paralleled with an augmentation
of autophagy activity.

The fibrous cap of an atherosclerotic lesion consists primarily of VSMCs; the thickness of the
fibrous cap and thus also VSMC function, regulates plaque stability “’>?. Paper IV assigns
MAPILC34 a role in VSMC trans-differentiation, where low MAPILC3A expression is a
feature of phenotypic switch. Further, low MAPILC3A4 was observed in advanced sympto-
matic, human atherosclerosis.

Collectively, Papers II-IV clearly demonstrate that modulation of autophagy has multi-
faceted repercussions on subclinical atherosclerosis, plaque stability and overt CVD, where
the mechanism by which autophagy exerts its effects spans cholesterol metabolism, inflam-
mation and regulation of VSMC phenotypes.

5.2 AUTOPHAGY AS A THERAPEUTIC LEVERAGE IN ATHEROSCLEROSIS

The means by which autophagy is induced, and the temporal relationship between foam cell
formation, initiation of atherosclerosis and autophagy induction, is in all likelihood absolutely
essential. Several lines of data support the notion that autophagy induction may be protective
of atherogenesis >*”. There is limited data available on autophagy in the multi-faceted dis-
ease that is atherosclerosis, particularly human atherosclerosis, providing a rationale for fur-
ther studying its role in disease progression and overt CVD. Due to the pleotropic roles of
autophagy in cell biology, it is not surprising that the means by which autophagy exerts its
beneficial effects spans over regulating cholesterol metabolism ®* °> %9 VSMC trans-

4349 and inflammation. Autophagy also has significant repercussions on dis-

differentiation
ease development in animals ©” '*. Significantly, repercussions on disease development
have only been adequately studied in murine models of atherosclerosis. Data herein extends
the existing animal data in that human material has been used throughout the four studies. We
demonstrate that a protein variant in PL/N2 modulates not only cardiovascular risk, but also

plasma lipid levels, which is a risk factor for CVD. The mechanism by which this protein
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variant acts is likely through initiating a feed-forward loop between LXR and autophagy.
Significantly, LXR-directed therapeutics have consistently failed in early drug development
stages due to off-target effects. Data form Paper II suggest that targeting autophagy allows us
to simultaneously affect LXR activity, which has known roles in promoting cholesterol efflux
and halting atherosclerosis development. Although autophagy has documented roles in cho-
lesterol efflux, this is a significant advancement in unravelling the intricate relationships be-
tween autophagy and key players in atherosclerosis development.

ATGI16L1 has been implicated in the pathogenesis of Crohn’s disease, where it regulates
inflammatory responses. Indeed, a functional SNP in ATG16L1 shed light on the role au-
tophagy plays in regulating inflammation in inflammatory bowel disease ** %" In Paper III
we hypothesised that ATGI6L1 also contributes to atherosclerosis development, since in-
flammation is such a significant element in both development and progression of human ath-
erosclerotic disease. Although Paper III is primarily descriptive in nature, we demonstrate
that ATG16L1 is expressed in inflammatory and stability-regulating regions of the athero-
sclerotic plaque, and that inflammatory cells are main contributors of ATG16L1 expression.
ATGI16L1 expression patterns are also deregulated in vulnerable carotid plaques as shown by
a murine model of plaque rupture. Further, both autophagy flux and ATG16L1 expression
increased by long and high-dose exposure of monocyte-derived macrophages to oxLDL. The
fact that ATG16L1 increases with autophagy activity, and that ATG16L1 is correlated with a
more inflamed plaque phenotype, further strengthens the notion that timely and tightly regu-
lated activation of autophagy is essential when evaluating whether the response is atheropro-
tection or actually deleterious.

In Paper IV we assign autophagy-related protein MAPILC3A4 a role in regulating VSMC
trans-differentiation, where VSMCs are main contributors to MAPILC3A expression. In ath-
erosclerotic plaques, MAPILC3A expression is reduced compared to normal vessels. Fur-
thermore, MAPILC3A is downregulated in symptomatic atherosclerosis, whilst gene expres-
sion profiles of VSMC signature genes and phenotypic regulators as well as autophagy activi-
ty are deregulated when MAPILC3A4 is repressed. VSMCs switching into a synthetic pheno-
type orchestrate the modulation of plaque stability, where MAPILC3A4 may exert a protec-

(128-129) " \which in turn owes to the destabilising

tive effect in preserving VSMC function
properties of low MAPILC3A expression in human atherosclerotic lesions.

Collectively, data from Papers II-1V clearly demonstrate the pleotropic effects of autophagy
in the pathogenesis of atherosclerosis, which undoubtedly hinders the effective targeting of
autophagy in atherosclerosis treatment. Autophagy stimulation may be beneficial in early
macrophage foam cell formation, but when reaching a tipping point it may very well be
detrimental in more advanced, clinical atherosclerosis. Once one develops advanced le-
sions, maintaining autophagy activity in VSMCs specifically, may be beneficial in stabilis-
ing the atherosclerotic plaque and thus preventing overt CVD. Therefore, where, when and

how to target autophagy remain pivotal questions before therapeutics can be introduced.
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5.3 GENETIC APPROACHES TO UNRAVELLING THE BIOLOGY BEHIND
COMPLEX DISEASES

Above all, Paper II has elucidated an intricate biological relationship between autophagy and
cholesterol metabolism, where LXR and autophagy are responsible for their reciprocal activa-
tion through 27HC. However, Paper II also illustrates how one can leverage on genetic asso-
ciations to conduct translational research finding novel disease pathways.

The genetic era, with its immense efforts in doing whole-genome scans to identify genetic
risk factors for common traits must be viewed as rather disappointing. Risk stratification us-
ing genetics does not substantially improve risk stratification using classical risk factors.
What has been provided is an enormous amount of information, implying genes that may be

involved in the pathological pathway of CVD ©

. By fully leveraging the advancement of
laboratory techniques, including the development of CRISPR-Cas9 as well as the recruit-by-
genotype approach described herein, it is now time to harvest the seeds that large GWAS

have planted.

5.4 LIMITATIONS AND METHODOLOGICAL CONSIDERATIONS

At first glance, the results from Papers I and II may seem contradictory. In Paper I we de-
scribe how monocyte-derived macrophages carrying the Pro251 variant of PLIN2? increase
their lipid content, whereas in Paper II we show that cholesteryl esters are significantly re-
duced. In the first study, neutral lipid content was measured using confocal microscopy and
OrO or BODIPY 493/503 staining. Neutral lipids include TGs, non-esterified fatty acids as
well as cholesteryl esters. In contrast to Paper I, we measured cholesteryl esters in Paper 11
only — thus these results are not necessarily contradictory. Further, OA treatment is quite dis-
tinct from oxLDL challenge, where one contains one specific non-esterified fatty acid where-
as the other contains both TGs and cholesterol. This clear distinction in experimental set-ups
may influence the data obtained.

One of the major limitations of Paper Il is that the study is primarily observational. Numer-
ous correlations between ATG16L1 and inflammatory markers were observed in human ath-
erosclerotic plaques. Correlation is far distinct from causation, and by including mechanistic
studies similar to the ones in Paper IV, we could have further delineated the role of
ATGI16L1 on the inflammatory state of, for example, macrophages and how autophagy is
involved in modulating inflammation in macrophage foam cells.

Limitations pertaining to Paper IV include the rather inexplicitly defined temporal window
and combination of provocations leading to the heterogeneity of VSMC phenotypes present
in an advanced atherosclerotic plaque. Moreover, the general decrease in MAPILC3A and
MAPILC3B expression in the in vitro system raises the question whether cell viability is
compromised over time; why viability, proliferation and migration assays should be adopt-
ed to further characterise the VSMC phenotype.
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