
From THE DEPARTMENT OF MICROBIOLOGY, TUMOR AND 

CELL BIOLOGY 

Karolinska Institutet, Stockholm, Sweden 

THE ATYPICAL RHO GTPASE RHOD AND 
ITS ROLE IN CELLULAR DYNAMICS 

Magdalena Blom 

 

Stockholm 2017 
 



 

All previously published papers were reproduced with permission from the publisher. 

Published by Karolinska Institutet. 

Printed by E-print AB 2017 

© Magdalena Blom, 2017 

ISBN 978-91-7676-684-2 



The atypical Rho GTPase RhoD and its role in cellular 
dynamics 
THESIS FOR DOCTORAL DEGREE (Ph.D.) 

By 

Magdalena Blom 

Principal Supervisor: 

Professor Pontus Aspenström 

Karolinska Institutet 

Department of Microbiology, Tumor and Cell 

Biology (MTC) 

 

Co-supervisor(s): 

Dr Annica Gad 

Karolinska Institutet 

Department of Medical Biochemistry and 

Biophysics (MBB) 

 

Dr Katarina Reis 

Karolinska Institutet 

Department of Microbiology, Tumor and Cell 

Biology (MTC) 

 

Opponent: 

Professor Theresia Stradal 

Helmholtz Centre for Infection Research, 

Braunschweig 

 

Examination Board: 

Professor Ann-Kristin Östlund Farrants 

Stockholm University 

Department of Molecular Biosciences, 

The Wenner-Gren Institute 

 

Associate Professor Ingela Parmryd 

Uppsala University 

Department of Medical Cell Biology 

 

Associate Professor Jonas Fuxe 

Karolinska Institutet 

Department of Microbiology, Tumor and Cell 

Biology (MTC) 

 

 

 





 

 





 

 

ABSTRACT 

 

Despite its discovery 20 years ago, the accumulated knowledge about the Rho member RhoD 

is scarce. Instead, the vast majority of studies concerning Rho GTPases has focused on the 

three classical members RhoA, Cdc42 and Rac1. In contrast, RhoD is considered an atypical 

Rho GTPase, with an aberrant GTP/GDP cycling and an unknown regulation. 

Like most Rho GTPases, altered RhoD protein levels result in actin cytoskeleton 

reorganization. We found that increased RhoD protein levels lead to a less dynamic actin 

cytoskeleton, while RhoD silencing leads to more pronounced actin-containing structures, 

such as stress fibers, cortical actin and ruffles, depending on cell type. Actin-dependent 

processes, such as cell migration and cell proliferation, are significantly affected in absence 

of RhoD in fibroblasts. 

Moreover, we have shown that endogenous RhoD, as well as its interaction partner 

WHAMM, localize to the Golgi apparatus. Silencing or overexpression of RhoD or 

WHAMM leads to a dispersion of the Golgi apparatus, suggesting a role of these proteins in 

Golgi homeostasis. In addition, protein transport from the ER to the plasma membrane is 

delayed both when overexpressing and silencing RhoD and WHAMM, as measured by the 

VSV-G protein transport assay. 

One of the first described functions of RhoD was its regulatory role in endosome fusion and 

trafficking. We found that the localization to vesicles is independent of the nucleotide-bound 

status of RhoD. However, only the GTP-bound RhoD can localize to the plasma membrane. 

In contrast, RhoD must be inactivated for fusion of RhoD positive vesicles. Deleting the 

unique N-terminal of RhoD leads to an altered distribution and characteristics of RhoD 

positive vesicles.  

Taken together, this thesis elucidates the role of RhoD in three different dynamic cellular 

processes; reorganization of the actin cytoskeleton, Golgi homeostasis and vesicle transport 

and fusion.  
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I. INTRODUCTION 

 

This thesis aims to present data to elucidate the role of RhoD as a regulator of dynamic 

cellular processes. Being a member of the Rho GTPases, it is not surprising that RhoD exert a 

regulatory role on the actin cytoskeleton. However, this thesis also presents data to illuminate 

RhoD in its role as a regulator of vesicle dynamics and Golgi homeostasis. 

 

1. Rho GTPases 

1.1 The Rho GTPase family 

Nature has developed a variety of ways to regulate the activity of cellular proteins. One 

common strategy is phosphorylation, often leading to activation of a protein. Other examples 

are ubiquitination, regulation by expression/degradation or confining the subcellular 

localization of a protein. The small GTPases, constituting around 150 protein members in 

mammals [1], are activated when binding a guanosine triphosphate (GTP). As the GTP is 

hydrolyzed to guanosine diphosphate (GDP), the protein becomes inactivated. This is the 

reason why small GTPases are considered “molecular switches”. The binding and hydrolysis 

of the nucleotide is in turn tightly controlled, leading to an intricate regulatory system.[1]  

Small GTPases can be further subdivided, depending on structural and functional similarities, 

into six subfamilies (Tab 1) [1].  

Small GTPase 

subfamily 

Nr of genes in 

human 
Function 

Rab 63 Vesicle transport 

Ras 36 Cell proliferation, differentiation, survival 

Arf 27 Vesicle transport 

Rho 20 Actin cytoskeleton organization 

Ran 1 
Transport of RNA and proteins between nucleus and 

cytoplasm 

Other, including Miro 9 Mitochondrial transport etc. 

 

Table 1. The functions of the different small GTPase subfamilies. 
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The Rho family contains 20 members, known to regulate different aspects of actin 

cytoskeleton dynamics (Fig 1). The first Rho GTPases were found in 1985 as genes related to 

the already known Ras subfamily [2]. Out of the 20 Rho family members, only three of them 

have been studied in detail, RhoA, Cdc42 and Rac1. These three proteins have therefore been 

seen as the model for a bona fide Rho GTPase. Thus, Rho proteins possessing the 

characteristics of RhoA, Cdc42 and Rac1 and their isoforms are termed “classical Rho 

GTPases”, while the remaining have been referred to as “atypical Rho GTPases”. The 

dividing point between the two classes is the functionality of the GTP/GDP cycling [3]. To 

date, half of the Rho GTPases are considered atypical, which raises the question if they are 

really that atypical after all. The classical Rho GTPases have a slow intrinsic GTP hydrolysis 

and slow nucleotide exchange and requires additional regulatory proteins for the GTP/GDP 

cycling. 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Rho GTPase family tree based on similarity of the GTPase domain. 

 

The atypical Rho GTPases have altered cycling properties, either aberrant ability to hydrolyze 

GTP or fast nucleotide exchange ability (tab 2). Rho BTB1 and 2 deviate even more among 

the Rho GTPases, as they have additional domains and therefore are more than three times 

the size of other Rho GTPases. 
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All Rho GTPases, except Rho BTB1 and 2, have a molecular weight of around 20 kilo 

Dalton (kDa) [4]. They contain a GTP binding domain that interacts with the guanosine 

nucleotide, containing the switch1 and 2 motifs (Fig 2) [5]. Switch 1 and 2 are regions that, 

when interacting with the γ-phosphate, alter their conformations. In the GTP-bound state, the 

Rho GTPase can interact with its effector proteins and induce downstream signaling. When 

GTP is hydrolyzed to GDP, the γ-phosphate is lost and switch 1 and 2 folds back to a relaxed 

conformation so that the interactions to the effector proteins are lost [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The atypical Rho GTPases. 

Atypical 

Rho GTPase 

Intrinsic GTP/GDP cycling Consequence 

Chp 

No data regarding intrinsic 

GTP/GDP cycling but 

structurally related to Wrch1 

[3] 

Possibly highly active 

Wrch1 
Fast nucleotide exchange [7, 

8] 
Highly active 

RhoH No GTP hydrolysis [9] Constitutively active 

RhoBTB1, 

RhoBTB2 

Alternative amino acid in 

conserved region needed for 

GTP hydrolysis. RhoBTB2 

may not bind nucleotide. [10, 

11] 

Not dependent upon 

activation by GTP 

binding? 

Rnd1, 3 

No GTPase hydrolysis, 

low GDP affinity [12, 13] 

Constitutively active 

Rnd2 

Alternative amino acid in 

conserved region needed for 

GTP hydrolysis [12] 

Theoretical 

constitutively active 

RhoD, Rif 
Fast nucleotide exchange 

(low GDP affinity) [14] 
Highly active 
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Most Rho GTPases (as well as many other small GTPases) have a C-terminal CAAX-motif, 

where C stands for cysteine, A for aliphatic amino acids and X for variable amino acid. The 

motif is often post-translationally prenylated, in which a geranylgeranyl or a farnesyl lipid 

group is added to the protein. All Rho GTPases are localized to the plasma membrane and/or 

to an intracellular membrane [15], but they do not harbor any transmembrane domains. The 

modified CAAX-motif enables the protein to be inserted into a hydrophobic membrane and 

inhibition of this modification disturbs the localization and function of the protein [16]. The 

Rho GTPases are set apart from other small GTPases by the presence of the Rho insert region 

(Fig 2) [17]. 

 

 

 

Figure 2. General structure of a Rho GTPase. 

 

1.2 Regulation of the Rho GTPases 

Similar to small GTPases in other Ras subfamilies, the intrinsic hydrolysis of GTP to GDP, 

and the dissociation of GDP for a GTP are very slow [18]. Another set of proteins therefore 

stimulate these processes, thereby acting as regulatory proteins. There are three main groups 

of regulatory proteins, GEFs, GAPs and GDIs (Fig 3). 

Rho GTPase activator GEF (guanine nucleotide exchange factor) 

GEFs act by facilitating dissociation of GDP so that a new GTP can bind, thereby functioning 

as an activator. There are two families of GEFs, one with a Dbl-homology domain (DH) and 

one with a Dock Homology Region (DHR) (Fig 4). The first such mammalian protein, 

discovered in 1985, was Dbl (diffuse B cell lymphoma) [19, 20]. Since then, around 70 

members of this group have been found in humans [21]. A Rho GTPase is unstable when not 

binding a nucleotide. However, when interacting with a GEF, such as the DH domain in a 

Dbl protein, a stable Rho GTPase:GEF intermediate lacking nucleotide is possible. An excess 

of GTP over GDP in the cell will favor new binding of GTP to the GTPase [22]. Apart from a 

DH domain, almost all Dbl-family proteins contain pleckstrin homology (PH) domains. This 

domain interacts with phosphoinositides and localizes the proteins to the plasma membrane.  
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Figure 3. Regulation of the the classical Rho GTPases. Adapted from [23]. 

 

The Dbl proteins display a diverse range of additional domains, giving them ability to 

activate Rho GTPases in a localization-specific manner. Dbl proteins are themselves 

regulated e.g. by autoinhibition by its N-terminal. Cleavage of the N-terminal has been shown 

to result in constitutively active proteins of several DH domain-containing GEFs [24, 25].  

A guanosine nucleotide binds to its GTPase with high affinity. It has been shown for Ras that 

the GEF Cdc25 acts by binding the GDP-bound small GTPase with low affinity, which leads 

to weakening of the GTPase-GDP interaction and strengthening of the GTPase:GEF 

interaction as the GDP dissociates. Binding of a new GTP will then displace the GEF from 

the GTPase, which becomes active [18, 26].  

 

 

 

 

 

 

 

Figure 4. Protein structures of the Rho GEFs Dbl and Dock. Adapted from [27]. 
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The second family of RhoD GEFs is the Dock family proteins, harboring a DHR2 domain 

which interacts with the GTPase. Although the mechanism to catalyze nucleotide exchange is 

similar between the DHR2 and DH domains, their amino acid sequences are unrelated. In 

addition, the Dock proteins have an upstream DHR1 domain, which, in analogy to PH 

domains, localizes the protein to the plasma membrane (Fig 4). Autoinhibition has been 

reported also for Dock GEFs [28, 29]. Whereas the Dbl-family GEFs activate many different 

Rho GTPases, the Dock GEFs are restricted to the Rac and Cdc42 families [27].  

Rho GTPase repressor GAP (GTPase activating protein)  

A GAP catalyzes the hydrolysis of GTP by stabilizing the GTPase in a conformation which 

helps a water molecule to hydrolyze the GTP to a GDP. The importance of regulation by 

GAPs in vivo is evident considering the abundance of mutations in the small GTPase Ras 

found in tumor samples. The mutations mainly lead to an altered amino acid at one of three 

positions in Ras; at position 12, 13 or 61. All three mutations result in a Ras protein in which 

the hydrolysis of the GTP by GAP is abolished, giving a constitutively active Ras-oncogene 

[30]. The regulations of the GAPs are not as clear as for the GEFs, but the RhoGAP β2-

chimerin has been found to be autoinhibited [31]. 

Considering the fact that the activity of some GEFs and GAPs is not restricted only to one 

Rho GTPase, it is surprising that these regulatory proteins outnumber the Rho GTPases [18]. 

Rho GTPase inhibitor GDI (guanosine dissociation inhibitor) 

The GDI adds another type of regulation; by binding and sequestering the Rho GTPase away 

from its site of action at the membrane (Fig 3). Compared to the GEFs and GAPs, the GDI 

protein family is very small and contains only three known members. Most Rho GTPases 

have C-termini that are prenylated after translation and a majority is geranylgeranylated [15].  

The added lipid enables the Rho GTPase to be associated with membranes where it can be 

activated by GEFs and exert its action. GDIs bind to the geranylgeranyl lipid of the C-

terminal Rho GTPase, and in so doing, extracting it from the membrane where the Rho 

GTPase was inserted. In this way, Rho GTPases are held as soluble inactive complexes in the 

cytosol. Some Rho GTPases are instead farnesylated, making them inert to GDIs [15]. 

Phosphorylation of GDI is known to decrease the interaction to the Rho GTPase, whereas 

phosphorylation of the Rho GTPase conversely leads to an increased interaction to the GDI 

[32]. 
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PDEδ 

The PDEδ protein binds preferably farnesylated proteins, but also geranylgeranylated, [33] 

and it has been shown to interact and extract farnesylated Rab13 and several Ras GTPases 

from membranes [34, 35]. PDEδ and GDIs work in a similar manner, by binding and 

capturing the prenylated group into a β-sandwich domain [36]. In contrast to GDIs, the PDEδ 

does not have a GTPase binding motif, explaining why it can interact with GTPase-unrelated 

proteins [33]. 

Additional regulation 

In addition to the classical regulation by GEFs, GAPs and GDIs, Rho GTPases can be 

regulated by a number of post-translational modifications. The already mentioned lipid 

modification of the C-terminal regulates the subcellular localization [15]. The most common 

lipidation on Rho GTPases are geranylgeranylation (addition of a 20-carbon chain moiety) 

and farnesylation (addition of a 15-carbon chain moiety), both irreversible modifications. In 

addition, several Rho GTPases can undergo palmitoylation [37-39]. This process is reversible 

and, like prenylation, the palmitoylation enables the protein to be inserted into a membrane 

[40]. The prenylation and palmitoylation can occur on the same protein [39, 41].  

Phosphorylation of Rho GTPases can cause a hampered intrinsic GTP/GDP cycling [42-44]. 

It can also interfere with the interactions to regulatory proteins or effector proteins. Addition 

of a ubiquitin moiety is a common way to mark a protein for degradation or targeting it to 

other subcellular compartments. One example is the ubiquitination of RhoA at the leading 

edge of a migrating cell, which inhibits the formation of stress fibers and enables the 

formation of lamellipodia and filopodia [45]. Rac1 can both undergo ubiquitination and 

sumoylation. Sumoylation of Rac1 leads to increased GTP-binding and has been shown to 

be important for optimal lamellipodia formation and cell migration after stimulation of 

hepatocyte growth factor [46]. Moreover, regulation of Rho GTPases occur at the level of 

transcription [47] and by the activity of microRNAs [48]. 

 

1.3 Rho effector proteins 

As previously mentioned, Rho GTPases predominantly interact with their effector proteins 

when in a GTP-bound state. Mutations within the switch regions have revealed that different 

effector proteins bind to different amino acids within the switch regions. This means that a 

point mutation can abolish binding to one interaction partner, but leave the interaction to 
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another partner intact [49]. There are some domains that effector proteins which bind to Rho 

proteins share. One is the CRIB domain (Cdc42/Rac-interactive binding motif), which is 

present in many of the Cdc42 and Rac binding proteins. However, the CRIB domain itself is 

not sufficient to bind Cdc42 or Rac. Likewise, an REM, (Rho effector homology motif), has 

been found in several RhoA effectors [49]. One way Rho GTPases activate their effector 

proteins is by breaking an autoinhibitory intramolecular structure to expose functional 

domains [50, 51]. 

 

1.4 The Rho GTPase RhoD 

One subgroup of the Rho GTPase family includes RhoD and Rif (Rho in filopodia) (Fig 1). 

Whereas Rif has a more tissue specific expression pattern, RhoD is expressed in most tissues, 

with high levels in kidney, liver, intestine and lung [52]. RhoD evolved late and is the only 

Rho GTPase expressed exclusively in mammals [53].  

Since both RhoD and Rif have a functional GTP hydrolysis capacity, they were first 

considered to belong to the classical Rho GTPases. However, the finding that RhoD and Rif 

are capable to be activated without a GEF led to a reclassification to the atypical cohort. The 

binding of GDP to RhoD is more than 15 times weaker than to most Rho GTPases, 

suggesting that RhoD can be activated in absence of a GEF activator. The intrinsic nucleotide 

exchange activity of RhoD is increased in a way similar to that of Rac1b [14], a splice variant 

of Rac1 upregulated in breast and colorectal cancer [54, 55]. To date, RhoD has not been 

found upregulated or mutated in tumor samples.  

Just as for most Rho GTPases, mutants disturbing the activity of RhoD have been used to 

examine the role of the protein. Mutation of the glycine at position 26 (corresponding to 

position 12 in Rac1) gives a hydrolysis-defective RhoD, which is constitutively active. 

Mutation of the threonine at position 31 (corresponding to position 17 in Rac) leads to a 

dominant negative mutant. 
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2. Actin 

Together with the microtubule network and the intermediate filaments, the actin filaments 

give stability and dynamics to the cytoskeleton of the eukaryotic cell. Cells need to alter the 

morphology in order to adapt to the environment, to migrate and divide. This is possible due 

to a dynamic actin cytoskeleton, which can be rearranged into many supramolecular 

structures. 

2.1 Polymerization and depolymerization 

The basic building block of all actin-containing structures is the actin monomer. This 

polypeptide of 42 kDa is called G-actin for globular actin and can polymerize into 

filamentous actin, F-actin. The actin monomer binds an adenosine triphosphate (ATP) 

molecule in its nucleotide-binding cleft, which can be hydrolyzed to adenosine diphosphate 

(ADP). The binding of either nucleotide affects the conformation and thereby the properties 

of actin. The ATP-bound actin can more easily be incorporated into actin filaments, but is 

shortly after hydrolyzed to ADP. ADP-actin is prone to dissociate from the polymer, leading 

to depolymerization of the filament. ADP-bound G-actin can then exchange its ADP for ATP 

and be used again for insertion into F-actin (Fig 5). 

 

 

 

 

 

 

Figure 5. ATP-dependent actin polymerization. 

 

Actin filaments have polarity, since the monomers orient the nucleotide-bounding cleft in the 

same direction. This direction is called minus or pointed end and contains GDP-bound actin. 

The polymerization takes place in the plus end, also called the barbed end, and contains 

mostly GTP-bound actin. Treadmilling describes the process in which an actin filament is 

polymerizing at the barbed end and, at the same time, depolymerizing at the pointed end. This 
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process is seen at the leading edge of a migrating cell, forcing the cell to move forward, (Fig 

6) [56]. 

The concentration of actin monomers in a non-muscular cell is 8-250 µM [57]. This is much 

above the critical concentration in vitro for actin polymerization, which is 0.1 µM for ATP-

bound actin and 5 µM for ADP-actin [58]. It has been shown that most G-actin in the 

Xenopus egg cell is ATP-bound, ready to be incorporated into F-actin [57]. The reason why a 

high concentration of ATP-bound G-actin is not instantly inserted into actin filaments is due 

to several regulatory mechanisms. 

To avoid spontaneous actin polymerization, free actin monomers are sequestered by proteins 

such as thymosin 4 [59]. This protein binds with high affinity to ATP-actin and thereby 

prevents polymerization of actin monomers [60]. The first actin sequestering protein 

identified was profilin, which hides the actin-actin binding site [61]. In fact, most cellular G-

actin monomers are associated with profilin in Acanthamoeba [62]. This protein is, however, 

not only a negative regulator of actin polymerization, but contributes to a controlled 

polymerization mechanism. It facilitates ADP/ATP exchange of the G-actin monomer and 

binds to formins, thereby bringing polymerizable actin monomers to the growing end [61, 

63]. 

Formation of actin polymers are limited by the nucleation, i.e. formation of actin trimers (the 

“nucleus”). This is a non-favorable process and is catalyzed by actin nucleation promoting 

factors (NPFs). Once a trimer is formed, the actin can elongate more rapidly [64]. Two 

important groups of actin NPFs are the WASP/WAVE proteins and the formins. 

WASP/WAVE proteins contain a VCA domain which can bind and alter the conformation of 

the Arp2/3 complex [65]. The conformational change leads to the activation of this seven 

protein-complex, in which the proteins Arp2 and Arp3 are structurally related to actin (30-50 

% sequence similarity) [66]. Binding to an actin filament, the Arp2/3 induces actin 

polymerization at an angle of 70 ° from the mother filament [67]. In this way, a branched 

actin network can be formed (Fig 6) [68].  

Formins are multidomain NPFs that instead promote linear actin polymerization. Many 

formins have a C-terminal FH1 domain which interacts with profilin. In this way, profilin-

bound actin monomers are recruited to the formin for polymerization. The FH2 domain 

shields the growing actin polymer end from capping proteins. The Diaphanous-related 

formins (DRFs) have a GTPase binding domain in the N-terminal, and interaction with Rho 

GTPases is one way in which the formins is activated [69, 70].  
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There are several proteins that control the degradation of the actin filaments. The actin-

depolymerization factor family ADF/cofilin has three members in mammals; ADF, cofilin-1 

and cofilin-2. These proteins sever the actin filaments leading to fragmentation or 

depolymerization to actin monomers. The binding of ADF/cofilin to ADP-actin is stronger 

than to ATP-actin, resulting in severing of “older” actin filaments. The actin monomers 

generated after depolymerization can be reused and incorporated in new actin filaments and 

longer fragments can function as nuclei to generate new actin polymerization sites [71].  

Another negative regulating system is provided by capping proteins (CP), which bind to the 

actin barbed end with high affinity. This binding prevents further elongation as there is no 

longer access to the end monomer [72]. The formins and the actin elongation factors 

Ena/VASP in turn prevent binding of CP to the growing actin end, thus favoring 

polymerization [69, 73] 

Gelsolin proteins bind to F-actin and kink the filament before breaking it in two. This protein 

is an efficient actin severing protein and remains attached to the filament after the breakage. 

In this way, it also acts as capping protein and prevents reannealing and polymerization from 

the new actin fragments [74]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. A) Linear actin polymerization and B) branched actin polymerization. 
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2.2 Actin structures 

The actin polymers can be organized in a variety of ways. The simplest structure is formed 

when G-actin monomers bind to one another forming an actin filament, which has a right-

handed helical structure (Fig 6A). When several filaments are packed together with the help 

of cross-linking proteins, they form an actin bundle. Since the filaments are polar, with one 

plus and one minus end, the bundles can either be parallel or anti-parallel (Fig 7). Parallel 

bundles containing around 15 filaments are found in filopodia [75]. Filopodia are dynamic 

fingerlike protrusions at the front of the cell (Fig 8). Its task is to sense the environment and 

to initiate contacts to the substratum or to the neighboring cells [76]. Filopodia are seen in a 

range of different cell types, but is an abundant structure in neuronal dendrites [77]. One 

possible mechanism by which filopodia could be formed is the association of a protein 

complex containing Ena/VASP with a set of actin filaments. Ena/VASP functions as actin 

elongation factors and so the filaments can grow and form a parallel actin bundle which is 

crosslinked by a crosslinking protein, often fascin [78]. There are several Rho GTPases 

shown to induce filopodia, such as Cdc42, TC10, Rnd3, Rif and RhoD [79-83] although not 

via the same pathway [84].  

 

 

 

Figure 7. Crosslinked actin bundles in A) filopodia and B) stress fibers.   
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Bundles, with typically 10-30 anti-parallel actin filaments containing myosin II are called 

contractile fibers [85]. They are absent in filopodia and lamellipodia, but present in the rest 

of the cell. There are two types of contractile fibers; ventral stress fibers and transverse arcs. 

Ventral stress fibers run in the same direction as the cellular movement and are adhering to 

focal contacts. In contrast, transverse arcs run parallel to the leading edge, but are not 

anchored to focal contacts. There is also a third class of stress fibers called dorsal stress 

fibers, however they are not contractile (Fig 8) [86]. 

When actin filaments are elongated in a branched way, an actin network is formed. This 

actin structure is especially pronounced in the lamellipodium, the sheet-like membrane 

protrusion seen in the leading edge of a migrating cell (Fig 8) [87]. Rac1 activates the Arp2/3 

complex at the plasma membrane to catalyze branched polymerization, which pushes the 

plasma membrane forward and creates cellular movement [88]. The lamellipodia is a highly 

dynamic structure that is constantly projecting and retracting. By means of integrins, the actin 

can be anchored to a substratum, which is required for a forward cellular migration and not 

just a retrograde flow of actin [89]. However, for efficient pushing against the membrane 

border, not only branched actin polymerization is required, but elongation of the branched 

filaments. This is facilitated by Ena/VASP elongation factors, which hinders capping proteins 

to bind, thus preventing stalled polymerization [90]. The balance between actin 

polymerization by Arp2/3 and formins determines formation of lamellipodia or filopodia. 

Silencing of CP has been shown to result in lamellipodia formation (although with less 

efficiency) rather than filopodia [91]. Ena/VASP proteins also recruit profilin-bound ATP-

actin, which accelerates the filament elongation [92]. Examples of negative regulators that 

break down lamellipodia are GMFs (glial maturation factors), which sever branched actin 

filaments [93] and coronins, which inhibit the Arp2/3 activity [94]. Apart from in 

lamellipodia, branched actin polymerization is seen at the site of clathrin mediated 

endocytosis and mixed with linear actin filaments at the cellular cortex, called cortical actin 

[95, 96]. 

A peripheral ruffle has a structure similar to the lamellipodium; a sheet-like membrane 

protrusion, however, if the attachments at the leading edge are lost, the protrusions will fall 

back and form ruffles [78]. In fibroblasts, ruffles at the leading edge are, just as the 

lamellipodia, dependent upon Arp2/3 activation [97]. RhoA, Rac1 and Cdc42 signaling all 

contribute to the formation of ruffles at the leading edge [98]. 

  



 

14 

 

Figure 8. Cellular actin structures. 

 

2.3 Actin myosin contraction 

The contractile stress fibers in non-muscle cells are composed of anti-parallel actin filaments, 

myosin-II and cross-linking proteins (Fig 7B). Myosin-II has a globular domain (“head”), 

with interaction sites for actin and ATP in the N-terminal, while the C-terminal contains 

domains essential for homodimer formation [99]. When a myosin head binds ATP, it 

detaches from actin. Subsequent hydrolysis of ATP to ADP releases energy required for a 

conformational change of the myosin head. In this state, the myosin head can bind to actin, 

and once bound, it will fall back again, pulling the actin filament with it (called the “power 

stroke”). ADP is released and a new ATP is bound, causing the myosin head to detach from 

actin and a new cycle can start [100]. This movement of myosin heads will result in actin 

filaments sliding relatively to one another, thus shortening the fiber. Actin-myosin 

contraction in fibroblasts has been shown to shorten stress fibers with up to 25 % [101].  

 

2.4 Focal adhesions 

Focal adhesions (FA) are large protein complexes which mediate a link to the extracellular 

matrix (ECM). A cell must be able to adhere to a substratum in order to spread and to 

migrate. An important component in the FAs is the transmembrane protein integrin, which 
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interacts with the ECM in one end and an actin binding protein in the intracellular end (Fig 

9A) [102]. In this way, actin-myosin contraction can exert traction force on the ECM [103].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. A) Schematic figure of a focal adhesion. Adapted from [104]. B) Focal adhesion (green) and F-actin 

(red) in non-transfected and RhoA transfected cell. 

 

Integrins are heterodimers composed of one α- and one -subunit, and due to isoforms of 

both subunits, 24 heterodimers can be found in humans. Different heterodimers display 

different binding preferences to ECM proteins, e.g. laminin and collagen [105]. Over 50 

proteins have been reported to be part of FAs, leading to a complex structure which can be 

Non-transfected cell RhoA transfected cell 

Integrin dimer 

Extra cellular matrix 

Actin filaments 

B 

A 



 

16 

regulated in a variety of ways [106]. FAs are highly dynamic structures, which is a 

prerequisite for a migrating cell where adhesions are constantly formed and dissolved [107]. 

The formation of FAs is stimulated by intracellular signals, such as activation of RhoA, 

leading to stress fiber formation and an increased size of FAs (Fig 9B). [108] However, 

external stimuli can lead to a similar response. FAs work as mechanosensors, and mechanical 

stress exerted on a cell leads to cell signaling transduction though the integrins, resulting in 

stress fiber formation and larger FAs [109]. 

 

2.5 RhoA, Cdc42 and Rac1 downstream pathways 

RhoA, Cdc42 and Rac1 are the most studied Rho GTPases. Their effects were initially 

described in quiescent Swiss 3T3 fibroblasts as starvation of these cells leads to a very low 

background of organized F-actin fibers, making them optimal to use when studying actin 

dynamics. The original finding showed that RhoA is important for formation of stress fibers, 

Cdc42 for filopodia formation and Rac1 for lamellipodia formation. The downstream 

pathways of these three Rho GTPase archetypes have been studied thoroughly and are 

described in most simplified terms below.  

RhoA  

The ability of RhoA to regulate the actin cytoskeleton was found when RhoA G14V 

(constitutively active variant) was injected into Swiss fibroblasts, leading to stress fiber 

formation. In addition, stimulation with lysophosphatidic acid alone, or as a component in 

serum, induced similar stress fibers in starved cells. However, a simultaneous treatment with 

the RhoA inhibitor C3 transferase abolished stress fiber formation [110]. Binding of the 

active RhoA results in loss of the autoinhibited conformation of Rho associated protein 

kinase (ROCK). This leads to a phosphorylation of the myosin light chain phosphatase 

(MLCP) and inactivation of its phosphatase activity, subsequently resulting in a prolonged 

phosphorylation and activation of MLC. In addition, ROCK can phosphorylate and activate 

MLC directly [111]. MLC acts as a regulatory subunit of the myosin II motor protein and 

controls its interaction with actin. An activated myosin II can exert its function on actin 

filaments leading to cellular contraction [112]. Moreover, ROCK activates LIM kinase, 

which in turn phosphorylates and inhibits cofilin, thereby preventing actin depolymerization 

in favor of polymerization [113, 114]. RhoA interaction and activation of mDia1 stimulates 

formation of actin filaments, which are packed into stress fibers (Fig 10) [115]. 
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Cdc42 

Many Cdc42-/- cell types or cells expressing Cdc42 dominant negative show restrained or 

abolished filopodia formation. However, fibroblasts derived from Cdc42-null embryonic 

stem cells form normal filopodia, revealing that the importance of Cdc42 activity to form 

filopodia is cell type dependent [116]. Early work suggested that Cdc42 can activate both 

RhoA and Rac1. Therefore, in order to see the pure effect of injected active Cdc42 (Cdc42 

G12V), the Swiss 3T3 cells were simultaneously injected with dominant negative Rac1 and 

treated with C3 transferase. This resulted in the formation of filopodia [117]. Several 

downstream targets have been shown to contribute to Cdc42-induced filopodia. The 

interaction and activation of the mouse Diaphanous protein 2 (mDia2) leads to stimulation of 

linear actin polymerization and has been shown to be required for Cdc42-induced filopodia 

formation [118]. The insulin-receptor substrate p53 (IRSp53) is another Cdc42 target protein 

contributing to filopodia formation in two ways; by assembling of actin filaments (via N-

WASP and Ena/VASP) and by inducing membrane curvature (Fig 10) [119, 120]. Cdc42 also 

binds N-WASP directly, but this interaction is not required for filopodia formation [120, 

121]. 

 

Figure 10. Signaling pathways of Cdc42, RhoA and Rac1 leading to filopodia formation, stress fibers and 

lamellipodia, respectively. 

 

Rac1 

The active Rac1 mutant G12V gave rise to membrane ruffling and lamellipodia formation 

when first injected into Swiss 3T3 cells. In addition, the dominant negative Rac1 inhibited 
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membrane ruffling stimulated by PDGF [122]. The main contribution of Rac1 signaling 

leading to formation of lamellipodia is the activation of the Arp 2/3 via the WAVE complex 

to induce a cross-linked actin network (Fig 10) [123]. 

 

2.6 Actin-driven cellular processes 

There are innumerous processes in the cell, which are directly or indirectly dependent upon 

the actin cytoskeleton. Below are mentioned some major actin driven processes critical for 

proper cell function. 

Cell migration 

The procedure of cell migration can in many cell types be described as cyclic. (1) The cell 

must extend protrusions, filopodia and/or lamellipodia, in the direction of migration. (2) A 

protrusion that persists for a longer time can form mature FAs linking the protrusion to the 

substratum. (3) Contractility of actin-myosin filaments leads to a forward motion as (4) the 

FAs in the rear end dissolve and the newly formed in the front act as clutches. The cycle can 

then start over with new protrusions being formed [107]. 

All four steps in this cycle involve actin. As described above, the protrusions are dependent 

upon actin polymerization, contraction is possible due to myosin-dependent sliding of actin 

filaments, and the FAs are tightly coupled to the actin filaments. It is therefore fully 

understandable that an effect on the actin cytoskeleton will result in an altered cell migration, 

such as increased invasiveness, inability to move in a directed way and increased or 

decreased migratory speed [124-126]. 

Cell polarity 

Cell polarity is found in most differentiated cells, meaning an unequal distribution of 

organelles, proteins or molecules (often regulatory ones). The establishment and maintenance 

of cell polarity is to a high degree dependent upon the inherited polarity of the actin 

cytoskeleton and the microtubule network [127]. The myosin motor proteins move on actin 

filaments mainly towards the barbed (growing) end. This contributes to cell polarity, as these 

motor proteins (especially myosin-V) can transport cargos over a long cellular distance. 

Furthermore, cell polarity is dependent upon the diverse actin structures in the cell. An 

external signal, which activates Rho GTPases locally in the membrane, will lead to a site-

specific actin polymerization. This is an important concept in cell migration, where the 
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leading edge forms lamellipodia induced by Rac1, but the rear end forms stress fibers induced 

by RhoA [107].  

Cytokinesis 

The cytokinesis at the end of mitosis is enabled by the contractile ring made up of actin and 

myosin II filaments. The anaphase spindle recruits a RhoGEF to the so called equatorial zone. 

This leads to activation of RhoA at this site and a subsequent assembly of the contractile ring 

in the cell cortex. As the myosin containing fibers contract, the dividing cell is constricted 

and can eventually be pinched off to form two daughter cells [128]. The constriction is not 

only regulated by contraction, but a simultaneous cofilin-dependent actin depolymerization of 

the ring [129]. 

 

2.7 RhoD and actin 

Most Rho GTPases exert effects on the actin cytoskeleton dynamics when exogenously 

expressed, though in a variety of ways [130, 131]. Overexpression of RhoD leads to stress 

fiber dissolution and filopodia formation [80]. A handful of RhoD binding partners have been 

described [132], but the mechanisms leading to the two actin phenotypes are still not known. 

No published data supports RhoD to act via the same signaling pathway as Cdc42 to induce 

filopodia. However, RhoD interaction with mDia3C has been proposed to be responsible for 

protrusions formed after fibroblast growth factor stimulation in mouse mesenchymal cells 

[133].  

Exogenous expression of RhoD leads to a similar phenotype in many cell types (stress fiber 

dissolution and filopodia formation), while the actin phenotype resulting from RhoD 

silencing can vary depending on cell type. However, they all have in common more 

pronounced actin-containing structures, seen as increased amount of stress fibers, increased 

cortical actin and/or membrane ruffles. For example, silencing RhoD in HeLa cells leads to 

increased number of stress fibers and cortical actin (after 48 hrs), and later on ruffles (after 72 

hrs) (Fig 11). The RhoD-SAAX mutant, which cannot be post-translationally prenylated has 

an altered localization and strongly induces actin stress fibers [134]. RhoD silencing leads to 

an increased size and reorganization of FAs [80, 134] whereas RhoD G26V expressing cells 

show decreased FA size [135]. 
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Figure 11. Dominant actin phenotype when RhoD is silenced or exogenously expressed. 

 

3 The Golgi apparatus 

3.1 Structure of the Golgi apparatus 

The smallest functional unit of the Golgi apparatus (GA) is the cisterna, a flattened membrane 

disc. Cisternae are often found in layers, forming a Golgi stack, which usually contains three 

to five cisternae in the mammalian cell [136]. The cisternae can be functionally divided into 

four different classes, cis (closest to ER), medial, and trans cisternae and the trans-Golgi-

network (from where the proteins exit Golgi). GRASP65 and 55 act as Golgi tethering factors 

holding the cisternae together in a stack, and co-silencing leads to disassembly of the whole 

stack [137]. GRASP65 and 55 form homo-oligomers that crosslink Golgi membranes from 

two different cisternae. In vertebrates, the stacks can be further organized into one Golgi 

ribbon localized at the centrosome. When forming the ribbon, GRASP65 and 55 together 

with golgins (a second class 

of Golgi tethering factors) 

facilitate a lateral 

membrane fusion to connect 

the stacks into one 

continuous ribbon (Fig 12) 

[138]. 

 

Figure 12. Stacked Golgi cisternae are fused to form a continuous Golgi ribbon. 
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3.2 Functions of the Golgi apparatus 

The Golgi apparatus is a cellular organelle, with the main task to sort and post-translationally 

modify proteins and lipids in the secretory pathway. However, the GA has additional 

functions in controlling mitotic entry, microtubule organization and in calcium homeostasis 

[139-142]. 

The GA acts as a sorting station for transmembrane and soluble proteins. After synthesis at 

the endoplasmic reticulum (ER), proteins and lipids are transported to the GA. Many proteins 

and lipids are modified by a covalent addition of sugar molecules, a process which starts in 

the ER and is completed in the GA. Around 250 different glycosyltransferases are found in 

the mammalian GA, which add one sugar molecule to another [143]. As the protein or lipid 

travels through the Golgi, from the cis-, through the medial- and finally to the trans-Golgi, it 

is processed in a particular order, as the glycosyltransferases reside in specific compartments 

within the Golgi [143]. How the proteins and lipids are transported across the Golgi stack is 

still debated. Two models are proposed. (1) Cisternal maturation; where the cargo is 

maintained within the cisterna, which matures as it travels across the stack. The Golgi 

enzymes are recycled by retrograde transportation of vesicles from “later” to “earlier” 

cisternae [144]. (2) The cargo is transported forward in the Golgi stack by anterograde 

trafficking [145]. Finally, the proteins and lipids bud from the Golgi and are transported to 

their final subcellular destination or are secreted. The purpose of glycosylation is numerous. 

It can contribute to a stable protein conformation [146], regulate protein activity [147] or act 

as a transport sorting signal [148]. 

 

3.3 Golgi homeostasis 

The Golgi apparatus is an organelle, which undergoes highly morphological changes during 

the cell cycle. The mammalian interphase GA is organized in a Golgi ribbon (Fig 12). It is 

believed that organization into stacks and ribbon render the function of the GA more efficient 

[149]. At cell division, the GA needs to be fragmented into tubular- and vesicular clusters, in 

order to form two new GA, one in each daughter cell [150]. 

In the G2 stage of the cell cycle, the Golgi ribbon is degraded into separate stacks. During 

prophase/prometaphase, the stacks undergo unstacking and vesiculation, leading to small 

vesicles and tubules, named Golgi “haze”. At telophase, the Golgi vesicles reassemble in 

each daughter cell, forming new stacks and finally a ribbon [151]. Inhibition of the Golgi 
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ribbon fragmentation will result in a G2 block, which is different from the block caused by 

DNA damage [140]. 

 

3.4 Actin at the Golgi complex 

It is well known that the microtubule network plays a central role in Golgi morphology and 

function, a role that has been thoroughly studied [152]. To what extent the actin cytoskeleton 

influences the Golgi function is less known. When actin polymers are either stabilized, or 

destabilized by treatment of toxins, the Golgi apparatus becomes more compact. However, 

electron microscopy reveals important differences. When actin polymers are stabilized (after 

Jasplakinolide treatment), the Golgi stacks are fragmented, while the cisternae remain flat. 

When actin polymers instead are depolymerized (after Cytochalasin or Latrunculin 

treatment), large swelling of the cisternae is seen [153]. 

Several proteins associated with actin regulation and function are described to localize to and 

act at the Golgi, e.g. Rho GTPases (Cdc42, RhoA and TC10 [154-156]), actin motor proteins 

(myosin II, myosin VI [157, 158]) and the actin polymerization regulator Arp 2/3 [159]. 

Apart from stabilizing the structure of the Golgi complex, actin is involved in vesicle budding 

from the trans-Golgi-network and several actin motor proteins are known to mediate transport 

of Golgi-derived vesicles [158, 160]. 

 

3.5 RhoD and the Golgi apparatus 

There is to date only one published study on the function of RhoD at the Golgi apparatus, 

which is included in this thesis (Paper I). Briefly, endogenous RhoD was found to co-localize 

with Golgi markers. Both overexpression and silencing of RhoD resulted in an altered Golgi 

morphology with a loss of a compact Golgi ribbon structure.  RhoD was found to play a role 

in protein transport from ER to the plasma membrane via the GA. One interaction partner of 

RhoD, WHAMM, has previously been found to reside in Golgi membranes and similar to 

RhoD, WHAMM has been found to affect the Golgi morphology and ER to plasma 

membrane protein transport. It is, however, not established whether RhoD and WHAMM act 

via the same signaling pathway. 
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4 Vesicle dynamics 

The different cellular vesicles enable protein trafficking between organelles and allow 

exchange of membrane components. Depending on the cellular route, the vesicles have 

different compositions. One class of vesicles is called endosomes, and is responsible for 

transport from the plasma membrane into the cell. 

4.1 Early, late and recycling endosomes 

When a soluble protein or a membrane-bound receptor at the plasma membrane is 

internalized, the plasma membrane buds inwards and eventually fuses with an early 

endosome, the first vesicle compartment in the endocytic pathway. At the early endosome, 

the cargo is sorted to one out of three routes; (1) recycled back to the plasma membrane via 

recycling endosomes, (2) sorted to late endosomes to be degraded in the lysosome or (3) 

delivered to the trans-Golgi network (Fig 13) [161]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The endocytic pathway. 
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The small GTPases of the Rab family constitute an important group of endocytic regulators. 

Their localization to endocytic compartments directs vesicle trafficking in a specific way. 

When in active GTP-bound conformation, they facilitate vesicle budding, motility and 

tethering/fusion by recruiting effector proteins. Rab5 localizes to early endosomes and is 

commonly used as a marker for this compartment. In the same way, Rab11 is found 

predominantly in recycling endosome membranes and Rab7 in late endosomes [162] (Fig 

13).  

 

4.2 Vesicle trafficking 

The transport of a vesicle can be divided into four steps; (1) formation of a vesicle from the 

donor membrane, (2) movement to the target compartment, (3) docking to the acceptor 

membrane and finally (4) fusion.  

Rab proteins are involved in each of the four steps. (1) Rab9 can recruit a sorting adaptor to 

the membrane of a forming vesicle and increase the affinity between the sorting adaptor and 

its cargo [163]. (2) Vesicles are transported by motor proteins moving on actin filaments (for 

short-range transport) or microtubules (for long-range transport). A Rab11 effector protein 

can function as a myosin adaptor, linking the Rab-bound vesicle to the motor protein. Rab8a 

can interact directly with myosin proteins, whereas Rab6 can bind directly to a kinesin motor 

protein [164-166]. (3) In order for vesicles to fuse with the acceptor membrane, they need to 

be brought into close proximity. The Rab5 effector EEA1 acts as a tethering factor and can 

draw the two endosomes close together [167]. (4) In addition, EEA1 interacts with t-SNARE 

proteins which are required for the fusion of the vesicle with the acceptor membrane [168, 

169]. 

 

4.3 RhoD and vesicle dynamics 

One of the first described functions for RhoD was a role in endosome fusion and trafficking. 

Endosome fusion stimulated by the constitutively active mutant Rab5 Q79L was inhibited by 

the constitutively active mutant RhoD G26V but not by RhoD wt [52]. In up-following 

studies, RhoD G26V was shown to reduce both short and long-range endosome motility 

[170] in a Src-dependent way [171]. More specifically, RhoD has been described to co-

localize mostly with Rab5 and Rab11 positive vesicle and less with Rab7 positive vesicles. 

[172]. An interaction between RhoD and the Rab5 effector Rabankyrin-5 was found in a 
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yeast two-hybrid screen. Confirming the interaction by co-immunoprecipitation, revealed that 

Rabankyrin-5 interacts both with RhoD-GDP and RhoD-GTP. When co-expressing RhoD 

G26V, Rab5 Q79L and Rabankyrin-5, they all co-localized at vesicles. Silencing of 

Rabankyrin-5 altered the localization of RhoD positive vesicles to a more perinuclear 

distribution, and silencing of RhoD had a similar effect on Rabankyrin-5 positive vesicles. In 

addition, internalization of the platelet derived growth factor receptor β (PDGFRβ) after 

PDGF-BB stimulation was reduced after RhoD silencing in fibroblasts, together with a 

reduced PDGFRβ-downstream signaling [172]. 
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II. AIMS OF THE THESIS 

 

The vast majority of studies published on Rho GTPases has focused on the three classical 

members RhoA, Rac1 and Cdc42. The atypical Rho GTPases are generally less studied than 

the classical ones, but even among these, RhoD is still one of the most uncharacterized Rho 

GTPases. The overall aim of the thesis is to broaden the knowledge of the Rho GTPase 

RhoD. 

 

Paper I: 

We found that the endogenous RhoD, as well as its interaction partner WHAMM, localize to 

the Golgi apparatus. We therefore sought to examine how the two proteins affected the 

structure and function of this organelle. 

- How does altered protein levels of RhoD and WHAMM affect Golgi homeostasis? 

- How does altered protein levels of RhoD and WHAMM affect anterograde protein 

transport? 

 

Paper II: 

RhoD has been shown to modify the actin cytoskeleton in several cell lines. In this paper, we 

wanted to investigate the actin phenotype in cell types not previously studied. The cell types 

chosen had distinctively different actin phenotypes when non-transfected. We also studied 

cellular processes known to be strongly dependent upon actin dynamics in fibroblasts, a cell 

type we have previously used for RhoD studies.  

- How does altered protein levels of RhoD affect the actin cytoskeleton in an enlarged 

cell type study? 

- How does altered protein levels of RhoD affect cell migration and cell division? 

- What happens to the actin phenotype when RhoD localization is defective? 
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Paper III: 

One of the first publications of RhoD describes a function of RhoD at endosomes, but few 

additional studies on this matter have been published. Therefore, we investigated the 

dynamics of RhoD positive vesicles in fibroblast, where the localization to vesicles is distinct 

and relatively easy to monitor. Furthermore, the function of the unique N-terminal motif of 

RhoD was studied. 

- Is there a difference in localization to vesicles between GTP-RhoD, GDP-RhoD and 

GTP/GDP-cycling RhoD? 

- Is there a difference in vesicle size (due to altered fusion/fission) between GTP-RhoD, 

GDP-RhoD and GTP/GDP-cycling RhoD? 

- Is the unique N-terminal of RhoD required for vesicle localization and vesicle fusion? 

- Is the unique N-terminal of RhoD required to exert its effect on the actin 

cytoskeleton? 

 

 



 

 29 

III. RESULTS AND DISCUSSION 

 

This thesis focuses on the role of RhoD in three cellular dynamic processes; Golgi 

homeostasis, actin cytoskeleton dynamics and vesicle transport and fusion. 

 

RhoD and Golgi (Paper I) 

We found, using a commercial antibody that the endogenous RhoD localized to the Golgi 

apparatus, similar to its interaction partner WHAMM. We examined the co-localization of 

RhoD with several established Golgi markers, such as the cis-Golgi matrix protein 130 

(GM130) or the trans-Golgi marker 1,4-galactosyltransferease (GalT). STED microscopy 

revealed that RhoD had a higher degree of co-localization with GalT than with GM130. 

Treatment with drugs disrupting the Golgi ribbon (Nocodazole) or the stacking of cisternae 

(brefeldin A) had no major effect on co-localization between WHAMM and GM130, as 

already reported [173]. However, RhoD could no longer be found together with GM130 after 

the same treatments. This suggests that WHAMM localizes to the cisterna membrane, while 

RhoD might be dependent upon a Golgi tethering protein to be associated with the Golgi 

membrane. 

We further studied how the Golgi structure was affected by altered protein levels of RhoD 

and WHAMM, by analyzing the fraction of cells with Golgi “dispersion”. We used this term 

in a broad sense, meaning both expansion of the Golgi apparatus and disruption of the Golgi 

ribbon structure into vesicles. Exogenous expression of RhoD in COS1 cells, independent of 

GTP/GTP-bound state, led to a dispersed Golgi phenotype in 40-55 % of the transfected cells, 

(compared to <10 % in control cells). In agreement with published data, overexpression of 

WHAMM led to disruption of the Golgi ribbon structure. Similarly, silencing of RhoD led to 

a dispersed Golgi apparatus in ~ 40 % of the cells whereas the corresponding number for 

silencing of WHAMM was ~30 % (compared to ~5 % in control cells). 

Golgi is a central organelle for protein trafficking. We therefore sought to investigate whether 

the effect of RhoD and WHAMM on Golgi homeostasis affected the anterograde protein 

transport by monitoring the transport of the GFP-tagged VSV-G protein. This protein is kept 

misfolded in the ER when cells are cultured at 40 °C. When lowering the temperature (to 32 

°C), VSV-G is correctly folded and transported via the Golgi to the plasma membrane. By 

fixing transfected cells at various time points, we could follow the transport of VSV-G in 
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cells transiently transfected with RhoD or WHAMM constructs, as well as RhoD and 

WHAMM targeting siRNA. We could see that the transport between the Golgi apparatus and 

the plasma membrane was delayed when RhoD or WHAMM was silenced; however, the 

transport from ER-to-Golgi was indistinguishable from the control. Transient expression of 

RhoD or WHAMM gave a profound effect on the VSV-G transport all the way from the ER 

to the plasma membrane. Moreover, VSV-G was less protected against Endoglycosidase H 

cleavage in cells with altered RhoD and WHAMM protein levels, indicating a restricted 

Golgi function in these cells. 

The question whether RhoD and WHAMM act through the same pathway cannot be 

unequivocally answered. Simultaneous silencing of RhoD and WHAMM gives an additive 

effect, indicating that RhoD and WHAMM act partly though different pathways. However, 

we could see that expression of RhoD wt, but not RhoD T31N, could rescue the Golgi 

dispersion caused by WHAMM silencing, indicating that RhoD helps to tether Golgi in 

absence of WHAMM. Moreover, since RhoD silencing affects the Golgi structure, the 

endogenous WHAMM localization is affected and vice versa. This could, however, be an 

indirect effect. 

Exogenous expression can lead to many side effects due to sequestering of proteins and shift 

in equilibriums. The most significant finding of RhoD in this paper is therefore the effect on 

Golgi morphology after RhoD silencing. WHAMM silencing leads to an expansion of the 

Golgi, but the morphology is less altered. In addition to Golgi expansion, RhoD silencing 

results in loss of shape, and the Golgi starts to “unwind” (Fig 14). Golgi tethering factors 

keep the Golgi ribbon and stacks intact [174]. It is possible that RhoD is needed for the 

function or localization of such a protein, leading to an “unwound” Golgi in RhoD silenced 

cells. To date, the only known RhoD interaction partner at the Golgi is WHAMM [80]. 

However, WHAMM seems to reside in the trans-Golgi area and RhoD in the cis-Golgi area 

(Paper I and [173]), and disruption of the Golgi structure by Nocodazole and Brefeldin A 

treatment have different outcomes for the two proteins. This could indicate that the 

interaction between RhoD and WHAMM is transient. RhoD interacts with the N-terminal of 

WHAMM, which is needed for membrane localization [80, 175], suggesting that RhoD could 

interfere with the WHAMM localization. 

With this article, we have shown that endogenous RhoD localizes to the Golgi apparatus, and 

that a proper balance of the protein is needed to maintain an intact Golgi structure and 

function.  
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Figure 14. The Golgi marker GM130 in BJ fibroblasts treated with Ctrl siRNA, WHAMM siRNA, RhoD 

siRNA or the drugs Brefeldin A and Nocodazole. 

 

RhoD and actin (Paper II) 

We found that cell types with distinctly different actin cytoskeleton organization when non-

transfected (HeLa, U2OS and U251MG), had a similar actin phenotype when overexpressing 

RhoD. This includes dissolution of stress fibers and the development of a less dynamic actin 

cytoskeleton, often accompanied by filopodia formation. In fact, also other F-actin structures, 

such as ruffles and cortical actin were dissolved and reorganized into thin actin bundles. 

Silencing of RhoD had an opposite effect, enhancing the actin organization present in each 

cell type, leading to more ruffles, cortical actin and stress fibers, depending on cell type. 

When RhoD was silenced in fibroblasts, we saw that actin-dependent cellular processes were 

affected, such as cell migration and cell proliferation.  

For a fibroblast to migrate in a persistent way, the orientation and number of lamellipodia 

must be regulated. Live cell imaging of RhoD silenced fibroblasts showed that the cells had a 

decreased persistence of directed cell migration, since the total migration distance, but not the 

Euclidean distance, was longer compared to control cells, revealing a longer migration 

distance to reach the same goal. The same results were seen when adding a chemotactic cue 
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(PDGF-BB). Although cells lacking RhoD migrated roughly the same Euclidean distance 

compared to the control cells, the total migration distance was longer (but non-significant in 

these experiments). It has been reported that the PDGF downstream signaling is weaker in 

RhoD silenced fibroblasts [172], which could partly explain decreased sensitivity towards a 

PDGF gradient. However, complementary data from a scratch-wound assay reveals that the 

direct cell migration in absence of RhoD is suboptimal. 

Considering the extensive regulation of actin reorganization during cell migration, it is not 

surprising that Rho GTPases are master regulators of directed cell migration [176]. Cells 

lacking RhoD showed no impairment of the general migratory machinery, as they migrated 

even longer distances than control cells over the same time period. Moreover, RhoD silenced 

cells still displayed a polarized cell body. In this study, we saw that overexpression of RhoD 

led to decreased actin dynamics in several cell types. It is not clear if the reciprocal situation, 

i.e. RhoD silencing, leads to a more dynamic actin cytoskeleton, but the increased number of 

ruffles in U251MG cells suggests that this is likely to be the case. Increased actin dynamics 

could interfere with the stability of a lamellipodia, thereby making it more difficult for the 

leading edge to steer the cell persistently in one direction. In addition, FA size is correlated 

with cell speed. Smaller or larger FAs than the optimum size leads to a decreased speed of  

migration [177]. RhoD knock down in fibroblast has previously been shown to increase the 

FA size, while overexpression leads to smaller FAs [80, 135].  

RhoD silenced fibroblasts showed slower proliferation rate than control cells. We first 

suspected an impairment of the cytokinesis, since the cytokinesis is heavily dependent upon 

actin reorganization, and microinjection of RhoD G26V has been described to inhibit 

cytokinesis [135]. When measuring the time from pre-mitotic rounding up, to spreading after 

cytokines, we saw no difference in RhoD silenced cells compared to control cells, indicating 

that the prolonged cell cycle is caused by alterations during earlier phases of the cell-cycle. 

This is in agreement with the notion that a functional actin cytoskeleton and Rho GTPase 

regulation are essential also in the earlier stages of the cell-cycle [178]. 

Transient expression of several Rho GTPases, such as Rnd1 and Rnd3 has been reported to 

result in stress fiber dissolution. In addition, the expression of p190ARhoGAP leads to the 

inhibition of RhoA and thereby inhibition of stress fibers (Fig 15) [179].  Visualizing F-actin 

by the fluorescently labeled phalloidin shows that HeLa cells overexpressing Rnd1, Rnd3 and 

p190ARhoGAP lose their stress fibers. The dissolved stress fibers are not reorganized into 

other F-actin-containing structures, therefore, a weak actin signal is acquired. In contrast, in 

cells overexpressing RhoD, the F-actin signal remains strong. In these cells, the stress fibers 
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are dissolved, but instead, an intertwined weave of actin filaments is seen (Fig 15). This 

indicates that RhoD, in contrast to Rnd1 and Rnd3, rather stimulate a reorganization of the 

actin cytoskeleton, where thin actin bundles are induced at the expense of stress fibers, or 

cortical actin and ruffles in other cell types. 

 

Figure 15. F-actin phenotype in HeLa cells overexpressing proteins known to dissolve stress fibers. Cells were 

stained with phalloidin. All acquired pictures were sub-saturated and later adjusted in an identical way, i.e. the 

stronger phalloidin signal in RhoD is not due to a different handling of the pictures. 

 

Another striking sign that RhoD functions as a modulator of the actin cytoskeleton can be 

seen when the C-terminal CAAX-motif is mutated. This motif is found in many small 

GTPases and undergoes post-translational processing, leading to insertion of the small 

GTPase into lipid bilayers [1]. The mutation of the RhoD CAAX (which we named RhoD 

SAAX) prevented the prenylation (most likely a farnesylation) of RhoD and, as a 

consequence, the localization of RhoD is altered. RhoD SAAX still associated with the 

plasma membrane and induced filopodia, but it no longer localized to vesicles. Surprisingly, 

actin stress fibers were no longer suppressed, but instead strongly induced. This reveals the 

strong intrinsic ability of RhoD to regulate the actin cytoskeleton. 

Taken together, this paper demonstrates that RhoD silencing has different effects on the actin 

cytoskeleton depending on cell type, but overexpression leads to induction of thin actin 
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bundles overriding all other actin-containing structures. Loss of RhoD in fibroblasts also 

results in effects on actin-dependent processes, such as cell migration and proliferation.  

 

RhoD and vesicle dynamics (Paper III) 

Exogenously RhoD has been reported to localize to vesicles in several cell types [52, 172]. 

To study the function of RhoD at vesicles, we used BJ fibroblast cells, as RhoD localization 

to vesicles in this cell line is distinct and thus relatively easy to monitor. We could see that 

both the GDP and GTP-bound RhoD were associated with vesicles. In contrast, only GTP-

bound RhoD localized to the plasma membrane. 

One of the initial publications on RhoD revealed a role in endosome fusion and trafficking 

[52]. We could see that RhoD wt and RhoD T31N positive vesicles fused and formed larger 

vesicles with visible lumina. However, the constitutively active RhoD G26V was associated 

with smaller vesicles without detectable lumina. These results are in line with earlier findings, 

where RhoD G26V inhibited Rab5-induced endosome fusion, but RhoD wt did not [52]. This 

suggests that RhoD must be inactivated to enable vesicle fusion. Furthermore, we saw a 

significant increase in number of vesicles per cell when expressing RhoD G26V compared to 

RhoD wt/T31N, but no difference between cells expressing RhoD wt and RhoD T31N, 

emphasizing the inability of RhoD G26V-postive vesicles to fuse. 

When quantifying the localization of RhoD-positive vesicles in the cell, we saw that RhoD wt 

and T31N were mainly perinuclear, whereas the RhoD G26V vesicles were predominantly 

dispersed. This means that, in contrast to the localization of RhoD to vesicles, the subcellular 

localization of the vesicles is dependent upon the GTP/GDP-bound state of RhoD. Since 

RhoD G26V-postive vesicles were more dispersed, we expected a more pronounced 

localization to the plasma membrane, given that the vesicles eventually fuse with the plasma 

membrane. This could not be established, leaving the question open on how RhoD is inserted 

into the plasma membrane. Unfortunately, it is difficult to perform live-cell imaging on 

RhoD-vesicle dynamics, since fluorescent protein tags (GFP, mCherry, Tomato) strongly 

promote plasma membrane localization of RhoD, rendering the vesicles difficult to detect. 

N-terminally to the GTPase domain, RhoD has a unique extension with unknown function. 

Deletion of these 12 amino acids, led to strikingly different vesicle phenotypes (however, not 

for the dominant negative RhoD). The ΔNT-RhoD wt and G26V-postive vesicles were often 

seen in clusters or as beads on a string along the plasma membrane border. They appeared 
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“sticky” and many cells were fully packed with vesicles. This observation raises the question 

if RhoD degradation is dependent upon the N-terminal motif. Just as its full length 

counterparts, the ΔNT-RhoD wt fused to form larger vesicles, whereas ΔNT-RhoD G26V did 

not. 

We also investigated whether or not the N-terminal motif was required for RhoD to induce 

thin actin bundles in favor of stress fibers. We found that the deletion mutants had the same 

capability to dissolve stress fibers as the full length RhoD wt and G26V. 

In this study, we showed that RhoD localization to the plasma membrane is GDP/GTP-

dependent, whereas the vesicle localization is not. In addition, the size of the vesicle is 

dependent upon the GTP/GDP state of RhoD. The N-terminal motif of RhoD is not required 

for the RhoD-induced actin rearrangement, but its deletion causes altered localization and 

characteristics of the RhoD-postive vesicles. 
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