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ABSTRACT 
Elevated plasma levels of troponin, a marker of myocardial injury, are a frequent observation 
in stroke patients. Despite several reports on an adverse short-term prognosis, however, the 
significance of troponin elevation in stroke is still controversial, and the myocardial injury 
often lacks a clear etiology. The aim of this thesis was to determine patient characteristics, 
including long-term prognosis, in these patients, as well as to explore possible underlying 
pathomechanisms. 

In a retrospective cohort analysis of 247 stroke patients (Study I), troponin elevation was 
significantly associated with age, comorbidity burden, and stroke severity. Stroke patients 
with troponin elevation also had a higher prevalence of electrocardiographic changes 
suggestive of myocardial ischemia on admission. A 5-year follow-up period revealed an 
almost 2-fold increased risk of mortality, with an adjusted hazard ratio of 1.90 (95% CI 1.34-
2.70). 

In an explorative case-control study (Study II), we furthermore suggest that cancer may be a 
contributing factor to the poor prognosis in these patients, showing a significant prevalence of 
underlying cancer among ischemic stroke patients with high troponin elevations. Plasma 
analyses were strongly supportive of a hypercoagulable state in these patients, and 
histopathological investigations revealed widespread arterial microthrombi in several organs 
including the heart. Neutrophil activation, with the release of highly pro-coagulant 
extracellular chromatin, referred to as neutrophil extracellular traps (NETs), has recently 
been proposed to play a central role in cancer-associated venous thromboembolism. We 
therefore proceeded to investigate the role of NETs in the cancer-associated hypercoagulable 
state seen in the ischemic stroke patients with high levels of plasma troponin as well as an 
underlying malignancy. As with markers of coagulation, plasma markers of NETs were 
significantly elevated in these patients, and there were significant positive correlations 
between the two. Histopathological investigations further supported the role of NETs in the 
thrombotic state by immunodetection of NET markers in arterial microthrombi. To assess a 
circulating NET burden in these patients, a novel ELISA-based assay to quantify the NET-
specific marker H3Cit in plasma was developed, and subsequently standardized and 
methodologically validated (Study III) revealing a high specificity, precision and stability of 
the assay. 

These results support cardiologic work-up and more aggressive prevention measures in stroke 
patients with troponin elevation. They furthermore suggest that an underlying cancer should 
be considered in ischemic stroke patients with unexplainably high plasma levels of troponin. 
Finally, we link this hypercoagulable state to NETs, and therefore encourage further studies 
to explore whether markers of NETs could serve as novel diagnostic and prognostic tools in 
the setting of cancer-associated arterial thrombosis. To this end, we suggest a novel ELISA-
based assay to quantify the NET-specific marker H3Cit in plasma. 
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1 INTRODUCTION 
The cardiac biomarkers troponin I and T are specific indicators of myocardial injury. As 

such, they are essential in the diagnosis of myocardial infarction (1), but are also known to be 

elevated in a portion of patients with acute stroke (2). Most studies report an association 

between troponin elevation in acute ischemic stroke and poor short-term outcome. However, 

although troponin elevation reflects myocardial injury, it does not reveal the etiology, and 

multiple mechanisms have been proposed to play a role. Although the current AHA/ASA 

guidelines for the early management of patients with acute ischemic stroke recommend 

assessment of cardiac biomarkers in all ischemic stroke patients (3), this is routine in far from 

all stroke centers. Furthermore, there are no established guidelines on how to interpret 

troponin elevation in ischemic stroke, or how these patients should be treated and followed-

up. Further knowledge of the different pathomechanisms could lead to new insights as to how 

these patients should be handled. The work in this thesis explores clinical characteristics and 

prognosis in ischemic stroke patients with troponin elevation, with a focus on the previously 

unrecognized contribution of cancer and neutrophil activation.  

 

1.1 THE TROPONIN COMPLEX 

The troponin protein complex is a regulatory protein controlling the calcium-mediated 

interactions between actin and myosin in striated muscle. It consists of three subunits; C, I 

and T. Unlike cardiac troponin C (cTnC), which is identical to the troponin C expressed in 

skeletal muscle, troponin T (TnT) and I (TnI) are specific to the heart and thus play a central 

role in the diagnosis of myocardial infarction (1). The half-life of TnT and TnI in the blood is 

2 hours (4), they appear in blood 3-6 hours after myocardial injury, peak after 12-24 hours 

and return to baseline after 7-10 days (5). The majority of TnI and TnT are structurally bound 

in the 3-unit complex (troponin I, T and C), and the degradation of the myofibril in myocyte 

damage results in a slow release of TnI and TnT over many days (6). A smaller portion; 6-8% 

for TnT and 3-4% for TnI, are free cytoplasmic components, which account for the detection 

of TnI and TnT in plasma during early stages of myocardial damage (6). Although the 

troponin release does not indicate the underlying mechanism of injury, it is considered to 

indicate acute or chronic myocardial damage (4). Measuring troponin serially is one way to 

distinguish between acute and chronic myocardial injury. Acute myocardial injury is more 

likely to present with dynamic patterns of plasma troponins (7), whereas chronic conditions 

present with stable elevations of troponin.  



 

2 

In recent years, high sensitive troponin assays have been developed, both for troponin I 

(hsTnI), and troponin T (hsTnT). These high-sensitivity assays have a substantially higher 

sensitivity than the conventional assays, allowing measurement of TnI and TnT in ng/l rather 

than ųg/l. However, although they have proven superior in diagnosing acute coronary 

syndrome (ACS) (8) by detecting even minor myocardial damage, they also pose increasing 

dilemmas in interpreting elevations in conditions other than ACS.  

 

1.2 TROPONIN ELEVATION IN ACUTE ISCHEMIC STROKE 

1.2.1 Prognostic significance 

It has long since been known that acute stroke may be followed by electrocardiographic 

(ECG)-changes as well as elevation of different cardiac proteins in plasma (9, 10). One of the 

first studies on troponin elevation in ischemic stroke patients was published 2000 by James et 

al (11), reporting a three-fold increased risk of in-hospital mortality as well as a two-fold 

increased risk of discharge to institutional care if TnT > 0.1 ųg/l. The prognostic value of 

troponin elevation in ischemic stroke patients has since then been confirmed by several 

studies, the three largest to date by Peddada et al (12) comprising 1,145 ischemic stroke 

patients (OR 4.28, 95% CI 2.40-7.63, of in-hospital mortality if hsTnI > 0.12 ng/ml), Scheitz 

et al (13) comprising 1,016 ischemic stroke patients (RR 2.3, 95% CI 1.1-4.7, of in-hospital 

mortality in patients with dynamic hsTnT elevations), and Lasek-Bal et al (14) comprising 

1,068 first-ever ischemic stroke patients  (RR 3.05, 95% CI 1.65-5.65, for 30 days mortality if 

hsTnI > 0.014 ng/ml). Other studies have, however, reported on the lack of association 

between troponin elevation and an increased mortality (15-18); but these studies were 

smaller, and the conflicting results may be due to different assays, cut-off levels and inclusion 

criteria. The pooled analysis of 15 studies by Kerr et al in 2009 (2), including 2,901 stroke 

patients, revealed an independent association between troponin elevation and mortality (OR 

2.9; 95% CI 1.7–4.8), suggesting that elevated troponins in acute stroke is indeed associated 

with an increased risk of mortality. Although few studies report cause of death, the study by 

Di Angelantonio et al (19), comprising 330 ischemic stroke patients with a follow-up of six 

months, showed that 2/3 of the deceased patients in the group with high elevations of 

troponin (TnI > 0.4 ng/mL) died of cardiac deaths in contrast to 1/3 of the deceased patients 

in the group with normal levels of troponin (TnI<0.1 ng/mL). Likewise, the recent study by 

Stahrenberg et al (20) showed an association between troponin elevation in ischemic stroke 

patients and cardiovascular event and mortality. Most studies, however, explored the short-
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term outcome (mortality or functional outcome), leaving limited knowledge of the long-term 

prognosis of these patients. We therefore sought to determine the long-term prognosis of 

stroke patients with troponin elevation in Study I. 

 

1.2.2 Pathophysiology 

The majority of stroke patients have substantial comorbidity, among them renal insufficiency 

and congestive heart failure (CHF). Renal insufficiency and CHF are recognized causes of 

stable and chronic troponin elevation (21, 22), and may thus be important confounders 

contributing to elevated troponin levels in acute stroke patients. Other suggested causes are 

precedent atrial fibrillation (AF) (23), concomitant ACS (24), and a neurologically induced 

myocardial injury due to sympathoadrenal activation (16). These previously proposed 

mechanisms are summarized in Figure 1, and discussed in more detail below. 

AF is a common source of cardiac emboli to the brain, causing 20-40% of all ischemic stroke 

events (25, 26), and patients with AF have a 5-fold increased risk of developing an ischemic 

stroke (26). AF is also associated with troponin elevation as a result of a “demand ischemia” 

with myocardial stress due to increased and variable heart rates (27-29). Several recent 

studies have reported on a higher prevalence of new onset AF (diagnosed on admission or 

during in-hospital cardiac monitoring) in ischemic stroke patients with troponin elevation (23, 

30-32), with a four to six times increased risk of the detection of new onset AF. The largest 

study by Scheitz et al, 2015 (30), comprising 1,228 ischemic stroke patients without known 

AF on admission, provided an optimal cut-off value of hsTnT > 17 ng/L to predict new onset 

AF. Likewise, troponin elevation in patients with known AF has been associated with an 

increased risk of developing stroke. A sub study of cardiac biomarkers in over 6,000 patients 

with AF in the clinical trial Randomized Evaluation of Long-Term Anticoagulation Therapy 

(RE-LY) (33) found an independent association between TnI levels and the risk of stroke, 

with an almost doubled risk in the highest TnI group (≥0.040 ųg/L). In line with this, the 

Apixaban for Reduction in Stroke and other Thromboembolic Events in Atrial Fibrillation 

(ARISTOTLE) trial (34), found an almost 2-fold increased risk for stroke or systemic 

embolism in the highest hsTnI group (≥10.1 ng/L). These large clinical trials, however, 

studied patients with AF and at least one additional risk factor for stroke, as all patients were 

treated with anticoagulants. 

Type 1 acute myocardial infarction (AMI), i.e. thrombus formation on acute ruptured 

atherosclerotic plaques or embolization, may be another cause of troponin elevation in 
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ischemic stroke patients, supported by the similar risk factors and the high prevalence of 

coronary atherosclerosis in patients with cerebral infarction (35). Indeed, several studies 

report significantly higher incidence of ST segment deviations suggestive of acute myocardial 

ischemia on admission electrocardiography (ECG) in ischemic stroke patients with troponin 

elevation (2, 19, 24, 36-39), and the above mentioned pooled analysis of 15 studies by Kerr et 

al (2) reported a 3-fold increase in the prevalence of ECG changes suggestive of myocardial 

ischemia in stroke patients with troponin elevation (OR 3.03; 95% CI 1.49– 6.17). The study 

by Raza et al (40), comprising 200 ischemic stroke patients, showed an association with the 

diagnosis of non-fatal AMI and TnI>0.4 ug/L (41.2 vs. 3.3 %, p<0.001). A few studies also 

show an association between troponin elevation and echocardiographic wall motion 

abnormalities in these patients (31, 38, 39, 41), although only Song et al (38) restrain the 

definition of echocardiographic abnormality to focal wall hypokinesia suggestive of AMI. 

Two recent studies investigated coronary vessel status in these patients, presenting 

contradicting results; Mochmann et al, 2016 (42), and Zeus et al, 2016 (43). The case-control 

study by Mochmann et al compared coronary angiographic findings in 29 patients with acute 

ischemic stroke and hsTnT elevation with age- and sex-matched patients presenting with non-

ST-segment-elevation ACS (NSTE-ACS) with similar baseline hsTnT levels. Despite the 

angiographic evidence of a coronary culprit lesion in 25% of the acute ischemic stroke 

patients with troponin elevation, they were significantly less frequent than in patients with 

NSTE-ACS (80%), and half of the acute ischemic stroke patients with troponin elevation had 

no angiographic evidence of coronary artery disease (CAD). On the contrary, however, the 

cohort study by Zeus et al, including 84 consecutive ischemic stroke patients with troponin 

elevation and abnormal ECG and/or clinical symptoms of ischemia found that hsTnT ≥ 0.03 

ng/ml was associated with culprit lesion CAD with a RR of 1.5 (95% CI 1.1-2.2). However, 

the study design, troponin assays, and control groups differed between these studies, as did 

patient inclusion criteria, which may explain the discrepancies. Furthermore, stroke related 

severe infections, respiratory failure and pulmonary embolism (PE) have been related to 

myocardial injury due to impaired oxygen supply (44). 

Insular areas of the brain play a central role in controlling the autonomic network and the 

neural outflow of catecholamines to the heart. An exaggerated catecholamine surge due to 

lesions in these areas could result in a stress cardiomyopathy (10, 16, 45-49), rendering a 

generalized myocytolysis (50-53), as opposed to a localized infarction due to acute coronary 

artery thrombus formation. Elevated levels of catecholamines activate calcium channels 

resulting in a metabolic disturbance with hypercontraction of sarcomeres, a reduced muscle 
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contraction and a subsequent cardiac dysfunction. An increase in catecholamine levels could 

also result in platelet activation (54), tachyarrhythmia, hypertensive crisis and coronary 

vasoconstriction resulting in myocardial injury with elevated levels of plasma troponin. In 

support of this are several studies revealing data on a higher prevalence of insular lesions in 

stroke patients with troponin elevation (38, 49, 55). Furthermore, Barber et al (16) reported 

an association between elevated troponin levels and elevated serum epinephrine, although the 

levels of epinephrine were modest, and within the reference range of <0.4 nmol/L. Some of 

the myocardial damage in acute ischemic stroke may thus be due to a direct stroke-induced 

neurogenic myocardial injury, especially in patients with pre-existing coronary stenosis, 

contributing to a proportion of the troponin elevations. 

 

Figure 1. Previously proposed mechanisms behind troponin elevation in patients with acute 
ischemic stroke. 
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1.3 CANCER-ASSOCIATED THROMBOSIS 

Despite recent data on cancer emerging as a previously underestimated risk factor for 

ischemic stroke (56-59), the contribution of an underlying malignancy to troponin elevation 

in these patients remains unrecognized. Due to the unexpected occult malignancy found at 

autopsy of one of the first included stroke patients with high levels of plasma troponin in 

Study II (described in Paper II), and the subsequent findings of known or occult 

malignancies in several ischemic stroke patients with troponin elevation, we explored 

possible pathomechanisms leading to a cancer-induced hypercoagulable state. Following is 

therefore a brief summary of the current knowledge of cancer-associated thrombosis. 

Armand Trousseau was the first to describe the link between cancer and thrombosis in 1865 

(60), and venous thromboembolism (VTE) has since then emerged as a well known 

complication in several malignancies. Cancer patients have been reported to have a 4-7-fold 

increased risk for VTE (61, 62), and VTE is associated with substantially increased morbidity 

and mortality in cancer patients (63-65). Moreover, unprovoked VTE may be the earliest sign 

of cancer (66). The majority of prior data on cancer-associated thrombosis revolves around 

VTE, while cancer-associated arterial thrombosis, such as ischemic stroke and myocardial 

infarction, is less investigated. Interestingly, however, an autopsy study over three decades 

ago, comprising 3,426 cancer patients (excluding intracranial neoplasms), reported 

cerebrovascular lesions in as many as 14.6% of the patients (67). Recent studies are now 

reporting a higher prevalence of prior cancer in ischemic stroke patients than in the general 

population (56), as well as an increased risk of recurrent stroke and cardiovascular 

mortality among stroke patients with a history of cancer (59). A Swedish large nationwide 

follow-up study also showed that several malignancies were associated with an increased 

risk of both ischemic stroke (68) and ACS (69) during the first 6 months after diagnosis. 

Although common risk factors, such as smoking, predisposes patients to both cancer and 

ischemic stroke, several recent studies show an overrepresentation of cryptogenic and 

embolic stroke, with infarcts in multiple vascular territories, as well as elevated d-dimer 

levels in stroke patients with an underlying cancer (70-72). These findings suggest a causal 

relationship, such as a cancer-induced hypercoagulable state, rather than merely a 

coincidence.  

The mechanisms by which cancer drives coagulation are not fully clarified, but several 

pathways have been proposed to play a role, among them tumor cell tissue factor (TF) and 

tumor-derived tissue factor-positive microparticles (TF+MPs) (73-75). Many tumors express 

TF (76), a transmembrane glycoprotein that functions as the primary initiator of the 
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coagulation cascade. Under normal conditions, TF is not detectable in the blood, but tumor-

released TF+MPs in the circulation could contribute to a hypercoagulable state through 

pathological activation of the extrinsic pathway of the coagulation cascade. Soluble P-selectin 

(77) and platelet activation (78) have also been proposed to play a role, perhaps mediated by 

mucin-secreting carcinomas (79, 80), contributing to platelet-rich microthrombi. In addition, 

emerging data now suggests a role of neutrophil activation, with the release of highly pro-

coagulant chromatin (81-83), referred to as neutrophil extracellular traps and discussed 

below, in cancer-associated thrombosis. 

 

1.4 NEUTROPHIL EXTRACELLULAR TRAPS 

Upon activation, neutrophils can release extracellular chromatin structures referred to as 

neutrophil extracellular traps (NETs). In light of the, at the time just published, data on NETs 

contributing to cancer-associated thrombosis (81), Study II explored and found results 

suggestive of a cancer-induced NET burden in the above mentioned stroke patients with 

troponin elevation and an underlying cancer. A brief introduction to NETs is therefore also 

requested. 

NETs were first described over a decade ago as an antimicrobial response in which activated 

neutrophils release their chromatin (nuclear DNA in complex with histones) into the 

extracellular space (84). Upon neutrophil activation with the NAD phosphate (NADPH) 

oxidase-dependent production of reactive oxygen species (ROS), antimicrobial granular 

proteases and the enzyme peptidylarginine deiminase 4 (PAD4) enter the nucleus (85). Once 

intra-nuclear, PAD4 converts positively charged peptidylarginine residues to uncharged 

peptidylcitrulline on histone H3, causing a loss of ionic interactions leading to chromatin 

decondensation (86), the initial step of NETosis. The decondensated chromatin is 

subsequently extruded into the extracellular space (figure 2). Coated with antimicrobial 

granular proteases, such as neutrophil elastase (NE), myeloperoxidase (MPO) and cathepsin 

G, these web-like chromatin structures, i.e. NETs, were shown to trap and kill microbes (84). 

This oxidant-dependent event, referred to as “lytic” or “suicidal” NETosis, takes up to 3-4 

hours, and requires lytic cell death of the neutrophil. Another distinct form of NETosis, 

termed “vital NETosis” has also been described, involving budding of microvesicles extruded 

into the extracellular space where they rupture and expel NETs. This very rapid process takes 

5-60 minutes, is oxidant-independent, and does not require neutrophil lysis, with preservation 

of neutrophil function including phagocytosis and chemotaxis (87). 
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Figure 2. NETosis. A - Nucleosomes are tightly packed DNA segments wound in sequence around 

eight histone protein cores, further organized to form condensed chromatin in the nucleus. B - Upon 

neutrophil activation, antimicrobial granular proteases and peptidylarginine deiminase 4 (PAD4) enter 

the nucleus, and PAD4 citrullinates the positively charged arginine residues on histone H3 to 

uncharged citrullines, H3Cit. C - Reducing the strong positive charge of histones causes a weakening 

in the histone-DNA binding, leading to chromatin decondensation. D - The decondensated chromatin, 

comprising DNA, histones and antimicrobial granular proteases (i.e. NETs) is subsequently extruded 

into the extracellular space.  This schematic depicts the “suicidal” form of NETosis. 

 

Despite the beneficial role of NETs in eliminating pathogens as part of the innate immune 

system, disordered regulation and excessive formation of NETs may be harmful to the host. 

Indeed, NETs are implicated in the pathophysiology of a growing number of non-infectious 

conditions such as autoimmune diseases (88, 89), diabetes mellitus (90, 91), pulmonary 

disease (92) and thrombosis (93). The mechanisms by which NETs promote thrombosis are 

not entirely known, but NETs have been proposed to provide scaffolds for platelets, red blood 

cells, TF (94, 95), and plasma proteins promoting and stabilizing thrombi, such as von 

Willebrand factor (VWF), fibronectin, and fibrinogen (96). Nucleosomes and the NET-

associated proteases have also been shown to enhance coagulation by suppressing tissue 

factor pathway inhibitor (TFPI) (97), and histones have been proposed to activate platelets, 

trigger VWF secretion (98) and increase plasma thrombin generation by impairing 

thrombomodulin (99). Furthermore, nucleic acids have been proposed to activate factor XII 

(100) in the intrinsic pathway, activating coagulation. In light of these pro-thrombotic 

abilities, NETs have been studied in a variety of thrombotic diseases, such as VTE (96, 98, 

101-103), ACS (104-106) and ischemic stroke (107-111). 
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The role of inflammation in cancer is generally accepted (112), although the interplay 

between the immune system and cancer is far from fully understood. A role of NETs in 

cancer biology is now emerging, and recent studies suggest a cancer-induced NETosis 

contributing to both tumor progression (113-115), metastasis (116-118), thrombosis (81, 83, 

115) and multiple organ failure (82) in cancer. The mechanisms by which cancer induces 

NETosis are under investigation, but cancer-released granulocyte colony-stimulating factor 

(G-CSF) has been shown to prime neutrophils toward NETosis, and G-CSF neutralizing 

antibodies have been shown to hamper NETosis (81, 82). These experiments were, however, 

conducted in murine models of cancer, and little is known of the mechanisms behind cancer-

induced NETosis in human. 

 

1.4.1 Detection and quantification of NETs 

Despite emerging research on the mechanisms leading to NETosis, there is no golden 

standard marker for NETs, and available methods for evaluating NETs are hampered by lack 

of specificity and objective quantification. The majority of studies conducted to assess NETs 

in various conditions rely largely upon microscopic observations of in vitro stimulation of 

neutrophils and subsequent NET formation assessing the susceptibility of neutrophils to 

undergo NETosis, a method that is limited by the difficulties in quantification and lack of 

objectivity. Other studies have measured plasma levels of NET-associated markers such as 

cell free DNA (cfDNA), nucleosomes, and the NET-associated enzymes NE and MPO by 

commercially available enzyme-linked immunosorbent assay (ELISA) kits. However, these 

markers can be released in events unrelated to NETosis, such as tissue injury, apoptosis and 

necrosis resulting in cfDNA, and neutrophil and/or macrophage activation releasing MPO 

and NE without undergoing NETosis. These data should therefore be interpreted with 

caution. A capture ELISA to quantify complexes of DNA and neutrophil-derived MPO has 

also recently been established (89, 119, 120). However, MPO is a highly positively charged 

secreted protein (121), which can bind to the negatively charged cfDNA released in plasma 

following tissue injury, thus questioning its specificity as a NET marker. 

Citrullinated histone H3 (H3Cit) is considered a NET specific marker due to the critical 

implication of PAD4 and histone citrullination in NET formation (86, 122). Several studies 

have therefore demonstrated the presence of H3Cit by immunostaining, which, however, still 

does not surpass the dilemmas of objectivity and quantification. With the intention to increase 

objectivity and to obtain a quantification of circulating NETs, a novel sandwich ELISA was 
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developed to measure the NET specific marker H3Cit in plasma in Study II. The H3Cit 

ELISA was then optimized and methodologically validated in Study III. 
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2 AIMS 
The overall aim of this thesis was to explore patient characteristics and possible 

pathomechanisms behind troponin elevation in patients with acute ischemic stroke. As 

mentioned above, the unexpected findings of known and occult malignancies among the 

ischemic stroke patients with troponin elevation in Study II lead us to focus our 

investigations on an exploration of cancer-associated arterial thrombosis and a cancer-

induced NET burden. 

Specific aims: 

• To determine patient characteristics of patients with acute stroke and troponin 

elevation (Study I). 

• To determine the long-term prognosis of patients with acute stroke and troponin 

elevation (Study I). 

• To explore possible mechanisms behind troponin elevation in patients with acute 

ischemic stroke (Study II). 

• To elucidate the contribution of NETs in cancer-associated arterial microthrombosis, 

presenting as ischemic stroke with troponin elevation (Study II). 

• To further develop and methodologically validate a novel enzyme-linked 

immunosorbent assay to quantify the levels of the NET specific marker citrullinated 

histone H3 (H3Cit) in human plasma (Study III). 
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3 MATERIALS AND METHODS 

3.1 PATIENTS AND STUDY DESIGN 

3.1.1 Study I (paper I) 

To determine patient characteristics and five-year prognosis in patients with acute stroke and 

troponin elevation on admission, a retrospective cohort study was conducted including 247 

patients with acute stroke. The study base comprised all consecutive patients diagnosed with 

acute ischemic stroke or intracerebral bleeding (ICB) admitted to Danderyd Hospital < 7 days 

of symptom onset between January 1, 2005, and January 1, 2006 (n=725), and was obtained 

retrospectively from the Swedish national stroke register, Riksstroke (123). Only the first 

event was included in the study in the event of a recurrent stroke during the study period 

(n=13). TnI values were obtained from hospital records, and patients without a TnI registered 

on admission were excluded (n=464). Patients were divided into three groups according to 

the TnI value on admission; <0.03 µg/L, 0.03-0.11 µg/L and > 0.11 µg/L. Primary endpoint 

was all-cause mortality within a five-year period.  

Demographic data, comorbidities (prior acute ischemic stroke, transient ischemic attack 

(TIA) or ICB, CHF, CAD, hypertension, diabetes mellitus, and cancer), and medication on 

admission and at discharge were collected from Riksstroke (123), the Swedish Cancer 

Registry (124), and hospital records. A diagnosis of hyperlipidemia was considered present if 

patients received lipid-lowering medication on admission. AF was determined by history or 

new diagnosis of AF during the hospital stay, and renal insufficiency was defined as plasma 

creatinine > 120 umol/L on admission. Mortality data, cause of death (divided into four 

categories: stroke, cardiac, cancer, and other causes) and morbidity (divided into four 

categories: recurrent stroke, cardiovascular event, cancer, and other events) during the five-

year follow-up were obtained from the National Cause of Death Registry (125) and the 

National Patient Registry (126). 

A sub-analysis was conducted comparing the excluded group of patients due to missing TnI 

on admission with the study group. Age, sex, comorbidity (prior stroke, hypertension, AF and 

diabetes mellitus), medication on admission and at discharge, and level of consciousness 

determined by RLS (Reaction Level Scale) were obtained from Riksstroke. 
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Figure 3. Flowchart of participants in Study I.  

 

3.1.2 Study II (paper II and III) 

To explore possible mechanisms behind troponin elevation in patients with acute ischemic 

stroke, a prospective pilot case-control study was performed including ischemic stroke 

patients admitted to the stroke unit at Danderyd Hospital, Stockholm, between April 2012 

and December 2014. Inclusion criteria were 1) ischemic stroke confirmed by cerebral 

imaging or ischemic stroke with new focal neurological deficits and 2) symptom onset < 48 

hours before admission. Exclusion criteria were acute cardiovascular event (ACS or ischemic 

stroke) within four weeks of symptom onset. Patients with hsTnT > 40 ng/L (ref value < 15 

ng/L) were recruited as case patients (n=12), patients with hsTnT ≤ 15 ng/L were recruited as 

control patients (n=19), and healthy volunteers (n=10) were recruited as reference for plasma 

analyses. The cases and controls matched according to sex and age within a five-year 

interval. Inclusion was restricted to time periods with available research personnel, during 

which ischemic stroke patients with the highest plasma hsTnT value on admission were 

selected to the case group. The patients were compared with regard to patient characteristics, 

clinical investigations (computed tomography (CT) brain imaging, echocardiograms, ECGs), 

laboratory analyses, including markers of coagulation and NETs, as well as autopsy and 

histopathological investigations in deceased patients. Demographic data and comorbidity 

were obtained from medical records and patient history documented on admission.  

MISSING&DATA&
(no$TnI$taken$on$
admission$n=461)$

STUDY&GROUP&
(247$stroke$pa8ents)$

STUDY&BASE&
(721$stroke$pa8ents)$

MISSING&DATA&
(recurrent$stroke$n=13)$
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3.1.3 Study III (paper IV) 

Due to the lack of objective and quantitative methods to assess a systemic NET burden, we 

optimized and methodologically validated a novel ELISA-based assay to quantify the levels 

of the NET-specific marker H3Cit in human plasma.  

Plasma samples were taken from a previously conducted human model of inflammation (127) 

with the hypothesis that inflammation would induce a systemic NET formation resulting in 

elevated and detectable levels of H3Cit in plasma, rendering them suitable for an assay 

validation. For this purpose, we chose samples taken prior to and 3-4 h after receiving 

intravenous injection of lipopolysaccharide (LPS; 2 ng per kg of body weight Escherichia 

coli endotoxin, Lot H0K354 CAT number 1235503, United States Pharmacopeia, Rockville, 

MD, USA). 

The assay uses an anti-histone antibody as capture antibody and an anti-histone H3 citrulline 

antibody for detection (figure 4), with a standard curve using in vitro PAD4-citrullinated 

H3Cit (128). The concentrations of the standard curve, incubation times and dilutions of 

samples were optimized in preliminary experiments.  

 

 

Figure 4. Schematic of the H3Cit ELISA procedure. A - Anti-histone Biotin (the capture antibody) is 

coated to Streptavidin pre-coated wells during a first incubation. Samples are pipetted into the wells 

and histones bind to the capture antibody during a second incubation. B - After washing, Anti-H3Cit is 

added to the wells, binding to immobilized citrullinated histone H3 (H3Cit), but not to non-citrullinated 

histone H3, during a third incubation. C - In a fourth incubation, an HRP conjugated anti-rabbit 

antibody is added and binds to the Anti-H3Cit, after which TMB is added for detection. 

H3Cit&
An)*H3Cit&

An)*rabbit&
&

HRP&
&

TMB&
&

Streptavidin&coated&well&

An)*histone&
Bio)n&

A& B& C&
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The assay was evaluated for linearity, limit of detection, stability, specificity, effect of the 

matrix, and precision. Trueness could not be determined as there is no available assay or 

reference analyte of known concentration for comparison. 

To determine the suitable linear interval we interpolated the detected O.D. from serial 

dilutions of H3Cit to different regressions. The 95% confidence interval (95 % CI) was 

considered, and a linear interval was defined as the linear section of the best-fit standard 

curve. 

The limit of detection was approximated from the intersection of the lower asymptote of the 

upper 95% CI with the 4PL fit of the standard curve. 

Stability was assessed by comparing the detector response of three different batches of 

frozen standard (H3Cit), prepared on three different days, as well as comparing a standard 

prepared from freshly citrullinated H3Cit with a standard prepared from a frozen aliquot of 

H3Cit.  

A standard curve was prepared with histone H3 incubated under the same conditions as our 

standard preparation of H3Cit, but without PAD4, rendering non-citrullinated histones. To 

assesse specificity for H3Cit, we compared the detection response to this standard curve with 

the detection response to our standard curve with H3Cit. 

Recovery and the effect of the matrix were assessed by spiking known concentrations (625, 

312, 156, 78, 38, 19 and 10 ng/ml) of in vitro PAD4-citrullinated H3Cit in plasma samples 

from four healthy volunteers. 

To assess precision, the assay was performed on six replicates of eight samples (1-8) within 

the same assay-run (intra-assay), and on duplicates of the same eight samples in four different 

assay runs performed on four different days (inter-assay). Precision was expressed by the 

intra- and inter-assay coefficient of variation (%CV), defined as the ratio between standard 

deviation and mean value.  

 

Study individuals in Study II and III gave written informed consent for the use of their 

blood samples, and all studies complied with the Declaration of Helsinki. The studies were 

approved by the ethics review board in Stockholm, Sweden (DNR 2012/1416-31/1 for Study 

I, DNR 2011/1310-31/3, 2014/291-32 and 2014/1898-32 for Study II and DNR 2014/1946-

31/1, 2015/1533-31/1 for Study III).  
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3.2 CLINICAL INVESTIGATIONS 

In Study I and II, all patients received CT brain imaging. Stroke etiology was evaluated by a 

senior stroke physician according to criteria of the Trial of Org 10172 in Acute Stroke 

Treatment (TOAST) (129) which includes large-artery atherosclerosis, cardioembolism, 

small artery occlusion, other etiology and undetermined etiology (cryptogenic stroke). In 

Study II, stroke localization and distribution was also determined by a senior 

neuroradiologist blinded to clinical details. Stroke severity was determined using the Na- 

tional Institute of Health Stroke Scale (NIHSS) by physician on admission. 

Twelve-lead ECG on admission was interpreted by a senior cardiologist blinded to clinical 

data on all patients in Study I and II. ECG alterations were defined (according to the 

modified Minnesota code) as left- or right bundle branch block, T-wave inversion of > 0.1 

mV, prolonged QTc (> 0.45 s) and ST segment depression or elevation of > 1 mm, with the 

exception of ST elevation in V2 or V3, where > 2 mm was required. Transthoracic and/or 

transesophageal echocardiography and cardiac telemetry were performed on patients in 

Study II. 

 

3.3 LABORATORY DATA 

3.3.1 Blood sampling 

Plasma samples used in Study II and III were prepared from citrated whole blood following 

immediate centrifugation for 20 minutes at 2000 x g in room temperature after which they 

were stored at -800C until further analyses. 

3.3.2 Laboratory analyses 

Plasma concentrations of TnI (Study I) were analyzed on admission using fluorimetric 

immunoassay (Stratus CS STAT Fluorometric Analyser, Dade Behring, Deerfield, IL, 

USA) and plasma concentrations of hsTnT (Study II) were analyzed on admission using the 

ECLIA electrochemiluminescense immunoassay system (Roche Diagnostics Scandinavia 

AB, Bromma, Sweden). Routine laboratory data were collected from hospital records (Study 

I and II).  

Plasma markers of coagulation and NETs were analysed in Study II. Thrombin-antithrombin 

complex (TAT), soluble P-selectin (sP-selectin), cfDNA, G-CSF, and MPO were analyzed 

with human TAT ELISA (Enzygnost TAT mikro, Siemens), human sP-selectin/CD62P 



 

18 

Quantikine ELISA (R&D Systems), Quant-iT PicoGreen dsDNA assay (Invitrogen), human 

G-CSF Quantikine ELISA (R&D Systems) and human myeloperoxidase Quantikine ELISA 

kit (R&D Systems), according to the manufacturer’s instructions. H3Cit was detected using 

the tailor-made ELISA-based assay further optimized and validated in Study III. These 

analyses were performed in the Wagner Laboratory, Boston Children’s Hospital, with the 

exception of TAT which was analysed at the Department of Clinical Pharmacology, 

Karolinska University Hospital. 

Additional plasma analyses (fibrinogen, d-dimer, cardiolipin antibodies, antinuclear 

antibodies (ANA), anti-neutrophil cytoplastic antibodies (ANCA), MPO antibodies, GBM 

(Glomerular Basement Membrane) antibodies, and beta2-glycoprotein antibodies), as well as 

number and phenotypes of circulating microparticles (MPs) were analyzed in one of the 

patients in Study II (presented in paper II). MPs were analyzed with flow cytometry as 

described elsewhere (130). Briefly, samples were incubated with lactadherin-FITC (MFG-E8, 

Haematologic Technologies, Essex Junction, VT, USA) and CD142-PE (TF, Clone HTF-1, 

BD, NJ, USA). MPs were incubated with anti-CK18 FITC (Fisher Scientific, Gothenburg, 

Sweden). All samples were incubated in dark for 20 min and later fixated with BD-Cellfix. 

MPs were gated according to size (<1.0 µm) and the exposure of phosphatidylserin (PS), TF 

and CK-18. 

 

3.4 HISTOPATHOLOGICAL INVESTIGATIONS 

Autopsies and immunohistochemistry were performed at the Division of Pathology, 

Danderyd Hospital, Stockholm. Specimens obtained at autopsies in Study II were stained 

with standard hematoxylin & eosin, Luxol fast blue for degenerated neural tissue and 

Ladewigs trichrome for fibrin. Immunohistochemistry was performed on specimens 

containing thrombi. The antibodies used were anti-histone H3 (citrulline 2+8+17) antibody 

(Abcam, Cambridge, UK) for H3Cit, CK18 antibody (DAKO, Copenhagen, Denmark) to 

reveal epithelial tissue, tissue factor polyclonal antibody (Fisher Scientific, Gothenburg, 

Sweden), and prostate-specific antigen (PSA) antibody (DAKO, Copenhagen, Denmark) to 

reveal tissue of prostate origin. Confocal immunofluorescence microscopy was performed at 

the Wagner Laboratory, Boston Children’s Hospital, with antigen retrieval in sodium citrate 

buffer (10 mM, pH 6.0) using microwave after deparaffinization. The sections were 

permeabilized with 0.1% Triton X-100 on ice for 10 minutes. After blocking with 3% bovine 

serum albumin (BSA) for one hour at 37oC, slides were incubated overnight at 4oC with 
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sheep polyclonal anti-VWF (Abcam, ab11713, 1:250), mouse monoclonal anti-human 

smooth muscle actin (anti-SMA, Dako, M0851, 1:100) and rabbit polyclonal anti-H3Cit 

(Abcam, ab5103, 1:1000) in antibody dilution buffer (0.3% BSA, 0.05% Tween-20) and then 

with Alexa Fluor-conjugated secondary antibodies (Invitrogen, 1:1500) for two hours at room 

temperature after washes in phosphate-buffered saline. DNA was stained with Hoechst 33342 

(1:10000). Images were acquired with Olympus Fluoview software using the Olympus IX 81 

confocal microscope. 

 

 

3.5 STATISTICAL ANALYSES 

In Study I, a power calculation was based on previous results indicating a 40 % increase in 

one-year mortality among patients with acute stroke and troponin (TnT) elevation (131) 

compared to patients with acute stroke without troponin elevation. Assuming an approximate 

20% prevalence of troponin elevation in stroke patients, a sample size of 300 patients would 

detect a difference of 20 % in mortality between the groups, with a power set to 80 % and the 

two-sided type I error to 5 %. Descriptive statistics were presented as means and proportions. 

Differences in means were tested by one-way analyses of variance, and differences in 

proportions were tested by chi-square test. Baseline characteristics were also tested for two 

levels of TnI: normal (TnI<0.03 mg/l) and elevated (TnI≥0.03 mg/l). Student t test was used 

for means and z test for proportions. Multiple Cox-regression was used to examine the 

association between troponin elevation (TnI>0.03 µg/L) and mortality, after adjusting for 

age, CHF, AF, renal insufficiency, treated hyperlipidemia, and stroke severity. Survival 

analysis was also performed to compare mortality between the three groups with TnI levels of 

<0.03 µg/L, 0.03-0.11 µg/L and > 0.11 µg/L. Survival times were censored five years after 

index stroke, and Kaplan-Meier curves were generated to illustrate the association between 

troponin level and mortality.  

Study II was designed as a descriptive pilot study whereby no power calculation of sample 

size was conducted. Statistical methods were chosen to fit small numbers of observations and 

non-normal distributions. Categorical variables were presented as proportions and compared 

with Fisher’s exact test. Continuous variables were presented as medians with interquartile 

ranges  (IQR) and compared with the Mann-Whitney U test. Significance of correlation was 

analyzed with Spearman’s rank correlation. 
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In Study III, O.D. was fitted versus nominal log concentration applying a sigmoidal 4PL 

regression to the calibration curve. 4PL curves were compared by F-test. The variation of 

intra- and inter-assay experiments were presented as CV, defined as the ratio of the SD to the 

mean. 

Statistical analyses were performed using IBM SPSS Statistics version 22 (Study I), STATA 

12.1 software (Study II) and GraphPad Prism 6, GraphPad Software, Inc., La Jolla, CA, 

USA (Study III). 

A p-value < 0.05 was considered statistically significant in all studies. 
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4 RESULTS 

4.1 PATIENT CHARACTERISTICS (PAPER I) 

Of the 247 patients with acute stroke in Study I, 133 patients (54%) presented with TnI < 

0.03 µg/L (normal), 74 patients (30%) presented with TnI 0.03-0.11 µg/L (low elevation), 

and 40 patients (16%) presented with TnI > 0.11 µg/L (high elevation). Age, prior ischemic 

stroke, renal insufficiency, CHF, and stroke severity were associated with TnI levels > 0.03 

µg/L. Surprisingly, there was no significant difference in the rate of prior diagnosis of CAD 

or AF between the groups. Prior diagnosis of cancer was present in 20.2% of the entire study 

population, and the prevalence was higher in patients with TnI >0.03 µg/L, although the 

difference was not statistically significant (table 1). 

 

 

Table 1. Patient demographics on admission. Abbreviations: SD, standard deviation; TIA, transient 

ischemic attack; BP, blood pressure; NIHSS, National Institute of Health Stroke Scale. 

 

There were no differences in medications between the groups, with the exception of lipid-

lowering agents, which were less common in both groups with elevated TnI, and beta-

adrenoreceptor antagonists (beta-blockers) at discharge, which were significantly more 

!cTnI!normal
cTnI!low!
elevation

cTnI!high!
elevation

All!groups
Normal!vs!

elevated!cTnI

<0.03%µg/L%
N=133

0.03-0.11%µg/L%
N=74

>0.11%µg/L%%%%%%%%
N=40

p-value p-value

!!Age,!years!:!mean!±!SD 74.4%±%11.2 78.9%±%10.0 84.0%±%6.4 <0.001 <0.001
!!Female:!% 48.1 51.4 60.0 0.42 0.37

!!Prior!ischemic!stroke:!% 21.8 35.1 30.0 0.11 <0.05

!!Prior!TIA:!% 6.8 9.5 5.0 0.64 0.73

!!Prior!haemorrhagic!stroke:!% 0.0 2.7 0.0 0.10 0.13

!!Chronic!heart!failure:!% 7.5 20.3 15.0 <0.05 <0.05

!!Coronary!artery!disease:!% 18.8 29.7 22.5 0.20 0.12

!!Hypertension:!% 61.7 48.6 50.0 0.14 <0.05

!!Atrial!fibrillation:!% 33.8 43.2 47.5 0.20 0.08

!!Diabetes!mellitus:!% 16.5 21.6 10.0 0.28 0.83

!!Renal!insufficiency:!% 9.0 13.5 30.0 <0.01 <0.05

!!Hyperlipidemia:!% 25.6 20.3 5.0 <0.05 <0.05

!!Cancer:!% 15.8 25.7 23.1 0.26 0.10

!!BP!systolic:!mean!±!SD 162%±%29 167%±%33 153%±%36 0.10 0.65

!!BP!diastolic:!mean!±!SD 89%±%15 89%±%17 87%±%19 0.66 0.61

!!NIHSS!on!admission:!mean!±!SD 5.3%±%6.1 8.0%±%8.2 6.6%±%7.2 0.07 <0.05
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common in patients with TnI >0.03 µg/L. The rate of beta-blockers on admission did not, 

however, differ between the groups. 

There were no statistically significant differences between the groups with regard to stroke 

subtype, although there was a trend towards a higher prevalence of cardioembolic stroke if 

TnI >0.03 µg/L (37.7% vs. 26.3%, p value 0.055).  

The frequencies of left- or right bundle branch block, T-wave inversion, or prolonged QTc 

did not differ between the groups, but ST segment elevation or depression increased with 

increasing TnI values (9.0% if normal TnI, 14.9 % if low elevation of TnI, and 25.0 % if high 

elevation of TnI, p-value 0.03). There were, however, few recordings of chest pain on 

admission among patients in the entire study group (4%), not differing between the groups.  

Several routine blood tests were associated with TnI levels (table 2). The levels of C-reactive 

protein, leukocyte count, and serum creatinine on admission increased with increasing TnI, 

whereas haemoglobin levels decreased with increasing TnI. 

 

Table 2. Laboratory data on admission. Abbreviations: SD, standard deviation. 

 

No significant differences were detected between the excluded group (i e missing TnI value 

on admission) and the study group, with the exception of a higher rate of AF (35.7% vs. 

27.2%, p-value 0.02), and a lower level of consciousness (82.1 % vs. 90.2% fully conscious, 

p value 0.01) in the study group. 

. 

4.2 LONG-TERM MORTALITY (PAPER I) 

Among the 247 patients with acute stroke in Study I, 141 patients (57 %) died during the 

five-year follow-up. Over-all mortality increased with increasing TnI values, and the elevated 

risk for mortality prevailed throughout the 5-year follow-up (figure 5). 

!cTnI!normal
cTnI!low!
elevation

cTnI!high!
elevation

All!groups
Normal!vs!

elevated!cTnI

<0.03%µg/L%
N=133

0.03-0.11%µg/L%
N=74

>0.11%µg/L%%%%%%%%%
N=40

%%C9reactive!protein!9!mean!±!SD! (ref%<5.0%mg/L) 6.2%±%11.3 15.6%±%30.1 43.2%±%60.4 <0.001 <0.001

%%Leukocyte!count!9!mean!±!SD!(ref%4.00-11.0%x%109/L) 8.4%±%2.5 10.2%±%3.8 12.4%±%4.8 <0.001 <0.001

%%Creatinine!9!mean!±!SD!(ref%<100%µmol/L) 85.4%±%27.9 94.6%±%37.4 104.5%±%40.2 <0.05 <0.001

%%Platelet!count!9!mean!±!SD!(ref%145-350%109/L) 237.2%±%61.9 252.2%±%91.3 242.1%±%97.0 0.71 0.72

%%Haemoglobin!9!mean!±!SD%(ref%134%-%170%g/L) 142.0%±%14.5 138.1%±%18.0 135.1%±%19.4 <0.05 <0.05

%%Glucose!9!mean!±!SD %(ref%<7%mmol/L) 7.2%±%2.4 8.1%±%3.5 7.8%±%2.3 0.14 0.06
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Figure 5. Kaplan-Meier curve depicting cumulative survival after acute stroke. Adjusted for age, 

chronic heart failure, atrial fibrillation, renal insufficiency, lipid-lowering agents and NIHSS. Stratified 

on normal, low elevations and high elevations of TnI. 

 

A multivariate Cox proportional hazards model adjusting for age, CHF, AF, renal 

insufficiency, treatment with lipid-lowering agents, and stroke severity showed that patients 

with elevated TnI (>0.03 µg/L) had significantly increased mortality over the five-year 

follow-up compared to patients with normal TnI, with an adjusted HR of 1.90 (95% CI 1.34-

2.70) (table 3). As expected, age, CHF, renal insufficiency and stroke severity were also 

independently associated with 5-year mortality. 
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Table 3. Predictors of all-cause mortality during a five-year follow-up. All baseline variables were 

entered in the univariate cox regression, only the variables with a significance level of p<0.05 were 

entered in the multivariate cox regression.  

 

There were no significant differences between the groups with regard to cause of death, 

recurrent stroke, cardiovascular event or new diagnosis of cancer during the follow up. 

The excluded group of patients (i e missing TnI value on admission) had a lower mortality 

during the 5-year follow-up compare to the study group (42.0% vs. 52.8%; p value 0.01). 

 

 

4.3 AN UNDERLYING CANCER (PAPER II AND III) 

4.3.1 The index patient  

During the inclusion of patients to Study II, a 67-year old man without previous medical 

history presented with multiple and widely spread cerebral infarctions and markedly elevated 

levels of plasma hsTnT (420 ng/L on admission, and 530 and 362 ng/L over the following 12 

hours). The hsTnT levels rose to 1320 ng/L over the following days, but the patient reported 

no current or prior chest pain or dyspnea. ECG was normal, but cardiac telemetry showed a 

very short episode of possible paroxysmal AF as a potential source of cerebral embolism. 

Repeated TTE showed no signs of infarction, shunts, thrombi, or vegetations, arguing against 

a concomitant ACS or endocarditis. Ultrasounds of the carotid arteries were normal, as was 

blood culture obtained on the sustained suspicion of endocarditis, as well as catecholamine 

levels and blood markers of vasculitis (circulating antibodies against cardiolipin, ANA, 

ANCA, MPO, GBM, and beta2-glycoprotein). Over the course of the hospital stay, the 

Univariate)analysis Multivariate)analysis
HR#(95%#CI) HR#(95%#CI)

))TnI)>0.03)ug/L 2.65#(1.8903.72) 1.90#(1.3302.70)
))Age,)per)year 1.08#(1.0701.10) 1.06 (1.04-1.08)
))Chronic)heart)failure 2.86#(1.8804.35) 1.89#(1.2102.97)
))Atrial)fibrillation 1.69#(1.2202.35) 0.85#(0.5801.24)
))Renal)insufficiency 2.59#(1.7003.95) 2.19#(1.4203.36)
))Hyperlipidemia 0.79#(0.6001.03) 0.96#(0.6101.51)
))NIHSS)0G3 1 1
))NIHSS)4G8 1.24#(0.7901.93) 1.32#(0.8402.07)
))NIHSS)8G 2.41#(1.6603.49) 1.96#(1.3402.88)
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patient developed several recurrent and disseminated cerebral infarctions, and died within 11 

days of admission. 

Macroscopic examination during autopsy showed no thrombotic occlusions or atherosclerosis 

of the large cerebral or coronary arteries, and no source of emboli in the heart or larger renal 

or pulmonary arteries. Histopathology, however, revealed an advanced metastatic 

adenocarcinoma of the prostate. Furthermore, there were disseminated cerebral, pulmonary 

and myocardial microthrombi (figure 6), which had not been detectable at the macroscopic 

autopsy. 

 

 

Figure 6. Hematoxylin and eosin staining showing disseminated microvascular arterial 
thrombosis in the brain, heart, and lung.  A - Microthrombus in a small cerebral artery (arrow) with 

surrounding massive hemorrhagic infarction. Scale bar = 200 µm B - Thrombus in a coronary artery 

(arrowheads) along with areas of acute infarction and granulocyte infiltration (arrows). Scale bar = 200 

µm. C - Thrombus in a small pulmonary artery. Cancer metastases are seen around the artery 

(arrows). Scale bar = 500 µm. 

 

To further explore a possible link between the occult cancer and the apparent 

hypercoagulable state, and in lieu of prior data on mechanisms driving arterial thrombosis in 

cancer, we sought to find evidence of some of the numerous pathophysiological mechanisms 

proposed to link cancer with VTE. A series of analyses were performed on stored plasma, 

thrombi and tumor. Immunohistochemistry of both primary tumor and metastases showed 

strong staining of TF as well as the epithelial tumor marker CK18 (figure 7). We therefore 

proceeded to analyze the number of circulating TF and CK18 positive MPs. To our surprise, 

the number of TF+MPs was markedly lower than those found in a population of 209 ischemic 

stroke patients without known malignancy; 205 x 106 MPs/L vs. 1800 x 106 MPs/L (132). 

There was, however, a large number of circulating MPs positive for CK18 compared with a 
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patient with ischemic stroke without underlying malignancy; 4377 x 109 MPs/L vs. 36 x 109 

MPs/L. Considering the CK 18-positive tumor tissue, we hypothesized that these MPs could 

have been tumor-derived. We could not, however, link these results to the hypercoagulable 

state, as the arterial microthrombi stained strongly for TF, but contrary to what we had 

expected, negatively for CK 18 (figure 7).  

 

 

Figure 7. Immunohistochemistry for cytokeratin 18 (CK18) and tissue factor (TF) revealed 
staining for CK18 in metastases (dark brown) but not thrombi, and staining for TF in both 
metastases and thrombi (dark brown). A -. No CK18 immunoreactivity was detected in a thrombus 

in a small cerebral artery. Scale bar = 100 µm. B - No CK18 immunoreactivity was detected in a 

thrombus in a coronary artery. Scale bar = 100 µm. C – Metastases around a small pulmonary artery 

staining strongly positive for CK18 (dark brown). Scale bar = 100 µm. D - There was some 

immunoreactivity to TF (dark brown) in a thrombus in a small cerebral artery, but also in the vessel 

wall (arrow) and in lipid-laden macrophages near the artery (arrowheads). Scale bar = 100 µm. E – 

Positive staining for TF (dark brown) in a thrombus in a coronary artery. Inside the thrombus are also 

a number of granulocytes with blue stained nuclei. Scale bar = 50 µm. F - Strong positive staining for 

TF (dark brown) in a metastasis in the lung. Scale bar = 100 µm. Image courtesy of Bo Blomgren. 

 

4.3.2 Further indications of cancer-associated microthrombosis 

Among the 31 ischemic stroke patients in Study II, the hsTnT levels in the case group (n=12) 

were high; with a mean of 287.8 ng/L and a median of 144.0 ng/L. The mean value of hsTnT 

in the control group (n=19) was 8.7 ng/L with a median of 9.0 ng/L. Contrary to what we 
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had expected, there were no significant differences in age, cardiovascular or renal 

comorbidity burden, or NIHSS score between ischemic stroke patients with and without 

elevated hsTnT. There was a higher prevalence of undetermined stroke etiology in the 

group with elevated hsTnT, although the difference did not reach statistical significance (58% 

vs. 22%, p value 0.052). On evaluation of CT brain imaging, multiple and disseminated 

cerebral lesions extending single vascular territory was significantly more common in the 

patients with hsTnT elevations (33.3% vs. 5%, p value 0.03).  ECG alterations were present 

in 8/11 patients with hsTnT elevations and 5/19 patients with normal hsTnT levels, but this 

difference did not reach statistical significance (p=0.137). Only four patients presented with 

ST segment deviations suggestive of myocardial ischemia, two of them with normal levels of 

hsTnT and two of them with elevated levels of hsTnT (53 and 148 ng/L). Abnormal findings 

on echocardiograms were found in 10/11 patients with hsTnT elevations and 12/19 patients 

with normal hsTnT levels, not reaching a statistically significant difference (p=0.551), and 

regional wall motion abnormality was found in 2/11 patients with hsTnT elevations and 

2/19 patients with normal hsTnT levels (p=1.000). 

 

However, there was a high portion of active cancer in the group of patients with high hsTnT 

values (7/12 vs. 1/19 in the control group, p=0.002). The inclusion of patients was based 

solely on the level of hsTnT, regardless of comorbidity. In fact, four of the eight patients 

with active cancer were diagnosed with cancer after inclusion in the study, during the 

hospital stay (n=1) or post-mortem (n=3). Seven of eight primary tumors were 

adenocarcinomas, but of different origin (table 4).  

Autopsy was performed on three of the patients with high hsTnT levels and an underlying 

malignancy, but despite the high levels of hsTnT, macroscopic examination at autopsy 

revealed only mild atherosclerotic plaque and no occlusions of the coronary arteries. As in 

our first index patient, however, histopathology revealed multiple and widely spread arterial 

microthrombi in the brain, heart and lung. Arterial microthrombi surrounded by infarctions 

were also observed in small renal and splenic arteries in one of the patients. 
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Table 4. Troponin levels (hsTnT) and type, metastatic spread and time of cancer diagnosis in 
ischemic stroke patients with an underlying active cancer. 
 

To further assess whether troponin elevation could be associated with a hypercoagulable 

state, we determined plasma levels of the coagulation marker TAT and platelet activation 

marker sP-selectin. Both appeared higher in patients with hsTnT elevation compared with 

patients with normal hsTnT levels (figure 8A). However, even higher elevations were seen 

in patients with cancer compared to patients without cancer (median 28.9 with IQR 9.8-47.0 

µg/mL vs. median 6.1 with IQR 4.1-10.2 µg/mL, p=0.001, for TAT; median 75.3 with IQR 

35.9-100.8 ng/mL vs. median 26.0 with IQR 16.8-39.1 ng/mL, p=0.001, for sP-selectin) 

(figure 8B). TAT and sP-selectin did not differ between patients with and without hsTnT 

elevation when excluding patients with cancer, linking cancer to the pro-coagulant state 

(figure 8C). 

Patient Age Sex hsTnT.ng/L Cancer.type.and.metastatic.spread Time.of.cancer.diagnosis

1 68 Male 1320 Prostate0adenocarcinoma.0
Metastatic0spread0to0the0bladder,0
lung0and0bone.

Occult,0diagnosed0post>mortem

2 62 Female 180 Lung0adenocarcinoma.0Metastatic0
spread0to0the0pleura,0lymphnodes0
and0liver.

Occult,0diagnosed0post>mortem

3 83 Male 148 Lung0adenocarcinoma.0Metastatic0
spread0to0the0bone.

Diagnosed0and0pulmonary0
lobectomy020years0before0ischemic0
stroke,0recurrent0diagnosis040
months0prior0to0ischemic0stroke

4 68 Male 694 Hepatocellular0adenocarcinoma.00
Metastatic0spread0to0the0
gastrointestinal0tract0and0skin.

Diagnosed050months0prior0to0
ischemic0stroke

5 82 Female 53 Pancreatic0adenocarcinoma.0
Metastatic0spread0to0the0lungs,0
peritoneum0and0liver.

Occult.0Diagnosed0post>mortem

6 64 Male 9 Prostatic0adenocarcinoma.0
Extraprostatic0and0perineural0
spread.0

Diagnosed0and0prostatectomy0100
years0before0ischemic0stroke,0
recurrent0diagnosis0<020months0
after0ischemic0stroke

7 94 Female 72 Breast0adenocarcinoma.0Spread0to0
the0skin.

Diagnosed050years0before0ischemic0
stroke,0recurrent0diagnosis0with0
surgery030days0prior0to0ischemic0
stroke

8 85 Female 140 Urothelial0carcinoma.0Infiltrative0
spread0to0surrounding0musculature.0

Diagnosed0140months0prior0to0
ischemic0stroke
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Figure 8. Plasma markers of coagulation and platelet activation.  A - Plasma markers of 

coagulation (TAT) and platelet activation (sP-selectin) were significantly higher in stroke patients with 

hsTnT elevation (n=12) compared to stroke patients without hsTnT elevation (n=19). B - Even higher 

levels were seen in patients with cancer (n=8). C - The differences between patients with hsTnT 

elevation (n=5) and normal levels of hsTnT (n=18) were diminished when excluding patients with 

cancer, suggesting a link between cancer and coagulation.  Mann-Whitney U test was used to 

determine p-values. 

 
 

As in study I, the patients with elevated hsTnT had a significantly higher mortality than 

patients with normal levels of hsTnT (58% vs. 5%, p value 0.002), and the short-term 

mortality was, as expected, even higher in the group with cancer (88% vs. 4%, p value < 

0.001).  

 

 

4.4 A LINK TO NETS (PAPER III) 

In light of the previously discussed reports on the link between NETs and cancer-associated 

thrombosis, we proceeded to assess markers of NETs in plasma and thrombi.  Plasma levels 

of the NET associated markers cfDNA and MPO, as well as the NET specific marker H3Cit 

were higher in patients with elevated hsTnT compared to patients with normal hsTnT 

levels, suggesting the presence of a systemic NET burden (figure 9A). As with markers of 

coagulation and platelet activation, however, the levels of NET markers were even higher 
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in patients with cancer compared to patients without cancer (median 504.0 with IQR 443.7-

562.0 ng/mL vs. median 407.9 with IQR 340.5-451.7 ng/mL, p value 0.04, for cfDNA; 

median 74.1 with IQR 57.9-146.7 ng/mL vs. median 30.8 with IQR 18.5-58.4 ng/mL, p value 

0.01, for MPO, and median 0.22 with IQR 0.12-0.31 O.D. vs. median 0.07 with IQR 0.05-

0.08 O.D., p value 0.001, for H3Cit) (figure 9B). The differences in circulating H3Cit, 

cfDNA and MPO between patients with hsTnT elevation and patients with normal hsTnT 

values were eliminated when excluding patients with cancer, linking cancer to the systemic 

NET burden (figure 9C). 

 

Figure 9. Plasma markers of NETs.  A – In line with markers of coagulation and platelet activation, 

markers of NETs (cfDNA, MPO and H3Cit) were significantly higher in stroke patients with hsTnT 

elevation (n=12) compared to stroke patients without hsTnT elevation (n=19). B - Even higher levels 

were seen in patients with cancer (n=8). C - When excluding patients with cancer, the differences 

between patients with hsTnT elevation (n=5) and normal levels of hsTnT (n=18) were diminished, 

suggesting a link between cancer and NETs.  Mann-Whitney U test was used to determine p-values. 

 

As mentioned previously, different types of murine cancers have been shown to 

systemically release G-CSF, priming neutrophils toward NETosis. We therefore assessed 

A) ALL PATIENTS;
low hsTnT (N=19) vs. high hsTnT (N=12)  

B) ALL PATIENTS;
no cancer (N=23) vs. cancer (N=8) 

C) CANCER EXCLUDED;
low hsTnT (N=18) vs. high hsTnT (N=5) 
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the levels of circulating G-CSF in our patients. A seven-fold increase of G-CSF was seen in 

plasma of patients with cancer compared to patients without cancer (median 21.0 vs. 3.1 

pg/mL, p value 0.02). Leukocyte count was also significantly higher in patients with cancer 

(median 12.6 vs. 6.8 × 109/L, p value 0.002).  

Furthermore, there were positive and significant correlations between G-CSF and the NET 

specific marker H3Cit (r=0.61, p value <0.001) and the NET-associated markers MPO 

(r=0.55, p value 0.005) and cfDNA (r=0.43, p value 0.02), as well as between H3Cit and 

markers of coagulation and platelet activation (r= 0.5, p value 0.005 and r=0.61, p value 

0.001 for TAT and sP-selectin respectively), linking a systemic cancer-associated NET 

burden to the hypercoagulable state seen in our patients. As expected, markers of 

coagulation and platelet activation were significantly higher in stroke patients without 

known cancer compared to healthy and age-matched controls. Markers of NETs did, 

however, not differ between stroke patients without known cancer and healthy controls, 

suggesting the presence of cancer as the likely cause of a systemic NET burden.  

These results suggest that high elevations of plasma troponin in ischemic stroke patients 

may be the result of a NET-induced systemic hypercoagulable state associated with cancer. 

Interestingly, immunohistochemistry and confocal microscopy supported this hypothesis by 

showing the presence of NETs (extracellular DNA and H3Cit) and decondensed H3Cit 

positive cells in multiple cerebral, myocardial and pulmonary thrombi of the three ischemic 

stroke patients with an underlying malignancy where autopsy was performed (figure 10).  
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Figure 10. Markers of NETs in microthrombi. A – Immunohistochemistry revealed H3Cit (dark 

brown) positive cells as well as extracellular H3Cit in microthrombi of the brain, heart and lung. B, C - 
Confocal microscopy showed the co-localization of extracellular H3Cit and DNA, confirming the 

presence of NETs (arrows) in cerebral, coronary and pulmonary microthrombi. The microthrombi were 

also rich in von Willebrand factor (VWF). Smooth muscle actin (SMA) staining delineates the vessel 

wall. Immunohistochemistry image courtesy of Bo Blomgren and confocal microscopy image courtesy 

of Siu Ling Wong. 

 

4.5 VALIDATION OF A NOVEL H3CIT ELISA (PAPER IV) 

The H3Cit ELISA used to measure levels of plasma H3Cit in Study II was further developed 

by introducing a standard curve derived from in vitro citrullinated H3Cit, as described in the 

method section, and subsequently methodologically validated. 
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The best-fit curve was a sigmoidal 4PL curve rendering a linear interval of the curve 

between ≈ 0.5 and 3.5 O.D., corresponding to concentrations between ≈ 5 and ≈ 300 ng/mL. 

The limit of detection was determined by approximating the lowest detectable concentration 

determined from the curve to ≈ 5 ng/mL, corresponding to the intersection of the lower 

asymptote of the upper 95% CI with the 4PL fit of the standard curve. The limit of detection 

with stated probability was therefore set to approximately 5 ng/mL. 

The detector response of three different batches of frozen standard (H3Cit), prepared on three 

different days, was very similar (figure 11A). Likewise, there was no significant difference in 

the detection response from a standard prepared from freshly citrullinated H3Cit compared 

with a standard prepared from a frozen aliquot of H3Cit  (figure 11B), revealing a high 

stability and allowing for a good reproducibility.  

Although there was a low detection response when large amounts of non-citrullinated histone 

H3 were present, the detection response was negligible in the linear interval of the assay, 

confirming a high specificity for H3Cit in the linear interval of the assay (figure 11C). 

We were not able to recover known concentrations of H3Cit in plasma from healthy 

individuals (figure 11D), revealing an effect of the matrix (i e plasma).  
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Figure 11. Stability and specificity. A - The detector response when preparing standard curves from 

three different batches of frozen of PAD4-citrullinated histone H3, prepared on three different days, or 

B - from freshly made or frozen aliquot of H3Cit standards were not significantly different (F (DFn, 

DFd)= 2.6 (8,9); p= 0.088, and F (DFn, DFd)= 0.2 (4, 52); p= 0.916 respectively). C - Data obtained 

when a standard curve was prepared with histone H3 incubated in the same conditions as our 

standard preparation of H3Cit, but without PAD4, rendering non-citrullinated histones, representative 

of three different experiments. There was a low amount of antibody antigen detection when large 

amounts of non-citrullinated histone H3 were present, but the antibody antigen detection was specific 

for H3Cit in the linear interval of the assay. D - No H3Cit was detected in plasma from healthy 

volunteers, whereas the spiking of known concentrations of H3Cit into these plasmas diluted 1:2 gave 

a significantly lower detector response compared to the detector response obtained from the standard 

diluted in PBS-1% BSA, suggesting an effect of the matrix. 
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The levels of H3Cit in all samples taken at baseline were under the detection limit of 

approximately 5 ng/mL, and the levels of H3Cit in all samples taken from the same 

individuals 3-4 h after LPS injection ranged from 28.7 ng/mL to 93.2 ng/mL. The CV were 

all <15 %, with the intra-assay variation ranging from 2.13-5.15 % and the inter-assay 

variation ranging from 5.80-12.55 %, showing a high precision with good repeatability and 

reproducibility of the assay (table 5). 

 

 

Table 5. Precision; intra-assay repeatability and four different days inter-assay reproducibility. 
The precision of the H3Cit ELISA was high, with all intra- and inter-assay coefficients of variation (CV) 

<15%. 

 

Sample 1 2 3 4 5 6 7 8

CV1(%)1intra9
assay1(n=6)

5.1 4.5 5.08 2.7 4.35 3.58 2.13 3.1

CV1(%)1inter9
assay1(n=4)

11.54 10.27 12.55 8.5 9.6 10.53 5.8 13.5
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5 DISCUSSION 
The release of troponin in ischemic stroke patients can be the result of various, and likely 

with each other interacting, mechanisms. Prior data, including that from several large and 

recent studies (12-14, 133), have shown that troponin elevation in ischemic stroke predicts 

poor short-term outcome. The work of this thesis appends an adverse long-term prognosis in 

these patients, as well as an association between troponin elevation and ECG changes 

suggestive of myocardial ischemia. We provide new data suggesting that an underlying 

malignancy may, by generating a hypercoagulable state leading to concomitant myocardial 

and cerebral infarction, be a previously unrecognized contributing factor to troponin elevation 

in ischemic stroke. We also show that neutrophils, presumably primed by an underlying 

cancer, may contribute to this thrombotic state through the release of NETs. Finally, we 

suggest and validate a novel method to detect and quantify the NET specific marker H3Cit in 

human plasma, which may be useful in further studies to confirm these hypotheses. 

 

5.1 PATIENT CHARACTERISTICS  

The prevalence of troponin elevation among the stroke patients in Study I (46%) was higher 

than those reported in many of the previous studies (reporting a prevalence of around 10-

30%). The majority of previous studies, however, excluded patients with pre-existing cardiac 

and renal disease, conditions that are known to be associated with troponin elevation (22, 

134), which may have underestimated the total prevalence of troponin elevation among 

ischemic stroke patients. Instead of excluding these patients, we took possible confounding 

factors into account by adjusting for age, CHF, renal insufficiency, AF, hyperlipidemia and 

NIHSS score in the prognostic analyses. Worth noted, however, is the large number of 

patients excluded in Study I, due to a missing TnI value registered on admission. The 

missing group analysis revealed that our study group had a lower level of consciousness 

and higher 5-year mortality than the excluded group, suggesting that our study group 

suffered more severe cerebral lesions. They also had a higher rate of prior diagnosis of AF. 

Considering that stroke severity, prognostic outcome, and AF all have been associated with 

troponin elevation, a selection bias due to missing TnI value on admission could well have 

rendered an overestimation of the prevalence of troponin elevation in Study I. 
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As expected, Study I revealed an association between troponin elevation and a higher age, 

comorbidity burden and stroke severity, which is in line with previous data (2, 131, 133, 135, 

136). Surprisingly, we did not find a statistically significant increase in the rate of AF among 

patients with troponin elevation, which is in contradiction to prior data (23, 38). Our data on 

AF is, however, limited to history of AF, or AF detected from ECG during the hospital stay, 

and continuous monitoring or prolonged out-patient screening for arrhythmias was not part of 

the routine workup at the time. Likewise, we did not find a significantly higher rate of 

cardioembolic stroke in patients with troponin elevation, although there was a trend towards 

increasing rates with increasing troponin levels. The study was, however, not designed or 

powered to detect differences in stroke subtype, and a larger sample size may well have 

revealed a stronger association. Asymptomatic AF convey as high a risk for ischemic stroke 

as symptomatic AF (137, 138), and given that anticoagulant therapy reduces the risk for 

recurrent stroke with over 60% (139), a more careful screening for AF in ischemic stroke 

patients with troponin elevation may be warranted.  

Despite the high prevalence of troponin elevation in Study I, there were few recordings of 

chest pain on admission. ST segment deviations suggestive of myocardial ischemia were, 

however, significantly more common in patients with elevated TnI, in line with previous 

studies (2, 19, 38, 39, 131, 140), suggesting that silent myocardial ischemia could have 

contributed to the troponin elevations. Indeed, the prevalence of chest pain may have been 

underestimated due to verbal impairment in an acute stroke situation. Furthermore, 

asymptomatic coronary artery stenosis >50% indicating CAD has been shown to be common 

in stroke patients (26%) (35), and pre-existing CAD may result in a higher vulnerability to 

myocardial injury. The substantial increase in the rate of beta-blockers at discharge in patients 

with elevated TnI in our study may reflect a clinical suspicion of CAD, although we lack data 

on the indications for these subscriptions. Despite the recent contradicting results on coronary 

vessel status in patients with ischemic stroke and troponin elevation (42, 43), our findings 

imply that CAD should be considered in ischemic stroke patients with elevated levels of 

troponin. A major limitation of Study I is, however, the lack of serial measurements of TnI, 

leaving no data on dynamic changes. As previously discussed, stable elevations of troponin 

may reflect underlying comorbidities such as CHF or renal insufficiency, and distinguishing 

between patients with stable and dynamic levels of TnI could aid in identifying those with 

ACS. In the study by Anders et al (37), including 834 ischemic stroke patients, 40 % of the 

patients with elevated TnI showed dynamic values (> 30% rise or fall) over serial 

measurements, and 29 of these patients (54%) were diagnosed with myocardial infarction in 

contrast to none of the patients with stable elevations of TnI. Furthermore, two other recent 
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studies (13, 141) showed that only dynamic changes in TnT (> 50% and 30% rise or fall 

respectively) were associated with in-hospital mortality. 

In line with recent studies implying that cancer may be an important independent risk factor 

for ischemic stroke (56-59), the prevalence of prior diagnosis of cancer among all ischemic 

stroke patients in Study I well exceeds the prevalence in an age-matched general population 

(124). The increasing levels of both C-reactive protein and leukocyte count as well as the 

decreasing levels of haemoglobin with increasing TnI values in Study I also support the idea 

of an underlying inflammatory process, which may in part be related to an underlying 

malignancy. Although the prevalence of prior cancer diagnosis increased with increasing TnI 

values, the difference was not statistically significant, perhaps due to the limited number of 

events. However, five among the ten patients with the highest values of TnI (ranging from 2-

96 µg/L) had an underlying cancer diagnosis, suggesting that high elevations of troponin may 

be associated with an underlying cancer. Indeed, 7/12 of the patients with high troponin 

elevations in Study II were found to have a known or on admission occult underlying cancer, 

as opposed to 1/19 in the control group. Notably, these patients were included exclusively 

on their troponin levels, regardless of underlying comorbidities. Interestingly, these patients 

did not differ from the patients with normal hsTnT levels with regard to age, cardiovascular 

or renal comorbidities, or stroke severity (NIHSS score). Furthermore, only 2/11 of the 

patients with high hsTnT elevations presented with signs of myocardial ischemia on ECG or 

echocardiograms. Although the sample size was small, this indicates a mechanism leading to 

high troponin elevations distinct from the ones proposed in previous studies, perhaps linked 

to a cancer-induced hypercoagulable state, as will be discussed further down. 

 

5.2 PROGNOSIS 

In line with extensive previous data (2, 11-14, 19, 131, 142, 143), we found an association 

between troponin elevation in ischemic stroke patients and a higher risk for mortality. Most 

of these studies, however, looked at in-hospital and short-term prognosis, with the exception 

of two recent studies by Jensen et al (131) and Faiz et al (143), with a follow-up of 1.5 years. 

Despite the adjustment for several possible confounders in Study I, troponin elevation was 

associated with an almost two-fold increase in risk of death, which was sustained over the 5-

year follow-up period, revealing novel information of the long-term prognosis in these 

patients. Successful long-term treatment relies on early risk assessments, and these results 

indicate the prognostic significance of troponin as a biomarker in stroke patients to identify 
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those at highest risk for not only short-term and in-hospital mortality but also long-term 

mortality. 

Surprisingly, we did not find any significant differences in the proportion of deaths by cardiac 

cause between the groups in Study I. There was also no difference in the rate of recurrent 

cardiovascular disease or new diagnosis of cancer. This could, however, be a false negative 

finding due to the limited number of events in the study.  

 

5.3 CANCER-ASSOCIATED ARTERIAL MICROTHROMBOSIS  

As mentioned before, cancer conveys a well-established increased risk for VTE (61-66, 75, 

144, 145). Studies performed during recent years have also provided emerging evidence for 

cancer-associated arterial thrombosis, such as ischemic stroke (56, 57, 59, 68, 70-72, 146-

148) and myocardial infarction (69). Although the mechanisms remain unclear, cancer-

associated thrombosis seems to involve a hypercoagulable state (74, 75, 78, 79, 149-152), 

which could have a multiorgan effect. Considering the high prevalence of pre-existing CAD 

in ischemic stroke patients (35), it could be hypothesized that these patients are vulnerable to 

suffer both cerebral and myocardial thrombotic events if exposed to a cancer-induced 

exaggerated hypercoagulable state, presenting as ischemic stroke with troponin elevation. 

Indeed, histopathological and plasma analyses and in Study II were strongly supportive of a 

hypercoagulable state in our ischemic stroke patients with high troponin elevations and an 

underlying malignancy. 4/8 stroke patients with active cancer were diagnosed with cancer at 

autopsy or within two months after stroke onset. Macroscopic examination during 

autopsies revealed no thrombotic occlusions of the coronary arteries, and the 

widespread microvascular thrombosis was revealed first at histopathology. Notably, 

autopsy including histopathology is very rare in stroke patients, which may contribute to an 

underestimation of a multiorgan microvascular thrombosis in ischemic stroke patients with 

an underlying malignancy.  

Our results are in keeping with previous studies of ischemic stroke in cancer patients, 

revealing a principal cerebral lesion pattern of multiple dots extending single vascular 

territory (70-72, 147, 148, 153), compatible with a thrombotic pathophysiology, as well as 

an overrepresentation of adenocarcinomas (147, 153). Adenocarcinomas are known to be 

one of the most pro-thrombotic tumor types with regard to VTE (75, 154, 155), and 

assuming similar pathomechanisms in arterial thrombosis, this overrepresentation is not 
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surprising. The increased prevalence of cryptogenic stroke in our patients is also in line 

with prior studies of ischemic stroke in cancer patients. Interestingly, it was recently 

reported that cancer patients suffering cryptogenic or embolic stroke have a reduced 

survival compared with cancer patients with conventional stroke etiology (70). Although 

further studies are needed to determine the reason for this, it is intriguing to speculate 

whether this poor prognosis may be a consequence of a widespread arterial 

microthrombosis resulting in multiple organ failure. Worth noting, however, are the high 

levels of troponin in our case patients, preventing a generalization to all ischemic stroke 

patients with troponin elevation as the majority of these patients present with more modest 

troponin elevations. 

The preferred treatment and prophylaxis in cancer-associated thrombosis is low-molecular 

weight heparin (156, 157), whereas patients with cardiovascular disease and arterial 

thrombosis, such as non-embolic ischemic stroke and myocardial infarction, commonly 

receive anti-platelet therapy. Special attention to a possible underlying malignancy in 

patients with ischemic stroke and troponin elevation may thus not only lead to an earlier 

diagnosis of an occult cancer, but perhaps also to an optimal treatment of this pro-

thrombotic state.  

 

5.4 THE CONTRIBUTION OF NETS 

We link the pro-thrombotic state observed in our stroke patients with troponin elevation and 

an underlying malignancy to NETosis by showing elevated plasma levels of the NET-

specific marker H3Cit as well as the NET-associated markers cfDNA and MPO. In further 

support of this are the positive correlations between the circulating NET markers and 

markers of coagulation and platelet activation. We also show H3Cit in co-localization with 

cfDNA, interpreted as NET complexes, in thrombi from a variety of organs in these 

patients.  

Our results are, to the best of our knowledge, the first to present the NET-specific marker 

H3Cit in plasma as well as in cerebral, myocardial and pulmonary arterial microthrombi in 

patients with cancer. It is also the first report on NETs in stroke patients with an underlying 

malignancy. Our plasma analyses show a significant increase in circulating NET markers in 

our stroke patients with cancer compared to our stroke patients without cancer, and the lack 

of difference in these markers between stroke patients without cancer and healthy individuals 

suggests that a systemic NET burden may be associated to the underlying cancer in these 
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patients. We were not, however, able to perform immunohistochemistry on thrombi in our 

stroke patients without cancer, as none of these were available for autopsy. We can 

therefore not rule out the possibility that the NETs found in the thrombi of the stroke 

patients with underlying cancer were locally released as a consequence of the hypoxic 

milieu and strong inflammatory response surrounding the infarcted tissue, rather than as an 

effect of a cancer-induced systemic NET burden. Our results may, nevertheless, reflect not 

only the role of NETs in cancer-associated arterial thrombosis, but also the role of NETs in 

cancer biology per se, regardless of thrombosis (113, 114, 117).  

In line with prior murine models of cancer implicating the role of cancer-released G-CSF in 

the induction of NETosis (81, 82, 114), we show elevations of G-CSF in our patients with 

underlying malignancies, as well as positive correlations between circulating G-CSF and 

markers of NETs. We cannot, however, be sure of the origin of G-CSF in our patients, nor 

the causality between G-CSF and NET formation. We also cannot rule out the possibility of 

other soluble molecules contributing to the priming of neutrophils toward NETosis in our 

patients. For instance, IL-8 has been shown to play a role in tumor progression (158, 159), as 

well as in NET formation in cancer (160) and other inflammatory conditions (161).  

Recent years have provided evidence that possible NET-inhibitors, such as PAD4 inhibitors 

and DNase (98, 162, 163), may alleviate the prothrombotic effects of NETs as well as inhibit 

tumorigenesis and metastasis (164, 165). Interestingly, heparins have also been shown to 

prevent NET-induced thrombosis by inhibiting platelet binding and aggregation as well as 

promoting the release of histones through destabilization of chromatin (96), perhaps 

explaining, at least partially, the superior effect of heparins in cancer-associated thrombosis. 

Taken together, these studies imply that markers of NETs may come to serve as both 

diagnostic markers and therapeutic targets in cancer and cancer-associated thrombosis.  

 

5.5 QUANTIFICATION OF NETS 

Although over a decade has passed since the discovery of NETs, and despite emerging 

interest in the field, there is still no golden standard marker or method to detect and 

quantify NETs in plasma. As a result of this, various markers and methods have been 

implemented to demonstrate the presence of NETs, making it difficult to interpret and 

compare results between studies. Furthermore, and as discussed previously, many of these 

methods are hampered by lack of specificity, objectivity and quantification. Study III 

establishes an assay allowing for a highly objective, fast and reliable quantification of the 
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NET specific marker H3Cit in human plasma. The methodological validation revealed a high 

specificity for H3Cit, as well as a high stability of the custom-made standard, allowing for a 

good reproducibility, with CVs all < 15%. 

We were, however, not able to assess trueness of the concentrations, lacking a reference 

analyte of known concentration or an established method for comparison. The concentration 

of H3Cit in the standard curve is, furthermore, an estimation based on the assumption that all 

histones are citrullinated (assuming the optimal enzymatic activity of PAD4), and an 

underestimation of the concentrations in our samples can thereby not be ruled out. We were 

not able to recover known concentrations of H3Cit spiked in healthy plasma, presumably due 

to the instability of free histones in plasma (166), as opposed to the H3Cit quantified in our 

plasma samples, which are hypothesized to be protected by surrounding DNA as part of 

nucleosomes in NET complexes. Histones have, in their free form, been shown to have a very 

rapid degradation in plasma, with a half-life of 4.6 m (166). It is therefore possible that the 

amount of H3Cit quantified by this assay is in fact the amount of H3Cit protected by the NET 

complex, excluding a possible portion of free H3Cit in plasma. Although the portion of H3Cit 

bound to DNA in NET complexes is the endpoint of interest in quantifying NETs, the effect 

of the matrix does impose a limitation to the assay validation. 

Despite the above mentioned validation obstacles, however, the assay represents a first step 

for standardization and an objective and specific quantification of NETs in human plasma. 

Inasmuch, standardizations and validations, as performed herein, are a necessity in order to 

compare and interpret data between studies and across labs. To this note, other promising 

assays to assess NET burden are under development and validation, such as image-based 

flow cytometry (167) and flow cytometric detection of key NET components (168). Further 

studies will illustrate whether this H3Cit ELISA, or any of the other methods, alone or in 

combination, may be helpful in the quest for the clinical relevance of NET formation in 

various conditions, such as cancer and thrombosis. 

 

5.6 GENERAL REMARKS 

In line with previous studies, we show an association between troponin elevation in ischemic 

stroke and ECG changes suggestive of myocardial ischemia, as well as contribute to prior 

data on the adverse short-term prognosis in these patients by providing novel data on an 

almost 2-fold increased risk of 5-year mortality. These results support prior studies indicating 

the need for cardiologic work-up and more aggressive prevention measures in these patients. 
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We also provide novel data suggesting that an underlying cancer-induced pro-thrombotic 

state may contribute to the adverse prognosis in these patients, suggesting that an underlying 

cancer should be considered in patients with high levels of plasma troponin. We show that 

neutrophils, assumed to be primed by an underlying cancer, may contribute to this thrombotic 

state through the release of NETs. Finally, we suggest and validate a novel method to detect 

and quantify the NET specific marker H3Cit in human plasma, which may be useful in 

further studies to confirm these hypotheses. Indeed, due to the limited sample sizes in our 

studies, our results must be regarded as such; hypotheses laying the ground for further 

studies. We therefore encourage replication of these results. If confirmed, these clinical 

observations may motivate further research into the pathomechanisms behind cancer-

associated arterial thrombosis, including the contribution of NETs, and aid in the quest for 

new diagnostic and prognostic markers as well as therapeutic agents. 
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6 CONCLUSIONS 
• Patients with stroke and troponin elevation are on average older, and have more 

severe strokes and comorbidities, than patients with stroke without troponin elevation. 

They also present with a higher incidence of ECG changes suggestive of myocardial 

ischemia. 

• Troponin elevation in patients with acute stroke, even when adjusted for several 

possible confounders, is associated with an almost two-fold increased risk of five-year 

mortality.  

• Cancer-associated arterial microthrombosis leading to concomitant cerebral and 

myocardial ischemia may be an underestimated pathomechanism behind high levels 

of plasma troponin in ischemic stroke patients. 

• NETs may be a source of arterial microthrombosis in cancer patients, presenting as 

ischemic stroke with troponin elevation. 

• The levels of the NET specific marker citrullinated histone H3 (H3Cit) can be 

quantified in human plasma with a novel enzyme-linked immunosorbent assay, 

allowing for a high specificity, precision and stability. 
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7 FUTURE PERSPECTIVES 
The prognostic significance of troponin elevation in the setting of acute stroke is justified 

beyond doubt in prior studies along with the data from this thesis. Further studies are, 

however, needed to distinguish between the different pathomechanisms behind a myocardial 

injury in acute stroke. A cancer-induced hypercoagulative state resulting in concomitant 

cerebral and myocardial microthrombosis, presented in this thesis as acute stroke with 

troponin elevation, warrants further validation in larger cohorts. In a wider perspective, 

cancer-associated arterial thrombosis comprises much more than cerebral and myocardial 

ischemia, and this mechanism should be studied in other settings as well. The contribution of 

NETs, and the possibility of NET markers as prognostic markers or targets for novel 

therapeutic strategies, are appealing, but also need further validation. Indeed, these markers 

may prove to be of importance in not only a wider range of cancer-associated thrombotic 

conditions, but also in cancer biology per se.  
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8 SVENSK SAMMANFATTNING 
Troponin, ett protein specifikt för skada i hjärtmuskulaturen, är vanligt förekommande i 
blodet hos patienter som drabbats av en akut stroke. Trots att ett flertal studier talar för en 
sämre kort-tids prognos för dessa patienter är den kliniska signifikansen av förhöjda troponin-
nivåer vid akut stroke fortfarande kontroversiell, och den bakomliggande orsaken är ofta 
okänd. Syftet med denna avhandling var att fastställa kliniska karakteristika och lång-tids 
prognos hos dessa patienter, samt att utforska möjliga bakomliggande mekanismer. 

I en retrospektiv kohortanalys av 247 strokepatienter (Studie I), fann vi ett klart samband 
mellan troponin-förhöjning hos strokepatienter och hög ålder, stor samsjuklighet och 
svårighetsgrad av stroke. Strokepatienter med troponin-förhöjning hade också vid 
insjuknandet en högre förekomst av EKG förändringar talande för en hjärtpåverkan. En 
långtidsuppföljning visade vidare att dessa patienter hade en nära dubbelt så hög risk att dö 
inom 5 år. 

I en fall-kontroll studie (Studie II) fann vi en hög förekomst av bakomliggande cancer hos 
strokepatienter med höga nivåer av troponin i blodet. Blodprovsanalyser talade starkt för ett 
underliggande hyperkoagulativt tillstånd hos dessa patienter, d v s en ökad benägenhet att 
bilda blodproppar i olika organ. Histopatologiska vävnads-undersökningar visade också små, 
arteriella blodproppar, s k mikrotromboser, i flertalet vitala organ, såsom hjärta och hjärna. 
Neutrofil-aktivering, med utsläpp av så kallade neutrophil extracellular traps (NETs) i blodet 
har visats bidra till venös tromboembolism vid cancer. Vi ville därför undersöka huruvida 
NETs skulle kunna vara bidragande orsak även till arteriell trombotisering vid cancer, med 
tromber i såväl hjärna som hjärta. Liksom blodprovs-analyser talande för ett hyperkoagulativt 
tillstånd, var också markörer för NETs kraftigt förhöjda i blodet hos strokepatienter med höga 
nivåer av troponin och en bakomliggande cancer. Histopatologiska undersökningar talade 
också för en bidragande NETs-bildning med immunodetektion av NETs markörer i de 
arteriella tromboserna. För att fastställa nivåerna av NETs i plasma hos dessa patienter, 
utvecklades en ny metod för att mäta det NET-specifika proteinet H3Cit. För att underlätta 
vidare användning av denna metod i framtida studier, gjordes en standardisering och 
metodologisk validering (Studie III), vilken visade på hög specificitet, precision och stabilitet.  

Sammantaget talar dessa resultat för att strokepatienter med troponin förhöjning i blodet bör 
utredas med avseende på hjärtat. Resultaten talar också för att ett underliggande cancer-
associerat hyperkoagulativt tillstånd bör övervägas vid höga nivåer av troponin. Slutligen 
visar de på ett samband mellan ett cancer-associerat hyperkoagulativt tillstånd och NETs, 
vilket förespråkar vidare studier för att undersöka huruvida NETs markörer i blodet skulle 
kunna vara av värde vid diagnostik av och prognos för cancer-associerad arteriell trombos. 
För detta syfte förslår vi en metod för att mäta det NET-specifika proteinet H3Cit i plasma. 
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