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ABSTRACT 
Kynurenic acid (KYNA), an end metabolite of the kynurenine pathway along tryptophan 
degradation, has gained increasing interest in the pathophysiology of psychiatric disorders. 
Elevated levels of KYNA have been found in the cerebrospinal fluid (CSF) and in the 
postmortem brain of patients with schizophrenia and bipolar disorder with psychotic 
symptoms. In contrast, reduced levels of KYNA are associated with depressive symptoms. 
Rapidly emerging evidence points to the involvement of brain immune activation in 
psychiatric disorders and to the kynurenine pathway as a causal link between brain immune 
activation and psychiatric disorders. The aim of present thesis was to investigate the role of 
the kynurenine pathway in the pathophysiology of schizophrenia and depression in 
experimental settings. 

The results show that an infection with neurotropic influenza A virus or a transient elevation 
of brain KYNA levels in neonatal mice enhanced the sensitivity of d-amphetamine-induced 
increase in locomotor activity in adulthood. Neonatal elevation of KYNA also impaired 
prepulse inhibition and working memory in adulthood. These long-lasting behavioral 
alterations suggest that the kynurenine pathway as a causal link between early-life infection 
and the development of neuropsychiatric disturbances in adulthood. 

Reduced KYNA levels were detected in the prefrontal cortex, but not in the frontal cortex, 
hippocampus, striatum or cerebellum, of Flinders Sensitive Line (FSL) rats, an animal model 
of depression, compared with their controls, the Flinders Resistant Line (FRL) rats.  

Inhibition of Kynurenine 3-monooxygenase (KMO) shunts the kynurenine pathway towards 
enhanced synthesis of KYNA. Mice with a targeted deletion of KMO exhibited impairments 
in contextual memory and social interaction, potentiated horizontal activity following d-
amphetamine-induced increase in locomotor activity as well as increased anxiety-like 
behaviors. In addition, genome-wide differential gene expression analyses identified 
alterations regarding schizophrenia- and psychosis-related genes in these mice.  

Kynurenine aminotransferase (KAT) II is identified as the main enzyme responsible for most 
of brain KYNA production. Nevertheless, KAT II KO mice receiving kynurenine injection or 
repeated injections of Lipopolysaccharide (LPS) exhibited increased concentrations of brain 
KYNA.   

Taken together, these results give strong experimental support for the connection between 
immune activation and KYNA in schizophrenia and suggest that low brain KYNA could be 
of importance for the depressive-like behaviors observed in FSL rats  
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1 INTRODUCTION 

1.1 Schizophrenia 

The history of schizophrenia can be retrospected as early as 1550BC as the oldest 

documentation about an illness like schizophrenia is found in Ebers Papyrus from ancient 

Egypt (Burton, 2012). Symptoms similar to those manifested in schizophrenia are also 

described in the Bible. In the late 19th century, the German psychiatrist Emil Kraepelin 

integrated the pieces of various clinical observations of mental disorders into a single 

category termed “dementia praecox” (Kraepelin, 1896). Later, the Swiss psychiatrist Eugen 

Bleuler developed Kraepelin’s theory and replaced the term with “schizophrenia” in 1911 

(Bleuler, 1911).  

1.1.1 Symptoms of schizophrenia 

Patients with schizophrenia often have distorted perception of reality caused by a variety of 

symptoms. The symptoms are generally classified into three distinct categories (Andreasen 

and Olsen, 1982): 

• Positive symptoms, also known as psychotic symptoms, refer to features not seen in 

healthy population but present in patients, such as hallucinations, delusions as well as 

disorganized thought processes. 

 

• Negative symptoms are characterized by withdrawal or lack of function that is 

normally present in healthy people, such as anhedonia, social withdrawal, blunted 

affect and loss of motivation. 

 

• Cognitive dysfunctions refer to a wide range of features regarding difficulties in 

problem solving, impairments in working memory and attention.  

1.1.2 Prevalence and onset of schizophrenia 

Schizophrenia has a global lifetime prevalence of approximately 0.40-0.87% (McGrath et al., 

2008; Perälä et al., 2007; Saha et al., 2005). Schizophrenia is often accompanied with high 

suicide rates, approximately 5-10% higher than general population (Black and Fisher, 1992; 

Meltzer, 2002; Palmer et al., 2005). The average life expectancy in woman and man with 



 

 2 

schizophrenia is 12 and 15 years shorter, respectively, than the rest of the population (Crump 

et al., 2013). 

The onset of schizophrenia generally emerges in late adolescence or early adulthood. Since 

adolescence is a critical period for the development of the brain, the pathogenesis of 

schizophrenia may be embedded during early development (Paus, 2005; Paus et al., 2008; 

Welham et al., 2009). The neurodevelopmental theory of schizophrenia was suggested in the 

1980s (Lewis, 1989; Lyon et al., 1989; Murray and Lewis, 1988; Weinberger, 1987) and 

proposed that early brain insults, caused by environmental or genetic risk factors, affect brain 

development and lead to pathological processes of schizophrenia (Rapoport et al., 2005). 

1.1.3 Risk factors of schizophrenia 

1.1.3.1 Environmental risk factors 

Environmental risk factors related to prenatal, neonatal and early life have been highlighted 

by several studies pointing to the etiology of schizophrenia. In particular, increased risk of 

schizophrenia was found in subjects born in the winter or in the beginning of spring (Davies 

et al., 2003; Torrey et al., 1997) as well as in individuals born in urban area (Marcelis et al., 

1999; Mortensen et al., 1999). Moreover, prenatal stress or early life trauma can also be risk 

factors for the development of the disease (Huttunen and Niskanen, 1978; Khashan et al., 

2008; Morgan and Fisher, 2007; van Os and Selten, 1998). Furthermore, prenatal 

malnutrition regarding folate, iron and vitamin D are correlated with the development of the 

disease (Brown et al., 1996; Insel et al., 2008; McGrath, 1999; Rosso, 1990). In addition, 

studies have provided evidences for the association between maternal and postnatal infections, 

induced for example by influenza, Toxoplasma gondii and herpes simplex virus type 2 (HSV-

2), and schizophrenia (Brown and Derkits, 2010; Dalman et al., 2008; Meyer, 2013). 

Therefore, it seems that this is not a pathogen-specific association; instead it sheds light upon 

the mediation of upregulated expression of inflammatory cytokines (Brown et al., 2004; Buka 

et al., 2001), suggesting an involvement of immunological factors in schizophrenia. 

1.1.3.2 Genetic risk factors  

For decades, family history of schizophrenia has been identified as the most predominant risk 

factor for the disease. When both parents are affected by schizophrenia, there is a relative risk 

of 89% for their child to develop the disease (Lichtenstein et al., 2006). Furthermore, twins 

studies have provided evidence showing that genetic factors account for more than 80% of 

the risk for the development of schizophrenia (Cannon et al., 1998; Cardno et al., 1999; 
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Sullivan et al., 2003). However, the complexity of the disease makes the search for a causal 

gene a hard and tortuous journey. In all probability, due to cooperative effects of multiple 

vulnerable genes that interact with environmental risk factors (Harrison and Owen, 2003).  

1.1.4 Hypotheses of schizophrenia 

1.1.4.1 The dopamine hypothesis of schizophrenia 

The dopamine hypothesis has been one of the main theories of the pathophysiology of 

schizophrenia, proposing that dopaminergic hyperactivity is responsible for the positive 

symptoms observed in the disorder (Carlsson and Lindqvist, 1963). The hypothesis originates 

from findings that antipsychotic drugs have the potency to ameliorate the symptoms of 

schizophrenia by blocking dopamine D2 receptors (Creese et al., 1976; Seeman and Lee, 1975; 

Seeman et al., 1976). In addition, dopamine enhancing drugs, such as amphetamine, can 

deteriorate the symptoms in patients with schizophrenia (Angrist et al., 1974) and induce a 

state of psychosis in healthy people (Snyder, 1973). Nevertheless, negative symptoms and 

cognitive impairments of schizophrenia have drawn more attentions for many years, and their 

treatment resistance to antipsychotic drugs led to a revision of the dopamine hypothesis 

(Breier, 1999; King, 1998). The revised dopamine hypothesis proposes an imbalance of 

dopaminergic transmission in schizophrenia involving hyperactivation of the subcortical 

mesolimbic dopamine pathway, which leads to positive symptoms, and a hypoactivation of 

the mesocortical dopamine projection to the prefrontal cortex resulting in negative symptoms 

and cognitive dysfunctions (Abi-Dargham and Laruelle, 2005; Davis et al., 1991; Goldman-

Rakic et al., 2000). 

1.1.4.2 The glutamate hypothesis of schizophrenia 

The glutamate deficiency theory of schizophrenia was initially generated from a report 

suggesting low glutamate levels in the cerebrospinal fluid (CSF) of patients with 

schizophrenia (Kim et al., 1980). Around the same time, phencyclidine (PCP), known as an 

anesthetic, was found to induce schizophrenia-like symptoms in healthy volunteers and to 

exacerbate existing symptoms in patients with schizophrenia (Allen and Young, 1978; Itil et 

al., 1967; Luby et al., 1959). Later, PCP was characterized as a non-competitive N-methyl-D-

aspartate (NMDA) receptor antagonist and found to reduce glutamate neurotransmission 

(Anis et al., 1983; Lodge and Anis, 1982). Moreover, ketamine, another non-competitive 

NMDA receptor antagonist, is shown to aggravate symptoms in patients with schizophrenia 

(Lahti et al., 2001; Malhotra et al., 1997) and mimic all spectra of symptoms in healthy 

individuals (Krystal et al., 1994). Furthermore, several studies have implied that competitive 
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NMDA receptor antagonists as well as compounds that block the glycine site of the NMDA 

receptor could evoke the symptoms of schizophrenia in human (Albers et al., 1999; Grotta et 

al., 1995; Kristensen et al., 1992; Yenari et al., 1998), which further give support to the 

glutamate deficiency theory.  

The dopamine hypothesis and the glutamate deficiency theory are not totally irrelevant 

hypotheses. Several studies have confirmed that blockade of NMDA receptor leads to an 

increased dopamine activity in the midbrain of rodents (Erhardt and Engberg, 2002; French, 

1994; French et al., 1993; Linderholm et al., 2007; Schwieler et al., 2004). Besides, 

administration of ketamine in healthy volunteers induces an increase of dopamine release and 

potentiates the amphetamine-induced dopamine response in striatum (Breier et al., 1998; 

Kegeles et al., 2000; Vollenweider et al., 2000). Altogether, these two theories support each 

other by implicating that NMDA receptor hypofunction induces an imbalance of dopamine 

neurotransmission in schizophrenia (Svensson, 2000). 

1.1.4.3 The Kynurenic acid hypothesis of schizophrenia 

In recent years, the kynurenic acid (KYNA) hypothesis of schizophrenia has drawn more and 

more attention. The hypothesis is constructed on the fact that KYNA is an endogenous 

antagonist of the NMDA receptor as well as of the α7 nicotinic acetylcholine (α7nACh) 

receptor in the brain (Hilmas et al., 2001; Stone, 1993). Several studies have shown that 

patients with schizophrenia display elevated levels of KYNA in the CSF (Erhardt et al., 

2001a; Linderholm et al., 2012; Nilsson et al., 2005) as well as in the prefrontal cortex of 

postmortem brain (Sathyasaikumar et al., 2011; Schwarcz et al., 2001). In line with these 

studies, it has also been shown that kynurenine, the precursor of KYNA, is increased in the 

CSF and postmortem brain of patients (Linderholm et al., 2012; Miller et al., 2006). 

Fluctuations in endogenous KYNA levels mediate alterations of dopamine neurotransmission. 

Thus, it has been shown that pharmacological elevation of KYNA increases firing of rat 

midbrain dopamine neurons (Erhardt and Engberg, 2002; Erhardt et al., 2001b; Linderholm et 

al., 2007; Nilsson et al., 2006), and reduced concentration of KYNA decreases the activity 

(Linderholm et al., 2016; Schwieler et al., 2006; Schwieler et al., 2008). Furthermore, 

subchronical elevation of KYNA distinctly enhanced the dopaminergic response to an 

amphetamine challenge (Olsson et al., 2009). This finding is in consonance with clinical 

observations of patients with schizophrenia showing hyper-dopaminergic response to 

amphetamine compared to healthy volunteers (Abi-Dargham et al., 1998; Laruelle, 1998; 

Laruelle and Abi-Dargham, 1999). Indeed, increased midbrain dopamine firing contributes to 
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the excess of subcortical dopamine, which is involved in the generation of positive symptoms 

in schizophrenia (Davis et al., 1991; Jentsch and Roth, 1999). 

The KYNA hypothesis is further supported by a large amount of studies showing the 

association of NMDA and α7nACh receptors with cognitive functions (Timofeeva and Levin, 

2011). Cognitive deficits, such as impairments in working memory, speed of processing, 

attention, learning and memory, problem solving are considered as core features in 

schizophrenia (Nuechterlein et al., 2004). The hypothesis has been tested in several 

behavioral experimental settings to understand how fluctuations in KYNA levels affect 

cognitive function. It has been shown that elevated levels of KYNA induce impairments in 

contextual processing (Alexander et al., 2012; Chess and Bucci, 2006), spatial working 

memory (Chess et al., 2007; Pocivavsek et al., 2011) as well as contextual memory (Chess et 

al., 2009), while lower levels of KYNA improve cognitive performance (Kozak et al., 2014; 

Potter et al., 2010). These results are in line with a recent study showing that elevated levels 

of KYNA are associated with cognitive impairments in patients with bipolar disorder 

(Sellgren et al., 2015). In addition, increased levels of KYNA disrupt prepulse inhibition (PPI) 

in the rat (Erhardt et al., 2004). PPI is associated with sensorimotor gating and reflects the 

ability of the brain to filter out abundant information. Indeed, deficits in PPI and sensorimotor 

gating are a core deficit of patients with schizophrenia (Braff and Geyer, 1990).  

Taken together, the kynurenic acid hypothesis of schizophrenia covers the whole spectra of 

symptoms of schizophrenia and links the dopamine and glutamate hypotheses to explain the 

possible underling pathophysiology mechanisms of the disease. 

1.2  Depression 

Depression is a complex, multifactorial, heterogeneous and recurrent mental disorder with 

estimated lifetime prevalence from 11.1% to 14.6% among different counties (Bromet et al., 

2011). It was ranked as the fourth leading cause of disability worldwide (Murray and Lopez, 

1996) by World Health Organization and is projected as the second by 2020 (Murray and 

Lopez, 1997). Patients suffering from major depressive disorder (MDD) often experience 

multiple recurrences of the disease. Approximate two-thirds of the patients developed at least 

one recurrence (Solomon et al., 2000). Patients with depression often present persistent low 

mood and anhedonia accompanied by physical and mental alterations causing impairments in 

social, occupational and other capacity of functioning.  
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1.3 The kynurenine pathway 

KYNA, when discovered in dog urine by the German chemist Justus von Liebig in 1853 

(Liebig, 1853), was the first identified member of the kynurenine pathway. Half a century 

later, KYNA was recognized as a metabolite of tryptophan (Alexander, 1904), an essential 

amino acid required for the biosynthesis of proteins. Subsequently, with the identification of 

other metabolites of tryptophan degradation towards kynurenine, this pathway was termed the 

“kynurenine pathway” (Beadle et al., 1947). The majority of tryptophan is metabolized 

through the kynurenine pathway. Only less than 5% of tryptophan goes into the serotonin 

pathway (Gal and Sherman, 1980). Therefore, the kynurenine pathway is the main route of 

tryptophan degradations, accounting for approximate 90-95% of tryptophan in most 

mammalian tissues (Gal and Sherman, 1980; Leklem, 1971).  

1.3.1 Kynurenic acid 

KYNA is an endogenous antagonist acting on a wide range of glutamate receptors. At low 

concentrations, it blocks the strychnine-insensitive glycine site of the NMDA receptor [IC50 ≈ 

8-15 µM] (Birch et al., 1988; Kessler et al., 1989; Parsons et al., 1997) and the α7nACh 

receptor [IC50 ≈ 7 µM] (Hilmas et al., 2001; Stone, 2007). At higher concentrations, it also 

blocks the glutamate recognition site of the NMDA receptor [IC50 ≈ 200-500µM] (Kessler et 

al., 1989). At millimolar concentrations, KYNA competitively antagonizes on the α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor as well as the kainate receptor 

(Kessler et al., 1989). Additional targeting receptors of KYNA have been identified during 

the last couple of years. Thus, studies have suggested that KYNA acts as an agonist of the 

former orphan G protein-coupled receptor GPR35 (Berlinguer-Palmini et al., 2013; Resta et 

al., 2016) and as an efficient agonist of the aryl hydrocarbon receptor. Stimulation of the aryl 

hydrocarbon receptor with KYNA in the presence of interleukin (IL)-1β synergistically 

induces IL-6 expression. (DiNatale et al., 2010).  

1.3.2 Enzymatic steps 

The initial and rate-limiting step of the kynurenine pathway (Figure 1) is the oxidative 

opening of the indole ring of tryptophan to produce N-formyl kynurenine. Two enzymes are 

responsible for this process; indoleamine 2,3-dioxygenase (IDO1) and/or tryptophan 2,3-

dioxygenase (TDO2). Subsequently, N-formyl kynurenine is rapidly hydrolyzed to 

kynurenine, the pivotal metabolite, by kynurenine formamidase. Kynurenine is able to pass 
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the blood-brain barrier (BBB) and is further catabolized to three different molecules: 1) 

Kynurenine aminotransferases (KAT I, KAT II, KAT III and KAT IV), which catabolize 

kynurenine towards KYNA 2) kynurenine 3-monooxygenase (KMO), which converts the 

degradation of kynurenine to 3-hydroxykynurenine (3-HK) and 3) kynureninase (KYNU), 

which forms anthranilic acid. KYNA is an end product, whereas 3-HK and anthranilic acid 

are subsequently metabolized by KYNU or a nonspecific oxidation to form 3-

hydroxyanthranilic acid and then further converted to quinolinic acid (QUIN), which, as 

opposed to KYNA, is an agonist of the NMDA receptor (Stone and Perkins, 1981). The final 

metabolism along the QUIN branch leads to the production of NAD+, which is an oxidized 

form of nicotinamide adenine dinucleotide (Moroni, 1999; Stone, 1993).  

 

Figure 1. The kynurenine pathway 
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Enzymes involved in the kynurenine pathway have been found both in the central nerves 

system (CNS) and in the periphery. After the transportation of kynurenine from circulation to 

the CNS, it is taken up by glial cells (Speciale and Schwarcz, 1990). Notably, KAT enzymes, 

which convert kynurenine to KYNA, are primarily expressed in astrocytes (Guillemin et al., 

2001b), however, KMO and KYNU enzymes, which participate in the 3-HK synthesis and 

further downstream production of QUIN, are mainly expressed in microglia (Guillemin et al., 

2003). Thus, the two different branches of the kynurenine pathway are spatially segregated in 

the brain. 

KAT enzymes have been identified with four homologues (Han et al., 2010a): KAT 

I/glutamine transaminase K (GTK)/cysteine conjugate beta-lyas (CCBL)1, KAT 

II/aminoadipate aminotransferase (AADAT), KAT III/CCBL2, KAT IV/glutamic-oxaloacetic 

transaminase (GOT)2/mitochondrial aspartate aminotransferase (ASAT). All these four 

enzymes are considered to be involved in the formation of KYNA in the brain (Guidetti et al., 

2007; Guidetti et al., 1997; Okuno et al., 1991; Yu et al., 2006), however, due to different 

characteristics of the four isoforms such as substrate specificity, optimum pH and temperature, 

KAT II enzyme stands out to be the main biosynthesis enzyme for KYNA under 

physiological conditions (Han et al., 2010b; Schmidt et al., 1993).  

1.3.3 Regulation of the kynurenine pathway  

The KAT II enzyme has a Michaelis Menten constant (Km) in millimolar range, suggesting 

that the enzyme is far from saturated under normal physiological conditions (Okuno et al., 

1991). Thus, the production of KYNA is largely dependent on the availability of its precursor, 

kynurenine, and indeed, systematic administration of kynurenine increases the levels of 

KYNA in brains in both rats and primates (Jauch et al., 1993; Swartz et al., 1990; Wu et al., 

1992). 

The activity of the kynurenine pathway is regulated by several distinct mechanisms. 

Intracellular concentration of amino acid such as glutamine and phenylalanine, which are the 

competitive substrates of KAT I and KAT II, have been demonstrated to control the 

formation of KYNA in the brain (Chang et al., 1997). KMO is the enzyme converting the 

degradation of kynurenine towards QUIN branch in the kynurenine pathway and 

pharmacological blockade of KMO leads to shunting of the metabolism of kynurenine 

towards KYNA (Rover et al., 1997; Russi et al., 1992; Speciale et al., 1996). Moreover, 

cyclo-oxygenase (COX)-1 inhibition with indometacin or diclofenac indirectly increases 

KYNA levels in the brain (Edwards et al., 2000; Schwieler et al., 2005; Schwieler et al., 
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2006), whereas, systematic administration of parecoxib or meloxicam, which act as COX-2 

inhibitors, decreases KYNA concentrations in the brain (Schwieler et al., 2005; Schwieler et 

al., 2006). Furthermore, KYNA is actively extruded from the CNS by organic anion 

transporters (Nemeth et al., 2005; Uwai et al., 2012). To avoid its extrusion, probenecid is 

used to block organic anion transporter activity (Cunningham et al., 1981; Moroni et al., 

1988). Notably, pro-inflammatory cytokines are also able to induce the rate-limiting enzymes, 

IDO1 (Carlin et al., 1987; Yoshida et al., 1986) and TDO2 (Miller et al., 2006; Sellgren et al., 

2015), which lead to increased levels of kynurenine and further induction of the entire 

pathway. Thus, this evidence implies that immune activation is involved in the regulation of 

the kynurenine pathway.  

1.3.4 Regulation of the kynurenine pathway following immune activation 

Cytokines are released from innate immune cells under immune response. The principal 

cytokine to induce IDO1 is interferon (IFN)-γ (Pemberton et al., 1997), which has been 

shown to increase IDO1 transcription in many cell types such as macrophages, microglia, 

dendritic cells, epithelial cells, smooth muscle cells and several tumor cell lines (Alberati-

Giani et al., 1996; Chiarugi et al., 2001; Cuffy et al., 2007; Jeong et al., 2009; Mailankot and 

Nagaraj, 2010; Takikawa, 2005). Other cytokines including IFN-α, IFN-β and tumor necrosis 

factor (TNF)-α have also the capacity to induce IDO1, but to a less degree than IFN-γ 

(Guillemin et al., 2001a; Pemberton et al., 1997). Recent studies have shown that the other 

rate-limiting enzyme TDO2 is induced by IL-1β (Sellgren et al., 2015; Urata et al., 2014). 

Moreover, IFN-γ has been shown to induce KMO expression as well as its activity (Alberati-

Giani et al., 1996; Chiarugi et al., 2001). Following systemic inflammatory stimulation by 

Lipopolysaccharide (LPS), KMO expression is enhanced together with increased levels of 

TNF-α and IL-6 in rat brains (Connor et al., 2008).  

1.3.5 The kynurenine pathway in schizophrenia and depression 

As described in the “kynurenic acid hypothesis of schizophrenia” section, KYNA levels are 

elevated in both CSF and postmortem brains of patients with schizophrenia (Erhardt et al., 

2001a; Schwarcz et al., 2001). Other metabolites and enzymes involved in the kynurenine 

pathway have also been measured. Importantly, a reduction of KMO gene expression and 

enzyme activity has been discovered in patients with schizophrenia and bipolar disorder 

(Lavebratt et al., 2014; Sathyasaikumar et al., 2011; Wonodi et al., 2011). Thus, the reduced 

activity in KMO shunts the metabolism of kynurenine towards KYNA (Sathyasaikumar et al., 
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2011). Interestingly, studies investigating rate-limiting enzymes of the kynurenine pathway 

revealed that only TDO2 expression, but not IDO1, is upregulated in brains of patients with 

schizophrenia and bipolar disorder with psychosis (Miller et al., 2004; Miller et al., 2006).  

Participation of the kynurenine pathway in depression was suggested in 1970’s (Lapin, 1973), 

and implied a connection between tryptophan, kynurenine and depression. However, due to 

the achievement of antidepressants using serotonin reuptake inhibitors, the focus of 

depression research shifted to serotonin. The involvement of the kynurenine pathway in 

depression is now gaining increased attention and for instance IDO1 activation is suggested 

to play a critical role in the induction of depressive symptoms. Pro-inflammatory cytokines, 

such as IFN-α, stimulate IDO1 and further induce depressive symptoms in patients with 

hepatitis C and malignant melanoma (Capuron et al., 2003; Raison et al., 2010). Moreover, 

animal studies have demonstrated that bacterial infection or upregulation of IDO1 by IFN-γ 

and TNF-α leads to long-lasting depressive-like behaviors (O'Connor et al., 2009a; O'Connor 

et al., 2009b). The elevation of downstream neurotoxic metabolites of the kynurenine 

pathway, such as 3-HK and QUIN, are implicated for the responsibility for depressive 

symptoms (Muller and Schwarz, 2007). In addition, post mortem studies have found 

microglia activation and decreased number of astrocytes in patients with depression (Si et al., 

2004; Steiner et al., 2011). Furthermore, in recent studies, low CSF levels of KYNA 

associated to severe depressive symptoms (Bay-Richter et al., 2015) and low plasma KYNA 

has also been found in patients with depressive disorders (Myint et al., 2007; Schwieler et al., 

2016). A reduction in the KYNA/QUIN ratio has also been found in both depressed patients 

and during the remitted phase of MDD (Savitz et al., 2015b). Interestingly, the KYNA/QUIN 

ratio has been found to positively correlate with larger hippocampal and amygdala volumes 

in patients with MDD (Savitz et al., 2015a) 

1.4 Virus infections and CNS immune responses 

Virus infections usually start in the periphery since viruses, including neurotropic viruses, 

hardly have access to the CNS directly. Viruses may enter the brain only in rare events, such 

as in cases of disrupted BBB or by release from circulating immune cells, having penetrated 

the BBB. Following virus invasions, viral molecules are recognized and subsequently trigger 

a cell-autonomous immune response, which increases the production of various anti-viral 

proteins and cytokines (Koyuncu et al., 2013).  
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Previously, the CNS was believed to be an immune privileged site within the entire body 

(Bailey et al., 2006; Galea et al., 2007), meaning that the CNS is segregated from the 

peripheral immune system by the BBB. However, recent studies have dramatically modified 

this idea and revealed a concept of a bidirectional communication between the brain and 

peripheral immune systems (Trakhtenberg and Goldberg, 2011; Wilson et al., 2010). 

Interestingly, a new discovery suggests a lymphatic system directly linking the peripheral 

immune system to the brain (Louveau et al., 2015). Cytokines are able to cross the BBB and 

serve as communication molecules between the two systems. The innate immune response in 

the CNS is initiated by microglia, astrocytes and neurons (Carson, 2002; Reiss et al., 2002), 

which is the first step of the host defense to viruses or infectious agents in the brain. 

Microglia are widespread in the brain and serve as monitors to identify foreign pathogens via 

Toll-like receptors (TLR) during CNS immunological process (Olson and Miller, 2004). 

Astrocytes also express TLRs and release cytokines, chemokines and neruotrophic factors 

following pathogen recognition (Falsig et al., 2008; Farina et al., 2007). These mediators 

trigger adjacent cells and further amplify the innate immune response in the CNS. They also 

alter BBB permeability, hereby allowing immune cells in the blood circulation to easier cross 

the BBB and participate in the adaptive immune response. 

1.5 Immunological aspects  

1.5.1 Immunological aspects in schizophrenia  

The concept of immune activation involvement in psychotic disorders emerged in early 1900s 

by Julius Wagner-Jauregg who won the Nobel Prize for his discovery of the importance of 

therapeutic fever in mental patients (Tsay, 2013). During the last couple of years, this idea 

has gained increased support and recognition from numerous observations. Several risk 

factors, such as late winter birth, maternal infections and early childhood infections are all 

associated with immunological aspects and the development of schizophrenia (Brown and 

Derkits, 2010; Dalman et al., 2008; Davies et al., 2003). Based on genome-wide association 

studies (GWAS), a recent meta-analysis study revealed that immune related genes are the 

most significantly associated with schizophrenia (Aberg et al., 2013). Moreover, a Positron 

Emission Tomography (PET) study has revealed activation of microglia in schizophrenia 

(van Berckel et al., 2008). Furthermore, elevated levels of CSF cytokines including IL-1β 

(Soderlund et al., 2009) and IL-6 (Sasayama et al., 2013; Schwieler et al., 2015) have been 

observed in patients with schizophrenia. In analogy, postmortem studies have investigated 



 

 12 

mRNA and protein levels of cytokines in the frontal cortex in human. Patients with 

schizophrenia exhibited higher expression levels of IL-1β and TNF-α in Brodmann area 10 

(Rao et al., 2013). Similar results have been found in another postmortem study, which 

discovered upregulated mRNA levels of IL-1β, IL-6 and IL-8 in dorsolateral prefrontal cortex 

in patients with schizophrenia (Fillman et al., 2013).  

1.5.2 Immunological aspects in depression 

Depression often occurs together with other diseases, such as atherosclerosis, rheumatoid 

arthritis and congestive heart failure, all involving chronic inflammatory factors (Evans et al., 

2005). Cytokine immunotherapy is a useful treatment strategy for some specific cancer and 

viral diseases (Ardolino et al., 2015; Mattiello et al., 2015). Patients with cancer or hepatitis C 

receiving cytokine immunotherapy frequently generate depressive symptoms (Capuron and 

Dantzer, 2003; Capuron et al., 2002). Moreover, elevated levels of pro-inflammatory 

cytokines, such as TNF-α, IL-1β and IL-6 have been found in peripheral blood in patients 

with depression (Miller et al., 2009; Zorrilla et al., 2001). Furthermore, induction of the 

immune system by administration of cytokines or cytokine inducers leads to depressive 

symptoms (Dantzer et al., 2008; Reichenberg et al., 2001) and anti-inflammatory therapy may 

ameliorate the symptoms of depression (Tyring et al., 2006).  

1.6 Animal models  

Animal models of mental disorders serve as valuable tools in preclinical research, supporting 

the investigation of underling neurobiological mechanisms of the disorder. 

The criterion of animal models validation is generally categorized as construct, predictive and 

face validity. Construct validity emphasizes if the animal model provides a rational 

theoretical construct. Predictive validity refers to the potency of the animal model to predict 

the efficacy of pharmacological treatments. Face validity corresponds to the accuracy of the 

animal model to mimic the core symptoms of the disorder in a human condition. 

1.6.1 Animal models of schizophrenia 

The existing animal models of schizophrenia are not able to predict the whole spectrum of 

symptoms of schizophrenia. The design of these animal models are based on specific 

mechanistic and causative hypotheses that related to schizophrenia. A variety of animal 

behavioral tests, correlating to human conditions, have been established for validating animal 
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performance. Animal models of schizophrenia can be categorized into four groups: 

developmental, genetic, pharmacological and lesion models.  

PPI of the startle reflex measures the sensorimotor gating and serves as an index in 

schizophrenia. It measures the ability of a non-startling auditory stimulus to inhibit the startle 

response to an intense auditory stimulus (Hoffman and Ison, 1980), i.e. the ability of the brain 

to filter out redundant information (Braff et al., 1978; Braff and Geyer, 1990). It is well 

known that patients with schizophrenia display disruptions in PPI (Braff et al., 1978; 

Swerdlow et al., 2008). PPI is a cross-species operation of measuring sensorimotor gating, it 

has thus been widely used in translational animal models (Swerdlow et al., 2000; Swerdlow 

et al., 1994). 

1.6.1.1 Developmental models 

Developmental models of schizophrenia are based on the fact that exposure of the neonate to 

environmental risk factors during prenatal or postnatal period increases the risk of 

schizophrenia development. Risk factors, such as infections or immune activation, maternal 

stress, and isolation rearing perturbed the neonate’s CNS development (Asp et al., 2009; 

Bitanihirwe et al., 2010; Harms et al., 2008; Holloway et al., 2013; Koike et al., 2009; 

Macedo et al., 2012).  

1.6.1.2 Genetic models 

Genetic animal models are instructive for the understanding of the pathogenesis of the 

disorder. Creating animal models with targeted deletions of the genes of interest is a common 

strategy to explore the function of a single gene in the pathophysiology of a disorder. One of 

the historical candidate genes of schizophrenia is disrupted-in-schizophrenia 1 (DISC1). 

DISC1 knockout (KO) mice display impairments in a broad spectrum of behaviors associated 

to psychiatric disorders including PPI (Lipina and Roder, 2014). As previously described, 

KYNA plays an essential role in schizophrenia pathophysiology. Thus, the main biosynthesis 

enzyme of KYNA (KAT II) has been investigated and KAT II KO mice were developed to 

study the phenotypic function of low KYNA levels. Indeed, KAT II KO mice display 

improved cognitive functions (Potter et al., 2010). Another genetic model associated with the 

kynurenine pathway is the KMO KO mouse model, which presents high levels of brain 

KYNA (Giorgini et al., 2013).  In the present thesis, Kmo-/- mice have served as a platform to 

study subsequent influences of increased brain KYNA levels. 

 



 

 14 

1.6.1.3 Pharmacological models 

Pharmacological models are mainly designed from our current knowledge regarding 

neurotransmitter changes in schizophrenia. The most well known pharmacological model of 

schizophrenia is the amphetamine model, which reflect the mesolimbic dopaminergic 

hyperactivity (Breier et al., 1997; Laruelle, 1998). Administration of amphetamine induces 

hyperlocomotion and stereotypy in animals (Kokkinidis and Anisman, 1980; Sharp et al., 

1987), which have been correlated with positive symptoms of schizophrenia. Moreover, 

NMDA receptor antagonist such as PCP and ketamine induce not only positive systems, but 

also partial negative and cognitive deficits of schizophrenia (Marcotte et al., 2001; Monte et 

al., 2013).  

1.6.1.4 Lesion models 

Lesion models are generated from the theory that neurodevelopment and neurodegeneration 

are linked to schizophrenia. Specific brain regions including the prefrontal cortex, the 

hippocampal formation and the thalamus have been selected when constructing lesion models 

of schizophrenia (Bardgett et al., 1997; Jaskiw et al., 1990; Kodsi and Swerdlow, 1997; 

Mittleman et al., 1993; Swerdlow et al., 1995). Lesion models typically involve excitotoxic 

substances, which lead to the release of excitatory glutamate and cause damage to neuronal 

tissue. The most acknowledged lesion model is the neonatal lesion model, which is also 

categorized into developmental models. It is widely used to study the neurodevelopmental 

theory of schizophrenia (Brake et al., 2000).  

1.6.2 Animal models of depression 

1.6.2.1 Genetic models 
The monoamine hypothesis of depression states a depletion of monoamine 

neurotransmitters, such as serotonin, norepinephrine, and/or dopamine in the CNS leads to 

depression (Delgado, 2000). Based on this theory, traditional genetic models of depression 

such as serotonin receptor 1A knockout mouse model (Heisler et al., 1998; Ramboz et al., 

1998) or the noradrenaline transporter knockout mouse model (Xu et al., 2000) were 

generated. Other transgenic animal models, targeting on corticotropin-releasing hormone 

receptor-1 (Muller et al., 2003) or the type II glucocorticoid receptor (Montkowski et al., 

1995), are based on a theory suggesting a dysregulation of the hypothalamic-pituitary-

adrenal (HPA) axis in depression.  
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Selective breeding is another method to develop animal models of depression. It consists of 

selection of animals according to their specific features and several generations of breeding. 

Because of these reasons, animals are genotypically identical to each other in inbred strains 

and show specific behavioral or physiological abnormalities. One example of genetic 

models by selective breeding is the Flinders Sensitive Line (FSL) and the Flinders Resistant 

Line (FRL) rats, which were originally generated towards increased sensitivity to an 

anticholinesterase agent (diisopropyl fluorophosphates, DFP). Compared to the FRL rats, 

the FSL rats exhibit partial depressive-like behavior as well as certain neurochemical and 

pharmacological features involved in depression (Overstreet et al., 2005). The FSL rats 

display reduced appetite, psychomotor retardation as well as deficits in sleep and immune 

system (Overstreet et al., 2005; Overstreet and Wegener, 2013).  

1.6.2.2 Stress Models  

Stress models of depression are based on different types of stress including social stress, 

chronic mild stress, early life stress and learned helplessness. These different types of stress 

models offer distinctive information for various subsets of the disorder (Czeh et al., 2016). 

1.6.2.3 Immune models 
The hypothesis of immunological abnormalities in depression has gained increased 

attentions. Activation of the peripheral immune system in humans and rodents induces 

sickness behavior including fever, fatigue, anhedonia, nausea and malaise (McCusker and 

Kelley, 2013), which have phenomenological similarities with depressive symptoms. LPS, 

a main component of the out membrane of gram-negative bacteria, has been found to 

induce sickness behavior in rodents (Bluthe et al., 1994). Administration of LPS induces 

the expression of pro-inflammatory cytokines in the brain, subsequently activates IDO1 and 

disrupts the balance of the kynurenine pathway (Parrott et al., 2016). Thus, the LPS model 

has been used as a reliable immune animal model to study the pathophysiological role of 

immune activation in depression (O'Connor et al., 2009c; Salazar et al., 2012). 
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2 AIMS OF THE THESIS 

 

1) To investigate locomotor response to a d-amphetamine challenge in adult wild-type 

mice neonatally infected with influenza A virus. 

 

2) To investigate whether neonatally elevated brain KYNA is associated with the 

disturbed behavior in adulthood seen after infection in early life. 

 

3) To investigate if the concentrations of kynurenine pathway metabolites are changed in 

different brain regions in Flinders Sensitive Line rats, an animal model of depression. 

 

4) To investigate possible changes in gene expression in the brain of mice with a 

targeted deletion of Kmo (Kmo-/- mice). 

 

5) To assess cerebral and cerebellar variations in KYNA levels in Kmo deficient mice. 

 

6) To characterize Kmo deficient mice behaviorally. 

 

7) To investigate if KAT II KO mice, which have less capacity to generate KYNA, are 

prevented from elevation of brain KYNA induced by an LPS triggered immune 

response.  
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3 MATERIALS AND METHODS 

3.1 Animals 

In paper I, wild-type C57BL/6 mice (Scanbur AB, Sweden) were used in all experiments. 

The virus-infected mice and their counterparts were bred at the Department of Neuroscience, 

Karolinska Institutet, Sweden. The kynurenine-treated mice and their respective controls 

were bred at the Department of Physiology and Pharmacology, Karolinska Institutet, Sweden. 

Female FSL and FRL rats were used in paper II and bred at the Department of Clinical 

Neuroscience, Karolinska Institutet, Sweden. In paper III, male Kmo-/- mice and their control 

wild-type mice were bred on C57BL/6 background at the Department of Genetics, University 

of Leicester, UK or FVB/N background at the Department of Physiology and Pharmacology, 

Karolinska Institutet, Sweden as well as the Department of Psychiatry, University of 

Maryland School of Medicine, Baltimore, USA. The whole genome gene-expression analysis 

was carried out on Kmo-/- and wide-type mice on a C57BL/6 background. Metabolite 

analyses, enzyme activity and behavior tests were performed on Kmo-/- and wild-type mice on 

a FVB/N background. In paper IV, male KAT II knockout and wild-type mice on a FVB/N 

background were used in all experiments and bred at the Department of Physiology and 

Pharmacology, Karolinska Institutet, Sweden.  

All animals were maintained under standard laboratory conditions with free access to food 

and tap water in a light controlled room (12 h light/dark cycle, light on at 6.00 a.m.). 

Experiments were approved by and performed in accordance with the guidelines of the 

Ethical Committee of Northern Stockholm, Sweden. In paper III, all experiments were 

approved and issued by the Home Office (UK), the Institutional Animal Care and Use 

Committee of the University of Maryland School of Medicine (USA), or the Ethical 

Committee of Northern Stockholm (Sweden). All efforts were made to minimize the number 

of animals used and their suffering. 

3.2 Drugs and chemicals 

L-kynurenine sulfate salt (Sigma Aldrich) was dissolved in sterile dH2O and adjusted pH 

with NaOH to approximate 8.2 (paper I and IV). d-amphetamine (Sigma Aldrich) was 

dissolved in sterile dH2O (paper I and III). LPS (Escherichia coli serotype O111:B4) was 

purchased from Sigma Aldrich and dissolved in sterile saline (paper IV).  
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3.3 Treatment  

3.3.1 Influenza A/WSN/33 virus infection (paper I) 

The mouse adapted neurotropic influenza A/WSN/33 virus was obtained from Dr. S 

Nakajima (The Institute of Public Health, Tokyo, Japan). Mice were infected 

intraperitonatally (i.p.) at postnatal day (PND) 3 or PND 4 with 2400 plaque-forming units of 

the influenza A/WSN/33 virus suspended in 30 µl of phosphate buffered saline (PBS; Gibco) 

to mimic a hematogenous route of infection.  

3.3.2 L-kynurenine treatment (paper I and IV) 

In paper I, L-kynurenine was injected i.p. to C57BL/6 mice from PND 7 to PND 16, every 

12th hour to mimic a transient increase in brain KYNA levels following influenza virus 

infection (Holtze et al., 2008).  In paper IV, acute L-kynurenine injection was performed i.p. 

in KAT II KO and wild-type mice.  

3.3.3 LPS injection (paper IV) 

Both KAT II KO and wild-type mice received two LPS injections (i.p.) at PND 21. The 

second injection was administrated 16 hours after the first injection and mice were sacrificed 

24 hours after the first injection at PND 22. In another set of animals, LPS was injected twice 

in both wild-type and KAT II KO mice as adults. 

3.4 Behavior tests (paper I and III) 

Several behavior tests were utilized to investigate behavioral alterations in different animal 

models. Locomotor activity, elevated plus maze, light-dark box and PPI were investigated in 

both paper I and III. Trace fear conditioning was used in paper I. Passive avoidance and 

social interaction were investigated in paper III.  

3.4.1 Locomotor activity  

Locomotor activity was studied in an open field apparatus for mice. Each mouse was placed 

in a square Plexiglas box (50 x 50 x 21.6 cm) within a sound-dampened and solid chamber. 

To detect the movement, the chamber was equipped with two rows of photocells sensitive to 

infrared light forming a two-layer grid over the open field arena. All mice were habituated 
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during three sessions of 60 min, 24 h apart. General locomotor activity was examined during 

the first session of the first day. The last habituation session was immediately followed by a 

test session of 90 min. d-amphetamine or vehicle was injected i.p. approximately 1 min prior 

to the test session. All habituation sessions and test sessions were performed in the dark 

during the animal’s light cycle.  

3.4.2 Elevated plus maze 

The protocol of elevated plus maze was based on the method of Lister (Lister, 1987). The 

maze was shaped like a “plus” sign and consisted of two open arms (30 × 5 cm) and two 

equal-sized closed (30 × 5 × 15 cm) arms opposite to each other. Open and closed arms 

extended from a central platform (5 × 5 cm). The maze was made of stainless steel and 

mounted on a base, raising it to a height of 50 cm above the floor. Mice were individually 

placed on the central platform facing an open arm, and allowed to freely explore the maze for 

5 min. The number of entries into different arms and the time spent in each arm was recorded 

by a video camera and then analyzed using the top-view based behavior analysis software 

TopScan Lite (Clever Sys Inc., Reston, VA, USA). The number of entries and percent time 

spent in different arms was measured as an index of exploratory behavior. After each test, the 

maze was cleaned with 70% ethanol solution and dried for 10 min. 

3.4.3 Light-dark box 

The light-dark box was made of Plexiglass (50 x 25 x 25 cm) and was equally divided into an 

open white compartment and a darkened closed black compartment. The two compartments 

were separated by a partition with a 10 x 5 cm opening in the center. Each mouse was placed 

in the center of the light section facing away from the dark chamber and allowed to explore 

the box freely for 5 min while being recorded with an overhead digital video camera. The box 

was cleaned with 70% ethanol solution between subjects. Time spent in each compartment 

and total number of transitions was analyzed. 

3.4.4 Trace fear conditioning 

The trace fear conditioning test was carried out by means of a fear conditioning chamber 

(Med Associates Inc., St. Albans, VT, USA). During training section, mice were allowed to 

explore the chamber for 100 s before a 20 s tone cue (90 dB). After 18 s interval a foot shock 

(2 s duration, 0.5 mA intensity) was delivered through the stainless steel rods on the floor of 

the apparatus. A second tone-shock pairing was repeated after 100 s inter trial interval and the 
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following 5 s after the second shock was defined as working memory. Working memory is 

generally defined as cognitive entities (or ‘‘central executive’’ mechanisms) relating to 

temporary storage and operation of information in both humans and animals (Yoon et al., 

2008). The mouse was removed 30 s after the last shock. Three days later, freezing was 

recorded in the same context, with no tone or shock exposures. Freezing was scored 

automatically by the Med Associate software and defined as the absence of movement except 

that required for respiration. Approximately 3h after the contextual assessment, mice were 

again placed in the apparatus and freezing was recorded in a novel environment (a plastic 

floor covered the metal grid and a pyramidal shape was inserted in the rectangular box) and 

in response to the cue (tone). After 100 s exploration, the auditory cue was presented for 20 s 

followed by a 120 s inter trial interval, then another 20s cue presented. The percentage of 

time spent freezing was used to score learning and memory. A decrease in percent freezing 

represents impairment of these abilities.  

3.4.5 Passive avoidance 

The passive avoidance paradigm (PAP) had two compartments of equal size (each 22 cm 

high, 18 cm wide and 16 cm deep), one illuminated and the other in darkness, separated by a 

guillotine door. During the acquisition trial, on day 1, the mouse was first placed in the 

illuminated compartment. The door was then opened, prompting the mouse to move rapidly 

into the preferred dark compartment. The latency to enter the dark compartment was recorded 

as the “approach latency” and the guillotine door was immediately closed. An inescapable 

foot shock (0.56 mA for 1 sec) was delivered through metal rods of the floor. Twenty-four 

hours later, in the retention trial, the mouse was again placed in the light compartment, and 

the guillotine door was opened. The time from opening the guillotine door to the time of 

entering the dark compartment, which defined as “avoidance latency”, was recorded. 

3.4.6 Social interaction 

The social interaction test was performed in a three-chambered box. All chambers were equal 

in size (each 17 cm wide and 29.5 cm deep). The compartments were separated by clear walls 

with openings to allow access into each chamber. The test mouse was placed into the center 

chamber and allowed to explore for 5 min, the two side chambers were obstructed by plastic 

boxes. After acclimating to the testing environment, mouse was given 10 min to explore all 

three chambers of the testing apparatus, this was termed the habituation phase and the amount 

of time spent in each chamber was recorded. After the habituation period, an unfamiliar 
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129Sv/Ev male (stranger) was placed in one of the side chambers. The location of the 

stranger mouse systematically alternated between testing sessions. The stranger mouse was 

enclosed in a wire cup (9.5 cm in diameter), which allowed nose touching but no fighting. In 

the alternate chamber, an empty wire cup (termed the novel object) was placed. The test 

mouse was allowed to explore the entire testing apparatus for a 10 min session. The amount 

of time spent in each chamber was recorded by two blinded human observers seated five feet 

away. Data between these two observers were averaged.  Additionally, the testing was video 

recorded, and a third blinded human observer scored the direct interaction between the test 

mouse and stranger mouse.  

3.4.7 Prepulse inhibition 

PPI of the startle response is used as an operational measure of sensorimotor gating and is 

analyzed by measuring the ability of a non-startling ‘‘prepulse’’ to inhibit the response to a 

startling stimulus (Hoffman and Ison, 1980). Startle response and PPI testing were performed 

in commercial startle chambers (35 x 33 x 46 cm, SR-LAB™ system, San Diego Instruments, 

San Diego, CA). The mouse was placed into a Plexiglas cylinder (3.7 cm in diameter), which 

was mounted in each chamber. Sudden movements by the mouse were detected by a 

piezoelectric accelerometer attached below the cylinder. A standard personal computer 

recorded the signals and controlled the presentations of acoustic stimuli and broadband 

background noise. 

The experimental session consisted of a 5 min habituation period to a 65 dB background 

noise (continuous throughout all blocks), followed by five 120 dB single trials. This was 

immediately followed by three different test blocks: 1) A variable stimulus intensity block 

including five trial types: a 40 msec 80, 90, 100, 110, or 120 dB startle pulse, each trial 

presented 4 times. 2) A variable prepulse intensity block including 12 single 120 dB trials, 

and 10 trials each of a 69, 72, or 81 dB, 20 msec long prepulse followed 80 msec later by a 

120 dB pulse. 3) A variable interstimulus interval block consisting of a 72 dB prepulse 

followed by a 120 dB pulse with a 25, 50, 100, 200 or 500 msec delay from the start of the 

prepulse. Eight single 120 dB trials were interspersed within the block.  
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3.5 Microdialysis (paper I) 

3.5.1 Microdialysis surgery  

Mice were anesthetized in a Plexiglas chamber continuously ventilated with 4.8% isoflurane 

in air using a vaporizer (Univentor 400 Anesthesia Unit; Univentor Ltd, Zejtun, Malta) and 

then mounted onto the ear bars of a conventional stereotaxic frame (David Kopf Instruments, 

Tujunga, CA, USA). Anesthesia was maintained using a nose cone delivering 2.4% 

isoflurane. Body temperature was maintained at 37 °C throughout the surgery, by a 

thermometer and a heating pad (Homeothermic Blanket Control Unit 50–7053-F, Harvard 

Apparatus, Holliston, MA, USA). An ocular lubricant was applied and 0.5 ml sterile saline 

was given s.c. to prevent dehydration. The skull was exposed and cleaned from adhesions. 

Next, a thin layer of quick-setting cyanoacrylate glue (BT AB, Stockholm, Sweden) was 

applied to the exposed skull, serving as an adhesion surface to the dental cement. A small 

hole was then drilled over striatum (AP: 0.5 mm anterior to bregma, L: 2 mm from midline), 

and, following careful removal of the dura, a guide cannula (AT4.7.IC, AgnTho’s AB) 

containing a dummy probe (outer diameter: 0.2 mm) was implanted (V: 1.5 mm below the 

brain surface), and secured to the skull with acrylic dental cement (Dentalon® plus, Heraeus, 

Hanau, Germany). Before each guide cannula implantation the incisor bar was adjusted so 

that the skull was set in a horizontal flat plane. The wound was then sutured and mice were 

allowed to recover single-housed for 48 h with food and water ad libitum.  

3.5.2 In vivo microdialysis  

On the day of experiment, microdialysis was performed in the home cage in unanaesthetized 

freely moving mice. Mice were tethered to a swivel, the guide was removed and a 

microdialysis probe (AT4.7.2.PES, shaft length: 7 mm, membrane length: 2 mm, molecular 

cut-off: 6 kDa, AgnTho’s AB) was inserted through the guide cannula. Probes were perfused 

with perfusion fluid (Ringer solution containing 148 mM NaCl, 4 mM KCl, 0.8 mM MgCl2, 

1.4 mM CaCl2), delivered via polyethylene tubing from a microinfusion pump (Univentor 

864, Univentor Ltd) at a flow rate of 1 µl/min. All samples were collected in plastic tubes 

attached to the tether in 30 min (for the analysis of dopamine) intervals throughout the 

experiment and immediately manually injected (Rheodyne, Cotati, CA, USA) into a high 

performance liquid chromatography (HPLC) system. To minimize the inter-individual 

variation due to differences in probe recovery, the dialysate concentrations were transformed 

to percent of baseline before statistical analysis. A stable baseline, consisting of three 
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consecutive samples with a maximal variation of 10%, was usually obtained after 2–3 h and 

defined as 100%. These three samples were taken for determination of basal extracellular 

dopamine concentrations. Results for subsequent samples were calculated as percentages of 

this average basal release. The mice then received an i.p. injection of d-amphetamine (2 

mg/kg), and dopamine concentrations were measured for up to 300 min. After the session, the 

mice were sedated with isoflurane and sacrificed with cervical dislocation and tissues were 

frozen for later analysis and histological verification of probe placement.  

3.6 High performance liquid chromatography (paper I - IV) 

3.6.1 Fluorescent detection (paper I – IV) 

The HPLC system consist of a dual-piston, high-pressure liquid delivery pump Shimadzu 

LC-10AD (Shimadzu Corporation, Kyoto, Japan), a ReproSil-Pur C18 column (4 × 100 mm; 

Dr. Maisch GmbH, Ammerbuch, Germany) and a fluorescence detector (Jasco Ltd., Hachioji 

City, Japan) with an excitation wavelength of 344 nm and an emission wavelength of 398 nm 

(18 nm bandwidth). A mobile phase of 50 mM sodium acetate (pH 6.2, adjusted with acetic 

acid) and 7.0% acetonitrile was pumped through the reversed-phase column at a flow rate of 

0.5 ml/min. Brain samples (50 µl) were manually injected by a Rheodyne® 7725i injector  

(IDEX, Oak Harbor, WA, USA) into a 100 µl loop. A second mobile phase containing Zinc 

acetate (0.5 M, not pH adjusted) was delivered after the column at a flow rate of 10 ml/hour 

by a peristaltic pump (P-500; Pharmacia, Uppsala, Sweden). Signals from the fluorescence 

detector were transferred to a computer for analysis using Datalys Azur software (Grenoble, 

France). The retention time of KYNA was about 7–8 min. The sensitivity of the system was 

verified throughout the session by analysis of KYNA standards.  

3.6.2 Electrochemical detection (paper I and II) 

 The HPLC system is coupled to an electrochemical detector (Coulochem III; ESA Inc., 

Chelmsford, MA, USA). A mobile phase consisting of 20mM sodium phosphate, 0.7 mM 

octanesulfonic acid and 10% acetonitrile (pH set to 3.2 using acetic acid) was pumped 

through a ReproSil-Pur C18 column (4 × 150 mm, Dr. Maisch GmbH), at a flow rate of 

0.6ml/min, delivered by a LC-20AD VP HPLC pump (Shimadzu Corporation, Kyoto, Japan). 

Samples of 20 µl (kept at –25°C until analysis) were manually injected through a Rheodyne® 

7725i injector (IDEX) into a 100µl loop. The retention time of 3-HK was about 8.5 min. 

Signals from the detector were transferred to a computer for analysis with Clarity (DataApex 
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Ltd, Prague, The Czech Republic).  

3.7 Microarray analysis (paper III) 

Animals were killed by cervical dislocation, and their brains were rapidly removed and 

placed on ice. The cerebellum was then separated from the cerebrum, and all samples were 

snap-frozen in liquid nitrogen and stored at -80°C until use. Tissues were homogenized in 

TRIzol reagent (Invitrogen, Fisher Scientific, UK Ltd, Loughborough, UK), and RNA was 

extracted following the manufacturer's protocol.  Integrity of total RNA samples was assessed 

on an Agilent 2100 Bioanalyzer. All samples had an RNA Integrity Number (RIN) >7.5. 250 

ng of total RNA were reverse-transcribed to cDNA from which biotin-labelled cRNA was 

synthesized and purified using an Illumina TotalPrep RNA Amplification kit (Ambion, 

Fisher Scientific) according to the manufacturer’s instructions.  The cRNA was hybridized to 

MouseWG-6 v2.0 Expression BeadChips, which allow the simultaneous quantification of 

45,200 transcripts. The beadchips were scanned on an Illumina BeadArray Reader, and the 

raw microarray data were extracted using Illumina Genome Studio V2011.1 software. The 

data were normalized and background subtracted using ArrayTrack.1 Transcripts with low 

mean expression (fluorescent intensity <150 units, which was equivalent to the mean 

background fluorescent intensity across the whole slide) across all samples were removed.  

Data sets were compared by Welch t-test using Arraytrack, and only differentially expressed 

transcripts with p < 0.05 and >1.2-fold changes were included for subsequent analyses. The 

differentially-expressed transcript list was annotated with Arraytrack. In order to visualize 

groups of similarly differentially-expressed transcripts, hierarchically clustered heat maps 

were produced using GENE-E software. 

3.8 Statistics 

Data analyses were formed with the statistical software package GraphPad Prism® 6 

(GraphPad Software Inc., San Diego, CA, USA) for Mac OS X. A p-value <0.05 was 

considered statistically significant.  

Behavior tests including locomotor activity, trace fear conditioning, passive avoidance and 

social interaction were analyzed with two-way repeated measure (RM) analysis of variance 

(ANOVA) followed by Bonferroni post-hoc test. Elevated plus maze and light-dark box tests 

were analyzed by t-test or Mann–Whitney U test. Biochemical data were analyzed with 

Mann–Whitney U test in paper I and II, and one-way or two-way ANOVA followed by 
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Bonferroni post-hoc correction in paper III and IV. Microdialysis data were analyzed with 

two-way RM ANOVA followed by Bonferroni multiple comparison test. Percent PPI was 

calculated as follows: ((A-B)/A)*100, where A is the average startle magnitude of the 120 dB 

trials within each block, and B is the average startle magnitude of the prepulse trial in the 

same block. Basal average startle magnitude between groups was evaluated with a two-tailed 

unpaired t-test. Differences in percent PPI were calculated with two-way RM ANOVA 

(genotype x prepulse level or interstimulus interval) followed by Bonferroni post-hoc test. 
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4 RESULTS AND DISCUSSION 

4.1 Paper I 

Exposure to infection in early life increases the risk for schizophrenia development. Previous 

studies reported transient increases of brain KYNA concentration in neonatal influenza 

A/WSN/33 virus infected wild-type mice (Holtze et al., 2008) as well as in immunodeficient 

mice (Asp et al., 2010). While the neonatal infection was related to anxiety and impairments 

in working memory and PPI in adult immunodeficient mice (Asp et al., 2009) no such effects 

were observed in the wild-type mice (Asp et al., 2010). The aim of this paper is therefore to 

investigate locomotor response to a d-amphetamine challenge in adult wild-type mice 

neonatally infected with influenza A virus as well as to investigate whether neonatally 

elevated brain KYNA is associated with long-term behavior disturbances seen after infection 

in early life.  

4.1.1 Neonatal virus infection or neonatal L-kynurenine administration enhance 

locomotor responsiveness to d-amphetamine in adult mice 

The present study demonstrates that acute administration of d-amphetamine (5 mg/kg, i.p.) in 

adult life increased horizontal activity in neonatally influenza A/WSN/33 virus-infected mice 

and their respective controls. As compared to the uninfected control mice, neonatal infected 

mice displayed a more pronounced increase in d-amphetamine-induced locomotor response 

(Figure 2). The basal horizontal activity did not differ between neonatally virus-infected 

mice and their uninfected controls. Similar results were obtained in adult mice neonatally 

injected with kynurenine (Figure 3). 
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Figure 2. Horizontal activity during habituation three and following acutely 
administered d-amphetamine (5 mg/kg) or vehicle to 5–6 months old mice, injected with 
influenza A virus (2400 plaque-forming units) or phosphate buffered saline (PBS) at 
PND 3 or 4. Each point represents the mean ± S.E.M. of counts recorded during five-
minute intervals. Statistical analysis was performed by a two-way ANOVA for repeated 
measurements (time × treatment) followed by Bonferroni’s multiple comparison test 
(Interaction: F (51, 493) = 3.629, p < 0.001; Time: F (17, 493) = 25.34, p < 0.001; 
Treatment: F (3, 29) = 16.29, p < 0.001).  

   

Figure 3. Horizontal activity during habituation three and following acutely administered 
d-amphetamine (5 mg/kg) or vehicle to 3–4 months old mice, injected with L- kynurenine 
(2 × 200 mg/kg/day) or saline from PND 7 to 16. Each point represents the mean ± S.E.M 
of counts recorded during five-minute intervals. Statistical analysis was performed by a 
two-way ANOVA for repeated measurements (time × treatment) followed by 
Bonferroni’s multiple comparison test (Interaction: F (51, 204) = 2.631, p < 0.001; Time: 
F (17, 204) = 10.61, p < 0.001; Treatment: F (3, 12) = 8.788, p < 0.01).  
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4.1.2 Neonatal kynurenine treatment disrupts prepulse inhibition and working 

memory in adult mice 

Neonatally L-kynurenine treated mice displayed mild reductions in PPI as adults (Figure 4). 

Significant disruption in PPI was only seen at the 500 ms interstimulus interval, suggesting 

reduced processing time in mice neonatally exposed to L-kynurenine.  

Furthermore, neonatally L-kynurenine treated mice showed a reduction in working memory 

in trace fear conditioning test as adult (Figure 5). However, no significant difference in 

contextual memory was found, implying a partial disruption of the hippocampus and/or other 

related brain regions in this developmental animal model.  In line with the paper by Chess 

and colleagues (Chess et al., 2009), no tone-cued memory alterations were observed. 

 

Figure 4. Prepulse inhibition 
(PPI) during the varied 
interstimulus interval (ISI) 
block of the startle session in 3–
4 months old mice, neonatally 
injected with L-kynurenine (2 × 
200 mg/kg/day, n = 8) or saline 
at PND 7–16 (n = 10). Data are 
presented as mean ± S.E.M. 
**p < 0.01. 

 

Figure 5. Trace fear conditioning of L-kynurenine treated and saline treated C57BL/6 
female mice. Percent component time freezing during the training trial was analyzed in the 
following time periods: Baseline, first tone cue (Tone1), Inter-trial interval (ITI), second 
tone cue (Tone2) and working memory (WM). Data were analyzed with two-way ANOVA 
for repeated measurements (time × pretreatment) followed by Bonferroni multiple 
comparison test, which revealed a significant impairment of working memory in L-
kynurenine treated mice, as compared to saline treated controls, (Treatment: F (1, 22) = 
24.82, ***p < 0.001).  
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4.2 Decreased levels of prefrontal cortex KYNA in a genetic animal model 

of depression (Paper II) 

In this paper, two key metabolites of the kynurenine pathway were analyzed in different brain 

regions of a rat model of depression, i.e. the FSL and FRL. Varied KYNA levels were 

detected in the brain areas of both FSL and FRL rats. No changes in KYNA levels in the 

frontal cortex, striatum, hippocampus or cerebellum were observed between the two strains. 

However, in the prefrontal cortex the concentration of KYNA levels was significantly lower 

in the FSL compared to FRL rats (Table 1).  

Levels of 3-HK were analyzed in the prefrontal cortex and the frontal cortex in these rats and 

no differences were found between the two strains. As a result, the KYNA/3-HK ratio was 

significantly lower in the prefrontal cortex in FSL rats compared to FRL rats. These results 

indicate an imbalanced metabolism between the two main branches of the kynurenine 

pathway in this animal model of depression. The region specific abnormality of the 

kynurenine pathway metabolism implies an essential role of the prefrontal cortex in MDD. 

Indeed, several imaging studies have demonstrated abnormalities in neurophysiology of the 

prefrontal cortex in patients with MDD (Dutta et al., 2014; Johnstone et al., 2007; Liu et al., 

2014b).  

 

Median concentrations [IQR] of KYNA and 3-HK are expressed in nM. Numbers of animals are given 
in brackets. Differences in KYNA, 3-HK levels and KYNA/3-HK ratios between FSL and FRL rats 
were evaluated by Mann-Whitney U test followed by the Bonferroni test for multiple comparison, 
*p<0.05, **p<0.01. 
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4.3 Paper III 

In this study, mice with a targeted deletion of KMO were recruited to explore gene 

expression changes and behavioral alterations compared to wild-type mice.  

4.3.1 Differential gene expression profiling identifies a network of schizophrenia-

related genes in Kmo-/- mice  

In order to explore the regulatory changes in the Kmo-/- mice, an unbiased screen for 

differentially expressed genes (DEGs) was performed. Gene profiling identified a number of 

DEGs in both cerebrum and cerebellum (p≤0.05). Of the two samples, the cerebrum exhibited 

a greater number of DEGs in Kmo-/- mice than in wild-type mice, with a total of 120 DEGs. 

In the cerebellum, a set of 24 genes was identified (Figure 6). However, only 6 genes 

overlapped between the forebrain and the cerebellum: CNIH4, FCER1G, LYPLAL1, 

MGST3, MYOC and SLC22A6. Interestingly, several identified genes have previously been 

implicated as dysfunctional in schizophrenia. In the cerebellum, we identified more 

upregulated genes associated with schizophrenia, but, in the cerebrum, identified DEGs that 

are linked to schizophrenia were more evenly distributed between up- and down-regulated 

categories.  
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Figure 6. Hierarchical clustering (Euclidian distance) was used to visualize the gene-
expression changes relative to other genes in the dataset. Expression changes were sorted into 
clusters of similarly expressed genes both inter- and intra-dataset, across different brain 
regions in Kmo-/- relative to wild-type mice. Blue indicates a relative decrease whereas red 
indicates an increase. A greater number of significant gene-expression changes were observed 
in the cerebrum. Genes with significant (p<0.05) fold changes >1.2 are included in the 
analysis (n=4 per genotype). 
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Network analysis revealed a single robust interaction network in several functional clusters 

(Figure 7), supporting the idea that a large amount of the DEGs arise from genomic abolition 

of KMO activity – hereby linked to increased KYNA levels – and act in a common network.  

 

 

  

 

 

Figure 7. Differentially expressed genes (DEGs) form a highly interconnected network. Network 
analysis determined the DEGs identified in Kmo-/- mice form a robust network containing 67/144 of 
the candidates. The network is characterized by several functional clusters highlighted with different 
colors.  
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4.3.2 Brain KYNA levels are elevated in Kmo-/- mice  

KMO activity, 3-HK levels and KYNA levels were measured in both cerebrum and 

cerebellum of Kmo-/- mice in order to compare kynurenine pathway changes in these two 

brain areas. KMO activity (Figure 8A) and the amount of its enzymatic product 3-HK 

(Figure 8B) were dramatically reduced in both cerebrum and cerebellum of Kmo-/- mice. 

Conversely, KYNA levels were significantly elevated in both brain areas in Kmo-/- mice, and 

unexpectedly, we observed higher KYNA levels in the cerebellum than in the cerebrum 

(Figure 8C). 

 

4.3.3 Kmo-/- mice display deficits in contextual memory and social interaction 

Contextual memory was assessed in the passive avoidance task, a hippocampus-mediated 

behavioral test. Kmo-/- mice didn’t display behavioral difference with wild-type mice in 

approach latencies during the acquisition trial (Figure 9A). However, after 24 hours, the 

avoidance latencies of Kmo-/- mice were significantly shorter than those of wild-type mice 

(Figure 9A). Deficits in hippocampus-dependent contextual memory are in line with the 

demonstration that elevated brain KYNA is associated with abnormalities in hippocampus-

dependent learning and memory (Chess et al., 2009; Pocivavsek et al., 2012; Pocivavsek et al., 

2011). 

Social interaction was characterized with the three-chamber social approach apparatus. Both 

wild-type and Kmo-/- mice preferred to spend more time with the stranger than the novel 

object. Notably, when compare with wild-type animals, Kmo-/- mice spent a lower percentage 

 

Figure 8. Kynurenine pathway metabolism in cerebrum and cerebellum of adult wild-type and Kmo-/- 
mice. (A) KMO activity is eliminated in both tissues in Kmo-/- mice. (B) Levels of 3-HK are reduced in 
both tissues in Kmo-/- compared to wild-type mice. (C) Levels of KYNA are elevated in Kmo-/- mice. 
KYNA levels are significantly more elevated in the cerebellum than in the cerebrum. All data are the 
mean ± SEM.  **p<0.01; ***p<0.001; n=5-8 per group.   
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of time with the stranger mouse versus the novel object, suggesting a deficit in social 

interaction (Figure 9B). This observation is in agreement with data showing impaired social 

behavior in rats after kynurenine injection during early postnatal development or adolescence 

(Iaccarino et al., 2013; Trecartin and Bucci, 2011). 

 

4.3.4 Kmo-/- mice display anxiety-like behaviors  

Similar with previous studies demonstrating an increase in anxiety-like phenotypes after 

acute or repeated systemic kynurenine administration in rodents (Olsson et al., 2012a; Salazar 

et al., 2012; Vecsei and Beal, 1990), Kmo-/- mice also displayed increased anxiety-like 

behaviors in the elevated plus-maze, the light-dark box, and open field tests. In the elevated 

plus-maze, Kmo-/- mice showed significant reductions in the percentage of time spent in open 

arms (Figure 10A) and in the number of entries into open arms (Figure 10B) compared to 

wild-type mice. In the light-dark box test, Kmo-/- mice spent significantly less time in the light 

compartment compared to their wild-type counterparts (Figure 10C) and made a decreased 

number of entries into the light compartment (Figure 10D). Furthermore, we observed a 

significant increase in the corner time of the Kmo-/- animals in a general assessment of 

locomotion (Figure 10E). Together, these data demonstrate increased anxiety-like behaviors 

in Kmo-/- mice compared to wild-type mice. 

 

Figure 9. Contextual memory and social interaction. (A) Wild-type (n=14) and Kmo-/-
 

(n=7) mice 
were tested in the passive avoidance paradigm. No genotypic difference in approach latency was 
observed on the training day. On Day 2, only wild-type animals showed contextual memory, i.e. a 
significant difference between avoidance and approach latency. Avoidance latency differed 
significantly between wild-type and Kmo-/-

 

animals. (B) Performance of wild-type (n=12) and 
Kmo-/-

  (n=12) mice in the three-chambered social interaction paradigm. Compared to wild-type 
animals, mutant animals spent a lower proportion of time with the stranger mouse than with the 
novel object. All data are the mean ± SEM. *p<0.05; *** p<0.001. 
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Figure 10. Anxiety behavior in elevated plus maze (A, B), light-dark box (C, D), and open field 
(E). In the elevated plus maze, Kmo-/- mice (n=12) spent significantly less time in the open arm 
(A) and entered the open arms less frequently (B) than wild-type animals (n=12); In the light-
dark box, Kmo-/- mice (n=17) spent significantly less time in the light compartment (C) and 
entered the light compartment less frequently (D) than wild-type mice (n=24); (E) In the open 
field, Kmo-/- mice (n=21) spent more time in the corners than wild-type animals (n=23). All data 
are the mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  

 



 

 36 

4.3.5 Kmo-/- mice show enhanced locomotor response to d-amphetamine 

Acute administration of d-amphetamine (5 mg/kg, i.p.) produced increased horizontal activity 

compared to saline treated mice and potentiated the increase in horizontal activity in Kmo-/- 

mice as compared to wild-type mice (Time: F(29, 1160)=15.24, p<0.0001; Genotype: F(3, 

40)=35.55, p<0.0001; Interaction: F(87, 1160)=17.88, p<0.0001, Figure 11A). Central 

activity, indicating the movement of the animal in the center of the cage, in Kmo-/- mice was 

enhanced by acute administration of d-amphetamine compared to wild-type mice (Time: F(29, 

1160)=6.416, p<0.0001; Genotype: F(3, 40)=11.85, P<0.0001; Interaction: F(87, 

1160)=6.117, p<0.0001, Figure 11B). This enhanced response is also seen in mice with 

experimentally induced chronic elevations in brain KYNA levels (Olsson et al., 2009). 

                      

Figure 11. Increased locomotor activity after d-amphetamine (AMPH; 5 mg/kg). At time 0 (arrows), 
animals received an i.p. injection of either AMPH (wild-type: n=12; Kmo-/-: n=11) or saline (wild-
type: n=11; Kmo-/-: n=10). AMPH increased both horizontal (A) and central (B) activity significantly 
more in Kmo-/- mice than in wild-type animals. All data are the mean ± SEM. *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001 versus wild-type. 
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4.4 Paper IV 

In the present study, mice with a targeted deletion of KAT II, hereby having less capacity to 

generate KYNA, were used as an experimental model to investigate if these mice are 

prevented from elevation of brain KYNA induced by an LPS triggered immune response. It 

has been shown that KAT II KO mice have lower levels of KYNA than wild-type mice 

before PND 28 (Yu et al., 2004).  

4.4.1 Brain KYNA levels are lower in KAT II KO mice than in wild-type mice at 

PND 22 

Baseline KYNA levels were measured in wild-type and KAT II KO mouse brains at PND 22 

as well as in adults. KAT II KO mice exhibited lower brain KYNA levels compared to wild-

type mice at PND 22 (mean ±SEM: wild-type: 1.42 ±0.41 nM (n=16); KAT II KO: 0.25 

±0.05 nM (n=16), **p<0.01, Figure 12), but no difference in baseline brain KYNA was 

found in the adult animals. 

  

4.4.2 Administration of kynurenine or repeated LPS injections elevate brain KYNA 

levels in both wild-type and KAT II KO mice at PND 22. 

Brain KYNA levels were measured after kynurenine injection (20mg/kg or 40mg/kg) or 

repeated LPS injections (2 × 0.83mg/kg). Surprisingly, brain KYNA levels were elevated in 

both wild-type and KAT II KO mice after kynurenine injection (Figure 13A) or repeated 

LPS injections (Figure 13B). These results imply that other enzymes aside from KAT II 

might be responsible for the transamination of kynurenine to KYNA. In order to explore the 
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Figure 12. Baseline brain KYNA levels 
were measured in 22 days old wild-type 
(WT) and KAT II KO mice. n=16 in each 
group. Data are presented as mean ± SEM 
and analyzed with unpaired t test. **p<0.01 
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underlying mechanisms behind this unexpected observation, mRNA expression levels of the 

four KAT enzymes were measured. 

 

4.4.3 Repeated LPS injections upregulate KAT III mRNA expression in wild-type 

and KAT II KO mice at PND 22. 

By examining the mRNA expression level of KAT I/II/III and IV enzymes, significant effects 

of genotype were found in KAT I (F (1, 20) = 116.0, p<0.0001, Figure 14A), KAT III (F (1, 

20) = 57.07, p<0.0001, Figure 14C) and KAT IV expression levels (F (1, 20) = 9.750, 

p=0.0054, Figure 14D). As expected, no KAT II mRNA was detected in KAT II KO mice 

(Figure 14B). Repeated LPS injections did not affect KAT I, KAT II or KAT IV expression 

levels.  Rather, this treatment was associated with increased KAT III mRNA expression 

(Treatment: F (1, 20) = 34.34, p<0.0001, Figure 14C) in both wild-type and KAT II KO 

mice at PND 22 (Wild-type LPS+LPS vs Wild-type saline+saline: ***p<0.001; KO 

LPS+LPS vs KO saline+saline: *p<0.05, Figure 14C).  

 

  

 

Figure 13. Brain KYNA levels were measured in wild-type (WT) and KAT II KO mice after 
kynurenine injection (A) or repeated LPS injections (B) at PND 22. n=8-9 in each group. Levels are 
presented as mean ± SEM. Data were analyzed using two-way ANOVA followed by Bonferroni’s 
multiple comparisons test. **p<0.01, ****p<0.0001  
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Further, in order to investigate if LPS induces mRNA expression of KAT III or if increased 

concentration of kynurenine per se serves as the inducer, we investigated mRNA expression 

of KAT III following kynurenine administration. mRNA expression levels of all the four 

KAT enzymes were analyzed following administration of kynurenine and no significant 

changes were found between mice administered kynurenine and saline-treated mice (Figure 

15). 

 

 

 

Figure 14. Brain mRNA expression levels of KAT I (A), KAT II (B), KAT III (C) and KAT IV 
(D) enzymes in wild-type (WT) and KAT II KO mice brain following repeated LPS injections (2 × 
0.83mg/kg) at adult age. n=5-7 per group. Data are presented as mean ± SEM and analyzed using 
two-way ANOVA followed by Bonferroni’s multiple comparisons test. *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
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4.4.4 Repeated LPS injections upregulate KAT III mRNA expression in KAT II KO 

and wild-type mice at adult age. 

mRNA expression levels of KAT I/II/III and IV enzymes were measured in adult wild-type 

and KAT II KO mice brains. Significant genotype effects were found in KAT I (F (1, 20) = 

12.50, p=0.0021, Figure 16A), KAT III (F (1, 20) = 15.00, p=0.0009, Figure 16C) and KAT 

IV (F (1, 20) = 25.68, p<0.0001, Figure 16D) mRNA expression levels. KAT II mRNA was 

not detected in KAT II KO mice (Figure 16B). Similar as the result from PND 22, repeated 

LPS administration induced KAT III expression (Treatment: F (1, 20) = 27.66, p<0.0001, 

Figure 16C) in both genotypes at this age (Wild-type LPS+LPS vs Wild-type saline+saline: 

*p<0.05; KO LPS+LPS vs KO saline+saline: **p<0.01, Figure 16C). However, when 

comparing the baseline levels of the four enzymes between the two genotypes, KAT II KO 

mice showed higher KAT III (Wild-type saline+saline vs KAT II KO saline+saline: *p<0.05, 

Figure 16C) and KAT IV (Wild-type saline+saline vs KAT II KO saline+saline: **p<0.05, 

Figure 16D) mRNA expression levels than their wild-type counterparts. These results are in 

 

Figure 15. Brain mRNA expression levels of KAT I (A), KAT II (B), KAT III (C) and KAT IV 
(D) enzymes in wild-type and KAT II KO mice brain following kynurenine (KYN) injection 
(20mg/kg or 40mg/kg) at PND 22. n=3-6 per group. Data are presented as mean ± SEM and 
analyzed using two-way ANOVA followed by Bonferroni’s multiple comparisons test. 
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line with a previous study, showing an increased KAT III mRNA levels in KAT II KO mice 

at PND 60 (Yu et al., 2006). 

 

  

   

Figure 16. Brain mRNA expression levels of KAT I (A), KAT II (B), KAT III (C) and KAT IV (D) 
enzymes in wild-type (WT) and KAT II KO mice brain following repeated LPS injections (2 × 
0.83mg/kg) at adult age. n=5-7 per group. Data are presented as mean ± SEM and analyzed using 
two-way ANOVA followed by Bonferroni’s multiple comparisons test. *p<0.05, **p<0.01, 
***p<0.001. 
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5 GENERAL DISCUSSION 

During the last 15 years, growing evidence of an imbalanced regulation of the kynurenine 

pathway in the pathophysiology of psychiatric disorders has emerged. Thus, as shown in 

numerous studies, elevated levels of brain KYNA are found in patients with schizophrenia 

and bipolar disorder (Erhardt et al., 2001a; Linderholm et al., 2012; Miller et al., 2006; 

Nilsson et al., 2005; Olsson et al., 2010; Sathyasaikumar et al., 2011; Schwarcz et al., 2001) 

and shown to specifically correlate with psychotic features (Lavebratt et al., 2014; Olsson et 

al., 2012b; Sellgren et al., 2015) and impairments in cognitive functions (Sellgren et al., 

2015). Reductions in both peripheral and brain KYNA concentrations have been observed in 

depressed patients (Bay-Richter et al., 2015; Savitz et al., 2015b; Schwarcz et al., 2012). In 

suicidal attempters, increased QUIN and decreased picolinic acid (PIC) has been observed 

(Bay-Richter et al., 2015; Brundin et al., 2016; Erhardt et al., 2013). Thus, the balance 

between the neuroprotective branch (i.e. KYNA) and the neurotoxic branch (i.e. QUIN), in 

all probability in combination with a genetic vulnerability, seems to be important for the 

development of either psychosis or depression. 

Experimental studies support the theory that KYNA associates to psychosis and cognitive 

dysfunctions and that QUIN associates to depression. Thus, it has previously been shown in 

rodent models that increased levels of brain KYNA disrupt PPI (Erhardt et al., 2004), 

increase midbrain dopaminergic activity (Erhardt and Engberg, 2002; Erhardt et al., 2001b; 

Linderholm et al., 2007; Nilsson et al., 2006) and enhance amphetamine-induced dopamine 

release (Olsson et al., 2009) as well as the locomotor activity (Olsson et al., 2012a). Also 

cognitive dysfunctions such as impairments in contextual processing, spatial working 

memory and contextual memory have been found to associate with elevated levels of KYNA 

in several animal studies (Alexander et al., 2012; Chess et al., 2009; Chess et al., 2007; 

Pocivavsek et al., 2011). A previous study has shown that KAT II KO mice, i.e. mice with 

reduced capacity to produce KYNA, display improved cognitive function (Potter et al., 

2010). With regard to animal models related to depression, it has been shown that IFN-α 

induces depressive-like behavior through the induction of the kynurenine pathway, and that 

this effect is accompanied by elevated hippocampal QUIN levels in the rat (Fischer et al., 

2015). Also, chronic stress increases hippocampal QUIN levels and induces depressive-like 

behaviors in rats. Local administration of QUIN in the hippocampus results in similar 

depressive-like behaviors (Chen et al., 2013). In addition, LPS has been used as a reliable 

stimulator to construct an animal model of depression. Thus, several studies have shown that 
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both peripheral and local administration of LPS induces depressive-like behaviors in rodent 

(Fu et al., 2010; Lawson et al., 2013; O'Connor et al., 2009c; Salazar et al., 2012). In fact, 

also administration of a low dose of kynurenine has been shown to induce depressive-like 

behaviors (Agudelo et al., 2014). The same study also found that physical exercise induces 

antidepressant effect by inducing the expression of KATs, the enzymes responsible for the 

conversion of kynurenine towards KYNA, in skeletal muscle in both human and mouse 

(Agudelo et al., 2014).  

In the present thesis, several animal models were used to investigate the role of kynurenine 

pathway in schizophrenia and depression. The results show that Kmo-/- mice, with high brain 

KYNA levels, display impairments in cognitive functions and social interaction as well as 

increased anxiety-like behaviors and enhanced locomotor activity following d-amphetamine 

administration. These data are in line with our findings in mice neonatally infected with 

influenza A virus or neonatally treated with kynurenine. Thus, neonatal administrations of 

neurotropic influenza A virus in wild-type mice lead to enhanced locomotor responsiveness 

to d-amphetamine. We have previously shown that such a neonatal infections causes a 

transient elevation of brain KYNA concentrations in mice (Asp et al., 2010; Holtze et al., 

2008).  

Here, we further investigated the association between elevated KYNA levels in early life and 

disturbed behaviors in adulthood. Thus, kynurenine, the precursor of KYNA was 

administrated to wild-type mice neonatally. Indeed, brain KYNA elevation in neonatal period 

was found to induce impairments in PPI, working memory as well as a tendency to induce 

hyper dopaminergic responsiveness to d-amphetamine.  

In summary, findings of the present thesis reveal a critical role of KYNA in the development 

of schizophrenia. In support, several studies have shown that elevated levels of KYNA 

contribute to the neurochemical and behavioral abnormalities in neurodevelopmental animal 

models (Alexander et al., 2013; Liu et al., 2014a; Pershing et al., 2015; Pocivavsek et al., 

2012). Taken together, these findings are in line with the neurodevelopmental theory of 

schizophrenia, suggesting that environmental insults in early life is a risk factor for 

schizophrenia development and neonatal elevation of brain KYNA levels might serve as a 

link between early life environmental insults and disturbed behaviors in adulthood.  

The underlying reason for the increase in brain KYNA concentration in schizophrenia and 

bipolar disorder with psychotic features may be related to polymorphisms in the KMO gene 

(Holtze et al., 2012; Lavebratt et al., 2014; Wonodi et al., 2011). Interestingly, our genome-
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wide differential gene expression analyses in Kmo-/- mice identified a network of 

schizophrenia- and psychosis- related genes.  

In addition, enhanced secretion of pro-inflammatory cytokines may also be important for the 

observed increase in brain KYNA. Thus, elevated levels of IL-1β have been observed in first-

episode schizophrenia patients and in patients with bipolar disorder (Beumer et al., 2012; 

Dowlati et al., 2010; Lindqvist et al., 2009; Schwieler et al., 2015; Sellgren et al., 2015; 

Soderlund et al., 2011; Soderlund et al., 2009), whereas elevated levels of IL-6 have been 

shown in chronic schizophrenia, depression and suicidal attempters (Erhardt et al., 2013; 

Sasayama et al., 2013; Schwieler et al., 2015). Indeed, pro-inflammatory cytokines induce the 

kynurenine pathway by activating rate limiting enzymes, IDO1 and TDO2 (Carlin et al., 1987; 

Miller et al., 2006; Sellgren et al., 2015; Yoshida et al., 1986).  Cytokines, such as IFN-γ, 

IFN-α, IFN-β and TNF-α, have been shown to induce IDO1 in several studies (Guillemin et 

al., 2001a; Pemberton et al., 1997). Recently, studies have shown that IL-1β has the potency 

to induce TDO2 (Sellgren et al., 2015; Urata et al., 2014). In fact, post mortem studies of 

patients with schizophrenia and patients with bipolar disorder with psychotic features have 

found increased expression of TDO2. In the present study, LPS was used as a tool to induce 

the secretion of pro-inflammatory cytokines. We have recently shown that a double-shot of 

LPS induces not only the kynurenine pathway but also increase brain KYNA levels (Larsson 

et al., 2016). Here, KAT II KO mice were used to investigate if loss of KAT II could prevent 

the increase of KYNA induced by a double-shot of LPS. To our big surprise, repeated 

injections of LPS up-regulated brain KYNA levels in not only wild-type mice but also in 

KAT II KO mice. Indeed, mRNA expression data show evidence of increased KAT III 

mRNA levels in both KAT II KO and wild-type mice. These data imply that under 

pathophysiological conditions, where the central immune system is triggered, KAT III might 

be the most prominent enzyme converting kynurenine towards KYNA.  

The outcome of the present thesis provides novel information regarding underlying 

pathological mechanisms in schizophrenia and depression. These findings may have the 

potential to lay grounds for novel pharmacological interventions, targeting on specific 

kynurenine pathway enzymes.   
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