
From the Department of Laboratory Medicine 
Karolinska Institutet, Stockholm, Sweden 

AN INTEGRATIVE SYSTEMS BIOLOGY 
STUDY TO UNDERSTAND IMMUNE AGING 

IN PEOPLE LIVING WITH HIV 

Flora Mikaeloff 

 

Stockholm 2023 
 



 

All previously published papers were reproduced with permission from the publisher. 

Published by Karolinska Institutet. 

Printed by Universitetsservice US-AB, 2023 

© Flora Mikaeloff, 2023 

ISBN 978-91-8017-002-4 

Cover illustration: The illustration was done by Lae-Young Kim. Ngoc Boi Vo helped in the 

discussion for the choice of the design. 



An integrative systems biology study to understand 
immune aging in people living with HIV 
Thesis for Doctoral Degree (Ph.D.)  

By 

Flora Mikaeloff 

The thesis will be defended in public at Karolinska Institute, Campus Flemingsberg, 
Alfred Nobels allé 8, lecture hall 4Y, June 2nd 2023 at 10.00 am 

Principal Supervisor: 
Docent Ujjwal Neogi 
Karolinska Institute 
Department of Laboratory Medicine 
Division of Clinical Microbiology 
 
Co-supervisor(s): 
Rui Benfeitas 
Karolinska Institute 
Department of Laboratory Medicine 
Division of Clinical Microbiology 
 
Docent Erin Gabriel 
Karolinska Institute 
Department of Medical Epidemiology and 
Biostatistics 
 

Opponent: 
Professor Thomas Sauter 
University of Luxembourg 
Department of Life Sciences and Medicine 
 
Examination Board: 
Professor Kristina Broliden 
Karolinska Institute 
Department of Medicine 
Division of Infectious Diseases 
 
Docent Juan Du 
Karolinska Institute 
Department of Microbiology, Tumor and Cell 
Biology 
 
Docent Peter Spégel 
Lund University 
Department of Chemistry 

 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“There was a time when I thought a great deal about the axolotls. I went to see 

them at the aquarium at the Jardin des Plantes and stayed for hours watching 

them, observing their immobility; their faint movements. Now I am an axolotl. “ 

Julio Cortazar  

  





 

 

Abstract 
Antiretroviral therapy (ART) reduces viral replication, restores T helper cells and improves 

the survival of people living with HIV (PWH), transforming a life-threatening disease into a 

manageable chronic infection. Nevertheless, PWH under ART shows aging-related 

diseases such as bone abnormalities, non-HIV-associated cancers, and cardiovascular 

and neurocognitive diseases. The complex immune metabolic dysregulation leading to 

these comorbidities is called immune aging. The main question raised by my thesis was, 

what are the complex mechanisms responsible for immune aging in HIV? Using advanced 

system biology and machine learning tools, I used multi-omics-based patient 

stratification to identify biologic perturbations associated with immune aging in PWH. 

First, we investigated PWH with Metabolic Syndrome (MetS), a relatively common aging-

related disease in HIV-1. In paper I, we identified the dysregulation of glutamate 

metabolism in PWH with MetS using plasma metabolomics and measure of cell 

transporters by flow cytrometry. Then, we investigated the mechanisms of differing PWH 

on long-term successful ART from HIV-negative controls (HC). In paper II, we identified 

the dysregulation of amino acids and, more specifically, glutaminolysis (i.e., lysis of 

glutamine to glutamate) in PWH compared to HC using metabolomics in two independent 

cohorts to avoid the potential cohort biases. We identified five neurosteroids to be lower 

in PWH and potentially create neurological impairments in PWH. The glutaminolysis 

inhibition in chronically infected HIV-1 promonocytic (U1) cells induced apoptosis and 

latency reversal which could clear HIV reservoirs.  

The first two papers universally clarified our knowledge about dysregulated metabolic 

traits following a prolonged ART in PWH. However, we observed heterogeneity among the 

clinically defined PWH. Therefore, we focused more on the multi-omics data-driven 

approaches to stratify the at-risk group who were either dysregulated metabolically at-

risk PWH (paper III) or immunometabolic at-risk group (paper IV) and clarified the 

biological aging process by measuring transcriptomics age (paper V). 

In paper III, we found three groups of PWH based on multi-omics integration of lipidomics, 

metabolomics, and microbiome. The severe at-risk metabolic complications showed 

increased weight-related comorbidities and di- and triglycerides compared to the other 

clusters. At-risk and HC-like groups displayed similar metabolic profiles but were 

different from HC. An increase in Prevotella was linked to the overrepresentation of men 

having sex with men (MSM) in the at-risk group. The microbiome-associated metabolites 

(MAM) appeared dysregulated in all HIV groups compared to controls. We improved this 

clustering by adding transcriptomics and proteomics data for a refined immunometabolic 

at-risk-related clustering in PWH. In paper IV, immune-driven HC-like and at-risk groups 

were clustered based on metabolomics, transcriptomics, and proteomics. Several 

biomarkers from central carbon metabolism (CCM) and senescence-associated proteins 



were linked to the at-risk phenotype based on random forest, structural causal modeling, 

and co-expression networks. Senescent protein changes were associated with a 

deficiency in macrophage function based on single-cell data, cell profiling, flow cytometry, 

and proteomics from macrophage data and in vitro validation. We also 

developed personalized and group-level genome-scale metabolic models (GSMM) and 

confirmed the implication of metabolites from CCM and polyamides in at-risk 

phenotypes. Finally, we investigated the accelerated aging process (AAP) in PWH. In 

paper V, we calculated the biological age of PWH using transcriptomics data and grouped 

patients into aging groups; The decelerated aging process (DAP) group was linked with 

higher age, European origin, and a higher proportion of tenofovir disoproxil fumarate 

/alafenamide (TDF/TAF). AAP had a downregulation of metabolic pathways and an 

upregulation of inflammatory pathways. 

In conclusion, my thesis identifies underlying mechanisms of immune aging using system 

biology tools in three independent cohorts of PWH for mechanistic studies and to 

improve their care and achieve healthy aging. 
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1 Introduction 

1.1 Living with HIV  

1.1.1 Epidemiology of HIV  

Since 1981 and the Human immunodeficiency virus (HIV) identification, the HIV crisis has 

been a significant global public health issue. The HIV-1 infection leads to immune system 

impairment by infection and suppression of T helper cells1. If not treated over time, an 

acquired immunodeficiency syndrome (AIDS) will develop, leaving the body vulnerable 

to life-threatening opportunistic infections. In total, more than 80 million people were 

infected with the virus, and half have died from AIDS-related causes. In 2021, 38 million 

people globally were living with HIV, and 28.7 million people were under antiretroviral 

therapy (ART) (https://www.unaids.org/). ART reduces viral replication, increases CD4+ 

T cell counts, and highly improves the survival of infected patients, making HIV a 

manageable disease2. Nevertheless, a better investigation of the virus mechanisms and 

the development of new treatments and vaccines are necessary to control the 

pandemic.  

1.1.2 No HIV cure or vaccine is available   

The development of HIV vaccines has been highly challenging due to early virus 

integration into the host genome and the difficulty of targeting the fusion peptide of 

native HIV-1 envelope glycoprotein because of its variability, compactness, and 

glycosylation. From 1987 to 2013, six HIV vaccine candidates failed, and one had low 

effect3. The most recent trial, the Mosaic trial, went until phase three but was stopped 

due to a lack of efficiency4 (https://www.mosaicostudy.com/). On the other hand, a 

recent project, the Antibody-Mediated Prevention trial, has started testing at which 

levels broadly neutralizing antibodies (bnAbs) protect from HIV. The bnAbs were shown 

to protect from HIV in robust animal models5.  

1.1.3 Antiretroviral therapy: saving and cost to the body 

The principal treatment for HIV infection is ART. ART leads to viral suppression and 

tremendous expansion in life span. Treatment reduces virus load but fails its elimination, 

meaning patients must take the medication daily for the rest of their lives. People on 

ART take a combination of three HIV medicines (also called HIV regimens) from at least 

two different HIV drug classes (https://hivinfo.nih.gov/). The preferred ART regimens are 

usually two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) (abacavir 

(ABC)/lamivudine or tenofovir alafenamide (TAF) /emtricitabine or tenofovir disoproxil 

fumarate (TDF)/emtricitabine) with one drug from a different type including booster 

protease inhibitors (PI) or integrase strand transfer inhibitors (INSTI), or non-nucleoside 

reverse transcriptase inhibitors (NNRTI)6. Food and drug administration-approved drugs 
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and their target are presented in figure 1. The Joint United Nations Programme on 

HIV/AIDS (UNAIDS) planed to have 90% of seropositive patients knowing their status in 

2020, 90% of these patients should have access to sustained ART, and 90% of patients 

under drugs must present viral suppression. In December 2020, UNAIDS proposed a 

new objective for 2025, the 95-95-95, representing 95 % of patients knowing their 

status, 95 % on therapy, and 95 % with suppressed viral loads7. 
 

Good adherence to ART is crucial for efficient viral suppression and the absence of drug 

resistance but leads to consequent side effects. ART drugs display a large panel of side 

effects that have been carefully studied and lowered with the newer regimen Patients 

are screened for mutations and a history of comorbidities before starting ART and 

monitored during the treatment. The common side effects of ART drugs are short-term 

gastrointestinal effects or fatigue and, in the long term, vary between classes of drugs, 

drugs, and patients’ genetic backgrounds. Complications (Figure 1) might lead to severe 

cardiovascular, kidney, and bone diseases6, decreasing the quality of life. 

 
Figure 1: ART’s most common side effects per drug regimen and for specific drugs. Created with 

biorender. Adapted from Reust et al6, https://www.hivaidsclinichyderabad.com/ and Montessori 

et al8. 
 

Regarding toxicity, old ART regimens (NRTIs, PI) have more incidence of insulin 

resistance and body composition changes, while new treatments (tenofovir, abacabir) 

affect glucose and fat metabolism9. These effects and virus induced chronic 

inflammation and immune activation lead to immuno-metabolic disorders, including 

metabolic syndrome. In low-income and middle-income countries, tenofovir+efavirenz 

with lamivudine or emtricitabine is the first-line regimen due to its availability and high 

adherence10. However, some patients switch from PIs and NRTIS to integrase inhibitors11. 
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1.1.4 Aging with HIV  

 Aging is described as the decreased function of organs and biologic systems with time8. 

In humans, aging is already a risk factor for many diseases, such as cardiovascular 

diseases (CVDs), cancers, arthritis, cataracts, osteoporosis, and neurological diseases. 

The probability of developing aging-related diseases increases exponentially with age12. 

Interestingly, not all patients are developing aging-related comorbidities at the same 

age, indicating that the aging process is not uniform or constant and highly influenced 

by genetics and personal lifestyle. 
 

The protective effect of the immune system declines with age. Older people display 

increased and more severe infections, lower immune surveillance, and decreased 

response to vaccines. This process, called immune aging or immuno-senescence, 

involves all the immune cell types13. Senescence provokes cell cycle arrest in response 

to various stressors and is a major biological element of aging. Cell senescence and 

innate immunity dysregulation lead to monocyte/macrophage lineage cell activation 

and chronic low-grade inflammation defined as inflamm-aging14 by the increased 

production of proinflammatory cytokines. Alterations in mitochondria could also be part 

of the developing the immune-aging process. Mitochondrial DNA (mtDNA) depletion and 

reactive oxygen species (ROS) production from mitochondria activate the immune 

response as circulating mtDNA correlates with serum inflammatory markers15.  
 

ART has drastically reduced the morbidity of HIV, and consequently, the number of 

elderly patients living with HIV has significantly increased16. Nevertheless, it has been 

shown in several studies that HIV patients under long-term successful ART are suffering 

from accentuated or accelerated aging effects. Age-related disorders occur in young 

HIV patients compared to the controls. It includes metabolic disorders, non-AIDS-

related cancers, CVDs, liver-kidney diseases, neurocognitive disorders, bones 

implications, and frailty1,17-19. These diseases are suspected to depend on multiple 

factors, including chronic viral activity, ART toxicity20,21 (Figure 1), and thymopoiesis 

impairment13. Individual risk factors such as smoking, weight, sex22, co-infections23, and 

late starting of cART observed in Sweden24, have been proven to have a crucial role in 

the mosaicism of a patient’s phenotype. The geriatric facilities have implemented 

screening for multi-morbidities, and regular follow-up has been implemented by the 

geriatric facilities16. 
 

Regarding the immune system, clear parallels were observed between aging and HIV. 

First, telomere lengths in CD8 T and B cells were shorted in PWH. More, memory CD8 T 

cells were reported in HIV and elders. Also, a reduction of CD4 and CD8 naïve T cells' 

frequency, indicating decreased thymus function, has been reported in PWH on ART. 

Defects in the activation of naïve CD8 were also observed. A decrease in B cells and 

peripheral DC were observed in PWH under ART. Finally, if monocyte types are similar in 
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PWH under ART than in HC, PWH display activated cells (expressing CD163 and CXCL10) 

and proinflammatory cytokines that could lead to inflammatory age-related 

comorbidities. Finally, HIV patients display impaired hematopoiesis and poorer 

response to the influenza vaccine despite effective viral suppression13.  

1.2 OMICs Analysis  

1.2.1 The Omics revolution  

 Omics includes biology fields informally finishing in -omics (Figure 2). It is related to the 

term -ome, which describes the totality of a biological system. It includes genomics, 

transcriptomics, epigenomics, proteomics, metabolomics, microbiome, or fluidomics25. 

The Omics field is recent. Omics are universally used to study human diseases in case-

control studies26.   

 Omics analyses are applied to identify 

or quantify molecules from a sample 

material to understand complex 

biological systems better and develop 

therapeutic drugs later on25. The 

development of omics was made 

possible by advancing high-throughput 

technologies as next-generation 

sequencing (NGS)25 and Liquid 

Chromatography-Mass Spectrometry 

(LC-MS/MS)27.  
Figure 2: 3D Multi-omics layers. Figure from Kim et al, 201628 

1.2.2 Multi-omics integration  

Omics integration aims to answer a biological question by finding biological patterns not 

apparent in single omics. If single omics gave results about one layer, the multi-omics 

models allow retrieving the interactions between molecules and generally the layers of 

omics. Before integration, the normalization of individual omics before global scaling is 

necessary as data comes from different platforms26. Omics studies in patients are 

challenging due to patient variability, cost of replicates, ethical issues, and difficulty in 

sample collection. Biological candidates identified in omics studies need to be validated 

using more efficient methods such as long-term large-scale trials29. Analysis should also 

differentiate the cause of disease from consequences that can lead to the selection of 

the wrong targets for treatment.  

  

Using previous knowledge, omics type, and number of samples are essential for 

selecting the proper integration tool26. First, we chose matrix factorization-based tools 
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because they are straightforward, unsupervised, and manage the integration of 

continuous, binary, and count data30. Then, the network analysis is a flexible method that 

allows extracting “modules” of molecules that can be further analyzed together in their 

association to phenotype27. Finally, we will overview genome-scale metabolic models as 

integrative tools that give a mechanistic explanation of the associations observed31.  

1.2.3 Matrix factorization-based tool and MOFA 

The simplest approach for omics integration is called matrix factorization, a method also 

used for principal component analysis (PCA). The matrix factorization focuses on 

projecting into dimension-reduced space of the variation among data. An example of a 

tool based on matrix factorization is the Multi-Omics Factor Analysis (MOFA)32, which 

allows unsupervised integration of heterogeneous data. MOFA is described as a 

statistical framework adapted to omics. The input files are data matrices with different 

omics data. The authors recommend removing any technical variability source using 

size factor normalization and variance stabilization for RNA-sequencing (RNA-seq)33. 

MOFA works with data from the same samples but can also handle partially overlapping 

samples. MOFA handles non-overlapping features, non-normal distribution, and missing 

values. MOFA gives a low-dimensional data representation of latent factors capturing 

significant variation sources, decomposed into factors (samples and factors) and 

weight matrices (features vs. factors for each omics layer). MOFA can compare factors 

between datasets and find common traits between omics layers. It presents as a 

compelling method as it allows for integrating all types of omics and has already been 

extensively employed in other contexts30. 

1.2.4 Network analysis  

Network analyses tend to represent biological systems by sets of nodes connected 

through edges, thus permitting the topological analysis of the network. This means that 

one can present the interactions between the nodes in a straightforward way and be 

used to provide biological context. Here, nodes represent molecules, and edges drawn 

between nodes imply a relationship between two molecules (correlations, directed 

effect, indirect effect, etc.). Many network methods exist with supervised and 

unsupervised methods34. Here, we present methods we applied,, including co-

expression analysis, similarity network fusion, and genome-scale metabolic models.   

1.2.4.1 Graph-based approaches for network analysis 

Networks can be analyzed using graph-based approaches. Only concepts used in the 

thesis will be presented, and many alternative measures are described in the 

literature35,36. The node connectivity measure is particularly important to determine 

highly interconnected nodes or hubs37. A hub is described as a node with many edges in 

a central localization in the network35. The centrality defines important structural actors 

in the network38. Metrics to measure centrality can be degree, degree centrality, 
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normalized degree, or global centrality, among other measures. The degree considers 

the number of immediate connections called first neighbours and is considered a local 

measure. Degree centrality assigns a score based on degree to a node. The normalized 

degree is the degree divided by the maximum degree. Global centrality represents 

centrality taking into consideration the full network indicating the finding of hub nodes 

in a network. The betweenness centrality represents the number of shortest path 

(minimized number of edges separating two nodes) passing by a node38. The closeness 

centrality is the distance between a node and each other node and represented as the 

global measure of degree (Figure 3).  

  

 
Figure 3: Examples of measures of network centrality. From Farahani et al39. 

1.2.4.2 Association analysis and community detection  

Association analysis or co-expression analysis is a highly relevant tool for omics 

integration because they reveal co-expression patterns of features40. Many 

methodologies exist for community detection41. The most common is the weighted gene 

co-expression network analysis42. Here we present two algorithms: Leiden and Louvain. 

As described previously, proper normalization and scaling are crucial to compare all 

omics data in the same network. To overpass a binary connection (0 = not connected, 1 

= connected), connection weight is added to each edge, for instance, based on the 

correlation coefficient. Clustering algorithms are applied to find highly interconnected 

molecules poorly connected with the rest of the network resulting in communities43. 

Louvain algorithm starts by defining each node as its community. Then nodes are moved 

from one community to another to find partitions. Then, the aggregate network is 

created. Then, the nodes are changed in the network until the quality cannot improve 

through multiple iterations. The Leiden algorithm begins with the local moving of nodes. 

Only nodes whose neighbors have changed are visited; to change them to a different 

community. Then the partition is refined several times, and the network is aggregated44. 

Pathway analysis can be performed on communities if we assume that correlated 

molecules can reflect a logical biological signal. 

1.2.4.3 Similarity network fusion 

To identify omics-driven clusters of patients, the similarity network fusion (SNF) analysis 

reduces high dimensional data without having the inconvenience of mixing data types. 

Patient-by-patient similarity matrices and similarity networks for single omic are first 
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calculated. Then, individual networks are fused by iteratively updating each network 

with information from the other networks until convergence to the final network45. A 

strength of this approach is that merging dimensional networks is less dependent on 

the biases in individual omics. SNF gives a confusion matrix of the similarities between 

the final network and the individual networks for each omic type and identifies which 

layers impact the patients clustering more. Though SNF has not been employed in HIV, 

it has been used for patient grouping in several fields. Similarity has been applied 

primarily in cancer research to identify cancer subtypes45 and still nowadays for cancer 

subtyping46 and prognostic groups47. SNF has also been used to make groups in patients 

suffering from respiratory diseases48 and to study the influence of diet49. Then, statistics 

can be done between clusters to identify molecules and differing mechanisms.  

1.2.4.4 Genome-scale metabolic models 

Genome-scale metabolic models (GSMM) are another network-based approach used 

to characterize the known metabolic networks systematically. They are used in data 

integration for information about a system and predictive power.  Integration for GSMM 

can be done using tINIT tool50 based on omics, where features are considered into not 

expressed, low, medium, and high expression. The model is then used to identify those 

essential reactions necessary for a model to be biologically feasible. tINIT can also 

implement loops and blocks the production of some metabolites50. Then, optimization 

is performed using flux balance analysis (FBA) which calculates the optimal flux 

according to the objective function51. Metabolism involves important biochemical 

reactions involving the transformation of metabolites catalysed by enzymes52, where 

GSMM comprehensively considers all reference human metabolic networks.  

 

GSMM can be built using quantitative metabolomics, fluxomics, and enzyme data 

(quantitative proteomics or transcriptomics). GSMM assumptions are that the system 

is in steady-state, which presents an advantage because it allows for computational 

identification of optimal flux distributions without requiring detailed knowledge of 

enzymatic kinetics.  However, this approximation comes at the cost of assuming that 

our system is in a constant and stable state and is strongly dependent on the imposed 

constraints. Constraints such as genetic, physicochemical, and reaction directionality 

are integrated into the model. The tool GIMME builds reactions based on metabolomics 

data, and then transcriptomics data are added to adjust the flux values. Refinement can 

be done on the created model with a gap-filling procedure also implemented into 

COnstraint-Based Reconstruction and Analysis (COBRA) and Reconstruction, Analysis, 

and Visualization of Metabolic Networks (RAVEN) to reduce errors due to the missing 

knowledge about biochemical reactions. Reactions linked to human organelles can also 

be implemented (Figure 4). 
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GSMMs have been extensively employed to study metabolism shifts associated with 

human diseases. Recon 1 Human GSMM was created in 2007 and progressively 

improved over years53, including tissue-specific reactions and model refinement. 

Several models were created for different tissues52. For the studies on human 

metabolism, the generic human 

GSMM Human-GEM was recently 

curated 

(http://www.metabolicatlas.com/) 

based on Recon 1 and other 

sources such as HMR2 and Recon 

3D52. This model comprises 3625 

genes, 13417 reactions, and 4164 

metabolites. Different reference 

models must be created based on 

each organism and cellular 

conditions. New methods of 

collecting information about 

biochemical kinetics increase the 

accuracy and predictive power of 

genome-scale models54,55. 

 

 
Figure 4: Workflow of Genome-scale metabolic model using the RAVEN toolbox  

1.2.5 Omics studies in HIV 

To identify the biological mechanisms associated with PWH status, omics studies are 

highly relevant. Most studies investigate biomarkers in a relatively low number of 

patients by comparing PWH on ART with HC or viremic progressor (VP)56-61 or 

differences in HIV-infected cell lines62-66. The most recent works actively study co-

infections67, effects of treatments57,68, and comorbidities in HIV58,69. Examples of recent 

single omics studies are presented in Table 1. Most studies display a low number of 

patients, a short ART duration, and no omics integration, which we addressed in our 

study.  
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Table 1 : Single omics studies HIV (transcriptomics, proteomics, metabolomics and microbiome) 

Omics (Method) Patients / Models Results Reference 

Microbiome (16S 
rRNA) 

10 HC 
15 HIV+ EFV 
15 HIV+ PI 
Groups comparisons 

 Lower alpha diversity in PWH. 
Markers of disturbance gut 
homeostasis in HIV + PI 

Pinto-
Cardoso et 
al68  

Microbiome (16S 
rRNA) 

35 PWH before and 
after therapy (24h) 
 Diversity and 
differential abundance 

 PWH with low CD4 counts had 
higher oral bacterial richness and 
diversity. Species associated with 
periodontal disease increased with 
ART 

Presti et al56  

Metabolomics  
Lipidomics  

217 HC 
218 PWH before and 
after therapy 
PLS-DA, lasso, 
correlations 

PWH displayed higher TAG and 
lipogenesis. 
PWH on ART show high 
inflammation linked to lipid 
metabolites modification after ART 
start 

Jao et al57 

Metabolomics  

87 HC 
87 PWH (3 years) 
148 PWH + non-
communicable 
diseases 

 Glycerophospholipid, glutamine 
and glutamate metabolism are 
disrupted in PWH with non-
communicable diseases 

Ding et al58 

Proteomics  
Metabolomics  

Review - 13 studies 
PWH with HAND in 
different tissues 

 Identification of myoinositol 
(metabolic) and SOD-1, gelsolin, 
afamin, sphingomyelin, and 
ceramide (proteomic) marker of 
HAND 

Williams et 
al69 

Transcriptomics 
(single-cell RNA-seq)  

9 VP 
8 PWHART (< 1 year) 
4 HC 
peripheral T cells 

Decrease in naive T cell and 
increase in inflammation partially 
restored in ART 

Wang et al59 

Transcriptomic, 
proteomics 
phosphoproteomics  

SupT1 CD4+ T cells 
with or without HIV 
(five-time points) 
a Gaussian mixed-
effects model 

 Host responses of PWH involved 
in transduction, metabolic 
pathways, cell signaling, and 
immune regulation 

Golumbeanu 
et al62 

Proteomics (SWATH 
mass spectrometry) 

Jurkat cell lines 
U937 
Group Comparisons 
and correlations  

During latent HIV, the two 
pathways CypB and CD147 as well 
as intracellular processing and 
translocation factors are 
disregulated 

Belshan et 
al63  

Previous work from the lab investigated omics differences in PWH but in a smaller cohort 

and mostly as case-control studies (Table 2).  
 
Table 2: Recent Omics studies from the lab 

Omics 
(Method)   

Patients / Models  Results  Reference  

Metabolomics  
Proteomics  

22 each HC and PWH  
Correlations, PLS-DA, RF  

Essential amino acids differ between 
HC and PWH. Markers of 
inflammatory and neurological 
diseases dysregulated in HIV  

Babu et 
al70  

Metabolomics  
Proteomics  

22 HC, 29 PLWHART and 11 VP  
Correlations, co-expression 
analysis, UMAP  

High glutamate, lactate, and 
pyruvate and inflammatory markers 
in PWH. Role of Myeloid cell 
populations  

Akuskarvi 
et al71  

Transcriptomics  
Metabolomics  

19 PWH each (ART, EC and  
VP  
GSSM  

Flux balance analysis identified 
dysregulated glycolysis  

Ambikan 
et al72  



 

10 

Multi-omics studies in HIV are still limited in the literature. Multi-omics integrations in 

PWH related to meta-analysis and case-control studies are reported in Table 3.  
Table 3 : Multi-omics integration studies in HIV 

Omics (Method)  Patients / Models  Results  Reference  

Transcriptomics, 
proteomics, 
epigenomics 

Public databases 
Co-expression, 
networks analysis, 
Pathway analysis  

Identifying interactions, 
pathways, proteins, and 
protein-protein 
interactions linked to 
HIV infection  

 Ivanov et al73 

Microbiome, 
methylome 
transcriptomics, 

34 PLWH and 42 HC 
DIABLO 

PWH have lower 
bacterial diversity and 
correlation of TRNAU1AP, 
two CpGs, and two ASVs, 
linked to oxidative stress 
in airway epithelial cells 

Jude et al74 

Metabolomics 
proteomics 
transcriptomics 

12 PWH 
8 PWH + IRIS (2 month 
before and 12 months 
after ART) 
MOFA 

IRIS was associated to 
oxidative stress, 
tryptophan pathway, 
lipid-mediated 
signaling, inflammation 
and cell type-specific 
immune activation. 

 Pei et al75 

Meta-analysis can be efficient in studying HIV. The strengths of a recent network-based 

analysis73 were the use of several methods, including computational and manual omics.  

They also identified the overlap between many studies and found consensus 

mechanisms of HIV infections. They calculated a risk score for each pair of comorbidities. 

The weaknesses are that they had no control over data production and handling, which 

can induce bias. More, databases are not always displaying patients’ characteristics 

which could also induce co-founding effects (origin, age, gender). Related to this point, 

some categories of patients are over-represented in databases (Europeans, men having 

sex with men (MSM)), which were not corrected in this analysis. 

Cases-controls studies are also relevant using omics integration. A study comparison 

of PWH to PWH with Immune reconstitution inflammatory syndrome (IRIS) was done75. 

Comparisons were made at single omics and using MOFA for multi-omics integration. 

Despite a low number of patients and short ART time, the study was robust in identifying 

the mechanism underlying IRIS. Another study integration was performed in the airway 

epithelial cells of PWH, and HC controls using Data Integration Analysis for Biomarker 

discovery using Latent variable approaches for Omics studies (DIABLO), another 

integration tool74. One limitation is that DIABLO does not work with all omics types, and 

integration of count data is still in development. Secondly, authors could have validated 

their findings in other cohorts. Again, patient information and clinical parameters are not 

included in the analysis. 

In conclusion, multi-omics integration is a powerful asset for understanding complex 

mechanisms of HIV in patients and laboratory models. Regardless of the cost of omics 

and the difficulty of working with HIV samples, developing more extensive studies with 

precise methodologies is underway. 
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2 Research aims 
The general aim of the Ph.D. was to apply multi-omics and system biology tools to 

understand HIV-associated immune aging. My omics of interest were transcriptomics, 

proteomics, metabolomics, lipidomics, and microbiome data. I aimed to find biomarkers, 

pathways, and underlying mechanisms related to metabolism and immune aging in PWH 

following long-term ART therapy using omics, advanced statistics, multi-omics 

integration and network approaches. 

 

Specific aims 

 

Paper I: To investigate metabolic perturbation in successfully long-term well-treated 

PWH with metabolic syndrome (MetS) compared to PWH without, which is a major 

comorbidity in PWH. 

 

Paper II: To characterize the metabolomics profile from PWH on ART and lifestyle and 

gender-matched HIV-negative controls from two low- and middle-income countries 

(LMICS), Cameroon and Indian cohorts.  

 

Paper III: To stratify PWH with prolonged suppressive therapy based on plasma 

metabolomics/lipidomics and fecal microbiota into risk groups of metabolic 

complications. Also, we tried to identify clinical and biological factors differing from these 

clusters using advanced bioinformatics tools. 

 

Paper IV: To identify data-driven patient stratification using a robust system biology 

integration tool on transcriptomics, proteomics, and metabolomics data on PWH with 

prolonged suppressive therapy. We tried to identify cellular, immuno-metabolism 

mechanisms differing risk-clusters by applying advanced statistics, genome-scale 

metabolic models, and in vitro cell models. 

 

Paper V:  To investigate the biological aging process using transcriptomics age estimator 

in a large cohort of PWH on prolonged successful ART and identify PWH with accelerated 

aging and underlying mechanisms. 
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3 Materials and methods 

3.1 Ethical considerations 

Ethical clearances covered all patients' material. Ethical clearance for the Copenhagen 

Comorbidity in HIV infection cohort (COCOMO) study (papers I, III, IV, and V) was 

approved by the Regional Ethics Committee of Copenhagen, Denmark (COCOMO: H- 524 

15017350) and Etikprövningsmyndigheten, Sweden (Dnr: 2022-01353-01). The 

Cameroonian National Ethics Committee approved the study performed in Cameroon 

(paper II) for Human Research, Cameroon (N2019/08-198-CE/ CNERSH/SP). The study 

conducted in India (paper II) was approved by the Institutional Ethics Committee of the 

National Institute for Research in Tuberculosis (NIRT IEC No: 2015023) and the Institutional 

Review Board Committee of Government Hospital for Thoracic Medicine (GHTM-

27102015) Chennai, India. The Ethical approval (Etik- prövningsmyndigheten, Sweden) was 

waived (Dnr: 2019-05086). All study participants wrote an informed consent before 

inclusion. 

3.2 Samples collection and pre-processing 

For papers, I, III, IV, and V, patients were part of the COCOMO cohort initiated in 2015 (N 

= 1,089)76. PWH from Copenhagen area were included at the Copenhagen Rigshospitalet 

and Hvidovre Hospital. The cohort of healthy controls (HC)77 was age-and sex-matched 

with the PLWH. All patients completed a REDCap electronic data capture questionnaire 

regarding more than one hundred clinical parameters, including demographic, lifestyle, 

self-reported symptoms, and diseases. Venous blood samples were collected from non-

fasting patients. The whole blood, buffy coat, and plasma serum were stored. Peripheral 

blood mononuclear cells (PBMCs) were extracted from the whole blood. The patients 

collected stool samples themselves. In the Cameroon project (paper II), HC and PWH 

were gender- age- and body mass index (BMI)- matched. The samples from plasm and 

whole blood were retrieved from Yaoundé University Teaching Hospital, Cameroon. In the 

Indian study (paper II), PWH with successful long-term ART (> five years) were selected 

from patients at the Government Hospital for Thoracic Medicine (N = 553), Chennai, India. 

HC matched for age, sex, and lifestyle with PWH were recruited in Chennai, India. A non-

fasting blood sample was taken from each patient. Samples were sent to Karolinska 

Institutet and omics generation companies. Samples used in different papers for different 

methodologies are indicated in Table 4. 
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Table 4: Summary of samples and omics technologies per paper 

Paper Cohort PWH VP HC Methods 
Paper I COCOMO 200 0 20 Metabolomics 

Paper II 
Cameroon 
India 

50 
41 

25 
20 

50 
30 

Metabolomics (targeted and 
untargeted) 
Proteomics (LC-MS/MS) 

Paper III 
COCOMO 97 0 18 Metabolomics, Lipidomics and 16S 

Microbiome 

Paper IV 
COCOMO 158 0 18 Metabolomics, Transcriptomics 

Proteomics (Olink, LC-MS/MS) 
Paper V COCOMO 178 0 18 Transcriptomics 

3.3 Cell lines 

For paper II, cell lines Jurkat (Leukemic T lymphocyte) and U937 (lymphomatic pro-

monocytic cell line) and their HIV latency cell models J-Lat 10 (NIH HIV reagent program) 

and U1 were provided by Helena Jernberg Wiklund, Uppsala University. For papers II and 

IV, PBMCs were isolated from the whole blood of the donor samples obtained from 

Karolinska University Hospital. 

3.4 OMICS analysis 

Omics is the characterization of the global set of biological molecules at a specific time 

point78. All omics analysis included dimensionality reduction (PCA) to detect outliers, 

biasing sources, and potential clustering patterns among patients, followed by filtering of 

empty or missing data features and normalization. Finally, comparing features between 

groups was usually 

done using statistics 

adapted to each 

data. All analyses 

were regularly saved 

and shared on GitHub 

(https://github.com/). 

Each data type and 

its characteristics are 

presented in figure 5 

and below. 

 

 

 

 

 

 
Figure 5: From genes to metabolites, linked omics technologies and pipelines used in the thesis 
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3.4.1 Transcriptomics 

Transcriptome is the complete set of transcripts and their quantity in a cell for a specific 

physiological condition. RNA-seq has the advantage of giving both quantitative and 

qualitative gene expression and has become a favored technology for transcriptome-

wide gene expression analysis. RNA-seq is still limited for short sequences due to non-

accurate read alignment and sequencing errors79. Measuring messenger ribonucleic acid 

(mRNA) is also not always well correlated to the level of the corresponding proteins since 

the stability of mRNA and proteins differs. For papers IV and V, RNA-seq was done on 

PBMCs samples using Illumina TruSeq Stranded mRNA (Illumina, USA) with Poly-A 

selection followed by sequencing on NovaSeq6000 and processed by nf-core/rnaseq17 

by the National Genomics Infrastructure (NGI), SciLifeLab. We used transcripts per million 

as standard normalization and DESeq280 on unnormalized raw counts for differential 

expression analysis (DGE). 

3.4.2 Proteomics 

Proteomics analysis represents the quantitative measurement of proteins from a 

sample81. Targeted proteomics is the most sensitive and is used to detect and quantify a 

particular protein or peptide in a complex mixture of proteins. In opposition, untargeted 

proteomics is less sensitive but allows qualitatively and quantitatively measuring the 

proteome without targeting a specific protein. Still, compared to transcriptomics, the 

number of proteins detected is limited, around 10 000 proteins for LC-MS/MS, and not 

representative of the whole proteome, which contains between 80,000 and 400,000 

proteins82. Moreover, proteins are subject to post-translational modifications such as 

phosphorylation, glycosylation, lipidation, and cleavage of peptide bonds. In papers II and 

IV, LC-MS/MS proteomics was done by the Proteomics Biomedicum, Karolinska Institute, 

Solna. After evaluation of several normalization methods using NormalizerDE83, we applied 

quantile normalization to the raw data. In paper IV, a targeted protein set was extracted 

using a proximity extension assay by Olink Bioscience AB, Uppsala, Sweden. We 

performed differential abundance analysis using linear models for microarray data 

(limma)84 .  

3.4.3 Metabolomics 

Metabolomics describes changes in metabolites, the intermediate end products of 

metabolism. Metabolites are the most representative of the entire organismal state 

compared to transcriptomics or proteomics85. As for proteomics, metabolites are 

quantified using untargeted or targeted mass spectrometry technologies. Metabolites 

have been shown to affect the phenotype directly86 and disease status87,88. The 

reproducibility of metabolomics studies is still challenging. It has been shown that food 

habits, gut microbiome composition, smoking or alcohol have crucial impacts on 

metabolites 89,90. Moreover, between 30 and 50 % of metabolites are influenced by 
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genetic background91. In papers, I, II, III, and IV, untargeted metabolomics were done using 

the Metabolon HD4TM Discovery platform (Metabolon Inc, Morrisville, NC 27560, USA) 

using ultrahigh-performance liquid chromatography/mass spectrometry/mass 

spectrometry. In paper II, amino acids detection (targeted metabolomics) using LC-

MS/MS method was performed at the Swedish Metabolomics Centre (Umeå, Sweden). For 

analysis, data were log2 transformed and groups compared using limma84. 

3.4.4 Lipidomics 

Metabolomics is the study of water-soluble metabolites (ex: sugar, amino acids, 

nucleotides), lipidomics measures the lipid molecular species using similar technologies92. 

The main limitation of lipidomics is mostly the difficult quantification of low-abundance 

lipid species93. Lipidomics was done through the Complex Lipid Panel™ technique 

(Metabolon Inc, Morrisville, NC 27560, 433 USA) for paper III. Analysis pipeline was similar 

to the metabolomics pipeline. 

3.4.5 Microbiome 

Microbiota is the ensemble of bacteria, archaea, protists, fungi, and fungi communities 

found in an organism. Microbiome analysis represents the study of these microorganisms 

as communities25. In the study of the association between disease and microbiome, 

important individual variations, including lifestyle, diet, medication, and physiology, must 

be taken into consideration94. Microbiome data is highly influenced by technical variation 

and contaminants. The 16 sequencing rRNA (16S rRNA) targets highly variable genome 

regions of bacteria to determine microbial phylogeny. In paper III, we used 16S rRNA done 

at the Norwegian Sequencing Centre in Oslo. The sequencing was performed with the 

Illumina MiSeq platform and v3 kit (Illumina). The microbiome analysis consisted of 

calculating alpha and beta diversity and using the permutational multivariate analysis of 

variance test95 to compare microbial communities between groups. 

3.5 Bioinformatics tools 

Several tools were applied in this thesis to better extract underlying mechanisms from 
complex biological systems. Tools used in the thesis are indicated in Figure 6. 
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Figure 6: Bioinformatics tool used for the different studies. Tools are indicated in dotted boxes. 
The red color indicates system biology tools. 
 

3.5.1 Feature selection 

Feature selection reduces the number of variables used as input for a model. It is 

particularly used in omics data to reduce the "curse of dimensionality," where the number 

of features is much higher than the number of observations. Variables are ranked by a 

score specific to each method. In papers I and II, we used Partial least squares-

discriminant analysis (PLS-DA)96, a supervised dimensionality reduction tool that tries to 

have a higher variance between a dependent variable (ex: two conditions) and the 

independent variables. Then in papers, I, II, and IV, the Boruta algorithm, a wrapper built 

around the machine learning algorithm random forest (RF) was also applied97. RF merges 

the multiple decision tree's output into final results and can be used for regression and 

classification models98. The Bayesian Belief Networks (BBNs) used in paper IV is a 

network-based approach that identifies driver genes with the most decisive influence on 

a consensus and refined network structure. This network is obtained after the generation 

of many random trees from the hill-climbing algorithm99. 

3.5.2 Pathway analysis 

Pathway analysis or functional enrichment analysis allows the identification of larger 

biological themes from a list of features from a comparison (usually fold change and p 
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values are obtained from statistics test)100. In this thesis, we used Ingenuity Pathway 

Analysis software (IPA)101(paper I and II), Gene Set Enrichment Analysis (GSEA) in Python 

(gseapy)102 (papers II and IV), piano103 (paper IV and V), and Biological Networks Gene 

Ontology tool (BINGO)104 (paper IV)(Figure 5). 

3.5.3 Sample clustering and multi-omics integration 

We used ConsensusClusterplus to identify clusters of patients by repeated subsampling 

and clustering steps105 (paper II). Omics integration aims to answer a biological question 

by finding biological patterns not apparent in single omics. Indeed, Single omics analysis 

can lead to incomplete results. SNF45 (paper III and IV) and its derived program netDx106 

(paper IV) were used to integrate data by building sample similarity matrices and 

similarity networks for each data type and then fusing them into a consensus network. In 

paper III, MOFA30 gave a low-dimensional representation of latent factors capturing most 

sources of variability in the omics. Weights associated with each feature were extracted. 

3.5.4 Other network analysis 

3.5.4.1 Co-expression analysis 

Co-expression analysis107 is mainly used for detecting highly intercorrelated modules of 

features and was used in papers I to IV. Pairwise correlations were performed using 

Spearman correlations and filtered based on the false discovery rate (FDR). We 

performed co-expression analysis using igraph108 and Leiden44 algorithms for community 

detection. Pathway analysis and centrality analysis were performed for each community. 

3.5.4.2 Genome scale metabolic models 

Metabolism involves important biochemical reactions involving the transformation of 

metabolites catalyzed by enzymes. GSMM is a reconstruction of the metabolic reactions 

of an organism52. The generic human GSMM Human-GEM was modified using 

transcriptomics and metabolomics data using the RAVEN toolbox50. Then, the 

optimization was performed using FBA, which finds an optimal flux distribution given a 

pre-decided cellular objective51 (paper IV). 

3.5.5 Visualization and databases 

Most plots were made with ggplot2109 in R (paper I to V). Plots were designed and colored 

for the best readability of the results. Networks were made with Cytoscape110, which is a 

tool for network analysis (paper I to IV). Plots were also done in python (paper II). 

The three databases used for this thesis were Kyoto Encyclopedia of Genes and Genomes 

(KEGG)111(https://www.genome.jp/kegg/) (papers I, II, IV and V), the Molecular Signatures 

Database (MSigDB)112 (https://www.gsea-msigdb.org/gsea/msigdb/) (paper IV) (Figure 1) 

and STITCH113 (http://stitch.embl.de/) (paper I). KEGG is a database based on high-

throughput technologies containing several biological systems information and functions 
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including for example pathways, complete genomes and orthologs. MSigDB contains 

annotated gene sets for humans and mice. It was made with the GSEA software. STITCH 

is a database of interactions between proteins and chemicals from genomic context 

predictions, high-throughput lab experiments and databases. 

3.5.6 Others 

3.5.6.1 Cell profiling 

Cell profiling was performed to determine the pourcentage and abundance of each 

immune cell type in samples of mixed cell population (here PBMCs) using the online server 

CIBERSORTx114.  

3.5.6.2 Effect sizes and regression models 

The effect size measures the magnitude of the relationship between two variables over 

significance115. In R, we used the R package effects to calculate effect sizes (paper II and 

paper IV). Galaxy web application LDA Effect Size (LEfSe)116 was applied to find cluster-

specific microbes (paper III). Regression models measure the association between a 

variable (called dependant variable) and one or more independent variables117. We used 

linear regression to correct features for clinical parameters (paper I, paper II) and logistic 

regression to find clinical variables differing between two groups (paper V). 

Transcriptomics age was calculated as described in paper V. 

3.5.6.3 Single-cell transcriptomics analysis 

Single-cell RNA seq is the study of the transcriptome at the single-cell level. This allows 

the extraction of information at the individual cell level compared to previous bulk 

analysis. All analyses were done using the R package Seurat118 (paper IV). 

3.6 Analytical methods 

Wet lab experts from the group or collaboration performed all analytical methods. 

3.6.1 Flow cytometry  

All analyses were performed using Fluorescence-activated cell sorting (FACS) symphony 

(BD Bioscience) and FlowJo. FACS119 measured essential metabolic transporters with 

central carbon metabolism in T cells and monocytes (paper I). In paper II, we measured 

ROS production and latency reactivation in HIV cell models. In paper IV, we also used 

FACS to measure surface receptors, functional markers, activation from latency markers 

and exhaustion markers. 

3.6.2 T-cell and monocytes functionality assay 

In paper IV, PBMCs from donors were incubated with patients' plasma (conditions are 

separated), simulated with the CEF Control Peptide Pool or unstimulated, and 
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supplemented with DNase I recombinant and antiviral inhibitors were added before 

sample collection. Samples were stained for surface CCR7, surface receptors, and aqua 

viability stain for t-cell assay. For monocytes assay, PBMCs were incubated with plasma 

from patients and simulated with lipopolysaccharide or unstimulated. 

3.7 Experimental assays 

All experimental assays were performed by wet lab experts from the group or 

collaboration. 

3.7.1 Cell treatments with chemicals 

In paper II, U1 and U937 were treated with glutamine antagonist 6-diazo-5-oxo-L-

norleucine (DON), prostratin and 2-Deoxyglucose (2-DG). Mitochondria were extracted 

from these cells, and proteins from the oxidative phosphorylation (OXPHOS) pathway 

were measured using the total OXPHOS Human WB antibody cocktail (Abcam). Proteins 

were compared using statistics. Also, the cytotoxicity of the two ART regimens, still in 

these cells, was quantified using AlmarBlue assay (Invitrogen). Glucose-GloTM Assay, 

Lactate-GloTM Assay, and Glutamate-GloTM Assay (Promega) were used to measure the 

intracellular concentration of glucose, lactate, and glutamate in these conditions. In paper 

IV, monocytes from donor PBMCs were treated with spermine, spermine, or both or 

untreated. Differentiation to macrophages was induced using LPS, and after 48h, samples 

were sent for proteomics. 
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4 Results and Discussion 
Immune aging in HIV is a complex process driven by several factors. The thesis aimed to 

understand this phenomenon better using different cohorts, multi-omics, and system 

biology tools (Figure 7). In paper I, we compared metabolomics profiles of PWH with or 

without metabolic syndrome, a common aging-related comorbidity in PWH. Then in 

paper II, we extracted metabolites differing from HC and PWH in two independent cohorts 

to identify long-term metabolic changes due to long-term ART. We divided patients into 

risk groups based on multi-omics profiles in papers III and IV. In paper V, we investigated 

the transcriptomics accelerated aging and potentials associated factors in PWH. 

 

 
Figure 7: Summary aims and patients’ materials of the thesis (papers I to IV) 

4.1 Metabolic Perturbations in HIV 

Since the start of ART, PWH on ART has been reported to display disrupted metabolism 

especially dysregulated glucose and lipid metabolism120. In our Danish cohort, we 

identified a cluster of PWH with highly upregulated lipids, including triglycerides (TAG), 

diglycerides (DAG), ceramides (CER), and presenting weight-related comorbidities 

including high BMI, high visceral adipose tissue (VAT) , high subcutaneous adipose tissue 

(SAT), and high proportion of metabolic syndromes (MetS) (paper III) associated with 

dyslipidemia. Dyslipidemia has already been associated with cardiovascular diseases and 

mortality in naive121 and ART patients60 in coherence with our results. Nevertheless, the 

lipid profile cannot alone explain the metabolic perturbations in HIV (paper III). In this 

thesis, we have explored the metabolic shifts linked to treatment regimens and latent 

reservoirs in patients in different cohorts and the consequences of these perturbations. 
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4.1.1 Amino acids dysregulation in HIV 

In our cohorts under long-term successful ART, amino acid metabolism was disrupted 

and associated with weight-related comorbidities (papers I to IV). Previously, amino acids 

and fatty acid metabolism were found dysregulated in PWH before or after short-term 

treatment122,123 and associated with late immune recovery122 or HIV-associated 

neurocognitive disorders (HAND)124. The increase of several amino acids (43 % of total 

dysregulation) involved in methionine, valine and tyrosine degradation, as well as the 

sirtuin signaling pathway was observed in PWH with MetS compared to PWH without Mets 

with similar ART duration and CD4 count (paper I, Figure 8).  

 
Figure 8: Network of the top significant pathways and their associated metabolites differing from 
PWH and PWH+MetS. Node color and size are proportional to the log2foldchange between PWH 
and PWH+MetS. Red indicates increase in PWH with MetS and blue decrease, 
 
The amino acids dysregulation in PWH compared to HC was observed in three 

independent cohorts from Denmark, Cameroon, and India based on untargeted70 and 

targeted metabolomics with noticeable patients’ heterogeneity (paper II, paper III). 

Among PWH, the regulation of amino acid reactions was even more complex. While 

patients with a high fat profile had the same metabolic profile as HC-like fat-based profile 

patients (paper III), patients with dysregulated immune-metabolism profiles displayed 

amino acid dysregulation (paper IV). The amino acids pathway is a crucial pathway 

dysregulated with HIV and metabolic disorders, as observed in several cohorts in PWH on 

long-term ART. 

4.1.2 Glutaminolysis disruption in PWH 

Among metabolic pathways, glycolysis and glutaminolysis are essential for HIV 

replication122. The production of ATP through glycolysis is essential to produce new viruses 

and maintain infectivity125. Glutamate has also been shown to be preferentially used in 

macrophages of PWH126. Glutamine is converted to glutamate in the mitochondria and 
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then converted to alpha-ketoglutarate, which is used in the citric acid cycle which will be 

used to produce biosynthetic precursors127. Moreover, late immune recovery following 

cART results from high glutamate levels122. 

In PWH with MetS, we observed a drastic increase in glutamate and several metabolites 

from glutamate metabolism (paper I, Figure 8). The association between MetS and 

glutamate has been shown in non-infected individuals128. Glutamate was increased in PWH 

compared to HC in the Cameroon cohort (paper II) and in the targeted metabolomics of 

the Indian cohort as well as in the risk groups compared to HC-like groups in the Danish 

cohort (papers III and IV) (Figure 9). This showed a significant increase of glutamate with 

HIV, MetS, and severity and a potential shift in metabolism toward glutaminolysis. 

However, the shift in glutaminolysis did not cause accelerated biological aging in PWH 

(paper V), as no differences were observed between the groups.  

 

 
Figure 9: Glutamate levels in different papers and patient groups. Cohorts for Cameroon and India 
are indicated in parenthesis. Other samples are from the Denmark cohort. 
 
We inhibited glutaminolysis in HIV cell models to see the effects of latent reservoirs. 

During ART, HIV remains quiescent in latent reservoirs of lymphocytic and monocytic cell 

lines. A potential cure for HIV is the activation and consequent clearing of this latent 

reservoirs129. In latency cell models J-lat and U1, we blocked glycolysis (2-DG) and 

glutaminolysis (DON). The treatment with DON activated the latent reservoirs in U1 but 

not J-Lat cells (paper II). The treatment with 2-DG did not activate latency reversal. 

Proteomics analysis on U1 treated with DON revealed proteins involved in glycolysis, TCA 

cycle, sulfur metabolism, amino acids, and OXPHOS. OXPHOS complex I to IV proteins 

were lower in U1+DON compared to U1 in proteomics and western blot quantification 

(paper II). No difference was observed in ROS, which indicates unbalanced redox 

homeostasis. Then, we tested the influence of glutaminolysis inhibition during cART for 

latency reversal but did not see a difference between the ART regimens. DON decreased 

glutamate and lactate and increased glucose in all ART treatments (paper II). 

 

In conclusion, living with HIV increases OXPHOS and glycolysis and in glutamate/glutamine 

as an energy source. Inhibition of glutaminolysis could solve latency reversal in monocytic 

cell lines. 
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4.1.3 Glutamate-induced neurotoxicity 

The higher abundance of glutamate is known to be harmful to the brain. Glutamate is the 

major excitatory neurotransmitter involved in many brain functions, such as learning, 

memory, and pain130. It has been shown that glutamate-induced neurotoxicity can be 

induced by glutamatergic system dysregulation, resulting in neurodegenerative 

disorders131. On the other hand, lactate and pyruvate have been shown in animal models 

to decrease glutamate-induced neurotoxicity132.  

In paper II, we identified five neurosteroids differing from HC and PWH, potential markers 

of neurocognitive impairments. Both cohorts showed a lower abundance of these 

biomarkers in PWH except for methionine sulfone, which displayed a higher abundance in 

PWH. A decrease in neurosteroids has been associated with depression previously133. We 

believe that patients from this study are displaying glutamate toxicity and potential future 

cognitive impairments. The increase in lactate and pyruvate observed in PWH with MetS 

(paper I) could result from the increase of glutamate and therefore have a protective 

effect and avoid neurological impairment in these patients, which was not observed in the 

Cameroon and India cohorts (paper II, Figure 10). 

 
Figure 10: Pyruvate and lactate levels in different papers and cohorts. 

4.1.4 Central carbon metabolism 

We identified a general dysregulation of the central carbon metabolism (CCM) in HIV 

(papers I, III, IV). The CCM includes the TCA cycle, glutamate, glycolysis, and pyruvate 

metabolism134. In addition to disrupted glutamate metabolism associated with MetS in 

PWH, other metabolites from the CCM were increased in the blood of PWH with MetS, 

including pyruvate, lactate, and α-ketoglutarate levels but not glucose (paper I, Figure 8). 

This indicates the release of glycolytic and TCA metabolites in the plasma. Pyruvate is 
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usually converted to acetyl-coA but, with disrupted metabolism, mainly changes to 

lactate127. 

The major transporters of CCM, Glut1 (glucose), MCT-1 (pyruvate and lactate), and xCT ( 

exchange glutamate/cystine) were measured in T cells and different monocytes 

populations of PWH with MetS and without MetS. MCT-1 was higher in PWH with MetS 

compared to PWH in all cell types.  xCt was higher in monocytes and CD4 T cells but not 

CD8 T cells showing a critical transport of metabolites from CCM in monocytic cell lines 

(paper I). Patients with immunometabolic at-risk profile presented a metabolic 

dysregulation of the central carbon metabolism driven by senescence associated 

proteins compared to those with the at-risk profile. Also, using GSMM and FBA, we 

identified 64 flux specific to the at-risk group, including transport reactions, pentose 

phosphate pathway, and fatty acid oxidation, which are part of central carbon metabolism 

(paper IV). In addition to glutaminolysis, the whole CCM is dysregulated in PWH and an 

essential marker of severity in HIV. 

4.1.5 Microbiome associated metabolites 

We observed difficulty in proving the importance of the microbiome on the severity in 

PWH but saw an evident dysregulation of microbiome-associated metabolites (MAM) 

(paper III). The gut microorganisms process elements from diet and endogenous 

compounds into MAM. These have been associated with diseases, including metabolic 

disorders135. In our paper III, we showed that HIV patients display an essential difference 

in the profile of MAM, especially indole derivatives, compared to controls. The variability 

between PWH clusters was more complex but deserved further attention (papers III and 

IV). Also, MAM was highly intercorrelated in PWH, particularly secondary bile acid 

metabolites (paper III). Most of the MAM differing between clusters were linked to the 

lifestyle and medication of patients (paper III, Figure 11).  

 
Figure 11: Microbiome-associated metabolites are highly associated with clinical and life 
parameters. Bluedotted lines indicates negative and red positive association. Metabolites are 
represented as blue triangles, food and life-style habits as green circles, weight related 
comorbidities as yellow circles, ART related parameters as pink squares and other paramters 
as grey diamonds. 
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In the groups driven by immune metabolic profile, three crucial MAM (serotonin, 

kynurenate, quinolinate) were decreased in the HC-like compared to the risk group. 

Taurine, hydroxybutyrate, and acetoacetate were more abundant and linked with liver 

injury, which was confirmed by the high alanine aminotransferase (ALAT) level in the at-

risk group (paper IV). 

In conclusion, metabolic perturbation in HIV involves lipids, amino acids, particularly 

glutaminolysis, central carbon metabolism, and microbiome-associated metabolites. This 

dysregulation is responsible for aging-related comorbidities, including metabolic 

disorders and neurological diseases. Glutaminolysis inhibition could be a potential HIV 

remission strategy targeting the latent reservoirs. 

4.2 Immuno-Metabolism with HIV 

Despite ART treatment, many PWHs suffer from chronic inflammation and immune 

dysregulation linked to aging and age-related comorbidities136. We showed that PWH 

suffering from transcriptomics aging have increased inflammation (paper V). More 

treatment of PBMCs with at-risk plasma activated the inflammatory response according 

to proteomics analysis (paper IV). My thesis aims to understand better immune cell 

activation and immune system dysregulation in PWH. 

4.2.1 Immune cells impairment in HIV 

HIV infection induces the death of T-cell helper and the progressive decline of immune 

function. After ART, the CD4 count increases, and the CD4/CD8 ratio indicates disease 

activity. In paper IV, we showed that at-risk patients had a lower CD4/CD8 ratio in at-risk 

compared to HC-like, which could be due to higher HIV activity or other comorbidities137. 

Interestingly, there were no differences in markers of inhibitory checkpoints, transcription, 

function, and phenotype on memory CD4+ and CD8+ T cells exposed to HC-like and at-

risk plasma, indicating no change in T cell activity in vitro. Moreover, a higher proportion 

of CD8 T cells and a lower of CD4 T cells were observed using cell profiling from 

transcriptomics between HC-like and at-risk but not monocytes.  

On the other hand, monocytes are used as a latent reservoir by the virus and present 

activation with the virus138 . We saw an increase of CCR2 and CX3CR1 in monocytes treated 

with at-risk plasma compared to HC-like treated cells indicating their activation, while the 

high CD86 and low CD38 and PDL1 indicate impaired macrophage function due to 

monocyte exhaustion (paper IV, Figure 12).  

This was confirmed by pathway analysis in the proteomics data, where we observed 

increase of inflammation and down-regulation of monocyte migration, activation, and 

differentiation. Interestingly, monocyte lineages expressed senescence-associated 

proteins differing significantly between HC-like and at-risk (paper IV). 
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These results indicate no modifications and successful recovery of T-cell function with 

ART but a potential disruption of monocyte function by exhaustion which could explain 

the risk profile in HIV. 

 

Figure 12: Dotplot showing the expression of phenotypic and functional markers on monocytes 

4.2.2 Polyamines 

Polyamines are also dysregulated in our studies (paper IV). Polyamines are low molecular 

weight compounds with at least two amino groups. They have an influence on several 

metabolic processes, including inflammation and immunity139. The most important 

polyamines of the cells are spermine, spermidine and putrescine. Spermidine is produced 

from spermine by the enzyme spermine oxidase. In PWH, polyamines could have a role or 

be a biomarker of neurologic disorders140 and T cell dysfunction141. An increase in spermine 

and spermidine which could correlate with the disease severity was seen in the at-risk 

compared to HC-like patients,. Moreover, we wanted to investigate the role of high 

polyamides on monocyte function by treating monocytes from donors with spermine and 

spermidine and simulating with LPS (paper IV). The proteomics analysis revealed that in 

spermidine-treated cells, proteins regulating metabolic, pro-inflammatory, and 

chemokine signaling were more abundant compared to controls, and proteins involved in 

monocyte functions were downregulated (paper IV, Figure 13). 

 

 
Figure 13: Volcano plot (right) and pathway analysis (left) from comparison of proteins between 
PBMcs vs PBMCs treated with spermidine 
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4.3 Multi-omics data analysis 

Omics integration aims to answer a biological question by finding biological patterns 

which are not apparent in single omics.  In my thesis, we explored the information given 

by different omics and combinations of omics.  

4.3.1 Single omics and combination of methods 

We used ConsensusClusterplus105 for single omics analysis because of the resampling, 

tunning parameters, quality metrics, and functionality to identify the optimal clustering 

(paper II). To identify even a lower number of biomarkers while reducing the risk of false 

positives, we used a combination of three totally different methodologies of feature 

selection in papers I, II and IV.  

It has been shown that biological pathways can be modeled by causal dependency 

structures142,143. First step was to select features (here genes) strongly differing two 

conditions; we used an RF classifier. Then, we built a directed acyclic draph using a naïve 

Bayes algorithm99 which modelized the proteome interactions of interest. We disrupted 

the network by removing nodes randomly and identified five driver genes with a major 

impact on the network and “driving” the pathology. We found that the set of genes was 

relevant biologically: they were all involved in stress-related dysregulated metabolism 

(paper IV), showing the robustness of the approach. Indeed, Single omics analysis can 

lead to incomplete results, as in the Cameroon India study (paper II). Multiple omics 

(paper III, paper IV) were a tremendous asset. 

4.3.2 Multi-omics Integration tools choices 

For multi-omics integration, we have used tools able to handle different types of data: 

continuous (proteomics, metabolomics, lipidomics, clinical), categorical (clinical), and 

counts (16S, transcriptomics).  

4.3.2.1 Comparison of SNF and MOFA 

Several advanced tools are available for patient clustering144,145. In papers III and IV, we 

grouped patients using network analysis SNF45, which fused individual networks into a 

summary of all information. The original SNF algorithm returns patients labeled based on 

the most optimal clustering based on matrices of data (usually a large number of features) 

but if the addition of clinical data is mathematically possible, it was not implemented. 

Then, we used netDx106, a tool built on SNF which integrates the clinical parameters to each 

cluster (paper IV). On the other hand, this functionality was already implemented in 

MOFA30. Factors were correlated with clinical parameters by converting categorical 

variables into numeric variables. Also, in MOFA but not in SNF, each feature had a “weight” 

which could be interpreted as the importance of the feature in the global model or in the 

factor. We used them to extract the most informative biomarkers related to clusters 

(paper III). Both MOFA and SNF provide the importance of each omic layer on the final 
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integration model (papers III and IV). MOFA managed the integration of different data 

types but was not able at all to exploit microbiome data while SNF could (paper III). MOFA 

has been used to integrate microbiomes with fungal data on the same scale146.The main 

difficulty in our project was integrating 16S data with a low number of operational 

taxonomic unit (OTUs) (N = 241) and presenting several missing data with intercorrelated 

mass spectrometry data (metabolomics and lipidomics data) (paper III). A solution could 

be to reduce the number of features challenging lipidomics because they were highly 

inter-correlated. Another possibility would be to include whole genome sequencing 

data147. In general, SNF performed better than MOFA because it could combine the 

distances from each data more efficiently. A further analysis would be to perform a 

consensus SNF. 

4.3.2.2 Strengths and limitations of co-expression networks 

Large-scale biological networks are complex structures and cannot always be efficiently 

described using global distribution. Still, they can present patterns of interconnections148. 

An efficient way to analyze networks is to select local modules with individual topology 

and biological functions36. Specific interactions within modules and between modules can 

be investigated with much more efficiency than with a global network. In co-expression 

networks,  the weight of the edge separating two nodes is their coefficient of correlation. 

The advantages of co-expression networks are that we can integrate many data types, 

reduce the number of nodes by selecting the most correlated features, use statistics and 

graph measures on much smaller and coherent modules, and identify consequently 

independent biological processes. 

To identify groups of co-expressed features, we made association analysis and 

community detection using the Leiden algorithm (paper I, II, III, and IV). We mainly used 

connectivity (represented by the degree) at the node and community levels. We 

calculated the centrality for each community to determine the most central community 

with biological importance in the network. We used differential abundance analysis and 

pathway analysis to determine the biological processes in the communities. For example, 

in paper II, the most central community was majority lipids, but the neurosteroid 

biomarkers were in another community with most metabolites downregulated. 

The limitations of the co-expression network were mainly linked to the omics type, the 

relevance of correlations, optimal cut-offs, and time consumption. First, omics produced 

from the same batch tend to correlate together. While combining different omics, we saw 

an omics-type effect in paper III, with lipids, metabolites, and microbes segregated in 

separated communities (Figure 14) but not in paper IV. Secondly, correlated features do 

not always mean they are on the same pathway. Third, the correlation cutoff is arbitrary 

and can lead to different networks and communities. Then, the more we had omics, the 

more the computation time can be important for large networks. We performed a 

consensus co-expression network in paper III to reduce this time. 
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An advance for community detection would be more biological information about nodes 

as observed in GSMMs (described further). The whole field of network biology could need 

to develop temporal and spatial dimensions of the networks. 

 
Figure 14: Omics distribution per community in paper III 

4.3.2.3 Advantages and limitations of Genome-scale metabolic models 

GSMM integrates omics into fluxes of metabolic reactions that we can quantify149. Models 

are submitted to constraints defined mathematically as optimizing the objective function 

here, the cell growth. Compared to classic network approaches, which are primarily 

unsupervised, the main strength of GSMM is to be able to use existing models. They 

summarize all the information about the organism metabolism especially biochemical 

knowledge, including kinetics constraints, fluxes, directions and reversibility of fluxes, 

catalyzing enzymes, and reaction rates manually curated and validated150. We were able 

to add our constraints. Transcriptomics data allows the application of regulatory 

constraints to the model151, while adding metabolomics data constrains the metabolic 

rates across the membrane152. Models can also be disrupted by removing genes or 

metabolites or lowering metabolite concentration (ex: O2). We integrated transcriptomics 

into genome-scale metabolic models and performed flux balance analysis (FBA) to obtain 

flux and metabolic pathways most indicative of the metabolic state (paper IV). In a 

heterogeneous population with metabolic disruptions, performing a single patient 

genome-scale helped us to include each patient's difference and characterize the 

spectrum of metabolic changes153. A clear increase in metabolic fluxes in almost all the at-

risk patients matched with the grouped GSMM (paper IV).  

Still, GSMM has several limitations. First, we are making strong assumptions about the 

kinetics of the model. Then GSMM was designed to model the growth of one cell, which 

we changed to a whole organism while we know that cells can be at a different stage. Also, 

some fluxes or data do not have sufficient annotations. We performed gene essentiality 
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and identified an essential gene in most at-risk patients with unknown functions. Then, 

each constructed model needs to be validated and tested in the lab. Also, alternative 

modeling techniques could be an asset to define better fluxes and metabolic 

perturbations, including modified FBA, analysis, or deletion strain phenotypes151. For 

example, parsimonious enzyme usage FBA classifies genes based on the importance of 

optimal growth153. 

On the other hand, flux variability analysis is applied to find several optimal flux 

distributions solving the problem under different optimal functions. It is useful to 

investigate suboptimal growth or alternative optima151,154. Also, machine learning 

approaches for the reconstruction of GSSM have been investigated and could be applied 

in our projects155. 

In conclusion, we selected SNF, MOFA, GSSMs, and co-expression networks for their 

properties and addressed their limitations using other tools or laboratory experiments. 

We could have applied DIABLO, which is also strong in multi-omics analaysis156. 

4.4 Phenotypic analysis 

Patients’ phenotype was a constant driver of the omics-based clusters' qualification into 

at-risk or HC-like groups. More, in the COCOMO cohort, the abundance and quality of the 

clinical data allowed us to provide a detailed and precise definition of patients and groups 

of patients and investigate the comorbidities, risk factors, interactions, and co-founding 

effects (papers I, III, and IV). The phenotypes of patients are presented in Figure 15. 

 

Figure 15: Patient phenotypes summary for each clustering. Red arrows are representing an 
increase and green a decrease. 
 

4.4.1 Metabolic syndrome and weight related comorbidities 

Our patients were selected to study metabolic syndrome, so we have multiple clinical 

data to investigate these comorbidities (paper I, III, and IV). The definition of metabolic 

syndrome describes the combination of cardiovascular comorbidities, including insulin 
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resistance, hypertension, obesity, and dyslipidemia. Patients with metabolic syndrome 

are more at risk of developing CVDs and type II diabetes157. 

In our papers III and IV, we decided that the definition of metabolic syndrome was not 

representative of the patient’s heterogeneity in terms of weight-related comorbidities. In 

paper III, we used lipidomics data to separate patients and saw that severe at-risk 

patients displayed high BMI, SAT, VAT, hypertension, and obesity (Figure 15). In paper IV, 

the at-risk group displayed a higher SAT but not VAT and no difference in BMI. 

Interestingly, VAT is supposed to be more pathogenic than SAT158. Still, they had a higher 

level of TAG, high-density lipoprotein, central obesity and cytosolic blood pressure 

compared to the HC-like group indicating a less severe metabolic profile than patients 

from paper III but still, apparent immunometabolic perturbations identified by low 

CD4/CD8 and high ALAT which is indicating kidney disfunction159 (Figure 15). 

On the other hand, fat distribution is influenced by gender. It has been reported that men 

have more VAT giving the apple shape, and female SAT, giving the pear shape coherent to 

our data160. Unfortunately, the cohort contains primarily males (90 %). Still, in our cohort 

(paper V), the accelerated aging group presented a higher SAT and a lower VAT than the 

other aging groups. This could be explained by the presence of almost all females (17/19) 

in the accelerated aging group (Figure 15). 

4.4.2 Comparison of clusters identified in III, IV and V 

Different data inputs and patients gave us clusters with clinical profiles (Figure 15). We 

should investigate these differences to successfully define the heterogeneity in PWH. 

Patients from the same cohort (Denmark) were clustered according to data (lipidomics, 

metabolomics and microbiome in paper III, proteomics, transcriptomics and 

metabolomics in paper IV) and transcriptomics age (paper V). First, all patients were not 

available for all types of data (Figure 16A). In paper III, the clustering was mostly driven by 

lipids while in paper IV, was driven by proteomics profile. More, we concluded that 

patients grouping in paper III was due to lipid and metabolic profile while clustering in 

paper IV was representing the immuno-metabolic perturbations and immune 

dysregulation. Still, low overlap was observed between clusters (Figure 16B) and risk-

groups (Figure 16C). Only nine patients were found in the risk group in all studies. 

Interestingly patients from an immune dysregulated profile (at-risk in paper IV) displayed 

a higher transcriptomics age than HC-like but no difference in delta age, showing a 

potential dysregulated aging in this population. 
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Figure 16: a) Overlap of patients between different studies b) Overlap of clusters c) Overlap of risk 

cluster between studies. 

4.4.3 Interactions and confounding effects in omics studies 

In epidemiology, we differentiate mediation, joint effect, and co-funding effect. The 

mediation effect is observed when the association between independent variables on the 

dependent variable operates through one or several mediators. In interaction, there is a 

joint action between the two variables where the effect of one variable depends on the 

other161. Conversely, the confounding effect represents a misleading association and must 

be corrected in the model to avoid bias when interpreting the results162. 

Different confounding effects were addressed in our papers. First, they were identified by 

comparing all clinical parameters from the study groups using basic statistics (Mann-

Whitney U test and Chi-square Test). In paper I, we performed a univariate linear 

regression between metabolites and metabolic syndrome status corrected for BMI and 

treatment regimen. The aim was to identify biomarkers of metabolic syndrome in HIV, not 

simply an obesity marker. Biomarkers were robust to the correction except for one. In 

paper II, we corrected for exercise while comparing HC and PWH in the Cameroon cohort. 

In paper III, the correction was applied for HIV transmission mode and CD4 count and 

finally, in paper IV, for ethnicity and beef intake. For papers IV and III where we compare 

HIV infected patients, we could see a clear difference in results between the corrected 

and not corrected models. In paper V, we tried to identify interactions and mediation 

effects on the association of clinical parameters with accelerated aging. Still, nothing was 

significant, probably due to the insufficient number of patients from the cohort. 

4.4.4 Influence of Microbiome in HIV 

In this thesis, we found that the microbiome had a common effect on fat metabolism 

(paper III), and no effect on immune metabolism (paper IV). More, in paper III, the severe 

at-risk group displayed high levels of Prevotella and low levels of Bacteroides, which have 

been linked to MSM behaviors in several studies163,164. This indicates that for this group, the 

confounding effects of sexual orientation on the association between microbiome and 

the high lipid profile and potential weight-related comorbidities in HIV. Surprinsingly, the 
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mild at-risk PWH displayed similar microbiome composition as the severe at-risk group. 

No significant difference in the pourcentage of MSM between the mild and the HC-like 

cluster was observed.  Still, HC-like group had a totally different microbiome profile. An 

investigation in a larger cohort with a larger proportion of women and heterosexual 

patients could be conducted to identify a potential link between metabolic perturbation 

and microbiome in HIV. 

4.5 Aging Processes in HIV 

 
All patients in this thesis have been in long-term therapy and represent an aging 

population living with the virus. They are experiencing a mix of natural aging processes 

with immune aging due to latent HIV and drug toxicity165. 

4.5.1 Increase senescence in part of HIV patients 

Senescent cells stop multiplying and release molecules, including pro-inflammatory 

cytokines, proteases, immune modulators, growth factors, and, described as 

Senescence-associated secretory phenotype (SASP)166. Cell senescence leads to the 

activation of monocyte–macrophage lineage cells and chronic low-grade inflammation14. 

An increase in senescence has been involved in aging-related diseases167 and HIV168. 

Senescent proteins were more abundant in the at-risk group (paper IV, Figure 17).  

Figure 17: Volcano plot based representing differential abundance between HC-like and at-risk 
clusters 
 
Moreover, they were mainly in the most central community of the co-expression network, 

indicating an essential modulatory role in the metabolic dysregulation in PWH. Moreover, 

these senescent proteins differing risk groups were detected in the myeloid lineage cells 

[classical monocytes, nonclassical monocytes, and dendritic cells] (paper IV). 
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4.5.2 Accelerated aging with HIV 

In opposition to chronological age, biological aging is described as the underlying aging 

mechanisms in the body and can be measured using telomeres length, methylation, or 

transcriptomics. Accelerated aging, when biological age is higher than chronological age, 

has been associated with disease169. PWH with metabolic syndrome displayed pathways 

linked to aging, including the sirtuin signaling pathway (paper I). To better understand the 

biological aging in PWH, we benchmarked biological clocks trained on transcriptomics 

data from HC patients (paper V) by applying it to our patients. We identified that 

accelerated aging was influenced by a complex interaction of ART regimen, gender, 

ethnicity and smoking (paper V, Figure 18). 

 
Figure 18: Summary figure of important factors linked to decreasing aging (DAP) in PWH. Red represents 
increase and green decrease. Blue indicates categorical parameters. 
 
PWH from the COCOMO cohort with highly abundant senescent proteins display an at-

risk profile, while low senescence represented HC-like. More, accelerated aging was 

present in some patients, which does not necessarily overlap with the at-risk immune 

profile.





 

 37 

5 Conclusions and perspectives 
The development of age-related diseases in PWH has been reported and documented, 

but the immune-aging mechanisms linked to HIV are still challenging for scientists in the 

field.  The recent omics revolution has been crucial for understanding many diseases but 

is not fully developed in PWH due to the complexity of samples handling. In this thesis, we 

have applied and tested advanced bioinformatics tools and system biology to 

understand better immune aging in HIV. 

With this thesis, we could have a better understanding of the mechanisms of immune 

aging in HIV. A comparison of patients from three independent cohorts indicated a global 

increase of amino acids and particularly glutamine and glutamate metabolism in PWH 

compared to HC (paper II), even more, accentuated with metabolic syndrome (paper I) 

and severity (paper III and paper IV) (Figure 9). Increased glutamate can lead to 

glutamate-induced cytotoxicity in the brain and potential neurocognitive diseases 

(paper II). A decrease in pyruvate and lactate could be a protective mechanism in the 

Denmark cohort compared to Cameroon and Indian cohorts (Figure 10). An increase of 

lipids, especially tri-and diglycerides, was observed in PWH highly correlated with at-risk 

severity profile (paper III) and weight-related comorbidities (Figure 19). 

Figure 19: Summary mechanisms investigated in the thesis 
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Other immune-aging drivers are the potential monocyte exhaustion, senescence protein 

production, and increased inflammatory markers linked to polyamides and ROS 

production (paper IV). Increased transcriptomics aging is associated with the general 

process (paper V), but more investigations are needed. 

 

The principal limitations of our studies were linked to the patients' heterogeneity, the 

study type and the number of participants, and the bias of omics technologies. 

First, patients are highly heterogeneous compared to cells or animal models. People 

display different genetic backgrounds, lifestyle habits and age170. Especially when studying 

aging, the aging process is highly dependent on an individual, but also in the case of PWH, 

ART regimen (paper V). If COCOMO patients reported numerous clinical parameters, 

Cameroon and India's cohort had a limited number.  Clinical parameters significantly 

impact our analysis, such as in paper V, where several dependent variables were highly 

correlated. Still, we had a consequent number of missing values in the COCOMO 

database. Also, exercise differs between HC and PWH on ART, which is known to influence 

the number of immune cells and was corrected in the model. Also, we had an under-

representation of females though 54% of PWH worldwide are women 

(https://www.unaids.org/, 2021). Patients from several origins (Denmark, India, Cameroon) 

were included to try to address the differences linked to origin and ethnicity. Still, more 

cohorts, especially from LMICS, will be necessary to validate our findings. Finally, the 

definition of metabolic syndrome (paper I) did not fully represent the metabolic 

perturbations spectrum observed in PWH. This limitation was addressed in papers III and 

IV by removing this definition and considering all weight-related parameters. Also, the 

characteristics of clusters that we observed in papers III and IV need to be validated in 

other cohorts. 

Secondly, producing omics samples, especially for HIV samples, is costly and 

challenging171. Also, the curse of dimensionality (low number of samples and high number 

of features) particularly impacts multi-omics settings. We did only cross-sectional 

studies instead of longitudinal studies for this thesis. The Cameroon and Indian cohorts 

were relatively small, which limited our analysis. On the other hand, the COCOMO cohort 

is one of the largest cohorts reported, which was a strength of our study. The large size 

allowed us to investigate differences among PWH, which was impossible in small cohorts 

due to statistical limitations. Also, in the COCOMO study, only 20 uninfected individuals 

were included and were not matched to the PWH. We did not include them in all the group 

comparisons, but they were kept as a reference. Still, HC clustering gave us relevant 

information in microbiome analysis (paper III) and parameterizing the transcriptomics 

aging clock (paper V). Regarding this project, knowing if people are true, HC is always 

challenging as we do not have high numbers. For example, HC displayed higher BMI than 

HC-like PWH patients. 
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Finally, my main work was manage limitations of omics analysis. Most challenges of omics 

per type were described in the introduction. In general, omics data can be influenced by 

extraction time, sample processing, state of metabolism, and food intake. Also, technical 

differences between the omics can arise, such as feature stability or coverage172. For 

example, we used 16S rRNA for microbiome analysis which has a lot of missing data for 

the genus. Perhaps doing the whole genome would have given more information. 

Nevertheless, we used microbiome-associated metabolites to measure microbiome 

impact. Regarding computational tools, still, for metabolomics and proteomics, there is no 

clear pipeline as in transcriptomics or 16S microbiome. In the bioinformatics analysis, 

normalization and choice of the statistics had an impact on the results. Doing statistics, 

we also had the risk of false positives that we controlled with the FDR. Also, results from 

bioinformatics were validated in the lab using different cell models, western blot, and 

FACS. Still, more lab experiments would be relevant to confirm our theories and validate 

the theories we are developing. 

Further work is necessary to understand immune aging in HIV and potential therapeutic 

strategies.  

One of the remaining limitations in the field is the number of samples and omics data 

available. A recent study with many patients (N>1500) and omics types is currently 

designed to identify biomarkers and pathways of non-AIDS comorbidities by comparing 

PWH to HC173. The clinical parameters are well-detailed, including follow-up, psychological 

evaluation, and extreme phenotypes. Patients have been in therapy for more than ten 

years, but the overrepresentation of European, middle-aged men is still observed. Also, 

omics technologies are improving in precision. We observed the Olink proteomics (paper 

IV) had many proteins (N=3000), was more precise than mass spectrometry, and was 

highly informative for the study. Moreover, since I started my thesis, we have observed a 

fantastic development of single-cell and omics technologies, including transcriptomics, 

proteomics, and metabolomics at the single-cell level174. Developing single cells models of 

PWH could quantify and compare immune cell types and their interactions. With our data, 

we performed digital cell quantification in bulk PBMCs. We identified potential proportions 

of cell types but found differences from expected cell proportions. Also, in the project, we 

mostly worked on blood samples with molecules from different tissues (for example, 

metabolites). The development of omics technologies in tissues has been done175 and 

would be highly relevant, for example, in fat tissue or tissue organoids, to understand the 

mechanisms of immune aging. 

Potential cures developed from this thesis could be the inhibition of glutaminolysis first in 

animal models and potentially in patients to induce latency reversal. Based on cluster 

analysis and aging groups, patients at risk should benefit from a personalized follow-up 

and adapted lifestyle to not develop aging-related comorbidities. Also, from the aging 
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study, TDF/TAF drugs were associated with normal and decreasing aging compared to 

ABC and could be preferentially given to patients. 

In general, we improved the understanding of immune aging in PWH and developed 

combinations of bioinformatics and system biology tools which could be relevant for 

further research to improve the care of PWH. 
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