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Popular science summary of the thesis 
 

Cancer is one of the leading causes of death, causing millions of deaths worldwide. 
Despite being considered one of the top-priority problem in medicine and great 
progress in treatment during previous several couples of decades, cancer is still 

relatively poorly studied. Cancer medicine gradually progresses from surgery and 
aggressive chemotherapy to the concept of precision medicine. Precision medicine 
requires discovery of cancer driver genes and potential therapeutic targets. In order to 
achieve this goal, we use network analysis algorithms.  We demonstrate their 
applicability to a number of research problems in oncology as well as cancers of 

different types and origin. Based on that, we also offer public interactive tools for usage 

by researchers with no computational analysis skills. 

  



Abstract 
Cancer currently affects more than 18 million persons world-wide annually. It is a leading 
cause of death and so far, only 60% cure rate can be reached within the most 

developed health care systems. The nature of cancer has been a mystery for centuries, 
until discoveries during recent decades shed light on the underlying molecular events. 
This depended on the progress in understanding cell and tissue biology, developments 
of molecular technologies and of -omics technologies. Cancer has then emerged as a 
highly heterogeneous disease, however with some very basic mechanistic features 

common to all cancers. To deal with the complexity of causes and consequences of 
pathological changes in the molecular machinery, methods and tools of network analysis 
can be helpful. Complexity of this task requires easy-to-use tools, which allow 
researchers and clinicians with no background in computer science to perform network 

analysis. 

 

Paper I describes a web-based framework for network enrichment analysis (NEA), using 

previously developed algorithm and code. The developed platform introduces 
functionality for a researcher to use data pre-downloaded from various popular 
databases as well as own data, perform NEA and obtain statistical estimations, export 

results in different formats for publications or further use in research pipeline. 

 

Paper II presents development of another web server, which provided vast opportunities 
for exploration and integrated analysis of multiple public cancer datasets that describe 

in vitro and in vivo sample collections. The web server linked molecular data at the single 
gene level, phenotype and pharmacological response variables, as well as pathway level 
variables calculated with NEA and connected to the framework presented in Paper I. 
Researchers can use the platform for creating multivariate models based on raw or pre-
processed data from various sources, visualize created models, estimate their 
performance and compare them, export models for further usage in own research 

environments. 

 

Paper III demonstrates NEAdriver, a practical application of NEA to probabilistic 
evaluation of driver roles of mutations reported in ten cancer cohorts. NEAdriver results 
are compared with cancer gene sets produced by other, both network analysis and 
network-free methods. The paper demonstrated ability of NEA to be used directly for 
discovering novel driver genes as well as being used in combination with other methods. 



 

 

In order to demonstrate benefits of using NEA, some rare cancer types and types with 

low mutation burden were used. 

 

Paper IV is a manuscript evaluating performance of most representative methods of 
network analysis across methods’ parameters, functional ontologies and network 
versions. This study emphasizes discovery of novel functional associations for known 
genes, as opposed to previous tests dominated by a few “gold standard” genes which 
were well characterized previously. We performed the analysis in the context of various 

topological properties of networks, pathways of interest, and genes. It employed both 
existing, widely used topological metrics and a number of novel ones developed for this 

analysis.  
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1 Introduction 

1.1 Brief history of cancer 

 

There are numerous evidences that humanity has been encountering cancer since the 
ancient times, from documents of Ancient Egypt and Greece to paleontological 
research. Medicine is a relatively young science, but oncology is even younger, people 

started to discover true nature of cancer only in the middle of 20th century. Of course, 
some attempts were made even in the 19th century, when the first carcinogens have 
been discovered, but mechanisms beyond tumorogenesis remained unknown for a very 
long time. Molecular biology gave the first deep insight into the nature of cancer. But 
mid-century discoveries were only the first step: the subtle molecular machinery was a 

big puzzle yet to be solved. 

 

But, as history proves, man does not have to understand molecular biology to cure 
diseases. Humanity discovered properties of certain plants tens of thousands of years 
ago, later humans learned to make remedies out of them without knowing any 
chemistry. As many other diseases, cancer for a long time was believed to have 
supernatural roots, it was only logical for people back then to assume that it was some 

kind of divine punishment or curse. Yet even ancient physiology attempted to explain 
cancer in more scientific terms: Hippocrates produced his humoral theory, describing 
diseases as an imbalance between four cardinal fluids (blood, phlegm, yellow bile, black 
bile), determining cancer as an excess of black bile and viewing tumours as localizations 
of it. For the most of human history, the only way to cure cancer was surgical 
intervention. Without knowledge of molecular background, by the late 19th century 

physicians agreed that cancer can somehow “poison” the surrounding flesh, leading to 
operations such as radical mastectomy, which was not only removing breast, but the 
surrounding muscles, sinews and sometimes even some bones in attempt to eradicate 
cancer, often leaving patient crippled and deformed. While surgery was becoming more 
and more radical, diminished returns were noted soon: radical surgery led only to minor 

improvements of overall survival in cohort, while drastically reducing quality of life of all 
patients. In the beginning of the 20th century, it was understood that surgery cannot be 

a silver bullet in cancer treatment. 

 

Cancer “drugs” likely started to occur even before the proper discovery of cancer itself, 
most probably in neolith. Some of them were plants to relieve the pain (such as 
chamomile), some of them were some kind of “magical” remedies, none of them really 
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worked. The breakthrough in medicine occurred with the discovery of cytotoxic drugs. 

Cytotoxic effects of mustard gas were discovered during the First World War, when it 
was noted that it leads to suppression of haematopoiesis. The first attempt to use 
mustard gas as a treatment rather than a weapon has been made in 1942 in New Haven, 
Connecticut, when a group of Yale University researchers attempted to treat cancer 
with nitrogen mustard. One year later, in December of 1943, cytotoxic effects of mustard 

gas presented themselves on a larger scale. Due to infamous German attack on the port 
town of Bari, where dozens of ships were docked, at least 1000 people died. Many ships 
carried bombs filled with mustard gas. Survivors, exposed to carcinogenic agent, 
suffered from severe consequences. Yet, this tragic episode led to approval of the first 
chemotherapy drug – mustine. Chemotherapy damages actively dividing cells more, 

thus eliminating cancer cells – unless they obtain mechanisms of resistance to it. 

 

The third cure came from physics. In 1895 X-rays were discovered by Wilhelm Röntgen. 
Pretty quickly it was noted that exposure to them can give skin burns. The idea of using 
radiation to cure skin lesions was born. The procedure underwent many changes and 
new forms of radiotherapy are being developed up to the date – such as the proton 
therapy. Just like chemotherapy mentioned earlier, radiotherapy produces breaks in 

DNA, forcing dividing cells to die. It can be localized, minimizing side effects, but cancer 

cells can still develop resistance to radiotherapy, and side effects can still be morbid. 

 

While normal tissues have well-organized structure and certain life cycle, the cancer 
molecular phenotypes appear chaotic and unpredictable. Cancer cells emerge via the 
struggle to survive. In order to survive, they subvert several cellular mechanisms involved 
into control of cell life and behaviour(1). It was mentioned earlier that cancer cells can 

acquire resistance to chemotherapy and radiotherapy. Avoiding apoptosis is one of the 
hallmarks of cancer. But it is not the only trick cancer has in its sleeve. Metastasis is one 
of the most effective ways to evade extermination for solid tumours: cancer cells 
detach from tissue of origin, through mechanism of epithelial-mesenchymal transition 
invade blood stream and eventually find new “home” in another organ. This cancer cell 
dissemination allows tumour to create “colonies”, some of which could consist of just 

several cells, making them impossible to detect. To make things worse, cancer cells can 
become dormant, thus “populated” small colony can lie in wait for a long time, expanding 
rapidly(2). Normally, any abnormal cells should be killed by immune system, but cancer 
cells acquire immune evasion and ability to recruit immunosuppressive cells(3,4). 
Luckily, this does not mean that immune system cannot be activated “externally”: 

immunotherapy is an umbrella term for different treatments, activating native (to the 
host) immune cells or introducing specially produced immune cells(5–7). 
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Immunotherapy is considered to be safer, compared to chemotherapy, because this 

type of therapy is targeted, it attacks only cells introducing certain markers and 
features, while chemotherapy is non-targeted. It is “milder” for a patient, producing less 

side effects. 

 

Surgery, chemotherapy, radiotherapy, immunotherapy – these four methods of cancer 
treatment are approved nowadays.  Surgery and radiotherapy are the most 
straightforward since they can be used “physically” and on something visible. Hormonal 

therapy is also well established for some cancers, such as breast and prostate cancer, 
while targeting therapies are being developed starting twenty years ago.  
Immunotherapy and targeted therapy require understanding of cancer biology. The 
main questions are: why do these tumours arise? How can we distinguish them on 

molecular level to provide the most effective treatment with minimal side effects? 

 

1.2 Cancer drivers 

 

Cells can accumulate mutations during lifetime. Most of the mutations are “silent” 

mutations, which means they don’t affect phenotype, cell functions or behaviour at all. 

However, some of the mutations can change cell’s fate drastically. In nature mutations 

can be harmful or giving an organism a certain selective advantage – this is how 

evolution works. But in human organism mutations which gave cells this advantage are 

harmful, since such “selfish” cells give rise to cancer. Mutations, which lead to cancer 

initiation or progression, are called driver mutations. Other mutations, which does not 

affect cancer progression, even if they are not silent, are called passenger mutations(8). 

 

Each type of cancer has its own characteristic signature, indicating most often mutated 

genes for the certain type of cancer. Pretty often cancer type can be broken into 

several subtypes based on mutational signatures. This is called a cancer landscape(9,10). 
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Figure 1. Cancer landscape for several types of cancer (Vogelstein et. Al. Cancer Genome 

Landscapes. Science, 2013). 

 

Mutations are individual in every cell. Once a cancer cell obtains an advantage, it 

“overpowers” other cells and establishes its cancer cell line in patient. There can be 

tumours “founded” by only one cell line – monoclonal tumours. But it is a common 

situation when oncologists observe several competing cancer cell lines in a patient. 

Cancer cells are chaotic and ever evolving, so we cannot even describe each cancer cell 

type present in patient(11–15). This heterogeneity exists on different levels: intra-tumour 

heterogeneity(12,16) and, if patient has several tumours, intra-patient heterogeneity. 

Naturally, set of mutations is unique in each patient, leading to inter-patient 

heterogeneity. 

 

Point mutations are not the only reason of cancer initiation and progression. There are 

also copy number alterations (CNAs)(17,18), different chromosomal events (such of 

kataegis(19) or chromothripsis(20)), and epigenetic alterations(21,22). These events are 

called “driver events”. Patient familial history, which predispose to cancer, such as Li-

Fraumeni syndrome and exposition to certain carcinogenic substances play an 

important role. All these factors increase complexity even further. 
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These points lead to the conclusion that cancer treatment should be personalized(23). 

This requires a mathematical framework which would allow researchers to describe 

interactions of different molecular agents and tools to discover previously unknown 

drivers and their interactions, suggest relevant therapeutic targets.  One of the 

promising models for this purpose is network model. First, it allows naturally represent 

relations in molecular machinery. Second, it offers many powerful methods ready to be 

adopted for in silico discovery of novel drivers and treatment targets. 

 

1.3 Networks in biology and medicine 

 

Network theory evolved from graph theory and provided researchers with convenient 

ways to represent relationship between different entities. Entities (or agents) are 
represented as nodes (or, in graph theory terms, vertices) and their relations are 

represented as links (edges). There are different modifications of this basic model: 

1. Links can be directed – for example, such link can mean “protein A affects 
protein B”. 

2. Links can have different type – for example, “protein A suppresses protein B”. 
3. Links can be weighted – for example, to represent probability of existence of 

such link or strength of established interaction. 
4. There can be multiple links between two nodes (“multigraph” in graph theory 

terms) – for example, representing different types of interactions simultaneously 
existing between entities. 

5. One link can connect multiple nodes (“hypergraphs” and “ultragraphs”). 
6. There could be different types of nodes – for example, some nodes represent 

mRNAs, others represent miRNAs etc. 

  

As can be clearly seen from the features described above, networks are a flexible tool 

for a wide range of biological and biomedical research tasks(24–27). However, such a 
powerful mathematical model does not automatically guarantee good results. Among 
the most widely used types of networks in biomedical research are protein-protein 
interaction networks (PPI networks). Many networks were constructed for biological and 
biomedical needs(28–31). Despite the wide variety of possibilities offered be network 

science, most networks are simple graphs, either directed or undirected. 
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Previously described features of network models highlight representation of data, but in 
order to process data algorithms are required. Most of the used algorithms either came 
from the graph theory or were introduced in other scientific fields, such as in computer 

science. Importantly, many mathematical constructs appeared to have the meaning in 

biological context. 

 

Node degree is a number of nodes connected with the given one: number of outgoing 
connections is called out-degree, while number of incoming links is called in-degree. 

Biological networks are assumed to possess a number of topological properties: 

• Node degree distribution is often assumed to be “power-law”: very few nodes in 
the network are hubs, while the vast majority of nodes are low-level nodes(32–
35). However, this point is challenged by some researchers(36,37). 

• Biological networks are “small world” networks: distance between any two 
reachable nodes is relatively short compared to many other types of networks, 

such as transport networks. 

Nodes with very high degrees are called hubs. In Internet, hubs represent very popular 
websites, such as Google and Amazon. In biological networks they may represent 
powerful, global-level regulators or so-called “essential genes”(38,39), removal of which 
leads to severe consequences, including cell death. But even low-degree genes may 
represent “disease genes” – mutations or dysregulation of such genes can lead to 

abnormal phenotypes, although not necessarily cell death. Hubs tend to cluster 
together, producing “cliques” – densely-connected areas of high-degree nodes in 

network.  

 

In order to identify genes linked to diseases different methods were adopted or 
designed (40–47). The most intuitive and popular idea was “guilt-by-association” 
approach (GBA), which assumes that genes strongly associated with known disease 

genes are themselves involved in relevant pathogenetic processes. Originally, only direct 
neighbours of known disease genes, but with further understanding of molecular biology 

more advanced methods were adopted and discovered.  

 

The modern understanding of cancer raised from the level of major and universal 
causative genes to the paradigm of cancer pathway(48,49). Pathways (or disease 
modules in case of disease related genes) represent sets of functionally related genes 



 

 7 

involved into some common biological process. In general, we call them functional gene 

sets (FGS). On the other hand, an important observation from the large-scale exome 
sequencing was that mutation patterns were not uniform even among patients of very 
similar cancer phenotypes. Rather, the mutation profiles of known cancer genes were 
sparse and disjoint. FGSs might be imagined as clusters of nodes connected in the 
network. However individual members of these clusters can still be relatively far apart 

from each other in the network. Distance between two nodes or a node and a whole FGS 
can be measured as a minimal uninterrupted path length in the network. Therefore 
studying network patterns of mutated genes could suggest cancer-related roles by 
associating them to known relevant pathways. The pathway-level view of cancer thus 
reduces the heterogeneity of cancer genomes: rather than single gene level of 

classification, cancer cases can be classified more systematically by affected pathways. 
Pathway analysis allows to better classify tumours(50–53) and offer more precise 
treatment based on altered pathways(54,55), e.g. two subgroups of medulloblastoma 
are named after deregulated pathways (SHH and WNT)(56). Pathway-level overview not 
only allows us to understand cancer biology better(57), but also opens new perspective 

for discovering novel driver genes and eventually cancer treatments by offering the 
drivers or their constellations as new potential therapeutic targets(58,59). A number of 

dedicated pathway-level resources have been created(60–62) for these purposes. 

 

1.4 Network methods 

 

It was previously mentioned that a number of network methods were adopted or 
specifically developed for biological tasks. Most of the previously cited methods are, in 

fact, a modification of one network algorithm.  

 

Network methods can be divided into two categories according to their assumptions 
about network properties. The first class makes does not explicitly consider topological 
properties of the network, while methods belonging to the second class can, for 

example, account for node degrees  of analysed genes. 

 

One of the most abundant family of network methods are random walk methods(44,63). 
They are based on a simple physical analogue: there exists a walker in the network, who 
starts at some node and performs random walks along connections belonging to the 
node (outgoing connections, if network is directed), this process continues in iterative 
manner. In the end, assigned scores to the nodes represent probability of walker to land 
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on the respective node at any given step. The most popular modification of this simple 

model is random walk with restart (RWR). In this model, a walk starts from the set of 
chosen start nodes, called “seed nodes”. At each step   it either continues along 
connections of the current node (if this is feasible) or – with a certain probability – 
jumps back to a randomly chosen seed node. Random walk methods are popular in 
biomedical research and produced a variety of modifications(45,64–67), some of which 

require but they have certain problems, which arise from the properties of both 
algorithms and networks. First, random walk methods tend to prioritize hubs, which is 
natural: for example, Google PageRank(68) was designed with the idea that the most 
important (i.e. best referenced externally) Internet pages  must be of top priority for 
users. There are plenty of modifications of random walk models, some of them are 

designed for biomedical purposes solely(45,64,65,69). However as was mentioned 
before, although biological hubs could be essential or otherwise “powerful” genes, the 
disease research may concern less connected genes. A low node degree can be due to 
the gene being poorly studied or absence of a role in the global regulation. None of 

these precludes its pivotal role in a certain pathological condition.  

 

Other methods, such as Network Enrichment Analysis (NEA)(70) employ distribution of 

node degrees for estimating confidence of functional relations between e.g. a set of 
seed nodes such as an altered gene set (AGS) versus another, functional gene set (FGS) 
. Unlike random walk methods, which estimate probability of landing on any given node, 
NEA actually measures excess of edges between two node sets or a gene and a set 
above a level expected by chance, i.e. in a random network (given its node degree 
distribution is the same as in the original network). NEA reports probabilistic estimates 

of significance in the form of p- and q-values for each pattern of interest. 

 

It is assumed that network analysis results might be biased due to unequal topological 
properties of individual nodes (gene or protein level), node sets (pathway or AGS level), 
or even whole networks (network level) – as random walk methods might prioritize hubs 

etc.  

 

On network level, such metrics as network size(71), diameter, density and motif 

distribution(72,73) can affect the results, though these effects were not systematically 
studied. Moreover, some of them cannot be really altered in a given network. For 
example, increasing or reducing a number of nodes and edges between them can be 
done by filtering edges by their weight (for example, confidence score), while density 

and motif distribution cannot be altered in a designed manner. 
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On pathway level, we study properties of certain AGSs in the given network. AGS (term) 
can consist of several disconnected modules in network (in some cases they can be 
called “disease modules”(38)). Number of modules, their sizes and placement in the 

network (including placement in relation to each other) can be important.  

 

On gene level, except for node degree, a number of other characteristics should also be 
taken into account. Centrality measures can significantly affect results of random walk 
methods(74). There exists a number of centrality measures(75,76),but the most basic 

and popular are the following three: 

 

1. Closeness centrality – meant to emphasise closeness of the given node to any 

other node in the network. For connected graph formula is the following: 

𝐶(𝑣) =
𝑁

∑ 𝑑𝑖𝑠𝑡(𝑣, 𝑡)𝑡
 

where: 

• 𝑁 – number of nodes in network; 

• 𝑑𝑖𝑠𝑡(𝑣, 𝑡)– distance from node 𝑣 to node 𝑡. 

 

2. Betweenness centrality – represents a measure of influence of individual node 

on the flow of information in network, the higher node betweenness centrality – 

the more important the given node is. It must be noted that betweenness 

centrality can be related to node criticality, i.e., critical nodes will receive high 

betweenness centrality score. Betweenness centrality for node 𝑣 is: 

𝑔(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡

 

 where: 

• 𝜎𝑠𝑡 – number of shortest paths between nodes 𝑠 and 𝑡; 

• 𝜎𝑠𝑡(𝑣) – number of shortest paths between nodes 𝑠 and 𝑡 through the 

node 𝑣. 
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3. Eigenvector centrality is also known “prestige score” of the in network. This 

metric is designed to measure the node’s influence over network. PageRank 

algorithm calculates a variant of eigencentrality(76). Eigenvector centrality for 

node 𝑣 is: 

𝑥𝑣 =
1

𝜆
∑ 𝑥𝑡

𝑡∈𝑀(𝑣)

=
1

𝜆
∑ 𝑎𝑣,𝑡𝑥𝑡

𝑡∈𝑉

 

 where: 

• 𝜆 – constant, eigenvalue; 

• 𝑣, 𝑡 – nodes belonging to the node set 𝑉; 

• 𝑀(𝑣) – set of neighbourhood nodes of node 𝑣; 

• 𝑎𝑣,𝑡 – element of adjacency matrix 𝐴 indicating adjacency relationship 

between nodes 𝑣 and 𝑡: 1 if 𝑣 directly linked to 𝑡, 0 otherwise. 

 

In addition to aforementioned metrics, we propose two metrics developed by us in 

order to capture local topological metrics. They are designed to assess centrality 

metrics of nodes in respect to seed nodes/AGSs. These metrics are described in detail 

in Paper IV. Below there are their short descriptions and formulas: 

1. Modular closeness centrality – calculates closeness centrality for a node 𝑣 in 

relation to a certain module: 

𝐶𝑚(𝑣) =
𝑁𝑚

∑ 𝑑(𝑣, 𝑡)𝑡∈𝑚
 

where: 

• 𝑁𝑚 – number of nodes in module m; 

For ontology split into n modules this formula transforms into: 

𝐶𝑀(𝑣) =
∑ 𝑁𝑚𝑖

𝑛
𝑖=1

∑ ∑ 𝑑(𝑣, 𝑡)𝑡∈𝑚𝑖

𝑛
𝑖=1

 

where: 

• 𝑀 = 𝑚1 ∪ 𝑚2 ∪ … ∪ 𝑚𝑛 
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2. Betweenness centrality with respect to modules – calculates betweenness 

centrality for a node in relation to a distributed modular term. For a term split 

into 2 modules: 

𝑔𝑚1,𝑚2
(𝑣) =

∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠∈𝑚1,𝑡∈𝑚2,𝑠≠𝑣≠𝑡

𝑁𝜎𝑚1,𝑚2

 

where: 

• 𝑁𝜎𝑚1.𝑚2
 – number of shortest paths between all nodes belonging to module 

𝑚1 and all nodes belonging to module 𝑚2. 

General form for an ontology split into n modules: 

𝑔𝑀(𝑣) =
∑ ∑

𝜎𝑠𝑡(𝑣)
𝜎𝑠𝑡

𝑠∈𝑚𝑖,𝑡∈𝑚𝑗,𝑠≠𝑣≠𝑡𝑚𝑖∈𝑀,𝑚𝑗∈𝑀,𝑖≠𝑗

∑ 𝑁𝜎𝑚𝑖,𝑚𝑗
𝑚𝑖∈𝑀,𝑚𝑗∈𝑀,𝑖≠𝑗

 

 

Additionally, we propose to incorporate centrality metrics in attempt to estimate 

“weight” of the given set of nodes in the network. We follow the assumption that 

network is uneven and consists of “core” (one big clique), containing densely connected 

hubs, and “outskirts”, containing loosely connected relatively low-degree nodes. We 

developed the following metrics for these purposes: 

1. Closeness weight: sum of closeness centralities for the given set of nodes in 

network divided by total sum of closeness centralities. In this approach the 

whole set is viewed as one “supernode”, the score indicates proportion of 

closeness obtained by this “supernode”, allowing to estimate place of the node 

set in the given network. In other words, this metric represents proportion of 

closeness centrality acquired the node set. 

𝐶𝑊(𝑀) =
∑ 𝐶(𝑣)𝑣∈𝑀

∑ 𝐶(𝑡)𝑡∈𝑁
 

where: 

• 𝑀 – given module (set of nodes) in network; 

• 𝑁 – set of all nodes in the given network; 
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• 𝐶(𝑣)– closeness centrality for node 𝑣 (see formula for closeness centrality 

above). 

2. Betweenness weight: similar to the previous metric but uses betweenness 

centrality instead.  

𝐵𝑊(𝑀) =
∑ 𝑔(𝑣)𝑣∈𝑀

∑ 𝑔(𝑡)𝑡∈𝑁
 

where: 

• 𝑀 – given module (set of nodes) in network; 

• 𝑁 – set of all nodes in the given network; 

• 𝑔(𝑣)– betweenness centrality for node 𝑣 (see formula for betweenness 

centrality above). 

3. Closeness weight per node: closeness weight of the term divided by the term 

size. Since terms with more nodes included can naturally absorb more closeness 

centrality, this metric represents normalisation of closeness weight by term size. 

4. Betweenness weight per node: betweenness weight of the term divided by the 

term size, reasons of correction are similar to the previous metric. 

5. Relative closeness weight: average closeness centrality of the nodes in the group 

divided by average closeness centrality among all the other nodes. If value is 

greater than 1, than nodes of the given set have higher closeness centrality than 

average node in the remaining network and we assume that the given set of 

nodes tend to lie closer to the network core. 

𝑅𝐶𝑊(𝑀) =

∑ 𝐶(𝑣)𝑣∈𝑀
‖𝑀‖

∑ 𝐶(𝑡)𝑡∈𝑁,𝑡∉𝑀

‖𝑁‖ − ‖𝑀‖

 

where: 

• 𝑀 – given module (set of nodes) in network; 

• 𝑁 – set of all nodes in the given network; 

• ‖𝑁‖, ‖𝑀‖ – power of set 𝑁 (𝑀) (amount of nodes in the given set); 

• 𝐶(𝑣)– closeness centrality for node 𝑣 (see formula for closeness centrality 

above). 

6. Relative betweenness weight: similar to the previous metric but uses 

betweenness centrality instead. 
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𝑅𝐵𝑊(𝑀) =

∑ 𝑔(𝑣)𝑣∈𝑀
‖𝑀‖

∑ 𝑔(𝑡)𝑡∈𝑁,𝑡∉𝑀

‖𝑁‖ − ‖𝑀‖

 

where: 

• 𝑀 – given module (set of nodes) in network; 

• 𝑁 – set of all nodes in the given network; 

• ‖𝑁‖, ‖𝑀‖ – power of set 𝑁 (𝑀) (amount of nodes in the given set); 

• 𝑔(𝑣)– betweenness centrality for node 𝑣 (see formula for betweenness 

centrality above).  

 

Last but not least, such methods of PR and RWR have tunning parameters (e.g. damping 
factor of PR), which can affect results significantly(77,78). Up to the date, there have 
been a few attempts to find a universal parameter value (or an algorithm for finding such 

a value), but no solid solution has been found(79). Some of the methods even claim that 
even within combination of one network and set of nodes parameter values should be 

set for individual nodes(66).
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2 Aims of the thesis 
 

The main purpose of this thesis is to develop a reliable network method for discovering 

novel cancer drives and therapeutic targets and implement is as a widely accessible 
framework for researchers. Secondary aim is to discover topological properties of 
networks affecting results of network methods and prove that the developed method is 

not biased towards any of them. 

 

In Paper I we implemented web-platform utilizing NEA implementation as a backend. We 
demonstrated practical use cases of the created webserver, as well as explained 
advantages for researchers. This paper became a foundation for some functions of the 

novel web-framework described in Paper II. 

 

In Paper II we presented a novel web server, which is designed to enable researchers 
with limited or no programming skills to explore vast public datasets (such as TCGA and 
CCLE) as well as perform certain computational experiments on them, such as creating 
regression models by combining variables of different types. This webserver has pre-
downloaded data, both raw and pre-processed with different methods, including NEA. 

Previously developed framework is used for discovering novel drivers and potential 
treatment strategies (through exploration of drug correlations with molecular and 

clinical variables). 

 

In Paper III we demonstrated application of the developed method for discovering novel 
potential drivers and therapeutic targets in pan-cancer cohort. We also combined the 
developed method with several previously known methods in order to achieve the 

better performance and minimize FDR. Results of the study demonstrated that NEA can 

be used for rare types of cancer and tumours with low mutational burden. 

 

In Paper IV we compared several widely used “core” network analysis methods – such 
as Page Rank and Random Walk with Restart – with two NEA implementations. We 
estimated performance of different methods (employing different methods’ 
parameters, when available) on various networks and ontologies, namely, on Gene 

Ontology (GO)(80,81) and Disease Ontology (DO)(82,83). We explore how different 
topological metrics, some of which were developed by us, affect results and attempted 
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to find the best combination of network version, method (and tunning parameter) for 

discovering novel genes, e.g. driver genes or novel members of some biological pathway. 
In this paper we paid more attention to low-degree nodes, since they often represent 

poorly studied genes. 
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3 Materials and methods 
 

3.1 Data retrieval from public sources 

 

The present study strongly relies on public datasets (ethical permits were not required). 

This is done due to the following reasons: 

1. It allowed us to collect vast data cohorts, which is impossible to do under normal 
circumstances. 

2. Using large publicly available data makes research results reproducible. 

 

In our study, we used the following data sources: 

1. The Cancer Genome Atlas (TCGA)(84) – we downloaded data of various types 
and used it in Papers II and III. 

2. Cancer Cell Line Encyclopedia (CCLE)(85) – cancer cell line data was utilized in 
Paper II alongside with drug sensitivity data from CTRP v2.0(86) and GDSC1 and 
GDSC2 datasets(87). 

3. PEME-CA and PBCA-DE medulloblastoma cohorts were downloaded from CDC 

website and used in Paper III. 
4. Data retrieved from publications was used in Paper III. 
5. Gene Ontology (GO) and Disease Ontology (DO) data was used in Papers I-IV in 

different forms. 
6. KEGG pathways(88–90), data from BioCarta(91), Reactome(60), 

WikiPathways(92), MetaCyc(93) and MsigDB(94) was used in Papers I-III. 
7. We used FunCoup (FC) v3(28), STRING v10.5(29,95), Pathway Commons (PWC) 

v9 networks in Papers I-III; we used FC1(96) FC2(97), Fclim(8) in addition to 
previously mentioned networks in different configurations and their merges in 

Paper IV. 

 

Specific versions of retrieved dataset are specified either directly (if versioning is 

available) or by the date of information retrieval (we need to note that while data in 
publications is static, data in CDC could be updated). Some original data is available for 
download alongside with the processed data from our own platforms or other open 

public platforms. 
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3.2 Data preparations 

 

The presented study relies on many different data types, each processed in a unique 
way in accordance with the demands of the specific paper. Below data preparation is 

described for each paper. 

 

Paper I relies solely on network data (11 networks in total) as well as data from several 
pathway databases (such as GO, KEGG(88–90) etc.). All the provided data is present 

with minimal or no processing. 

 

Paper II has some intersection in data with Paper I but adds pre-computed correlations 
and data from TCGA(84) and CCLE(85). Downloaded data was processed according to 

the following rules: 

 

• Point mutations – type of mutation, treated as binary variable for analysis, 

representing is certain gene has a mutation or is a wild type; if mutation is 

present – its type is disregarded for statistical analysis (see below) but 

available for exploration. If there is no information on mutation of a certain 

gene, this gene is automatically considered to be a wild type. 

• CNA – if not already done in original files, this variable is calculated as 

log2(𝐶𝑁), where 𝐶𝑁 is copy number for the certain gene in the original file. 

• Gene expression – log-transformed values obtained from Illumina RNA-seq 

and Affymetrix platforms, if not already done in the original file. 

• Methylation – beta values were transformed to M-vlaues (a.k.a. logit units) as  

log2
𝛽

1−𝛽
. 

 

Pre-computed results of correlation analyses between omics variables and response to 

specific drugs, detected with univariate or covariate linear models are available for 

exploration and analysis. Table 1 (corresponds to Supplementary Table 2 of the original 

paper) presents amount of obtained significant correlations. 
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Table 1. Number of significant correlations discovered in different cancer cohorts in 

Paper II 

Cohort 
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MUT.NEA GE.NEA CNA MUT GE PE 

BRCA 10264 5939 86309 41251 1025989 5201 

PAAD 544 324 6921 3922 11988 1164 

PRAD 107 483 1401 0 26037 192 

GBM 1173 12712 45423 440 362716 1491 

OV 6516 12214 294428 3891 810621 0 

LUSC 46 338 10657 52 93587 239 

COAD 2405 3754 14739 29465 74142 0 

LUAD 1504 342 3879 2576 116722 1169 

SKCM 2697 1062 2549 4787 65747 1149 

BLCA 4069 2160 0 0 0 0 

CCLE 1984964 1946899 0 20033 3287447 0 

 

Significance of correlation was estimated using functions from R package base. For 

CCLE source, 2 models were created: 

• 1-way ANOVA: anova(lm(Sensitivity ~ Feature)). 

• 2-way ANOVA: anova(lm(Sensitivity ~ Tissue + Feature)). 

Where: 

Feature – an original molecular variable MUT, CNA, GE, METH) or NEA score for the given 

gene or pathway; 

Tissue – a covariate for organ or tissue of origin of the cancer cell line; 

Sensitivity – resistance to the specified drug. 

The p-values for Feature were of main interest in this paper, we adjusted them for 

multiple testing by Benjamini-Hochberg method. 
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For TCGA datasets, associations between molecular features and patient survival given a 

certain drug were estimated as: 

coxph(Surv(Time, Status) ~ [Tumor_stage] + [IHC] + Feature + Drug + Feature 

* Drug) 

using variables: 

Feature – an original molecular variable or NEA score for the given gene; 

Drug – binary variable: if the drug was administered to the given patient; 

[IHC] – TCGA immunohistochemistry parameters (whichever available for the cohort). 

 

Paper III uses both data described above for Paper I and additional data from public 

datasets and publications. In this paper we also created a medulloblastoma (MB) meta-
cohort out of several sources, such as publications(98–101) and datasets available 
online (PBCA-DE and PEME-CA projects). We retrieved exome sequencing profiles as 
alongside with, when available, copy number alterations, gene expression and clinical 
data. We translated gene identifiers into gene symbols according to ENSEMBL 

annotations v.93 and then made sure all the gene symbols are found in the network and 

were up to date according to GeneCards(102) annotations. 

 

For consistency with the publication datasets, we excluded non-functional types of 
mutations from PBCA-DE and PEME-CA sets, namely: intron variant, upstream gene 
variant, exon variant, 3_prime_UTR_variant, 5_prime_UTR_variant, intergenic region, 
downstream gene variant, missense variant, synonymous variant, and splice region 

variant. For a few patient IDs that were found in more than one dataset, their mutation 

profiles were merged (if different) using logical union operation.  

 

Overall survival data was collected from the published datasets. Several patients with 
discrepant data were excluded. For 18 samples with different follow-up, we accepted 

the newest survival time values.  
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Data from all the obtained datasets were combined into one meta-cohort of 541 

patients, covered with both clinical and exome sequencing data. 

 

Paper IV uses GO and DO data and a number of various networks. Total 17 networks, 
presumably holding different topological properties, were tested, based on the following 
original networks: FC3, STRING, PWC, FC2, FC1, FClim. There were two methods for 

generating a new network: 

1. Merging given network with PWC. 

2. Edge filtering – subnetworks were created from networks by taking top N 

edges (sorted by confidence score). 

Table 2 (corresponds to Table 1 in the original paper) demonstrates used networks and 
some of their characteristics. Number of components is measured as a number of 
disconnected components (“weak” mode in the respective function of igraph(103) 

package). 

Table 2. Networks used in Paper IV. FC = FunCoup, STRING = STRING v. 10.5, PWC = 

Pathway Commons v9 (corresponds to Table 1 in Paper IV) 

N
et

w
or

k 
ID

 

N
et

w
or

k 
na

m
e 

Pr
ov

en
an

ce
 

N
um

be
r o

f e
dg

es
 

N
um

be
r o

f n
od

es
 

N
um

be
r o

f 
co

m
po

ne
nt

s 

N
et

w
or

k 
di

am
et

er
 

FC3-1M, 

FC3 

FunCoup v. 3 (104) Most confident edges 

ranked by FunCoup 

confidence score  

1,000,000 11,691 97 15 

FC3-

300K 

 

Same as above 

300,000 6,880 122 14 

FC3-

100K 

100,000 4,160 104 12 

FC3-30K 30,000 3,018 49 13 
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FClim FunCoup-2014 (8) Edges ranked with 

FunCoup confidence 

score > 3.5 

911,327 14,586 121 10 

FC2 FunCoup v. 2 (105) Most confident edges 

ranked by FunCoup 

confidence score 

911,327 12,638 377 13 

FC1 FunCoup v. 1 (106) Same as above 911,327 14,490 21 10 

STRING STRING v. 10.5 (107) Most confident edges 

ranked by STRING score 

1,000,000 17,977 4 9 

PWC Pathway Commons v. 

9 (108) 

All interacting gene and 

protein pairs 

downloadable from 

PathwayCommons 

database 

755,608 18,550 3 6 

FC3 & 

PWC 

 Merge of FC3 and PWC 1,739,208 20,503 4 6 

FC2 & 

PWC 

 Merge of FC2 and PWC 1,679,650 22,187 149 9 

FC1 & 

PWC 

 Merge of FC1 and PWC 1,682,108 22,842 11 8 

STRING 

& PWC 

 Merge of STRING and PWC 1,599,902 21,098 4 6 

FClim & 

PWC 

 Merge of FClim and PWC 1,679,192 22,097 35 8 
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3.3 Network enrichment analysis 

 

The main focus of the study is network enrichment and, in particular, previously 

developed NEA method. All the papers included in this thesis focus primary on NEA’s 

ability to discover novel genes for different purposes (Paper III), dedicated to practical 

applications of NEA and additional tools in everyday research process or clinical pipeline 

(Papers I and II) or studying fundamental properties of the developed algorithm, 

comparing it to other core methods and attempting to offer potential improvements 

(Paper IV). In the paper, not included in the scope of this thesis (see “Scientific papers 

not included in the thesis”) NEA was used as an additional tool for estimating 

enrichment between the discovered biomarkers and well-known pathways affected in 

prostate cancer. 

 

Network enrichment (as defined by NEA) between two gene sets of interest Sa and Sb is 

estimated by comparing the actual number of network edges ε𝑆𝑎↔𝑆𝑏
 that connect 

nodes of Sa with nodes of Sb in the real, biological network GB=(E,V) (defined by set of 

edges 𝐸 and set of vertices 𝑉) with a number of connections expected by chance 

 ε̂𝑆𝑎↔𝑆𝑏
 in a random network GR=(E,V) where particular node degrees k of genes ∀𝑔𝑖 ∈

𝑺𝒂; ∀𝑔𝑗 ∈ 𝑺𝒃;  𝑔𝑖 ≢  𝑔𝑗 are equal to those of the actual network (which implicitly assumes 

that the whole degree sequences of GB and GR are identical, too). In an earlier work (70), 

series of randomized instances of GR were created using an algorithm of explicit edge 

permutation and used for estimating expected variance of ε. Later, it was demonstrated 

that ε̂𝑖↔𝐆𝐒 can be calculated analytically in a fast and unbiased manner: 

ε̂𝑆𝑎↔𝑆𝑏 = (∑ k𝑖

|𝑆𝑎|

𝑖=1

∗ ∑ k𝑗

|𝑆𝑏|

𝑗=1

) 2|Ε⁄ |   

Then the difference between the actual and expected edge counts 

Δε = ε𝑆𝑎↔𝑆𝑏
−  ε̂𝑆𝑎↔𝑆𝑏

 

is used to estimate significance of the relation 𝑆𝑎 ↔ 𝑆𝑏 with a χ2 statistic: 
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χ2 =
Δε2

 ε̂𝑆𝑎↔𝑆𝑏

+
Δε2

|Ε| −  ε̂𝑆𝑎↔𝑆𝑏
 
 

The χ2 value can be conveniently converted to p-values and then to Z-scores which 

could be used in downstream calculations in the same way as conventional, gene level 

variables.  

 

In the simplest NEA case one of the sets is a single gene i:  

ε̂𝑖↔𝐒 = (k𝑖 ∗ ∑ k𝑔)𝑔 2|Ε⁄ |;  Δε𝑖 = ε𝑖↔𝐒− ε̂𝑖↔𝐒; 

χ2 =
Δε𝑖

2

𝜀�̂�↔𝐒 
+

Δε𝑖
2

|Ε| − ε̂𝑖↔𝐒 

 

 

At the moment, NEA implementations work in 2 modes: direct and indirect. Direct mode 

takes into account only direct (first order) neighbours, while indirect works with paths of 

length 2 (second order neighbours) relative to AGS. 

 

In Paper I NEA implementation used as a back-end for the interactive web-platform. 

Visualization tools offer user a way to obtain graphical representation of the performed 

analysis in addition to table form. 
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Figure 2. Example of NEA results visualization. 

 

In Paper II pre-computed NEA results are available for user analysis and exploration, 

embedding into own models and visualizing them using tools developed in Paper I. NEA 

analysis was performed on 1655 selected pathways from MSigDB and FC3 network for 

cell lines (in case of CCLE) or individual patients (in case of TCGA). Two data types were 

considered separately: point mutations (MUT) and gene expression (GE), producing 

datasets NEA-MUT and NEA-GE respectively. For MUT, all mutations, disregarding their 

types, were taken as AGS for patient/cell line. For GE, each AGS was constructed as a list 

of top 100 genes with expression different from the respective cohort mean.  

 

In Paper III NEA was used as one of the channels of evidence for discovering novel driver 

genes, named MutSet. It was combined with other evidence channel, named PathReg. 

PathReg used vectors anchor.summary, calculated for each pathway individually, for 

obtaining regression models (thus, this channel also relies on NEA). Specific NEA scores 

were calculated for every gene i present in the network (N=19035) versus every MGS in 

the given cancer cohort c. The anchor.summary values µic were then obtained by 

summing up over all Nc available samples, regardless of mutation status of i in genome j: 
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𝜇𝑖𝑐 = √log
∑ 𝑍𝑖↔𝑀𝐺𝑆𝑗

𝑗≤𝑁𝑐
𝑗=1

𝑁𝑐
; 

 

Since the score 𝑍𝑖↔𝑀𝐺𝑆𝑗
 is derived from the network patterns of mutated genes across 

the cohort and does not depend on the mutation profile of i itself, the µic value would 

reflect a general propensity of i to interact with constellations of putative cancer genes. 

The transformations via 𝜒2 → Z, log, and square root were imposed in order to render 

distributions closer to Gaussian.   

 

The µic profiles were rather scarce due to rare occurrence in mutated gene set (MGS) of 

true drivers that would interact with a given gene i. We thus further improved the gene 

specific values via modelling µic with pathway NEA scores 𝑍𝑖↔𝐹𝐺𝑆. These were calculated 

for 320 FGS versus each of the N network genes and then used as a matrix of 

dependent variables Φ in PathReg model training. Sparse regression models were 

created using function cv.glmnet from R package glmnet(109). The chosen 

package implements elastic net models for solving the problem: 

min
𝛽0,𝛽

1

𝑁
∑ 𝑤𝑖𝑙(𝑦𝑖 , 𝛽0 + 𝛽𝑇𝑥𝑖) + 𝜆 [

(1−𝛼)‖𝛽‖𝑙2
2

2
+ 𝛼‖𝛽‖𝑙1]𝑁

𝑖=1 , 

 

where α is a mixing parameter for balance between lasso and ridge regression (whereby 

α=0 and α=1 would lead to plain ridge and lasso regressions, respectively). In our case 

(α=1), glmnet solved just the lasso problem: 

min
𝛽0,𝛽

𝑅𝜆(𝛽0, 𝛽) = min
𝛽0,𝛽

(
1

𝑁
∑(𝜇𝑖𝑐 − 𝛽0 − 𝛽𝑇𝛷) + 𝜆‖𝛽‖𝑙1

𝑁

𝑖=1

) 

 

Later, MutSet and PathReg evidence channels were combined. Both MutSet and 

PathReg produced output in the form of q-values, equivalent to false discovery rate 

which conveys the probability of a given driver prediction to be false. These values were 

integrated into the final value as a product q(M&P)=qMutSet*qPathReg , which presented the 
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probability that neither channel have produced true predictions. Therefore, 1 – q(M&P) 

was the probability of either channel to be true and we convened to trust a driver 

prediction if q(M&P) < c (c=[0.01, 0.05]). 

 

Paper IV, in addition to two different NEA implementations (R package(110) and Perl 

script with additional parameter, allowing it taking only direct neighbours or second 

order neighbours into consideration), uses two other well-established algorithms: 

PageRank with Priors (package igraph) and Random Walk with Restart (package 

dnet(111)). For each network we calculated topological features, such as number of 

nodes and edges, number of disconnected components, network density, connectivity 

etc.. For each combination of network and pathway, pathway-level variables were 

calculated (number of nodes for the pathway in the given network, number of modules, 

average distance between disconnected modules, closeness weight etc.). For each 

available node in any given network topological features were calculated: both global 

(degree, closeness centrality, betweenness centrality, eigenvector centrality etc.) and 

local (modular) closeness centrality for every possible combination of network and 

pathway). After performing network analysis with different methods and parameters, we 

attempted to establish correlations between topological characteristics and assigned 

scores. We also explored how damping factor and restart probability affect results due 

to different topological properties of the chosen network(77,78). Since, as was 

previously mentioned, cancer is a very heterogeneous disease and disease genes are 

considered to be low-degree genes, we paid special attention to poorly studied genes, 

which we identified by their degree in network and GO codes (for GO). 

 

We used area under curve (AUC), partial area under curve (pAUC at FPR=0.15), F1 and 

Matthew’s correlation coefficient (MCC) in order to estimate performance for different 

combinations of network, ontology, method and method parameter (when available). 

Performance was tested for each pathway. All pathways were filtered: groups of less 

than 3 genes and more than 300 genes were excluded from test (amount of genes were 

calculated for each network independently). Then each pathway had been split into two 

subsets: train, consisting two thirds of the pathway genes, which were used as seed 

nodes (AGS), and test, containing all the remaining pathway genes.  
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Results of network enrichment performed by different methods were analyzed for 

correlation with different topological metrics on different levels: 

1. On network level – we compared performance for different methods and 

ontologies between various networks to determine if any of the tested network 

demonstrates the best performance for all the tested methods. 

2. On pathway level – we used term-level features, described above, for creating 

linear regression models designed to explain significance of tested variables and 

their effect on performance. In other words, we attempted to find single 

pathway-level variables and their combinations, which could explain 

performance. 

On gene level – results of network methods are matrices of size ‖𝑁‖ × ‖𝑃‖, where 𝑁 is 

the set of nodes (genes) in the given network, 𝑃 is the set of pathways in the given 

network under restrictions described previously. All results matrices were normalised 

with inverse normalisation procedure. For each pathway, correlation between vector of 

obtained values and vector of values for the chosen topological metric was calculated 

using implementation of Spearman method provided by standard function cor in R. 

 

For creation of linear regression models, standard R function lm was used. Significance 

of model members was estimated using p-values produced by lm function. Sign of the 

member coefficient was used for assessing if it has positive or negative influence on 

performance. For each combination of network, ontology, method and parameter, three 

models were created, using different performance metrics as dependent variables: AUC, 

F1, MCC. In addition to regression models, we used Kendall τ for establishing correlations 

between performance metrics and individual variables. 
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4 Results and discussion 
 

 The thesis is dedicated to the study of network methods (NEA in particular) in order to 

understand current possibilities – can they be effectively used nowadays or are they an 

instrument of the past, which never achieved its full potential? – and their applicability 

to the emerging field of precision cancer medicine. All the presented papers focus on 

different aspects of this task. 

 

In Paper I the main result is the creation of a web platform which allows researchers to 

perform network enrichment analysis on user-defined lists of genes (AGS) and visualise 

its results.   It is applied to on one of the available networks or on a merge of several 

networks with pre-existing or user-uploaded FGS.  User-friendly solutions provide 

researchers with the ability to incorporate the web platform into their research pipeline 

due to different possibilities to export data from the platform: as table data in plain 

format or as high-quality vector graphics. There are several alternatives to this system 

like MaxLink, cBioPortal and STRING, but, arguably, they do not achieve the same quality 

of service from the user point of view.  

 

MaxLink utilizes its own original method, though related to NEA. It uses curated FunCoup 

network. Just like EviNet, it offers statistical analysis, though more limited, but it works 

only with one network and provides much less options in terms of visualization. Recent 

versions of MaxLink added some domain-specific functionality, namely “SARS-CoV-2 

Search”, which can be handy for researchers working on the specific topics. EviNet, on 

the other hand, despite being developed with cancer driver discovery in mind, attempts 

to be a universal tool by 1) offering a large compiled database of various FGS describing 

biological processes and diseases and 2) offering a possibility to download own data. 

The aforementioned advantages of EviNet allowed us to seamlessly integrate it into our 

next project, EviCore, for some network-related functionality. MaxLink offers only online 

functionality, while EviNet relies on an algorithm implemented earlier in an R package, 

which can be downloaded to user’s local machines or research servers. 
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cBioPortal, while being an excellent source of cancer genome data, offers no network 

analysis and no statistics. However, it provides richer API compared to EviNet, and offers 

packages for both R and Python. Data exploration is probably the strongest part of 

cBioPortal, an issue (for EviNet) which we addressed in our next project, described in 

Paper II. 

 

Last but not least, STRING has better network visualization – namely, it demonstrates 

different types of edges in multigraphs, such as “experimentally determined”, “co-

expression”, “predicted by gene co-occurence etc.”. The portal allows uploading of user 

data, but only after registration. It offers a variety of tools, but the entry threshold is 

higher compared to EviNet, since the site requires user to prepare data in specific 

format and offers a variety of narrow-tasked tools, abundance of which can confuse 

user. The latter feature makes STRING potentially more powerful tool for an experienced 

user, but EviNet offers a simple user interface coupled with interactive demos, thus 

minimizing time required to start conducting actual research with the chosen web 

platform. 

 

Of course, there are more alternatives to the developed platform. We acknowledge 

potential weaknesses of EviNet, but we consider it a valuable instrument for researchers 

with minimum or no experience in bioinformatics and/or programming. This project 

should be considered together in complex with the other papers presented in this 

study, especially Paper II and Paper III.  

 

Paper II demonstrates, among other project features, how to use data obtained from 

NEA for creating predictive models, e.g. predicting overall survival. Extending the results 

also to those in Paper III, we demonstrate that NEA results could be effectively 

combined with other omics or clinical variables in order to obtain more accurate 

models. The developed platform includes integration with the platform developed in 

Paper I and allows users to incorporate it into their own research pipelines: users can 
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visualize and explore data (including pre-calculated correlations and NEA results), 

create predictive models and download the desired results as vector graphics, table 

data, JSON or RData files, to embed illustrations into own web-based resources. For 

advanced users, we provide documented REST API, which they can use to create their 

own tools employing some functionality of the developed platform. 

 

Just as the web platform developed in Paper I, EviCor definitely has some rivals in terms 

of functionality, such as CellMiner or OncoMine. However, according to our experience, 

the combination of functions provided by the developed platform is unique.  One of the 

important features is data accessibility, unlike some alternatives, EviCor does not 

require registration and provides vast, documented and flexible API (which is an 

improvement compared to the previous project, EviNet). Just as EviNet, EviCor is 

intended to be as user-friendly as possible. The main advantages of EviCor are 1) 

inclusion of a unique data collection, containing both raw data from popular online 

databases as well as pre-processed data and statistical estimations of correlations 

between omics data and drug sensitivity and 2) ability to combine different data types 

for creating and exploring multivariate models. The latter function is unique and very 

useful in the complex field of oncology.  For example, as epigenetics is an emerging yet 

understudied topic, provided operability allow researchers to create models 

incorporating both clinical variables and epigenetic profiles of selected genes for 

survival analysis.  

 

Paper III describes the NEAdriver project, presenting proof that NEA could be used for 

discovering novel driver genes in pan-cancer cohorts. NEA proved to be a useful tool for 

cancer types possessing relatively few mutations but with a very large heterogeneity, 

such as medulloblastoma (MB), where common frequency-based methods are 

impossible to use. Not only did our approach make it possible to recover previously 

known driver genes, but we also managed to identify several pathways potentially 

important for tumorogenic processes and/or potential therapeutic targets. Moreover, 

we discovered that some of the significantly enriched genes in the MB cohort, namely 

HDAC1 and HDAC2, were never mutated in any samples. We discovered in the 

littaerature that these genes are proposed as therapeutic targets (112,113), signifying the 
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role of NEA as a tool for in silico analysis preceding in vitro and in vivo experiments. 

However, there are also some potential weaknesses with the NEA driver approach. One 

of them actually derives from advantages of the method: in cases with rare and 

understudied mutations, additional experiments are required. Results of such in silico 

experiments should always be taken with a grain of salt, since there is a risk that 

artefactual results can be produced by some combinations of topological features of 

the used network and the enrichment method, which will not reflect any actual biological 

truth. This issue is addressed in Paper IV. Another limitation of NEAdriver lies in area of 

“standalone” driver genes, which can trigger cancer development on their own. Thus 

they can be undetectable by all GBA methods, but can be discovered by frequency-

based analysis (but only if sufficient amount of data is supplied) or function-based 

analysis of altered sequences. The aforementioned methods, however, have problems of 

their own. Frequency-based methods are not only dependent on the amount of 

collected samples in order to achieve statistical significance, but also prone to false-

positive results, reporting often occurring passenger mutations as drivers due to 

methods’ inability of functional assessment of alterations. On the other hand, methods 

based on functional assessment of alterations based on established biological 

knowledge are complex and, more importantly, undermine identification of lesser 

studied genes (this problem is partially addressed in Paper IV). Paper III is also 

connected with Paper I via NEA, being a proof-of-concept: researchers who want to 

employ NEA in their own analysis can either use standalone R package or the EviNet web 

platform. 

 

In Paper IV we analysed various networks, topological properties of pathways belonging 

to different ontologies in these networks and compared NEA with other methods under 

different conditions. One of the main results is a proof that NEA is unbiased towards any 

topological characteristics of networks, pathways and individual nodes. We discovered 

that random walk methods can be more sensitive to certain centrality measures than to 

node degrees under certain circumstances and demonstrated that “local” topology 

(that is split of certain set of nodes into a number of modules in a certain networks) can 

drastically change the results. These results suggest that there is no “silver bullet” for 

adjustment of results produced by random walk methods. For example, normalization by 

node degrees does not solve the problem of centrality biases and parameter values 
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naturally reduces the bias towards some metrics while increasing score correlation with 

the others. According to our benchmarking on some of the networks (such as merges of 

FC3 and PWC or STRING and PWC) all the explored methods demonstrate better 

performance compared to smaller and sparser networks/THAN  WHAT?/ (measured by 

different metrics), confirming the earlier suggested idea of correlation between network 

size and performance. For random walk methods, we attempted to find optimal 

parameters based on several performance metrics, and, in most cases, we obtained 

results quite different from parameters suggested by default by the explored methods. 

We measured difference in performance by AUC and, while in some cases difference in 

performance was neglectable, in some cases it was as big as 0.7. Analysis of created 

models indicated that the significance of certain pathway-level variables for random 

walk methods is considerably affected by parameter values. Of course, the provided 

study is not complete, some of the problems were not solved yet – such as the 

correlation between results produced by different methods and modular betweenness 

centrality. However, according to our knowledge, this is the most complete study of the 

influence of various topological properties of networks on the use of different network 

methods for biological purposes. Nevertheless, the results of Paper IV support and 

extend the results of Paper I (by highlighting strong and weak sides of the underlying 

algorithm of NEA) and Paper III (by demonstrating the ability of NEA to correctly retrieve 

rare and understudied genes, which was proved on certain GO codes and DO entries).  

 

Overall, our study proves that NEA can effectively be used for various biomedical and 

clinical research tasks, which is specifically demonstrated in Papers III and IV. However, 

NEA has certain limitations, some of them are common to all GBA methods and cannot 

be fixed, while some of them has to be addressed in future research (see “Future 

perspectives”). But the method cannot be employed  and offered as a viable technology 

without 1) comparison with other methods and 2) developing tools for the researchers.  

 

In a narrow sense, we compare NEA only with other network methods, such as RWR and 

PPR. Despite the fact that under certain conditions aforementioned methods 

demonstrate better performance, but arguably the biggest problem is inability to pick 

the optimal parameter for the best performance, as highlighted in Paper IV. In a broader 
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sense, we have to compare NEA with methods based on completely different principles. 

Such comparison was done in Paper III as explained earlier (i.e. comparison with 

frequency-based methods). However, we do not claim that NEA is a “silver bullet”. 

Instead, we seek a way to incorporate NEA into existing research pipelines and combine 

with other methods. As was mentioned in the beginning of this section, network analysis 

could be considered as an outdated tool by some, in this era of emerging AI. In Paper II 

we demonstrated how data generated by NEA can be combined with different machine 

learning techniques, such as regression models. It was mentioned before that pathway-

level overview for cancer can offer a broader perspective and better understanding of 

cancer biology. Moreover, from machine learning point of view using NEA results means 

reduction of dimensionality: from tens of thousands genes we can shift to thousands of 

pathways or even just to several dozens pathways of interest.  

 

Even the best method is worthless unless it is implemented and offered as a convenient 

tool. We addressed this issue in Papers I and II, attempting to offer best possible 

experience for users varying from researchers with no bioinformatics experience to 

bioinformaticians seeking ways to incorporate some parts of the developed platforms 

into their own projects. None of the developed portals is absolutely unique, but 

nonetheless they offer a number of advantages compared to the competitors. 

Alongside with statistical and mathematical proofs from Papers III and IV portals EviNet 

and EviCor offer solid options for practical research problems. 
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5 Conclusions 
 

Network medicine is a relatively new branch of medicine, which itself is young, 

compared to mathematics. Personalized and precision treatment methods is a future of 

oncology. They will allow oncologists to create an effective treatment plan for each 

patient based on individual characteristics and with minimal side effects. Unlike radical 

mastectomy, which attempted to cure cancer at all costs, novel treatment methods will 

also take patient quality of life into consideration. Network medicine at the same time 

gives us more general understanding of cancer biology (by allowing exploration of 

cancer at pathway-level instead of at the single-gene level) and more detailed view 

(through discovery of novel drivers and therapeutic targets).  

 

Some types of cancer have a high mutational burden, while others have high inter-

patient heterogeneity and low mutational burden. In Paper III, not only do we 

demonstrate the ability of the developed method to discover novel drivers, but also the 

ability of network methods to surpass performance of other methods, such as 

frequency-based methods. Frequency-based methods are extremely ineffective for 

predictions of drivers in some types of cancer, such as medulloblastoma. 

 

All presented papers prove that NEA can be effectively used (Papers III and IV) and 

provide user-friendly web tools for performing NEA (Papers I and II). The developed tools 

cover broad needs of the researcher-users: from exploring pre-downloaded and pre-

processed data to statistical and network enrichment analysis and uploading results in 

widely used formats. All the data is publicly available, all the code is available on GitHub 

under open software licenses, APIs of the developed platforms are documented – thus 

all the performed research is verifiable, and the developed code is available for the 

future programmers to incorporate into their own research products.
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6 Future perspectives 
 

Despite the fact, that NEA has a number of advantages, it also has limitations. As was 

mentioned in Paper IV, at the moment NEA can take into account neighbourhoods of 1st 

and 2nd orders (relative to AGS). This limitation is artificial, future modifications of NEA 

will have to solve this issue. Several NEA modifications were introduced in Paper IV 

already, allowing to combine scores obtained by NEA runs with different parameters. 

 

Another possible modification of NEA comes from PPR: different nodes belonging to 

AGS could have different weights in the beginning, thus simulating situation when 

researcher want to prioritize certain genes in AGS (e.g. by frequency of mutations in 

cohort) or probability of belonging to the established drivers. 

 

In Paper III we performed an analysis on pan-cancer cohort, which included 

medulloblastoma patients. It is required to try to apply the developed algorithm to other 

types of cancer, especially rare and/or having low mutational burden. 

 

Last but not least, in Paper IV we proved that NEA had no bias towards topological 

properties of individual nodes. However, additional study may be required, since we 

were able to cover only limited number of metrics. It is highly unlikely that we will 

discover a certain metric towards which NEA is biased, however novel metrics, which 

can be used to correct results (of NEA or other considered methods), can be proposed. 

In addition, there could be proposed an algorithm to combine NEA results with other 

methods, as it was done in Paper III. In addition to exploring properties of network 

methods, topological properties of networks and biological terms (such as signaling 

pathways) should be studied in more systematic way: there could potentially be a 

method to determine optimal parameter for certain method based on properties of the 

network and seed nodes in it. 
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