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Abstract

Prostate cancer is a major global health concern and is the most common cancer-related cause

of death in Sweden. Prostate cancer screening using PSA has been shown to reduce prostate

cancer mortality but also leads to significant overdiagnosis and overtreatment of low-risk can-

cers. Improved risk stratification and effective active surveillance are crucial to balancing the

benefits of screening with the risk of overdiagnosis and overtreatment.

In Study I, we studied the uptake and the follow-up of active surveillance using a retrospective

cohort of patients who were diagnosed with low-risk prostate cancer between 2008 and 2017

in Stockholm County. Our results showed that only 50% of eligible active surveillance patients

received active surveillance as their primary treatment choice at diagnosis. Most men that

enrolled in active surveillance remained on surveillance during the first years after diagnosis

(82% during a median 3.5 years), but did not receive a follow up according to guidelines with

regard to repeat biopsies and PSA tests.

Current clinical practice has seen an increase in the use of magnetic resonance imaging (MRI)

and the incorporation of risk prediction models to select men with the highest suspicion of clin-

ically significant prostate cancer for prostate biopsy. However, the effectiveness and how MRI

and risk prediction models should be incorporated into active surveillance follow-up have yet to

be established. Study II evaluated the performance of MRI-targeted biopsies and a blood-based

risk prediction model (the Stockholm3 test) for monitoring disease progression in patients on

active surveillance and compared this to the conventional follow-up using PSA and system-

atic biopsies. When MRI-targeted and systematic biopsies were combined, the detection rate

of clinically significant prostate cancer increased when compared to conventional systematic

biopsies. Biopsies performed in MRI-positive men resulted in a 49% reduction in performed

biopsies, at the expense of failing to diagnose 1.4% clinically significant prostate cancer in MRI-

negative men. The incorporation of the Stockholm3 test showed a 27% reduction in required

MRI investigations and a 57% reduction in performed biopsies compared to performing only

systematic biopsies.

In Study III, we digitized biopsy cores from STHLM3 participants to develop an artificial

intelligence (AI) for prostate cancer diagnostics. The AI system demonstrated clinically useful

performance that was comparable to that of the study pathologist for cancer detection (AUC

of 0.986) and for predictions of cancer length (correlation of 0.87) and grading performance

that was on par with that of expert prostate pathologists.

In Study IV, we developed a conformal predictor to estimate the uncertainty of the predictions

for the model in Study III. The uncertainty estimates were used to control the error rate so that

only predictions with high confidence are accepted and unreliable predictions can be detected.

The conformal predictor was able to identify unreliable predictions as a result of variations in



digital pathology scanners, preparation of tissue in different pathology laboratories, and the

existence of unusual prostate tissue that the AI model was not exposed to during training.

Little is known about the relationships between prostate cancer genetic risk factors and the

morphology of prostate tissue. In Study V:, we investigated whether weakly supervised deep

learning can learn to detect such possible associations. The findings in this paper imply re-

lationships between prostatic tissue morphology and genetic risk factors for prostate cancer,

particularly in young men. These results provide proof of principle for exploring the use of

morphological information in multi-modal prostate cancer risk prediction algorithms.

In conclusion, the purpose of this thesis was to describe possible extensions to improve prostate

cancer active surveillance management, as well as to develop prediction models for improved

prostate cancer diagnostics.



List of publications

I. Henrik Olsson, Tobias Nordström, Mark Clements, Henrik Grönberg, Anna Wallerstedth Lantz,

Martin Eklund

Intensity of Active Surveillance and Transition to Treatment in Men with Low-risk Prostate

Cancer

European Urology Oncology, 2020, Vol 3, 640-647

II. Henrik Olsson, Tobias Nordström, Fredrik Jäderling, Lars Egevad, Hari T. Vigneswaran, Magnus

Annerstedt, Henrik Grönberg, Martin Eklund, Anna Lantz

Incorporating Magnetic Resonance Imaging and Biomarkers in ActiveSurveillance Protocols

- Results From the Prospective Stockholm3Active Surveillance Trial (STHLM3AS)

JNCI J Natl Cancer Inst, 2021, Vol 113, 632-640

III. Peter Ström, Kimmo Kartasalo, Henrik Olsson, Leslie Solorzano, Brett Delahunt, Daniel M Berney,

David G Bostwick, Andrew J Evans , David J Grignon, Peter A Humphrey, Kenneth A Iczkowski,

James G Kench, Glen Kristiansen, Theodorus H van der Kwast, Katia R M Leite, Jesse K McKenney,

Jon Oxley, Chin-Chen Pan, Hemamali Samaratunga, John R Srigley, Hiroyuki Takahashi, Toyonori

Tsuzuki, Murali Varma, Ming Zhou, Johan Lindberg, Cecilia Lindskog, Pekka Ruusuvuori, Carolina

Wählby, Henrik Grönberg, Mattias Rantalainen, Lars Egevad, Martin Eklund

Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-

based, diagnostic study

The Lancet Oncology, 2020, Vol 21, 222-232

IV. Henrik Olsson, Kimmo Kartasalo, Nita Mulliqi, Marco Capuccini, Pekka Ruusuvuori, Hemamali

Samaratunga, Brett Delahunt, Cecilia Lindskog, Lars Egevad, Ola Spjuth, Martin Eklund

Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal

prediction

Nature Communications, in print

V. Henrik Olsson, Kimmo Kartasalo, Nita Mulliqi, Pekka Ruusuvuori,Anna Plym, Fredrik Wiklund,

Hemamali Samaratunga, Brett Delahunt, Cecilia Lindskog, Lars Egevad, Martin Eklund,

Associations between prostate cancer genetic risk factors and prostatic tissue morphology

Manuscript

The articles will be referred to in the text by their Roman numerals, and are reproduced in full at

the end of the thesis.



Related publications

• Axel Möller, Henrik Olsson, Henrik Grönberg, Martin Eklund, Markus Aly, Tobias Nordström

The Stockholm3 blood-test predicts clinically-significant cancer onbiopsy: independent val-

idation in a multi-center community cohort

Prostate Cancer and Prostatic Diseases 2019

• Kerri Beckmann, Netty Kinsella, Henrik Olsson, Anna Wallerstedt Lantz, Tobias Nordstrom, Markus

Aly, Jan Adolfsson, Martin Eklund and Mieke Van Hemelrijck

Is there any association between prostate-specific antigen screening frequency and uptake

of active surveillance in men withlow or very low risk prostate cancer?

BMC Urology 2019

• Kerri Beckmann, Danielle Crawley, Tobias Nordström, Markus Aly, Henrik Olsson, Anna Lantz,

Noor Binti Abd Jalal, Hans Garmo, Jan Adolfsson, Martin Eklund, Mieke Van Hemelrijck

Association between antidiabetic medications and prostate-specific antigen levels and

biopsy results

JAMA network open, 2019, Vol 2, e1914689-e1914689

• Martin Eklund, Kimmo Kartasalo, Henrik Olsson, Peter Ström

The importance of study design in the application of artificial intelligence methods in

medicine

npj Digital Medicine, 2019, Vol 2, Article number 101

• Lars Egevad, Peter Ström, Kimmo Kartasalo, Henrik Olsson, Hemamali Samaratunga, Brett De-

lahunt, Martin Eklund

The utility of artificial intelligence in the assessment of prostate pathology

Histopathology, 2020, Vol 76, 790-792

• Lars Björnebo, Henrik Olsson, Tobias Nordström, Fredrik Jäderling, Henrik Grönberg, Martin

Eklund, Anna Lantz

Predictors of adverse pathology on radical prostatectomy specimen in men initially enrolled

in active surveillance for low-risk prostate cancer

World Journal of Urology 2021

• Hari T Vigneswaran, Thorgerdur Palsdottir, Henrik Olsson, Erik S Haug, Wolfgang Picker, Sven

Löffeler, Henrik Grönberg, Martin Eklund, Tobias Nordström

Biomarker discrimination and calibration with MRI-targeted biopsies: an analysis with the

Stockholm3 test

Prostate Cancer and Prostatic Diseases, 2021, Vol 24, 457-464



Contents

1 Introduction 1

2 Aims of the thesis 2

3 Background 3

3.1 Epidemiology of Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Current prostate cancer diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2.1 PSA screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2.2 Prostate biopsies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.3 The Gleason grading system . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.4 Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Active surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.2 Radical Prostatectomy and Radiation . . . . . . . . . . . . . . . . . . . . . 9

3.3.3 Chemo- and hormonal treatment . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Improvements in Prostate Cancer Diagnostics . . . . . . . . . . . . . . . . . . . . 10

3.4.1 Multivariate Prediction Models in Prostate Cancer detection . . . . . . 10

3.4.2 Magnetic resonance imaging and targeted biopsies . . . . . . . . . . . . 10

3.4.3 AI-assisted digital pathology of biopsy samples . . . . . . . . . . . . . . . 12

4 Data Material 13

4.1 The Stockholm PSA and Biopsy Register (SPBR) . . . . . . . . . . . . . . . . . . . 13

4.2 STHLM3 trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 STHLM3-AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Methods 16

5.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Deep learning in histopathology . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Conformal prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Nonconformity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.2 P-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.3 Prediction regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.4 Transductive and Inductive conformal prediction . . . . . . . . . . . . . . 19

5.2.5 Mondrian conformal prediction . . . . . . . . . . . . . . . . . . . . . . . . . 20



5.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Results 22

6.1 Overview of the main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Study I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 Study II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.4 Study III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.5 Study IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.6 Study V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Discussion 29

7.1 Improved active surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.1 Current active surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.2 Incorporating MRI and biomarkers in active surveillance . . . . . . . . . 29

7.2 AI-assisted prostate pathology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2.1 Clinical adoption of AI in prostate pathology and main challenges . . . 31

7.2.2 Improving generalizability of AI for digital prostate pathology . . . . . 31

7.2.3 AI safety for clinical adoption . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Ethical considerations 35

9 Conclusions 37

Acknowledgements 39

References 42



List of abbreviations

CI Confidence Interval

GG Gleason Grade

IQR Inter Quartile Range

ISUP International Society of Urological Pathology

PSA Prostate-Specific Antigen

RP Radical Prostatectomy

MRI Magnetic Resonance Imaging

ROC Receiver Operating Characteristics

AUC Area Under Curve (Receiver Operating Characteristic)

PI-RADS Prostate Imaging Reporting and Data System





Chapter 1

Introduction

After testing with the Prostate-Specific Antigen (PSA) blood test began, the incidence of known

prostate cancer has increased greatly. PSA testing can lead to a reduced risk of dying from

prostate cancer, as the disease can be diagnosed and treated at an early stage. Many of the

tumors that are detected are small, localized, slow growing, and unlikely to cause symptoms

to the diagnosed individual. A major problem today is that the current diagnostic and prognos-

tic methods show a limited capacity to distinguish between indolent tumors and early-stage

aggressive cancer. Men with low-risk prostate cancer are managed conservatively with active

surveillance (AS), which involves regular PSA testing and systematic prostate biopsies to moni-

tor the course of the disease and provide delayed, targeted treatment with a curative purpose.

The histological diagnosis of prostate biopsies determines the clinical treatment for men sus-

pected of having prostate cancer. However, the current clinical practice is associated with chal-

lenges such as high inter-observer variability between pathologists and a worldwide shortage

of experienced pathologists. Artificial intelligence (AI) and machine learning technologies in

digital pathology have become available due to the possibility of digitizing whole-slide images

of tissue. The development of AI has the potential to assist pathologists in diagnosis and aims

to reduce inter- and intra-observer variability among pathologists.

This thesis aimed to improve risk stratification through the development of diagnostic pre-

diction models and to assess possible improvements to active surveillance that are less invasive

and more cost-effective, through the incorporation of risk prediction models and magnetic

resonance imaging (MRI) targeted biopsies in the follow-up.



Chapter 2

Aims of the thesis

This thesis aims to improve patient screening through the development of diagnostic
prediction models for improved risk stratification and possible improvements to active
surveillance through the incorporation of risk prediction models and MRI-targeted
biopsies in the follow-up.

More specifically, the aims were to:

• To study active surveillance in Sweden with respect to the uptake of low-risk
prostate cancer patients, describe the follow-up of active surveillance patients,
and study the transition from active surveillance to curative treatment during a
10-year follow-up period.

• To study the performance of MRI-targeted biopsies and the Stockholm3 test for
monitoring disease progression in patients on active surveillance.

• Develop AI for digital pathology assessment of prostate biopsies for cancer detec-
tion and grading and to estimate the cancer length.

• Develop a conformal predictor for AI-assisted prostate pathology and estimate the
uncertainty of the predictions for these models, to use the uncertainty estimates
to control the error rate of the predictions such that unreliable predictions can
be detected and flagged for human assessment.

• To study if weakly supervised deep learning can detect possible associations be-
tween genetic risk factors (SNPs) and morphological features in prostate tissue.



Chapter 3

Background

3.1 Epidemiology of Prostate Cancer

Prostate cancer is a major health problem. The lifetime risk for men to be diagnosed
with prostate cancer is one out of nine and constitutes 21% of all diagnosed cancers
[1]. It is Sweden’s most common form of cancer among men and accounts for a third
of all cancers in men. In 2017, approximately 10 000 men received a prostate cancer
diagnosis and 2,500 died due to the disease. The median age at diagnosis is age 69 and
the disease is uncommon before the age of 50. Prostate cancer incidence has rapidly in-
creased with the introduction of PSA testing at the start of the 1990s, particularly with
respect to men diagnosed with small localized tumors. The incidence has decreased
slightly in later years, which could be due to the stabilization of PSA testing and rec-
ommendations against prostate cancer screening (Figure 3.1). The prostate cancer
mortality rates vary less between developed regions. The highest mortality rates are
reported in parts of Africa, Northern Europe, and South America, and lower mortality
rates in Asia (Figure 3.2). The age-standardized mortality rate has decreased by 30
percent since 2000, which can be explained by early detection and improved treatment
of the disease. With over 100,000 prevalent cases in Sweden, prostate cancer imposes a
substantial health burden and cost on the healthcare system. Older age, family history
of the disease, and ethnicity are recognized prostate cancer risk factors (higher risk in
African men and lower risk in Asian men). Given the high prevalence and the lack of pri-
mary prevention of prostate cancer, improvement of diagnostic performance can help
to substantially reduce the health burden of the disease with fewer men undergoing
biopsy and less overdiagnosis and overtreatment.

3.2 Current prostate cancer diagnostics

3.2.1 PSA screening

Prostate cancer is usually diagnosed through assessment of PSA levels. The main role
of PSA is to liquefy the seminal fluid, and it is found in seminal plasma at one million-
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Figure 3.1: Age-standardized prostate cancer incidence and mortality rates per 100.000 men in Sweden,
age [0-84]. Age-adjustment according to the world population Data from IARC (https://gco.iarc.fr/,
accessed 22.09.2022)

fold times higher concentration than in blood [3]. Men with elevated PSA levels are
recommended to undergo a prostate biopsy for further prostate cancer work-up.

PSA was originally intended for disease monitoring after diagnosis and initial treat-
ment. However, the PSA test also quickly became common around the world as a tool
for screening for prostate cancer, leading to a rapidly increasing prostate cancer inci-
dence during the 1990ies, especially for men with localized low-grade cancer. Studies
have shown that PSA-driven early detection reduces mortality [4, 5]. The test character-
istics of the PSA test have been estimated to have a sensitivity of 72% and a specificity
of 93% at the cutoff level of 4 ng/ml [6]. However, in Sweden, a lower cutoff of 3
ng/ml is used for men younger than 70 years, which results in higher sensitivity but
at the cost of reduced specificity. The European Randomized study of Screening for
Prostate Cancer (ERSPC) is a randomized screening trial evaluating PSA testing in
eight European countries. Estimates from the ERSPC trial indicate that PSA screening
leads to significant overtreatment, as 48 men would need to be treated to prevent one
death from prostate cancer during a ten-year period [4, 7]. An annual 10% drop in
prostate cancer incidence was observed in the United States between 2010 and 2014
as a result of the US Preventive Services Task Force recommendations against the use
of PSA as a screening test. The 2012 recommendations concluded that the benefits of
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using PSA for screening of prostate cancer do not compensate for the harms with regard
to overdiagnosis, overtreatment, and treatment-related problems. This was updated
in 2018, recommending individual decisions for screening men under the age of 70.

3.2.2 Prostate biopsies

Men with an elevated risk of prostate cancer, commonly estimated using PSA and digital
rectal exam, are typically recommended to undergo prostate biopsies. Although the
biopsy procedure is currently quickly shifting to using magnetic resonance imaging
(MRI) to guide the tissue sampling (see section 3.4.2), systematic biopsies where 10 to
12 biopsy cores are sampled with the use of transrectal ultrasound are still common in
many countries around the world. The biopsy cores are then systematically sampled
from the peripheral part of the prostate, which is the most common location of cancer
in the prostate. Nonetheless, it is still not uncommon that systematic biopsies miss
small cancer foci. The risk of non-representative biopsy findings has been shown to
lead to high disease reclassification rates following radical prostatectomy [8, 9].

3.2.3 The Gleason grading system

Prostate cancer diagnosis is based on pathological evaluation of the tissue sampled
from needle biopsies using the Gleason grading system. The system quantifies cell
morphology into five different grades, where higher grades are associated with worse
prognosis (Figure 3.3). An important cut-off prediction of prognosis with Gleason
score is Gleason patterns 4 and 5, which corresponds to the least differentiated cells,
meaning that most of the glandular structure in the tissue has been lost. Tumors graded
with Gleason pattern 4 and 5 are much more aggressive and are strongly associated
with higher risk of prostate cancer death compared to Gleason pattern 3 [10]. Since
2005 the International Society of Urological Pathology (ISUP) recommends that only
grades 3-5 are used; grades 1 and 2 are not defined as cancer [11]. The primary grade,
the most prevalent grade, and the secondary, the second most prevalent grade, are
combined in a total score (e.g. 3 + 4 =7). This was revised again in 2014 and the
updated ISUP grade group system was proposed. ISUP grade group 1 corresponds to
Gleason score 3 + 3, ISUP 2 to Gleason score 3 + 4, ISUP 3 to Gleason score 4 + 3,
ISUP 4 to Gleason score 4 + 4 and ISUP 5 corresponds to Gleason score 4 + 5 or higher.

3.2.4 Genetics

Familial history of prostate cancer is a strong risk factor for the disease. Men with
a diagnosed first-degree relative are 2-3 times more likely to be affected than men
without prostate cancer in the family, and the risk also increases with earlier age at onset
of the relatives [12, 13]. But the genetics behind hereditary predisposition to prostate
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Figure 3.3: Gleason grade patterns. The cancerous regions are graded from 1 to 5, with grade 5 corre-
sponding to the least differentiated cells, with limited to no glandular structure residual in the tissue.

cancer are complex [14]. Only a couple of genes of clinical significance with moderate
to significant effect sizes have been identified, BRCA1 and BRCA2, and HOXB13 [15,
16]. BRCA2 gene mutation carriers have about a three-fold increased prostate cancer
risk and have been associated with younger disease onset, poorly differentiated prostate
cancer, and poorer survival. Many relatively common gene variants, single nucleotide
polymorphisms (SNPs), can also affect risk of prostate cancer. To date, more than 200
SNPs have been linked to an increased prostate cancer risk [17]. The known SNPs
account for approximately 33% of the inherited prostate cancer risk [18]. Individually,
they do not provide clinically relevant information, but the combined effect of many
such variants plus the family history of the disease may provide a significant increase
or decrease in the estimated prostate cancer risk [19, 20, 21].

3.3 Treatment

Treatment of prostate cancer can be coarsely categorized into three groups: active
surveillance (conservative treatment), curative treatment (surgery, radiation), and non-
curative, life-prolonging (hormone treatment, chemotherapy, radiation). The initial
treatment is determined by the cancer’s stage and Gleason score, PSA levels, comor-
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bidities, and the patient’s age and preferences.

3.3.1 Active surveillance

The goal of active surveillance (AS) is to decrease the overtreatment of low-risk prostate
cancer to avoid adverse effects of the treatment without compromising possible future
curative treatment in men who show signs of disease progression over time. Studies
have shown that most men who are diagnosed with low- or intermediate-risk prostate
cancer will die from other causes than prostate cancer 10-15 years after diagnosis
[22, 23]. Current prostate cancer guidelines recommend active surveillance for low-
risk prostate cancer patients with an expected remaining lifetime of 10 years or more,
with a follow-up based on repeat biopsy, serial PSA, DRE, and MRI for patients with a
PSA ≥ 2 ng/mL increase during a two year period. Prostate cancer guidelines today
state the initial selection of patients for AS should be based on MRI prior to a confirma-
tory biopsy, followed by both systematic and targeted biopsies [24, 25]. AS may also
be relevant for intermediate-risk ISUP 2 prostate cancer patients with low PSA < 10
ng/mL, a small amount of Gleason pattern 4, and a small number of positive cores,
but the evidence is lower for this group of patients. The presence of ISUP 3 disease,
cribriform patterns, or intraductal cancer excludes the men from active surveillance.
According to the current Swedish guidelines, patients on active surveillance should un-
dergo a confirmatory biopsy within two to six months following the diagnostic biopsy
and thereafter a follow-up biopsy every 2-3 years for 10 years after starting active
surveillance. Furthermore, it is recommended that patients on AS undergo PSA testing
every four months during the first year and thereafter every six months. The largest AS
cohorts now provide long-term follow-up data, recommending AS rather than curative
treatment for localized low-risk prostate cancer. In these studies, the prostate cancer-
specific risk of death or metastasis was less than 1% over a 10-year period [26, 27, 28].
A randomized controlled trial by Wilt et al. did not show a significant difference in
mortality between observation and radical prostatectomy during a 12-year follow-up
[29]. The ProtecT trial randomized patients with localized prostate cancer to either
active monitoring, surgery, or radiotherapy, and showed very low disease-specific mor-
tality after 10 years of follow-up, irrespective of treatment assignment, although active
monitoring is considerably less stringent than active surveillance protocols [30].

A negative consequence of active surveillance, however, is the invasive surveillance
associated with repeated tissue sampling. That may significantly reduce the quality
of life in these patients, cause infections, and increase the risk of urosepsis, which is
the most feared complication of transrectal prostate biopsies (sepsis rates range from
1-3%) [31].
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3.3.2 Radical Prostatectomy and Radiation

For intermediate and high-risk localized prostate cancer with a life expectancy of ten
years or more, curative treatment is recommended.

The prostate gland and seminal vesicles are surgically removed during a radical prosta-
tectomy, while whenever possible preserving pelvic organ function. Radical prostate-
ctomy is performed either using open surgery, traditional laparoscopic technique, or
robot-assisted laparoscopic prostatectomy. The advantages of robot-assisted prosta-
tectomy compared to open prostatectomy include less risk of blood transfusion and
shorter hospital stay. However, review reports have shown no significant difference
between the two surgical techniques with regard to oncological, urinary, and sexual
outcomes [32]. Results from the ProtecT trial, report a 99% 10-year cause-specific sur-
vival following curative treatment with radical prostatectomy in a screening population
[30]. Even if the goal of radical prostatectomy is to remove the prostate cancer while
preserving continence and potency, 20% of the treated experience incontinence, and
70% experience erectile dysfunction one year after surgery [33].

Radiotherapy is also used to treat clinically significant prostate cancer, where gamma
radiation beams are focused towards the prostate and the surrounding tissue. Ran-
domized studies have shown that radiotherapy in combination with hormone therapy
decrease mortality in high-risk cancers [34, 35, 36]. Radiation therapy is considered
to provide the same chance of cure as surgery. The only existing randomized trial
that directly compared radiation with radical prostatectomy, showed no difference in
10-year cancer-specific mortality for localized prostate cancer [30]. The most common
side effects after radiation therapy are reduced erectile function, rectal problems, and
more frequent urination.

3.3.3 Chemo- and hormonal treatment

Prostate cancer cells rely on testosterone for growth. The goal of hormone therapy is
to reduce levels of the male hormone testosterone and to prevent them from reach-
ing prostate cancer cells. Hormone therapy is used to shrink and hinder growth of
prostate cancer cells, but it does not cure prostate cancer. Hormone therapy includes
both drug treatment and surgical procedures to remove one or both testicles to lower
testosterone levels. Chemotherapy refers to drug treatments that uses chemicals to
hinder the growth of cancer cells. Chemotherapy might be used for metastatic prostate
cancer or if the patient is not responding to hormone therapy and is used to relieve
symptoms and to improve quality of life.
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3.4 Improvements in Prostate Cancer Diagnostics

Due to the insufficient sensitivity and specificity of PSA and the conventional use of
systematic biopsies, the current prostate cancer diagnostic approach has been shown to
result in high rates of overdiagnosis, overtreatment, and cancer misdiagnosis [7, 8, 37].
Therefore, a better-organized screening with improved methods for prostate cancer
is needed. Future clinical workflows for prostate cancer will likely incorporate risk
prediction models, targeted biopsies using magnetic resonance imaging (MRI), and
AI-assisted digital pathology of biopsy samples (Figure 3.4). We hypothesize that such
a pipeline will have better sensitivity to identify clinically significant prostate cancer
while also decreasing the harms associated with opportunistic PSA testing.

3.4.1 Multivariate Prediction Models in Prostate Cancer detection

Predictions model that estimates an individual’s risk can provide input for clinical
decision-making. Risk prediction models, such as the blood tests Prostate Health Index,
the 4KScore, the Stockholm3 test, and the urine test Prostate Cancer Gene 3 (PCA3)
have improved risk stratification for men in prostate cancer diagnosis [38, 39, 40, 41].
These models have shown improved prostate cancer early detection, in terms of in-
creased sensitivity for identification of significant prostate cancer as well as decreased
rates of unnecessary biopsies and overdiagnosis.

The STHLM3 study developed and prospectively evaluated the Stockholm3 predic-
tion model for screening of clinically significant cancer. The Stockholm3 score utilizes
a panel of 254 single nucleotide polymorphisms, 6 plasma protein biomarkers (PSA, in-
tact PSA, free PSA, hk2, MIC1, MSMB), and clinical variables to predict the probability
of ISUP ≥ 2 cancer. The test has been demonstrated to decrease the overdiagnosis of
ISUP 1 tumors and the number of performed biopsies while preserving the sensitivity
for clinically relevant prostate cancer detection.

3.4.2 Magnetic resonance imaging and targeted biopsies

Magnetic resonance imaging (MRI)-guided biopsies of suspicious lesions have been
proposed to aid in risk stratification and treatment selection in prostate cancer diagno-
sis. The Prostate Imaging Reporting and Data System (PI-RADS) score was established
for reporting MRI data. Each lesion receives a score between 1 and 5, with higher
scores indicating lesions more suspicious of malignancy, and scores 3 to 5, are usually
used to define a positive MRI. Studies such as the MRI-first study and PRECISION
study have shown that MRI improves the detection of clinically significant disease,
avoids unnecessary biopsies in men without MRI lesions, and reduces overdiagnosis
of clinically insignificant prostate cancer [42, 43, 44, 45].
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Figure 3.4: A possible future Prostate Cancer Diagnostic Pipeline. (A) Initial screening is performed
using the Stockholm3 test. (B) High-risk men are referred to imaging using MRI. Men with a positive
MRI (PIRADS ≥ 3) are referred to MRI-ultrasound fusion guided targeted biopsies, where 2-4 core
biopsies directed to the areas of the prostate where the MRI indicates that the lesions are located. (C)
Tumor profiling using next generation sequencing in combination with histological image analysis of
the prostate biopsy slides are used to predict the prognosis and optimal treatment. (D, E) The patient
gets an individualized treatment pathway based on the results from (C). (F) Men who are negative in
step (A) and (B) are followed up according to a screening protocol matching their risk level. (G) Men
diagnosed with low-risk prostate cancer are offered active surveillance where they are monitored every
year using S3M+MRI.

Data on screening trials that incorporate MRI are emerging and the role of MRI in PSA
screening has been studied in two recent randomized clinical trials, the STHLM3-MRI
screening trial, and the IP1-PROSTAGRAM study. The STHLM3-MRI screening trial was
a non-inferiority trial that compared an experimental biopsy strategy of MRI with tar-
geted and systematic biopsy in men with positive results on MRI compared to standard
biopsy in an intention-to-treat analysis of men with PSA 3 ng/ml or higher [46]. The
experimental strategy using MRI with targeted and systematic biopsy resulted in non-
inferior detection of clinically significant prostate cancer, a 48% reduction in performed
biopsies, and a 62% reduction in detection of clinically insignificant disease. The IP1-
PROSTAGRAM trial evaluated prostate screening with MRI using a PI-RADS score of 4
to 5 to define a positive test result and compared with screening using PSA levels of 3
ng/ml or higher and ultrasound-guided systematic biopsy. MRI detected nearly twice
as many clinically significant cancers and resulted in a similar number of performed
biopsies and detection of clinically insignificant cancers [47]. The STHLM3-MRI trial
also evaluated the combination of a blood-based risk prediction with MRI-targeted
biopsies. The main analysis compared Stockholm3 and PSA tests in the experimental
group (MRI-targeted and systematic biopsies) and showed that the Stockholm3 test,
provided non-inferior detection of clinically significant cancer, 36% reduction in MRI
procedures, and 8% fewer biopsies compared to the PSA test. In a secondary analysis,
the novel strategy of Stockholm3, MRI-targeted, and systematic biopsy provided 52%
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fewer biopsies and a 69% reduced overdetection of clinically insignificant low-grade
cancers compared to the traditional screening using PSA and systematic biopsies [48].

3.4.3 AI-assisted digital pathology of biopsy samples

The number of men undergoing prostate biopsies has markedly increased in the past
decades due to opportunistic PSA testing and there is a shortage of expert uro-pathologists
world-wide. As a result, pathology departments face a substantial increase in work-
load and complexity of diagnosis and grading of cancer. Gleason grading is the most
important factor for predicting prognosis and for treatment planning of prostate can-
cer. However, pathological assessment of prostate biopsies using Gleason grade is to
some degree subjective and suffers from high intra- and inter-observer variability. [49].
The use of reference databases [50] and AI is hoped to improve the consistency and
accuracy of Gleason grading and reduce the pathology workload.



Chapter 4

Data Material

This thesis used three primary data sources: the Stockholm PSA and Biopsy Register,
the STHLM3 diagnostic trial, and the STHLM3-AS study that we conducted during the
work of this thesis, to evaluate the Stockholm3 test in combination with MRI-guided
biopsies for disease monitoring in prostate cancer active surveillance.

4.1 The Stockholm PSA and Biopsy Register (SPBR)

The SPBR is a population-based database that includes data on all men who have
resided in Stockholm County since 2003. The register consists of all prostate biopsies
and PSA tests that have been performed in Stockholm between 2003 to 2016 [51].

For Study I, a new linkage of the SPBR and a number of Swedish population registers
was performed by the Swedish National Board of Health and Welfare (Socialstyrelsen)
for the study period during 2008-2017. Data linkage to the National Prostate Cancer
Register (NPCR) provided detailed data on diagnoses, tumor characteristics of biop-
sied individuals (tumor stage and Gleason score) and primary treatment selection of
patients (e.g. active surveillance or curative treatment using either radical prostate-
ctomy or radiation). The NPCR has a coverage of 98% compared with the Swedish
Cancer registry [52]. Further linkage was performed with the Swedish national popu-
lation registers for the extraction of patient data, causes of death, drug prescriptions,
and population demographics and labor statistics. Finally, we collected additional re-
biopsy material from the three different pathology departments in Stockholm County
(Karolinska University Laboratories Huddinge, Aleris, Unilabs). Detailed information
about Gleason grading and cancer length in re-biopsies during the study period of
2008-2017 was retrieved for the study participants from medical charts and linked to
the database.
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4.2 STHLM3 trial

The STHLM3 trial was a population-based prospective prostate cancer screening trial
including men without prostate cancer aged 50-69 years from Stockholm County dur-
ing 2012-2014. The study used a paired screening, where the subjects were initially
screened using PSA above ≥ 1ng/mL, and in the second step men were referred to a
biopsy either if they had a PSA ≥ 3ng/mL or a Stockholm3 score predicted probability
of ISUP ≥ 2 cancer above 10%. In total a random selection of 145,905 men were
invited to the study, 59,149 men were included in the study and 7,417 men underwent
prostate biopsy. The STHLM3 cohort is a unique data source that contains detailed
information on all study participants by combining clinical variables, plasma protein
biomarkers such as PSA, and Gleason scores on the biopsied individuals [40].

4.3 STHLM3-AS

The STHLM3-AS trial (NCT03956108) was a prospective, cross-sectional, multi-center
trial embedded within the STHLM3 trial [53]. The aim of the study was to evaluate
the performance of the Stockholm3 test in combination with MRI-targeted biopsies for
monitoring disease progression in patients on active surveillance and comparing this
to the standard follow-up for active surveillance at the time of the study using (PSA +
systematic biopsies).

Participants from the STHLM3 trial who had received a prostate cancer diagnosis,
and currently enrolled in active surveillance, i.e. with no history of starting treatment
using either surgery, chemotherapy, radiation therapy, or hormone therapy were invited.
From the STHLM3 study 1374 men were diagnosed with ISUP 1 cancer and out of
these 541 men that were currently on active surveillance were invited to take part in
the STHLM3-AS trial.

The inclusion of patients started in August 2018 and ended in December 2019. During
the study period, 309 eligible men were registered to the trial. In total we excluded 21
men that declined to undergo the study biopsies and 8 men for which the lab analysis
of the blood samples failed. After exclusion criteria’s, 290 men were included in the
study. At baseline, blood sampling was performed for Stockholm3 and PSA analyses,
and the patient was also asked to complete a study-specific questionnaire with ques-
tions on quality of life and anxiety. An MRI was performed and evaluated in line with
PI-RADS v2 guidelines at baseline. Men who had negative MRI results (PI-RADS <
3) underwent systematic biopsies (10 to 12 cores) and men who had positive MRI
results (PI-RADS ≥ 3) underwent both systematic and targeted biopsies. The original
pathological review was completed centralized for all study sites at Unilabs Stockholm.
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A second pathological reevaluation was carried out for study participants that were
upgraded from diagnostic ISUP 1 cancer to ISUP ≥ 2 cancer in the study biopsy, to-
gether with a random sample of ISUP 1 and benign biopsies. The second pathology
review was performed to validate the upgraded diagnoses, and was carried out by the
same expert uropathologist who completed the diagnostic pathology evaluation in the
STHLM3 trial. In total, 509 (13%) of the study biopsies were reevaluated in the second
pathology review.
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Methods

5.1 Deep learning

Machine learning methods use algorithms and statistical models to build computer sys-
tems that are designed to perform a specific task, without being explicitly programmed
how to perform the task. By providing the machine learning algorithm with large vol-
umes of either labeled or unlabeled data, the goal for the learning algorithm is to build
a mathematical model based on the training data that can be used to make reliable
predictions. Deep learning is a type of machine learning based on neural networks.
The capacity of deep learning methods has developed quickly in recent times primarily
due to access to large datasets and increasing computational resources.

Much of the development in deep learning dates back to 1940-1980, but it is only
in recent years these models have reached new highs in popularity. Some of the ear-
liest work were intended to provide computational models that were inspired by bi-
ological learning of the brain. Later work arose in the field of cognitive science with
the successful implementation of the back-propagation algorithm for training of deep
neural networks, that is still the main approach used today for training these mod-
els [54]. However, these models were generally believed to be too computationally
costly to fit with the hardware available at the time and did initially not live up to the
expectations, causing research in this field to fall out of favor during the 1990s. The
improvements in performance can mainly be attributed to advances in computational
efficiency, improved algorithms, and the increased availability of large sets of labeled
data. Deep learning has been applied with great results in many fields such as natural
language processing and computer vision, outperforming many traditional machine
learning methods that require hand-crafted features [55]. A representation learning
algorithm learns to perform the mapping from input data to output prediction, while
also learning the representation of the most important features directly from data.
Deep learning uses representation learning to build a nested hierarchy where more
complex features are derived from simpler features. In image processing, for instance,
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lower layers of the neural network might identify edges, whereas higher layers may
identify clear parts of the object such as images, digits, and letters. A traditional neural
network consists of three layers, an input layer that takes the input data, hidden layers
that extract features from the input space, and an output layer that generates the final
conditional prediction over all classes.

Convolutional Neural Networks (CNNs) is a subclass of deep neural networks that
have been proven to be very effective in image processing. CNNs work better for im-
ages compared to traditional neural networks due to a number of reasons. 1. CNNs
preserve the spatial structure by applying small filters on spatially neighboring pixels
across all axes of the image. The output of the filter is the degree of activation that
was generated in the precise specific spatial position of the input image. 2. Transla-
tion invariance, meaning that the elements of interest can appear anywhere in the
image, e.g. translated by one pixel and still be detected. This is achieved by parameter
sharing of the features across multiple image locations. 3. Parameter sharing enables
an efficient parametrization of the neural network, effectively reducing the number
of model parameters which simplifies training and reduces the risk of overfitting to
training data.

5.1.1 Deep learning in histopathology

The application of CNNs to images has obvious applications in medicine, in particular in
radiology and pathology [56]. Recently, deep learning models have been demonstrated
to be able to scan retinal images for identifying diabetic retinopathy in retinal fundus
photographs [57], to achieve dermatologist level assessment of malignant melanoma
[58], and to be able to detect lymph node metastasis in tissue sections from breast
cancer patients [59].

The most significant applications of deep learning to prostate diagnostic histopathol-
ogy have been conducted in recent years. A study by Litjens et al. used 225 pixel-wise
annotated whole slide images to train a deep learning model that attained an AUC
of 0.99 for cancer detection in prostate biopsies [60]. Two studies published in 2020,
one by our research group and the other by Bulten et al., demonstrated that AI could
achieve expert-level ISUP grading of prostate biopsies [61, 62]. A recently published
challenge for prostate pathology showed that the performance of AI algorithms could
generalize across different patient populations, laboratories, and scanners in a large
multinational validation setting [63]. Furthermore, studies have also applied deep
learning to grading of prostatectomy tissue samples [64, 65].
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5.2 Conformal prediction

Conformal prediction is a mathematical framework that uses past experience to de-
termine precise levels of confidence in new predictions. Given a user-specified error
probability ε, together with a prediction method (such as an AI system), it produces a
prediction region which is a set of labels that contains the true label with probability 1 -
ε. This contrasts to point predictions from conventional prediction models. Conformal
prediction is lightweight and can be implemented for all learning algorithms, and is
founded on a well-defined mathematical theory that can guarantee that predictions
are valid under the assumption of independent and identically distributed data [66].

Given a training set (x1, y1), ..., (xn, yn), where x i is a feature vector and yi ∈ (Y1, .., Yk)
is a known class label out of a finite set of possible classes. The goal of the classification
task is to predict the class label yn+1 for a new patient xn+1. Most standard prediction
models output predicted probabilities for each class or a single value classification
yn+1. Conformal predictors instead outputs a prediction region Γ ε = {yi, .., yk} given
a user-specified significance level or error probability ε ∈ (0, 1). Conformal prediction
works by trying every potential class label (Y1, ..., Yk) as a candidate label for yn+1 and
evaluating how well the potential class label is conforming to the training instances.
(x1, y1), ..., (xn, yn).

5.2.1 Nonconformity measure

The concept of conformity is represented by a non-conformity score, that intuitively
quantifies how different the new example is compared to the training examples. The
most common non-conformity for classification problems is one minus the predicted
probability. However, this score function is completely user-defined and can take any
form. The non-conformity measure is used to compute the non-conformity scores ai

for each labeled example i = 1, . . . , N of the training set together with the score of
each test example an+1 (with an unknown label). These sets of non-conformity scores
can be used to quantify how different the new example is compared to the training
examples.

5.2.2 P-values

To measure how conforming a potential label for a test example N+1 is with previous
data, we compute the fraction of non-conformity scores ai (i = 1, ..., N + 1) that are
equal or larger than aN+1: |i = 1, .., n+ 1 : ai ≥ an+1|/n+ 1. A large p-value for xn+1

and a proposed class label Y indicates that the pair is similar or conforming to previous
examples and that Y is a likely class label.
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5.2.3 Prediction regions

Given a user-specified confidence level 1 - ε, the potential labels whose p-value are
larger than ε will be accepted. Using this strategy, it is guaranteed that the true label
will be included in the prediction region with probability 1 - ε [66].

Conformal predictors output prediction regions that can contain any number of all
possible labels, which contrasts with the single-value classifications that we are used
to from regular prediction models. A smaller prediction region is more informative
or efficient, and ideally, the prediction set would consist of a single predicted class.
A conformal predictor can output multiple classes when the model is unable to dif-
ferentiate between the classes at the user set confidence level. Empty set predictions
are examples where the model was not able to assign any labels, i.e. an example for
which no p-value was larger than ε and a prediction could thus not be made, usually
indicating that the new test example is very different or non-conforming to the training
data that the model was developed on.

Similar to how higher intended levels of confidence in parameter estimates result
in wider confidence intervals, larger desired levels of confidence in the prediction re-
sult in larger prediction regions. Conformal prediction thus permits us to maintain a
low error rate by only accepting predictions with high confidence. The clinical cost
of generating incorrect predictions can be taken into consideration by adjusting the
confidence level. For example, a false positive test could lead to an incorrect diagnosis,
which in the worst case could lead to unnecessary treatment, while a false negative
test result could lead to missed cancer detection.

5.2.4 Transductive and Inductive conformal prediction

The initial definition of conformal prediction was in an online transductive framework
[66, 67]. This online setting uses all available data to compute the conformity score for
every new instance that we need to predict, and therefore retraining of the underlying
prediction model is required for the calibration and test examples. The online setting is
appealing in that it utilizes all available data for the prediction of new examples, but it
is frequently computationally too costly. Additionally, not all applications—particularly
those in medicine—can be used in an online setting. An inductive offline framework
is most commonly employed instead, which uses a fixed model that is only updated
between longer intervals.

Conformal prediction was therefore extended to the inductive setting [68], where
the model is developed in the training set and then used to make predictions on the
held-out test set. When compared to transductive conformal predictors, inductive con-
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formal prediction is computationally more efficient. For inductive conformal prediction,
the training data must be split into a proper training set, which is used for training
the underlying prediction algorithm, and a calibration set which is used for tuning the
conformal predictor.

5.2.5 Mondrian conformal prediction

The error rate at the population level is guaranteed by conformal predictors for all
observations in a dataset. However, this means that it is possible that the error rate
is higher or lower within different substrata of the data, for example, the error rate
might be higher for one class and lower for another class label. Mondrian conformal
prediction was created in order to guarantee the pre-specified error rate within each
substrata of the population. By tuning the conformal predictor within each substratum
rather than applying it to the entire population, the desired error rate is mathematically
guaranteed within each stratum.

5.3 Model Evaluation

Discrimination refers to how well the prediction model can separate between those
with an event and those without the event and can be described in terms of sensitivity
(true positive fraction) and specificity (true negative fraction). To classify a test as
positive or negative, we apply a cutoff to the predicted probability, and the sensitivity
and specificity can be evaluated at each possible threshold.

The Receiver operating characteristics (ROC) curve is a plot of the sensitivity and
1 – specificity (false positive rate) over all possible thresholds for the probability of an
outcome. The ROC curve is the primary way to visualize the operating characteristics
and the trade-off between the sensitivity and specificity of a test, as well as the clinical
consequences of different thresholds. Higher thresholds lead to increased specificity
at the cost of lower sensitivity. For example, lowering the threshold for the PSA test
for prostate cancer screening leads to overdiagnosis and overtreatment of clinically
non-significant prostate cancer.

The area under the ROC curve (AUC) is commonly used to summarize the discrimi-
native ability of a prediction model over all possible thresholds. The AUC describes
how well the predicted probabilities can rank-order the outcomes. The AUC can be
interpreted as the probability that a randomly selected pair of cases and controls are
correctly ranked by the model. The AUC ranges from 100% for a model that discrimi-
nates perfectly between cases and controls to 50% for a non-informative model with a
discriminative ability equal to a coin flip. Confidence intervals for the AUC are usually
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calculated using bootstrap resampling [69]. The DeLong test can be used to test the
difference between AUCs [70].
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Results

6.1 Overview of the main findings

In Study I, we studied the uptake and the follow-up of active surveillance in patients
who were diagnosed with low-risk prostate cancer in Stockholm County between 2008
and 2017. In Study II, we evaluated the performance of MRI-targeted biopsies and the
Stockholm3 test, for monitoring disease progression in patients on active surveillance.
In Study III, we constructed an AI system for automated pathology assessment, cancer
diagnosis, and Gleason grading, using digitized biopsy core samples from the STHLM3
study. In Study IV, we implemented a framework based on conformal prediction that
was used to estimate the uncertainty of the prediction for the AI system developed
in Study III. The uncertainty estimates were used to control the error rate of the AI
system, such that only reliable predictions are accepted and that unreliable predictions
can be detected and flagged for human assessment. In Study V, we explored if weakly
supervised deep learning can be used to learn and detect possible associations between
genetic risk factors (SNPs) and morphological features in prostatic tissue.

6.2 Study I

Active surveillance aims to reduce overtreatment and potential treatment-related side
effects and is increasingly utilized as an alternative to curative treatment for low-risk
prostate cancer. This conservative management includes serial testing for disease pro-
gression to provide selective treatment with curative intent. However, an international
consensus on the methods and frequency of follow-up testing to be used for screening
for disease progression is still lacking.

We performed a retrospective cohort study of 6021 men aged 40-75 years who were
diagnosed with low-risk prostate cancer in Stockholm county between 2008 and 2017.
The study aim was to describe the uptake and follow-up of active surveillance, as well
as to demonstrate the transition for these patients from active surveillance to curative
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treatment over a 10-year period based on PSA dynamics and Gleason upgrading in
surveillance biopsies.

On one hand, our results showed that the majority of men who enrolled in an ac-
tive surveillance program remained on active surveillance throughout the follow-up
(81.6%, during a median follow-up of 3.5 years), and that initiating curative treatment
was usually preceded by an upgrade in Gleason in a repeat biopsy during active surveil-
lance follow up.

On the other hand, we found that active surveillance was underutilized during the
study period and that these men to a high degree do not receive a follow-up according
to the current guidelines (see Figure 6.1). However, the intensity of active surveillance
with regard to PSA testing and surveillance biopsies was improved over the study pe-
riod. But we also showed that a large proportion of the men who were eligible for active
surveillance at diagnosis were not entering AS programs (approximately 50%), but
rather opted for a curative treatment that was closely related to the primary diagnosis.
Taken together, our results suggest the need for optimized and less invasive protocols to
increase adherence and to reduce the problem with overtreatment of low-risk prostate
cancer.
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Figure 6.1: The Yearly proportion of individuals with a repeat biopsy and repeat PSA during a follow-up
of 10 years (time on active surveillance). The two horizontal lines shows the recommended testing
(yearly) by the national guidelines during the study period (2008-2017)
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6.3 Study II

The primary aim was to evaluate cancer detection of MRI-targeted biopsies and com-
pare this to the standard systematic biopsy procedures for men on active surveillance
(at the time). The secondary aim was to evaluate the performance of the Stockholm3
test when used as an initial triage instrument to select men needing MRI and sub-
sequently targeted biopsies in an active surveillance cohort, i.e. by filtering out men
with a higher predicted probability of ISUP ≥ 2 prostate cancer reclassification. We
evaluated two endpoints: 1. Detection of ISUP ≥ 2 prostate cancer. 2. Clinically signif-
icant prostate cancer was defined using the National Comprehensive Cancer Network
(NCCN) guidelines (ISUP 1 and > 50% positive cores, ISUP 2 and T2, or ISUP 2 and
PSA > 10 ng/mL) [71].

The main results from the study showed that the addition of MRI and targeted biop-
sies to conventional systematic biopsies during active surveillance showed increased
sensitivity to detect both outcomes, 52% more ISUP ≥ 2 prostate cancer and 65%
more clinically significant prostate cancer were detected compared with using only
systematic biopsies. (see Figure 6.2) Few men with a negative MRI harbored clinically
significant prostate cancer (1.4%). Secondly, our results suggested that by incorporat-
ing risk prediction models in follow-up to select men for evaluation using MRI, 23%
of the MRI investigations could be avoided, and 56% of men could postpone a biopsy.
While still detecting 27% more ISUP ≥ 2 prostate cancer and 53% more clinically
significant cancer in comparison to standalone systematic biopsies.

In conclusion, the results from our study suggest that combining systematic and MRI-
targeted biopsies in active surveillance increase sensitivity to detect prostate cancer
reclassification in these men. The inclusion of risk prediction models in active surveil-
lance may decrease the requirement for MRI use in patients with low-risk prostate
cancer.

6.4 Study III

The aim of the study was to build a AI system for automated cancer diagnosis and
grading of digitized whole-slide images of prostate needle biopsies. To develop the AI
system we digitized 6,953 prostate biopsy cores from 1,069 men. The biopsy samples
were primarily collected from STHLM3 participants, but an additional 271 slides from
men with prostate cancer from another pathology laboratory were included to extend
the data for high grade cancer (ISUP 4 and ISUP 5). The held-out test set consisted of
a random selection of 1631 digitized biopsy samples from 246 STHLM3 subjects. The
data were split by patient level to create entirely independent test data. The external
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Figure 6.2: Evaluation of biopsy methods for detection of ISUP ≥ 2 cancers and clinically significant
prostate cancer using the definition from the NCCN guidelines.

test set consisted of 330 biopsy samples from 73 subjects, from the Karolinska Uni-
versity Hospital. Two ensembles of convolutional deep neural networks (DNNs) were
used for training the AI system. In the first ensemble, image patches were binary clas-
sified into benign or cancer tissue, whereas the second ensemble classified the image
patches into Gleason score 3 to 5 patterns. Both ensembles contained thirty Inception
V3 models with pre-training on ImageNet.

For cancer detection in prostate biopsies, the AI system achieved an AUC of 0.997
(95% CI: 0.994-0.999) on the held-out test set and an AUC of 0.986 (95% CI: 0.972-
0.996) on the external test set. With a sensitivity of 99.3%, the AI system achieved a
specificity of 88.9%. At this sensitivity level, the AI system failed to detect five biopsy
cores with cancer across 721 malignant biopsy cores - four ISUP 1 grade and one ISUP
2 grade - in the held-out test set. At this operating point, no man was misdiagnosed,
since the remaining malignant cores from these men were correctly classified. At a
specificity of 88.9%, 809 out of 910 benign cores were spared from “human” patho-
logical evaluation. The correlation between the cancer length measurements by the
study pathologists and estimates of the AI system was 0.96 (95% CI: 0.95-0.97) on the
held-out test set and 0.87 (95% CI: 0.84-0.90) on the external test set. The Cohen’s
linear kappa statistic between the grade assigned by the AI system and the study pathol-
ogist was 0.83 on the held-out test set and 0.70 on the external test set. The grading
performance was also evaluated on 86 cancer cases from the ImageBase dataset, a ref-
erence dataset developed by the ISUP ImageBase expert panel with gradings that were
performed independently by 23 international expert pathologists. The mean pairwise
kappa achieved by the AI system was 0.62, whereas the kappa values of the patholo-
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gists in the expert panel ranged from 0.60 to 0.73.

These results demonstrate the possible clinical utility of automated digital pathology
of prostate biopsies in a number of different ways. In a scenario where the pathologists
are assisted to pre-screen all biopsy samples, the AI system has the potential to identify
and remove benign cases, and then only those predicted positive would need to be
assessed by expert pathologists. Furthermore, it appears feasible that measurements of
cancer length can be automated by an AI, which is an important task to quantify tumor
burden and provide accurate recommendations for where to focus attention when
assessing the core, which could lead to time savings for pathologists on this specific
task. Lastly, the grading performance is on par with that of leading prostate pathol-
ogy experts motivating the potential clinical utility of these models in prostate cancer
pathology. For example, either as decision support for inexperienced pathologists or to
provide expertise to regions where there is a shortage of uro-pathologists.
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6.5 Study IV

Studies have shown that AI can provide diagnostic and grading for prostate pathology
with equivalent performance to that of expert pathologists. The widespread use of AI
systems will unavoidably expose these systems to data that is outside of the domain
of training data. Being able to detect unreliable predictions in order to identify and
flag them for human assessment will therefore be key to ensuring patient safety. How
to detect such unreliable predictions is however a question that so far has received
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very little attention in the medical literature. Conformal prediction is a mathematical
framework that provides well-calibrated prediction, where the accuracy of the predic-
tions is equal to or greater than a confidence level specified by the user (e.g. a required
confidence level of 90% results in at least 90% accurate predictions). Conformal predic-
tion is based on the exchangeability assumption, that all data (training and test data)
comes from the same distribution but occurs in a random order, which is a slightly
weaker assumption than i.i.d. (usually imposed by most standard statistical models).
The validity property of conformal prediction can be used to detect data drift over
time, potential variations in the appearance of new data compared to training data
that could result in a decline in model performance (an invalid model), and warn that
re-calibration is needed to ensure accuracy.

The aim of the study was to develop conformal prediction for AI-assisted prostate
pathology and describe how the system can be used to control the error rate of the AI
model: such that it only accepts predictions with high confidence. Unreliable prediction
can occur due to several reasons: We evaluated the conformal predictor’s ability to
detect: 1. Systematic variations between the test data and the training data leading
to a decline in model performance (poor generalizability due to data drift caused by
variations in the preparation of tissue between laboratories and digital scanning with
a variety of scanners). 2. Individual atypical prostate tissue, such as rare malignant
subtypes and benign mimickers that the model did not encounter during training.

For cancer detection, the conformal predictor’s error rate was 0.1% as opposed to
an error rate of 2% by the AI model without conformal prediction when provided with
new data drawn from the same distribution as the training data. Our results on the
dataset consisting of atypical prostate tissue showed that the conformal predictor could
detect such unusual cases. Using conformal prediction the error rate was decreased
from 25% (AI system when not using conformal prediction) to 2% while flagging 80%
uncertain predictions for human review. The conformal predictor was able to detect
systematic variations in external data, causing a decline in predictive performance
using relatively small samples of 49 observations for an external scanner and 10 ob-
servations for both an external pathology laboratory and scanner. These results show
how conformal prediction can be used to facilitate a responsible implementation of AI
systems in clinics, promoting patient safety by keeping the error rate low and providing
ways to detect unreliable predictions.

6.6 Study V

Several genetic markers have been established as prostate cancer risk factors in recent
years. Molecular profiling to detect genetic risk factors is important in cancer diag-
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nosis and prognosis, but it is expensive and thus not widely used in prostate cancer
screening. About 5% of the male population aged 50 to 70 has undergone a negative
prostate biopsy. Associations between genetic alterations and morphology can be used
for triaging patients for genetic testing after undergoing a prostate biopsy, which can
impact individualized prostate cancer screening strategies. The aim was to study if
weakly supervised deep learning can be used to learn associations between genetic
risk factors and morphological features in prostatic tissue. The genetic risk factors that
were investigated were a polygenic risk score (PRS) derived from a panel of 254 single
nucleotide polymorphisms (SNPs) and mutations in higher penetrant genes (HOXB13).
This manuscript will in its final form also include associations between mutations in
higher penetrance genes (e.g. BRCA1 and BRCA2) and prostate tissue morphology, but
sequencing results have not yet been finalized at the time of writing this.

Tissue morphology changes radically with cancer development and could potentially
confound any association between genetic risk markers and morphology. Therefore,
the evaluation was performed only on benign men. We digitized 9,752 benign biopsy
cores from 961 STHLM3 participants. The polygenic risk score was categorized into
two risk groups: low genetic risk load (≤20th PRS percentile) and high genetic risk
load (≥80th PRS percentile). From the benign men in the STHLM3 trial, we identified
120 men with mutations in the HOXB13 gene and included 999 benign biopsies in
the training set. Weakly supervised DNNs were trained to predict genetic risk load
class-wise probabilities as well as HOXB13 mutation status for each biopsy core, and
five-fold cross-validation was used to evaluate the performance.

The AUC for predicting low vs. high polygenic risk was 0.58, and the AUC for the
prediction of HOXB13 mutation carriership was 0.65. PRS load was predicted more
accurately at younger ages (AUC = 0.64) and lower PSA levels (AUC = 0.65). These
results provide proof of principle for studying the use of morphological information
in multi-modal prostate cancer risk prediction models. That has the potential to im-
prove risk stratification among men following a negative biopsy and would offer a
cost-effective way to detect genetic risk factors without molecular profiling.
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Discussion

7.1 Improved active surveillance

7.1.1 Current active surveillance

Active surveillance is the recommended primary treatment choice for low-risk prostate
cancer patients (tumor stage T1-T2a and ISUP grade 1 and PSA < 10 ng/mL) with
an expected remaining lifetime of 10 years or more. Studies now provide long-term
follow-up of these patients showing strong evidence that active surveillance is a safe
management strategy for men with low-risk prostate cancer, with a risk of death and
metastasis of less than 1% over a 10-year period. The follow-up of patients on active
surveillance with an expected remaining lifetime of 10 years or more currently consists
of repeat biopsy, serial PSA, and DRE. The invasive follow-up that follows from repeated
tissue samples, however, is a drawback of active surveillance since it increases the risk
of urosepsis and infections and lowers the patient quality of life. The analysis of the
data from the SPBR in Study I, showed that a majority of men did not receive a follow-
up according to the guidelines at the time, and that only 50% of eligible men received
active surveillance as their primary treatment choice during the study period. These
findings suggest the need for improved and less invasive methods for active surveillance
to improve adherence and reduce the issue with overtreatment of low-risk prostate
cancer. These results provided motivation for Study II, which investigated the potential
use of MRI and risk prediction models in the follow-up of active surveillance.

7.1.2 Incorporating MRI and biomarkers in active surveillance

Improved risk stratification is important in the active surveillance setting to be able to
filter out significant prostate cancer that would benefit from curative treatment, which
is crucial to reduce the overtreatment of low-risk disease. Several studies have demon-
strated the potential benefits of MRI in prostate cancer screening. Multiple studies have
also shown that MRI is useful for the selection of men for AS and is recommended by
the national and European prostate cancer guidelines due to its improved sensitivity
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and specificity. MRI for AS follow-up is also beginning to appear in the guidelines.
However, strategies for incorporating MRI into follow-up and assessing its efficacy for
disease monitoring in AS have yet to be fully established [24, 25, 72].

One important question is whether men should undergo MRI-targeted biopsies in ad-
dition to systematic biopsies during follow-up of active surveillance. Our results from
Study II support the use of a combined approach using both MRI-targeted and system-
atic biopsies, which showed an increased detection of 52% more ISUP ≥ 2 prostate
cancer compared to performing systematic biopsies in all men. A finding that is consis-
tent with previous observations in a screening setting [73]. Although retrospective data
on active surveillance cohorts have suggested similar findings, this has not been fully
established for active surveillance [74, 75]. There is an ongoing debate if MRI-negative
men need to undergo routine biopsies during follow-up. An alternative approach was
evaluated in Study II that only performed targeted and systematic biopsies in MRI-
positive men showed a 30% increase in the detection of ISUP≥ 2, reducing the number
of performed biopsies by 49%, while failing to diagnose 1.4% of clinically significant
prostate cancers in MRI-negative men. Data from other prospective trials have reported
rates of upgrading to ISUP ≥ 2 cancer in MRI-negative men ranging between 1.8%,
4%, and 11% [76, 77, 78]. Two recent meta-analyses have evaluated the value of serial
MRI to predict upgrading in active surveillance follow-up. In summary, the findings of
these two independent studies concluded that evaluation using MRI alone is currently
not an option to provide safe monitoring of disease progression in active surveillance.
The need for additional biomarkers and clinical variables that can be combined with
MRI evaluation, as well as further standardization of reporting of MRI is identified as
key points to address [79, 80].

The introduction of MRI in prostate cancer diagnosis brings a couple of new challenges.
The MRI evaluation is known to be associated with a high inter-observer variability
making the accuracy highly dependent on the experience of the reporting radiologist.
The large natural variability in the presentation of MRI lesions on serial MRI com-
plicates the monitoring of disease development with MRI. Another consequence of
the introduction of MRI in prostate cancer diagnostics is that it is believed to cause a
grade shift that might lead to overtreatment. MRI is more sensitive to detecting smaller,
high-grade cancers that, on average, have a better prognosis than those detected by
systematic biopsies [81]. This could potentially lead to unnecessary reclassification
and overtreatment in active surveillance cohorts. It has been suggested that MRI find-
ings may be combined with PSA density, PSA velocity, or biomarker risk prediction to
improve the selection of men for follow-up biopsy. Implementing MRI in the follow-up
of AS would also induce a substantial cost and pose a risk of overwhelming healthcare
resources. The inclusion of additional biomarkers or risk prediction models might help
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to mitigate some of these problems – by providing additional risk stratification before
MRI evaluation and targeted biopsies. Incorporating biomarkers might decrease the
number of MRI investigations needed. Our results showed that adding the Stockholm3
test to initially select men at increased risk led to a reduction of MRI investigations
by 23% and the number of performed biopsies by 56%, while only missing the diag-
nosis of 1.3% clinically significant disease in men with a negative MRI and a negative
Stockholm3 test.

7.2 AI-assisted prostate pathology

7.2.1 Clinical adoption of AI in prostate pathology and main challenges

The work by our research group and others has demonstrated that the performance
of these AI systems is equivalent to that of leading experts in prostate pathology with
respect to sensitivity, specificity, and grading concordance with expert uro-pathologists.
Pathologists are also demonstrating growing interest and optimism in the clinical imple-
mentation of AI methods. In a recent survey of ISUP members, 71% of the participants
agreed that machine learning will play an increasingly important role in screening
and decision support in prostate cancer histopathology [82]. Despite these successes
in advancing AI for prostate pathology, more work needs to be done before we will
have mature AI systems handling both diagnosis and grading implemented clinically.
As far as we are aware, there is currently no high-level evidence demonstrating that
AI systems improve the quality of prostate pathology in a prospective clinical setting,
and we do not know of any ongoing prospective multi-site clinical trials. Similarly,
to the best of our knowledge, only one study exists to this date that independently
assesses the validity of multiple algorithms for the problem in a multinational setting
(the PANDA challenge [63]). In particular, the problem with the generalizability of AI
systems is currently unsolved. We expect that widespread clinical implementation of
AI systems will unavoidably expose these models to data that is outside of the domain
of training data, with data originating from different laboratories, different pathology
scanners (or even stain variation or changing processes within a lab [83], a different
patient population, wear and tear of scanners, etc. These are challenging problems
already with simple clinical risk calculators or nomograms used today [84], and the
challenges will only become larger with the implementation of complex AI systems
[85].

7.2.2 Improving generalizability of AI for digital prostate pathology

In order to develop a robust AI system for diagnosing and Gleason grading prostate
cancer in biopsies, our research group is currently aiming to incorporate a couple of
key areas into the model architecture: scanner calibration, scaling up the amount of
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training data, improved algorithms, modeling of morphological heterogeneity, and im-
plementation of automated quality control into the prediction algorithm to make sure
that the model only makes predictions on the data it was designed to handle.

The use of Generative Adversarial Networks and other computational methods for
staining and data augmentation can potentially account for some of the variations in
whole slide images across different digital scanners [86, 87]. However, these methods
are known to be hard to design to accommodate all possible sources of variations. It has
been shown that the use of physical calibration slides can normalize color variations
between different scanners. These methods allow the colors of whole slide images to
be calibrated according to the International Color Consortium (ICC) profile of scanners
[88].

The appearance of digitized biopsies varies greatly in terms of different tissue prepa-
ration techniques and digital scanners used in different clinics. To train robust AI mod-
els, we have retrospectively collected biopsy samples across nine European laboratories.
This data is considerably larger and includes various scanners compared to previous
studies, and will be used both to enrich the training data as well as to facilitate val-
idation of the algorithm in an international multisite setting. We are also collecting
additional data on atypical prostate tissue, such as rare cancer subtypes and benign
mimics of cancer. These subtypes are rare and typically difficult to diagnose and grade
for pathologists and might be accidentally mistaken for cancer during pathology as-
sessment. These datasets will be an important data source for quality control and to
assess the robustness of the AI system.

We are also improving the generalization of our AI algorithms for prostate pathology
by incorporating the main findings of the PANDA challenge into the development
of novel AI methods for improved algorithm robustness. Some of the key findings
were that weakly supervised AI algorithms are sufficient for obtaining pathologist-level
performance in Gleason grading, and that various techniques for controlling label noise
are important to improve performance.

Explicit modeling of other features that are important for pathological assessment
and prognosis of patients, such as perineural invasion (PNI) and cribriform morpholo-
gies, might be another way to improve AI-assisted prostate pathology [89].

7.2.3 AI safety for clinical adoption

The most straightforward way to address the problem of the generalizability of AI
systems to external data is to collect more heterogeneous training data. However,
accommodating all possible sources of variation will be nearly impossible, and the
performance of the models may diverge over time with the inclusion of new scanners
or even a drift in the performance of a specific machine (e.g., an aging scanner in a
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specific laboratory, or due to scanner software updates). An additional strategy for
dealing with the generalizability problem is to incorporate automated quality control
into the prediction algorithm to make sure that the model only makes predictions
on the data it was designed to handle. As a result, more AI research is emphasizing
the importance of including confidence estimates with the predictions. This, in turn,
may help pathologists build trust in AI systems and facilitate clinical adoption [90, 91].

The primary objective of Study IV was not to directly improve the accuracy of the
performance of the underlying deep learning algorithm per se but to construct a frame-
work based on conformal prediction that can assess the reliability and estimate the
uncertainty of the predictions for AI systems in digital pathology, such that unreliable
predictions can be identified for human pathology assessment. Conformal prediction
therefore provides a way to control the error rate of the AI system so that it only accepts
predictions with high confidence. Conformal predictors output multi-label predictions
when the AI system is unable to assign reliable single predictions. So, for example,
in the case of classifying cases as either benign or malignant, the conformal predic-
tor would classify an unreliable prediction as both classes (i.e., both malignant and
benign). Such a prediction is not incorrect per definition but would require human
assessment since it is inconclusive. Therefore, it can be argued that conformal pre-
diction provides more informative predictions in the sense that we get a prediction
interval around the prediction that enables us to assess how confident we are in the
prediction and to distinguish between more certain and less certain predictions. We
also believe that the prediction regions better reflect the uncertainty in Gleason grad-
ing [49]. This also opens up an interesting discussion about the synergies of humans
and machines working together to enhance the precision of prostate pathology, where
the conformal predictor flags unreliable predictions for human assessment. We can
then achieve expert uro-pathologist-level diagnostic accuracy on the flagged biopsies.
Expert pathologists would then have more time to concentrate on difficult and unreli-
able predictions. Conformal prediction provides well-calibrated predictions where the
accuracy of the predictions is equal to a user-set confidence level. To achieve this, the
conformal predictor produces more conservative prediction sets (classification) com-
pared to the point predictions made by conventional prediction models. The calibration
of prediction models is particularly important in addition to the discriminative perfor-
mance of the model. Calibrated risk estimates are essential for informing patients about
reliable risk estimates that are not over- or underestimated (e.g., not giving patients
false hope). A well-calibrated model with a lower AUC might be clinically preferable
compared to a model with better discrimination that provides poorly calibrated output
[92]. The use of more diversified training data will lead to improved generalizability
of the performance. Nonetheless, regardless of how good the AI models are, there is
always a chance that the models may be exposed to data outside its reliable prediction
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domain. This is where we believe that the use of conformal prediction can function
as a quality control step to facilitate the safe clinical implementation of AI systems so
that unreliable predictions can be detected.
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Ethical considerations

We have ethical approval for all studies from the Ethical Review Board in Stockholm,
and all study participants need to provide informed consent, except for Study I, which
is a registry-based study. Information that can be used to identify a participant is always
kept separate from other data. We use individual-level data in accordance with the
General Data Protection Regulation (GDPR), the Swedish law, and KI-guidelines to
ensure that information is managed securely. Personal information was handled in
compliance with the Swedish Personal Data Act (1998:204). The study participant’s
blood samples are treated in accordance with the Swedish Biobank Act.

The paired design in Study II enabled us to compare all possible combinations of
interventions in an efficient way within each patient. However, it also imposes addi-
tional testing on these individuals, with blood tests, an MRI, and two different biopsy
schemes. This additional testing raises some ethical questions. The participants were
invited to the study by their urologist at their yearly follow-up. Men with a systematic
biopsy within 12 months did not undergo systematic biopsies, and the previous biopsy
was analyzed. Men with a previous MRI within the past 12 months did not undergo
a new MRI within the study. This synchronization minimized the need for additional
biopsies and MRIs, and we used the investigations that were already planned within
the AS surveillance program for each individual. Due to the paired design used, the
risk of missing aggressive cancers is small. Data from the STHLM3 study show that the
Stockholm3-test can identify as many or more aggressive prostate cancer compared to
PSA. According to existing evidence, targeted biopsies find more high-grade cancers
than systematic biopsies. There might be instances where small clinically significant
tumors are missed since they are not visible on MRI. However, systematic biopsies
were also performed on these men, with the possibility of finding small tumors not
visible on MRI. We argue that this design leads to fewer ethical dilemmas than if we
had randomly assigned participants to separate surveillance arms. With randomization,
each participant would receive only one surveillance scheme, where one might be more
beneficial than the other.

Current prostate pathology is associated with a number of challenges. Such as an
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increase in the number of performed biopsies and analyzed globally, a global shortage
of experienced uro-pathologists, and high inter-reader variability among pathologists.
AI in medicine has the potential to alleviate some of these problems by providing
decision support to pathologists and diagnostic support in parts of the world where
there might be a lack of experienced pathologists. However, the implementation of
artificial intelligence in medicine will undoubtedly raise a number of ethical concerns
in the future. Such as the question about responsibility and how these systems should
be able to account for patients’ unique characteristics and conditions. As a result, there
is current resistance to medical AI implementations among patients and physicians. But
the research in this thesis is still in the proof-of-principle phase and does not currently
raise any direct ethical issues about AI in medicine.
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Conclusions

Prostate cancer screening, whether unorganized or organized, will lead to the detec-
tion of many localized tumors that are unlikely to cause symptoms in the diagnosed
man or be the primary cause of death. AS plays a key role in balancing overdiagnosis
and overtreatment of such cancers. The pathological evaluation of prostate biopsies
determines the therapeutic course of treatment for prostate cancer patients. However,
current clinical practice faces challenges such as a high level of inter-observer variabil-
ity among pathologists and a global shortage of uro-pathologists. Prostate pathology
may benefit from the development of AI technology in digital pathology, which also
aims to lessen inter- and intra-observer variability.

More specifically we conclude the following:

• Study I described active surveillance for low-risk prostate cancer in Stockholm
between 2008 and 2017. The results point to the need for less invasive methods
for active surveillance to improve uptake and follow-up.

• In Study II, we performed the STHLM3-AS trial to investigate the potential use of
MRI and risk prediction models in the follow-up of AS. The results show that the
Stockholm 3 test and MRI have the potential to provide less invasive and more
cost-effective monitoring for AS.

• In Study III, an AI model was developed for cancer detection and grading of
prostate biopsies. The results show that computational pathology can assist pathol-
ogists in prostate cancer diagnostics with high accuracy, which has the potential
to reduce inter-observer variability and provide high-accuracy diagnostics in parts
of the world where there is a shortage of prostate pathology specialists.

• Even though computational pathology shows promise in prostate cancer diagnos-
tics, the clinical implementation of these models is not trivial. The performance
of the models is highly sensitive to variations in the underlying data, and the
generalizability of AI models to external data is currently unsolved. In Study IV,
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we implemented and used conformal prediction to assess the reliability of the
predictions of the AI model from Study 3. The conformal predictor to detect unre-
liable predictions introduced by variations in tissue preparation, digital scanners,
and the existence of unusual prostate tissue that the model was not exposed to
during training.

• In study V, we investigated whether deep learning models could learn and de-
tect possible relationships between tissue morphology and prostate genetic risk
factors. The findings offer proof of principle for investigating the potential of
incorporating morphological information in multi-modal prostate cancer risk pre-
diction models.
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