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POPULAR SCIENCE SUMMARY OF THE THESIS 

Imagine yourself being a child and entering a library containing all the books ever written. 
Initially you are curious about many subjects, but with time you become inclined towards 
reading books of a certain topic, like arts or natural sciences. Eventually, you choose an even 
more dedicated path finally resulting in your current career. Other people entering the very 
same library chose another set of books to read, leading them to specialize as nurses, 
constructors or web developers.  

Like the child in the library having the potential to pursue any profession, stem cells have the 
capability to generate highly specialized cells, as neurons, muscle cells and skin cells. The 
cells’ genetic library is its DNA, where the information for generating each cell type resides, 
but the cell fate is controlled by the combination of genes that are activated and silenced. 

The regulation on how genes are turned on or off is of extreme importance to study, to 
understand the complexity of human development, where one fertilized cell renders a highly 
complex human being, or to understand erroneous situations where the wrong sets of genes are 
activated, causing disease progression. In this thesis we have studied the interaction of DNA 
with different proteins that mediate whether genes are turned on or off. These proteins may be 
seen as librarians that facilitate the access to certain books or move shelves to restricted areas.  

In Paper I, we studied the protein TET1 which normally helps removing DNA methylation, 
which is a road blocks for gene expression. Surprisingly, we found that it also has a role in 
maintaining certain repetitive regions silenced. Thus, in the ‘library’, it acts as a librarian with 
dual roles, both allowing for certain books to be read, but making sure that potentially harmful 
books are off limits.  

In Paper II, we investigated the initial steps of human development, where we dissected the 
role of the protein complex PRC2. The findings showed that when this protein complex does 
not function properly, stem cells specialize toward cells that build up not only the embryo, but 
also the tissue that forms the placenta. This shows that PRC2 has a pivotal role in stem cell 
regulation and in mediating its progression throughout development. Hence, in the ‘library’, 
PRC2 acts as a librarian that guides the child to the children’s section, and in its absence, the 
child runs toward different juvenile sections.  

Lastly, in Papers III and IV, we studied the interaction of DNA with the most abundant protein 
class it binds to, histones. More specifically, we studied a subset of histones called histone 
variants. Histone variants through evolution have diverged into having specialized regulations 
and functions, which are yet to be fully understood. We sought to unravel what proteins the 
histone variants interact with, where in the DNA they are localized and for how long they stay 
there. In the ‘library’ one could see the histones as the shelves that books are put in, where 
some shelves are more accessible, while others are very narrow with books jammed in tightly.  

 



 

As you can read, the librarians carry a crucial role in keeping the library in order, choosing 
what books to put on display at certain times and which ones to hide. In this way the librarian 
can guide the readers toward their specializations, resulting in the readers acquiring all the 
knowledge needed on how to perform individual and advanced tasks. The more we understand 
the complex work that librarians do in the world’s most comprehensive library, the better we 
can understand how they guide the readers towards this end. 

Similarly, the more we understand about the molecular mechanisms that shape and control 
gene regulation, the better we will understand stem cell biology and development, and also 
when something goes wrong, how diseases initiate and progress. A better understanding of 
molecular mechanisms will lead to better diagnostics and improved treatments.  

  



 

 

ABSTRACT 

A totipotent stem cell has the potential to give rise to the trillions of cells in the human body, 
all carrying the very same genetic information. Through differentiation events, gene expression 
changes guided by epigenetic mechanisms resulting in specialized phenotypes. The more we 
understand of the highly dynamic epigenome, the better we will understand key phenomena 
such as human development, tissue regeneration and disease initiation and progression. In this 
thesis, focus lays on the role of key players in the field of molecular mechanisms of epigenetics 
using both mouse and human embryonic stem cells.  

In Paper I we investigated the non-catalytic function of ten-eleven translocation 1 (TET1) 
methylcytosine dioxygenase in mouse embryonic stem cells (ESCs). Upon knocking out TET1, 
endogenous retroviral expression increased, while neither cells expressing wild type TET1 or 
a non-catalytic mutant showed the same trend. Studying the epigenetic landscape, we found 
that TET1, independently of its catalytic activity, is important for establishment of the silencing 
histone marks H3K9me3 and H4K20me3 at endogenous retroviral elements. This suggests that 
TET1 serves as an interaction hub for chromatin modifying complexes to repress the interstitial 
heterochromatin that the ERVs reside in.  

In Paper II we investigated the role of Polycomb Repressive Complex 2 (PRC2) as an 
epigenetic regulator for cell type specification in human ESCs. By abolishing the function of 
PRC2 via drugs or knocking out its catalytic subunit we observed spurious differentiation of 
naïve pluripotent stem cells toward cells belonging to the mesoderm and trophectoderm 
lineages, indicating that PRC2 has a pivotal role in shielding naïve pluripotent stem cells from 
differentiating toward trophectoderm differentiation.  

In Paper III we used genetic code expansion in mouse ESCs to produce acute and defined 
fractions of labelled histone variant H3.3 to study its chromatin deposition kinetics and turnover 
rate using quantitative methods for immunocytochemistry, chromatin immunoprecipitation 
sequencing and protein quantification. We revealed that H3.3 accumulates rapidly in a 
subnuclear space together with DAXX, ATRX, Smarcad1 and HP1 prior to significant 
chromatin incorporation both at enhancers and interstitial heterochromatin Moreover, this 
technique allowed for studying novel interactors of H3.3 in a temporal manner directly after 
protein synthesis. Furthermore, we found that one of the interactors plays a key role as a 
chromatin remodeler allowing for H3.3 turnover in enhancers.  

Using the same methods, in Paper IV we expanded the study from Paper III to also focus on 
the kinetics of canonical histones H2A and H3 compared to the variants H2A.Z, macroH2A, 
H3.3 and CENP-A. Our results show that the histones are subjected differently to pre-assembly 
degradation, have defined individual genomic incorporation rates and distinctive half-life in 
chromatin. Using quantitative ChIP-seq allowed for studying the incorporation to repetitive 
elements, which is of essence when studying histone variants. Furthermore, we laid some 
ground work towards finding the enigmatic histone chaperone of macroH2A.  

Taken together, we show that TET1, PRC2 and histone variants play essential and unique roles 
in the maintenance of homeostasis in ESCs. Continuing to unravel their dynamics and roles 
will be instrumental for understanding epigenetically regulated diseases and lead to improved 
diagnostics and treatments.   
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1 INTRODUCTION 

All cells in the human body contain the very same genetic information, yet they differ vastly 
in their phenotypes. The reason for this is that all cells originate from a single cell, the zygote, 
which is a totipotent stem cell that during embryonic development progressively divides and 
generates cells that commit to different lineages (1). Those lineages result in different tissue 
types ultimately forming the entire human body in its full complexity. For the cells to 
specialize, i.e. differentiate, different sets of genes need to be activated while other sets are 
turned off. This process of regulating the activity of the genome is termed epigenetic gene 
regulation (2). To activate or repress gene activity, there are changes to a gene or its regulating 
regions in terms of their accessibility, either allowing or impeding access of the transcriptional 
machinery. This process is reversible as the chromatin structure is highly dynamic, allowing 
for rapid changes resulting as consequence to different signal inputs. 

The dynamic epigenome is kept in balance by different chaperones that deposit histones that 
form nucleosomes, the basic constituents of chromatin, and by chromatin remodellers that 
mediate the eviction or sliding of nucleosomes (3). The way for the remodellers to interact with 
chromatin is through covalent post-translational modifications (PTMs) to histones which are 
deposited by enzymes termed writers, identified by readers, and removed by erasers (4). This 
leads to a highly dynamic interplay of histone turnover at sites with active histone marks or to 
a silent state of chromatin in regions with repressive marks. Other than histone marks, cytosine 
methylation at CG-rich promoters results in silencing, but this is also a reversible mark, which 
is removed by the Ten-Eleven Translocation (TET) family of dioxygenases, the TET enzymes, 
resulting in reactivation of the once silenced promoter (5). Another level of epigenetic 
alteration of chromatin is by the replacement of canonical histones with histone variants, which 
have during the last decades gain progressively more attention in fine-tuning chromatin 
organization and gene expression (6).  

In the studies covered by this thesis, we show the importance of different factors to maintain 
homeostasis in pluripotent stem cells which is important to further understand in the growing 
field of stem cells. The more we understand about stem cell biology, the more we can use that 
knowledge for further understanding development and diseases, leading toward more precise 
drug development with novel targets and drugs and into the field of tissue engineering.  
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2 LITERATURE REVIEW 

The genome carries the information encoding all proteins that are expressed in all cells. One 
way that the cell coordinates how the transcriptome and consequently the proteome differ 
between cell types or through the cell cycle is through regulated chromatin accessibility and 
compaction (3). DNA is wound onto proteins called histones, that are packaged into structures 
named nucleosomes. These nucleosomes interact with neighboring nucleosomes and linker 
histones to form ordered chromatosomes. These structures allow for further compaction of the 
chromatin fiber, so that all genomic DNA fits into the confined space of the nucleus (7,8). This 
highly compacted structure needs to allow for opening of certain regions for transcription to 
occur. Each cell type has a subset of genes that need to be activated in a cell cycle dependent 
manner, and this is controlled by local decompaction of corresponding regions of the genome, 
allowing accessibility for the transcription machinery to come in direct contact with the DNA 
carrying the genetic information. Another biological process that requires unraveling of the 
entire chromatin structure is DNA replication, where the replication fork mediates melting of 
the two DNA strands to allow for each molecule of DNA to be copied to two molecules, one 
for each daughter cell upon division. 

Chromatin is not solely composed of histones and DNA, but also other classes of proteins, such 
as transcription factors and chromatin remodelers, as well as regulatory RNAs such as 
microRNA and long noncoding RNA that interact with DNA (9,10). ATP-driven chromatin 
remodelers can alter the structure of chromatin by facilitating nucleosome assembly, increasing 
DNA accessibility by sliding or eviction of nucleosomes or loosening of the DNA wrapped 
around the histone octamer (11). The latter results in higher DNA accessibility for proteins 
required for transcription, replication, repair and recombination.  

Altogether, the condensed chromatin structure formed is denoted as heterochromatin and the 
open and active regions are called euchromatin. These chromatin states are able to change 
dynamically, being globally loose in early development, and creating more stable 
heterochromatic states upon differentiation (12). The plasticity of chromatin is also crucial for 
the interaction of regions not proximal to each other, either on neighboring chromosomes or 
nuclear structures as the nuclear envelope or the nucleolus (13). The genome organization 
changes in the course of differentiation, allowing for altered transcriptional activity as cells 
generate a specialized proteome and specialized function (14).  

2.1 HISTONES 

Histone proteins are positively charged proteins containing a poorly structured N-terminal 
region (‘tail’), a folded core and, in some cases, a C-terminal tail. There are four subtypes of 
core histones that together form histone octamers, H2A, H2B, H3 and H4. Two dimers of H3 
and H4 form a tetramer. The tetramer interacts with two dimers of H2A and H2B to form the 
histone octamer wrapped by roughly 147bp DNA, with the histone tails protruding from the 
nucleosome. Additionally, there are linker histones H1 that are placed onto the nucleosomes 
forming chromatosomes, forming further chromatin compaction (15).  
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Histone genes are located in clusters in the genome and are expressed exclusively during S 
phase. Coupled to this, they exhibit replication dependent deposition following the synthesis 
of DNA. The transcripts of canonical histones also deviate from the majority of transcripts, as 
they are not polyadenylated, but rather end in a 3′ stem–loop sequence that is crucial in their 
regulation as it is targeted for degradation by the end of S phase (16).  

Histone interacting proteins termed histone chaperones facilitate the dimerization of histones 
and assembly of the nucleosome. A wide range of histone chaperones with specialized 
functions have been discovered. For the assembly of H3-H4 dimers, the chaperones Heat shock 
cognate 71 kDa protein (HSC70),  heat shock protein 90 (HSP90) and nuclear autoantigenic 
sperm protein (NASP) aid in folding and dimerization, Anti-silencing function 1 (ASF1) acts 
as a shuttle, Importin 4 (IPO4) aids in nuclear import, mini-chromosome maintenance protein 
2 (MCM2) shields the DNA-binding interface of histones while Tonsoku-like protein 
(TONSL) protects the H4 tail of histones before assembly to the chromatin mediated by 
Chromatin assembly factor-1 (CAF1) (17). For H2A-H2B assembly, Nucleosome Assembly 
Protein 1 (NAP1) acts as a shuttle, being aided by Importin 4 (IPO9) for the nuclear import and 
is deposited to replicating chromatin with the help of the complex Facilitates chromatin 
transcription (FACT) (18,19). Chaperones do not only orchestrate the stepwise assembly of 
nucleosomes but also their eviction. Nucleosome free regions are often created transiently, 
followed by deposition of new histone, a process termed histone turnover (20).  

2.2 GENOME COMPOSITION AND REPETITIVE ELEMENTS 

Roughly 1.5-2.0 % of the human genome consists of protein coding genes, coding for between 
20 000 and 25 000 genes (21). The remaining noncoding DNA, previously believed to be ‘junk 
DNA’, contains important regulatory DNA elements and essential repeat elements (22). The 
regulatory regions are promoters that provide the binding site for transcriptional machinery, 
enhancers that provide binding sites for proteins that aid in transcriptional activation, silencers 
that repress transcription and insulators that can serve as barriers protecting a gene from the 
activity of neighboring genes (23). But these regulatory regions are only a subset of the 
noncoding DNA. Roughly half of human and mouse DNA consist of repetitive regions (Figure 
1, left) (26). These regions consist of tandemly repetitive and interspersed repetitive DNA. The 
tandem repeats are positioned in arrays called satellites and occupy different regions of the 
chromosomes. The bulk of centromere DNA in humans consists of α-satellites and of minor 
satellites in mouse (Figure 1, middle and right). The pericentromeric DNA also consists 
predominantly of repetitive arrays, in humans by satellites I, II and II, and in mouse by major 
satellites (27). Telomeres are also mainly made up of tandem repeats, consisting of hexameric 
DNA repeats (28). Functional transcripts that are transcribed from non-coding DNA are 
transfer RNA and (tRNA) and ribosomal RNA (rRNA), both classes having genes in tandem 
repeats (29,30).  
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Interspersed repetitive DNA is found throughout the genome and consists mainly of 
transposable elements (TEs), either of retrotransposons or DNA transposons. The three classes 
of retrotransposons are interspersed nuclear elements (LINEs), short interspersed nuclear 
elements (SINEs) and long tandem repeat (LTR) transposons (31). LINEs are autonomous 
parasitic elements that have two open reading frames, one encoding an RNA binding protein 
and one with endonuclease and reverse transcriptase activity, allowing for its own amplification 
and genome insertion. SINEs are smaller than LINEs and do not encode reverse transcriptase, 
hence they depend on the activity of LINEs for retrotransposition (32). The vast majority of 
LTR transposons are endogenous retroviral elements (ERVs), which have accumulated in 
vertebrate genomes due to retroviral infections throughout the course of evolution (33). ERVs 
encode three genes, group-specific antigen for viral capsid (gag), reverse transcriptase (pol) 
and protective lipid envelope (env), meaning that they are also autonomous for 
retrotransposition, and are flanked by long tandem repeats (34). Lastly, DNA transposons 
encode transposase, but do not generate copies by undergoing reverse transcription, but rather 
mobilize by excision from their loci and reintegrate elsewhere (35). 

TEs are insertional mutagens that due to their mobility can alter gene expression in the locus 
they have incorporated into or excised from, which has an important role in the plasticity of 
eukaryotic genome and therefore on eukaryotic evolution (35).  Although they do indeed have 
a positive role in regulatory innovation, they pose a threat to the genome integrity as they can 
incorporate to genes bodies or regulatory regions and disrupt gene expression, and therefore 
silencing mechanisms have emerged to keep the TEs repressed (36,37).  

2.3 EPIGENETIC LANDSCAPE 

The genetic information of DNA is either accessible or repressed, resulting in the regulation of 
transcriptional activity of genes. What dictates this outcome is a very complex network of 
epigenetic modifications that lead to allowance or inhibition of transcription factor binding to 
promoters of genes of interest. The main contributors for epigenetic regulation of chromatin 
are DNA methylation, the composition of nucleosomes (histone PTMs and histone variants) 
and regulatory RNA species (Error! Reference source not found.).  

  

Figure 1. Composition of the human genome. Left) Percentage shares of functional and non-functional genetic sequences. 
Adapted from Jasinska and Krzyzosiak, 2004  (24). Middle and right) Position of repetitive DNA in the chromosome and 
representative configuration of selected repetitive sequences, respectively, adapted from Saksouk et al. 2015 (25). 
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2.3.1 DNA methylation 

Cytosine, one of the four nucleotide bases of DNA, can be covalently modified by DNA 
methyltransferases (DNMTs) resulting in 5-methylcytosine (5mC) (39). DNMT1 maintains the 
DNA methylation as DNA is replicated, whereas DNMT3a and DNMT3b conduct de novo 
methylation (40). In GC-rich promoters or enhancers, an accumulation of 5mC results in 
transcriptional repression of the gene they control. Although this mark is a covalent 
modification it is also reversible as it can be removed through either passive or active pathways. 
Passive demethylation occurs through a series of dilution as DNA replicates, but 5mC is not 
deposited on the newly synthesized DNA strand. Active demethylation requires either 
deamination of 5mC by the activation-induced cytidine deaminase (AID) and apolipoprotein 
B mRNA editing enzyme (APOBEC) family members or stepwise oxidation by the Ten-Eleven 
Translocation family of dioxygenases (TETs). In the first case, 5mC is converted to thymine 
and due to base excision repair of DNA, the thymine is later converted into cytosine (41). In 
the second case, the TET enzymes modulate the oxidation of 5mC to 5-hydroxymethylcytosine 
(5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by the Ten-Eleven 
Translocation family of dioxygenases (TETs), followed by thymine DNA glycosylase (TDG)-
mediated base excision repair where 5caC is substituted with cytosine (42). The catalytic 
activity of the TET enzymes requires α-ketoglutarate and iron ions that interact with the 
enzyme’s double stranded beta-helix (DSBH) domain (43). For the catalytic reaction, a 
conserved histidine-x-aspartic acid (HxD) motif has been found to be of essence at the DSBH 
of the enzymes (44). For binding to DNA, TET1 and TET3 have a cysteine-x-x-cysteine 
(CXXC) domain on their N-termini, while TET2 is dependent on its interaction with Inhibition 
Of The Dvl And Axin Complex (IDAX) for DNA binding (45).  

Figure 2. Fundamental mechanisms of epigenetic gene regulation. 1) DNA methylation, 2) histone tail modifications or histone 
substitution with histone variants and 3) RNA-mediated regulation by noncoding RNA species. Adapted from Yan, et al. 2010 (38). 
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DNA methylation has a pivotal role throughout differentiation, as it is depleted from genes that 
are activated and deposited to silenced regions (46). Deregulated DNA methylation can lead to 
genomic instability and deregulation of genes essential for cell homeostasis, leading to disease 
initiation and progression (47,48).  To date, several diseases show aberrant DNA methylation, 
as multiple forms of cancer, immune-mediated diseases, imprinting disorders and 
atherosclerosis (49–52)  

2.3.2 Histone post-translational modifications 

Histone modifying enzymes decorate histone tails with covalent post-translational 
modifications (PTMs) in an often-reversible manner. Histone modifying enzymes can be 
further classified into ‘writers’ or ‘erasers’ according to their activity in establishing or 
removing PTMS, respectively (53). Histone PTMs include acetylation, methylation, and 
phosphorylation, amongst others and are recognized by ‘reader’ proteins, adding another layer 
of information. Acetylation is carried out by lysine acetyltransferases (a writer), where the 
acetyl group of acetyl-CoA is transferred to the positively charged lysine, resulting in a residue 
with neutral charge. This is an event that can be reversed by histone deacetylases (an eraser). 
Methyltransferases require the donor S-adenosyl-L-methionine for the methyl group transfer 
to either a lysine or an arginine residue, and it is reversed by demethylases. Two classes of 
ATP-dependent kinases conduct phosphorylation, one that modifies either serine or threonine, 
and another that modifies tyrosine residues. The result of phosphorylation is that the modified 
residue receives a negative charge, and the inverse reaction is conducted by phosphatases. 
Lysine ubiquitinates deposit ubiquitin onto lysine residues, which can be removed by ubiquitin 
hydrolases. Often, reader, writer and/or eraser modules are found in the same macromolecular 
complex or even on the same polypeptide chain, suggesting a dense crosstalk (either synergistic 
or antagonistic) between different PTMs. A common phenomenon that occurs upon the 
deposition of a PTM is the recruitment of the same or other modifying enzymes leading to an 
amplification of the signal or spreading onto neighboring nucleosomes (54,55).  

Many of the PTMs have a strong correlation with either active or repressed chromatin, 
depending on which histone tail residue has received the modification. An example of an active 
mark is H3K4me3, meaning trimethylation of the Lys4 residue of histone H3. This mark is 
highly enriched at promoters of active genes, deposited by the MLL family of writer enzymes, 
read by the chromatin remodeler Chromodomain Helicase DNA Binding Protein 1 (CHD1) 
and removed by the erasers Lysine Demethylase 5B (KDM5b) and Lysine Demethylase 2B 
(KDM2B) (56,57). CHD1 chromatin remodeling activity is thought to open promoter regions 
to facilitate recruitment of transcription factors and RNA Polymerase (57). A contrasting, i.e. 
repressing, mark is H3K27me3, trimethylation of Lys27 of histone H3, which is deposited by 
the Polycomb group protein 2 (PRC2), read by PRC1 and erased by Kdm6a/b (58). 
Interestingly, both active and repressive marks can coincide in the same regions, such as 
bivalent gene promoters of stem cells, where the abundance of each dictates the expression 
status of the gene of interest (59–62). 
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Unique structural features of histone variants, and in some cases their PTMs, confer specificity 
to interactions between histones and histone chaperones. Chaperones have an essential role in 
the regulation of chromatin dynamics, as they bind histones, mediate the assembly of 
nucleosomes and their removal. The specificity of the chaperones, i.e. how many different 
histones it can interact with, depends on the recognition site of the histones. There are some 
promiscuous chaperones that bind to the conserved histone backbone (that is also used to 
contact DNA thus essentially invariant in evolution), allowing for multiple binding. NAP1, for 
example, binds both to H3-H4 and H2A-H2B dimers (63). Others are highly selective for 
variable regions of the histones, e.g. CAF1, which exclusively interacts with histone H3 
(10,64). The search for histone chaperones has led to the identification of a long list of proteins 
that interact with histones, but many have yet to be identified. 

2.3.3 Histone variants 

All eukaryotes have histones, and in all of them, histone variants have been found. Histone 
variants have been evolutionary diversified from ancient canonical histones (65). While 
multiple genes encoding canonical histones reside in clusters in the genome, there are single 
genes of histone variants in distant genomic locations. The genes for the histone variants differ 
from their canonical counterparts as they have introns and their transcripts can therefore be 
subjected to splicing and their mRNA is polyadenylated, suggesting a fundamentally different 
regulation at the level of transcription, translation and RNA degradation (66,67). Histone 
variants differ from the canonical histones in amino acid sequence, they are replication 
independent and have different mRNA processing (68,69).  Many of the histone variants are 
conserved, but several, especially isoforms, are specific to certain classes of organisms. Since 
some histone variants are as conserved as the canonical histones, it is believed that they play 
an important role for chromatin structure and/or the regulation of gene expression. In 
embryonic development it is interesting to study when histones and histone variants start being 
expressed, particularly in the earliest stages after oocyte fertilization where histone take the 
place of sperm protamines to generate de novo chromatin signatures. As the organism develops, 
these signatures change dynamically as they alter their localization in response to different cues 
(70). Furthermore, not only one histone variant replaces a canonical histone upon forming a 
nucleosome. There are both homo- and heterotypic nucleosomes in regard to histone variants, 
where either one or both canonical histones of a subtype have been exchanged with variants 
(71–74). Carrying different histone variants might alter the stability interactome of certain 
nucleosomes.  
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Histone variants play an important role in stem cells and development, where they dynamically 
reside in distinct chromatin regions, regulating chromatin structure for stem cell self-renewal 
and for progression toward differentiation (76–78). Since the histone variant genomic location 
changes with the cell cycle, it is interesting to further understand their dynamics, and role in 
gene expression regulation (79). For example, the H2A variant H2A.X is known be recruited 
to DNA damage sites, upon being phosphorylated, where it plays a role in DNA damage 
response (80). Another histone H2A variant that has been linked to a certain biological function 
is H2A.Z, which is often found adjacent to the transcription start site of genes (81). Two more 
histone H2A variants, macroH2A and H2A.Bbd have been studied extensively. MacroH2A is 
the structurally most deviant histone variant in comparison to its canonical counterpart, where 
the molecular size is three times larger than canonical H2A (82). This protein is highly linked 
to high chromatin compaction and gene repression and its levels increase upon differentiation 
(83,84). H2A.Bbd on the other hand acts opposite to macroH2A, as it is smaller than canonical 
H2A and is linked to gene activation (85–87). Histone H3 has two very well studied variants, 
H3.3 and CENP-A. H3.3 has been described to have dynamic roles serving as a replication-
independent replacement histone (88–90).  CENP-A on the other hand is specifically linked to 

Figure 3. Histone variants have specialized histone chaperones and occupy specific chromatin regions both a) 
genome wide and b) at single gene resolution. Adapted from Ghiraldini et al. 2021 (75). 
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centromeric chromatin and plays an essential role for correct segregation of sister chromatids 
during mitosis (91,92).  

Deregulation of the histone variants, due to aberrant cell specific expression levels or due to 
mutations to either them or their chaperones, has been associated with various diseases such as 
cancer. The more we understand about histone variants and their different mechanisms, the 
better we will understand diseases that arise due to aberrant function of these proteins, resulting 
in improved treatment or disease prevention. In this thesis, four histone variants are on focus; 
the H3 variants H3.3 and CENP-A and two H2A variants H2A.Z and macroH2A.  

2.3.3.1 H3.3 

Histone variant H3.3 is a highly conserved histone H3 variant in mammals encoded by the two 
genes H3f3a and H3f3b (93). Its protein sequence has only four amino acids that differ from 
canonical H3.2 and five that differ from H3.1 (94,95). These few differences result in H3.3 
having a different interactome from its canonical counterparts, resulting in its specialized 
histone chaperone complexes Histone regulator A (HIRA) together Calcineurin-binding 
protein 1 (CABIN1) and Ubinuclein 1 (UBN1) and Death Domain Associated Protein (DAXX) 
which interacts with the chromatin remodeler Alpha Thalassemia Retardation Syndrome X-
Linked (ATRX) (96,97). Due to this specific interactome, H3.3 undergoes a nonuniform 
deposition in the genome (98). Its deposition undergoes incorporation to active regions 
following a pathway controlled by HIRA, and to repressed regions mediated by DAXX (94,99). 

H3.3-H4 dimers bound by UBN1/2 and associated to HIRA, with nuclear import facilitated by 
ASF1a, are deposited to transcribed genes in a cell cycle independent manner (100,101). For 
this, HIRA and ASF1a form a complex with UBN1 and CABIN1, resulting in H3.3 
incorporation both at active promoters and gene bodies (102,103). Furthermore, HIRA interacts 
with replication protein A (RPA) for the H3.3 deposition at active enhancers (104).  

On the other hand, H3.3 bound by DAXX and ATRX is deposited to repressed chromatin with 
deposition at pericentromeric chromatin, telomeres and endogenous retroviral elements. At 
pericentromeres, H3.3 has a pivotal function for heterochromatin establishment, found to be 
linked to its methylation of lysine 27, as upon mutation of that residue, there is HP1 
displacement and pericentromeric transcription upregulation (105). Deposition of H3.3 to 
telomeres has been proven essential for spreading the repressive histone mark H3K9me3 for 
conserving a silent chromatin state (106,107). In mouse embryonic stem cells, DAXX and 
ATRX deposit H3.3 at endogenous retroviral elements (ERVs), which is important for 
silencing of those regions (88,108). 



 

 11 

At ERVs, Krüppel-associated box (KRAB)-associated protein 1 (KAP1) (also known as 
Trim28) recruits DAXX, allowing for deposition of H3.3, which in its turn aids in efficient 
KAP1 association with chromatin, followed by ERG-associated protein with SET domain 
(ESET) (also called SETDB1) recruitment resulting in H3K9me3 methylation and hence, 
chromatin compaction (88,110). ERV heterochromatin in mESCs is dynamic due to 
nucleosome eviction by the chromatin remodeler Smarcad1 followed by redeposition of H3.3 
by DAXX with the aid of Morc3 (109,111,112). In H3.3 knock out cells, ERVs have a more 
open chromatin state, confirming the importance of H3.3 for ERV silencing (109).  

Deregulation of proper H3.3 activity either by mutations to the H3.3 genes or to its chaperones 
has been linked to diseases. Mutation of its residue Lys27 to methionine has been linked to 
high-grade pediatric gliomas, coinciding with a global reduction of H3K27me3 (113). This 
H3.3 mutation is also prevalent in midline gliomas, where this mutation not only affects the 
interaction with PRC2, but also affects the mitotic H3.3 specific Chk1 phosphorylation of 
Ser31 (114,115). Mutations of Gly34 to arginine or valine are also linked to gliomas, with a 
poor prognosis both in pediatric and adult patients (116,117). Mutation of the Gly34 to 
tryptophan or leucin are correlated to giant cell tumors of the bone and Lys36 to methionine is 
prevalent in chondroblastoma (118). Mutations to DAXX and ATRX have been linked to 
pancreatic neuroendocrine tumors, neuroblastoma and sarcomas (119–121). Alpha thalassemia 
X-linked intellectual disability (ATR-X) syndrome is an X-linked condition involving severe 
intellectual disability in males, caused by ATRX mutations (122). 

2.3.3.2 CENP-A  

Centromeric specific protein A (CENP-A) is a conserved histone variant in eukaryotes that has 
an essential role during mitosis and meiosis as it is one of the main factors for centromere-
associated network of proteins (CCAN) assembly, together with other centromeric specific 
proteins (123–125). The centromere has a unique 3D structure, where chromatin containing 
CENP-A is interspersed with canonical nucleosomes carrying H3K4me2 (126,127). CENP-A 

Figure 4. Model for molecular mechanism underlying dynamic heterochromatin at mESC ERVs. KAP1 is recruited by 
DNA-binding KRAB-ZFPs to interstitial repeats, where it orchestrates heterochromatin formation and 
maintenance by recruiting the methyltransferase SETDB1, histone H3.3 chaperone DAXX and chromatin 
remodeler Smarcad1. Through SETDB1-mediated histone H3K9me3 methylation, HP1 is recruited and 
presumably contributes to heterochromatin formation by compaction. Adapted from Navarro et al. 2020 (109). 
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differs significantly from H3 in its N-terminal domain, where lysine residues that can be 
acetylated in canonical H3 are missing in CENP-A, which could explain why CENP-A is more 
retained at compact regions (128–130). Aurora proteins and other centromere specific proteins 
are recruited to where CENP-A has been positioned and form the kinetochore. Kinetochore 
assembly in M phase is followed by the separation of the sister chromatids, leaving half of the 
CENP-A proteins in each sister chromatid (91,124,131). For faithful maintenance of CENP-A, 
new CENP-A need to be placed in the centromeric region, after the DNA has been replicated. 
Interestingly, the simplest hypothesis that new CENP-A joins existing CENP-A at the 
centromere at the wake of replication does not occur. Instead, CENP-A is repositioned into the 
centromere during G1 phase, a process that is essential for maintaining the integrity of the 
centromere (132,133). During replication, both canonical H3 and histone variant H3.3 are 
positioned in the centromeric region and there is a model suggesting that H3.3 acts as a 
placeholder for CENP-A to be deposited in the next G1 phase (134,135). Replenishment of 
CENP-A also occurs due to centromeric transcription (136,137). 

The centromeric region contains repetitive sequences; alpha satellites in human cells and minor 
satellites in murine cells (126,138,139). CENP-A is deposited into the repetitive sequences, but 
it is not DNA sequence identification by CENP-A that dictates the centromeric deposition, but 
rather the interactors that lead them there (140,141). An essential interactor for the centromeric 
deposition of CENP-A is the histone chaperone HJURP (Holliday junction recognition protein) 
(142). HJURP forms a complex with CENP-A and interacts with the Mis18 complex, which 
associates to the centromere in late anaphase or telophase to early G1 (143–146).  The timing 
on when HJURP positions CENP-A in the centromere is regulated by cell cycle dynamic PTMs 
on the histone tail of CENP-A. For example, Cdk1 phosphorylates Ser68 of CENP-A, which 
stalls its interaction with HJURP in early mitosis until Cdk1 levels decrease and Ser68 
dephosphorylation occur toward late mitosis (147). Another example is that Lys79 and Lys124 
are acetylated in G1 to S, but the same residue is instead altered to monomethylation during 
mid to late S phase (148,149). Many mutations of the amino acid sequence of CENP-A have 
been investigated resulting in a further understanding of each domain (150,151). This strategy 
has been crucial for the identification of essential sites required for interaction with chromatin 
remodelers and the characterization of what residues that are modified. One PTM that occurs 
to all CENP-A proteins is trimethylation of Gly1 by N-terminal methyltransferase 1 (NRMT1), 
which is essential for the correct deposition of CENP-A into centromeric chromatin (152). 
Several cell cycle dependent PTMs have been identified, but for some their role is still unclear. 
For example, it is debated whether phosphorylation of S7 by Aurora B is necessary for the 
centromeric incorporation of CENP-A (153–155). The same uncertainty exists for 
phosphorylation of Ser68p and ubiquitinylation of K124 (147,156,157). Upon overexpression, 
CENP-A can be erroneously incorporated into chromosome arms and this has been observed 
in several cancers, such as solid tumors in the breast, central nervous system, lung and 
endometrium (158,159). (160–162). In all of those, CENP-A overexpression is a marker for 
lower time of tumor recurrence and lower survival rates for patients 
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The chaperone misplacing the excess CENP-A to the chromosome arms are DAXX and 
ATRX, two chaperones of the H3 variant H3.3 (160,163,164). If CENP-A is not evicted from 
the chromosome arms it can result in chromosome instability, where the excess CENP-A 
accumulates in hotspots and fragility is increased (134,160). Neocentromeres can follow as a 
consequence in the these sites and can cause detrimental effects (162,165). Other issues related 
to this CENP-A generated chromosome instability are lagging chromosomes and DNA double 
strand breaks (125,166–168). Inversely, CENP-A has also been linked to be present in DNA 
double strand breaks (169). Even in normal cells, there is a low fraction of CENP-A that is 
deposited to the chromosome arms, but there is a mechanism to prune out these ectopically 
deposited histones (170). During DNA replication the non-centromeric CENP-A is evicted and 
exchanged with canonical H3 or its variant H3.3 (137,171,172). HJURP overexpression has 
been documented in breast cancer, where it is an indicator of a poor prognosis for disease-free 
survival (173). In gliomas it has a similar effect, where overexpression of HJURP is also 
inversely correlated with patient survival and HJURP knockdown experiments of glioblastoma 
cell lines result in higher sensitivity to radiotherapy (174,175). Furthermore, studies in 
hepatocellular carcinomas have shown that the increased levels of HJURP drive cell cycle 
progression by destabilizing the tumor suppressor p21 (176).  

2.3.3.3 H2A.Z  

H2A.Z is often found in the mammalian genome flanking the nucleosome-depleted region of 
active genes (177). Due to this, H2A.Z has been used for decades as a marker for active gene 
expression (71,177,178). The role it plays for gene activation is still not fully understood, but 
one of the reasons might be that H2A.Z/H2B dimer is less stable in the nucleosome than its 
canonical counterpart (179).  In active regions, it is often found together with the histone variant 
H3.3, and coinciding with histone markers of active gene expression, suggesting that H2A.Z 
might be involved in sequential recruitment of active markers (180–182). Another role of 
H2A.Z appears to be the recruitment of SUV420H1 methyltransferase to H2A.Z nucleosomes, 
which promotes dimethylation of H4K20, enabling the recruitment of the origin-recognition 
complex ORC1 (183). Furthermore, H2A.Z is also found at enhancer regions, together with 
hypomethylated DNA, RNA polymerase II recruitment and eRNA production (177,184–186). 
Another region where H2A.Z is found is at the pericentromeric regions, where it colocalizes 
with H3K9 methylation, and whereto the chromatin architectural and phase separation related 
protein HP1 is recruited (187). The histone chaperones that position H2A.Z into chromatin are 
PWWP Domain Containing 2A (PWWP2A), Snf2 Related CREBBP Activator Protein 
(SRCAP) and NuA4/Tip60/p400 (188–190). PWWP2A is one of the most recently discovered 
histone chaperones of H2A.Z, which has one domain that binds to the C-terminal region of 
H2A.Z and another DNA binding domain. PWWP2A binds predominantly to H2A.Z 
nucleosomes placed in promoter regions or highly transcribed genes (188). Absence of 
PWWP2A results in increased levels of acetylated H2A.Z and H3K27 (191). Both SRCAP and 
NuA4/Tip60/p400 contain the subunit YL1 which has been identified to bind specifically to 
the alpha helix C domain of H2A.Z (189,190). Acidic Nuclear Phosphoprotein 32 Family 
Member E (ANP32E) is a chaperone linked to H2A.Z chromatin eviction (178,184,190). 
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H2A.Z at the first nucleosome downstream of the transcription start site has been found to be 
globally lost in overexpression of Anp32e, and the opposite effect has been seen in knock down 
experiments of the chaperone (192). A second chaperone known to evict H2A.Z from 
chromatin is INO80, which has also been linked to homologous recombination (193,194).  

Many PTMs of H2A.Z have been characterized and research is ongoing to further understand 
what roles each play in different biological processes and through the cell cycle (195,196). 
They are dynamic throughout the cell cycle in regard to H2A.Z, and ongoing studies are trying 
to map the cell cycle resolved dependency and effect of each.  Seven residues on the N-terminal 
tail of H2A.Z  have been known to be acetylated; Lys4, Lys7, Lys11, Lys13, Lys15, Lys37 and 
Lys 101 (197,198). The first five of them are linked to active gene expression. The proteins 
Tip60 and p300 acetylate the first three residues, while the histone acetyl transferase for the 
remaining is still not characterized (197). Lys37 has not only the possibility to be acetylated, 
but it can also be ubiquitinylated, in which case it is linked to gene repression. Ubiquitinylation 
has been discovered for eight residues; Lys13, lys15, Lys74, Lys77, Lys115, Lys120, Lys121 
and Lys125 (199). Of these, the last three are ubiquitinylated by Ring1b, and have been linked 
to gene repression. Deubiquitylation is carried out by Usp10, where removal of this repressive 
marker aligns with transcriptional activation (200). Setd6 or Set7 can methylate Lys4, Lys7 
and Lys13, where methylation of Lys7 has been linked to repression(201). Oppositely, C-
terminal methylation of Lys101 by Smyd3 has been linked to gene activation, as Anp32e 
interaction is prevented (202). Phosphorylation of four residues has been identified; Ser9, 
Tyr60, Ser98 and Ser116, but their modes of action remain to be characterized (203). Lys120 
can be subjected to acetylation, ubiquitinylation and SUMOylation, where only the 
ubiquitinylated residue has been linked to a (repressive) role (196,204).  

H2A.Z exists as three isoforms in human and two in mouse, where they share H2A.Z.1 and 
H2A.Z.2, while H2A.Z.2.2 is a human specific isoform (190,205). Although the isoforms result 
in globally similar distribution, H2A.Z.2 associates more with H3K4me3, and the two major 
isoforms regulate different neuronal genes (179,205). H2A.Z has higher expression levels in 
the brain, where it is believed to have specific modes of action to regulate synaptic genes (206–
209). In brain tissue, H2A.Z interacts with Setd2, promoting H3K36 trimethylation of 
promoters for activation of Nkx2 homeobox 4, an important factor of neurogenesis (206). Upon 
depleting H2A.Z in the brain, neuronal differentiation and correct dendrite formation are 
disrupted (206). In aging neurons of the hippocampus, H2A.Z is observed to accumulate, 
especially on exons and 5’UTR regions (208). H2A.Z deregulation has been identified in 
different disease models, such as cancers and mental retardation (81,190,210). Overexpression 
of H2A.Z has been linked to melanoma, and solid tumors in the bladder, prostate and breast. 
In prostate cancer, acetylated H2A.Z has an increased deposition to TSS of oncogenes and 
reduced levels at tumor suppressor genes (211). Furthermore, floating harbor syndrome is a 
mental retardation syndrome that is directly linked to a C-terminal truncation of SRCAP, 
altering its localization from the nucleus to the cytoplasm, resulting in a reduced placement of 
H2A.Z.2 into the AT-rich enhancers, and the disease phenotype can be rescued upon 
overexpression of the H2A.Z isoform (212).  
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2.3.3.4 MacroH2A  

MacroH2A is the most deviant variant of histone H2A, having a molecular weight of three 
times its canonical counterpart (213). This protein contains three major compartments; a H2A 
histone fold, a linker domain and a globular macrodomain (82,214–217). The histone fold only 
shares 64% similarity with canonical H2A (73,218). The linker region has a basic nature as it 
contains a series of lysine residues, and it is believed to help in maintaining a compact 
chromatin formation, often found to be similar to the function of the linker histone H1 
(215,216,219,220). The macrodomain has the ability to bind ADP-ribose and histone 
deacetylases (82,214,221,222).  

This protein is most often detected in heterochromatin, coinciding with repressive histone 
markers H3K27me3 and H3K9me3 (85,223). The expression levels of macroH2A vary 
significantly in different tissues, with very low levels in stem cells and increased in 
differentiated cells (84,214,224). There are two genes encoding macroH2A, where one has two 
splice variants, resulting in a total of three isoforms; macroH2A1.1, macroH2A1.2 and 
macroH2A2. The three have been described to play different roles, where macroH2A1.1 has 
been found to interact though its macrodomain with the poly-ADP-ribose polymerase 1 
(PARP1) enzyme, which is a cellular stress sensor (214,224–228). To study the essentiality of 
macroH2A, transgenic macroH2A null mice were created, where developmental and postnatal 
growth was reduced and reproductive efficiency decreased (229,230). In knock down 
experiments the heterochromatin architecture and nuclear organization were disrupted (223). 
Several posttranslational modifications have been discovered for macroH2A, which are 
dynamic throughout the cell cycle. On the N-terminal tail, Lys17 acquires a methylation mark, 
while several modifications occur on the C-terminal tail. Lys115, Lys116 and Lys122 are 
acetylated, Lys122 can also be dimethylated, Thr128 and Ser167 are phosphorylated, and the 
residue Lys237 in the macrodomain is trimethylated (231–233). Studies have linked 
transcription to be an active way to prune out macroH2A from active chromatin sites, leaving 
higher accumulation in repressed chromatin (234). MacroH2A plays a role in stem cells, 
although its expression levels are low (83,84,235,236). Upon differentiation of the naïve to 
primed stem cells, global chromatin changes occur, where chromosomal domains are generated 
and a 3D genome structure starts to occur and macroH2A is observed to be linked to the 
compact heterochromatic structures (224,237,238). Deregulation of macroH2A has been 
linked to several diseases, for example downregulation of this variant has been documented in 
melanoma, lung cancer and colon cancer while its upregulation is evident in hepatocellular 
carcinoma (239–242). In gastrointestinal cancers, the isoforms macroH2A1.1 and 
macroH2A1.2 have opposite roles as oncosuppressors or oncogenes, in an organ specific 
manner (243). Another example is the overexpressed levels of macroH2A observed in 
Huntington disease. This disorder is characterized by the loss of function of huntingtin protein, 
resulting in DNA damage and where macroH2A is suggested to prevent the recruitment of 
DNA repair proteins (244). 
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2.4 EPIGENETIC MECHANISMS IN PLURIPOTENT STEM CELLS 

Early embryogenesis follows a conserved trajectory in mammalians species (245). The 
fertilized egg, i.e. the zygote, rapidly undergoes multiple rounds of cell division, increasing the 
cell mass with progressively more specialized cells. The zygote is a totipotent stem cell that 
gives rise both to the inner cell mass in the blastocyst and to the extraembryonic trophectoderm, 
which envelopes the embryo and later in development forms the placenta (Error! Reference s
ource not found.). The cells in the inner cell mass of the blastocyst are pluripotent stem cells 
that have the potential to specialize into the three germ layers (ectoderm, mesoderm and 
endoderm). An important event of embryogenesis is implantation of the embryo, where it 
attaches to the uterus, separating the early stages of development into pre- and post-
implantation (246,247).  

Both human and mouse pluripotent stem cells can be extracted from embryos and cultured in 
ex vivo where they self-renew, which is of essence for studying the molecular mechanisms in 
early development. The pluripotent cells extracted from the inner cell mass are called naïve (or 
ground state) stem cells, whereas cells extracted from the post implantation stages are termed 
primed pluripotent stem cells. In culture, depending on the growth conditions, pluripotent cells 
can be controlled to switch between those two pluripotent stages (245). Although human and 
mouse early development is similar, it should be noted that there are important differences as 
in the timing of when the zygotic genome is activated, when X chromosome inactivation occurs 
and there are important transcriptomic differences (248–250). 

 

Figure 5. A model that classifies ‘relative naïvety’ within the spectrum of naïve to primed 
stem cells. a) similarities and differences in early pre- and post-implantation in vivo 
development in mice and humans. b) Important differences in gene expression in both 
models. Adapted from Weinberger et al. 2016 (245). 
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The progression through development is mediated by epigenetic mechanisms. Upon 
fertilization, the paternal genome DNA methylome is drastically abolished, while the maternal 
genome undergoes gradual demethylation leaving the genome in a globally hypomethylated 
state at the morula stage. This active demethylation is controlled by the TET enzymes. At the 
blastocyst state, de novo methylation is initiated and carried out by DNMT3a and DNMT3b, 
where new methylation patterns are re-established in the growing embryo. This methylation is 
later maintained by DNMT1 (41,251). The active demethylation in early development is 
attributed to the TET1 paralogs TET1 and TET2. As DNA methylation activity increases in 
primed pluripotency, both 5mC and its oxidation derivatives increase in genomic abundance 
(Figure 6) (252). 

  

As the repressive DNA methylation mark is lost in naïve pluripotency, the repressive chromatin 
marker H3K27me3 is globally at high levels and the active mark H3K4me3 has low global 
levels. Upon progressing to primed pluripotency, there is a slight global reduction of 
H3K27me3 and increase of H3K4me3 (253). This is important as these two marks coincide in 
bivalent promoters of developmental genes that are poised for rapid activation as results of 
differentiation cues. In naïve cells, the genes under the control of bivalent promoters are 
transcribed at very low levels, but depending on the developmental stimuli they either have an 
increase of H3K27me3 and are silenced, or gain H3K4me3 facilitating transcription (61). 

Histone variants also play important roles during development. H2A.Z has a role in mediating 
the general gene expression for self-renewal maintenance and differentiation potential (254–
257). H2A.Z has been found to be enriched in the majority of homeodomain genes, which 
regulate embryonic development (258). H2A.Z also co-localizes with Polycomb group proteins 
at bivalent gene promoters of stem cells and it has been shown that loss of one leads to loss of 
the other, suggesting interdependency and non-redundant function (259–261). H2A.Z 
nucleosomes have higher H3K27me3 levels than the canonical counterpart, and H2A.Z 
depletion leads to global decrease of that repressive marker (260). H3.3 has also been linked to 
interact with PRC2 in embryonic stem cells, aiding in the correct deposition of H3K27me3 at 
developmental genes (262). As mouse cells differentiate toward primed, X chromosome 
inactivation occurs and the main genomic territory acquiring an accumulation of macroH2A is 
one of the two female X chromosomes, which gets silenced during differentiation. MacroH2A 

Figure 6. Distinct contributions of different DNA modifying enzymes during the transition 
from naïve to primed pluripotency in relative levels. Adapted from Mulholland et al. 2020 
(252). 
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is detained in that inactive chromatin and it is believed to have an important role in maintaining 
that specific chromosome repressed (263–265). Interestingly, the phosphorylated subset of the 
pool of macroH2A is excluded from the inactive X chromosome (266–268). 

During early embryogenesis, transcriptional silencing of transposable elements occurs, 
mediated by KAP1 and DNA methylation (110). But there is a subset of endogenous retroviral 
elements that avoid silencing and are active during development and might aid in mediating 
the embryonic genome activation. Some of the ones found in humans to date are MLT2A1, 
LTR7B, LTR7Y and LTR5_Hs (269,270). In mouse embryonic stem cells, the ERV subfamily 
of MuERV-L are very rapidly transcribed and essential for progression during development 
(271) 
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3 RESEARCH AIMS 

The overall aim of this thesis was to study the dynamic epigenome in stem cells in regard to 
key epigenetic modulators involved in DNA demethylation, heterochromatin establishment 
and chromatin organization fine-tuning histone variants.  

The specific aims of the individual projects were: 

I. To unravel the non-catalytic functions of TET1 in mESCs by studying the epigenome of cells 
with TET1 wild type, catalytic mutant and knock out.   
 

II. To functionally characterize the epigenetic role of PRC2 in naïve and primed hESCs. 
 

III. To quantitatively study the dynamics of histone variant H3.3 in mESCs in regards to its 
chromatin deposition and turnover and to dissect its temporal interactome. 

 
IV. To quantitatively catalogue the dynamics of histone variants H3.3, CENP-A, H2A.Z and 

macroH2A in mESCs, focusing on their deposition to repetitive DNA regions.  
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4 MATERIALS AND METHODS 

Multiple methods were used in the collaborative studies. A thorough description of those are 
found on the individual papers attached to this thesis. Selected methods that were highly used 
are covered in this chaper. 

4.1 CELL CULTURE 
Mouse embryonic stem cells (mESCs) were cultured feeder-free in 0.1% gelatin-coated 
flasks under standard conditions (5% CO2, 5% O2, 37 °C) in knockout DMEM medium, 2 
mM Alanyl-glutamine, 0.1 mM non-essential amino acids, 15% fetal bovine serum FBS, 0.1 
mM β-mercaptoethanol, ESGRO Leukemia Inhibitory Factor (LIF) and 2i;1 µM MEK 
inhibitor PD032590 and 3 µM GSK3 inhibitor CHIR99021. Cells were passaged every other 
day using TrypLE to avoid differentiation. Prior to microscopy experiments, to obtain naïve-
like colonies, cells were grown in serum-free conditions with ESGRO complete basal 
medium supplemented with 2i and LIF.  

4.2 AMBER SUPPRESSION  

Genetic code expansion (GCE) is a synthetic biology approach that allows for site specific 
incorporation of non-canonical amino acids (ncAA) with defined chemical properties into 
proteins of interest (POIs). In Paper III and IV we used amber suppression, as the amber codon 
is the least used stop codon in mammals (272). In this approach, the amber stop codon is 
reassigned into an elongation codon by expanding the translation machinery of the cell by 
introducing a tRNA and tRNA synthetase pair that is orthogonal to the host. This pair, being 
the amber suppression machinery, has its origin in the archaeon Methanosarcina mazei, and 
allows for incorporation of pyrrolysine. In Elässer Lab, efforts have been made for allowing 
the amber suppression machinery to also allow for incorporation of other ncAAs.  

4.2.1 Generation of amber suppression cell lines  

To generate the stable amber suppression cell lines, we used three plasmids. One carrying the 
genes for expression of the amber suppression machinery, a second containing the gene of 
interest with an early amber stop codon and a third encoding PiggyBac transposase for 
transposase-mediated integration of the first two constructs following a protocol established in 
Elsässer Lab (273). The constructs also carry independent drug resistance markes, enabling the 
selection of stably transfected cells through double drug selection. We selected cells in with 
progressively higher drug concentrations to ensure high amber suppression and abundance of 
the transcripts of interest. We used polyclonal cells in bulk for validation of cell lines, but 
monoclonal cell lines were selected and used for imaging experiments to ensure that cells were 
genetically identical, minimizing the population heterogeneity.  

To produce the proteins of interest, ncAA was supplemented to the growth media of the cells, 
which is labelled the pulse. To stop translation of the protein of interest, the growth medium 
was aspirated, cells were washed once with phosphate buffer saline and new medium was 
replenished (Error! Reference source not found.). In the absence of ncAA no more POI was g
enerated, allowing for studies of produced protein during a limited window of time.  
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In Paper III, the cells expressed a construct for H3.3 with a C-terminal triple HA-tag. The amber 
stop codon was positioned on position K27, where the ncAA acetyl-lysine was placed upon 
pulsing the cells. It should be noted that it has been shown that the pulsed H3.3 protein carrying 
an acetylation mark rapidly was deacetylated, and shoud therefore not affect the native 
dynamics of the protein (274). Dendra2, a fluorescent reporter, was pulsed at the same time as 
the labelled H3.3. Dendra2 was placed on the amber suppression construct, downstream of the 
synthetase gene (PylRS-TAG-P2A-Dendra2, where ‘TAG’ is the stop codon) and therefore 
was synthetised in parallel to labeled H3.3, only upon pulsing the cells.  

In paper IV, a fluorescent reporter and the histone variants were encoded on the same construct, 
consisting of GFP (with early TAG)-TEVp-TEVp_cutting_site-HV-3xHA. Upon pulsing a 
fusion protein was generated consisting of GFP, Tobacco Etch Virus (TEVp), TEVp cutting 
site, histone variant of interest and C-terminal triple HA-tag. TEVp was shown to have a high 
protease activity, separating the GFP-TEVp from HV-3xHA in a rapid (almost immediate) 
manner. All cell lines in this paper were pulsed with the ncAA cyclopropene-L-lysine. Single 
clones were selected for each cell line, where the clones selected for downstream experiments 
were the ones exhibiting naïve morphology and high amber suppression efficiency with GFP 
intensity as read out.  

4.3 MINUTE-CHIP 

For quantitative multiplexed ChIP-seq, MINUTE-ChIP was used in all the papers, following a 
protocol developed in Elsässer Lab (253). MINUTE stands for multiplexed indexed unique 
molecule T7 amplification end-to-end sequencing and is a protocol based on Mint-ChIP, 
developed in the Bernstein (275). In short, cells were lysed and chromatin was digested with 
micrococcal nuclease, producing mono- or di-nucleosome fragments. Each fragment was 
barcoded by ligating on a dsDNA adapter comprising T7 RNA polymerase promoter (T7), 
random 6-bp sequence (UMI), and 8-bp barcode (BC). The BC was unique to each sample. 

Figure 7. Pulse and chase experiments conducted on engineered mESCs. Left) stably integrated genes for pylT and PylRS 
are constitutively expressed, generating an always present but inactive amber suppression macihnery. A gene of interest, in 
this case GFP (green DNA helix), carries an early amber stop codon (yellow). The gene is transcribed, but as the amber 
suppression machinery is inactive, translation only occurs until it reaches the amber stop codon and there is no full-length 
protein production. Middle) upon pulsing, i.e. supplementing the growth medium with non-canonical amino acid (ncAA), 
the amber suppression machinery is activated, allowing for the amber stop codon to be used as an elongation codon, 
generating full length protein of interest carrying the ncAA. Right) amber suppression is simply stopped by exchanging the 
media. As no more ncAA is present, the amber suppression machinery activity stops and with it, also the translation of the 
protein of interest. This allows for a controlled window of time for protein pulsing, generating controlled protein amounts 
that can be studied over time.  
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This allowed for pooling up to 16 barcoded samples for subsequent one-pot reaction, which is 
ideal for experiments with multiple conditions or replicates. From this point on, all reactions 
occured from a mixture of all samples. Fractions of the barcoded pooled lysate were then used 
for immunoprecipitation (with a small volume reserved as input material for later normalization 
as total global chromatin representation). Immunoprecipitation was performed with desired 
antibodies bound to Protein A beads (when using rabbit derived antibodies) or Protein G beads 
(for mouse derived antibodies). Immunoprecipitation was conducted for 4 h at 4°C, followed 
by magnetic pull down, and pull-down material was cleaned with short salt buffer washes. 
Proteinase K was added for 1 h at 63°C to denature the proteins and DNA was purified. To 
construct final libraries, DNA from each immunoprecipitation was in vitro transcribed using 
the T7 promoter. A RNA 3’ adapter (RA3) was thereafter appended to the produced RNA to 
allow for paired end sequencing. The RA3 also allowed for a reverse transcription reaction, for 
generation of cDNA. As a final step, library PCR was conducted using PCR primers 
comprising both Illumina-compatible sequences and a second barcode, so multiple libraries 
can be pooled into a single sequencing run. The resulting libraries were diluted to 4nM, pooled 
and sequenced on the Illumina platform. 

4.4  IMMUNOCYTOCHEMISTRY AND HIGH-CONTENT MICROSCOPY 

Cells were grown on 0.1% gelatin coated 96-well imaging plates and at the end of an 
experiment the cells were fixed for 10 min in the dark using 4% paraformaldehyde. After three 
phosphate buffer saline (PBS) washes, the plates were stored at 4°C. For 
immunocytochemistry, cells were permeabilized for 10 min using 0.1% Triton X-100. 
Thereafter, blocking solution caontaining 1% bovine serum albumin in PBS supplemeted with 
0.05% Triton X-100 was conducted at room temperature (RT) for 1 h. Primary antibodies were 
diluted in blocking solution and samples were incubated with the primary antibody for 1 h at 
RT. Three PBS washes were carried out prior to 1 h of incubation in the dark with secondary 
antibodies conjugated to flurophores diluted in blocking solution. Three PBS washes were used 
to wash off unbound antibodies, and DNA was stained with 4′,6-diamidino-2-phenylindole 
(DAPI) for 10 min in the dark, followed by a final PBS wash and supplement of PBS.  

ImageXpress Micro confocal high-content imaging system was used to image the 
immunostained plates. This allowed for running up to four filters at the same time. Routinely, 
four fields were chosen per well, and samples were placed in the plates at least as duplicates. 
20x magnification was used to have large amounts of cells to analyse. The obtained 
micrographs were analysed on CellProfiler v4.0.6. Nuclei were segmented using the DAPI 
channel and using those masks, integrated and mean nuclear intensity of all wavelengths were 
calculated. For speckle identification, nuclear objects of a small particle size were enhanced 
using a module for speckle enhancement. Those foci were selected by primary object 
identification using a global strategy and Otsu thresholding method. The resulting data was 
quantified using RStudio v1.3.959. Thresholding strategies based on the mean intensity of the 
small objects were used compared to the nuclear mean intensity to discriminate between 
defined or diffused particles.  
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5 SUMMARY OF RESEARCH PAPERS 

TET1 REGULATES GENE EXPRESSION AND REPRESSION OF ENDOGENOUS 

RETROVIRUSES INDEPENDENT OF DNA METHYLATION (PAPER I) 

The TET enzymes have different expression levels during the course of development and might 
therefore also have different functions (252). Out of the three TET enzymes, TET1 and TET2 
are the most abundant paralogs throughout development, with TET1 being more active in the 
early stages (276). Although TET1 has a well-established function for oxidizing 5mC (5 
methylcytosine), studies also show that it also has non-catalytic functions (276,277). The TET1 
non-catalytic activity was therefore investigated further in this study to understand its role in 
early pluripotency, where a TET1 WT (WT) cell was compared to a TET1 KO (Tet1 KO) and 
an engineered TET1 catalytic mutant (Tet1 CM) in naïve mouse embryonic stem cells 
(mESCs).  

The first noticeable result was that the WT cell line grew more rapidly than the Tet1 KO and 
tet1 CM cells, but only Tet1 KO exhibited a difference in cell morphology, resembling reduced 
pluripotency. In a transcript level, the absence of TET1 lead to a prominent dysregulation of 
gene expression, where markers for cell differentiation where upregulated, in line with the 
phenotype observed in the KO cells. In the Tet1 CM on the other hand, the transcriptional 
deregulation was less pronounced, indicating that TET1 regulates gene expression independent 
of its catalytic activity. To further dissect whether the transcriptional deregulation was due to 
the catalytic activity of TET1, enzymatic methylome sequencing was conducting, showing that 
DNA methylation indeed was drastically higher in Tet1 KO and somewhat increased in Tet1 
CM cells. Interestingly, although there were alterations to promoter methylation of genes, this 
did not always correlate with higher gene expression.  

Since the gene expression deregulation cannot be fully explained by the DNA methylome 
differences, there was an interest in studying the epigenetic landscape in the context of histone 
tail post translational modifications using mass spectrometry. This revealed that the repressive 
histone marks H3K27me3, H4K20me3 and the active mark H4 lysine acetylation (pH4Kac) 
decreased significantly in Tet1 KO mESCs, but were only mildly affected in the Tet1 CM cells. 
To dissect this further, we used quantitative ChIP-seq which confirmed the proteomics results.  

Focusing on the genes that were deregulated in the transcriptomic data, there was no alteration 
in the H3K4me3 profiles, while H3K27me3 signal decreased in both the upregulated and 
downregulated genes of the Tet1 KO cells, while the opposite occurred in the Tet1 CM cells. 
The most dramatic effects were observed for the repressive histone mark H4K20me3 at the 
endogenous retroelements ERV1, ERVK and ERVL, where similar profiles were observed for 
Tet1 WT and Tet1 CM, but highly decreased signal in Tet1 KO, indicating that TET1 aids in 
heterochromatin maintenance at ERVs independently of its catalytic activity. Transcriptomics 
analysis confirmed that ERV expression increased in the absence of the repressive marks.  
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Lastly, interactomics data showed that TET1 interacts with the SIN3A/HDAC complex, PRC2 
complex and HP1, which all have key roles in maintaining the endogenous retroviral elements 
in a silent state by inducing and maintaining heterochromatin formation. To validate the 
importance of the interaction of TET1 with SIN3A, constructs of Tet1 WT, Tet1 CM and Tet1 
Sin3a mutant were transfected into Tet1 KO cells, where HP1 staining patterns were used as 
read out. In the case of Tet1 WT and Tet1 CM, defined foci were observed for HP1, while Tet1 
KO and Tet1 Sin3a did not manage to rescue the staining pattern, but showed a more diffuse 
pattern for HP1. All together, we showed that TET1 has a non-catalytic function in interstitial 
heterochromatin silencing in mESCs, potentially by acting as an interaction hub for chromatin 
modifying complexes that deposit repressive markers at ERVs (Figure 8).  

 

 

 

 

  

Figure 8. Proposed model of the non-catalytic role of TET1 in ERV silencing. TET1 recruits the SIN3A/ HDAC 
complex to the ERV elements ERV1, ERVK and ERVL. This leads to local deacetylation of H3K9ac, facilitating the 
recruitment of the KRAB-ZnF/TRIM28/SETDB1 silencing complex. As a result H3K9me3 is deposited, which HP1 
binds to, leading to the recruitment of SUV39H and SUV4-20H that establish H3K9me3 and H4K20me3 domains. 
This leads ultimately to heterochromatin (HC) spreading. Adapted from Stolz et al. 2022 (278).  
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POLYCOMB REPRESSIVE COMPLEX 2 SHIELDS NAÏVE HUMAN 

PLURIPOTENT CELLS FROM TROPHECTODERM DIFFERENTIATION (PAPER 

II) 

Polycomb repressive complex 2 (PRC2) is a writer that deposits the repressive H3K27me3 
mark on silent and bivalent chromatin (279). The focus of this paper was to study the role of 
PRC2 in maintenance of human embryonic pluripotency. Three histone marks were studied; 
active H3K4me3, and the two repressive marks H3K27me3 and H2AK119ub (hereafter 
denoted as H2Aub), which are deposited by MLL2, PRC2 and PRC1, respectively (280–282).  

Utilizing quantitative ChiP-seq, immunoblotting and immunocytochemistry, it was found that 
naïve cells had a diffuse and high global H3K27me3 profile, over 3-fold higher than in primed 
cells. This is in line with previous observations made in mouse embryonic stem cells (253). 
H2Aub levels were also higher in naïve cells, indicating that there is a crosstalk between PRC2 
and PRC1 in maintaining both repressive marks. H3K4me3 on the other hand was negligibly 
altered in the two pluripotency states.  

To unravel the function of PRC2, its catalytic function was inhibited with the drug 
Tazemetostat which targets the Enhancer of zeste homolog 2 (EZH2) subunit. Global 
quantification pst 7 days of this treatment showed almost complete abolishment of H3K27me3 
on both naïve and primed cells, but no effect on H2Aub. H3K4me3 on the other hand decreased 
to roughly half its original levels upon the PRC2 catalytic inhibition.  

Continuing focusing on H3K27me3, it was observed that the X chromosome had a 4-fold 
difference of H3K27me3 content in naïve cells in comparison to primed cells, while autosomes 
showed no significant differences. H2Aub was also higher in the X chromosome of naïve cells, 
but it had a less pronounced enrichment than H3K27me3. Interestingly, the higher abundance 
of the repressive marks had no chromosome-wide transcriptional consequence.  

Next, promoter bivalency, i.e. co-occurrence of H3K4me3 and H3K27me3 at promoters, was 
studied and new unique as well as shared bivalent promoters in naïve vs primed cells were 
defined.  These categories together with transcriptomics data revealed that naïve and primed 
cells had very different transcriptional responses to EZH2 inhibition, despite sharing a large 
number of bivalent genes. Predominantly naïve cells showed a transcriptional disbalance due 
to the treatment, where genes important for development of intra cellular mass and epiblast 
were downregulated, while marker genes for mesoderm and extraembryonic trophectoderm 
and amnion were upregulated. This effect was not recapitulated in the treated primed hESCs.  

Of particular interest, GATA Binding Protein 3 (GATA3) was one of the upregulated genes, 
and as it is a transcription factor that drives trophectoderm differentiation it was further 
investigated. To validate these results, PRC2 function was disrupted in naïve cells with a 
compound that inhibits its subunit Embryonic Ectoderm Development (EED) and by clustered 
regularly interspaced short palindromic repeats (CRISPR) knock out of EED. 
Immunocytochemistry revealed that in all cases H3K27me3 signals decreased and GATA3 
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signal increased in a subpopulation, ensuring that PRC2 shields the naïve hESCs from 
expressing a key regulator for trophectoderm differentiation.  

Lastly, following a time course of drug treatment, extensive analysis of the single cell 
transcriptomic data showed that the PRC2 disruption had a very mild effect on primed cells, 
while naïve cells expressed markers of multiple lineage progenitors which could be used for 
trajectory-based differential expression analysis. From this, a pseudotime axis was created 
showing how the naïve cells with PRC2 disruption progressively differentiate from a ground 
state, through an activated state, to trophectoderm and mesoderm cells.  

 

  

Figure 9. The zygote is a totipotent stem cell that gives rise to the embrypnic and extraembryonic tissue. In the initial steps of 
embryogenesis, cells divide and commit to either forming the inner cell mass or the extraembryonic trophoblast of the embryo. 
Naïve pluripotent stem cells of the epiblast progress toward primed pluripotent and subsequently form the three germ layers. In 
this study, an epigenetic barrier has been discovered, where PRC2, through deposition of H3K27me3, blocks the potential of 
progression from naïve to trophectoderm differentiation, with GATA3 being its master regulator. Artist: Banushree Kumar.  
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QUANTITATIVE HISTONE H3.3 DYNAMICS RESOLVED BY RAPID PROTEIN 

PULSING (PAPER III)  

H3.3 is a histone variant with important clinical significance, as it is linked to several diseases 
when the genes encoding this protein are mutated. Similarly, mutations or deregulation of its 
histone chaperones are also linked to failure in protection of genome integrity. It is therefore 
important to dissect the molecular function of H3.3 in cell homeostasis in the context of its 
interactome and its chromatin dynamics. In this study, we used genetic code expansion in 
mouse embryonic stem cells, where we produced labelled H3.3 in mouse embryonic stem cells 
for dedicated windows of time and used high content microscopy, mass spectrometry and 
quantitative ChIP-seq as readouts.  

We showed that amber suppression is an approach for generating rapid protein pulses, where 
nuclear accumulation of the pulsed histone was observed after only 30 min. The system is also 
switchable, allowing for time windows of protein production to be controlled simply by 
changing the growth media of the cells. Importantly, it is also tunable, as the added 
concentration of non-canonical amino acid regulates the amount of protein that can be 
produced, which is of essence to obtain trace levels of the pulsed protein, to not compete with 
the endogenous pool of H3.3.  

 Studying the accumulation of pulsed H3.3 in a subnuclear compartment we identified that it 
overlapped with its histone chaperones DAXX and ATRX, but also with the chromatin 
remodeler Smarcad1 and HP1 paralogs. This indicates that phase separation could potentially 
play a role in the incorporation of H3.3 to regions of the genome. In line with this, those 
interactions were also observed as result of an interactome experiment of a pulse chase time 
course of H3.3. Its results revealed known interactors, which confirms that the pulsed proteins 
behave identically to the endogenous proteins, but also novel interactors were found. The 
interactors could due to the temporal resolution be subcategorized into transient, early, mid and 
late interactors. Importins and chaperones were found amongst the early interactors, followed 

Figure 10. Amber suppression mediated labelled histone H3.3-3xHA expression. H3.3-3xHA is constitutively 
transcribed, but translated to its full length only in the presence of ncAA (yellow). For this, the amber suppression 
machinery is also constitutively expressed. This allows for a fast, tunable and switchable generation of histone pool 
that is followed through a time course, where focus lays on its temporal interactome and its chromatin dynamics.  
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by important chromatin factors for both active and repressive chromatin, where the latter was 
progressively more prevalent in the later time points.  

Time-lapse multiplexed quantitative ChIP-seq was used to study locus-specific incorporation, 
enabling future identification of kinetic parameters. Early time points revealed a similar 
incorporation rate to both active and repressed chromatin states, mediated by HIRA and DAXX 
pathways, respectively. Of particular interest, the latter showed a high nucleosome turnover 
rate at retroviral elements, which typically is absent of DNA accessibility. This sheds light into 
the rate of incorporation of H3.3 into interstitial heterochromatin, where H3.3 was found to 
have a fundamental role for local compaction of chromatin (109). Lastly, H3.3 incorporation 
to enhancers was further dissected by pertrubing chromatin remodeling, revealing the source 
of nucleosome turnover and importance in the assembly of H3.3 at functionally active 
chromatin states in mouse embryonic stem cells. In summary, amber suppression assisted 
protein pulsing is a rapid, tunable and switchable technique that allows for studies of histone 
variants in terms of their temporal interactome and chromatin assembly and turnover kinetics.  
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QUANTITATIVE TEMPORAL CATALOGUE OF HISTONE VARIANT DYNAMICS 

IN mESCs (PAPER IV)  

In Paper III we showed how amber suppression can be used to dissect histone dynamics of 
H3.3 in mouse embryonic stem cells. Following that up, we aimed to further the scope to other 
study other histone variants, that also have regulatory functions in the cell and are linked to 
diseases in the case of their deregulation. For this, we generated cell lines expressing a construct 
for equimolar expression of labelled histone variants and a green fluorescent protein reporter. 
This allows not only for studying the temporal localization of the labelled protein, but also to 
study its abundance in comparison to how much that was initially produced, aiding in studies 
of protein decay.  

Six cell lines were used, each expressing a construct encoding a histone under amber 
suppression control. The six histones of interest were the canonical histone H3.2 and H2A, and 
the histone variants H3.3, CENP-A, H2A.Z and macroH2A. Individual subnuclear localization 
patterns were confirmed with immunocytochemistry, indicating that the labeled proteins 
indeed behaved as the endogenous proteins. Of importance, CENP-A was pulsed differently 
than the other proteins to minimize any risk of overexpression, since this leads to mitotic 
defects and aneuploidy (283).  

Staining patterns of pulsed CENP-A were highly heterogeneous, although all cells evidently 
were pulsed, seen by their positive signal of the fluorescent reporter, indicating that a larger 
fraction of the pulsed cells degraded the pulsed CENP-A in a rapid manner. Upon treating cells 
with proteasomal or lysosomal inhibitors, it was observed that CENP-A was indeed subjected 
to proteasomal degradation, with a much more pronounced effect than the other pulsed 
histones. This indicates that the pre-assembly histone life time is highly individual. An 
explanation for this could be that histones are highly dependent on binding to their chaperones 
in a cell cycle dependent manner to avoid proteasomal decay. To study the post-assembly 
stability, total protein quantification of chromatinized protein was conducted during a time 

Figure 11. Amber suppression histone variants show distinct staining patterns in mESCs, showing that they have highly 
specific chromatin deposition. DNA (DAPI) in blue and HA in red. Scale bar: 10 µm.  
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course of three days. Overall, H2A and its histone variants showed a much higher decay rate 
than H3 and its variants.  

Lastly, we examined chromatin assembly kinetics by conducting amber suppression pulse 
labelling time course followed by quantitative multiplexed ChIP-seq. For this, we also added 
conditions perturbing transcription, replication or activity of a chromatin remodeler to further 
dissect the effects on each histone protein. H2A and H3 showed rapid incorporation to all 
chromatin states. H3.3 incorporated to active regions and interstitial heterochromatin (as in 
Paper III). H2A.Z showed specific incorporation to active regions, poised promoters and 
weekly at insulators, macroH2A had a slow incorporation rate to heterochromatin. Using the 
potential of MINUTE-ChIP to also quantitatively analyze repetitive regions, we could follow 
the incorporation of CENP-A to centromeric minor satellites, H2A.Z incorporation to 
constitutive inter-lamin associated domains and macroH2A deposition to pericentric major 
satellites.  

To summarize, using amber suppression allows for studying histone pre- and post- assembly 
decay rates, nuclear shuffling. Adding the quantitative genomics approach of MINUTE-ChIP 
permits quantitative analysis of chromatin assembly and turnover rates with chromatin state 
specific dynamics, even at repetitive regions. Pooling together all this information will be 
essential for determining histone specific kinetic constants leading to kinetic modeling 
approaches. Further, time-resolved interactomics will show the key players that modulate 
dynamics of each histone.  
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6 CONCLUDING REMARKS AND PERSPECTIVE 

For this thesis, multiple omic methods have been used to study epigenetic mechanisms in stem 
cells. In Paper I, the focus was on the role of Polycomb repressive complex 2 (PRC2) in 
conserving the integrity of naïve human embryonic stem cells, showing that in its absence there 
was differentiation toward mesoderm and trophectoderm lineages. This shows that PRC2 and 
H3K27me3 generate an essential barrier that limits the pluripotent cells that for the inner cell 
mass of the embryo to erroneously generate extraembryonic tissue. In Paper II, a non-catalytic 
function for TET1 in mouse embryonic stem cells (mESCs) was discovered, showing that 
TET1 potentially acts as an interaction hub for chromatin factors that mediate silencing of 
endogenous retroviral elements. In Paper III, it was shown that H3.3 has a very rapid 
chromatin association and incorporation in mESCs, with accumulation at active genes, active 
enhancers and interstitial heterochromatin. As time course experiments were conducted, the 
temporal interactome of H3.3 could also be defined. Lastly, Paper IV we broaden the scope of 
chromatin dynamics of histones in mESCs by studying the histone variants H3.3, CENP-A, 
H2A.Z and macroH2A together with their respective canonical histone counterparts. In this 
study we generated pools of these proteins, and studied their unique pre-assembly and post 
assembly decay rates, dynamic incorporation to dedicated chromatin states, including highly 
repetitive regions. Altogether we show that the multiplexed quantitative ChIP-seq (MINUTE-
ChIP), together with transcriptomics, immunocytochemistry and extensive image analysis, 
quantitative protein quantification and proteomics yield numerous novel findings in the field 
of epigenetic regulation of stem cells.  

Quantitative Methods 

During the last decades there has been incredible advances in the field of fundamental research 
as a plethora of methods for biomolecular studies have been developed. With it, there is a need 
for conducting quantitative studies, to properly evaluate and understand the results. In this 
thesis, MINUTE-ChIP, a quantitative multiplexed ChIP-seq protocol, has been used in each of 
the studies, where multiple samples have been barcoded, pooled together, and from that pool, 
various immunoprecipitations have been conducted. This ensures that there is no technical 
variation between the samples throughout the process. Furthermore, a unique molecular 
identifier is introduced to all DNA fragments in an early step, which allows for distinguishing 
between technical amplicons due to PCR amplification versus unique fragments, which is the 
key for studying repetitive elements. Further, we also always run a sample of the pooled lysate, 
without any selection. This sample is used for normalization and represents the baseline of 
genome coverage in the various samples which allows us to account for biases due to over- or 
underrepresentation of chromatin in certain chromatin states. This is important, as 
heterochromatin routinely is challenging to study due to potential under digestion. Altogether, 
MINUTE-ChIP is a method for accurately quantifying relative differences in genome-wide 
histone modification patterns and histone variant genome code across multiple pooled samples. 
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Other quantitative methods used have been protein quantification using near infrared and 
infrared secondary antibodies instead of the conventional horseradish perish reaction for 
western blots. This allows for a low background and high sensitivity when measuring the 
intensity of fluorescence instead of chemical reaction, which is highly dependent on the 
duration of substrate incubation and is susceptible to signal saturation. Another quantitative 
method used was high content microscopy, which allows for ensuring that imaging settings are 
conducted within a linear range of the instrument, and multiple conditions are detected in 
parallel, limiting the batch-to-batch differences between experiments. To include even more 
quantitative aspects to the techniques, it would be favorable to do use tandem mass tags for 
labelling of protein samples, allowing for multiplexing samples, for mass spectrometry. With 
this approach it will be easier to quantify differences between proteomics samples. Altogether, 
the more quantitative experiments are, the more reliable the results, leading to better 
interpretation of the data. 

Genetic code expansion in mammalians cells  

Genetic code expansion (GCE) has been used for residue- and site-specific incorporation of 
non-canonical amino acids (ncAAs) to proteins of interest. There are many uses of this 
technique, such as biorthogonal ncAA-tagging labeling for protein purification, protein 
visualization using fluorescent molecules and adding ncAA that can crosslink to specific 
residues to study protein-protein interactions (284). In Papers III and IV, we used GCE to 
generate a switchable system for protein expression to avoid overexpression of the labelled 
proteins. Since the amber stop codon is the least abundant mammalian stop codon, we used 
amber suppression in all our mESC cell lines (272). Although there is a short lag phase for 
generating the histones of interest as the ncAAs need to be loaded to the amber suppression 
machinery, this lag phase in protein synthesis is in the range of minutes and is therefore much 
shorter than in inducible approaches where a compound is added to initiate gene expression. 
Importantly, this system is rapidly turned off simply by washing off the medium containing 
ncAA. There is indeed a delay in switching off the system, as amber suppression occurs until 
the fraction of intracellular ncAA is depleted. To overcome this obstacle, we have tried 
challenging the system using compounds that compete with the ncAA to obtain an even more 
controlled amber suppression turn off rate.  

Another benefit of using this system has been the potential to use a small protein tag, in contrast 
to many studies where the histone variant has been fused to a bulky fluorescent protein. By 
adding a small tag at the C-terminus of the protein we believe that the risk of affecting proper 
interaction and deposition of the histones are minimal. Further, adding the very same tag to 
multiple histone variants has major technical advantages, as it decreases the number of 
variables when using different antibodies for immunostaining or immunoprecipitation, 
resulting in the possibility for highly comparative studies of the panel of proteins of interest. 
This is of extra importance as several commercial antibodies for histone variants are not 
specific enough.  
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There are endless possibilities of implementation for amber suppression for generation of 
protein pools for temporal studies. This system is perfectly suited for studying the effect of 
gene mutations with clinical relevance, as in the case of oncohistones, to dissect what 
differences there are in comparison to the wild type case. Another possible and very simple 
approach is to generate overexpression of the protein of interest on demand to see what the 
effects are with a tunable and temporal resolution. Yet another possibility is to use non-
canonical amino acids that are not possible to be recognized by readers, inhibiting site specific 
post translational modification to study the role of different histone marks.  

Maintaining stem cell integrity 

In the early steps of embryogenesis there is a global DNA demethylation event, zygotic genome 
activation, and de novo DNA methylation. TET1 and TET2 are the main regulators of the first 
event, where they catalyze the oxidation for active DNA demethylation. A question that arises 
as a consequence of this is how genes are not globally upregulated in the DNA hypomethylated 
state. In Paper 1 we observed that TET1 interacts with the repressive chromatin 
methyltransferase PRC2. In a study conducted in parallel to ours, this interaction was further 
dissected, where they showed that TET regulates developmental genes together with PRC2 and 
SIN3A independent of its DNA demethylation activity, which is in line with our observations 
(285). In Paper 2 we showed that H3K27me3, the repressive histone mark deposited by PRC2, 
was at very high levels in the early stages of pluripotency, indicating that the DNA 
hypomethylation is balanced by a high global H3K27me3 abundance. Disruption of TET1 or 
PRC2 function in each of those studies showed rapid differentiation of the cells. In the first 
case, genes active in gastrulation were upregulated and cells gained a more differentiated 
morphology in the absence of TET1. In the second case, cells differentiated in a heterogeneous 
manner, but surprisingly also into trophectoderm lineage. Taken together, TET1 and PRC2 are 
essential for maintaining the stem cell integrity.  

For all cells it is also of essence to regulate the histone variants for maintaining homeostasis. 
In the first steps of embryogenesis, the protamines from the gametes are degraded and replaced 
with histones. At this step it is important that the correct histone variants end up in the correct 
place. Histone H3.3 is abundant from a very early stage, whereas histones H2A.Z and 
macroH2A have increased expression throughout development. Even though the latter two are 
less expressed, they carry important functions. For example, H2A.Z aids in gene regulation by 
mediating interaction with RNA Pol II and macroH2A highly accumulates in the inactive X 
chromosome in the post-implantation stages of development. 

There is growing evidence for the importance of the three-dimensional structure of chromatin 
for gene expression, where the differentiating cell acquires a more structured genome order 
with repressive regions clustering at the nuclear periphery through interactions with the nuclear 
lamina and topologically associated domains (TADs) being formed, where chromatin is 
clustered with regions sharing similar epigenetic profiles (13). It would be extremely 
interesting to study the role played by histone variants in the 3D genome regulation. In paper 
IV, we showed that some histones (H2A and H2A.Z) have a diffused distribution in the cell, 
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while others have dedicated regions of incorporation. H3.2 overlaps with regions of ongoing 
replication, H3.3 goes through a subnuclear (possibly phase separated) compartment, 
macroH2A accumulates at DNA-rich regions and CENP-A is deposited to centromeres. The 
genomics information of the pulsed histone panel also showed that H2A.Z accumulates very 
rapidly to active regions and slower at heterochromatin and constitutive inter-lamin associated 
domains, H3.3 enters active and repressed chromatin and macroH2A is predominantly 
deposited to heterochromatin and pericentromere. It would be interesting to study if the 
histones also play a role in establishing TADs, which would be expected, as the histone variants 
are associated with specific histone marks. 

Lastly, it will be of interest to fully understand the role of cell cycle on histone deposition and 
eviction. Many studies assessing cell cycle dependency of histone variant deposition have been 
carried out with chemically induced cell cycle arrest. The conducted drug treatment might 
cause DNA damage, and therefore the literature should be read with caution, as deposition of 
the histone variants might be altered due to cellular stress. The same is the case for studies 
where the histone variants have been fused to bulky fluorescent proteins in one of the termini, 
where thorough studies of the effects of alteration of interaction partners and PTMs have not 
been carried out. Therefore, amber suppression with genes fused to small molecular tags serve 
as excellent alternatives and for a higher cell cycle resolution it would be interesting to use a 
cell with fluorescent reporters for the cell cycle, as the highly used Fluorescence Ubiquitin Cell 
Cycle Indicator (FUCCI) system, for determination of cell cycle dynamics of pulsed histones 
(286,287).  

Regulation of endogenous retroviral elements in mESCs 

Endogenous retroviral elements could pose a threat to the genome if they are activated and 
initiate retrotransposition events. The cell has therefore developed a mechanism for silencing 
the ERV regions by inducing heterochromatin compaction. This is established by Krüppel-
associated box zinc finger proteins (KRAB-ZFPs) that recognize the DNA sequences, followed 
by TRIM28 (KAP1) binding, histone deacetylase and SETDB1 (ESET) recruitment, 
H3K9me3 deposition and HP1 binding, resulting in chromatin compaction. In Paper I and 
Paper III we studied TET1 and H3.3, and what role they might play in the maintenance of a 
silent state of ERVs in mESCs.  

In Paper I, there was upregulation of ERVs in TET1 KO cells, but this was much subtler in 
engineered cells expressing a catalytic dead version of TET1, attributing its ERV silencing role 
to a non-catalytic function. Interestingly, SIN3A was found to be an interactor of TET1 that 
also localizes to ERVs and potentially aids in the silencing through its interaction with HDACs. 
Further, displacement of HP1 was observed in TET1 KO cells, but partially re-established upon 
rescuing TET1 expression, adding to the functional role of TET1 for HP1 establishment.  

In Paper III, we showed that H3.3 rapidly accumulates at interstitial heterochromatin, 
indicating active histone turnover, showing that although the ERV chromatin in mESCs is 
transcriptionally silent it is still highly dynamic. An explanation for this highly dynamic nature 
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is proposed in a recent study, where it is shown that the chromatin remodeler Smarcad1 evicts 
nucleosomes at interstitial heterochromatin, where H3.3 is selectively and continuously 
deposited (109). 

Outlook 

Deregulation of PRC2, TET1 and histone variants and their chaperones have all been linked to 
diseases. It is therefore of utmost importance to continue unraveling the regulation of all these 
epigenetic factors to understand how they mediate gene expression. Several studies have shown 
that mutations to histones (‘oncohistones’) can be linked to prognosis of patient survival. This 
shows that there is a clinical need for further understanding the healthy epigenome to better 
understand what occurs when it is deregulated. With this knowledge we could derive more 
epigenetic drugs or approaches. As an example, we could use the deregulation of 
retrotransposons to our advantage for forcing cancer stem cells to activate expression of 
interferon genes, making them a target from the once evaded innate immune system (288). 
Knowing exactly the clinical effect of mutations, loss- or gain- of function of these epigenetic 
regulators will lead to improved diagnostics, better treatment and therefore better patient 
prognostics. 
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