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Abstract 

Cancer is a major public health problem, accounting for an estimated 10 million deaths 

worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware 

development over the past three decades have resulted in the development of modern 

medical imaging modalities that can capture high-resolution anatomical, physiological, 

functional, and metabolic quantitative information from cancerous organs. Therefore, the 

applications of medical imaging have become increasingly crucial in the clinical routines of 

oncology, providing screening, diagnosis, treatment monitoring, and non/minimally-

invasive evaluation of disease prognosis. The essential need for medical images, however, 

has resulted in the acquisition of a tremendous number of imaging scans. Considering the 

growing role of medical imaging data on one side and the challenges of manually examining 

such an abundance of data on the other side, the development of computerized tools to 

automatically or semi-automatically examine the image data has attracted considerable 

interest. Hence, a variety of machine learning tools have been developed for oncological 

image analysis, aiming to assist clinicians with repetitive tasks in their workflow.  

This thesis aims to contribute to the field of oncological image analysis by proposing 

new ways of quantifying tumor characteristics from medical image data. Specifically, this 

thesis consists of six studies, the first two of which focus on introducing novel methods for 

tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers 

for cancer diagnosis and prognosis. 

The main objective of Study I is to develop a deep learning pipeline capable of capturing 

the appearance of lung pathologies, including lung tumors, and integrating this pipeline into 

the segmentation networks to leverage the segmentation accuracy. The proposed pipeline 

was tested on several comprehensive datasets, and the numerical quantifications show the 

superiority of the proposed prior-aware DL framework compared to the state of the art. 

Study II aims to address a crucial challenge faced by supervised segmentation models: 

dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation 

approach is proposed based on the concept of image inpainting to segment lung and head-

neck tumors in images from single and multiple modalities. The proposed autoinpainting 

pipeline shows great potential in synthesizing high-quality tumor-free images and 
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outperforms a family of well-established unsupervised models in terms of segmentation 

accuracy. 

Studies III and IV aim to automatically discriminate the benign from the malignant 

pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In 

Study III, a dual-pathway deep classification framework is proposed to simultaneously take 

into account the local intra-nodule heterogeneities and the global contextual information. 

Study IV seeks to compare the discriminative power of a series of carefully selected 

conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep 

features-based radiomics analysis on the same dataset. The numerical analyses show the 

potential of fusing the learned deep features into radiomic features for boosting the 

classification power.  

Study V focuses on the early assessment of lung tumor response to the applied 

treatments by proposing a novel feature set that can be interpreted physiologically. This 

feature set was employed to quantify the changes in the tumor characteristics from 

longitudinal PET-CT scans in order to predict the overall survival status of the patients two 

years after the last session of treatments. The discriminative power of the introduced 

imaging biomarkers was compared against the conventional radiomics, and the quantitative 

evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on 

a binary survival prediction task, Study VI addresses the prediction of survival rate in 

patients diagnosed with lung and head-neck cancer by investigating the potential of 

spherical convolutional neural networks and comparing their performance against other 

types of features, including radiomics. While comparable results were achieved in intra-

dataset analyses, the proposed spherical-based features show more predictive power in 

inter-dataset analyses.  

In summary, the six studies incorporate different imaging modalities and a wide range 

of image processing and machine-learning techniques in the methods developed for the 

quantitative assessment of tumor characteristics and contribute to the essential procedures 

of cancer diagnosis and prognosis.  

 

Keywords: Medical Image Analysis, Machine Learning, Deep Learning, Survival Analysis, 

Early Response Assessment, Tumor Classification, Tumor Segmentation 
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Sammanfattning 

Cancer är en global hälsoutmaning som uppskattas ansvara för cirka 10 miljoner dödsfall i 

hela världen, bara under året 2020. Framsteg inom medicinsk bildtagning och 

hårdvaruutveckling de senaste tre decennierna har banat vägen för moderna medicinska 

bildgivande system vars upplösningsförmåga tillåter att fånga information om tumörers 

anatomi, fysiologi, funktion samt metabolism. Medicinsk bildanalys har därför fått en mer 

betydelserik roll i klinikers dagliga rutiner inom onkologin, för bland annat screening, 

diagnostik, uppföljning av behandling samt icke-invasiv utvärdering av sjukdomsprognoser. 

Sjukvårdens behov av medicinska bilder har lett till att det nu på sjukhusen finns en enorm 

mängd medicinska bilder på alla moderna sjukhus. Med hänsyn till den viktiga roll 

medicinsk bilddata spelar i dagens sjukvård, samt den mängd manuellt arbete som behöver 

göras för att analysera den mängd data som genereras varje dag, så har utvecklingen av 

digitala verktyg för att för att automatiskt eller semi-automatiskt analysera  bilddatan alltid 

haft stort intresse. Därför har en rad maskininlärningsverktyg utvecklats för analys av 

onkologisk data, för att gripa sig an läkares repetitiva vardagssysslor. 

Den här avhandlingen syftar att bidra till fältet “onkologisk bildanalys” genom att 

föreslå nya sätt att kvantifiera tumörers egenskaper från medicinsk bilddata. Specifikt, är 

denna avhandling baserad på sex artiklar där de första två har fokus att presentera nya 

metoder för segmentering av tumörer, och de resterande fyra ämnar att utveckla 

kvantitativa biomarkörer för cancerdiagnostik och prognos. 

Huvudsyftet för “Studie I” har varit att utveckla en djupinlärnings-pipeline vars syfte är 

att fånga lungpatalogiers anatomier (inklusive lungtumörer) samt integrera detta med djupa 

neurala nätverk för segmentering för att nyttja det första nätverkets utfall för att förbättra 

segmenteringskvalitén. Den föreslagna pipelinen testades på flertalet dataset och numeriska 

analyser visar en överlägsna resultat för den föreslagna “prior-medvetna” 

djupinlärningsmetoden. “Studie II” ämnar att ta sig an ett viktig problem som övervakade 

segmenteringsmetoder ställs inför: ett beroende av enorma annoterade dataset. I denna 

studie föreslås en icke-övervakad segmenteringsmetod som baseras på konceptet “ifyllnad” 

(“inpainting”) för att segmentera tumörer i områdena: lungor samt huvud och hals i bilder 

från olika modaliteter. Den föreslagna metoden lyckas bättre än en familj väletablerade icke-

oövervakade segmenteringsmodeller. 
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“Studie III” och “Studie IV” försöker automatiskt diskriminera benigna lungtumörer 

från maligna tumörer genom att analysera bilder från LDCT (lågdos-CT). I “Studie III“ 

föreslås ett djupt neuralt nätverk för klassificering vars grafstruktur tillåter lokal analys av 

tumörens inbördes heterogeniteter samt en helhetsbild från global kontextuell information. 

“Studie IV” försöker utvärdera noggrant utvalda metoder som grundar sig på att extrahera 

anatomiska särdrag från medicinska bilder. I studien jämförs konventionella “radiomics”-

metoder med särdrag från neurala nätverk samt en kombination av båda på samma dataset. 

Resultat från studien visar att en kombination av särdrag från djupa neurala nätverk samt 

“radiomics” kan ge bättre resultat i klassificeringsproblemet. 

“Studie V” har fokus på tidig bedömning av lungtumörers respons på behandling genom 

att utveckla ett set nya fysiologisk observerbara särdrag. Den presenterade metoden har 

använts för att kvantifiera förändringar i tumörers karaktär i PET-CT-undersökningar för 

att predicera patienters prognos två år efter senaste behandling. Metoden jämförts mot 

konventionella “radiomics” och utvärderingen visar att den föreslagna metoden ger 

förbättrade resultat. Till skilnad från “Studie V”, som fokuserar på att lösa ett binärt 

klassificeringsproblem, så försöker “Studie VI” predicera överlevnadsgraden hos patienter 

med lung- samt huvud och hals-cancer genom att undersöka neurala nätverk med sfäriska 

faltningsoperationer. Metoden jämförs mot, bland annat, “radiomics” och visar liknande 

resultat för analys på samma dataset, men bättre resultat för analys på olika dataset. 

Sammanfattningsvis så utnyttjar de sex studierna olika medicinska bildgivande system 

samt en mängd olika bildbehandling- och maskininlärningstekniker för att utveckla verktyg 

för att kvantifierar tumörers egenskaper, som kan underlätta fastställande av diagnos och 

prognos. 
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Chapter 1 

Introduction 

Over the past two decades, the impact of medical imaging technologies in clinical oncology 

has been substantially expanded from primarily diagnostic tools to a more central role in the 

domain of individualized medicine. Medical imaging contains invaluable information which 

can be used as complementary data with respect to other clinical resources such as genomics, 

pathology, and blood biomarkers. The combination of these data resources can provide 

unprecedented information that can improve individualized monitoring and therapy 

methods [1]. Furthermore, in contrast to genomic and proteomic examinations, which 

require sampling from the heterogeneous tumor masses through invasive biopsies, medical 

imaging can provide a more comprehensive view of the entire tumor in a non- or minimally-

invasive procedure. Accordingly, medical imaging modalities play a key role in the different 

stages of cancer screening, including cancer diagnosis, treatment and surgery planning, 

cancer characterization, cancer monitoring, and tumor response evaluation.  

Impressive innovations in the medical imaging hardware and imaging agents on one 

side and standardizing image acquisition protocols on the other side have led to capturing 

high-resolution quantitative images, which can be used in a variety of oncology-related 

applications. However, such widespread cancer screening facilities resulted in the 

accumulation of a large number of medical images that need to be manually examined by 

clinical experts. To reduce the heavy burden on clinicians, numerous computerized methods 

have been developed to assist clinicians with different tasks. These tools are often built upon 

image processing techniques, statistical methods, and Machine Learning (ML) models to 

automatically or semi-automatically draw inferences from medical images. 

 Regardless of the type of tumors, the oncological image analysis pipeline consists of the 

following general steps: (1) image preprocessing, (2) target tumor detection/segmentation, 
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(3) quantitative feature extraction, and (4) diagnosis, prognosis, or prediction. (See Figure 

1.1.) 

 

Figure 1.1. Schematic illustration of the oncological image analysis pipeline. Standard image preprocessing techniques are 
applied to the acquired images to prepare them for subsequent analyses, including tumor segmentation. Delineated tumors 
are then represented by quantitative features, which will be used to infer a decision. (A part of the figure was created with 

Biorender.com.) 

Image preprocessing techniques can increase the perceptibility to the human observer 

of the anatomical structures and tissues within the images, or they can be considered as 

preparation steps by which the subsequent analysis can be applied. Typical preprocessing 

techniques include, but are not limited to, contrast and edge enhancement, noise reduction, 

artifact reduction, spatial resolution resampling, image registration, and fusion of multiple 

modalities [2]. 
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 Tumor segmentation, identifying the voxels of cancerous regions from background 

structures, is considered to be one of the most challenging tasks in medical image analysis 

due to the heterogeneous characteristics of the tumors. In fact, even two tumors within the 

same organ can maintain significantly different characteristics—a phenomenon referred to 

as inter-tumor heterogeneity. Moreover, large variability exists among the cancer cells 

within a single tumor of the same patient, which is referred to as intra-tumor heterogeneity. 

As a result, tumors appear with a variety of textural patterns in different sizes at various 

locations with similar intensity and textural patterns as their surrounding healthy 

structures. Numerous segmentation methods have been proposed over the last three 

decades for segmenting different types of tumors in different imaging modalities, such as 

region growing [3], graph cuts [4], active contours [5], and hidden Markov random field [6]. 

Due to the rapid development of DL techniques, medical image segmentation no longer 

requires handcrafted features because Convolutional Neural Networks (CNNs) can 

efficiently learn hierarchical feature representation directly from the images. As a result, 

outstanding segmentation performances have been achieved for different types of tumors 

such as lung [7], brain [8], and liver [9]. 

Quantitative feature extraction refers to transferring the raw voxel intensities of the 

segmented tumor volumes into quantitative attributes, which may represent certain 

characteristics of the tumors. In other words, it has been hypothesized that medical imaging 

provides critical information regarding tumor phenotypes, which could be exploited by 

extracting and mining the quantitative features [10]. This is the case because image-based 

quantitative features may reflect the general characteristics of cancers, such as proliferation, 

angiogenesis, metabolism, or agnostic features [11]. 

Diagnosis, prognosis, or prediction step aims at employing the extracted quantitative 

features in statistical or ML models to infer a decision such as benign-malignancy 

classification [12], lymph node metastasis prediction [13], overall survival prediction [14], 

cancer stage classification [15], and cancer recurrence prediction [16].  

This thesis aims at contributing to the field of oncological image analysis by covering all 

the mentioned steps and proposing new ways to quantify the tumor characteristics from the 

medical image data. Specifically, this thesis consists of six studies, the first two of which 

introduce novel models for tumor segmentation; the last four studies focus on developing 

quantitative features for cancer diagnosis and prognosis. From a technical perspective, the 

presented works in this thesis pursue two objectives: first, to integrate the clinical knowledge 

into the well-established image processing and ML tools in order to improve the efficacy of 
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cancer diagnosis and prognosis methods; second, to identify the limitations of the currently 

available methods and to propose new approaches for addressing the recognized limitations 

in order to improve the performance of the computerized methods.  

The structure of this thesis is organized as follows. In Chapter 2, the underlying 

motivation and aim of each of the six studies are specified. Chapter 3 consists of brief 

descriptions regarding the background theories of the methods employed in the six studies. 

Next, the methods and results of each of the six studies are outlined in Chapters 4 and 5. 

Analytical reasoning of the results is then presented in Chapter 6, followed by conclusions 

in Chapter 7. Lastly, the relevant papers of each of the six studies are appended at the end of 

this thesis. It should be noted that the two terms “study” and “paper” are used 

interchangeably in the rest of this thesis. 
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Chapter 2 

Research Aims 

Visually inspecting and subjectively assessing the medical images, which expert clinicians 

do in daily practice, is recognized as a demanding and error-prone task. The overall aim of 

the present doctoral thesis is to strengthen the important role of computerized image 

analysis techniques for diagnosis, prognosis, and prediction purposes, with a focus on 

oncological images in general and lung cancer images in specific. This is done by employing 

advanced image processing and ML techniques, modifying them, and introducing new 

technical contributions to the medical image analysis community with particular emphasis 

on the development of clinically relevant Quantitative Imaging Biomarkers (QIBs). 

This thesis is built upon six scientific papers, which are appended to the end of this 

thesis. It should be noted that the order of the papers was chosen to match it with the 

pipeline of oncological image analysis, which starts with tumor segmentation and follows 

with quantification and prognosis prediction. The underlying motivations and research aims 

of each study are outlined in the following sections.  

2.1 Prior-Aware Supervised Tumor Segmentation (Paper I) 

Motivation: Segmentation of anatomical organs and/or pathologies is recognized as one 

of the central tasks in medical image analysis. In fact, a precise and accurate segmentation 

of the target region can provide important information that would be used for further 

diagnosis, prognosis, or treatment steps. In the lungs, precise segmentation of lung 

pathologies plays a vital role in different applications. For instance, accurate detection and 

segmentation of pulmonary nodules can be further used in the follow-up sessions to track 

the growth of the nodules, which is associated with nodule malignancy. In addition, to 

deliver the effective radiation dose to the lung tumors, a precise segmentation of the tumor 

boundaries is required for radiotherapy planning procedures. Gaining from the hierarchical 

feature learning directly from the input images through the convolutional layers, 

Convolutional Neural Networks (CNNs) have shown promising results in various medical 

image segmentation tasks. In this domain, the encoder-decoder U-Net architecture [17] is 
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considered a milestone as an abundance of the recent advances in segmentation networks 

have been inspired by the plain U-Net model. A segmentation prior encodes certain types of 

prior knowledge, such as the shape and appearance of a target region, into a segmentation 

model, which has been recognized as a helpful strategy to improve segmentation accuracy 

[18]. Various methods have been proposed to obtain prior knowledge and integrate it into 

the segmentation models; however, these methods are mainly designed to deal with organ 

segmentation. In fact, obtaining prior knowledge about pathological regions is a more 

challenging task due to the stochastic nature of the pathologies. 

Aim: To propose a deep autoencoder-based pipeline for obtaining prior knowledge of 

lung pathologies in CT images in order to improve the segmentation accuracy of 

pathological regions. 

2.2 Unsupervised Tumor Segmentation (Paper II) 

Motivation: Due to rapid advances in the field of DL, the performance of the medical image 

segmentation tasks has improved considerably. Despite the promising results achieved by 

deep segmentation models, which could reach clinical-level accuracy for some applications, 

their feasibility is limited by the required large amount of carefully labeled data due to their 

supervised training fashion. However, supervised training of such data-greedy models 

suffers from two types of limitations: (a) the number of training medical images is often 

limited because of costly slice-by-slice pixel-level annotation; and (b) even if a large-scale 

labeled data is available, the generalization power of the model over the unseen classes is 

poor [19]. Unsupervised DL methods tend to be a natural fit for gaining insights into medical 

image analysis tasks as their optimizations do not entail labeled datasets. In this domain, 

Unsupervised Anomaly Detection (UAD) is an active field of research that aims to identify 

the data that do not fit into the learned distribution from normal data [20]. Despite the 

encouraging results achieved by UAD methods in some applications, these models suffer 

from several limitations. First, they often face difficulties in learning the distribution of 

healthy anatomies from high-resolution images. Second, these methods are often employed 

to detect anomalies with different intensity patterns with respect to nearby normal tissues, 

such as glioma and MS lesions, in specific sequences of MR images [21]. A third (and 

significant) limitation of the current UAD techniques is the difficulty of preserving the 

anatomical constraints within the generated images. 

Aim: To develop an autoinpainting-based UAD method for segmenting tumors in full 

resolution single/multi-modal images. 
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2.3 Deep Features for Benign-Malignancy Classification (Paper III) 

Motivation: Lung cancer is notorious for high morbidity and mortality worldwide. Most 

lung cancer patients are diagnosed with advanced stages of lung cancer. Although the five-

year survival rate of locally advanced lung cancer is less than 5%, early diagnosis of 

asymptomatic lung cancer plays a vital role in treatment planning that can substantially 

improve the overall five-year survival by up to 60% [22]. Most lung cancers emerge from the 

tiny malignant pulmonary nodules even though the majority of lung nodules belong to the 

benign class. However, distinguishing malignant from benign modules is one of the 

challenging steps in lung cancer screening as they share highly similar visual characteristics. 

In clinical practice, radiologists examine the CT volumes slice-by-slice to estimate the 

malignancy likelihood by measuring the morphological attributes of the nodules. Moreover, 

it has been shown that intensity distribution and relative position of the nodules are strongly 

associated with lesion malignancy [23]. Therefore, the classification of malignant lung 

nodules from benign nodules in CT images by developing computerized methods is feasible 

and could assist clinicians and support their clinical decisions for potential interventions.   

Aim: To develop a robust method for automatic benign-malignant nodule 

classification in CT volumes by simultaneous analysis of intra-nodule heterogeneity and 

contextual features. 

2.4 Hybrid Imaging Biomarkers for Benign-Malignancy Classification (Paper IV) 

Motivation: To classify malignant lung nodules from benign nodules, a large number of 

computerized models have recently been proposed. Taking a general view, these models can 

be categorized into two groups: radiomics-based and DL-based models. Radiomic 

descriptors are designed to quantify the nodule characteristics such as morphological 

attributes and textural features. The extracted feature set is often processed to identify the 

radiomic signatures—the most informative features—which are then used to train a 

conventional learning algorithm such as random forest and support vector machines [24]. 

Therefore, the radiomics pipeline is constructed based on several independent steps. By 

contrast, DL-based models provide an end-to-end structure to directly learn the nodule 

characteristics from the input CT images, process the features, and classify them into benign 

or malignant classes—all in one single framework. Even though radiomics and DL methods 

are fundamentally different approaches, both have shown promising and comparable results 

in predicting lung nodule malignancy from CT images. However, there is a lack of evidence 
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in the literature to determine which method can potentially perform better than the others 

in a specific condition, as most of the previous studies were conducted on different datasets. 

This makes it challenging to compare them objectively. 

Aim: To compare the classification performance of a series of carefully selected 

conventional radiomics methods, end-to-end DL methods, deep feature-based methods, 

and the potential of fusing radiomic and deep features, all processed and analyzed with 

similar fine-tuning techniques.  

2.5 Imaging Biomarkers for Early Assessment of Tumor Response (Paper V)  

Motivation: Considerable attention has been directed in oncology communities to 

evaluating the early response of tumors to the applied therapy as it can be helpful to adapt 

the treatment and, potentially, improve patient clinical outcomes. In clinical practice, 

invasive biopsy sampling and/or non-invasive medical imaging can be used for tumor 

response assessment. Size-based metrics such as the World Health Organization’s (WHO) 

criteria or Response Evaluation Criteria in Solid Tumors (RECIST) are the standard 

strategies to assess the tumor response from medical image data [25]. Nevertheless, there 

are several scenarios in which such metrics would not be precise. For instance, there are 

certain types of cancers in which the tumors may not shrink significantly despite the 

supposedly effective treatment applied, such as lymphoma, sarcoma, hepatomas, 

mesothelioma, and gastrointestinal stromal tumors [26], [27]. In addition, some 

chemotherapy regimens may result in tumor hemorrhage, necrosis, or cavitation, which 

does not necessarily represent tumor shrinkage. Accordingly, effective changes in structure, 

functionality, or metabolic activity of a tumor caused by treatment may not be captured 

accurately by using only size-based measurements [28]. By converting the image data into 

quantitative descriptors, numerous studies over the past few years have focused on 

employing/developing radiomic features as QIBs for a variety of applications such as early 

tumor assessment, distance metastasis, and survival prediction. However, a major challenge 

faced by the radiomics field is the difficulty of establishing clinical relevance between the 

extracted features and the biological characteristics of the tumors. In this domain, other 

challenges include sensitivity to imaging acquisition parameters, sensitivity to image 

artifacts, and model overfitting issues.  

Aim: To develop imaging biomarkers that are physiologically interpretable by taking 

into account the concept of tumor heterogeneity in order to predict the long-term survival 
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status of lung cancer patients by assessing the early response of tumors to the applied 

treatments.  

2.6 Imaging Biomarkers for Survival Rate Prediction (Paper VI) 

Motivation: The term “survival analysis” refers to the study of the time period it takes for 

an event to occur. In the domain of cancer survival, this analysis can be applied to different 

applications, the most common of which correspond either to the time between diagnosis 

and death caused by the disease or the time between the applied treatments and the cancer 

recurrence. Ideally, all the patients in survival studies would be followed up with until the 

target event is recorded; nevertheless, patients are often lost in the clinical follow-ups prior 

to the event of interest. In some cases, the event may not even occur at all if the patient dies 

from a different cause. Therefore, when the event is not observed, the last contact time point 

is referred to as “censoring time.” Due to the presence of censored data, survival analysis 

cannot technically be considered an ordinary regression task. One of the most common 

classical statistical approaches for modeling survival data with censored observations is the 

Cox Proportional Hazards (CPH) model [29]. However, the CPH method suffers from high-

dimensional data, and regression cannot learn any complex non-linear functions. In clinical 

trials, survival analysis is often conducted using clinical data such as molecular profiling, 

which are not always available. As a potential alternative, QIBs such as radiomics have been 

used in CPH and other ML-based methods [30]. In recent years, the potential of DL-based 

models, mainly CNNs, for survival analysis has been widely studied. One major drawback of 

the CNN-based models is that the learned features strongly depend on the spatial orientation 

of the tumoral regions. In other words, a rotated tumor can potentially result in a different 

survival prediction when using traditional CNNs.  

Aim: To propose an automatic pipeline for survival analysis of lung and head-neck 

cancer patients using spherical convolutional neural networks as rotationally invariant 

models. 
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Chapter 3 

Background 

3.1 Cancer Epidemiology 

Cancer remains among the leading causes of death worldwide and is an important barrier to 

increasing life expectancy. The estimated number of new cancer cases worldwide in 2020 

was 19.3 million, with an estimated 10 million mortalities [31]. Moreover, the number of new 

cases is expected to increase by 20% in 2040 [32], [33].  

Since a major part of this thesis focuses on lung cancer image analysis, general concepts 

of lung cancer epidemiology are briefly outlined. Among all types of cancers, lung cancer is 

recognized as the second most frequently occurring cancer after breast cancer. In 2020,  

11.4% of all newly diagnosed cancer cases were lung cancer, which equals 2.2 million new 

cases. More importantly, approximately 1.8 million deaths or 18% of all cancer mortality are 

caused by lung cancer, making it the most lethal type of cancer [31]. Data collected between 

2010 and 2014 show that most patients are diagnosed with advanced stages of lung cancer; 

therefore, survival after five years from the initial diagnosis varies between 10 to 20% in 

most countries [34]. By contrast, early diagnosis of asymptomatic lung cancer plays a critical 

role in treatment planning that can remarkably improve the overall five-year survival by up 

to 60% [22].  

 Identifying the underlying reasons for such a rapid growth of incidence and mortality 

is quite challenging, but it likely reflects the effects of aging, growth of population, and 

prevalence of the main risk factors of cancer, most of which are associated with 

socioeconomic development. 

3.2 Cancer Biology 

It was a bone of contention whether cancer is one single disease or a set of various diseases. 

In 2000, Hanahan and Weinberg published a distinguished review, the “hallmarks of 

cancer” [35], in which they asserted that the highly complex characteristics of the cancer 
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mechanism could be simplified into a small number of underlying principles. In that review, 

the authors argued that all types of cancers share six distinctive and complementary 

biological capabilities—that is, hallmarks—that control the formation of malignant cells 

from normal ones. These hallmarks are briefly explained below [35]. 

Self-sufficiency in growth signals. To transit from a quiescent state into an active 

proliferative state, normal cells inevitably need mitogenic growth signals that are 

transmitted into the cell by transmembrane receptors. However, cancer cells are capable of 

growing without such external signals; in fact, cancer cells can produce these signals by 

themselves. They can either permanently activate the signaling pathways to respond 

positively to such activations or impair the factors that are responsible for preventing the 

excessive growth of such signals.  

Insensitivity to antigrowth signals. Within normal tissues, several antiproliferative 

signals operate to maintain cellular quiescence and tightly control cell division procedures. 

These antigrowth signals are regulated by proteins called Tumor Suppressor Genes (TSGs). 

Incipient cancer cells attack the antigrowth signals; therefore, the altered TSGs in cancer 

cells will not be able to prevent over-division of the cells. 

Evading apoptosis. The ability of the tumor cells to expand their numbers depends not 

only on the rate of cell proliferation but also on cell attrition. Normal cells have a mechanism 

named “apoptosis,” by which the cells are programmed to die automatically in the event of 

damage(s). Cancerous cells, on the other hand, alter this mechanism by impairing the proper 

signaling so that the apoptosis mechanism cannot be activated.  

Limitless replicative potential. All three steps mentioned above lead to detaching a cell’s 

growth program from the other signals in its environment. Normal cells have a limited 

number of divisions so that they cannot divide indefinitely (i.e., senescence state) due to the 

existence of a DNA named “telomeres.” The length of the telomeres is diminished in the 

wake of every cell division until they become too short to activate senescence. By 

manipulating specific enzymes to increase the length of telomeres, cancer cells bypass this 

obstacle and will be able to continue dividing indefinitely. 

Sustained angiogenesis. The oxygen and nutrients delivered by the circulatory system 

are vital nutrients for the functioning and survival of the cells. Therefore, the formation of 

normal tissue is followed by the growth of new blood vessels—the process of angiogenesis. 

Like normal tissue, an expanding tumor needs oxygen and other nutrients from the blood 
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vessels as well. Cancerous cells can exploit this normal functionality for their own benefits. 

As a result, cancer cells are capable of regulating and promoting the formation of new blood 

vessels. 

Tissue invasion and metastasis. Most primary tumors are prone to invade nearby 

tissues or even spread into distant organs where they may succeed in establishing new 

colonies. This process is called “metastasis” and accounts for 90% of cancer mortalities. This 

is a multistep process that begins with invading nearby tissues and then continues into the 

blood vessels. After surviving the circulatory system, cancer cells leave that system and start 

dividing inside a new tissue or organ. 

Eleven years after the original publication of cancer hallmarks, in 2011, the authors 

published the next generation of hallmarks in which they added two more hallmarks as well 

as two emerging characteristics (see Figure 3.1). This update clearly indicates that as cancer 

researchers gain more insight into cancer biology, more complexity of cancer phenotypes 

and genotypes will be revealed [36], [37]. In 2022, the same author published the new 

dimensions of cancer hallmarks [38] in which he listed some of the limitations of the current 

hallmark traits that cannot address the complexity of cancers, presenting several prospective 

new hallmarks and enabling characteristics.  

While all types of cancers are characterized by an uncontrolled rate of cell division and 

the potential to invade nearby or even distant tissues, they may hold varying levels of 

heterogeneity in phenotyping features related to the cancer hallmarks. Today, cancer 

subtyping is done based on organs, tissues, or the type of cells from which the cancer 

initiated. However, even two cancers from the same organ can maintain significantly 

different tumor characteristics. This inter-tumor heterogeneity is integrated by large 

variabilities among the cancer cells within a single tumor of the same patient (intra-tumor 

heterogeneity). Heterogeneity within the tumors and biological behavior corresponding to 

the cancer hallmarks have been proposed as potential reasons for treatment failures. 

Accordingly, the concept of heterogeneity has become an essential field of research in the 

context of personalized medicine [39], [40].  
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Figure 3.1. Illustration of cancer hallmarks. In addition to the original six hallmarks, two more hallmarks were identified 
as factors involved in the pathogenesis of cancers. One hallmark allows cancer cells to evade immunological destruction 

while the other involves the ability to modify or reprogram cellular metabolism. In addition, two consequential 
characteristics of neoplasia facilitate the acquisition of original and emerging hallmarks. (The figure was created with 

Biorender.com) 

3.3 Cancer Diagnosis and Treatment 

3.3.1 Medical Imaging for Cancer Diagnosis 

The history of medical imaging modalities in the oncology field can be summarized as the 

elaboration of advanced technologies to project the human anatomies into an image plane 

in which details of the disease can be seen. Cancer imaging techniques have recently 

developed far beyond the initial goal of pathology detection. In fact, modern imaging 

modalities make it possible to characterize the disease structurally, functionally, 

physiologically, and biochemically. Therefore, medical imaging modalities have become an 

integral part of the diagnosis, prognosis, planning, and monitoring of cancer diseases [41]. 

Based on the nature of image acquisition, the imaging modalities can be broadly categorized 

into the following groups: X-ray-based modalities, Magnetic Resonance (MR) modalities, 

nuclear medicine imaging modalities, and ultrasound-based systems. Figure 3.2 depicts 

examples of different imaging modalities in cancer screening. While the physics of medical 
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imaging falls outside the scope of this thesis, a brief overview of some applications of the 

imaging systems in cancer screening will nonetheless be outlined below. This overview 

focuses on the first three modalities mentioned above, as they have been employed in the 

different research studies of this Ph.D. study.  

 

Figure 3.2. Different imaging modalities are used for screening different types of tumors. A) imaging glioblastoma with 
MRI modality; B) lung cancer detection in chest X-ray; C) imaging head-neck tumor with PET, i.e., nuclear medicine 

modality; D) breast cancer detection in digital mammography; E) lung cancer screening with CT imaging; and F) breast 
tumor segmentation in 3D ultrasound images.  

X-ray-based modalities. The advances in digital imaging technology and the 

widespread use of Picture Archiving and Communications Systems (PACS) have extended 

the X-ray-based modalities in cancer imaging. Dual-energy X-ray machines can use two 

stacked detectors separated by a plate made of copper. These machines can use one X-ray 

exposure or one detector with dual X-ray exposure. Accordingly, they can acquire images of 

low and high-energy X-rays together so that they can obtain both soft-tissue images and 

hard-tissue scans such as bone and calcium. From the bone images, for example, 

calcifications in hilar lymph nodes can be captured. As another example, in conventional 

radiographic images of the chest region, rib defects such as sclerotic metastases or calcified 

pleural plaques share similar attributes with soft-tissue abnormalities; however, such 

defects may be accurately characterized by bone images. Another application of X-ray 

systems is related to full-field digital mammography, which acquires images from dense 

tissues of the breast with a high dynamic range of intensities, thus leading to diagnosis with 
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high sensitivity. A limitation of 2D mammograms is the possibility of missing the cancer 

regions as the normal structures (such as glandular tissue) would overlap and obscure 

tumoral regions. To tackle this limitation, the tomosynthesis technique can reconstruct a 3D 

volume of the breast by acquiring multiple low-dose X-rays taken from different angles. 

Malignant tumors often exhibit a rapid wash-in and wash-out of iodine, while benign tissues 

have a slow iodine uptake. When this characteristic is kept in mind, contrast-enhanced 

mammography with tomosynthesis can be used to distinguish malignant breast tumors from 

benign ones by following the distribution of the injected contrast-enhancing materials [42]. 

Computed Tomography (CT) machines using rotating X-ray tubes can reconstruct high-

resolution volumetric images of up to 0.5 mm of slice thickness [43]. Among many other 

applications, this is the standard imaging modality for lung cancer screening. While 

identifying the lung nodules in CT images is not an easy task, distinguishing the malignant 

nodules from the benign ones is even more challenging (see Figure 3.3). As a solution, 

dynamic contrast-enhanced CT can be employed to identify malignant pulmonary nodules 

having increased vascularity due to angiogenesis [44]. Other applications of CT in cancer 

imaging include but are not limited to CT virtual colonography, CT perfusion imaging, and 

whole-body CT that can be used for screening colorectal cancer, metastases to lymph nodes 

and liver, and evaluating the therapy response as well [45].  

 

Figure 3.3. Lung cancer can appear in various sizes and with various characteristics, from tiny pulmonary nodules and 
ground glass opacities to extremely large-size non-small lung cancers.  

Magnetic Resonance Imaging Modalities. Magnetic Resonance Imaging (MRI) is a 

non-invasive imaging technique that can be used for cancer screening in different clinical 
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situations, including cancer detection, cancer staging, response evaluation, biopsy, and 

therapy guidance interventions. Structural MR imaging of the breast tissues can acquire 

high-resolution image data from chest wall involvement, multi-focal tumors, and lymph 

node metastasis. Therefore, it is possible to identify the stage of breast cancer with this 

modality. Structural MRI sequences play an essential role in brain tumor screening. Multi-

modal scans can be acquired by using standard sequences, including Fluid-Attenuated 

Inversion Recovery (FLAIR), pre-gadolinium T1-weighted, and post-gadolinium T1-

weighted (see Figure 3.4). The primary roles of structural MRI in brain tumor evaluation 

include detection and localization of the lesion(s), which can be further used for treatment 

and biopsy planning, and evaluating the mass effect on the brain tissues, ventricular system, 

and vasculatures. 

Dynamic features of wash-in and wash-out can be examined effectively by using 

contrast-enhanced MRI images. Gadolinium is a paramagnetic element that changes the 

magnetic state of hydrogen atoms in water molecules. Tissues with a high level of gadolinium 

uptake in T1-weighted images appear with hyperintensity signals. The effect of gadolinium 

concentration is maximized as the first pass of a bolus of contrast agent after the rapid 

intravenous injection. On T2-weighted images, this causes hypointensity signals in areas of 

tissue that are highly perfused. In breast cancer screening, dynamic contrast-enhanced MR 

images with gadolinium agents are used to examine neo-angiogenesis, which is correlated 

with histopathological examinations [46]. Contrast-enhancing agents can indicate the local 

breakdown of the blood-brain barrier, which is a common characteristic in many brain 

tumors. Hyperintensity signals caused by contrast-enhancing agents within gliomas are 

associated with high-grade tumors. In addition, peri-tumoral edema appears with 

hyperintense signals in T2-weighted/FLAIR sequences surrounding the tumor cores. 

 Diffusion-Weighted Imaging (DWI) measures the diffusion of water molecules and is a 

promising technique for tumor detection and metastasis identification. Water molecule 

diffusion in tumoral tissues does not function normally; therefore, a lower Apparent 

Diffusion Coefficient (ADC) leads to high signal acquisition in DWI images. Accordingly, 

increases in the values of ADC represent a positive response to the applied treatment. In fact, 

such an increase in ADC is associated with the number of cells killed and is thought to relate 

to the liberation of water into the extracellular space as a result of cell necrosis [47]. DWI-

based ADC values have been shown to be decreased in highly cellular tumors such as 

lymphoma and high-grade glioma [48]. 
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Figure 3.4. Different MRI sequences are examined to identify different brain tumor subregions: A) T1 gadolinium 
enhancement sequence; B) T1-sequence; C) T2-sequence; and D) FLAIR sequence. High-grade gliomas (first row) and 

low-grade gliomas (second row) appear with significantly different characteristics. 

Nuclear medicine imaging modality. These imaging modalities use small amounts of 

radiopharmaceutical materials that are typically injected into the bloodstream. In this 

category, Positron Emission Tomography (PET) is a radiopharmaceutical-based imaging 

modality that can quantify in vivo cellular and molecular alterations. Whether as a single 

modal or a multimodal (e.g., PET-CT) imaging technique, it has exerted a significant impact 

on clinical practice and translational cancer research (see Figure 3.5). PET modality is 

capable of characterizing the tumor properties based on biochemical changes at the 

molecular levels. The most common type of radiotracer used with PET imaging is 

fluorodeoxyglucose (FDG) because it accumulates mostly in cancer cells to a greater degree 

than the non-cancerous cells. It should be emphasized that the rate of false positives on 

FDG-PET examinations is relatively high due to the fact that the increased level of glycolysis 

is not limited only to the cancer cell. The FDG-PET scan has been successfully employed for 

a variety of cancers, including lung, breast, head and neck, colorectal, lymphoma, 

melanoma, thyroid, cervical, pancreatic, and esophageal. Besides accurate cancer detection, 

another important application of the FDG-PET scan is to monitor the impact of the applied 

treatment and assess the response of the tumor cells to the therapies. It has been shown that 

comparing the Standardized Uptake Value (SUV) [49] among the pretreatment and follow-

up scans can act as a potential biomarker. SUV is a mathematically derived ratio of tissue 

radioactivity concentrations at a certain time and the injected radiopharmaceutical dose, 

normalized by the patient’s weight. This measure is a semi-quantitative value that can be 

influenced by different factors such as low image resolution, image noise, and the bias 
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imposed by the users in defining the Region Of Interest (ROI) [50]. In the domain of SUV 

applications, many studies in lymphoma, lung, breast, and other types of cancers show that 

changes in this value can signify an early response to the treatment, which in many cases 

correlates with clinical outcomes as well. In recent years, several studies have focused on 

other applications of PET imaging modalities in cancer screening, including hypoxia 

detection, imaging cell proliferation, and imaging apoptosis [51]. 

 

Figure 3.5. The important role of multimodal imaging in cancer screening. Examples of head-neck tumors (first two rows) 
and lung tumors (second two rows). The first column shows the anatomical CT images, the second column represents the 

molecular PET images, and the last column visualizes the fused images.  

3.3.2 Cancer Treatment Methods 

Cancer treatment is the process of using surgery, radiotherapy, chemical drugs, or other 

novel treatment options to cure, shrink, or stop the progression of cancer. Depending on the 

type of cancer and clinical conditions, one treatment or a combination of treatment methods 
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would be prescribed. The goal of all cancer treatment methods is to achieve a cure for the 

disease; however, helping patients live a normal lifespan free from cancer symptoms might 

or might not be possible. In other words, if the cure option is not possible, then treatments 

may be employed to shrink cancer or decelerate the cancer growth so that the patient would 

live with fewer cancer symptoms for as long as possible. Accordingly, the more specific goals 

of cancer treatment methods can be categorized as discussed below [52]–[54]. 

Primary treatment. The goal of primary treatment is to completely cure cancer and 

eliminate the cancer cells from the patient’s body. Although all the therapy methods 

mentioned can be used as primary treatment, surgery is the most common. Moreover, if the 

diagnosed cancer is recognized as sensitive to radiotherapy or chemotherapy, one of these 

treatments or their combinations would be applied as well. 

Adjuvant treatment. This kind of treatment refers to killing any cancerous cells that 

would remain after primary treatment to reduce the risk of cancer recurrence in the future. 

In some cases, neoadjuvant therapy, which is similar to adjuvant therapy, is prescribed to 

facilitate the process of primary treatment; however, it is used prior to the primary 

treatments. Similar to primary treatments, any kind of cancer treatment method can also be 

used as adjuvant treatment, with the most common ones including radiotherapy, 

chemotherapy, and hormone therapy. 

Palliative treatment. This kind of treatment is used to relieve symptoms and improve 

the quality of life. It also can be used to reduce or control the side effects of cancer treatments 

and can be applied at any stage of an illness. Palliative treatment is helpful in prolonging the 

patient’s life in cases of advanced cancers that cannot be cured. All kinds of treatment 

methods, as well as additional medications, can be used to relieve the symptoms. 

Choosing the proper treatment method depends on several factors, including type and 

stage of cancer, as well as the general health conditions of the patient. These methods can 

be broadly categorized as described below. 

Surgery. The goal of surgery in cancer therapy is to remove the tumor and nearby 

tissues during a surgical operation. Although it is the oldest type of treatment, it is still 

effective for many kinds of cancer. 

Chemotherapy. This is an aggressive form of chemical drug-based intervention that 

aims at killing the rapidly growing cells inside the body. There are a variety of chemical drugs 

with different levels of side effects that are used to treat many types of cancer. These drugs 
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can remain inside the body for a week after treatment. Chemotherapy is often used in 

combination with other therapy techniques. 

Radiotherapy. Radiation treatment is a type of cancer treatment that employs high 

doses of ionizing radiation to kill cancer cells, shrink the tumor size, and/or decelerate their 

growth. The radiation can be exposed from a machine outside the body (external beam 

radiation), or the source can be placed within the patient’s body (brachytherapy). 

Bone marrow transplant. Also known as stem cell transplant, this is a treatment for 

some particular types of cancer such as leukemia. This kind of treatment can be performed 

by using the patient’s own bone marrow stem cells or those of a donor. It will allow 

oncologists to deliver higher doses of chemotherapy.  

Immunotherapy. Also known as biologic therapy, immunotherapy is another type of 

treatment that uses the patient’s own immune system to fight against cancer. This can be 

done either by stimulating the patient’s immune system to work harder and smarter to attack 

cancer cells or by adding immune system components such as man-made immune system 

proteins. 

Hormone therapy. This type of treatment blocks or lowers the number of specific 

hormones inside the body to stop or decelerate the growth of cancer cells. Some types of 

cancer, such as breast and prostate cancers, are fueled by hormones; therefore, eliminating 

these hormones would be helpful for treating the disease.  

Targeted drug therapy. As with chemotherapy treatment, targeted therapy is 

considered a drug-based intervention method. However, in contrast to traditional 

chemotherapy drugs, targeted drugs are designed to interfere mostly with specific molecules 

involved in tumor growth while leaving most of the healthy cells unscathed. 

Radiofrequency ablation. This is a minimally invasive procedure that employs heat as 

well as electrical energy to destroy the cancer cells. With the help of an image-guided 

procedure, a thin needle is directed through the skin into the cancer tissues. High-frequency 

energy then passes through the needle and heats the surrounding tissues to kill the nearby 

cells. 
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3.3.3 Treatment Response Evaluation Methods 

Radiological imaging of cancerous sites plays a principal role in the management of cancer 

patients. It has been used to assess the changes in anatomical tumor burden as an integral 

part of the clinical evaluations of the therapeutic methods. There has been considerable 

interest in surrogate metrics for survival after the applied treatments, such as time-to-tumor 

progression, response rate, and progression-free survival. Changes in tumor size after 

treatment are often, but not necessarily, related to the overall survival time. To provide a 

unique and standard framework, WHO proposed a set of criteria in 1979 to assess the overall 

tumor response to treatment, mainly for use in trials where the tumor response was the 

primary endpoint. The idea was to compute the sum of products of bidimensional lesion 

measurements and determine the response to treatment by evaluating the changes in the 

same values during the ongoing treatment sessions. However, the original document 

proposed by WHO underwent several modifications to adapt it to new technologies and to 

address the cases not already clarified in the initial document. These alterations resulted in 

confusion about how to interpret the trial results; consequently, as a response to these 

problems, an international working party was formed to simplify and standardize the 

response criteria, which finally was published in 2000 as Response Evaluation Criteria in 

Solid Tumors (RECIST). The main contributions of the initial RECIST for an overall 

evaluation of the anatomical tumor burden contain instructions about the number of lesions 

for follow-ups (up to 10 and a maximum of five per organ), employing unidimensional 

instead of bidimensional measurements, and definitions of the minimum size of measurable 

lesions.  

More specifically, a baseline imaging scan (CT or MRI) must be acquired within four 

weeks before the treatment starts. After accurately assessing the imaging data for the 

measurable diseases, target lesions should be carefully defined based on their size and their 

suitability for reproducible and repetitive measurements. During the follow-up scans, the 

longest diameter of each lesion should be measured on the axial image plane in a direction 

that best reflects their size. If a solid mass is split into multiple lesions, the sum of the longest 

diameters of each of the lesions should be calculated. However, if two nearby lesions fused 

and formed a single lesion, the longest diameter of the combined lesions will be considered. 

Finally, if a target lesion becomes too small to be measured precisely, the diameter should 

be set to 5 mm. The measured values during the follow-ups will be compared against the 

baseline measures to assess the objective response of the target tumor to the treatment. It 

should be emphasized that baseline measures are not necessarily those of the first imaging 
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scan but rather the measurements of the imaging scan where the smallest sum of diameters 

was observed. It is recommended to perform the follow-up scans at the end of each 

chemotherapy cycle—typically every six to eight weeks. However, to evaluate the overall 

response to the treatment, the measures calculated from the last sessions of therapy should 

be considered. 

Based on these measurements, treatment response is categorized into three groups: 

Complete Response (CR), in which all the target lesions have disappeared; Partial Response 

(PR), in which the baseline sum of diameters diminishes more than 30%; and Progressive 

Disease (PD), in which the same metric expands at least 20%. Although RECIST has become 

the de facto standard for response evaluation, novel treatment methods as well as modern 

imaging scans entail continuous re-evaluation of the RECIST [55]–[60]. Figure 3.6 depicts 

slices of three separate subjects for measuring changes in the size of lung tumors as a result 

of applied radiation therapy. 

 

Figure 3.6. Measuring the changes in the size of lung tumors in computed tomography images. The axial slices in which 
the tumors appeared with the largest size were chosen, from which the diameter of the tumor in the most representative 

direction was measured. This manual procedure was examined for the pretreatment scan (first row) and the scans acquired 
from the second week of radiation therapy (second row). 

With novel treatment methods, lack of tumor progression may be associated with 

improvements in outcome, even though a remarkable shrinkage in tumor size could not be 

observed. 18F-FDG PET has been employed for early monitoring to assess whether the 

tumor responds to the therapy or not. As this modality has been one of the most reliable 
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biomarkers introduced so far, comparing the SUV between a baseline scan and another scan 

after one or two cycles of therapy could be considered a reliable quantitative measurement 

to determine whether the treatment method was indeed effective or not. Therefore, tumor 

response to therapy at the level of metabolic activities has been introduced as a set of 

qualitative and quantitative approaches that are referred to as PET Response Criteria in 

Solid Tumors (PERCIST) [61]. 

3.4 Imaging Biomarkers 

3.4.1 Precision Medicine in Medical Imaging 

The term “precision medicine,” which has become widely used in recent years, refers to the 

view that factoring in variables such as human genomes, environment, and personal 

lifestyle, among others, when predicting, diagnosing, and treating human diseases will lead 

to remarkable improvements in human health [62]. Medical imaging plays an important role 

in precision medicine as it can provide supplementary information to stratify patients who 

are diagnosed with similar disease characteristics and share similar treatment responses 

[63].   

The visual inspection and subjective interpretation of medical images by medical experts has 

been a traditional method over the past few decades for both diagnostic and therapeutic 

purposes. This procedure will be preserved as a practical routine by clinical experts, at least 

for the near future. In fact, the alternative approach of automatically interpreting the 

imaging data with ML-based or rule-based algorithms has not achieved an acceptable level 

of performance yet to replace the traditional approach—at least for many applications such 

as response evaluation. However, visual measurement is not only subjective but is also an 

error-prone and demanding method; it is also a time-consuming task, which leads to 

inter/intra-observer variability, which undoubtedly can degrade the expected clinical 

outcomes. One way to lessen the uncertainty surrounding interpretation is to translate the 

imaging data into quantitative characteristics from which quantitative results can be 

deduced.  

Rapid advances in the field of image acquisition and hardware development over the 

past two decades have resulted in the development of modern medical imaging modalities 

that can capture high-resolution anatomical, physiological, functional, and metabolic 

quantitative information from the human body.  
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The CT scan reconstructs high-resolution images in which the voxel intensity represents 

the tissue density. Structural information—including tumor location or dimension, as well 

as quantitative physiological information of perfusion or necrosis—can be measured from 

CT images [64]–[66]. The PET scan yields high sensitivity images from the radioactive 

decays resulting from the injected radionuclides. It can quantify metabolic activities in the 

tumor tissues [67] or other organs. In contrast to CT and PET modalities, where the imaging 

signals are linearly proportional to the anatomical or metabolic features of the organs, and 

MRI signals are nonlinearly related to T1 and T2 magnetic relaxation phenomena as well as 

proton density distribution and/or other functionals such as diffusion, permeability, and cell 

density [68]. MR images can be employed in different ways to quantify the latent 

characteristics of tumors such as glioblastoma [69]–[71]. Such quantitative aspects of the 

modern imaging modalities can provide image-based characteristics that would be 

comparable or complementary to the laboratory biomarkers. 

As a general definition, a biomarker refers to an objectively measurable indicator of 

some biological condition that is often measured to assess either normal biological processes 

or biological responses to a therapeutic intervention. Thus, it can be inferred that measuring 

anatomical, physiological, metabolic, or functional features of the organs and tissues 

through medical imaging is recognized as an imaging biomarker (see Figure 3.7). Such 

features can be used for a wide range of applications, such as the assessment of the 

functionality of normal tissues, quantifying the severity or degree of a change, and specifying 

the stage of the disease. 

To make the radiology field more quantitatively rigorous, the Radiological Society of 

North America (RSNA) established the Quantitative Imaging Biomarker Alliance (QIBA) in 

2007. QIBA’s objective has been to unite researchers, health care professionals, and 

industrial collaborators to achieve accurate and reproducible quantitative evaluations from 

imaging modalities. A significant contribution of QIBA has been to prepare guidelines for 

the description of imaging biomarkers, which aims at characterizing and minimizing the 

bias-variance problem in the image-based measurements. These definitions are prepared 

for a broad range of targets, including but not limited to scanner and software 

manufacturers, pharmaceutical and diagnostic agent manufacturers, physicians, 

researchers, and so on. These detailed descriptions have been established as a set of norms 

and standards for both academic and industry investigators and are being implemented in 

clinical trials [68].  
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Figure 3.7. Imaging biomarkers in oncological scans aim to translate the tumor masses into relevant and meaningful 
numerical values that may represent the tumor phenotypes. (A part of the figure was created with Biorender.com.)   

As previously described, precision medicine aims at employing novel diagnostics and 

therapeutic techniques specified to the individual needs of a patient, based on the patient’s 

genetic, phenotypic, or psychosocial characteristics as well as biomarkers [72]. Since the 

goals of precision medicine are consistent with the initiatives of QIBA, imaging biomarkers 

provide an efficient source of information that is helpful for decision-making procedures to 

achieve an accurate diagnosis, prognosis, treatment planning, and response evaluation. 

3.4.2 Development of Imaging Biomarkers 

Medical images play a particular role in personalized medicine through the concept of 

QIBs. Although medical images have traditionally been investigated qualitatively, it should 

be noted that a clinical image is inherently acquired quantitatively, as it is a matrix/tensor 

of integer values. Each voxel in the image domain corresponds to a mapped region of 

anatomical organs. In other words, these voxel intensities can be considered virtual biopsies 

representing various anatomical and pathological characteristics. Therefore, a patient’s 

specific physiological and anatomical attributes can be derived from such quantitative 

images. Although such deductions would lead to strong correlations with different 

underlying processes, they may not reveal the exact cause-effect association [68]. 

Biomarkers, in general, are categorized as (a) predictive if they give information on the 

effects of therapeutic intervention, (b) prognostic if they improve the accuracy of patient 

diagnosis/prognosis, (c) response if they show advantageous outcomes after treatment, and 

(d) monitoring if they detect relapse/recurrence or toxicity [68], [73]. In order to employ an 

imaging biomarker in clinical settings, multiple steps should be implemented and evaluated 

as it needs conceptual consistency, technical reproducibility, and acceptable accuracy. For 
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instance, there should be a well-defined relationship between the extracted quantified 

imaging features and the studied disease. Therefore, justifications are essential for the 

mechanism of defining and extracting the imaging biomarkers. Moreover, as the new 

measures should be compared against well-established ground truth, defining a proper 

reference method as a baseline standard is necessary. The choice of this reference method 

has a great impact on the final validation process. For instance, in many studies, performing 

a biopsy procedure followed by histopathology analysis is used as the gold standard. 

However, histopathology studies intrinsically entail measurement biases. More importantly, 

the biopsy is an invasive procedure, and therefore it cannot be repeated in every follow-up 

session. Moreover, sampling a tiny piece of an extremely inhomogeneous tumor will not 

represent the complex distribution of tumor cells; thus, biopsy has sampling bias. These are 

some of the main reasons for a potentially inaccurate estimation of tumor aggressiveness by 

the biopsy procedure that would further lead to ineffective treatment planning [68].  

Other objectives such as the patient’s overall survival, distant metastasis, time to 

recurrence, or time to progression of cancers are only a few examples of suitable endpoints 

in cancer research as prognostic outcomes [74]–[76].  

3.4.3 Imaging Biomarkers and Quantitative Imaging 

The first step to developing robust QIBs is to make sure the images are acquired under 

standard settings. Specifically, imaging modalities should be set to acquire and reconstruct 

images with high spatial and temporal resolutions, high signal-to-noise ratio, and high 

contrast-to-noise ratio as well. In addition, the acquisition settings should be replicable and, 

more importantly, they should be able to produce reproducible images with a low level of 

artifacts. It is also necessary to use the same acquisition parameters in the case of 

longitudinal and follow-up scans. Consequently, there have been efforts to set standard 

protocols for image acquisition and reconstruction [77], [78]. 

CT is the most common modality for quantitative imaging biomarker studies. CT 

scanners provides the potential to assess the tissue density, morphological and textural 

characteristics of the tumors and lymph nodes, and to capture changes in the size of the 

tumors from the follow-up scans [79]–[81]. In some tumors, certain CT characteristics such 

as necrosis and calcifications correspond to gene mutation, which is related to advanced-

stage/grade of cancer and possibly unpromising overall survival [82].  



27 
 

PET has also been used to detect and stratify different types of cancers. A variety of 

radiotracers are employed in PET imaging for various purposes. The most common type is 
18F-FDG (radiolabeled glucose) as the vast majority of malignant cancers are characterized 

by high glucose consumption [83]. It has been verified that the SUV and PET-based textural 

features of tumoral regions are correlated to overall survival in lung cancer [67], [84] and to 

the development of metastatic diseases in cervical cancer [85]. 

MRI has been used to reconstruct high contrast functional and structural information 

to characterize soft tissues. QIBs have been extracted from structural MR images to 

discriminate prostate cancer from healthy tissues [86]. Dynamic contrast-enhanced MRI 

reflects the concentration of injected gadolinium agents over time and has been used to 

analyze brain tumor imaging biomarkers [87] as well as breast cancer [88], [89]. DW MRI 

represents the changes in the architecture of tissue cells based on the local differences in the 

movements of the water protons and has been hypothesized to depict cell death after the 

treatment [90]. The hyperintensity signal in T2-Weighted Fluid Attenuated Inversion 

Recovery (FLAIR) indicates the presence of infiltrative tumor cells in the edema part of brain 

tumors. It has been analyzed for the prediction of tumor recurrence and treatment outcome 

[91].  

3.4.4 Imaging Biomarkers and Medical Image Analysis 

Image analysis methods often start with basic image preprocessing steps. Noise reduction 

and image enhancement methods are crucial steps to improve the quality of the image and 

signal modeling processes. Moreover, artifacts introduce non-real data and cause biases in 

the analysis, so they should be eliminated if possible. Most of the time, there is a remarkable 

discrepancy between the acquisition settings of the same imaging modalities, which means 

the images are acquired with different spatial resolutions. Since the extraction of QIBs may 

be sensitive to spatial resolution, resampling the images into a fixed size is a necessary 

preprocessing step. In this context, super-resolution techniques are sometimes employed to 

increase the resolution synthetically [67, 68]. 

The images can be acquired from the same organ or subject but under different 

conditions such as time, angle, or even different modalities. Medical image registration is 

the task of spatially aligning two or more images to form a spatial correspondence of their 

common contents. Some of the applications of medical image registration are aligning the 

sequence of images acquired over time, detecting changes before and after the treatment, 

combining corresponding information from different modalities as well as image-guided 
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interventions [92]. For instance, extracting QIBs from PET-CT images for lung cancer [93], 

[94], as well as multimodal brain MR images for glioblastoma cancer, is done after 

registering the imaging modalities [95].  

QIBs are often extracted from an ROI that should be accurately distinguished from the 

adjacent structures. This task is called segmentation and has been recognized as one of the 

most challenging steps in medical image analysis studies. In fact, partitioning the 

oncological images into “background” and “foreground” is complicated because target 

tumors and the surrounding healthy structures often share a high level of similarity in 

intensity and textural distributions. In many imaging biomarker studies, delineation of the 

target volume is done manually by at least one radiologist or radiation oncologist expert [96], 

[97]. However, a wide range of algorithms has been developed for automatic and semi-

automatic segmentation, which can be categorized as either data-driven or rule-based 

methods. In data-driven methods, learning algorithms are trained in order to learn to 

extract relevant features with respect to the target labels from the image data. The advantage 

of such a method is that the algorithms can be trained in an end-to-end fashion; that is, 

within such models, independent segmentation, feature extraction, feature engineering, and 

classification steps are integrated into a single pipeline. However, the performance of these 

models depends heavily on the quality and quantity of the annotated data. Moreover, while 

the computational time for the prediction phase is usually negligible, their training 

procedure is computationally expensive. By contrast, rule-based models are often 

established on the basis of mathematical modeling, estimation theory, and probabilistic 

theories. Unlike the data-driven methods, establishing the rules with these methods does 

not require large-scale datasets, as knowledge about the concept is encoded in the explicit 

regulations. In other words, the direction of developing the rule-based models goes from 

general to specific. Of course, for these models, data are used to calibrate the model 

parameters and to test their generalization power. As stated, these methods do not require 

large-scale labeled datasets, which is an important advantage. Interpretability is considered 

another privilege of such models as well. However, it is not always possible to quantify the 

complicated physical concepts and encode them with mathematical rules. Accordingly, the 

application of such segmentation models is not as widespread as with data-driven models. 

Semi-automatic segmentation methods involve some interactions between an operator 

and computational algorithms. Region growing is an algorithm that starts from an initial 

point or region named as the seed that needs to be defined either manually by a user or 

through another algorithm. Then, the neighboring voxels are added to the foreground in an 
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iterative approach, provided they satisfy a similarity measure [98]. In a similar approach, an 

ROI can be manually selected to surround the target volume on a single slice to initiate the 

evolution process of algorithms such as watershed or active contours by minimizing an 

energy functional [99]. The segmentation task in PET images is often adversely affected by 

the high level of intrinsic noise of the images. To address this issue, semi-automatic 

thresholding-based methods followed by variational algorithms are employed to 

successfully segment the lung tumors in FDG-PET images [100]. 

In contrast to semi-automatic methods, automatic approaches do not require any input 

from the users. These approaches often belong to data-driven models or combinations of 

rule-based and data-driven models. QIBs have been extracted after accurate breast tumor 

segmentation in MRI images with a fully automatic approach that has been performed on a 

large-scale dataset where the results were comparable to a gold standard delineated by 

experts [101]. Longitudinal brain tumors were segmented automatically in multimodal MRI 

sequences by employing a hidden Markov random field and a Bayesian approach on a 

challenging dataset, and yet this resulted in relatively high segmentation accuracy [102]. 

Finally, in the past few years, rapid developments in the field of  DL methods have resulted 

in a variety of fully automated segmentation and detection models applied to different kinds 

of tumors (e.g., lung, brain, prostate, head-and-neck, and liver) with excellent performance 

[8], [9], [103]–[105].  

After the image preparation and target segmentation steps, tumor volume will be 

translated into quantitative values by extracting QIBs. In general, the extracted features 

represent static anatomical attributes and/or dynamic biological ones. While static 

anatomical attributes estimate properties associated with the volume, topology, and 

morphology of the tissues, as well as the textural characteristics, dynamic biological features 

quantify the different physical, chemical, and biological processes. For instance, 

morphological features and textural inhomogeneities of the tumors are biomarkers 

extracted by static anatomical modeling of the acquired data. On the other hand, fat and iron 

measurements, or ADC quantification within the pancreas, belong to dynamic biological 

modeling. 

3.4.5 Validation of Imaging Biomarkers 

The reliability of QIBs can be realized if they are accurate, stable, and reproducible. To 

investigate such reliability factors, phantom-based experimental studies can be conducted. 

In other words, extracted quantified values from the biomarkers sometimes need to be 
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calibrated with phantoms to make sure that the extracted features are, to some extent, highly 

correlated with the real values. However, dealing with phantoms can be problematic because 

they cannot comprise all the properties of a human being’s living tissues. In addition, there 

is always a potential lack of realism compared to in vivo measurements [68]. 

An important step in imaging biomarker development is to statistically determine the 

reproducibility and biological range of individual features. The most reproducible features 

are plausible candidates for distinguishing the subtle variations with respect to time 

changes, pathophysiology changes, or in response to the treatment. Moreover, this 

reproducibility must be assessed in the entire biological range, measured across the studied 

subjects. Therefore, a larger range tends to refer to the ability to capture a wide range of 

biological changes and represents the high level of usefulness of a feature. Additionally, 

redundant features increase the dimension of the feature vectors and may adversely affect 

the decision-making process; thus, the redundant features should be identified and 

eliminated from the feature space. Another source of variability is the different types of 

changes that can occur between the imaging scans. In fact, the inter-scan reproducibility of 

the features would be affected by the differences in the subject variables such as positioning, 

motion artifacts such as respiration phase, changes in the acquisition parameters such as 

image reconstruction and slice thickness, as well as image analysis algorithms such as 

initialization in semi-automatic segmentation methods. The most reproducible and 

informative features can be identified by analyzing a test-retest dataset that is acquired 

under certain conditions such as fixed acquisition parameters [106]–[108].   

To be useful in clinical trials and real-world practices, QIBs research should be 

conducted and validated by following well-established standardized criteria. Specifically, 

qualification, validation, and standardization are critical parts of the development of 

imaging biomarkers. Qualification refers to the usage of a certain biomarker in specific 

content and relates to clinical approval, whereas validation relates to the performance of the 

biomarker in the test phase. One of the main challenges in the validation phase is that 

disease-related variations of the tissues that appeared in the images are often indirectly 

associated with multiple anatomical changes such as necrosis, vascular architectures, and 

fibrosis and are impacted by other factors such as inflammation, perfusion, and interstitial 

pressure as well [68], [109]. 

While accuracy refers to how close the measurements are to the real values, precision 

demonstrates how consistent the results are when measurements are repeated. The quality 

of diagnosis is related to the accuracy of the biomarker; however, the quality of disease 
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monitoring or treatment response effects is based on the precision of the biomarker. 

Therefore, the concepts of reproducibility and repeatability can be considered as two types 

of precision. Minimizing the effects of variations, especially in multi-center studies, should 

be performed by unifying the acquisition as well as processing protocols. Repeatability 

research is often performed in a single center with a specific imaging modality. After single-

center experiments, the test phase should be completed at different centers under various 

conditions. On the other hand, reproducibility research is designed to assess the effects of 

variables such as different centers and different acquisition protocols on the biomarker 

measurement’s precision. To improve the reproducibility by knowing the impact of 

variations, test-retest experiments should be performed. More importantly, in multicenter 

studies, the effects of different implementation settings on both the measurements, as well 

as the correlation with the reference standards, should be carefully investigated [68].   

Biological validations are related to the correlation among the preclinical models or 

human studies and other reference points such as histopathology, invasive measurements, 

genomics, or proteomics. Such validations are conducted as experimental studies to select 

the proper references as gold standards relevant to the biological changes intended for 

assessment. In these experimental studies, the effects of epidemiological data and the 

biological variations on the measurements will be examined.  

Clinical validations start with single-center observational studies on patients who 

participate in the imaging biomarker experiments to find out how well it works in a limited 

controlled condition. If the achieved results prove to be accurate, multicenter observational 

cohort studies and even clinical trials—both retrospective and prospective—may be started 

[68].  

3.5 Radiomics 

Since 2010, the field of radiomics has emerged as a new way to develop imaging biomarkers. 

This term is derived from the word “radio” as adopted from the term “radiology” and the 

suffix “omics,” which was first used in the term “genomics,” the study of human genomes. 

In general, “omics” refers to the study of biological phenomena such as transcriptomics 

(RNA), proteomics (proteins), and metabolomics (metabolites) [110]. As radiomics deals 

with quantifying medical images and using statistical/ML methods, it could be mistakenly 

considered to be a new application of Computer-Aided Diagnosis/Detection (CAD) methods. 

However, radiomics is not a branch of CAD systems for two reasons. First, the number of 

image-based features extracted in radiomics is in the order of hundreds or even thousands, 
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which is much more than the limited number of features in CAD studies. Second, radiomics 

aims at developing predictive or prognostic models, which means the extracted features are 

associated with biological or clinical endpoints [77], while CAD-based models are mainly 

focused on diagnosistic purposes.   

It has been verified that solid tumors consist of several sub-clones of cancer cells with 

different characteristics that represent both spatial and temporal inhomogeneities within 

the tumor mass. Quantifying these heterogeneities through medical images would represent 

an expression of genomic heterogeneity, which is a sign of an unpromising prognosis. In 

fact, tumors with a high level of genomic heterogeneity are more resistant to the treatment 

and are more likely to develop metastasis [76]. The goal of the rapidly growing radiomics 

field is to capture valuable information regarding the shape, size, intensity, and texture of 

tumor phenotype that would be consistent with or complement other sources of information 

such as clinical reports, laboratory, genomics, or proteomics analyses [111]. Radiomic feature 

extraction can be applied to different imaging modalities such as CT, MRI, PET, and 

ultrasound. The feature vector, which is a set of all extracted imaging features from one 

single patient, is called “radiome” and a combination of different features that hold the most 

prognostic or predictive values are recognized as “radiomic signature” or sometimes QIBs 

[87]. 

In general, radiomic features can be divided into three main classes: shape 

(morphological), first-order histograms (global statistics), and second-order histograms 

(textural). All textural features are both rotation and translation invariant. Moreover, 

illumination invariance of textural features can be achieved by applying certain 

preprocessing steps such as histogram matching. However, none of the textures is scale-

invariant. The mentioned features are extracted from the original images (after 

preprocessing) and the transformed images after applying filters such as wavelet, Laplacian 

of Gaussian (LoG), or Gabor. In addition to the general preprocessing steps, some of the 

feature families require additional processing steps before feature extraction. For example, 

first-order histograms and textural features need prior intensity discretization into gray level 

bins. 

 Looked at from another perspective, radiomic features can be divided into time-

invariant (static) and time-variant (dynamic) features. This stratification is defined based 

on the nature of the image acquisition settings at the time of scanning. Examples of static 

features include statistical features extracted from the images after conversion of raw 

intensity values into SUV in PET images or Hounsfield Unit (HU) in CT images, Intensity 
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Volume Histogram (IVH) that is analogous to Dose Volume Histogram (DVH) and is used 

widely in radiotherapy treatment planning, as well as geometrical and textural features. On 

the other hand, dynamic features are extracted from time-varying modalities such as certain 

MRI sequences or dynamic PET. Dynamic radiomic features are defined on the basis of 

kinetic analysis using tissue compartment models [112]. It should be emphasized that some 

radiomic features belong only to certain applications. For instance, SUV-based features are 

limited only to PET studies, while fusion or fractal features are applicable to multimodal 

studies. 

Morphological features describe geometric aspects of the segmented region and are 

based on the ROI voxel coordinates representing the volume. In this class, features such as 

surface area, volume, 2D, and 3D maximal diameter characterize the size of the segmented 

target. The eccentricity, compactness, sphericity, and surface-to-volume ratio of the tumor 

determine how much the segmented tumor looks like a sphere. The solidity of the tumor is 

defined as the ratio of the number of voxels inside the segmented tumor to the number of 

voxels in the smallest polyhedron containing the tumor region. Major, minor, and least axis 

lengths, respectively, indicate the main orientation, extension of the tumor toward the 

second direction, and the least extended direction of the tumor. From these lengths, then, 

tumor flatness is calculated as the ratio of major and least axis lengths [96], [111], [113]. 

In contrast to morphological features, global statistical radiomics features determine 

the characteristics of the intensity distribution of the voxels inside the ROI and are 

calculated from the histogram, such as minimum, maximum, mean, and standard deviation. 

While skewness and kurtosis demonstrate the degree of distribution asymmetry and 

sharpness, uniformity and entropy represent distribution inhomogeneities. To capture the 

local intensity variations, the mentioned features can be extracted from local neighboring 

voxels [114], [115]. SUV-based features are another type of global statistics that are calculated 

from PET images. Parameters such as SUVmax, SUVpeak, SUVmean, respectively, quantify the 

maximum uptake within the ROI, average uptake in a local neighborhood of maximum 

uptake, and average uptake inside the ROI. Average intensity inside the ROI can also be 

calculated at different time points when dealing with time-varying signals such as contrast 

injection in MRI, in which the focus will be on enhancement kinetics. Features such as 

maximum uptake (peak value of the measurements), peak location (time index in which the 

maximum uptake occurs), and uptake rate (ratio of maximum uptake to peak location) can 

be extracted from the measured values [114], [116].  
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In image analysis, textures or second-order statistics were originally designed to assess 

the surface texture in 2D images; however, they have been extended to volumetric data. In 

general, textural radiomic features describe the spatial distribution of voxel intensities. The 

term “image texture” indicates the perceived spatial variation of the pixel/voxel intensity 

that can be visualized as a gray-level scale. In the Gray-Level Co-occurrence Matrix (GLCM), 

the number of rows and columns indicates the intensity values, and the value of each matrix 

element represents the number of times that corresponding intensity values appeared in a 

certain spatial order, such as distance or angle. For instance, in Figure 3.8, the voxel values 

of a subpart of the tumoral region are presented in a 4×4 matrix. This matrix contains only 

four values; therefore, the GLCM will form a 4×4 matrix, and its values are determined based 

on the number of times the voxel values are repeated within a certain direction. GLCM-based 

features include second-order entropy and energy, both representing intensity 

inhomogeneities; contrast (quantifies local intensity variations); cluster shade (sensitive to 

heterogeneity); as well as homogeneity, correlation, and dissimilarity [77], [114].  

Gray Level Run Length Matrix (GLRLM), like GLCM, assesses the distribution of 

discretized intensity values in an image. While GLCM examines the co-occurrence of 

intensity values with neighboring voxels, GLRLM assesses run lengths. A run length refers 

to the length of a consecutive sequence of voxels with the same intensity values along a 

certain direction. Therefore, GLRLM incorporates the occurrence of runs with certain 

lengths for specific discretized intensity values. Radiomic features such as short/long runs 

emphasis, low/high gray level run emphasis, gray level non-uniformity, run-length non-

uniformity, run percentage, and gray level variance can be calculated from this matrix [114], 

[117]. 

Gray Level Size Zone Matrix (GLSZM) counts the number of zones of linked voxels. 

Linked voxels refer to the neighboring voxels with identical intensity values. In 2D images, 

8-connectedness is considered for the neighboring pixels; however, in a volumetric image, 

voxels can be neighbors in 26 different directions. A wide and flat GLSZM indicates a 

heterogeneous ROI, while a narrow one represents a homogeneous ROI. Some of the 

features that can be extracted from this matrix include small/large zone emphasis, low/high 

gray-level emphasis, and small/large low gray-level emphasis [113]. 
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Figure 3.8. Quantification of the tumor heterogeneities with textural radiomics. A) T1w contrast enhancement sequence of 
high-grade glioma; B) graphical illustration of cancer cell heterogeneities; C1) raw voxel intensities of a small tumor 

subregion; C2) gray level co-occurrence matrix at 0 degrees; and C2) gray level co-occurrence matrix at 180 degrees. (A 
part of the figure was created with Biorender.com.) 

Neighboring Gray Tone Difference Matrix (NGTDM) contains the sum of intensity 

differences of voxels with discretized intensity values and the average discretized intensity 

of neighboring voxels within a Chebyshev distance [113]. Radiomic features from this matrix 

include coarseness, busyness, complexity, texture strength, and contrast. For instance, in 

images with a neighborhood of relatively uniform voxel intensities, the value of the 

coarseness feature will be high. In contrast, images with a high spatial frequency lead to a 

high value of busyness [118].  

The Image Biomarker Standard Initiative (IBSI) is an independent international 

collaboration that aims at standardizing the definition and extraction of QIBs as the lack of 

reproducibility and external validations have been major challenges in this field. IBSI, 

therefore, seeks to provide guidelines for radiomics analysis, including feature nomenclature 

and definition, feature calculation, benchmark dataset, and reporting regulations [119]. 

3.5.1 Radiomic Feature Analysis 

The goal of radiomic feature analysis is to develop a mathematical model or function to 

stratify patients based on the predicted outcome using extracted radiomic features. From 

the ML perspective, this task is equivalent to training a learning algorithm to predict the 

class labels of given data points (see Figure 3.9). In other words, the learning algorithm 

analyzes the training data and learns the underlying representative characteristics of the 
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data to infer a hypothesis in order to predict the class labels of unseen data. In radiomics 

analysis, class labels could be patient outcomes or tumor phenotypes [120], [121].  

 

Figure 3.9. Radiomic analysis pipeline consists of three main steps, including tumor mass segmentation, radiomic 
descriptor extraction, and feature analysis. 

3.5.1.1 Feature Selection Methods 

The number of extracted radiomic features from the ROIs can be large, especially if the 

transformed images (wavelet and/or LoG) are also analyzed. In such cases, the number of 

extracted features lies in the range of a few hundred to even a few thousand; nevertheless, 

they usually exceed the number of subjects [122], [123]. However, not all these features are 

necessarily informative with respect to the class labels. In other words, some of them might 

be redundant or correlated to each other. Therefore, employing them all together to train a 

learning algorithm would not be a wise choice because irrelevant or partially relevant 

radiomic features can adversely impact the predictive performance. In other words, 

eliminating the irrelevant and redundant features leads to reducing the computational time, 

which may increase the generalization competence and accuracy of the model. Therefore, it 

is necessary to identify the most informative features and eliminate the least representative 

ones. Feature selection is the process of selecting a subset of features that contribute most 

to the prediction variable. 
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The simplest way to perform a feature selection algorithm is to set a scoring criterion 

for the features and measure the stability or correlation of the features with respect to the 

criteria, rank the results, and eliminate those features with the minor ranks. This plain 

feature selection approach is used in univariate methods. The main drawback of such 

approaches is the lack of dependency calculation between the features [124].  

One way to identify redundant features is to calculate the correlation between the 

extracted radiomic features. Therefore, removing the highly correlated features assures us 

that the remaining features have the least degree of linear dependency on each other. Such 

an approach can be implemented by the computation of the correlation matrix of all features. 

The same approach can be employed to identify nonlinearly associated features by 

calculating the Mutual Information (MI) metric [122]. Moreover, to compute the nonlinear 

dependency between the features, Minimum Redundancy Maximum Relevance (MRMR) 

calculates the MI metric between a set of features and the class labels. Therefore, this 

approach preserves the features with minimum dependency on each other (minimum 

redundancy) while posing a high degree of relation to the class labels (maximum relevance). 

MRMR is one of the most common feature selection algorithms in radiomics analysis [125]–

[128].   

By maximizing a penalized log-likelihood function, the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression model is able to apply multiplicative coefficients to 

the features and shrink some of them to zero to eliminate their contribution to the objective 

function and thus their effect in the model. This type of radiomic feature selection has been 

mostly used for regression tasks with a high dimensional feature set [129], [130]. 

RELevance in Estimating Features (RELIEF) is another feature selection algorithm 

that leads to promising results in some radiomics studies. The core idea of RELIEF is to 

estimate the quality of the features based on how well the features can distinguish between 

the subjects that are near to each other. The main advantage of the RELIEF algorithm is that 

it does not assume any kind of dependencies among the features; in other words, it is a 

context-aware method for feature selection [131], [132]. The downside of this algorithm, 

however, is its incapability to identify redundant features that tend to have a similar score 

for evaluation. 

Class imbalance is one of the most common issues in ML studies. This issue occurs when 

each of the classes does not make up an equal portion of the entire dataset. Therefore, it is 

essential to properly adjust the employed metrics and methods toward the desired goals. 



38 
 

Feature Assessment by Sliding Threshold (FAST) is a feature ranking method designed to 

address the issues with small datasets and imbalanced class labels [131].  

One of the most efficient feature selection techniques with respect to model 

performance is Forward Feature Selection (FFS). This technique evaluates the performance 

of the learning algorithms in different combinations of feature subsets. The model starts to 

train the learning algorithm with every single feature; the one that leads to the highest 

predictive power will be held; then, the combinations of the retained feature and all the other 

single features will be examined one by one to find out the best subset of two features with 

the highest predictive power. This process continues iteratively until no improvement in 

model performance is observed, or a predefined number of features is selected. In contrast 

to FFS, Backward Feature Selection (BFS) starts with the total number of features and 

iteratively eliminates the feature subsets [133].  

3.5.1.2 Learning Algorithms 

Generally speaking, the majority of the learning algorithms employed for radiomics belong 

to supervised learning methods. Logistic regression has been one of the most widely used 

statistical methods in radiomic studies, perhaps because of its simplicity [134]–[137]. 

Support Vector Machine (SVM) is another powerful tool in radiomics analysis. It is a 

discriminative supervised technique that solves an optimization problem to infer a decision 

boundary (hyperplane) in order to separate radiomic features from two categories, such as 

responders or non-responders [88], [131], [138], [139]. Many efforts have been made to 

develop learning algorithms in the field of medicine that would be capable of resembling 

human reasoning. Among them, Decision Trees (DTs) can represent hypotheses as 

sequential “if-then” statements that can, to some extent, resemble medical expert reasoning. 

The Random Forest (RF), which is an ensemble of DTs, incorporates two levels of 

randomization—first in subject sampling and second in feature subset sampling. Thus, it can 

also be considered as a learning algorithm with an embedded feature selection method that 

might be robust against overfitting problems and often leads to high prediction values in 

radiomics analysis [140]–[142]. Although classic Artificial Neural Networks (ANNs) have 

been used in some radiomics analyses, the development of advanced deep networks over the 

past few years has resulted in a variety of powerful learning algorithms that will be discussed, 

in detail, in the next section. 

Regardless of the type of learning algorithms or feature selections, it should be 

emphasized that in almost all the radiomics studies, the number of extracted features is 
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much greater than the number of subjects. Therefore, the risk of model memorization, also 

known as overfitting, instead of generalization is quite high, which requires some strategies 

to examine the potential of this risk and ideally reduce it. One conventional approach, not 

limited only to radiomics but to all the ML tasks, is to use the K-fold Cross-Validation (CV) 

resampling procedure. This procedure has a single parameter, K, that indicates the number 

of groups that the subjects be split into. As a result, the learning model will be trained with 

K–1 subgroups of the subjects and will be validated with the remaining subgroup of subjects. 

The most extreme extension of CV is called the Leave One Out (LOO) algorithm in which, 

for each subject on the dataset, a learning model will be trained using all the other subjects 

and validated on the selected subject (the parameter K is equal to the number of subjects) 

[143].  

Finally, it is worth mentioning that radiomics analysis has been successfully used in 

various aspects of the oncology field and has yielded promising results. Prediction of early 

response to chemoradiotherapy [144] or chemotherapy [145], [146], the occurrence of distant 

metastasis [147], [148] or lymph node involvements [149]–[151], prediction of overall survival 

[14], [152], [153], or tumor characteristics as histology [154] as well as genetic footprints [155] 

are some examples in which reliable and stable radiomic signatures have been introduced 

as potential prognostic and predictive QIBs in different types of cancers such as lung [67], 

[156], [157], glioblastoma [158], prostate [159], [160], breast [15], peritumoral edema [161], 

and head and neck [162], [163]. 

3.6 Deep Learning Methods for Medical Image Analysis 

With continuous development in medical imaging modality systems, a variety of medical 

imaging techniques have emerged that allow for qualitative and quantitative assessments of 

anatomical details. They acquire high-resolution images from vital parts of the body to 

examine the structural, functional, or metabolic characteristics of healthy organs or specify 

the attributes of diseases. However, evaluating the reconstructed images requires the 

expertise of an experienced radiologist to visually assess the images. This standard 

approach, however, faces several limitations. First, compared to the great demand for 

manually analyzing medical images, the number of expert radiologists is limited. Second, 

careful examination of the volumetric scans on a slice-by-slice basis is a burdensome and 

time-consuming task. Third, such a subjective assessment leads to inter-/intraobserver 

variability issues. Accordingly, developing accurate and robust computerized tools to assist 

radiologists in medical image analysis tasks has been considered as a vital contribution. In 
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this context, although CAD-based systems have a long history, it was not until the advent of 

DL methods that automatic medical image analysis methods dramatically gained 

importance. 

3.6.1 Deep Neural Networks 

The human brain, which consists of about 100 billion structurally and functionally simple 

units—that is, neurons—is considered the most well-organized system [164]. This complex 

system, called a biological neural network, can simultaneously and efficiently process 

information from different sources such as hearing, vision, touch, etc. One of the underlying 

reasons for the high processing performance of this system is the collaboration between the 

neurons. In fact, each neuron can be connected to up to 10,000 other neurons. As a result, 

the probable processing power of a human brain is roughly equal to 100-1000 petaflops of 

information processing [165]. ANNs are a group of computational models that are inspired 

by the structure and function of biological neural networks [166], [167]. However, it should 

be emphasized that they are far from the real biological neural networks. The perceptron is 

the simplest learnable artificial neural model and incorporates a set of trainable weights 

{𝑤𝑤𝑖𝑖}𝑖𝑖=1
𝐷𝐷  and a bias 𝑤𝑤0 as well as the inputs {𝑣𝑣𝑖𝑖}𝑖𝑖=1

𝐷𝐷  (see Figure 3.10.A). Given D-dimensional 

input data, the output will be calculated from an activation function by taking the weighted 

sum of the inputs: 

𝑦𝑦(𝑣𝑣, 𝜃𝜃) = 𝑓𝑓 �� 𝑣𝑣𝑖𝑖𝑤𝑤𝑖𝑖 + 𝑤𝑤0

𝐷𝐷

𝑖𝑖=1

� = 𝑓𝑓(𝑤𝑤𝑇𝑇v + 𝑤𝑤0) 

where 𝑓𝑓  is a nonlinear function known as activation functions, 𝜃𝜃 = {𝑤𝑤, 𝑤𝑤0}  presents a 

parameter set, 𝑤𝑤 = [𝑤𝑤𝑖𝑖]𝑖𝑖=1
𝐷𝐷 ∈ 𝑅𝑅𝐷𝐷  is a connection weight vector and, and 𝑤𝑤0  indicates the 

bias. There are a variety of nonlinear activation functions (𝑓𝑓) and, for instance, logistic 

sigmoid 𝑓𝑓(𝑧𝑧) = 1
1 + exp (−𝑧𝑧)�  is a common choice for a binary classification task. Despite 

the use of the nonlinear function, one of the major limitations of a single-layer neural 

network is that the model can only perform linear classification tasks. Such limitations can 

be addressed by adding different layers on top of each other, which is also known as a Multi-

Layer Perceptron (MLP) (see Figure 3.10.B): 
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Figure 3.10. The schematic architecture of basic neural networks. A) Single-layer network with single-output (left) and 
multiple-output (right); B) A two-layer neural network.  

It should be noticed that while it is possible, in theory, to use a different type of 

nonlinear activation function for different layers, the choice of the activation function of the 

last layer heavily depends on the type of problem.  

Network hyperparameters learning refers to the concept of two fundamental problems: 

network architecture learning and network parameters learning. While the problem of 

network architecture learning remains an open challenge, there is a well-established 

efficient algorithm for network parameters optimization called backpropagation. Simply 

speaking, this optimization procedure calculates the gradient of the error function with 

respect to the model parameters, including weights and biases, by applying the derivation 

chain rule to update such parameters into their optimum values during the training phase.  

Theoretically, a two-layer neural network with a limited number of neurons is a 

universal approximator, which means it can approximate any arbitrary continuous function 

[168]. However, by increasing the network capacity, i.e., the number of layers as well as the 

neurons within each layer, a deep network can approximate complex functions, 

theoretically, in a more accurate way. In contrast to shallow networks that require well-
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established extracted features and even feature engineering steps, deep models can discover 

the informative features automatically in a hierarchical fashion. The central problem in DL 

is to meaningfully map the input data to targets (label or ground truth). To do so, the model 

should learn latent representations of the input data and transfer the learned characteristics 

to the desired outputs. Simply speaking, to represent the data means to encode the data. As 

these representations are captured in successive layers, the more appropriate term would be 

“learning of hierarchical representations (across layers).” Figure 3.11 illustrates how a 

network transforms an input image into representations that are increasingly become more 

abstract and differ from the original image but informative with respect to the expected 

output. One advantage of deep models is that they can generate high-level feature 

representations directly from raw images. With the availability of a large-scale dataset as 

well as powerful Graphics Processing Units (GPUs), DL techniques have shown outstanding 

success over the past few years in different fields of medical image analysis such as 

classification, target detection/segmentation, and image generation [167], [169]. In the 

following subsections, some of the major components of deep neural networks as well as 

some important applications of DL models in the field of medical image analysis are 

outlined. 

 

Figure 3.11. Learning hierarchical representations from an input digit image with a shallow classification network. 

3.6.2 Convolutional Neural Networks 

Employing the traditional ANNs- in which all the neurons in consecutive layers are 

connected to each other, also known as fully-connected networks- for real-world problems 

with images as input is challenging for the following reasons. Imagine a 2D image with the 

size of 100 × 100 pixels as an input to a network containing 1024 neurons in the first layer. 
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Therefore, the matrix of the weights just for the first layer consists of 100 × 100 × 1024 =

1,0240,000  elements. By increasing the number of layers and neurons, the number of 

network components will increase dramatically, which leads to more computational 

complexity. Aside from computational burdens and hardware limitations, reordering the 

image matrix/tensor into a vector will lead to the loss of spatial information. In the following 

paragraphs, the basic components of Convolutional Neural Networks (CNNs) will be 

described briefly [170]–[172]. 

Convolution. One way to address the problems of matrix vectorization, and 

computational complexities, is to replace the matrix multiplication with the convolution 

operator. In other words, learning a set of convolution kernels with the size of 𝑚𝑚 × 𝑚𝑚 (a 

typical choice is m = 3) is much more tractable than learning the elements of a large matrix 

(e.g., 10000 × 1024). Convolution is a well-established mathematical operator that can be 

implemented with two constraints in the context of regular neural networks. The first 

constraint is locality. The size of the convolution kernels is much smaller than the size of the 

image (or feature maps) it is applied to. This is in contrast to the global approach typically 

incorporated in fully-connected layers. The second constraint is weight sharing. Performing 

a convolution operator means that the same kernel will be applied across the image (or 

feature maps). In other words, the same local kernel is used on different locations of the 

image. Although in the classical convolution operator, the kernel shifts one position to the 

right after each multiplication, shifting in the right direction in CNNs would be applied with 

a larger step. In CNN nomenclature, this parameter is recognized as stride, which means the 

image will be downsampled after applying the convolutional operator with a stride 

parameter larger than one.   

Max-pooling. This operator functions as a maximum filtering unit in which each 𝑚𝑚 × 𝑚𝑚 

region is replaced by its maximum value. The Max-pooling operator serves two purposes. 

First, holding the maximum value is equivalent to holding the highest activation in a local 

region. Therefore, it makes the feature maps more robust against the changes in the position 

of objects in the image. This operation, to some extent, resembles the way complex biological 

cells work. The second purpose is that retaining one value instead of a matrix with the size 

of 𝑚𝑚 × 𝑚𝑚 reduces the size of the activation for the next successive layer by a factor of 𝑚𝑚2. As 

a result, the number of learnable hyperparameters in the successive layers can be reduced. 

It is worth mentioning that other types of pooling layers have been introduced, such as 

average pooling, winner-takes-all pooling, and stochastic pooling as well. 
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Nonlinear activation functions. Convolution is a linear operation, and the stack of 

convolutional layers on top of each other will form a cascade of linear operators. Accordingly, 

applying nonlinearity is quite necessary to increase the expressive power of the model. In 

CNNs, a nonlinear function usually follows each convolutional layer. The nonlinear function 

which is often employed in traditional neural networks has been restricted to a sigmoid or 

hyperbolic tangent. However, the CNN models are trained with other types of nonlinear 

functions such as Rectified Linear Unit (ReLU), 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚 (0, 𝑥𝑥). It has been verified 

that using ReLU leads to faster training. However, the downside of being zero for all the 

negative values can be problematic, especially if the learning rate is too high or there is a 

large negative bias. Leaky ReLU applies a small slope for negative values instead of setting 

them to zero. Specifically, it is defined as 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥 ) + 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 (0, 𝑥𝑥) where 𝛼𝛼 is 

a predetermined parameter. This strategy can fix the issue with zero values and avoid zero 

gradients (Figure 3.12) [173]. More variations of activation functions include Exponential 

Linear Unit (ELU) [174], Concatenated ReLU (CReLU) [175], and ReLU-6 [176]. 

 

Figure 3.12. Comparison between ReLU, Leaky ReLU, and ELU activation functions. Please note that the positive values 
of the curves are overlapped for all three functions.  

Dense layers. The classical matrix multiplications of MLPs are called dense (fully 

connected) layers since each neuron in the previous layer is connected to every neuron in 

the next layer. Such layers greatly increase the number of learnable parameters, and 

therefore in modern networks, using many dense layers is often avoided. 

Network depth. According to the Universal Approximation theorem, a neural network 

with only one single hidden layer but a large number of neurons is enough to approximate 

any arbitrary continuous function. However, it has been verified that networks with more 

layers but a much smaller number of neurons can make the same approximation [177]. The 
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motivation for developing deeper networks has been clear; however, properly training 

networks with more than three layers was not feasible before the introduction of the greedy 

layer-wise pre-training model [178]. Relatively recent architectures such as VGGNet [179], 

GoogleNet [180], and ResNet [181] incorporate, respectively, 19, 22, and even 152 layers 

without encountering any training problems such as vanishing gradient.  

Optimization algorithms. Regardless of the network depth, neural networks are trained 

using a conventional backpropagation algorithm that employs the chain rule to speed up the 

gradient calculations in the Gradient Descent (GD) algorithm. Unfortunately, it is not 

feasible to employ classical GD over a large dataset in one step; instead, an algorithm called 

Stochastic Gradient Descent (SGD) is often used to apply several steps of GD (i.e., updates) 

computed over small, random samples of the dataset, so-called mini-batches, in a 

consecutive fashion. It is worth mentioning that the number of samples per mini-batches 

depends on the computational resources. Although the SGD algorithm leads to better 

generalization power compared to GD, it is a relatively slow optimizer. Therefore, it often 

uses a small portion of the data instead of single data (mini-batch). Other types of optimizers 

include Adagrad, Adadelta, and Adam [182]. 

Dropout. Similar to other kinds of optimization procedures, adding a regularization 

term is important for reducing the risk of overfitting. In the context of ANNs, regularization 

refers to a set of techniques aimed at lowering the complexity of a model during the training 

to prevent overfitting. In this context, applying conventional regularization techniques such 

as L1 and L2 norms on the weights and biases of the neurons may be considered.  The idea 

behind a dropout algorithm is to train only a random subset of neurons at each iteration of 

SGD. Thus, for each mini-batches during the training, a predefined portion of neurons with 

a probability of p will be dropped randomly and do not contribute to training. However, all 

the neurons will be activated in the test phase and multiplied with p to account for the 

scaling. Other kinds of regularization techniques in the context of the dropout algorithm 

include DropConnect [183] and Fast DropOut [184].   

Batch normalization: Another efficient regularization technique is Batch Normalization 

(BN) which is helpful in speeding up the convergence. During the training procedure, as a 

result of the previous layer’s changing weights, the distribution of each layer’s input changes 

continuously. These changes decelerate the convergence and require careful initialization. 

To address this issue, BN normalizes the output of a layer by using the running average of 

the mean-variance statistics of each mini-batch. This module consists of two parameters— 
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shift and scale— which, along other weights and biases, are optimized during the training 

procedure. 

By adding the described basic elements of a CNN model in a different order, a large 

number of architectures have been introduced and applied to different tasks with 

outstanding results. Applications of DL in medical image analysis have rapidly grown so that 

more advanced functionalities are derived from more sophisticated network architectures 

[19], [185]–[187].  

3.6.3 Deep Classification 

Medical image classification is an intricate process that can be affected by many different 

factors. Because the classification results are the basis for many further interventions such 

as treatment and surgery planning, great efforts have been made to develop robust and 

accurate advanced classification methods. Deep classification models, similar to other ML 

models, can generally be categorized into supervised and unsupervised models. While in 

supervised classification approaches the deep networks are trained in an end-to-end fashion 

to learn the relevant features with respect to the provided class labels, unsupervised 

networks are trained to capture the representative features of the provided image data in the 

latent space, which will then be used for further clustering steps.  

LeNet [188] and AlexNet [189], introduced over a decade ago, were among the first deep 

classifiers designed to classify image data in an end-to-end fashion. Both networks were 

shallow and designed with relatively similar network architecture. Specifically, both 

consisted of two and five convolutional layers, respectively, and employed kernels with large 

receptive fields in the earlier layers, while convolutions with smaller kernels were added at 

the top of the networks. Taking into account the impressive results reported by AlexNet in 

natural image classification tasks, it can be considered a fundamental model on which many 

of the advanced deep classifiers have been built. Accordingly, the exploration of novel 

architectures began in 2012 with a focus on deeper and wider networks. 

The plain architecture of AlexNet was further elaborated by adding a stack of kernels of 

smaller size instead of using a single kernel with a large receptive field. This effective strategy 

led to conducting the same functions but with fewer parameters. Following a similar 

strategy, a deeper network of up to 19 layers, VGG19, was introduced, having small kernels 

with fixed sizes employed in each layer [190]. This model won the ImageNet challenge in 

2014. Figure 3.13 shows the schematic architectures of AlexNet and VGG19.  As can be seen, 

https://www.sciencedirect.com/topics/computer-science/classification
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the general design of the networks shared some similarities. In particular, the model 

architecture starts with a set of consecutive convolutional layers. As the model goes deeper, 

the depth of each layer increases while the width and heights of the feature maps decrease. 

The last convolutional layer is, finally, followed by a few dense layers at the top of the 

networks. 

 

 

Figure 3.13. The network architecture of two famous deep classifiers: A) AlexNet model and B) VGG19 model. “Conv 
𝑚𝑚 × 𝑚𝑚, n” refers to a convolutional layer with n feature maps, each of which has a kernel size of m. Similarly, “Dense x” 

indicates a fully-connected layer with x number of neurons. 

Of course, the advances of the deep classifiers are not limited only to increasing the 

depth of the networks, but more complex building blocks have been developed to improve 

the performance of the models while reducing the number of learnable parameters. 

Specifically, inception blocks were introduced in the GoogLeNet model and were designed 

in such a way that they need fewer parameters and less computational complexity than a 

single 3×3 or 5×5 convolutional layer by adding a set of convolutions of different sizes in one 

single module [191]. Increasing the network depths by stacking the layers on top of each 

other does not necessarily guarantee improving the model performance. Additionally, such 

deeper networks are much harder to train because of the notorious vanishing gradient 

issues. In particular, as the gradient is back propagated to earlier layers, a large number of 

sequentially repeated multiplications may make the values of the computed gradients very 

small. As a result, with increasing depth, network performance saturates or degrades 

rapidly. The ResNet architecture, the winner of the ImageNet challenge in 2015, introduced 

the residual block. Instead of directly learning the mapping from input data to output data, 

a residual block learns an additive term to add to the input data. Thereby, this approach is 

pre-conditioned towards learning a mapping close to the identity function in each layer. 
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With this strategy, they developed much deeper networks of up to 101 layers that could be 

trained effectively [192].  

Since 2014, the classification performance on the ImageNet challenge has become 

saturated, which makes it difficult to evaluate whether the small increases in performance 

of the novel proposed models can really be attributed to more complicated learning 

procedures or network architectures. The privilege of the lower memory footprint these 

models provide is typically not as important for medical image applications as the 

classification performance in some challenging tasks is still poor and improving the model 

performance, nowadays, is more important than the memory efficiency issue. Consequently, 

AlexNet or other simple models such as VGG are still popular for medical image 

classification tasks [193]. 

The ordinary CNN architecture can easily employ multiple sources of information or 

representations from the input in the form of additional channels or additional paths 

presented to the input layer. This multi-channel/path input information can be efficiently 

integrated and merged at any point in the network. This strategy is beneficial for fusing 

different sources of information in different ways to improve classification performance by 

integrating domain-specific knowledge. As a result, multi-stream architectures have been 

developed for different tasks in the medical imaging domain [194][195]. 

One of the challenges of applying DL techniques to the medical imaging domain is often 

related to the difficulties of adapting the network architectures that were initially designed 

for computer vision tasks. Simply replacing the 2D convolutional modules with 3D 

convolutions will not only lead to a dramatic increase in the number of model parameters 

but also raise concerns over the functionality of the extended 3D model with respect to the 

original 2D model. As an alternative solution, orthogonal 2D slices from axial, coronal, and 

sagittal views have been extracted from the volumetric data to train so-called 2.5D multi-

stream network architectures [196], [197].  

3.6.4 Deep Segmentation 

Segmentation of a target region within medical images is a challenging task due to the large 

variations in shape, size, and appearance of the anatomical targets as well as the lack of sharp 

boundaries between the target and surrounding tissues. This task can include the 

segmentation of organs, substructures, and lesions as a preprocessing step for further 

analyses and classifications. One of the common approaches in DL-based medical image 

https://www.sciencedirect.com/topics/computer-science/deep-learning-technique
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segmentation methods is to classify the individual voxels into foreground and background 

by extracting small image patches from the input image. This approach has been applied in 

a variety of applications, such as brain tumor segmentation [198], white matter segmentation 

in multiple sclerosis [199], and rectal cancer [200]. In this approach, well-established 

classification networks are often employed; however, such approaches analyze redundant 

data and are computationally inefficient because of the overlapping zones of the sub-images. 

In addition, classifying each voxel into foreground or background by considering only the 

local information ignores the global context, which endangers the model performance. 

Fully Convolutional Neural Networks (FCNNs) can process the entire image or a large 

portion of the image at the same time and generate a segmentation map in which different 

labels will be assigned to the foreground(s) and background. Hence, these models do not 

analyze every single pixel one by one and therefore do not assign labels for individual pixels. 

Accordingly, FCNNs can set labels for all the pixel/voxel in the image simultaneously so that, 

computationally, they are much more efficient than the classification-based segmentation 

networks. Among the many developed segmentation models, the U-Net model is considered 

to be a breakthrough as it was primarily designed for biomedical image segmentation. Since 

the introduction of the U-Net model, it has been adopted extensively for a variety of medical 

image segmentation models [17]. U-Net is an FCNN model, and its structure is built upon 

an encoder-decoder network. In fact, such segmentation networks incorporate one FCNN 

as an encoder and another FCNN as a decoder [201]. The U-Net architecture incorporates 

symmetric encoder and decoder paths with four levels of resolution. In the encoder path, 

each resolution includes two consecutive convolutional layers with a kernel size of 3×3 and 

a conventional max-pooling with the size of 2×2. Each of the convolutional layers is followed 

by a ReLU activation function. In the decoder path, with the help of upsampling operators, 

feature maps with lower resolutions are rescaled to higher resolutions. Each of these layers 

is followed by two convolutional layers with the kernel size of 3×3 and the same nonlinear 

function. To recover the spatial information lost in the downsampling encoder path, skip 

connections were introduced that add the feature maps from layers of equal resolution in 

the encoder and decoder paths together before proceeding with the next upsampling layer. 

Finally, the last convolutional layer used a pixel-wise softmax activation function to generate 

a probability map as the segmentation output. Figure 3.14 shows the original architecture of 

the U-Net. 
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Figure 3.14. The architecture of the fully convolutional U-Net model consists of an encoder and a decoder which were 
linked together with skip connections. Each layer is presented with an integer value indicating the number of feature maps 

in the layer. 

Another efficient model originally developed for medical image segmentation is V-Net. 

Like U-Net, this model follows an encoder-decoder architecture. The main difference 

between the V-Net and U-Net is that residual connections were employed instead of 

conventional convolutional layers in the V-Net. Another notable difference between these 

two networks is the strategy used in V-Net to reduce the resolution between the consecutive 

stages. In fact, in the V-Net model, the outputs of nonlinear functions go through a 

convolutional layer with a kernel size of 2×2×2 and stride of 2. The authors showed that this 

strategy is memory efficient, especially in the case of volumetric medical images [202]. 

Progressive advances in the segmentation networks adopted from the original U-Net have 

led to the development of modern models with outstanding performance in a variety of 

challenging segmentation tasks, such as attention U-Net [203], inception U-Net [204], dense 

U-Net [205], recurrent U-Net [206], nested U-Net [207], adversarial U-Net [208], ensemble 

U-Net(s) [209], and nnU-Net [210].  

Employing prior information along with the original image has been recognized as a 

classic strategy in medical image segmentation to deal with issues such as organ motion, 
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lack of sharp boundaries, or even missing boundaries. In the classical rule-based models, 

algorithms such as the active shape model [211], active appearance model [212], active 

appearance motion model [213], and multi-energy-based level sets [214]–[216] have been 

developed to improve the segmentation accuracy. The prior knowledge has also been 

integrated into the deep segmentation networks in different ways. In [217], the authors 

proposed a segmentation network containing two sub-networks, namely analysis and 

synthesis, in which a pre-trained analysis network was used to extract the image features 

that are then fed into an FCNN to obtain a global segmentation mask. The global masks, 

then, were refined by using the weights from the low-level layers of the analysis network. In 

[218] the authors proposed a cascade of two networks. The first network is a U-Net-like 

segmentation model. The output of the first model that often carries an under/over or 

incomplete segmentation mask was fed into an AutoEncoder (AE) network, called the shape 

regularization model. The reconstructed mask of the AE along with the U-Net output was 

incorporated into a custom loss function to update the segmentation network. Such an 

approach improved the segmentation accuracy of kidneys in ultrasound images by 5% in 

terms of the Dice metric. The authors in [219] used a pre-trained AE to incorporate the shape 

prior to the segmentation network. However, instead of only correcting the initial 

segmentation output, they regularize the weight adaptation process of a generic 

segmentation network by using the encoding component of the AE. To add the shape priors, 

unsupervised learning approaches such as Variational Auto Encoders (VAEs) (see Section 

3.6.6) have been successfully employed [220]. As different imaging modalities represent 

different characteristics of anatomical organs, it has been verified that training a 

segmentation model with more than one modality would lead to better segmentation 

accuracy on the condition that the input images were already co-registered. This approach 

has been used in different tasks, such as brain tumor segmentation with different MR 

sequences [221]. 

Although all the mentioned segmentation models are trained with supervised signals, 

developing unsupervised segmentation models for medical images is an active field of 

research. In fact, one limitation of the supervised methods is their dependency on the large-

scale annotated datasets, which are often scarce and costly to obtain. Therefore, developing 

segmentation models capable of learning the attributes of target regions directly from the 

unlabeled image data is of great importance for medical imaging communities. Specifically 

for the task of pathology segmentation, this task is recognized as Unsupervised Anomaly 

Detection (UAD), which will be discussed in Section 3.6.6.  
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3.6.5 Deep Inpainting 

Image inpainting refers to the task of restoring the “damaged” part of the pixels in an 

incomplete image with semantically meaningful textures in order to reconstruct a realistic-

looking image. In other words, the aim of such models is to replace the invalid pixels of an 

image with the learned features from the valid regions and synthesize a smooth image with 

contextual consistency. Some of the image inpainting applications include but are not 

limited to text removal, object removal, scratch removal, and repairing block masks. With 

the rise of DL methods, novel inpainting techniques have been developed primarily for 

computer vision tasks. However, conventional CNN models could not be directly employed 

as robust inpainting models. One of the main reasons behind such failures is the instability 

of the extracted convolutional features in both the learning and inference phases of the 

model. Specifically, convolutional kernels cannot constantly capture the information from 

the corrupted input images because the characteristics of the corrupted regions vary 

remarkably in different images. Therefore, the same feature values of the convolutional 

maps of an inpainting model might represent completely different textures which would not 

be compatible with all the corrupted images [222]. Another important reason why ordinary 

CNN models are unable to synthesize semantically correct images is that the spatially shared 

convolutional filters process all input pixels or features from both the valid and invalid 

regions as the same valid ones. In fact, vanilla convolutions apply the same filters on all the 

valid and invalid pixels, which leads to filling the holes without preserving the context, color, 

and textural consistency. 

 Several novel approaches have been proposed to address the limitations of ordinary 

CNN models for inpainting pruposes. To fill the large continuous holes in the image by 

progressively imposing constraints for the hole centers, a Recurrent Feature Reasoning 

(RFP) network was developed to recurrently infer and gather the hole boundaries for the 

encoded feature map [223]. Specifically, the RFP module utilizes the correlation between the 

surrounding pixels and strengthens the constraints for estimating deeper pixels. The RFR 

module, which is a plug-and-play module with a recurrent inference design, can be added to 

any part of the network. This module is built on top of the three submodules: (a) the area 

identification module, which is used to identify the area to be inferred in this recurrence; (b) 

a feature reasoning module for inferring the content in the identified area; and (c) a feature 

merging module that merges the intermediate feature maps. To recover features with high 

fidelity, the RFP module was fortified by adding a certain attention module that can 

adaptively combine the scores from different recurrences. This strategy ensures the 
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consistency between patch-swapping processes among recurrences and results in 

synthesizing high-quality images that preserve fine-grained details.  Yu et al. proposed a 

GAN-based model that functions in two stages [224]. In the first stage, a simple dilated 

convolutional network is trained and optimized with a reconstruction loss to roughly fill the 

invalid pixels. A contextual attention mechanism was developed to use the features of valid 

regions as convolutional filters in order to process the generated patches. This attention 

mechanism, which is integrated into the second stage, is designed for the following tasks: 

(a) to match the generated patches with valid contextual patches; (b) to weigh relevant 

patches with channel-wise softmax; and (c) to reconstruct the generated patches with 

contextual patches with deconvolution. This attention module also entails a spatial 

propagation layer to encourage spatial coherency of attention. The whole network is trained 

end-to-end with reconstruction losses and two GAN losses, whereby one critic looks at the 

global image while the other looks at the local patch of the missing regions. 

Even though promising results have been achieved by the many recent methods, they 

still suffer from a number of limitations. First, conditioning the output on the invalid pixels 

results in reconstructed images with visual artifacts, especially for the large-sized images 

that were corrupted with large holes. A second limitation is that they often focus on filling 

the holes with regular shapes such as rectangles or squares. Nevertheless, such restrictions 

can potentially increase the risk of overfitting, resulting in the learned model properly 

inpainting only the holes with regular learned shapes. To efficiently address these 

limitations, a Partial Convolutional (PConv) neural network was developed to replace the 

invalid irregular-shaped pixels with high-fidelity patterns. Assume that 𝐼𝐼(𝑦𝑦,𝑥𝑥) stands for the 

input image with c-channels (or a feature map at the current layer), and 𝑊𝑊represents a set 

of convolutional filters. The conventional convolutional operator filters the input image and 

returns a  𝑐𝑐′-channel output, 𝑂𝑂(𝑦𝑦,𝑥𝑥): 

𝑂𝑂(𝑦𝑦,𝑥𝑥) =  𝐼𝐼(𝑦𝑦,𝑥𝑥) ∗ 𝑊𝑊(𝑦𝑦,𝑥𝑥) = � � 𝑊𝑊𝑘𝑘𝑚𝑚+𝑖𝑖,𝑘𝑘𝑛𝑛+𝑗𝑗 . 𝐼𝐼𝑦𝑦+𝑖𝑖,𝑥𝑥+𝑗𝑗

𝑘𝑘𝑛𝑛
′

𝑗𝑗=−𝑘𝑘𝑛𝑛
′

𝑘𝑘𝑚𝑚
′

𝑖𝑖=−𝑘𝑘𝑚𝑚
′

 

where 𝑘𝑘𝑚𝑚 and 𝑘𝑘𝑛𝑛 are the size of the kernel, 𝑘𝑘𝑚𝑚
′ = 𝑘𝑘𝑚𝑚−1

2
 and 𝑘𝑘𝑛𝑛

′ = 𝑘𝑘𝑛𝑛−1
2

. In this notation, for 

simplicity, the bias term is not presented. As was previously explained, this type of 

convolutional operator is not suitable for image inpainting applications as it ignores the 

presence of holes within the subregions and simultaneously takes into account both the valid 

and invalid pixels. As a result, the inpainted holes do not fully match the nearby textures, 
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and the generated images contain textural/color inconsistencies. The Pconv operator uses a 

binary mask 𝑀𝑀  with the same size as the input image to condition the convolutional 

computations on the valid pixels. The partial convolution at every spatial location for the 

current sliding window can be defined as: 

𝑂𝑂(𝑦𝑦,𝑥𝑥) = �𝑊𝑊(𝑦𝑦,𝑥𝑥)
𝑇𝑇 �𝐼𝐼(𝑦𝑦,𝑥𝑥)ʘ𝑀𝑀(𝑦𝑦,𝑥𝑥)�

𝑠𝑠𝑠𝑠𝑠𝑠(1)
𝑠𝑠𝑠𝑠𝑠𝑠(𝑀𝑀)     𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠(𝑀𝑀) > 0

0                                                𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

where ʘ denotes element-wise multiplication, 1 is an all-one matrix with the same size as 

𝑀𝑀. Compared to the ordinary convolution operator, one can understand that the output 

values of Pconv depend only on the valid areas defined by the binary mask (𝑀𝑀). The term 

( 𝑠𝑠𝑠𝑠𝑠𝑠(1)
𝑠𝑠𝑠𝑠𝑠𝑠(𝑀𝑀)) functions as a scaling factor to adjust for varying amounts of valid inputs. After each 

Pconv operator, the binary mask will be updated by the following rule: If Pconv could 

condition its output on at least one valid pixel, that spatial location will be updated to become 

a valid pixel. This strategy was implemented in a U-Net-like network (see Figure 3.15) in 

which the ordinary convolutions were replaced by the described Pconv modules [225]. To fill 

the holes with meaningful semantic patterns, the proposed model is optimized with a multi-

term objective function. Let the input image with holes be 𝐼𝐼𝑖𝑖𝑖𝑖; 𝐼𝐼𝑔𝑔𝑔𝑔  represents the original 

image without holes (ground truth), 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜  indicates the predicted image, and 𝑀𝑀 denotes the 

binary mask used for corrupting the image; the first two terms in the loss function are pixel-

wise errors that can be calculated separately for the valid and invalid zones with L1-norm. 

These two terms aim to minimize the intensity differences between the predicted and 

ground-truth images inside and outside the hole regions, respectively: 

ℒ𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  
1

𝑁𝑁𝐼𝐼𝑔𝑔𝑔𝑔

�𝑀𝑀ʘ(𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐼𝐼𝑔𝑔𝑔𝑔 )�
1
 

ℒℎ𝑜𝑜𝑜𝑜𝑜𝑜 =  
1

𝑁𝑁𝐼𝐼𝑔𝑔𝑔𝑔

�(1 − 𝑀𝑀)ʘ(𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐼𝐼𝑔𝑔𝑔𝑔)�
1
 

where 𝑁𝑁𝐼𝐼𝑔𝑔𝑔𝑔 shows the number of pixels in the 𝐼𝐼𝑔𝑔𝑔𝑔. 

Perceptual loss is the third employed objective function that aims to minimize the 

differences between the high-level feature representations extracted from the predicted and 

ground-truth images. It calculated the L1  norm between two sets of high-level features 

extracted from 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜  and 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  where 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the composite output, which is similar to the 
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predicted image but with the intensity of valid pixels replaced by those of the ground truth. 

The high-level features are extracted from the 1st, 2nd, and 3rd layers of a VGG16 [190] 

network pre-trained on ImageNet: 

ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �
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Here, 𝛹𝛹𝑝𝑝
𝐼𝐼∗  refers to the outputs of the activation function of the pth layer of the pre-trained 

network, given the input 𝐼𝐼∗.  

In order to minimize the differences in style between the synthesized and ground-truth 

images, style loss was computed as well. To reconstruct images with a high level of style 

similarities inside and outside the hole regions, the style loss was calculated for predicted 

and composite images separately: 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 = �
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As can be seen, the style loss is similar to the perceptual loss; however, it first calculates 

the autocorrelation of extracted features and then computes the L1 norm. In this notation, 

𝐶𝐶𝑝𝑝  indicates the depth of channels in 𝛹𝛹𝑝𝑝 , and 𝐾𝐾𝑝𝑝  refers to the number of elements in 𝛹𝛹𝑝𝑝 

tensor.  

The final loss used in this multi-objective function is Total Variation (TV) which is a 

common noise reduction method that can attenuate the impact of high-frequency noise. In 

fact, it functions as a smoothing term that makes the intensity values of the neighboring 

pixels closer to each other: 

ℒ𝑡𝑡𝑡𝑡 = �
�𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖 ,𝑗𝑗+1 − 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖 ,𝑗𝑗 �

1
𝑁𝑁𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖,𝑗𝑗)∈𝑅𝑅2

 + �
�𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖+1,𝑗𝑗 − 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖,𝑗𝑗 �

1
𝑁𝑁𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖,𝑗𝑗)∈𝑅𝑅2

 

where 𝑁𝑁𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the number of pixels in the composite image. 

The final loss function, then, is: 
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ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ℒ𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + ℒℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 0.05ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 120(ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 1ℒ𝑡𝑡𝑡𝑡  

Although the Pconv model synthesized seamless, high-quality images with a high level 

of fidelities in the inpainted regions, the rule-based mask updating procedure faces some 

limitations. First, all feature channels in each convolutional layer share the same mask 

regardless of their inconsistencies. This limitation will be problematic, especially for multi-

channel input images such as multimodal PET-CT slices. A second limitation is that the 

binary mask will be updated constantly unless all the invalid pixels disappear, regardless of 

how many pixels were covered in the previous layers. The Gated Convolution (Gconv) 

operator [226] has been proposed to turn the problematic rule-based mask updating of 

Pconv into a dynamic learnable procedure. Specifically, gated convolutions learn soft mask 

automatically from the image/feature maps. This will enable the convolutional operators to 

learn the dynamic feature selection mechanism for each channel and each spatial location 

independently. This process can be formulated as: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑦𝑦,𝑥𝑥) = � � 𝑊𝑊𝑔𝑔 . 𝐼𝐼 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑦𝑦,𝑥𝑥) = � � 𝑊𝑊𝑓𝑓 . 𝐼𝐼 

𝑂𝑂(𝑦𝑦,𝑥𝑥) = 𝜑𝜑�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑦𝑦,𝑥𝑥)� ʘ 𝜎𝜎(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑦𝑦,𝑥𝑥)) 

where 𝜎𝜎 refers to the sigmoid function that scales the output of the gating signal into the 

range of 0 to 1; 𝜑𝜑 can be any kind of nonlinear activation function; 𝑊𝑊𝑔𝑔  and  𝑊𝑊𝑓𝑓  are two 

separate convolutional filters. 

Although the image inpainting models are primarily developed for computer vision 

tasks, they have been adopted for different applications in the medical imaging domain. 

Such applications include but are not limited to anomaly removal [227], image augmentation 

[228], artifact removal [229], and synthesizing fake healthy structures from deformed ones 

[230]. 
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Figure 3.15. The network architecture of the PConv model. In this figure, BN refers to the batch normalization module, 
and Up indicates the upsampling operators. 
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3.6.6 Deep Representation Learning 

Representation learning refers to the task of finding a discriminative feature representation 

from the studied data for a certain task. Depending on whether the training data is labeled 

or not, representation learning can be categorized into supervised and unsupervised 

methods. In the supervised representation learning approach, a model is trained to properly 

map the input data into the corresponding target labels by minimizing a loss function. On 

the other hand, unsupervised representation learning aims to learn the underlying semantic 

feature space directly from the input data without any supervised signals [231]. Learning 

effective data representation space has been a longstanding goal in ML communities. In 

general, representations are considered “effective” if they capture discriminative factors of 

the data, which are useful for the studied task. Learning effective data representations in 

medical imaging domains poses additional challenges. Such a representation must lend 

itself to a wide range of clinically useful tasks and, at the same time, should work properly 

across data acquired from different imaging vendors and modalities [231]. In this context, 

supervised and unsupervised representation learning with deep networks has achieved 

promising results in various tasks. For example, Liao et al. developed a DL framework to 

learn a discriminative representation for automatic prostate segmentation in MR images 

[232]. Ning et al. developed a deep cross-view co-regularized representation learning 

framework to learn latent view-specific representations based on cross-view images 

generated from MRI. The proposed model was tested on the challenging task of glioma 

subtype identification which resulted in outstanding performance [233]. Liu et al. addressed 

the problem of incomplete multi-modality images by learning the effective representation 

space of the available multi-modal data. In other words, they proposed an AE-based Multi-

View missing data Completion framework (AEMVC) to learn common representations for 

Alzheimer’s disease by mapping the original complete view to a latent space. After this, the 

latent representations measuring statistical dependence learned from the complete view are 

used to complement the kernel matrix of the incomplete view [234]. 

One of the interesting fields of study within representation learning is unsupervised 

segmentation. Before detailing the procedure of this approach, it should be emphasized that 

accurate results in different tasks have already been achieved by supervised segmentation 

models. However, the performance of supervised models depends heavily on the quality and 

quantity of the data. Regardless of the difficulties in annotating large-scale datasets, the 

generalization power of the supervised segmentation models is restricted to the type of 

annotated data presented in the training set. However, there is always the risk that a certain 

https://www.sciencedirect.com/topics/computer-science/medical-imaging
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type of data would be under-presented or even not presented in the training set, such as 

some rare diseases with a limited amount of available data. In such cases, the model would 

fail to generate a meaningful segmentation mask. Among other methods, Unsupervised 

Anomaly Detection (UAD) aims to address the above-mentioned challenges. While the 

applications of UAD methods in the medical imaging domain have been studied for a long 

time, the ability of convolutional networks to learn sophisticated distributions of the high 

dimensional data makes the DL-based UAD method an active field of research. DL-based 

models such as AEs are capable of learning non-linear transformations of input data into a 

low-dimensional representation space from which cluster-based anomaly detection can be 

achieved. In recent years, there has been a plethora of studies based on the abilities of AEs 

and GANs to not only detect the anomalies within medical images but also to localize and 

even segment the boundaries of anomaly regions directly in the image space.  

In this domain, the main hypothesis is that the distribution of the healthy images differs 

from images containing pathologies. Therefore, with the help of DL-based representation 

learnings, the networks are trained to model the distribution of healthy anatomies. The 

trained network, then, is used to detect the anomalies as outliers from the normative learned 

distribution. In other words, once the model is trained, it is supposed to reconstruct only 

healthy anatomical structures from the input data. Thus, in the test phase, if the network is 

fed with a healthy image, the model should reconstruct a healthy image, ideally without any 

anatomical distortion. On the other hand, if the input image contains some pathologies such 

as tumors or lesions, the model should, ideally, reconstruct only the healthy anatomical parts 

of the input and replace the pathological regions with the learned appearance of healthy 

anatomies. It is worth mentioning that the majority of the research within this field has been 

dedicated to segmenting the brain lesions such as Multiple Sclerosis (MS) and glioma within 

specific MR sequences in which the lesions tend to appear with hyperintensity signals [235]–

[240]. 

Among the other models, VAEs [241] are efficient frameworks for approximating the 

distribution of complex high-dimensional data. In fact, capturing the complex nonlinear 

association between the dependent image elements is a challenging task. Having learned 

such an intricate distribution, the second challenge for a model is generating a realistic 

image. In other words, the well-trained model should first decide which image to synthesize 

before it assigns values to the pixels. This process is related to the concept of latent variables. 

It is called latent because, given just an image generated by the model, it is not known which 

settings of the latent variables produced that image [242]. VAEs are a special type of general 



60 
 

AE model that can regularize the encoded distribution during the training procedure so as 

to ensure that effective representations are learned in the latent space from which the 

generation of new relevant data would be achievable from the decoder part of the learned 

model. In contrast to the ordinary AE models, which encode the input data as a single point, 

VAEs encode the input data as a distribution over the latent space. The VAE models are 

trained with the following ordinal protocols: (a) input data is encoded into a distribution 

over the latent space; (b) a point is sampled from the latent distribution; (c) the sampled 

point passed through the decoder network to reconstruct a new output from which the per 

pixel reconstruction loss is computed; and (d) the whole model is optimized by 

backpropagating the reconstruction error. There are several advantages to regularizing the 

latent distributions, including that (a) it forces the learned distribution by the encoder part 

of the model to follow a standard distribution, and (b) continuity of the regularized learned 

distribution is beneficial to reconstructing two similar outputs if they were sampled from 

two close points. In practice, the encoded distributions can be chosen to follow a Gaussian 

distribution so that the encoder can be trained to return the two parameters of the Gaussian, 

namely as the mean and covariance matrix. Thus, the objective function of the VAEs should 

include a regularization term in addition to the ordinary reconstruction loss: 

𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐿𝐿𝑟𝑟𝑟𝑟𝑔𝑔 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + 𝐾𝐾𝐾𝐾{𝑧𝑧, 𝑁𝑁(0, 𝐼𝐼)}    

where MSE indicates the mean square error (L2) and KL stands for Kullback-Leibler, which 

is a measure to quantify how one PDF 𝑝𝑝(𝑥𝑥) diverges (||) from another PDF 𝑞𝑞(𝑥𝑥): 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝(𝑥𝑥)‖𝑞𝑞(𝑥𝑥)) = � 𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑥𝑥
 

This measure converges to the minimum value, zero, if two distributions are similar. 

However, it should be noticed that KL divergence is an asymmetric measure. Specifically, if 

𝑝𝑝(𝑥𝑥)  is close to zero and 𝑞𝑞(𝑥𝑥)  is far from zero, the effect of 𝑞𝑞(𝑥𝑥)  might be disregarded. 

Jensen-Shannon (JS) divergence is a more smooth and symmetric measure that quantifies 

the similarities between two PDFs: 

𝐷𝐷𝐽𝐽𝐽𝐽(𝑝𝑝(𝑥𝑥)‖𝑞𝑞(𝑥𝑥)) =  
1
2

𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝(𝑥𝑥) �
𝑝𝑝(𝑥𝑥) + 𝑞𝑞(𝑥𝑥)

2
� +

1
2

𝐷𝐷𝐾𝐾𝐾𝐾 �𝑞𝑞(𝑥𝑥) �
𝑝𝑝(𝑥𝑥) + 𝑞𝑞(𝑥𝑥)

2
 � 

In brief, the objective of the reconstruction term is to make the encoding-decoding as 

performant as possible; moreover, the regularization term is applied to the latent layer to 

make the distribution captured by the encoder as similar as possible to the predefined 
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normal distribution (𝑁𝑁(𝟎𝟎, 𝐼𝐼)). Accordingly, in a sense, the regularization term measures the 

similarity between two PDFs. As KL divergence between two Gaussian distributions has a 

closed-form and can be expressed in terms of mean (𝜇𝜇) and covariance (𝜎𝜎) matrices, it is 

conventionally used as the regularization term. Figure 3.16 shows a graphical illustration of 

the VAE architecture. 

 

Figure 3.16. The general architecture of the variational autoencoder model consists of an encoder, a sampling layer, and a 
decoder to generate an output from the sampled latent vector. 
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Chapter 4 

Methods 

4.1 Deep Learning Methods for Tumor Segmentation (Papers I, II) 

One of the central tasks in medical image analysis applications is to segment the anatomical 

organs and/or pathological regions [18]. In fact, accurate and reliable segmentation of the 

target regions has a critical impact on further diagnosis and intervention steps. The first two 

papers presented in this thesis focused on developing advanced instance segmentation 

models for the task of automatic tumor segmentation. Paper I aims to develop a supervised 

prior-aware segmentation model to improve the segmentation accuracy of lung pathologies 

by capturing the prior information about the pathological regions. In Paper II, an 

unsupervised anomaly detection method is proposed by developing an autoinpainting model 

to automatically segment the lung and head-neck tumors with a purely unsupervised 

approach. 

4.1.1 Overview of the Studies 

The main objective of Paper I is to develop a DL pipeline capable of learning the appearance 

of lung tumors in CT images. Therefore, the learned characteristics of the tumors can be 

encoded as prior information into a segmentation model to boost the segmentation accuracy 

of lung tumors. Integrating prior knowledge such as shape, size, and appearance of 

candidate regions into segmentation models has been shown to be a beneficial strategy to 

improve segmentation performance [18], [243]. In Paper I, to obtain prior knowledge about 

complicated lung tumors appearing with a wide range of characteristics, we proposed to first 

capture the prior knowledge about the normal lung anatomies instead of lung pathologies 

and then derive the prior knowledge of tumoral regions indirectly. Finally, the obtained prior 

knowledge was encoded into a supervised segmentation network. Hence, the proposed 

pipeline consists of three modules: (a) an inpainting model to synthesize faked healthy 

images, (b) a Normal Appearance Autoencoder (NAA) model to automatically reconstruct 

tumor-free images, and (c) a prior-aware segmentation network to delineate the tumor 

boundaries. 
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Paper II attempts to address one crucial challenge faced by supervised segmentation 

models: dependency on the large-scale labeled dataset. In fact, supervised training of data-

greedy segmentation models suffers from two limitations. First, the number of training 

medical images is often limited because of the costly slice-by-slice data annotation 

procedure. Second, even if large-scale training data is available, the generalization power of 

the learned models over the unseen classes is poor, which necessarily requires the collection 

of annotated data from the new class followed by retraining of the model [19].  In the medical 

image analysis domain, UAD is an active field of research that aims to model the distribution 

of healthy anatomies by training deep representation learning models in order to detect 

anatomical abnormalities as outliers with respect to the learned distributions. In this 

context, a variety of AE-based and GAN-based models have been proposed; however, these 

models suffer from a number of limitations. First, to learn the distribution of healthy organs, 

these models are often trained with low-resolution images; therefore, they will not be able 

to learn the fine-grained details, which are extremely important for several applications. 

Second, they often focus on detecting anomalies that appear with hyperintensity signals, 

such as MS lesions in specific brain MR sequences. A third limitation is that they face 

difficulties in preserving the anatomical constraints within the generated images. As an 

attempt to tackle the limitations of conventional UAD models, a fully unsupervised 

autoinpainting model is proposed in Paper II that is capable of automatically replacing the 

tumoral regions with the appearance of healthy tissues in full-resolution images while 

preserving the anatomical constraints. Having compared the input tumoral images with the 

synthesized tumor-free images, the tumoral regions can be segmented by applying a set of 

post-processing steps.  

4.1.2 Image Preparation and Preprocessing 

Paper I. Contrast enhancement was the only main preprocessing step applied to the 

employed CT volumes. To enhance the contrast between the tissues inside the lung regions, 

the Hounsfield values of the CT volumes were clamped to the range of [-1000,500]. Figure 

4.1 shows the impact of different windowing levels on the appearance of a chest CT image.  

The intensity windowing operator can be simply presented with: 

𝐼𝐼(𝑥𝑥,𝑦𝑦,𝑧𝑧)
′ = �

𝐼𝐼(𝑥𝑥,𝑦𝑦,𝑧𝑧), 𝑚𝑚𝑚𝑚𝑚𝑚 < 𝐼𝐼 < 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚
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where 𝐼𝐼(𝑥𝑥,𝑦𝑦,𝑧𝑧) refers to the voxel intensity of coordinate (x,y,z), and min and max show the 

lower and upper boundaries of the applied window.   

 

Figure 4.1. Modification of CT grayscale components by histogram windowing. Visualization of the same slices with 
intensity range of: A) the originally acquired range [-2000,3000]; B) [-100,500]; C) [-1000,-700]; and D) [-1000, 500]. 

Since the models were examined with 2D images, the axial slices were extracted from 

the 16-bit volumes and converted into 8-bit grayscale images. Finally, prior to feeding the 

images to the networks, their intensity ranges were normalized in the range of [0,1]. 

Paper II. The following preprocessing was applied to the employed multimodal Non-

Small Cell Lung Cancer (NSCLC) and Head-Neck (HN) datasets. First, the voxel spacing of 

the PET data was resampled to those of the corresponding CT data by using a third-order 

Spline interpolation method. Second, the intensity values of PET images were converted into 

SUV units. Third, to enhance the contrast between the tissues within the target anatomies, 

the intensity values of CT and PET images were clamped. Specifically, the Hounsfield values 

of CT images were clamped into the range of [-1000,500] for NSCLC data and [-200,200] 

for the HN dataset. The SUV values of PET images were constrained in the range of [0,12] 

as well. Similar to Paper I, the axial slices from 16-bit volumes were extracted and converted 

into 8-bit gray-level images with the size of 512×512 pixels. Finally, the intensity range of 

images was rescaled into the range of 0 to 1. 

4.1.3 Prior-Aware Tumor Segmentation  

In Paper I, a pipeline was proposed to capture the prior knowledge of lung tumors, inspired 

by the concept of UAD methods but with a rather different approach. Unlike the 
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conventional UAD models that aim to remove pathologies with hyperintensity signals, lung 

tumors appear with characteristics highly similar to surrounding soft tissues. In practice, it 

is not possible to discern the healthy soft tissues from tumoral regions by relying only on the 

intensity difference patterns. Therefore, we turned the training procedure of representation 

learning models from an unsupervised into a supervised approach. In other words, we aimed 

to enforce the model to learn the appearance of healthy lung anatomy by explicitly setting 

healthy images as target labels for the corresponding input pathological data. However, it is 

rare in actual cases—if not impossible—to have both a healthy scan and tumoral scan of the 

same subject. To address this practical limitation, employing the concept of image inpainting 

allows paired images to be synthesized by carefully inpainting the tumoral regions from the 

pathological data. Hence, “faked” healthy images were synthetically generated to form 

paired images of real tumoral images and faked tumor-free images. Building on the paired 

images, we modified the conventional VAE model and turned it into the supervised NAA 

model to automatically remove the tumoral regions from the input tumoral slices and 

reconstruct normal-looking slices. Accordingly, prior knowledge of the tumors was then 

estimated by finding the differences between the original tumoral images and the 

corresponding tumor-free images generated by the NAA model. The captured prior 

knowledge was then encoded into a U-Net segmentation model as an additional input 

channel to guide the attention of the segmentation model to the regions estimated by prior 

knowledge. Furthermore, to quantify how well the proposed NAA model could estimate the 

tumor appearance, post-processing steps were applied to the residual images to segment the 

tumors directly. It is worth noting that in Paper I, in addition to the studied lung nodules 

and NSCLC datasets, the ability of the developed model was investigated for COVID-19 

lesions segmentation as well because Covid lesions share similar characteristics to some 

extent with respect to the NSCLC pathologies in CT volumes. Figure 4.2 shows the general 

pipeline of the study. 
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Figure 4.2. The pipeline of the proposed model of Paper I consists of three modules: an inpainting module, a normal 
appearance autoencoder module, and a prior-aware segmentation module. [From Astaraki et al. 2022, Reprinted with 

permission] 

Generating healthy lung images. Synthesizing healthy images from pathological 

images can be achieved by inpainting the tumoral regions. In other words, the inpainting 

model considers the tumor region as a hole that should be filled with the characteristics of 

surrounding tissues. To inpaint the tumors, the Partial Convolutional Neural Network 

(PCNN) model, which was described in Section 3.6.5, was employed in two phases. First, 

20,000 healthy image slices were extracted from the LIDC-IDRI dataset [244] with the full-

resolution of 512×512, which were corrupted with random holes. The PCNN model was 

trained with the corrupted images and was able to successfully learn to replace the holes 

with semantically meaningful anatomical patterns. Random holes were generated by 

combining regular geometric shapes such as circles and ellipses. The size of the random 

holes was designed to resemble the diverse size of lung pathologies which, on average, 

occupy 25 to 30% of the image size. The second phase is the test phase. The label masks of 

the tumoral slices were used to corrupt the tumoral locations from which the learned model 
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fills the holes with the appearance of healthy tissues. As a result, for each pathological input 

slice, a faked high-quality pathology-free image was synthesized to form a set of paired 

images.  

Automatic pathology removal. As a powerful representation learning model, VAEs can 

transform the high dimensional input images into the probabilistic latent space to 

reconstruct new images with acceptable quality; accordingly, the model has been widely 

used for UAD tasks [236]. To further enforce the conventional VAE to compress the high-

resolution CT slices into low-dimensional latent manifolds and reconstruct high-fidelity 

images while suppressing the pathologies, the following modifications were applied: 

1. Building on the generated paired images from the PCNN step, the model training 

was changed from unsupervised to supervised. In other words, pathological images 

were fed as model inputs, and corresponding fake pathology-free images were set as 

target images. 

2. To preserve the spatial context and geometric features in the latent manifolds, dense 

layers were replaced by convolutional layers. 

3. To mitigate the inconsistency between the latent manifold of the input tumoral 

images and latent manifolds of the target images, a regularization term was 

embedded in the loss function. This regularization aims to minimize the differences 

between the latent variables of input pathological images and target pathology-free 

images. 

4. Reconstruction loss was updated with higher weights within the lung regions by 

integrating lung field masks into the optimization process. This modification was 

done by adding a weight map into the reconstruction loss to assign higher weights to 

the regions inside the lungs and lower weights to the areas outside. 

This model is named NAA. The described modifications lead to the following multi-loss 

function: 

ℒ = ⍵ ⊙ ℒ𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛼𝛼ℒ𝑟𝑟𝑟𝑟𝑟𝑟 + ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟 = ⍵ ⊙ 𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦, 𝑦𝑦′) + 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼(𝑧𝑧(𝑥𝑥), 𝑧𝑧(𝑦𝑦))) + 𝐷𝐷𝐾𝐾𝐾𝐾(𝑧𝑧, 𝑁𝑁(0, 𝐼𝐼))   

where x, 𝑦𝑦 , 𝑦𝑦′, and z denote the input, target, model prediction, and latent variable, 

respectively. MSE denotes the element-wise mean square error and ⊙ indicates element-

wise multiplication. The coefficient 𝛼𝛼 balances the effect of the regularization term through 
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a scalar multiplication, and its value was experimentally chosen as 0.001. Finally, the symbol 

⍵ shows the weighting map of the lung fields. 

Pathology segmentation as anomalies. To determine how well the NAA model could 

remove the tumors from the image contents while preserving the normal structures, 

differences between the tumoral images and the outputs of the NAA model were used to 

directly segment the pathologies. Accordingly, the following steps were examined: 

1. Residual images were formed by finding the pixel-wise differences between the 

tumoral slices and the reconstructed slices. 

2. For each subject, the residual slices were aggregated to create the residual volumes, 

which were multiplied by the lung field masks. 

3. Otsu thresholding was applied to the residual volumes to remove the background 

noises. 

4. Morphological operators were used to discard the discrete random tiny components 

of the thresholded images. The final binary volumes were then compared against 

the label masks.  

Prior-aware U-Net model. The residual images, which were computed as differences 

between the input slices and the predictions of the NAA models, were employed without any 

further processing as the prior image to boost the segmentation accuracy. These residual 

slices, which may contain a highlighted region or regions that represent the attributes of 

pathologies such as shape, intensity/textural distribution, and location can enforce the 

attention of the segmentation network toward the candidate regions. On the other hand, if 

they do not entail informative knowledge, they should not degrade the functionality of the 

segmentation network. Therefore, the prior images were integrated into the U-Net model as 

a second channel along with the original slices. In other words, the segmentation network is 

fed with 2-channel input data in order to predict the binary label masks.  

Lastly, since the calculation of prior knowledge is independent of the segmentation 

pipeline, the obtained prior image can be integrated with different approaches into different 

segmentation models. To benchmark the efficacy of the proposed pipeline, the standard 

nnU-Net model [210] was adopted and tested both as the baseline and the 2-channel input 

data.   
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4.1.4 Unsupervised Tumor Segmentation 

In Paper II, an unsupervised segmentation model was built upon an autoinpainting method 

for the task of tumor segmentation in single/multimodal medical images. Specifically, a 

robust inpainting method was proposed that is capable of reconstructing realistic-looking 

multi-modal medical images from corrupted ones while preserving fine-grained details. The 

developed inpainting model was trained by carefully corrupting the healthy images with 

random irregular holes to simulate the morphological characteristics of heterogeneous 

tumors. The learned model was then used for automatic tumor removal in the test phase in 

an autoinpainting pipeline. Specifically, a set of subregions within the main target organ is 

defined through a sliding window approach to be inpainted. The autoinpainting procedure 

is followed by a post-processing strategy to detect the candidate region for the final tumor 

removal. The proposed inpainting model is optimized with a multi-term objective function 

in order to replace the holes with plausible image characteristics and preserve the 

anatomical constraints. 

Image inpainting for learning the appearance of healthy anatomies. Inspired by the 

concept of the PConv and GConv operators, which were described in Section 3.6.5, a U-Net-

like architecture was developed for the inpainting task. In general, the architecture 

framework is similar to the PCNN model; however, the PConv operators were replaced by 

the Gconv modules. Specifically, the encoder part of the model consists of 8 Gconv blocks, 

each of which includes a Gconv layer with the stride of 2, followed by an optional BN layer 

and a ReLu activation function. The decoder stage of the model, similarly, contains 8 Gconv 

blocks, each of which consists of a nearest neighbor upsampling layer, a Gconv layer, an 

optional BN layer, followed by a LeakyReLu activation function. Skip connections connected 

the corresponding blocks from the encoder path to the decoder path by concatenating the 

two feature maps and corresponding binary masks, respectively. The final output layer of 

the model is an ordinary convolutional layer activated with a sigmoid function, which is fed 

by a concatenation of the last Gconv block from the decoder path and the original input 

image with holes, along with the original binary mask (see Figure 4.3). Similar to the PCNN 

model, a multi-term objective function was employed to reconstruct images with both 

textural and conceptual similarities. However, in addition to the pixel-wise mean square 

error loss, perceptual loss, style loss, and total variation loss, another loss term was included 

to preserve the high-frequency patterns. Specifically, since the early layers of the model focus 

on learning the edge-based features, the loss terms previously mentioned by themselves 

cannot preserve the high-frequency attributes well. This issue will be problematic, 
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especially,  when input data consists of different channels, each of which carries different 

contents such as multi-modal PET-CT images. Therefore, to preserve the edge information 

and synthesize images with high-frequency details as much as possible, the Laplacian (lap) 

pyramid loss was added to the objective function: 

ℒ𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜,𝐼𝐼𝑔𝑔𝑔𝑔) = � 22𝑗𝑗�𝐿𝐿𝑗𝑗 (𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜) − 𝐿𝐿𝑗𝑗 (𝐼𝐼𝑔𝑔𝑔𝑔)�
1

𝑗𝑗

 

where 𝐿𝐿𝑗𝑗(𝑥𝑥) indicates the jth level of the Laplacian pyramid representation of input x. In this 

study, the parameter 𝑗𝑗 was set to 3, that is, three levels of pyramid representations were 

computed.   

Therefore, the overall objective function is the combination of all the loss terms 

mentioned: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 30ℒ𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 240ℒℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 0.2ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 0.05(ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜 + ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 250ℒ𝑡𝑡𝑡𝑡 + 20ℒ𝑙𝑙𝑙𝑙𝑙𝑙 

The proposed inpainting model, named GconvLap, was used to learn the appearance of 

healthy anatomical structures by learning to replace the irregular holes with the attributes 

of healthy tissues. Having the corrupted images as input to the model on one side and the 

original images as the ground truth on the other side, the inpainting model is trained to 

smoothly replace the holes with semantically meaningful patterns in order to synthesize 

realistic-looking images while preserving fine-grained details and anatomical constraints. 

Considering that tumors appear with irregular shapes and different sizes at different 

locations, the holes should be generated in a way to imitate the visual attributes of the 

tumors. Therefore, irregular holes were synthesized by carefully combining the ordinary 

regular geometric shapes, including circles, ellipses, and lines. Thus, the simulated holes 

were distributed randomly over different spatial coordinates of the image space to occupy, 

on average per batch, 25 to 30% of the image size. With this approach, two models were 

trained separately for NSCLC and HN datasets.  

Autoinpainting for unsupervised tumor segmentation. The trained GconvLap model 

learns to synthesize semantically correct and contextually smooth contents in the predefined 

missing regions. The strategy to train the model only with healthy slices reinforces the model 

to replace the missing healthy tissues with the appearance of healthy tissues. This strategy 

enables the inpainting network to model the distribution of healthy anatomical structures 

that can be further utilized to detect the anomalies as outliers from the learned normative 

distribution. In other words, filling the tumor regions with the appearance of already learned 
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healthy tissues leads to synthesizing tumor-free images from which the tumoral regions can 

be detected by calculating the differences between the original and synthesized images. 

Hence, the learned inpainting network can function as a UAD model, given that no 

segmentation label is required to localize the tumor location. That being the case, a pipeline 

is proposed to turn the manual inpainting network into an autoinpainting model in order to 

segment the tumors in a purely unsupervised fashion.  

 

Figure 4.3. The architecture of the U-Net-like inpainting network is constructed based on the Gconv modules.  

The underlying idea of unsupervised tumor segmentation here is to replace the random 

holes with a sliding window to sweep different anatomical regions for the inpainting process. 
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Therefore, if the sliding window covers healthy regions, the inpainting network will replace 

the appearance of healthy structures with already learned healthy structures; thus, the newly 

generated images remain intact. On the other hand, if the sliding window encounters 

tumoral regions, it can substitute the textures of the tumors with the appearance of learned 

healthy tissues. Accordingly, for each original tumoral slice, a fake tumor-free image can be 

generated without needing any kind of supervised signal. Hence, a pipeline is proposed to 

efficiently inpaint the tumoral regions while preserving the appearance of healthy tissues 

with anatomical constraints. This pipeline functions in the following four folds: 

1. Preparing the input slices: extracting the axial slices from the organ of interest. 

2. Detecting the candidate regions: identifying which moving windows cover the 

tumoral regions. 

3. Determining the target region: estimating the location of the tumor(s) for removal. 

4. Segmenting the target tumor: post-processing the residual volumes to segment the 

tumors.  

To compare the efficacy of the proposed pipeline with other standard models, we 

evaluated the performance of two types of methods. First, the nnU-Net model [210] was 

employed as a robust supervised segmentation model to find out the optimal performance 

that can be achieved over the investigated tasks. Second, a set of recently developed deep 

UAD models was analyzed to objectively compare the segmentation accuracy of the 

proposed unsupervised model against the relevant UAD references. In this context, the 

following models were examined [240]: dense AE (dAE), spatial AE (sAE), constrained AE 

(cAE), VAE, context Variational AE (cVAE), Gaussian Mixture VAE (GMVAE), Fast-

AnomalyGAN (F-AnoGAN), and Adversarial AE (AAE). 

4.2 Imaging Biomarkers for Cancer Diagnosis and Prognosis (Papers III, IV, V, and 
VI) 

The last four papers presented in this thesis focus on developing models for cancer diagnosis 

and prognosis. Papers III and IV concentrate on benign-malignancy prediction of early-

stage tumors, while Papers V and VI aim to predict the survival status of cancer patients. 
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4.2.1 Overview of the Studies 

Paper III aims to automatically distinguish the benign pulmonary nodules from the 

malignant ones by analyzing the Low Dose Computed Tomography (LDCT) scans of 968 

subjects. Most lung cancers emerge from small-sized malignant lung nodules. However, tiny 

malignant nodules share highly similar visual characteristics with benign nodules. 

Therefore, distinguishing the malignant nodules from the benign ones is considered one of 

the most challenging tasks in lung cancer screening. In this study, a dual-pathway deep 

classification framework was developed to predict the binary class labels of the input nodule 

data. 

Paper IV, as a continuation of Paper III, seeks to compare the performance of a series 

of carefully selected conventional radiomics models and end-to-end DL models for the task 

of benign-malignancy prediction of lung nodules in LDCT images. In addition, several fine-

tuning and processing steps were integrated into the baseline methods, and the potential of 

combining radiomic features with deep features was also investigated. 

In Paper V, longitudinal PET-CT scans of 30 patients diagnosed with NSCLC are 

analyzed to predict the survival status of the patients. For each subject, one PET-CT scan 

was acquired before the beginning of the treatment, and the second scan was acquired 

during the second week of radiotherapy. The objective of this study is to predict the overall 

survival status of the patients two years after the last session of radiation treatment by 

analyzing the longitudinal imaging data of the first two weeks of the treatment.  

While Paper V focuses on a binary survival prediction task, Paper VI investigates 

Survival Rate Prediction (SRP)—that is, estimating the survival function in patients 

diagnosed with NSCLC and HN cancer by investigating the potential of different types of 

features. The studied features include conventional CNN-based, radiomics, as well as 

rotational invariant features learned by Spherecial CNN (SphCNN) models. 

Figure 4.4 presents a schematic illustration of the general pipeline used in these studies. 
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Figure 4.4. Schematic illustration of the methods used in the last four studies. The segmented tumors were analyzed with 
CNN models in Paper III, radiomics and hybrid pipelines in Paper IV, the SALoP feature set in Paper V, and the SphCNN 

model in Paper VI. 

4.2.2 Image Preprocessing 

To prepare the image data for feature extraction and analyses, a set of preprocessing steps 

were first applied to the intensity and geometry of the image volumes. These preprocessing 

techniques include intensity conversion and normalization, contrast enhancement, image 

registration, and voxel-space resampling. 

Contrast enhancement. To enhance the appearance of lung textures in CT images, an 

intensity windowing was applied to the image histogram to clamp the voxel intensities in the 

range of [-1000,500].  

Intensity normalization. In Papers III, IV, and VI, in which the image data were used 

to train deep classifier networks, the range of voxel intensities for each volume, after contrast 

enhancement, was rescaled to the range of [0,1]. 
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Voxel-space Resampling. Considering that the voxel size of the volumes within each 

dataset varied significantly, the spatial resolution of the volumes within each dataset was 

resampled into a fixed size. Bicubic and nearest-neighbor interpolation functions were 

employed to resample the spatial resolutions of the image volume and segmentation masks, 

respectively. 

Image registration. In Paper V, prior to any preprocessing steps, the PET volumes were 

resampled to the corresponding CT volumes in order to bring them into a fixed geometric 

space. Image registration was then applied to the longitudinal PET-CT scans to align the two 

volumes for the proposed feature extraction steps. The second CT scans were registered to 

the pretreatment CT volume in two folds. First, a rigid transformation was applied to the 

lung fields by manually defining anatomical landmarks on the corresponding volumes. This 

step was achieved by employing MeVisLab software [245]. Second, to further align the 

tumoral regions, an automatic rigid registration was applied only to the tumoral masks. The 

obtained deformation fields were then applied to the second PET volumes to wrap them into 

the pretreatment PET volumes as well. 

Intensity conversion. For the employed PET dataset, the raw intensity values of the 

voxels were converted into SUV units by using the following equation [246]: 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑟𝑟

(𝛼𝛼′
𝑤𝑤� )

 

where r is the radioactivity concentration [kBq
ml� ] measured within a ROI, 𝛼𝛼′ refers to 

the decay-corrected amount of injected radiopharmaceuticals [kBq], and w represents the 

patient’s weight [g]. 

4.2.3 Tumor Segmentation 

The main objective of Papers III, IV, and V is to develop models in order to quantify the 

tumor characteristics for further prognosis or prediction tasks. Accordingly, in these studies, 

the tumoral regions were segmented manually. In Papers III and IV a dataset including 968 

LDCT volumes were visually examined by an expert radiologist from which a total number 

of 1297 pulmonary nodules were manually delineated. Since the identification of exact 

boundaries around the tiny pulmonary nodules is a challenging task even for radiologists, a 

region of interest was first cropped and zoomed around the candidate region, and then 

manual delineation was done over the upsampled cropped image. The final contours were 
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then downsampled to match the original image. In Paper V, the tumoral regions were 

delineated for each of the CT and PET images separately and for each of the pretreatment 

and second scans independently. A semi-automatic 3D level set-based segmentation tool 

was used to segment the target regions by selecting the initial seed over the candid region to 

instantiate the intensity-based surface evolution algorithm [247]. The delineations were 

done by an experienced user, and later an expert radiologist visually examined and refined 

the masks.  

In contrast to Papers III, IV, and V, Paper VI aims to conduct a fully automatic analysis 

for the survival rate prediction task. Therefore, it was necessary to segment the tumors 

automatically. In this study, two types of tumors were examined: NSCLC and HN tumors. 

The NSCLC tumors were investigated from two datasets, named Lung1 [248] and Lung3 

[249]. The segmentation of the lung tumors was done by using the NAA model. This model 

was developed as the main objective of Paper I. The NAA model was trained with a 5-fold 

cross-validation fashion over the Lung1 CT volumes. For each fold, the predicted masks of 

the test set were saved as the model output. The learned model was then used to infer the 

segmentation masks of the Lung3 dataset; however, the HN tumors were analyzed directly 

by using the original ground-truth masks. In fact, the segmentation of the HN tumors in CT 

images is known as an arduous task due to the lack of intensity/textural differences between 

the tumors and surrounding soft tissues. Since such poor segmentation results will 

negatively impact further analyses, the original label masks were used instead.  

4.2.4 Feature Set Development/Extraction 

Radiomic Features 

In Papers IV, V, and VI, radiomic features were extracted and analyzed to benchmark the 

performance of the main developed model of each study. The employed protocols for 

extracting the radiomic features in these three studies are briefly described in this section. 

Papers IV and VI. In these studies, the standard PyRadiomics package [250] was 

employed to extract the radiomic pools from the ROIs. In particular, in Paper IV, radiomic 

descriptors were not only extracted from the manually defined target regions, but the same 

features were also extracted from the image patches surrounding the tumors. Surrounding 

regions that best cover the context information around each tumor were cropped, and the 

contextual radiomics were characterized from the image patches. On the other hand, in 

Paper VI, the automatically generated segmentation masks for the NSCLC datasets and the 
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ground-truth masks of the HN dataset were used to define the target tumor area for feature 

extraction. FOS, SOS, and Morph-based features were extracted directly from the 

preprocessed volumes. Moreover, multiscale features were extracted from the transformed 

images filtered by Wavelet and Laplacian of Gaussian filters.  

Paper V. In this study, a set of radiomic features were extracted from the pretreatment 

and second PET and CT scans separately. The radiomic pools include 13 First-Order 

Statistics (FOS), 18 Morphological (Morph) descriptors, 53 Second-Order Statistics (SOS), 

and 130 multi-scale features extracted from filtered images. In other words, 214 3D 

descriptors were used to translate the tumoral volumes into quantitative values. These 

features were extracted by employing a standard MATLAB-based package for radiomics 

analysis [251]. In addition to these features, three SUV-based features—SUVmax, SUVpeak, and 

SUVmean—were added to the PET feature pools as well. Moreover, 20 other features 

representing the effective radiosensitivity [252], which account for both the changes in the 

PET uptake and the accumulated dose delivered by the time of the second PET image, were 

also included in the feature set. In summary, 451 quantitative features represent each tumor 

volume from the PET-CT scans. It should be noted that except for the Morph-based features, 

which were extracted from the independent tumoral regions of the pretreatment and second 

scans, other types of features were calculated from a union mask defined between the two 

longitudinal segmentation masks. RIDER dataset includes 32 patients diagnosed with 

NSCLC, each of whom underwent two chest CT scans within 15 minutes by using the same 

imaging protocols. Such a unique dataset is invaluable for investigating the reproducibility 

of the developed methods. Therefore, the mentioned radiomic features were extracted from 

the longitudinal RIDER tumor volumes as well. A Concordance Correlation Coefficient 

(CCC) metric was employed to quantify the reproducibility of the extracted features. Hence, 

the CCC value of 0.8 was set as a hard threshold by which only the CT radiomics with CCC ≥

 0.8 were considered reproducible and preserved for further analysis steps. With the 

explained protocols, two feature sets were formed, known as 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝  and 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠. Lastly, in order 

to capture the effect of applied treatment on the tumor attributes, delta features were 

calculated by finding the differences between the two feature sets, that is, ∆𝐹𝐹 = 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 −  𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝. 

All the feature sets, including pretreatment, second scan, and delta features, were analyzed 

accordingly. 
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Deep Features 

Unlike study V, which was primarily focused on hand-crafted features, in Papers III, IV, and 

VI, DL-based features were investigated as well. 

Paper III. In this study, DL-based classifiers were employed for the benign-malignancy 

prediction of pulmonary nodules in LDCT images. The term “lung nodules” refers to the 

moderately well-marginated round opacities with the largest diameter of less than 30 mm. 

Different subtypes of lung nodules—solid, part-solid, and ground-glass opacities—have 

varying probabilities of cancer [253]. Unfortunately, benign and malignant pulmonary 

nodules share highly similar visual characteristics, making their distinguishment a 

challenging task. In clinical practice, radiologists visually examine the chest LDCT scans 

slice by slice by following the guidelines such as LungRADs [254] to estimate the malignancy 

likelihood. Such guidelines are based mainly on the morphological characteristics of the 

nodules, such as size. In addition to the nodule size, it has been shown that the intensity 

distribution and relative position of the nodules are strongly associated with the malignancy 

[23]. Accordingly, in Paper III, to effectively capture both intra-nodule heterogeneities and 

contextual attributes, a dual-pathway CNN framework was proposed. The proposed 

approach aims to simultaneously learn the characteristics from inside the nodule regions as 

well as their relative position with respect to the surrounding structures. Therefore, both the 

target nodule regions and cropped patches around the nodules were fed into two parallel 

convolutional paths within one single network for simultaneous feature learning. The 

examined deep networks were used as either end-to-end classifiers or feature extractors 

trained with both supervised and unsupervised fashions. Figure 4.5 depicts a graphical 

illustration of the described framework. 

 

Figure 4.5. The graphical illustration of the dual-pathway model. The target nodules images and context nodule images 
were used together to feed two parallel paths of an end-to-end deep classifier. In addition, the learned deep features were 

augmented to balance the class labels for a separate final benign-malignancy classification with random forest. [From 
Astaraki et al. 2021, Reprinted with permission] 
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The supervised setup of the classification framework is independent of the network 

architectures; therefore, several different classification models were adopted. While the 

nodule target pathway is assumed to mainly learn the association between the intra-nodule 

characteristics and class labels, the nodule context pathway aims primarily to learn the 

correlations between the context information and class labels. Thus, by concatenating the 

learned features from each of the parallel pathways in a last shared layer, the model would 

learn to predict the class labels by adaptively learning the disentangled intra- and contextual 

features simultaneously. This setup was applied to the following models: VGG-like [190], 

ResNet [192], DenseNet [255], and EfficientNet [256]. Regardless of the backbone 

architectures, the last but one layer of each pathway was concatenated with each other to 

form the last shared final layer. The last layer of each pathway in the VGG-like model consists 

of a fully connected layer. Therefore, the final shared layer of the whole pipeline was formed 

by concatenating the last dense layers of each network. For the ResNet model, the output of 

the last residual modules at each pathway was concatenated before feeding the global 

average pooling layer to form the shared layer. For the case of the DenseNet model, the 

output of the convolutional filters of the last transition layers of the parallel networks was 

concatenated to form the shared feature layer. Finally, for the EfficientNet setting, the 

outputs of the last inverted residual blocks of the parallel networks were concatenated to 

form the shared feature set. It should be noted that the mentioned models were trained in 

an end-to-end fashion to predict the binary class labels of the input images. In addition to 

that, the outputs of the last shared layer, which consists of the learned features from the 

target and context pathways, were extracted for independent analyses with conventional ML 

algorithms. 

As an unsupervised feature-learning approach, VAE was fitted to the dual pathway 

framework to learn the rich attributes of the input nodule data. The extracted features from 

the encoder part can provide high-level semantic attributes not only to capture the semantic 

nodule features such as lobulation and spiculation but also to learn the association between 

them. 

To benchmark the efficacy of the proposed dual pathway models, conventional single 

pathway networks were examined as well. These single pathway networks were trained 

separately with target and context nodule images to predict the malignancy status either in 

an end-to-end fashion or by extracting deep features for further steps. It is worth mentioning 

that the extracted deep features of Paper III were directly used in Paper IV for comparing 

and combining radiomics features. 
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Paper VI. In this study, both SphCNNs and conventional CNNs were examined to 

perform deep-feature extractions for the task of SRP. While conventional CNN models 

function on the Cartesian domain, SphCNNs are designed to work on signals defined on the 

sphere domain. The architecture of SphCNNs consists of a series of spherical filters that are 

applied to the spherical activation signals through the spherical convolution. This 

convolutional operation is often carried out as a multiplication in the spherical harmonics 

domain. The ordinary CNNs are naturally translational invariants, which means they can 

learn the characteristics of the image contents regardless of their positional shift in the image 

domain. On the other hand, SphCNNs can be used for solving problems where rotational 

equivariance (i.e., the output rotates when the input is rotated) or rotational invariance (i.e., 

the output is always the same even if the input is rotated) is required [257]. In the context of 

the survival analysis task, we can assume that SRP can be a rotational invariant problem 

because the patient’s survival might be the same regardless of the orientation of the tumor 

in the lung regions. Therefore, both SphCNNs and ordinary CNNs were investigated to 

extract two different sets of features. 

Unlike the CNNs that are often fed with the image slices/volumes, image data should be 

first mapped into the unit sphere 𝑆𝑆2 before being fed to the SphCNNs. To map the target 

volume regions, three types of projections were examined: (a) Depth-based Projection (DbP) 

of the segmentation mask; (b) Extended Gaussian Image (EGI) of the tumor mask, which is 

the orientation distribution function of the normal vectors from the tumor surface, and (c) 

Intensity-based Projection (IbP) of the tumor. The DbP was calculated in two steps. An 

enclosing sphere was first centered on the tumor’s center of mass; then, a ray was cast from 

each sampling point onto the surface of the enclosing sphere to the centroid. The distance of 

the first intersectional point defined the value of the spherical signal on that specific 

orientation. The EGI mappings were directly produced from the normal vectors generated 

from the segmentation masks. The IbP was computed by accumulating the voxel intensity 

values of the tumoral regions along with every ray. Figure 4.6 shows a graphical depiction of 

the three explained spherical projections.  In order to find out whether segmentation masks 

alone carry predictive power or whether the addition of the image contents is beneficial, two 

sets of the network were configured. In particular, SphCNN-1 was fed only with the DbP 

projection, while SphCNN-2 was fed with both EGI and IbP projections. The architectures 

of both configurations were similar and consisted of a convolutional layer to lift the input 

signal from the spherical domain into a manifold, followed by another convolutional layer 

and a final dense layer to encode 40 features. It should be noted that the network 

architecture was determined experimentally. 
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Figure 4.6. Illustrative of the three employed spherical mappings. Note that the tumor volumes are depicted as 2D image 
slices; therefore, the spheres are visualized as circles. (A) The extended Gaussian image (EGI) can be viewed as an 

accumulation of the gradient vectors (small red arrows) at the surface of the tumoral boundary. (B) Depth-based 
projection of the solid segmentation mask. A ray (red arrow) is cast from a projecting sphere to the surface of the 

segmentation. The distance from the sphere to the surface determines the value of the spherical signal at the respective 
position. (C) Intensity-based projection of the voxel image content. A ray (red arrow) is cast from the surrounding sphere 
through the segmented tumor image toward the centroid. The value of the spherical signal is the sum of all intensities of 

the voxels that the ray traversed. [Caption and figure From Sinzinger et al. 2022. Reprinted with permission.] 

As a baseline CNN-based method in Paper VI, a pre-trained ResNet50 model was 

employed as a transfer learning approach for feature extraction. From each subject, the axial 

slice in which the tumor appears with the largest size was selected to be fed to the pre-trained 

network. This results in extracting 1,000 deep features for each tumor. 

Size-Aware Longitudinal Pattern (SALoP) 

It is a well-established idea that cancer is a dynamic disease. During the course of the 

disease, cancer cells generally become more heterogeneous and form a heterogeneous bulk 

tumor that might consist of a diverse collection of cells with a wide range of characteristics. 

Thus, it would be possible to explain the partial tumor response to the treatment based on 

the existence of subregions within the tumor volume with different sensitivity to the 

treatment. Therefore, SALoP was designed in an attempt to address the challenge of 

quantifying the intra-tumor heterogeneity and its impact on the treatment response. We 

hypothesized that the tumor microenvironment leading to the formation of sub-volumes 

with different vasculature and interstitial fluid pressure conditions could be characterized 

by dividing the tumor volume into a given number of separate zones based on the distance 

from the tumor boundaries. In other words, it was hypothesized that the sensitivity of tumor 

cells to treatment varies as a function of the distance from the tumor borders; therefore, by 

partitioning the tumor volume into separate subregions, metabolic activity and 

characteristics of tumor cells might be captured from more homogeneous regions. 
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To implement this idea, the Euclidean distance of each voxel within the Gross Target 

Volume (GTV) from the tumor border was measured. Then, for every 5 mm of distance from 

the tumor border, one subregion was added. Thus, the smallest studied tumor with a radius 

of 5 mm was constructed as only one subregion, while the largest studied tumor with a radius 

of 50 mm consisted of 10 subregions counting outward, with the tumor core being the most 

inner layer and tumor borders as the outermost layers. With this strategy, all the studied 

tumors were divided into 1 to 10 concentric zones (see Figure 4.7). From each subregion, 

average intensity values were then calculated as a quantitative feature. In other words, each 

tumor for each of the PET and CT images was presented with 1 to 10 quantitative values. 

Finally, by subtracting the average intensity within one zone of the second scan from the 

corresponding zone of the first scan, the delta SALoP feature was formed for each of the PET 

and CT volumes separately. This delta feature can potentially characterize the changes in the 

tumor characteristics as a result of the applied treatment. Technically speaking, while the 

delta PET features can capture the changes in the level of metabolic activities, the delta CT 

features quantify the changes in the densities of the tissues, both from more homogeneous 

subregions. Accordingly, one of the advantages of the proposed SALoP feature set is the fact 

that it can be interpreted physiologically.  

 

Figure 4.7. Partitioning the tumors into concentric zones based on the distance to the tumor borders. The first row shows 
3D surface plots of a middle-sized tumor (a) and the largest studied tumor (b). The second row depicts the cross-sectional 

iso-surface of the tumor volumes partitioned into 5 and 10 concentric zones, respectively. [From Astaraki et al. 2019, 
Reprinted with permission] 
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4.2.5 Benign-Malignancy Prediction 

Paper III. In this study, the developed dual pathway models were used for classifying the 

malignant nodules from the benign ones. This classification was done in two ways—through 

end-to-end learning and deep feature extraction for further analysis. In the end-to-end 

prediction approach, all the four employed network architectures were trained with 

conventional binary cross-entropy as the objective function in a 5-fold cross-validation 

fashion. In addition to the dual pathway models, ordinary single pathway networks were 

trained with the same setting for objective comparisons. In other words, 1,297 target nodule 

images along with 1,297 context nodule patches were used either simultaneously or 

independently to train the networks. To reduce the risk of overfitting, conventional image 

augmentation techniques such as random flipping along one axis and affine transformations 

were applied to the image volumes.  

As for the deep feature extraction approach, the outputs of the last but one layer of each 

pathway of the already trained networks were extracted. More specifically, the target and 

context nodule features were extracted either as a concatenated feature vector from the dual 

pathway networks or independently from the ordinary single pathway models. Feature 

engineering steps were then applied to the extracted deep features for the final class label 

prediction. From the 1,297 pulmonary nodules studied, 867 cases belong to the benign 

group, and the remaining 421 nodules were labeled as malignant. This unequal distribution 

of the class labels leads to a high bias toward the majority class, which in turn degrades the 

model performance that often leads to poor predictive power over the minority class. To 

avoid such negative impacts, the Synthetic Minority Oversampling Technique (SMOTE) 

[258] was employed to balance the class distribution by generating synthetic samples from 

the minority class. Technically speaking, SMOTE fits a hypercube among instances of the 

minority class to generate new samples along the fitted hypercube. As a result of this 

augmentation technique, 455 new samples were synthesized belonging to the malignant 

class. The RF model was experimentally chosen as the learning algorithm. Therefore, RF was 

trained with a 5-fold cross-validation over the balanced dataset. In addition, to quantify the 

effect of the feature augmentation step, the RF model was trained with the same setting but 

over the unbalanced feature sets. Different experiments were conducted to compare the 

performance of the context nodule images, target nodule images, and their combinations for 

malignancy prediction. 

 Paper IV. Both DL and radiomics methods have shown comparable performance in 

identifying pulmonary nodule malignancy in CT volumes. However, there is a lack of 
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conclusive evidence to identify one of these methods as more accurate than the other. 

Therefore, Paper IV aims to present a comparison between the performance of a series of 

carefully selected conventional radiomics, DL models, and their combinations for the task 

of pulmonary nodule malignancy prediction. More specifically, the predictive power of three 

independent modules was examined on the same dataset as Paper III. These modules 

include radiomics module, end-to-end DL module, and hybrid module, which were built 

upon the combination of the first two modules. It should be noted that the end-to-end 

module was directly adopted from Paper III; therefore, deep features were extracted from 

the trained models of Paper III as well. In the hybrid modules, feature sets were built by 

combining the radiomics features with the extracted deep features. In each module, the 

performance of the target nodule images and context nodule images were investigated 

separately. In addition, to examine how context and target nodule images would 

complement each other, the predictive power of their combined feature sets was assessed as 

well.  

The predictive power of the radiomics features was evaluated by integrating seven 

feature selection/dimensionality reduction methods into eight learning algorithms. To 

reduce the effect of irrelevant or partially relevant features, five filter-based Feature 

Selection (FS) and a wrapper FS method were employed. Filter-based FS algorithms include 

the following: (a) Constant: to remove constant features, (b) Correlation: to remove linearly 

associated features, (c) Mutual Information: to remove nonlinearly associated features, (d) 

RELIEF: to estimate the quality of the features based on how well the features can classify 

the subjects that are close to each other; and (e) LASSO: to apply coefficients to the features 

and shrink to zero the coefficients whose features are less predictive [259]. On the other 

hand, as a wrapper method, FFS was used to examine the performance of the learning 

algorithms with different combinations of feature subsets. Finally, Principal Component 

Analysis (PCA) was employed as well to project the high-dimensional feature space onto only 

the first few principal components [260]. The predictive power of the original feature sets as 

well as selected features—after being augmented by the SMOTE algorithm—were evaluated 

by the following learning algorithms: Adaptive Boosting (Adab), DT, RF, K-Nearest 

Neighbor (KNN), SVM, Linear/Quadratic Discriminant Analysis (LDA/QDA), as well as 

Naïve Bayesian. It is worth noting that all the analyses were executed with a 5-fold cross-

validation resampling technique.  

From the 64 different settings executed over the radiomics module, it was understood 

that integrating the FFS method into the Adab learning algorithm leads to the highest 
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predictive power. Accordingly, feature sets within the hybrid module were examined only 

with the FFS-Adab model. Extensive experiments were executed to objectively compare the 

performance of different modules with different fine-tunning settings, such as effects of 

feature selection, effects of class balancing, effects of learning algorithms, effects of 

target/context images, and effects of the complementary roles of different feature types. 

Figure 4.8 presents a graphical depiction of the studied pipeline.  

 

Figure 4.8. Graphical depiction of the pipeline of Paper IV. The performance of the radiomics, deep learning, and hybrid 
modules was examined with target nodules, context nodules, and their combinations. [From Astaraki et al. 2021. 

Reprinted with permission.] 
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4.2.6 Survival Prediction 

Paper V. In this project, the patients were followed up for two years after the last session of 

radiation treatment. If the patients remained alive by the time of the last follow-up session, 

their study endpoint was considered positive; otherwise, their survival status was set as 

negative. Accordingly, the Overall Survival Status (OST) was defined as a binary 

classification problem. Therefore, in Paper V, the OST of the NSCLC patients was predicted 

by using the developed SALoP feature set, the described radiomics descriptors, and their 

combination. Differences between the mentioned features from the pretreatment and 

second scans, delta features, were examined as well. In particular, the prognostic power of 

three types of feature sets was assessed by training a SVM as the learning algorithm. 

However, due to the small number of subjects and large number of extracted features, the 

dimensionality of the feature sets was reduced by applying a FFS algorithm to preserve the 

most informatic features with respect to the class labels. More importantly, to minimize the 

risk of overfitting, the learning process was evaluated through 10-fold cross-validation and 

Leave One Out (LOO) resampling techniques. Several experiments were executed to 

compare the predictive performance of the studied feature sets. 

Paper VI. In this study, the specific objective of survival analysis is the task of SRP, 

which refers to estimating the time until a terminal event that could occur in some cases but 

not necessarily in all subjects. Therefore, unlike in Paper V, which focuses on a binary 

classification problem, SRP can be framed as a regression-type problem. However, a 

conventional difficulty in this task is the presence of censored data, which refers to those 

subjects for whom survival times are not available. This issue can occur if (a) subjects do not 

experience the event when the study is over, (b) subjects were lost to follow-up during the 

study period, or (c) subjects were withdrawn from the study. The most common type of 

censored data is known as right-censored data, which means the starting point of the 

observations is known for all the cases, but the definitive endpoint of the observations might 

be missed for some subjects. In this study, the SRP task was conducted by SVM with Ranking 

(SVM-K), SVM Regression (SVM-R), Cox’s Proportional Hazard (CoxPH), and Ensemble 

Gradient Boosting (EGB) models. These models were trained with four different types of 

features, including radiomic features, CNN-based features, and the SphCNN-based features 

extracted from two different settings, SphCNN-1 and SphCNN-2. One thousand five 

hundred extracted radiomic features and 1,000 CNN-based features are much larger than 

40 SphCNN-based features. Therefore, by ranking each regressor based on its cross-
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correlation value with the target, a subset of 32 features was selected for radiomics and CNN-

based features prior to model training.   
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Chapter 5 

Results 

5.1 Deep Learning Methods for Tumor Segmentation 

5.1.1 Paper I 

Prior-aware Autoencoders for Lung Pathology Segmentation 

In this study, three separate models have been sequentially analyzed to segment four 

different types of lung pathologies. Therefore, the performance of the proposed pipeline can 

be quantified in three folds: pathology inpainting, automatic pathology segmentation, and 

prior-aware pathology segmentation. Each of these are discussed in the following 

paragraphs. 

Pathology inpainting. Figure 1a in Supplementary Materials of the original paper shows 

how the inpainting network could successfully synthesize realistic-looking images by filling 

the random holes with semantic lung textures. In fact, the size of the random holes was 

intentionally varied from small regions to extremely large regions to enhance the ability of 

the model to deal with pathologies of different sizes that appear at various locations.  As can 

be seen from the figure, the model seamlessly inpainted the images regardless of the size of 

the random holes. In other words, the learned model could inpaint different pathologies 

from peripheral tiny pulmonary nodules to a large solid NSCLC tumor that was connected 

to the healthy soft tissues. More importantly, the employed Pconv network inpainted only 

the masked regions and did not have any impact on other parts of the images. As a result, in 

the test phase, the model inpainted only the pathological regions without any effect on the 

structures of the other anatomical regions. 

Automatic pathology segmentation. The performance of the proposed NAA model to 

automatically remove the pathologies from input slices was evaluated by quantifying the 

ability of this model for indirect segmentation of pathological regions. In fact, a set of post-

processing steps was applied to the residual volumes, which were calculated as differences 

between the original slices and outcomes of the NAA model. Table 2 in the original paper 
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presents the segmentation accuracy in terms of numerical metrics. The segmentation 

accuracy in terms of Dice metric for challenging lung nodules, NSCLC-Decathlon, NSCLC-

Radiomic, Covid19-Coronacases, and Covid19-Challenge datasets are 0.26, 0.52, 0.54, 0.72, 

and 0.64, respectively. As was expected, applying the non-learnable post-processing steps 

such as hard thresholding is not effective in preserving all the pathological regions in the 

residual volumes; thus, the presence of many false positive and false negative pixels 

adversely impacts the segmentation accuracies. For instance, the intensity and textural 

patterns of Covid pathologies are more homogeneously distributed in different subjects 

compared to lung nodules; therefore, higher values of the Dice coefficient were obtained for 

Covid cases. In addition, the size of pulmonary nodules is often much smaller than those of 

the NSCLC and Covid pathologies, so only a few misalignment pixels are enough to drop the 

accuracy.  

Prior-aware pathology segmentation. The residual images obtained from the NAA 

model, without any post-processing, were integrated into a U-Net segmentation model as a 

prior channel to guide the learning procedure of the network. To benchmark the efficacy of 

the proposed idea of integrating the prior image into the segmentation network, the self-

configuring nnU-Net model was tested as a baseline and a prior-aware model as well. Figure 

5.1 shows quantitative comparisons between the segmentation performance of the baseline 

model and prior-aware model for both our implementation and the standard nnU-Net 

model. By comparing the results of the baseline models and prior models, it can be observed 

that integrating the prior images into the networks could successfully improve the 

segmentation accuracy for all the employed datasets. The Dice values of the prior-aware 

models outperformed those of the baseline networks by a relatively large margin. For 

example, the Dice score of lung nodule segmentation was improved from 0.712 to 0.750 with 

our U-Net model. For the same dataset, the Dice score of the nnU-Net model was improved 

from 0.779 as the baseline model to 0.795 as the prior-aware model. In addition, the results 

of the nnU-Net model, both as a baseline and as a prior-aware model, outperformed our 

implementation of the U-Net model. Finally, performing the Wilcoxon signed rank test 

between the Dice scores of the baseline and prior-aware models indicates significant 

differences for all the datasets, excluding the CoronaCases dataset. 
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Figure 5.1. Comparing the segmentation performance of the baseline models and prior-aware models in (a) our 
implementation and (b) nnU-Net model. [From Astaraki et al. 2022. Reprinted with permission.] 

5.1.2 Paper II 

Unsupervised Tumor Segmentation 

The performance of the proposed autoinpainting pipeline for tumor segmentation can be 

evaluated quantitatively in three folds: inpainting quality, autoinpainting for tumor 

segmentation, and external validation.  

Inpainting quality. The performance of the proposed GconvLap model to inpaint the 

images is quantified by measuring three quantitative metrics, including MSE, PSNR, and 

SSIM. Furthermore, to benchmark the efficacy of the proposed GconvLap model, Pconv and 

Gconv models were examined on the same dataset as well. Tables 1 and 2 in the original 

paper indicate the numerical comparisons between the three models for NSCLC and HN 

datasets, respectively. From these comparisons, it can be observed that the proposed 

GconvLap model could inpaint the corrupted images more accurately than the other two 

models for both datasets, regardless of the image modalities (see Figure 5.2). In particular, 

the numerical metrics obtained from the proposed GconvLap indicate fewer reconstruction 

errors in terms of MSE metric and higher similarity in terms of PSNR and SSIM for all the 

experiments. Since noisy PET images do not carry anatomical details and consist of 

substantially fewer textures than CT images, quantitative values of the PET modality denote 

higher image similarities. In addition to evaluating the performance of the three models with 

multimodal images, the same models were trained and tested using ordinary single modality 

images. Nevertheless, the superiority of the proposed  GconvLap model was not affected by 

the type of input images. Moreover, the impact of leveraging the multi-term objective 

function with the Laplacian (lap) pyramid loss function is qualitatively visualized in Figure 
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5 in the original paper. While the proposed GconvLap model could preserve the edges between 

the soft and hard tissues, the ordinary Gconv model could hardly keep the edges, which leads 

to losing the edge information in the inpainted images, thereby increasing the reconstruction 

errors.   

 

Figure 5.2. The inpainting model could seamlessly inpaint the corrupted images. The first row shows the multimodal 
slices corrupted with random irregular holes, and the second row indicates the inpainted slices by the proposed GconvLap 

model. 

Autoinpainting for tumor segmentation. The efficacy of the proposed autoinpainting 

pipeline to segment the tumors is quantified by measuring the agreement between the 

segmented volumes and the label masks. The same autoinpainting pipeline was applied to 

all three inpainting models, and their segmentation performances were compared. Tables 

5.1 and 5.2 present the segmentation accuracy of the proposed autoinpainting pipeline for 

NSCLC and HN tumors, respectively. 

Table 5.1 – Numerical results of NSCLC tumor segmentation with autoinpainting pipeline 

Model-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎)  
⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⌉ ⌈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⌉ Dice 

Pconv-CT 
Gconv-CT 

GconvLap-CT 

0.382 ± 0.157 
0.423 ± 0.180 
0.442 ± 0.176 

0.408 ± 0.186 
0.463 ± 0.199 
0.482 ± 0.192 

0.389 ± 0.151 
0.411 ± 0.178 
0.426 ± 0.176 

0.353 ± 0.111 
0.398 ± 0.124 
0.410 ± 0.134 

Pconv-PET 
Gconv-PET 

GconvLap-PET 

0.709 ± 0.215 
0.750 ± 0.176 
0.746 ± 0.196 

0.793 ± 0.196 
0.792 ± 0.192 
0.822 ± 0.169 

0.669 ± 0.221 
0.747 ± 0.189 
0.706 ± 0.217 

0.654 ± 0.132 
0.690 ± 0.184 
0.686 ± 0.121 

Pconv-Multi 
Gconv-Multi 

GconvLap-Multi 

0.673 ± 0.245 
0.747 ± 0.172 
0.766 ± 0.171 

0.771 ± 0.219 
0.799 ± 0.178 
0.832 ± 0.158 

0.622 ± 0.252 
0.718 ± 0.183 
0.726 ± 0.184 

0.625 ± 0.122 
0.692 ± 0.136 
0.708 ± 0.118 
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Table 5.1 indicates that the segmentation accuracy achieved by the proposed GconvLap 

model is higher than that of the PConv model, regardless of the employed imaging modality. 

The same trend can be seen when comparing the GconvLap model with the ordinary Gconv 

model for the CT and multimodal images though the Gconv model slightly performs better 

on the PET images.  

Table 5.2 – Numerical results of HN tumor segmentation with autoinpainting pipeline 

Model-Data Quantitative Metrics (𝜇𝜇±𝜎𝜎)  
⌈𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⌉ ⌈𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⌉ ⌈𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⌉ Dice 

Pconv-CT 
Gconv-CT 

GconvLap-CT 
NA NA NA NA 

Pconv-PET 
Gconv-PET 

     GconvLap-PET 

0.412 ± 0.190 
0.445 ± 0.188 
0.453 ± 0.196 

0.541 ± 0.230 
0.557 ± 0.407 
0.550 ± 0.236 

0.462 ± 0.172 
0.408 ± 0.181 
0.413 ± 0.181 

0.389 ± 0.132 
0.407 ± 0.130 
0.405 ± 0.130 

Pconv-Multi 
Gconv-Multi 

    GconvLap-Multi 

0.408 ± 0.241 
0.462 ± 0.202 
0.464 ± 0.198 

0.511 ± 0.274 
0.539 ± 0.233 
0.541 ± 0.233 

0.360 ± 0.224 
0.443 ± 0.189 
0.435 ± 0.188 

0.344 ± 0.100 
0.418 ± 0.133 
0.422 ± 0.135 

In the HN experiments, the segmentation accuracy of the proposed GconvLap model 

outperformed the Pconv model with a relatively large margin and performed slightly better 

than the ordinary Gconv model on the PET and multimodal images. On the other hand, the 

characteristics of the HN tumors are similar to those of the nearby soft tissues. Hence, the 

appearance of tumors in CT images cannot be distinguished from the surrounding structures 

due to the lack of intensity and textural contrast. Accordingly, the inpainting methods are 

not able to detect the HN tumoral tissues in CT images.  

External validation. Tables 5, 6, and 7 in the original paper show the segmentation 

accuracy achieved by other competing methods. In particular, the performance of the 

supervised nnU-Net model for segmenting NSCLC and HN tumors was examined in the 

numerical results reported in Table 5. As was expected, the segmentation accuracy of the 

supervised models outperformed the unsupervised pipeline. Nonetheless, after carefully 

comparing the results, one can observe that the performance of the unsupervised 

autoinpainting models is relatively close to that of the supervised nnU-Net models, 

especially in the cases of multimodal and PET images. For example, the calculated Dice 

metric from the proposed GconvLap model for NSCLC tumors in multimodal images is 0.708, 

which is around 0.1 lower than that of the nnU-Net model (Dice = 0.802). For the case of 

HN tumors, the supervised nnU-Net model outperformed the unsupervised approach by a 

substantial margin (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0.422 vs. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑛𝑛−𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =0.660).  
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Finally, to examine the performance of the proposed autoinpainting model against the 

unsupervised methods, several UAD models were examined on the same NSCLC and HN 

datasets. Tables 6 and 7 in the original manuscript show the segmentation accuracy of the 

models on the multimodal images. 

5.2 Imaging Biomarkers for Cancer Diagnosis and Prognosis 

5.2.1 Paper III 

Benign-malignant pulmonary nodule classification in low-dose CT with convolutional 

features 

In this work, two main approaches were implemented to investigate their capabilities in the 

benign-malignancy classification of pulmonary nodules. These two strategies are (a) the 

end-to-end training of the deep networks (baseline) and (b) deep feature extractions 

followed by fine-tuning steps (feature engineering steps). Table 5.3, which summarizes 

Tables 1 and 2 of the original paper, presents the obtained discrimination power by the two 

mentioned approaches. Accordingly, the main findings of this study can be reported as 

follows.  

Baseline models vs. augmented deep features. Numerical values show that the 

augmented deep features outperformed the end-to-end baseline networks by rather large 

margins regardless of the network architecture or the type of the image data. In fact, the best 

discrimination power observed by the baseline models is related to the dual pathway 

DenseNet models, which achieved an AUROC score of 0.824. On the other hand, the worst 

classification power of the augmented deep features was observed in the VAE-based features 

extracted from target nodule images (AUROC=0.851). In other words, the unsupervised 

VAE model, when followed by fine-tuning steps, could achieve higher discriminator power 

than end-to-end supervised models. In addition, it can be observed that the best 

classification power achieved by augmented features is almost 0.11 higher than that of the 

baseline models (0.936 vs. 0.824). 
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Table 5.3 Discrimination power of baseline deep learning models and augmented deep features after applying 5-fold 
cross-validation in terms of AUROC. [From Astaraki et al. 2021. Reprinted with permission.] 

Model 
Baseline Augmented Deep Features 

Target Context Dual 
pathways Target Context Dual 

pathways 
VAE NA NA NA 0.851 0.868 0.855 
VGG 0.801 0.795 0.821 0.898 0.917 0.920 

ResNet 0.785 0.763 0.794 0.902 0.903 0.909 
DenseNet 0.792 0.806 0.824 0.906 0.924 0.936 

EfficientNet 0.783 0.798 0.808 0.905 0.927 0.931 

Dual pathway models vs. conventional single pathways. Experiments show that 

augmented deep features extracted from context nodule images carry more discrimination 

power than target nodule images regardless of the network architecture. The same trend can 

be observed for DenseNet and EfficientNet end-to-end models, in which the classification 

powers of the context images are slightly higher than target images. It is even more 

interesting that the combination of target and context information through the dual pathway 

models leads to improving the classification performance in all the supervised models, 

whether they were trained with end-to-end fashion or whether fine-tuning steps were 

applied to the extracted features. The strategy of the dual pathway technique, however, was 

not beneficial for the unsupervised VAE model. In this domain, another set of experiments 

was conducted by using only regions around the nodules, that is, by masking out the nodule 

region from the context images (Table 2 in Supplementary Materials). However, such images 

exclude the important characteristics of the nodules and therefore carry less discriminative 

power (0.768 for baseline and 0.879 for augmented features).  

Effect of feature augmentation. Table 1 in Supplementary Materials numerically 

presents the effects of the feature augmentation step on the learned deep features. In fact, 

the outstanding performance achieved by augmented deep features is due to balancing the 

class labels in the feature space. By comparing the performance of the end-to-end VGG 

model against the extracted VGG features trained with an RF model without applying the 

augmentation step, one can observe that the end-to-end baseline model performs much 

better than the other method (0.821 vs. 0.773). More importantly, to ensure the RF models 

were not overfitted by the augmented features, the synthesized augmented features were 

used only as the training set, while the real extracted deep features were used as the test sets. 

Comparing the results of the second column in Table 1 in Supplementary Materials to those 

of Table 5.3 (VGG row after augmentation) can increase our confidence in this hypothesis.  

Effect of feature fractioning. To examine the impact of the size of the feature pools on 

the performance of the RF model, different experiments were conducted by assigning 
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different fractions of the whole feature set to the training split. In particular, experiments 

were performed on 25, 50, and 70 percent of the extracted features as the training sets, and 

the predictive power was measured over the remaining test sets (see Table 3 in the paper). 

Interestingly, training the RF model with even 25% of the augmented features resulted in an 

AUROC score of 0.869, which is remarkably higher than the best accuracy achieved by the 

end-to-end baseline models. 

5.2.2 Paper IV 

A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary 

Nodule Malignancy Prediction in Low Dose CT Images 

In this paper, the performance of radiomic features for lung nodule malignancy prediction 

is presented and compared against the predictive power of end-to-end DL models as well as 

deep features, which were introduced in Paper III. In addition, the hybrid feature sets were 

formed by combining radiomics and deep features to investigate their potential for 

malignancy prediction as well.  

Handcrafted radiomics. In this approach, 1,334 radiomic descriptors were extracted 

from target nodule and context nodule images separately. These feature sets were analyzed 

with and without feature selection methods over eight different learning algorithms. A joint 

feature set was formed by combining extracted target and context features and was analyzed 

with the same approach. All the analyses were performed on the original imbalanced 

features as well as augmented balanced feature sets. Numerical values in terms of AUROC 

show that synthesizing new samples in the feature space improved the classification power 

of radiomic features by up to 0.09 in terms of AUROC. Tables 1, 2, 3 in the original paper 

and Tables 2, 3, and 4 in the Supplementary Materials present detailed quantitative 

comparisons for target, context, and joint feature sets. For instance, the predictive power of 

the target nodule features trained with the Adab learning algorithm without any feature 

selection before and after feature augmentation are 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =0.77 and 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =0.88. Comparing the discrimination power of radiomics extracted from 

target and context nodule images does not lead to drawing a solid conclusion in favor of one 

of them as their performances are relatively similar. However, integrating the target and 

context radiomic features together improved the accuracy and resulted in the highest 

discrimination power of the radiomics family. Comparing the performance of the models 

after applying the feature selection methods, it can be inferred that the FFS method 

consistently improved the classification accuracy. Accordingly, the highest classification 
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accuracy was achieved by integrating the FFS method into the Adab learning algorithm. 

With this setting, the predictive powers of target, context, and joint feature sets are 0.911, 

0.916, and 0.921, respectively. On the other hand, the best performances achieved by deep 

feature analyses from the target, context, and combined feature sets are 0.906, 0.927, and 

0.936, respectively. (See Table 5.3 above and Table 4 in the original paper.) From this 

comparison, it can be observed that deep features carry more predictive power than 

radiomics for context and combined nodule images.  

 

Figure 5.3. The predictive power of hybrid feature sets with different settings. [From Astaraki et al. 2021. Reprinted with 
permission.] 

Hybrid feature analysis. Three separate feature pools were created by combining 

target, context, and combined radiomics with the deep features extracted from the single- 

and dual-pathway networks. These merged descriptors were analyzed both as raw features 

and augmented ones. Figure 5.3 illustrates the quantitative comparisons between the 

mentioned feature sets. The results show that merging the unbalanced radiomics with 

unbalanced deep features could improve the accuracy of the unbalanced radiomic set from 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.774  to 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0.793 . However, this 

improvement still cannot beat the accuracy of dual-pathway end-to-end deep classifiers, 

which achieved an AUROC of 0.824. On the other hand, remarkable improvements were 

observed in the accuracy of the hybrid feature set after augmenting the radiomics and deep 

features. In other words, merging the balanced radiomics with balanced deep features not 

only successfully improved the discrimination power of radiomics itself but also led to a 

slight improvement in the predictive power of the deep features as well. In addition, the 
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hybrid context feature set carries more predictive power than the hybrid target set, which is 

consistent with both the radiomics and deep feature sets alone. Moreover, the best 

discrimination power (AUROC = 0.938) was achieved by merging the balanced context 

radiomics with the balanced deep features extracted from context nodule images. Tables 8 

and 9 in the Supplementary Materials represent the statistical comparison of the AUROC 

curves between radiomics and deep features extracted from the context, target nodule 

images, and their combination. Finally, Table 5 in the original paper provides a summary of 

the best results achieved by different settings to better compare the performance of each 

method.  

5.2.3 Paper V 

Early survival prediction in non-small cell lung cancer from PET/CT images using an 

intra-tumor partitioning method 

The main findings of this paper are based on the following: (1) feature sets stability, (2) 

predictive power comparisons, and (3) feature set interpretability. In the feature sets 

stability phase, a reproducibility test was employed to identify reproducible features by 

calculating the CCC metric. In addition, FFS, as a wrapper algorithm, was applied to both 

the radiomic and SALoP feature sets to reduce the dimensionality of the feature sets and 

preserve only the features with higher predictive power. The reproducibility of the proposed 

SALoP feature set on CT data was substantiated by achieving a high agreement (CCC >

 0.92). In fact, the proposed SALoP features were extracted from the longitudinal RIDER 

test-retest dataset and underwent the reproducibility test from which all the extracted 

SALoP features were recognized as highly reproducible descriptors. On the other hand, when 

the conventional radiomics were extracted from the same RIDER dataset, only 47% of them 

were recognized as reproducible (CCC  ≥ 0.8). Therefore, in all the further analyses, all 

SALoP features were used, while 53% of the CT radiomics were removed from the feature 

sets. In addition, dimensionality reduction with the FFS methods on delta radiomic features 

led to selecting more than 10 radiomic features for each of the PET, CT, and PET-CT feature 

sets. However, the same FFS method resulted in two PET features, three CT features, and 

three PET-CT features. Interestingly, the selected SALoP PET features come from the inner 

layers (closer to the tumor core), while a combination of inner and outer layers formed the 

more prognostic SALoP CT features.  

The predictive power of the proposed SALoP feature set and conventional radiomics 

were compared on the following grounds: 
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 Delta SALoP vs. Delta Radiomics. Table 5.4, which is a summary of Tables 1 and 2 in 

the original paper, represents the calculated prognostic values of the two delta feature sets 

and their combination as well as with and without applying the FFS method in terms of  

AUROC. The term delta stands for the differences between the extracted features from 

pretreatment and second scans. Comparing the prognostic power of SALoP set against the 

radiomics set, it can be inferred that the proposed SALoP outperformed the radiomic 

descriptors by a great margin when dimensionality reduction was not applied. On the other 

hand, for CT and PET images, the radiomics set performs better than the SALoP set after 

removing the non-informative features from the pools. More interestingly, the highest 

predictive power was achieved when the SALoP and radiomics sets were combined into a 

single set and followed by applying the FFS method. The statistical comparison of AUROC 

between SALoP and radiomics (Table 4, Supplementary Material) indicates significant 

differences between the SALoP and radiomics features extracted from PET and PET-CT 

images.  

Table 5.4 - Prognostic values of SALoP, radiomics, and their combination with and without feature selection after 
applying 10-fold cross-validation in terms of AUROC metric. [From Astaraki et al. 2019. Reprinted with permission.] 

Modality 
Without FFS With FFS 

SALoP Radiomics SALoP+Radiomics SALoP Radiomics SALoP+Radiomics 
CT 0.64 0.58 0.66 0.68 0.85 0.86 
PET 0.87 0.62 0.63 0.88 0.89 0.95 

PET-CT 0.90 0.63 0.69 0.94 0.90 0.94 

Imaging modality. Comparing the predictive power delivered by the PET imaging 

modality to those of the CT modality, one can infer that both radiomics and SALoP followed 

the same pattern. Specifically, for both cases, the predictive values of PET-based features are 

higher than CT-based features, and their combination even improves the predictive power. 

Surprisingly, the highest prediction score was achieved from the combination of the SALoP 

and radiomics extracted from PET images which was slightly higher than PET-CT images.  

Single-timepoint analysis. This set of analyses refers to separately computing the 

prediction score of the features extracted from pretreatment and second scans. Tables 5 and 

6 in the Supplementary Materials report the quantitative values in detail. In brief, the single-

timepoint feature sets carry lower prognostic power than the delta features. In other words, 

delta features can capture the differences in the tumor characteristics from the longitudinal 

data, which are highly associated with the treatment effects. 
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5.2.4 Paper VI 

Spherical Convolutional Neural Networks for Survival Rate Prediction in Cancer Patients 

The proposed SphCNN-based features were compared against 17 baseline methods, which 

combined different types of feature sets and learning algorithms. We used the Concordance 

Index (C-Index), which is a commonly used metric for problems with right-censored data 

such as SRP [261]. This metric measures how well the survival times of a set of patients are 

ranked and can be seen as a generalization of the AUROC metric. Since two different datasets 

for NSCLC patients were studied, both intra- and inter-dataset experiments were conducted. 

While intra-dataset performance was evaluated using a 5-fold cross-validation procedure, 

the inter-dataset performance was assessed by training the models on the Lung1 dataset and 

testing it on the Lung3 dataset. Extracted CNN-based deep features after feature selection 

(DIF32) trained with EGB resulted in the highest C-Index for the Lung1 dataset 

(0.62 ± 0.04) that outperformed the best result achieved by the proposed SphCNN-based 

features. In fact, to investigate the effect of segmentation accuracy on the SRP scores, the 

features were extracted from tumoral regions defined by both the manual masks and the 

automatically generated masks. However, none of them could achieve as good a 

performance (0.58 ± 0.04 and 0.59 ± 0.03 for manual and automatic, respectively) as the 

combination of the EGB-DIF32 setting. On the other hand, having trained the models on 

Lung1 and testing them on Lung3 and HN datasets, the proposed method yields the best 

performance (C-Index = 0.64), followed by the combination of EGB and selected radiomics 

features (RF32) that achieved a C-Index of 0.63. In addition, the efficacy of the EGB-DIF32, 

which resulted in the highest performance in the intra-dataset analyses, was reduced to 0.61 

in terms of the C-Index. 

For each of the intra- and inter-dataset analyses, the validation set of the best-

performing model was stratified into risk groups based on the median of the predicted risk 

scores. Therefore, from each validation set, two subgroups were formed to be evaluated by a 

non-parametric Kaplan-Meier (KM) estimator (see Figure 5.4). The observed trends in the 

KM curves are in line with the quantitative values of features-based analyses. While the KM 

curves of intra-data analyses show mixed observations, more promising stratifications can 

be observed from the inter-dataset analyses.  
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Figure 5.4. Kaplan-Meier curves of the validation sets. The best-performing model was used to stratify the data into low 
and high-risk groups. The first row shows the curves from the cross-validation over the Lung1 dataset. The second row 

shows the curves of the model trained on the Lung1 dataset and tested on HN and Lung2 datasets. [From Sinzinger et al. 
2022. Reprinted with permission.] 
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Chapter 6 

Discussion 

As the average lifespan of humans is increasing across the world, medical experts aim to 

diagnose and treat diseases at an earlier stage by picking up the signs of serious diseases as 

they arise. In the domain of a disease or health condition, Disability-Adjusted Life Years 

(DALYs) are the sum of the years of life lost due to premature mortality and the years lived 

with a disability due to prevalent cases of the disease or health condition in a population 

[262]. According to the statistics provided by WHO, cancer imposes the largest burden 

across the world (244.6 million DALYs), both in men (137.4 million DALYs) and in women 

(107.1 million DALYs) [263]. 

 Large-scale data have the potential to change how oncologists manage, analyze, and 

leverage data across different applications. Properly analyzing the health care data has the 

potential to reduce the costs of cancer diagnosis, prognosis, treatment, and outcome 

predictions which, in general, will improve the quality of a cancer patient’s life. Personalized 

approaches span the full spectrum of cancer care. In fact, a personalized risk evaluation can 

identify patients at high risk of developing specific types of cancer, so they can be followed 

with more careful screening and prevention strategies, which will result in more effective 

early diagnoses and treatment methods [264]. The applications of Personalized Medicine 

(PM) in cancer are quite broad, entailing screening, diagnosis, prognosis, prediction of 

treatment efficacy, patient follow-up after surgery/treatment for assessing the early 

response, detection of recurrence, and the stratification of cancer stages. The objective of 

PM is to replace the “one size fits all” model of medicine, which has centered on reaction to 

disease based on average responses to care [265]. As one of the main pillars of cancer care 

systems, medical imaging modalities provide valuable quantitative information through a 

non-invasive or minimally-invasive procedure. Medical imaging data plays a central role in 

cancer management, including screening [266], prediction [267], biopsy guidance [268], 

staging [269], surgery/treatment planning [270], therapy response [271], recurrence [272], 

and palliation [273]. The essential need for medical images, however, has resulted in the 

acquisition of a huge number of imaging scans. For instance, in the United States (US) alone, 
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around 600 million medical imaging procedures are performed each year, and this number 

is estimated to approach 625 million scans in 2022 [274]. This estimation means that, on 

average, all US citizen undergoes two imaging scans in 2022. Considering the growing role 

of medical imaging data on one side and the challenges of manually examining such an 

abundance of data on the other side, the development of computerized tools to automatically 

or semi-automatically examine the image data is of great interest. The abundance of 

acquired digital medical images increases the demand for more advanced software to 

facilitate the process of cancer screening. Parallel to this, the rapid advances in ML methods 

provide a growing number of smart tools that have been incorporated into many different 

applications. Hence, a variety of ML tools have been specified for the medical imaging 

domain, aiming to assist clinicians with their repetitive tasks in their practice workflow. 

Tumor phenotypes, as can be seen in medical images, contain more information than 

can be readily processed by the naked human eye. Indeed, recent studies have shown that 

intricate morphological, intensity, and textural descriptors extracted from tumor mass can 

capture, to some extent, the heterogeneous characteristics of the cancerous regions and 

provide valuable information about the potential outcomes of the disease [250], [275], [276]. 

QIBs aim to extract quantifiable descriptors from medical images to assess the severity, 

degree of changes, and status of a disease or chronic condition relative to normal findings. 

In other words, QIBs can stand for underlying biological and pathogenic processes or 

responses to therapeutic interventions [277]. In this context, radiomics can translate the 

oncological imaging data into mineable space by quantifying the image phenotypic 

characteristics in an automated and objective way [119]. However, prior to quantifying the 

image volume data, a set of image preprocessing steps needs to be performed, and most 

importantly, the boundaries of the tumoral regions need to be delineated. 

In general, the pipeline of imaging biomarkers development includes the following 

essential steps: standard image acquisition, image preprocessing, target region 

segmentation, feature extraction, and predictive model development. While the standard 

image acquisition step falls outside the scope of the conducted studies, this thesis 

incorporates six studies that, taken together, cover the mentioned steps. The image 

preprocessing techniques such as contrast enhancement, intensity normalization, and image 

registration were used in the six studies to prepare the image data for further processing 

steps.  Studies I and II present two different DL-based approaches for tumor segmentation. 

The last four studies focus on adopting and developing imaging biomarkers with classical 

and DL-based methods for cancer diagnosis and prognosis. These diagnosis/prognosis 
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models were developed with end-to-end DL models (Studies III, IV, and VI) and/or with 

feature engineering strategies (Studies IV, V, and VI). In specific, Studies I and II focus on 

developing segmentation models as infrastructure that can be used to segment the tumoral 

regions for further quantification steps. In Studies III and IV, prognosis imaging biomarkers 

were developed and tested on early-stage lung tumors to classify the benign tumors from the 

malignant ones. In Study V, response imaging biomarkers were developed by introducing 

the SALoP feature set to quantify the response of the tumors to the applied therapy as early 

as two weeks after the beginning of treatment sessions. Finally, SphCNN-features were 

employed as predictive biomarkers in Study VI to predict the survival rate of NSCLC and 

HN cancer patients. 

As explained in Section 3.4.2, the definition and development of imaging biomarkers 

require proper justifications to determine the relationship between the extracted features 

and the studied disease. In this context, the dual-pathway model used in Studies III and IV 

was developed based on the fact that challenging lung tumors can be better stratified by 

considering both intra-tumor heterogeneity-based features and contextual attributes of the 

tumors. Therefore, the dual-pathway model was developed to consider both sources of 

information simultaneously. In Study V, the SALoP feature set was proposed to quantify the 

changes in the tumor characteristics caused by the applied treatment from more 

homogeneous subregions. In fact, different cancer cells with different genetic characteristics 

form different heterogeneous subclones within the tumoral mass. In practice, different 

tumoral subclones respond to the applied treatment differently. Therefore, the SALoP 

biomarkers proposed to capture the treatment effects from different tumoral layers. Lastly, 

it has been hypothesized that the survival status of cancer patients would not depend on the 

orientation of the tumor. Thus, the SphCNN model in Study VI was developed to learn and 

extract the rotational invariance biomarkers.  

The reliability of the developed imaging biomarkers can be validated by conducting 

phantom-based experimental studies or comparing them against the ground truth clinical 

measurements (see Section 3.4.5). In this domain, manual contour annotations by expert 

radiologists were set as the ground truth, and the accuracy of the segmentation models in 

Studies I and II was examined by comparing the predicted segmentation masks against the 

ground truth. In Studies III and IV the ground truth of each subject was determined by a 

clinical diagnosis of pathologies. The ground-truth labels of Studies V and VI were 

determined by following the subjects after the applied treatments. Hence, in all six studies, 

the clinical measurements were employed as the ground truth, and the models were 
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developed and optimized to achieve the ground truth values. Of course, in each study, several 

baseline models were analyzed as well to evaluate the performance of the proposed model 

with respect to the conventional methods. 

These six studies contribute to the field of oncological precision medicine by introducing 

novel techniques for tumor identification, diagnosis, prognosis, and treatment response 

evaluation. In the following sections, the primary outcomes and implications of all studies 

will be discussed analytically, and the pros and cons of the proposed methods will also be 

outlined. Finally, the limitations of the studies and potential future works will be discussed 

as well.  

6.1 Deep Learning and Tumor Segmentation 

The segmentation of tumoral regions from different medical imaging modalities is an 

essential step in clinical diagnosis and interventions such as radiation therapy and surgery. 

Relying on manual delineations requires not only expert radiologists but is also a time-

consuming and error-prone task. With the outstanding achievements of DL methods in the 

computer vision society for natural image segmentation and the success of the U-Net-based 

models in different medical image segmentation applications, DL methods have become the 

first choice for automatic tumor segmentation tasks. Many advanced segmentation models 

have been introduced for segmenting different types of tumors such as lung, head-neck, 

brain, liver, kidney, breast, and colorectal [278]. However, to achieve more accurate 

segmentation results, the model architectures and training procedures are becoming more 

complicated, which in turn often requires more training data. Nevertheless, labeling medical 

images requires enormous manual effort, which is not an optimal solution. On the other 

hand, UAD methods aim to lift the dependency on the labeled data, but the current 

knowledge in this field is not mature enough to achieve reliable results yet. The first two 

studies of this thesis focused on elaborating the deep segmentation models as attempts to 

address the two problems mentioned. Study I aims to efficiently employ the currently 

available tools in order to improve the segmentation accuracy by obtaining prior information 

regarding the pathologies without needing more labeled data. Study II aims to achieve 

acceptable segmentation accuracy in a purely unsupervised training procedure.      

6.1.1 Prior-aware segmentation model 

A segmentation prior encodes a particular type of prior knowledge into a segmentation 

model that has been shown to be a beneficial strategy to improve the segmentation accuracy. 
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Such prior information includes but is not limited to shape, appearance, size, location, 

boundaries, edges, and atlases of the target region and can be applied locally or globally [18], 

[243]. Although leveraging prior information in rule-based segmentation models such as 

energy functional minimization [279] and template matching [280] techniques is a well-

established approach, in the context of CNN models, integrating prior knowledge into the 

segmentation models is an ongoing problem. Training convolutional autoencoders [281] and 

VAEs [282] to learn shape manifold space, integrating conditional random field into CNNs 

in a joint training procedure [283] or a post-processing step [284] to constraint the 

segmentation boundaries, and modifying the conventional objective functions into 

topological-aware loss functions [282], [285]–[287] for coding geometric and shape priors 

are among the recent efforts for adding prior knowledge into segmentation networks. 

Employing such techniques has led to substantial improvements in the segmentation 

accuracy of healthy anatomies such as the liver [285], cardiac muscle [243], [288], and 

multiple abdominal organs [289], [290]. However, obtaining prior knowledge of pathological 

regions remains an open challenge. In the context of lung pathologies, the presence of 

various subtypes of the same pathologies with different characteristics makes it even more 

challenging to obtain robust prior information from the pathologies. For instance, while 

non-solid nodules and initial Covid-19 infection appear as Ground Glass Opacity (GGO) with 

low-intensity contrast against the healthy backgrounds, the borders of homogeneous 

consolidation masses as well as juxta-pleural and juxta-vascular nodules cannot be easily 

distinguished from the nearby tissues [291]–[293]. Lastly, while the diameter of pulmonary 

nodules lies in the range of 3 to 30 mm, advanced stages of lung tumors can become larger 

than 50 mm [294]. This size can be even worse in the case of “crazy-paving” COVID-19 

lesions, which can occupy a major capacity of the lungs [295]. To address the mentioned 

difficulties in obtaining prior information about the lung pathologies, we propose to first 

capture the prior knowledge for healthy lung structure instead of lesions and then derive the 

prior knowledge of pathological parts indirectly. We hypothesized that the proposed NAA 

model would remove the pathological regions and generate high-quality pathology-free 

images from which the prior information can be estimated by computing the differences 

between the pathological input images and the reconstructed pathology-free images. The 

calculated prior information was then integrated into a U-Net-like network as an additional 

channel along with the original image to improve the segmentation performance. 

The design of the supervised NAA model is based on the idea that the abstract latent 

attributes of healthy lungs are too complicated to be captured by unsupervised methods. 

However, training a supervised model essentially requires target label images which, in this 
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case, are the pathology-free images. Such faked images were synthetically generated by a 

robust inpainting model. This supervised training procedure reinforced the NAA model to 

preserve the healthy anatomical structures while removing pathological regions. Hence, the 

NAA model could, to some extent, learn the appearance of healthy lungs even without 

applying some preprocessing steps such as registering the images into an atlas in order to 

reduce the effect of anatomy variations. This method is in sharp contrast to conventional 

representation learning models that aim to learn the appearance of healthy organs, such as 

UAD methods. In fact, such representation learning models are trained based on 

unsupervised learning schemes and often are not able to reconstruct high-quality images 

that preserve fine-grained details [21]. 

The prior images obtained from the output of the NAA model consist of highlighted 

regions, along with other structures, that represent the prior information about the shape 

and location of the pathologies. Integrating the prior image into the segmentation model as 

an additional channel seems to be a constructive strategy to improve the segmentation 

accuracy. In particular, the prior image can be considered to be an attention channel 

showing the importance of different regions that can guide the network training to more 

meaningful regions and reduce the segmentation uncertainties. This has been verified by 

looking at the quantitative results where the segmentation accuracy of the prior-aware 

models outperformed the baseline models by substantial margins for all types of studied 

lung pathologies. The overall segmentation performance of the prior-aware model 

demonstrated the capabilities of the NAA model to obtain the prior image, which can boost 

the model functionalities in learning the sensitive pathological features. 

Although prior knowledge of the lung pathologies was not estimated directly, the 

proposed pipeline shows great potential in learning the appearance of healthy lungs to 

deduce the prior knowledge of pathologies indirectly. To the best knowledge of the author, 

Study I is the first study attempting to capture the prior knowledge of lung pathologies. The 

numerical metrics show the efficacy of the prior-aware segmentation model, which 

significantly outperformed the baseline segmentation networks. 

6.1.2 Unsupervised segmentation model 

Recent breakthroughs in DL models have led to automated medical image segmentation 

models which even achieve expert-level performance in the detection and segmentation of 

anatomical organs or pathologies. Despite the outstanding segmentation accuracy, these 

supervised methods have encountered some disadvantages. First, their supervised training 
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procedure requires large-scale and diverse annotated image data, which in practice are 

costly to obtain. Second, the performance of the trained model is limited to detecting certain 

types of lesions, which are similar to those of the training set. Therefore, if certain lesions 

are not presented or are under-presented in the training sets, the model would fail to predict 

meaningful results. Recently, to overcome the necessity of expensive labeled data, 

unsupervised-based DL methods have emerged as promising tools to detect pathologies 

from arbitrary types, which are recognized as UAD methods. These methods aim to resemble 

how radiologists examine imaging scans. In fact, expert radiologists are trained to learn the 

appearance of healthy anatomical regions. Therefore, they do not need data with pixel-level 

annotations because they can detect arbitrary abnormalities as outliers with respect to the 

healthy anatomies [240][296]. 

One of the major limitations of conventional UAD models is that they hardly learn the 

appearance of healthy anatomical structures with fine-grained details. Instead, they often 

tend to learn a general representation of anatomical structures without preserving 

anatomical constraints. One of the objectives of Study II has been to introduce a model with 

the capabilities of generating high-resolution medical images while preserving the 

anatomical details in the process of representation learning. The conventional AE-based 

models are often trained by optimizing per-pixel loss functions that tend to reconstruct 

blurry images. Therefore, one potential approach is to modify the objective function in order 

to improve the quality of the reconstructed images. Therefore, more advanced types of 

objective functions such as perceptual loss and style loss can potentially increase the 

conceptual and textural quality of the generated images. However, integrating these 

objective functions into the conventional representation learning models would degrade 

their ability to learn the latent characteristics of the healthy anatomies. In other words, such 

modified models tend to learn a wide range of image-based details and can hardly 

discriminate normal structures from anomalies. In fact, such fortified objective functions 

increase the risk of model overfitting with respect to representation learning tasks. On the 

other hand, limiting the convolutional operators with image subregions can regularize the 

learning process of representation learning models and avoid the overfitting problem. In 

particular, while the powerful objective function is prone to overfitting on the details of 

anatomical structures, localizing the functionality of convolutional operators can potentially 

counteract this tendency. Accordingly, considering the functionality of the PConv [225] 

operators, they can be a perfect choice for this problem as they deal with local convolutions 

instead of ordinary global convolutions. As a result, the representation learning process in 

Study II was turned from conventional AE- and GAN-based models into an image inpainting 
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problem. In practice, leveraging the inpainting model with multi-term objective function as 

an optimization algorithm and Gconv operators [226] as localized convolutional backbones 

could successfully enforce the model to synthesize the high fidelity realistic-looking medical 

images while preserving the anatomical constraints, regardless of the imaging modality. 

The proposed autoinpainting pipeline for unsupervised tumor segmentation yielded 

interesting results when the PET imaging modality was used either as single modal images 

or multimodal images. In such scenarios, the segmentation accuracy of the proposed 

unsupervised pipeline was not far behind the performance of the supervised nnU-Net model. 

Of course, the hyperactivities caused by tumoral regions facilitate tumor localization and, 

therefore, tumor inpainting. Nevertheless, the capabilities of the proposed inpainting model 

were not limited only to hyperintensity signals of PET images as the pipeline could detect 

and inpaint the challenging NSCLC tumors in CT images as well. Highly similar visual 

attributes of NSCLC tumors with respect to the surrounding soft tissues make them 

challenging for segmentation tasks even with supervised models. Nevertheless, the proposed 

model could inpaint challenging cases and lead to promising results in the context of 

unsupervised models. Regarding the limitations of the proposed pipeline in the context of 

HN tumors in CT images, it is worth mentioning that even the supervised segmentation 

methods can hardly detect the HN tumors in full resolution CT images. For instance, in 

[297], a promising Dice score of 0.48 was reported for the HN tumor segmentation in CT 

images by analyzing a cropped region around the tumors. 

Comparing the segmentation accuracy of the proposed pipeline against the 

conventional UAD methods can highlight the great potential of the autoinpainting model. In 

fact, the UAD models were not able to thoroughly learn the appearance of normal anatomies 

even with the PET images. Hence, these models could not successfully reconstruct tumor-

free images. Even if they managed to remove the tumors, they were not able to preserve the 

anatomical constraint and produced images with irrelevant anatomical structures, which in 

turn substantially increased the false-positive rates. 

Although this study has compared the performance of unsupervised methods with the 

powerful nnU-net supervised model, it should be noted that such comparison is not fair. In 

fact, the only reason that the supervised nnU-Net model was examined is to estimate the 

maximum accuracy, which can be achieved on the same datasets. While the unsupervised 

segmentation methods can potentially overcome the disadvantages of supervised models, 

the current models have not been robust enough to yield results that are as accurate as 

supervised models. In Study II, an inpainting-based UAD method was proposed to segment 
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the NSCLC and HN tumors in multimodal and single-modal images. To the best knowledge 

of the author, this is the first attempt to segment such challenging tumors with unsupervised 

DL methods. The quantitative results verified the potential of the proposed pipeline, which 

significantly outperformed the conventional UAD models. 

6.2 Imaging Biomarkers and Benign-Malignancy Classification 

Distinguishing malignant pulmonary nodules from benign nodules is considered to be one 

of the most challenging steps carried out by clinicians in the lung cancer management 

pipeline. In fact, the identification of malignant nodules is an important step toward the 

early detection of lung cancer, offering the best chance for a cure. In clinical practice, 

radiologists visually examine the image slices and estimate the likelihood of malignancy by 

relying on morphological characteristics. However, the accurate identification of malignancy 

is made with invasive biopsy-based cytological analysis [298]. Therefore, robust image-

based characterization of lung nodules can save the patients from such invasive 

interventions. Studies III and IV aimed to discern malignant pulmonary nodules from 

benign nodules in LDCT images by using imaging biomarkers. In practice, the presence of 

highly similar visual characteristics shared between benign and malignant nodules on the 

one hand and the concept of intra-nodule heterogeneities on the other make this 

classification task a challenging problem. In addition, the sensitivity of the classification 

results to the delineation accuracy and the class imbalance of the dataset are among the 

technical difficulties of the problem.  

The dual-pathway deep classifier framework was proposed to learn the latent 

characteristics of the nodules both from target nodule images and context nodule images. 

The underlying reasons for this choice are (a) that target nodule images can represent the 

intra-nodule heterogeneity attributes and (b) that context nodule images can capture the 

relative position of the nodules concerning surrounding tissues, which is associated with the 

malignancy [23]. In addition, the context images cover the nodule regions and minimize the 

dependency of the classification power on the delineation accuracy. Accordingly, it was 

expected that the dual-pathway model learns intra-nodule attributes along with context 

features jointly in one single framework. This strategy further assures that the final 

classification scores produced by the DL models are derived from the pathological regions. 

The quantitative results achieved in Study III show that the designed dual-pathway 

architecture has a strong relationship with nodule malignancy. In particular, the strategy of 

joint learning could successfully improve the classification performance of the end-to-end 
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models compared to scenarios where the target or context nodule images were trained 

separately. In addition, comparing the discrimination power of context images and target 

images implies that context images contain more predictive power than target images. This 

observation can be explained by the fact that context images not only constitute the intra-

nodule characteristics but also represent the relative location of the nodules with respect to 

the surrounding tissues as well. This finding can lift the need for accurately segmenting the 

nodule regions, which is a very challenging problem. Instead, employing a cropped region 

around the nodules is often considered a more straightforward problem. As was expected, 

training supervised deep classifiers resulted in higher predictive power than the 

unsupervised CNNs. In fact, supervised models are trained to directly learn the abstract 

features that are more relevant with respect to the class labels. On the other hand, 

unsupervised CNN-based features tend to capture more semantic features. Nevertheless, 

unsupervised models can still be good candidates for training image volumes with a limited 

number of labeled data [299].   

While achieving impressive results, the architecture and training protocols of DL 

models have become more complicated. These complexities help the models to better learn 

and select the relevant features. However, it is still difficult to understand how a network 

draws its decisions [300]. Therefore, the interpretability of DL models is an ongoing 

problem. On the other hand, explainable properties such as intra-nodule heterogeneity and 

the morphological characteristics of the nodules make radiomics an alternative approach for 

benign-malignancy classification. Therefore, radiomic descriptors were extracted from 

target nodule and context nodule images to conduct a fair comparison against the DL 

models. In the literature, a wide range of feature selection methods were integrated into a 

variety of learning algorithms in order to build effective prediction models [301]–[305]. 

However, a consensus among the proposed methods can hardly be reached. Therefore, to 

objectively determine the best scenario for analyzing the radiomics pipeline, the extracted 

radiomic descriptors were analyzed with eight different conventional learning algorithms 

and seven different standard feature selection methods. An evaluation of the discrimination 

powers obtained by radiomics and CNNs implies that end-to-end training of the deep 

classifiers without any further fine-tuning steps can perform better than the radiomics 

pipeline. This, of course, is related to the inherent advantage of the end-to-end learning 

procedure of CNNs over hand-crafted radiomics. On the other hand, fine-tuned radiomic 

features carry more predictive power than fine-tuned CNN-based features.  
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In binary classification tasks such as benign-malignancy problems, class imbalance 

occurs when one class—the minority class—consists of substantially fewer samples than the 

other class—the majority class. The minority class is often the class of interest, that is, the 

malignant subjects. Properly training a learning model over such imbalanced datasets can 

be challenging because the models tend to over-classify the majority class due to its 

increased prior probability [306]. Therefore, the samples belonging to the malignant class 

are misclassified more often than those belonging to the benign class. However, synthesizing 

new samples in the feature space by using SMOTE algorithm could successfully avoid such 

a bias toward the benign class. In fact, SMOTE generated new samples from the malignant 

class to balance the distributions of the two classes. This strategy reduced the 

misclassification of the malignant group and therefore improved the classification accuracy 

by a substantial margin.  To assure that the synthesized features were not only a replication 

of the original features, which would increase the risk of overfitting, a new experiment was 

conducted. The generated features by SMOTE were included only in the training set. This 

essentially means that if the synthesized features were a replication of the original features, 

then the classification accuracy of original features when the model was trained on 

synthesized features should reach the highest possible value as a sign of overfitting. 

However, the presence of the relatively large values of false negatives can increase our 

confidence in the efficacy of the employed SMOTE without being concerned about the 

overfitting issues. 

The discriminative power of the model was improved by combining deep features with 

radiomics. These improvements point to the fact that the hybrid feature set can represent a 

wide range of lung nodule characteristics, from handcrafted textures to abstract deep 

features. This observation aligns with other relevant studies on lung nodules [307], [308]. 

Nevertheless, combining these two distinct feature sets in order to enhance the predictive 

power should be conducted carefully. In other words, simply concatenating the two feature 

sets will dramatically increase the length of the features, which in turn can increase the risk 

of overfitting. More importantly, it can even worsen the class imbalance issue, which would 

adversely impact the performance of the models. The observed inferior performance of the 

raw hybrid feature sets can be caused by the described reasons. However, fine-tuning the 

hybrid feature sets by balancing the classes and reducing the dimensionality of the features 

by effective FS methods such as FFS are beneficial strategies to efficiently gain from the 

hybrid feature pools that result in the highest predictive power. 
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In Studies III and IV, the problem of lung nodule benign-malignancy classification was 

investigated. A dual-pathway framework was proposed to extract features from target 

nodule and context nodule images. The performance of end-to-end deep classifiers, 

radiomics, DL-based radiomics analysis, and hybrid feature sets was objectively compared 

before and after fine-tuning the prediction models. It can be concluded that the end-to-end 

deep classifiers resulted in more accurate classification power compared to the classical 

radiomics when the fine-tunings and optimizations were not applied. The experiments show 

that context and nodule images can have a complementary role as the combination of their 

features improved the classification power both for the deep classifiers and radiomics 

pipeline. In addition, quantitative comparisons show that incorporating the radiomic 

features into the learned deep features can be beneficial and improve the classification 

accuracy if proper fine-tuning steps such as feature selection and class label balancing are 

applied to the feature sets. 

6.3 Imaging Biomarkers and Evaluation of Early Response to Therapy 

The primary goal of Study V is to develop a novel, physiologically meaningful imaging 

biomarker set that can capture intratumor heterogeneity based on the characteristics of CT 

and PET images. The proposed SALoP aims to partition the tumor volumes into separate 

concentric zones; and from each zone, mean intensity changes of PET and CT values were 

quantified to describe changes in the tumor characteristics caused by the applied treatment. 

In other words, dividing a tumor mass into several zones based on the distance from the 

tumor borders can represent a single heterogeneous mass by a set of constituent homologous 

subregions. Since remarkable intensity variations within each partitioned region were not 

observed, it can be inferred that tumor properties could be quantified from more 

homogeneous local areas. 

In addition to the concepts of biological and clinical validations of imaging biomarkers, 

which were described in Section 3.4.5, the interpretability of imaging biomarkers can reveal 

their relevance with respect to the physiological characteristics of the tumors. The proposed 

SALoP feature set was designed to include such physiological characteristics of the tumors; 

therefore, it can be, rather, easily interpreted. The voxel values of CT images represent the 

tissue density while the PET intensity values reflect the metabolic activities. Hence, changes 

in these values within the constituent tumor subregions indicate the impact of the applied 

therapy on the density of tissues as well as their regional glucose uptakes. Accordingly, the 

proposed SALoP set can quantify physiological attributes of distinct parts of the tumors, 
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such as variations in metabolic activity, oxygenation, and tissue inflammation. As a result, 

the quantitative values captured by SALoP are not just a set of uninterpretable numerical 

metrics; instead, they can be related to the factual reactions of tumoral cells to the applied 

treatment. On the other hand, changes in the values of radiomic features cannot be easily 

explained in terms of clinical routines [309]. This concept of interpretability would even 

worsen when it comes to the DL models. Therefore, the proposed SALoP set is superior to 

both radiomics and DL models in terms of interpretability. Despite the limited number of 

features quantified by the SALoP set, its prognostic power outperformed the high 

throughput radiomic feature sets. In fact, the SALoP set represents each tumor in PET-CT 

images with only 20 numerical values, which is only about 4% of the size of the studied 

radiomic descriptors. This implies that each subregion of the tumor has distinguished 

properties that are captured well by the proposed method, and their combination together 

can represent the diversity inside the tumor volumes, which is closely associated with the 

therapy response. On the other hand, the relatively poor performance of the radiomic 

features can be explained by the fact that many of the extracted descriptors are either 

redundant or non-informative. Hence, their combination is not an effective strategy to add 

value to the predictive power. Nevertheless, reducing the dimensionality of the radiomic 

feature set with the FFS method led to eliminating the redundant and non-informative 

features and preserving the radiomic signatures, which resulted in a remarkable 

improvement in the predictive power. This is in line with the observations in other studies 

as well [310]–[312]. The identified radiomics signature after applying the FFS method was 

reported by other relevant studies as well [313], [314]. More importantly, a majority of the 

radiomic signatures belong to the second-order feature categories, which point to the 

importance of the textural features aiming to capture intra-tumor heterogeneities [315], 

[316]. Nevertheless, comparing the performance of the selected SALoP features to the 

original SALoP set, we can infer that no significant improvement was achieved by removing 

the non-informative features. This implies that the proposed SALoP set has great potential 

to capture the tumor phenotypes regardless of whether the dimensionality reduction applies 

or not.  

Combining the SALoP set with conventional radiomic features improved the predictive 

power. This interesting observation suggests that these features might complement each 

other. In fact, SALoP features quantify, to some extent, both geometric and first-order 

properties of the tumor volumes. 
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One of the advantages of FDG-PET image data is that they can quantify the changes in 

the molecular levels of the tissues even when such tiny changes cannot be detected 

anatomically. Accordingly, PET-based imaging features are expected to carry more 

prognostic power than CT-based features [317], [318]. This expectation was realized in Study 

V when the PET-based descriptors from both the SALoP set and radiomics delivered more 

predictive power than those of the CT features. Nevertheless, given the types of the 

characteristics acquired by CT and PET images, merging the PET-features with CT-

descriptors allows for capturing a wider range of tumor characteristics, which in practice 

strengthens the predictive power. 

Several studies have highlighted the prognostic potential of radiomics in patients 

diagnosed with NSCLC [319]–[322]. The underlying hypothesis is that genomic and 

proteomic characteristics of cancers can be expressed in imaging biomarkers, which can be 

quantified with optimal image analysis methods [1]. This could extend to the concept of 

radiogenomics, which implies that genomic tumor heterogeneities are associated with 

intratumoral heterogeneity in the imaging levels [1]. In this context, FDG-PET-CT-based 

imaging biomarkers have been shown to carry invaluable information for staging, evaluating 

treatment response, detecting recurrence, and predicting the prognosis of NSCLC [323]. In 

assessing the treatment response, previous studies have shown strong associations between 

the textural features and responses to radiotherapy [324] and chemoradiotherapy [316].  

The SALoP feature set was proposed as a new way to capture the intra-tumor 

heterogeneities. This feature set showed promising results when employed to predict the 

survival status of the NSCLC patients. In fact, the prognostic power of the proposed SALoP 

set even outperformed the conventional radiomic features in assessing the early tumor 

response to treatment. The highly reproducible SALoP feature set can be interpreted 

physiologically as well. In addition, predicting the survival status after two years by 

analyzing the features extracted from the scans of the first two weeks of treatment with an 

accuracy of 0.96 is an outstanding performance achieved by the combination of SALoP and 

radiomics sets. Accordingly, this feature set has the potential to be employed as prognostic 

imaging biomarkers for NSCLC studies. 

6.4 Imaging Biomarkers and Survival Rate Prediction 

The prediction of the duration of time until an event occurs, such as cancer recurrence or 

death, underlies important clinical decisions in oncology. Survival analysis, in particular, 

holds great value for patients, oncologists, clinicians, and researchers. The naive cancer 
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prognosis prediction models rely on population-level measurements for a specific site of 

cancer and cancer stage [325]. Nevertheless, such methods fail to take into account the 

individualized characteristics of patients, even such basic ones as age at diagnosis. To 

address such limitations, patient-specific methods have been introduced in clinical practice 

that consider the combinations of clinical information and laboratory examinations with 

well-established biomarkers. Nonetheless, the outcome of survival prediction models often 

depends on the clinician’s subjective interpretation and intuition, which in turn limits the 

accuracy and reproducibility of the models [326]. In addition, laboratory examinations do 

not necessarily yield accurate results. For instance, the genetic heterogeneity of the 

cancerous cells degrades the value of biopsy-based genomic analysis. In this context, 

however, medical imaging modalities can potentially illustrate the entire tumor in a non- or 

minimally invasive and repeatable procedure. To discover the correlation between medical 

images and underlying genetic characteristics of the tumors, which can be used for survival 

analysis applications, various imaging biomarkers have been proposed, such as radiomics 

and DL-based methods. On the other hand, predicting the survival rate by relying only on 

the shape, size, and texture of the tumor is a challenging task because it is not clear yet 

whether the imaging data would be representative enough or not. In addition, the prediction 

might be affected by different factors, including the presence of right-censored data, image 

acquisition parameters, inaccurate segmentation masks, the selected imaging biomarkers, 

and the prediction model itself. The primary goal of Study VI was to predict the survival rate 

from CT images with a fully automatic pipeline based on SphCNNs and compare it to the 

relevant conventional methods. 

The quantitative results from the experiments show that the selected features from the 

pre-trained deep classifier resulted in the highest predictive power for intra-data analysis. 

On the other hand, the predictive power of the entire radiomics pool was slightly higher than 

the subset of selected radiomics. The observation that the same feature selection method 

leads to improving the performance of DL-based features but not the radiomics pool can be 

explained by the fact that DL-based features were extracted from a single 2D tumoral slice 

while the radiomics were extracted from the complete tumor volumes. Hence, the less 

diverse features of the tumors in 2D slices, which were captured by the DL model, are more 

prone to show a stronger association with the target labels compared to the 3D radiomics, 

which were extracted from the irregular tumor volumes with a wide range of texture, 

intensity, and morphological characteristics. The proposed SphCNN method automatically 

quantifies morphological features in the spherical domain. In other words, the spherical 

mapping methods can be seen as a compact representation of tumor surface texture, size, 
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and shape. Employing these spherical signals combined with a rotation-invariant SphCNN 

led to obtaining C-indices comparable to radiomics and deep features in the intra-dataset 

experiments. However, the proposed method slightly outperformed the conventional ones 

when referring to the inter-dataset analysis. These results suggest the robustness of the 

proposed SphCNN-based survival rate prediction for the test phase on completely unseen 

datasets. The quantitative metrics also indicate a rather similar performance on both the 

NSCLC and HN datasets. This finding suggests that the morphological features that the 

SphCNN internalized during training might have prognostic relevance for tumors in general. 

However, since the differences between the proposed method and the best-performing 

baselines were not substantial, it can be understood that the proposed method results in 

competitive performance overall. 

6.5 Advances and Limitations of Machine Learning Methods in Cancer Screening 

ML and its subfields, such as DL, offer the prospect of improving diagnosis, prognosis, and 

treatment analysis in the health care systems. Among all the healthcare domains in which 

ML methods may be applied, the medical imaging domain plays a central role because of the 

heavy burdens related to the manual analysis of high-dimensional image data by expert 

radiologists. Successful integration of such methods in clinical practice depends on different 

factors such as robustness, accuracy, stability, computational time, costs, and ethical 

conduct. Although many of the developed methods have already been approved by 

regulatory authorities such as the U.S. Food and Drug Administration [327], [328], a vast 

body of these automatic methods is still in their initial phase, undergoing the critical 

appraisal and independent assessments [329].  

Rapid advances in ML algorithms involve several key technologies in the medical 

imaging domain, including but not limited to image reconstruction [330], image 

enhancement [331], image registration [331], image classification [332], and image 

segmentation [333]. This thesis consists of six studies focusing on cancer image analysis, 

from which four studies contributed to diagnosis and prognosis applications through image 

classification, and two studies contributed to the tumor segmentation problem. Despite the 

novelties introduced in these studies and the encouraging results achieved for different 

tasks, there still exists much room to develop more accurate and/or efficient models for 

classification and segmentation tasks. However, considering the unprecedented 

achievements of recent years in oncological image analysis applications, one can expect that 

the rapidly growing ML techniques will lead to even more promising breakthroughs in the 
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future. As an example, the best segmentation accuracy reported in the Decathlon challenge 

[334], [335] for the lung tumor task in 2018 was 0.69 in terms of Dice metrics. However, the 

best performance reported on the same dataset with more advanced methods improved up 

to 0.77 [336]. Although these results indicate that current methods are not accurate enough 

to be accepted for clinical applications, such a great improvement achieved from limited 

training data is evidence of the rapid development of robust DL models. As another example, 

one can point to the Brain Tumor Segmentation (BraTS) challenge [337]. While the winner 

of the BraTS 2017 challenge achieved Dice metrics of 0.729, 0.785, and 0.886 for enhancing 

part, core part, and whole tumors, respectively [338], the top performance in BraTS 2021 

was improved to 0.908, 0.941, and 0.946 for the same subregions [339], [340]. It should be 

noted that such substantial improvements have been achieved in the light of more powerful 

computational resources, more labeled training data, and of course, more elaborated 

pipelines. 

The six studies presented in this thesis aim to provide relevant contributions to the 

oncological image analysis field. Nevertheless, each of these studies faced some limitations 

that should be considered for investigation in the future. These limitations are outlined in 

the following subsections. 

6.5.1 Imaging datasets 

Image data is the basis of many ML-based methods. The small size of the datasets increases 

the risk of overfitting; however, we must be cautious regarding the potential biases caused 

by a single large-scale dataset. A practical way to reduce such uncertainties is to utilize 

several large-scale public and/or private datasets to test the performance of the new 

methods objectively. In Study V, for example, the performance of the model was tested over 

a dataset containing only 30 subjects. Although the employed method was not a data-greedy 

DL model and several strategies were applied to reduce the risk of overfitting, the potential 

of the proposed SALoP biomarkers may be further investigated on large-scale datasets of 

longitudinal PET-CT scans. In Studies III and IV, a large-scale LDCT of pulmonary nodules 

were studied for benign-malignancy classification; however, it is still necessary to validate 

the performance of the dual pathway model on another comprehensive dataset such as 

LIDC-IDRI [244]. The same limitation exists within Study II in which the performance of 

the proposed autoinpainting pipeline was examined only on one single NSCLC and one 

single HN dataset.  
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In addition to the sample size, the generalization power of the methods could be 

examined in other types of cancers as well. For instance, the abilities of the SALoP 

biomarkers in capturing the tumor characteristics could be investigated on highly 

heterogeneous brain tumors as well, given the availability of longitudinal datasets. In 

addition, the spherical CNN model of Study VI could be examined for brain tumor survival 

prediction, which is already known as a challenging task [341]. In the same context, the 

ability of the unsupervised autoinpainting model can be examined on the brain tumor 

segmentation task from MR images, which is the center of attention for many UAD methods.   

6.5.2 Volumetric analysis 

While in Studies III to VI, volumetric medical images were analyzed, the segmentation 

models introduced in Studies I and II deal with 2D slices of volumetric images. In other 

words, the volumetric context of the images was not being used to segment the tumors. Of 

course, this limitation arises from the challenges of volumetric inpainting models. Extending 

the inpainting model from 2D to 3D did not lead to acceptable results in the limited 

conducted experiments. Therefore, the pipelines in their entirety were simplified into 2D 

models with the cost of losing the volumetric context. In fact, the objective of studies I and 

II was not to develop a 3D inpainting model; however, considering the potential role of a 

robust volumetric inpainting model, it is worth focusing on this problem in future studies.  

6.5.3 Incorporating domain knowledge 

As previously mentioned, most of the ML models in the domain of medical image analysis 

are adopted from the models developed explicitly for general computer vision applications. 

Nevertheless, medical images are more complicated due to the presence of large variations 

in human anatomies, high inter-class similarities, the limited size of labeled data, and noisy 

annotations. Although integration of weak domain knowledge, such as anatomical attributes 

of medical images, into ML models is a relatively straightforward task, it is much more 

demanding to capture and integrate the strong domain-specific knowledge that expert 

radiologists rely on. The idea of partitioning a tumor into subregions, and dual pathway 

models used in Studies III, IV, and V, to some extent, were inspired by such domain 

knowledge. However, the integration of more relevant domain knowledge regarding the 

tumor heterogeneities may help increase the performance of the survival analysis and 

classification models. In addition, learning the distribution of healthy anatomies and 

integrating them into the UAD models has been studied for a long time. Regardless of how 
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they have been done, all these attempts—including Studies I and II in this thesis—leave room 

for improvements. Therefore, a potential direction for future studies can focus on the 

encoding of domain-specific knowledge in the models.  

6.5.4 Methodology 

The continuous success of DL models originates not only from the greater complexity of the 

network architecture and learning paradigms but also the more careful data preparation and 

preprocessing. Although the methodology of the conducted studies was carefully examined, 

other options exist, and these may be beneficial to overcome the difficulties of the proposed 

methods. Some of the potential methods that can be further investigated are discussed 

below. 

Techniques to address class imbalance. In Studies III and IV, different approaches, 

including class weights and equal sampling across classes, as well as SMOTE, were 

examined; of these, SMOTE was found to be a beneficial technique to tackle this imbalance 

issue and improve the classification accuracy. However, there are other techniques [306] to 

modify the training procedure and/or objective function, which can be examined as well. 

This imbalance issue is not limited only to the classification problems, but also the 

performance of segmentation models may be negatively impacted by it. For instance, in the 

cases of multi-focal pathologies in which some of the lesions appear smaller than the others, 

the conventional Dice objective function cannot recognize the instance imbalance and the 

larger lesions dominate minor instances. The functionality of novel objective functions such 

as blob loss [342] would be helpful in addressing such an issue. 

Multimodal fusion models. In Study IV, the extracted radiomic features were merged 

with learned deep features in a non-learnable approach. In other words, a deep classifier was 

trained, and the learned features were extracted and concatenated to the radiomics pool. 

However, this fusion can be done with other approaches [343] such as training an end-to-

end classifier model [344].  

Contrastive learning. In Study I, the differences between the generated tumor-free 

images and original tumoral slices were considered to be prior images with respect to the 

tumor characteristics. The residual images were then integrated into a segmentation 

network as the second input channel. This set of paired images between tumoral and tumor-

free images can be a good candidate for training a segmentation model with a contrastive 

learning procedure [345]. In addition, the entire pipeline of Study I consists of three separate 
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modules. Regardless of how, squeezing the entire pipeline into one single model might be 

an effective strategy to reduce random and systematic errors.  
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Chapter 7 

Conclusions 

The six studies included in this thesis have all been conducted with the same endeavor: to 

refine the current state of oncological image analysis and improve our ability to 

quantitatively evaluate the tumor characteristics from minimally invasive or non-invasively 

acquired medical images. The overall results have shown that carefully designed imaging 

biomarkers can translate the raw voxel values into quantitative features from which 

discriminant patterns can be derived. In addition, integrating domain-specific knowledge 

into the segmentation models can increase the segmentation accuracy. Novel methods for 

different applications of cancer diagnosis and prognosis have been introduced with 

competing performance against the state-of-the-art methods. Specific conclusions from 

each of the six included studies are outlined below. 

Study I A NAA model was proposed to capture the prior knowledge concerning the lung 

pathologies in CT images. The proposed NAA model could learn the 

appearance of healthy lung anatomies and indirectly produce prior information 

regarding the presence of pathologies. The segmentation accuracy of the prior-

aware segmentation model outperformed the baseline models with significant 

margins in different types of lung pathologies, including NSCLC, nodules, and 

COVID-19 lesions.  

Study II A purely unsupervised framework was proposed to segment the challenging 

lung and head-neck tumors based on the ability of an inpainting model to 

remove the tumors. The inpainting model could reconstruct high-fidelity 

medical images in full resolution without corrupting the anatomical 

constraints. The proposed autoinpainting pipeline resulted in promising 

segmentation accuracy and significantly outperformed a family of 

autoencoder-based UAD methods. 

Study III The proposed dual-pathway DL framework is a beneficial strategy for learning 

disentangled image-based features to classify the benign and malignant 
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pulmonary nodules in LDCT images. In fact, integrating both target nodule and 

context nodule images into a single deep classifier could successfully capture 

and discern the intricate characteristics of nodules. 

Study IV A comparative study was conducted to distinguish malignant pulmonary 

nodules from benign ones. The discrimination power of end-to-end deep 

classifiers, radiomic feature sets, learned deep feature sets, and hybrid feature 

sets were examined under the same fine-tuning conditions. The quantitative 

results suggest that the effective integration of radiomics and deep features 

improves the classification power. 

Study V The introduced SALoP feature set can be implemented easily and interpreted 

physiologically. It is highly reproducible and is capable of describing intra-

tumor heterogeneity. The proposed SALoP set outperformed conventional 

radiomics for predicting the overall survival status of NSCLC patients. Such 

specifications of the SALoP feature set can make it a candidate for a robust 

imaging biomarker in the early assessment of lung tumor treatment response.   

Study VI The performance of a fully automatic pipeline for image-based lung cancer 

survival rate prediction was analyzed. The proposed rotationally invariance 

SphCNN model resulted in competitive predictive power with respect to the 

state-of-the-art methods when tested on intra-dataset examination and 

performed slightly better on inter-dataset assessments. 
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