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“Essentially, all models are wrong, but some are useful.” 

—George E. P. Box



 

 

ABSTRACT 

In this thesis, the foundations are laid for a new natural history model for breast 

cancer—specifically designed to take advantage of detailed screening cohorts. Three diverse 

applications of this model are then presented.  

Study I develops the statistical framework for the natural history model, and shows 

with simulations that the model parameters can be estimated based on only the information 

available at diagnosis. It also describes how to adjust for random left truncation—an 

important aspect to consider when studying prospective cohorts.  

In Study II, the newly developed natural history model is applied to a Swedish 

mammography screening cohort. It estimates the population-level distributions of age at onset 

and tumor volume doubling time. As an extension, the tumor volume doubling time is 

allowed to depend on the age at onset. The study also estimates the rate of symptomatic 

detection and screening sensitivity as functions of tumor size. Simulations are used to 

validate the estimates.  

Study III shifts the focus from inference to risk prediction. The natural history model 

is modified to incorporate risk factors separately in each of the four components of the model. 

Short-term risk prediction is then performed on the screening cohort and the results are 

compared to a conventional approach to breast cancer risk prediction. The study also 

develops novel predictions based on, for example, having experienced tumor onset, having a 

tumor detected at the next screening, and having a tumor detected before it reaches a certain 

size if attending the next screening. 

In Study IV, the model is used to study the effect that certain acquisition parameters 

used in mammography have on the detectability of the breast cancer tumor. With the model, 

it is possible to more directly study the mammography screening sensitivity, compared to the 

ad hoc definition of sensitivity commonly seen in the screening literature. It was identified 

that the compressed breast thickness—in addition to the percent mammographic density and 

latent tumor size—was inversely associated with the screening sensitivity.  
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1 INTRODUCTION 

Breast cancer is the most common cancer in the world, and the incidence is increasing [1]. It 

is a disease that predominantly affects women and is the most common cause of cancer death 

for women.  

At this stage, most countries have established nation-wide mammography screening 

programmes [2]. These programmes are estimated to have reduced the mortality of breast 

cancer by around 20% [3].  

To understand the extent of the benefits (and harms) that breast cancer screening brings, 

we need to first understand the mechanics which drive the disease. To that end, researchers 

have studied the natural history of breast cancer by using statistical models. A wide range—

including multi-state Markov models, continuous growth models, and simulation models—

have been developed and applied to a wide array of breast cancer data.  

While the current screening programmes are age-based, there has recently been 

considerable interest in adapting and personalizing the screening based on individual risk 

factors [4,5]. For this purpose, the various breast cancer risk prediction models developed 

over the last 30 years [6] are being brought to bear, and multiple trials are underway [7,8]. 

Many questions still remain surrounding who should be screened, and when. By better 

understanding the natural history of breast cancer, and what determines its detectability at 

mammography, some of these questions might find an answer.  
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2 BACKGROUND 

2.1 THE BREAST 

 

Figure 1: An anatomical depiction of the breast. Source: Centers for Disease Control and Prevention1. 

The breast is the mammary gland in humans. It is positioned over the pectoral muscles and 

houses potentially milk-producing glandular units called lobes. Each lobe consists of clusters 

of alveoli (also called lobules) which secrete the milk and are connected to the nipple by 

branching ducts that transport the milk. Each breast contains 15-20 lobes [9]. Enveloping the 

lobes is adipose tissue (fat cells). The rest of the breast interior consists of stroma in the form 

of mainly blood vessels and connective tissue (mostly collagen) which provides the structure 

and shape of the breast. See Figure 1.  

The development of the breast begins in utero where the primitive structures of the lobes 

are formed with short ducts connecting to the nipple [10]. The breast tissue lies dormant until 

puberty, when the female breast undergoes significant changes. Estrogen is an important 

hormone that promotes the growth of the ducts and the stroma, while the hormone 

progesterone drives the additional formation and differentiation of the lobules.  

After puberty, the composition of the breast experiences some fluctuations as the 

fluctuating hormone levels of estrogen and progesterone cause growth and apoptosis 

(programmed cell death) in the lobes [11]. Over time and repeated menstrual cycles the breast 

accumulates some of the growth and differentiation caused by these cycles [12]. 

 

1 https://www.cdc.gov/cancer/breast/basic_info/what-is-breast-cancer.htm, accessed 2022-01-20. 
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Another phase of development in the breast occurs during pregnancy. Increased levels of 

estrogen cause further growth and branching of the ducts and blood vessels, and progesterone 

causes additional growth and differentiation of the lobules. Another hormone, prolactin, is 

responsible for the final (terminal) differentiation of the lobules which enables the production 

of milk. After pregnancy, the breast experiences a reversal of some these changes when the 

prolactin production ceases (a process called post-lactational involution) [13]. Overall, 

women who experience one or more full-term pregnancies (parous women) maintain a higher 

differentiation in the breast compared to those who do not experience full-term pregnancy 

(nulliparous women) [12,14]. 

During menopause, the ovaries stop producing estrogen and progesterone. The decline in 

these hormone levels causes the lobes to shrink and causes a substantial decrease in the 

number and differentiation of the lobules [10,14]. This process is called the lobular 

involution. The stroma is also reduced, with more fatty tissue taking its place [13]. After 

menopause, the breast composition is much the same for both parous and nulliparous women 

[14,15].  

2.2 BREAST CANCER 

In 2020, female breast cancer overtook lung cancer as the most common cancer in the 

world—for both sexes combined [1]. An estimated 2.3 million new cases of breast cancer 

were reported, constituting 12% of all new cancer cases and 25% of female cancer cases. 

Despite having the highest incidence, breast cancer ranked 5th in mortality (6.9% of all cancer 

deaths) with an estimated 685,000 deaths. It is however still the most common cause of 

cancer death in women (16%). 

Countries with high or very high human development index (HDI) have an average 88% 

higher incidence rate of breast cancer (55.9 cases per 100,000) than countries with low or 

medium HDI (29.7 cases per 100,000). The difference has been attributed to longer life 

expectancy and overall older demographics in the developed countries, plus a higher 

prevalence of various risk factors of breast cancer. It is the opposite case for breast cancer 

mortality, however; developed countries have 15% lower mortality rates (12.8 deaths per 

100,000) than developing countries (15.0 deaths per 100,000) [1].  

In Sweden, 7361 women were diagnosed with breast cancer per year, on average, between 

2015-2019, and 1399 women died from the disease per year [16]. The estimated risk of being 

diagnosed with breast cancer before age 75 was 9.4% on average.  

Figure 2 displays the trends of breast cancer incidence and mortality in Sweden. Panel (A) 

shows the annual rates from 1960-2019. The incidence rate has steadily increased over time, 

while the mortality rate is now lower than it was in the 1960s. Panel (B) shows the incidence 

and mortality rates in 2019 separated into age groups. It shows that breast cancer becomes 

more prevalent with age. There is a sudden decrease in the incidence rate between age 75-79. 

This is the age where the Swedish screening programme ends.  
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2.2.1 Types of Breast Cancer 

There are two major forms of breast cancer: breast carcinoma (cancer) in situ and invasive 

breast cancer. A breast carcinoma in situ means that the cancer is still contained within the 

epithelial layers of its origin. For breast cancer this means being contained inside the ducts or 

lobules, and the two types are called ductal carcinoma in situ (DCIS) and lobular carcinoma 

in situ (LCIS). Approximately 20% of diagnosed breast cancers are in situ, of which around 

85% are DCIS [17].  

If a cancer is an invasive breast carcinoma, then it has penetrated from the epithelial layers 

into the stroma and surrounding tissue. The most common sites for invasive breast cancer are 

also the ducts and the lobules, with the respective names invasive ductal carcinoma (IDC) 

and invasive lobular carcinoma (ILC). Around 80% of invasive breast cancers are IDC, 15% 

are ILC, and the remaining 5% are other types that cannot be easily classified as either ductal 

or lobular [18–20]. 

Figure 2: The incidence and mortality rates of breast cancer in Sweden. (A) The year-specific rates 

between 1960-2019. (B) The age-specific rates from 2019.  
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In situ cancers are considered precursors to invasive cancer, where the invasiveness is a 

property gained after the tumor has started growing [18]. According to one review [21], 14%-

46% of detected DCIS (which were not treated due to originally being misdiagnosed as 

benign) later, over the next 10+ years, developed into invasive breast cancer. This indicates 

that the transformation into invasive breast cancer can occur later, even for in situ cancers that 

have progressed enough to be detected.  

2.2.2 Breast Cancer Metastasis and Prognosis 

Cancer metastasis refers to the spread of a cancer from the original site to other locations in 

body (meta- “next”, stasis- “placement”). In breast cancer, the most common metastasis 

occurs in the lymph nodes near the breast and arm pits. The lymph system then becomes a 

potential vehicle for further spread. The most common sites for distant metastasis outside the 

lymph nodes are the skeleton (50%), the lungs (24%), the liver (20%), and the brain (6%) 

[22]. Between 30-35% of invasive breast cancers show lymph node involvement [23], and 2-

6% of diagnosed breast cancers have confirmed distant metastasis [24].  

Breast cancer can be classified or staged based on the current status of the metastasis. A 

breast cancer is referred to as localized if there is no metastasis, regional if there is metastasis 

in the nearby lymph nodes, and distant if there is metastasis in other sites [25].  

A more detailed type of staging is the TNM staging system [26]. It classifies breast cancer 

progression in three parts based on the primary tumor size (T-stage), the extent of the lymph 

node spread (N-stage) and the occurrence of distant metastasis (M-stage).  Each of the three 

stages are both individually (sub-)classified and combined into an overall stage for the breast 

cancer. The simplified version of the five stages of breast cancer are as follows: 

0. In situ only (Tis). By the definition of in situ, there is no spread (N0 & M0). 

I. The primary invasive tumor is less than 20mm in diameter (T1), and there is no spread 

(N0 & M0). 

II. Either the primary tumor is greater than 20mm (T2-3) and there is no lymph node 

spread (N0), or there is limited local lymph node spread (1-3 nodes, N1) and the 

primary tumor is less than 20mm (T0-1). 

III. Either there is extensive lymph node spread (4+ nodes, N2-3) or limited spread (N1) 

and a tumor larger than 50mm (T3).  

IV. If and only if there is distant metastasis (M1). 

The stage of breast cancer is a strong indicator for prognosis. Death due to breast cancer 

occurs when it metastasizes in vital organs [27], which leads to death most commonly from 

heart failure, infarctions, or infections to affected organs (e.g. pneumonia infecting the lungs). 

Therefore, the extent of metastasis at the time of diagnosis is very important for the 

prognosis. In the U.K., the estimated 10-year survival probability is 96% for Stage I, 79% for 

Stage II, 53% for Stage III, and 12% for Stage IV [28]. For Stage 0, the 10-year survival is 

around 99% [29]. 
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2.2.3 Histological Grade 

Another type of breast cancer assessment factor is the histological grade. Based on 

microscopic investigation of the tumor cells, the cancer is given a grade from 1 to 3 

depending on how much its cells resemble healthy cells (i.e. how well-differentiated they 

are), where a high grade signifies little resemblance [30,31]. A high tumor grade is associated 

with more malignant and aggressive breast cancer [30], and is associated with a worse 

prognosis—even when accounting for the cancer stage [32]. 

2.2.4 Molecular Subtypes 

Breast cancer can also be classified on the molecular level. Using immunohistochemical 

staining, one can test for the presence of estrogen receptors (ER) and progesterone receptors 

(PR) on the tumor cells. As previously mentioned, estrogen and progesterone are two 

important hormones for regulating the proliferation of healthy breast tissue. If the staining 

reveals receptors in more than 10% of the tumor cells, the tumor is classified as positive for 

that hormone receptor (ER+ and PR+ respectively). Another important receptor to assess is 

the human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in some 

cancers as a means to proliferate more aggressively. The statuses of these three receptors give 

an indication of the cancer’s aggressiveness, and have implications for treatment options (see 

below).  

Global genetic profiling of breast cancer tumors have shown that the molecular 

heterogeneity can be summarized by four main intrinsic subtypes [33]. The four intrinsic 

subtypes approximately correspond to the amount of expression of the three receptors and to 

tumor grade according to the following (simplified) table [34]: 

INTRINSIC SUBTYPE ER PR HER2 GRADE 

LUMINAL A High Some/high None Low 

LUMINAL B Low Low/none Some High 

HER2 ENRICHED None None High High 

BASAL-LIKE None None None High 

The basal-like subtype is often called triple negative breast cancer, referring to testing 

negative for all three receptors. The majority of diagnosed invasive breast cancers are of the 

Luminal A subtype (70-75%), followed by Luminal B and Basal-like (10-12% each), and 

HER2 enriched (4-5%) [35,36]. 
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2.2.5 Symptoms of Breast Cancer 

The most common symptom of breast cancer is finding a palpable lump in the breast—the 

primary tumor—which occurs in 82% of breast cancers at the time of diagnosis. 17% of 

patients show other breast-related symptoms, such as nipple abnormalities, pain, swelling, 

rashes, or ulcerations. 6% experience symptoms outside of the breast that are related to 

metastasis, such as lumps in the armpits or neck, and non-specific symptoms like muscular or 

skeletal pain, fatigue, or weakness [37]. 

2.2.6 Treatment 

The treatment of a breast cancer depends on its attributes, both in terms of stage and subtype 

[38]. The primary treatment is surgery, whereby the affected breast is either entirely removed 

(mastectomy), or just the tumor and a margin around it (breast-conserving surgery). This 

removes the primary tumor and any small surrounding tumors. Afterwards, radiation therapy 

is standard—especially after breast-conserving surgery.  

Depending on which receptors test positive, targeted treatment is recommended. In the 

case of an ER+ tumor, an estrogen receptor modulator such as tamoxifen is offered. If there is 

positive staining for HER2, the monoclonal antibody Trastuzumab is used to block the 

receptors, and has been shown to be an effective treatment [39]. The purpose of these targeted 

treatments is to limit the probability of recurrence or spread by blocking the mechanisms the 

cancer (at least partly) depends on for its growth and proliferation.   

Additional treatment with chemotherapy is recommended if the risk of recurrence or 

additional spread is high (i.e. all subtypes but Luminal A), or if there is already confirmed 

lymph node metastasis (regional Stage II or higher), or if the patient is under 35 years of age 

[38]. 

2.3 MAMMOGRAPHY SCREENING 

The most prominent method for detecting and diagnosing breast cancer is called 

mammography. Mammography is an x-ray imaging technique for exposing breast cancer 

tumors. The breast is compressed between two paddles—one transparent which the x-rays 

can pass through, and one with a receptor for the x-rays. The compression is done to flatten 

and spread the breast tissue, hold the breast in place, and to reduce the x-ray dose required to 

penetrate the breast.  

Images are taken of each breast from two different views: the craniocaudal (CC) view 

taken horizontally from above; and the mediolateral oblique (MLO) view taken diagonally 

along a line from the armpit to the lower sternum. Figure 3 below shows examples taken 

from the MLO view. 

2.3.1 Screening Programmes 

To detect and treat breast cancer earlier, many countries have implemented nation-wide 

mammography screening programmes [2]. In these screening programmes, women within 
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certain age ranges are invited to attend a mammography at regular intervals (typically 1 to 3 

years apart). The estimated reduction in breast cancer mortality is around 20% for women 

invited to screening [40,41]. 

In Sweden, the first pilot study began in 1974 in Gävleborg, and nation-wide coverage was 

achieved in 1997 [42]. Today, women between ages 40 and 74 are invited to attend screening 

[43]. Depending on the county (landsting), the screening interval is between 18 and 24 

months. The participation rate in Stockholm county is approximately 75% [44]. 

2.3.2 Mammographic Density 

As previously described, the breast tissue can be classified into three different types: the 

epithelial tissue, consisting of the lobules and ducts responsible for lactation; stromal tissue, 

which is the connective tissue and vessels giving the breast its structure; and adipose tissue 

(fat cells). The breast tissue composition varies greatly between women, in terms of both the 

amount and the organization of the tissue [45]. 

In the context of mammography, the epithelial tissue and the stroma are often referred to 

together as fibroglandular tissue. The distinction between the fibroglandular tissue and the 

adipose tissue is important in mammography. This is because—like breast cancer tumors—

fibroglandular tissue is opaque to x-rays. If a woman has a high amount of such tissue, there 

is a risk that a tumor will be masked during mammography. 

The American College of Radiology has developed a system to classify a woman's breast 

tissue composition, called the BI-RADS (Breast Imaging-Reporting And Data System) score 

[46]. The classification is done through a qualitative assessment by radiologists. They divide 

mammographic density into four categories from the least to the most dense:  

a. The breast is almost entirely fatty, 

b. There are scattered areas of fibroglandular density, 

c. The breast is heterogeneously dense, which may obscure small masses, 

d. The breast is extremely dense, which lowers the sensitivity of mammography. 

A quantitative measure of mammographic density is percent density (PD) [47–49]. PD is 

an estimate of the proportion of dense tissue in the breast. The estimation is done with image 

analysis software by counting the proportion of bright pixels on the mammogram.  

In Figure 3 are two examples of mammograms taken from the MLO view with different 

mammographic densities.  

It is known that older women have, on average, lower mammographic density than 

younger women [50,51]. Longitudinal studies of mammographic density have shown a 

decrease in PD with age between 40 and 65 [52,53]. In addition to the age trend, there is a 

further reduction in density during menopause [54]. These changes are tied to the hormonal 

changes in the breast.  
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2.4 DETERMINANTS OF BREAST CANCER 

There are many factors which determine someone’s risk of developing breast cancer. Sex is 

the largest by far, as only 1% of breast cancers occur in men [55]. The risk also increases with 

age [56,57] as can be seen in Figure 2, and a high mammographic density has been shown to 

be a very important risk factor [54,58,59].  

A large group of risk factors are the various reproductive factors. Having a late age at 

menopause, or an early age at menarche will increase the risk of breast cancer [59–61]. Using 

hormone replacement therapy to treat menopausal symptoms is also known to increase the 

risk [59,61,62]. Breastfeeding, on the other hand, reduces the risk of breast cancer [59,62]. 

These factors are believed to be partly mediated by mammographic density [63,64] and the 

differences in the breast tissue during these events. 

Researchers have found that parity (childbirth) has a ''dual effect'' on breast cancer risk 

[65–68], where childbirth confers a short term increase to risk, believed to be due to 

hormonal changes during the pregnancy; but a long term protective effect, due to increased 

differentiation of the breast tissue [69,70]. The timing of the births is also a factor, as an older 

age at both first and last birth have been shown to increase the risk further, particularly for 

childbirths after age 30 [57,71]. 

Family history is a significant risk factor for breast cancer. Women who have a first-

degree relative with breast cancer approximately have a two-fold risk of breast cancer 

compared to those without; and there is a 50% higher risk among women with affected 

second-degree relatives [59,60,72]. This heritability of breast cancer can partly be explained 

Figure 3 Examples of mammograms (MLO view) of two breasts with different mammographic 

density. Left: low density corresponding to BI-RADS category a, with estimated PD of 8%. Right: 

high density corresponding to BI-RADS category c, with estimated PD of 42%. 
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by genetic mutations which are inherited. The most significant single mutations are of the 

BRCA1 and BRCA2 genes. These mutations are estimated to increase risk 10- to 20-fold, 

and account for 16% of familial breast cancer risk [73]. The estimated cumulative risk of 

breast cancer by age 70 is 71% for BRCA1 mutation carriers and 84% for BRCA2 mutation 

carriers [74]. It is estimated that 0.05% of people carry BRCA1 mutations and 0.07% carry 

BRCA2 mutations [75]. 

Genome-wide association studies (GWAS) have so far found over 180 other single 

nucleotide polymorphism (SNP) alleles which increase the risk of breast cancer [76,77]. 

These SNPs/mutations are more common in the population, but confer a much lower risk 

increase, and together account for an additional 18% of the familial risk [77].  

Since each individual SNP confers little risk by itself, they are often combined into a 

polygenic risk score (PRS) to determine an individual’s genetic risk due to a collection of 

SNPs [78,79]. One study based on a PRS with 77 SNPs found that women who scored in the 

top 1% had a three-fold increased risk compared to the median [80]. A more recent study [81] 

found a four-fold increased risk based on 313 SNPs. The study also found that family history 

of breast cancer was still strongly associated with risk even when adjusting for the PRS. 

Several lifestyle factors have been studied. Having a high BMI after menopause increases 

the risk of breast cancer [62,82,83], while regular physical activity reduces it [84]. Similarly 

to other cancers, smoking [85] and alcohol use [86,87] are known to increase risk. 

2.5 STATISTICAL MODELS OF BREAST CANCER 

The purpose of breast cancer natural history models is to use data available at diagnosis to 

study the latent processes leading to a breast cancer diagnosis and beyond. These types of 

models can then be further used to study the impact of screening on, for example, breast 

cancer mortality at a population level. The type of data that these models can be used to 

analyze may include e.g. the age of the patient, the incidence and mortality over a calendar 

period, tumor characteristics (e.g. stage or type), and the mode of detection (during screening 

or symptomatically between/outside screening rounds). Although these models typically take 

as input, information limited to that collected at diagnosis (or during follow-up), one can—on 

a population level—estimate latent, dynamic processes. 

2.5.1 Multi-state Markov models 

The multi-state Markov model is historically the most common likelihood-based approach for 

modelling the natural history of breast cancer [88–91]. The most basic model consists of three 

states and is illustrated in Figure 4. The first state is having no detectable cancer. This 

includes both being cancer-free and having a tumor which is not (yet) detectable by 

(mammography) screening. Tumors then transition into the pre-clinical state. During this 

state, if the woman is screened for breast cancer, there is a probability that the tumor will be 

found. If it is not screen-detected in time, the tumor will transition to the third state, which is 

clinical cancer. This means that the tumor is detected clinically by displaying symptoms. 
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Since it is a Markov model, the state transition times are assumed to be exponentially 

distributed. An important quantity in multi-state Markov models is the mean sojourn time 

(MST), which is the average time spent in the pre-clinical state, which is the reciprocal of the 

transition rate from the pre-clinical state to the clinical state (for exponentially distributed 

times in the pre-clinical state).  

The basic 3-state model can be extended in various ways to include additional states. 

Several researchers have modelled lymph node metastasis by including states for pre-clinical 

and clinical lymph node positive tumors [90,92,93]. Tan et al. [94] included DCIS as a 

possible precursor to invasive cancer. They also modelled tumor size using states and 

transitions for different size intervals. This resulted in a 13-state Markov model.  

Another way of extending the Markov model is by regressing the state transition rates. For 

example, Chiu et al. [95] used a 3-state model to study the effect of mammographic density 

on both the pre-clinical incidence rate and the MST. Wu et al. [96] studied mammographic 

density, BMI, and age at first birth in the same way, and also included genetic factors (such 

as BRCA1/2 mutations) in the pre-clinical rate; and tumor markers in the MST. Taghipour et 

al. [97] studied the effect of age, menstruation length, and number of births on the pre-clinical 

rate. They also included death from other causes as a 4th state, with possible transitions from 

the 1st and 2nd state.  

Multi-state Markov models have been used extensively to assess breast cancer screening. 

Wu et al. [91] for example combined a 5-state lymph node model with a microsimulation 

study to compare different screening intervals and the risk of lymph node spread. Schousboe 

et al. [5] used a Markov microsimulation model to explore the cost-effectiveness of 

personalized screening intervals based on age, mammographic density, and family history. 

 

Figure 4: An illustration of the basic 3-state Markov model for breast cancer. The states are (1) no 

detectable cancer; (2) pre-clinical cancer detectable by screening, and (3) clinical cancer, detected 

through symptoms. 

2.5.2 Continuous growth models 

The continuous growth models for breast cancer represent an alternative approach to multi-

state Markov models for studying the natural history of the disease. These models can be 

divided into different components, each representing separate (biological) processes. The four 

main components to consider are: i) the tumor onset, where the tumor is first formed 

(carcinogenesis); ii) the growth of the tumor according to some specified growth function, 

with an individual growth rate sometimes modelled as a random effect; iii) the process for 

symptomatic/clinical detection of the tumor; and iv) the possible early detection through 

mammography screening. Other processes which can be featured in natural history models 
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include lymph node spread and distant metastasis, the promotion from in situ to invasive 

cancer, treatment, recurrence, and death.  

Different models in the literature have included some selection of these components. For 

example, Bartoszyński et al. [98] defined a model for onset, growth, and symptomatic 

detection for a population without screening; Weedon-Fekjær et al. [99] modelled growth and 

sensitivity, but combined onset and symptomatic detection into a single process for breast 

cancer incidence between screenings; and Abrahamsson & Humphreys [100] modelled 

growth, symptomatic detection and screening sensitivity using the observed tumor sizes at 

diagnosis. Instead of a component for onset, they used a stable disease assumption, applicable 

to their cases-only design [101].  

2.5.2.1 Onset/Carcinogenesis 

The first event in the natural history of breast cancer—from the continuous growth point of 

view—is the onset of the tumor. The first mathematical model of cancer onset/carcinogenesis 

was proposed by Armitage & Doll [102] in 1954. They observed that cancer mortality rates 

looked approximately linear with age on the log-log scale, indicating a power law function 

for the rates. They postulated that a series of k mutations or events leads to the formation of 

cancer. Assuming that the events can occur in any order, they derived the hazard function at 

age t: 

ℎ(𝑡) ≈
𝑝1𝑝2…𝑝𝑘𝑡

𝑘−1

(𝑘−1)!
, 

where the rate of each respective event is 𝑝1𝑝2…𝑝𝑘. This hazard leads to the familiar 

Weibull-distribution for age at onset [103].  

Armitage & Doll [102] found that a slope k-1 of magnitude between 5 and 6 gave a good 

fit to most cancers, except for the female reproductive cancers (breast, cervix, uterus), where 

there was a noticeable reduction after age 50.  

A different model for onset is the Moolgavkar-Venson-Knudson (MVK) clonal expansion 

model [104–106]. Based on the Knudson two-hit hypothesis [107], it uses a Poisson process 

to model a cell population's transition from healthy to malignant, through an intermediate 

step. An illustration of the MVK model can be seen in Figure 5. From the healthy cell 

population, cells will experience the first event (at the rate 𝜈), creating ''intermediate'' cells. 

An intermediate cell can then either a) die or differentiate (at the rate 𝛽); b) divide into two 

intermediate cells (at the rate 𝛼̃); or c) divide into one intermediate and one malignant cell (at 

the rate 𝜇). A malignant cell is then assumed to keep proliferating, eventually forming a 

tumor. Cancer onset is then defined as the time when the first malignant cell is formed. 
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Figure 5: An illustration of the Moolgavkar-Venson-Knudson clonal expansion model. Onset is 

defined as the time when the first malignant cell is formed. 

The problem with the MVK model is that its four parameters are not jointly identifiable 

from time-to-event data (e.g. incidence data). However, Heidenreich et al. [108] found a 

parameterization into three parameters which is: 

𝐴 =
1

2
[(𝛽 + 𝜇 − 𝛼̃) − √(𝛽 + 𝜇 − 𝛼̃)

2
+ 4𝛼̃𝜇],  

𝐵 =
1

2
[(𝛽 + 𝜇 − 𝛼̃) + √(𝛽 + 𝜇 − 𝛼̃)

2
+ 4𝛼̃𝜇],  

𝛿 =
𝜈

𝛼̃
. 

With these parameters, the hazard function for onset is given by 

ℎ𝑇(𝑡) =
𝛿𝐴𝐵(1 − 𝑒(𝐵−𝐴)𝑡)

𝐵𝑒(𝐵−𝐴)𝑡 − 𝐴
,  

and the survival function is 

𝐺𝑇(𝑡) = 𝑃(𝑇 > 𝑡) = [
(𝐵 − 𝐴)𝑒𝐵𝑡

𝐵𝑒(𝐵−𝐴)𝑡 − 𝐴
]

𝛿

.  

2.5.2.2 Tumor growth 

Once breast cancer onset occurs, the cancer cells will proliferate, and the tumor will grow 

larger and larger. The simplest model for tumor growth is the exponential function given by 

𝑉𝑒𝑥𝑝(𝑥) = 𝑣0𝑒
𝜌𝑥 

at time x after onset, with a growth rate parameter 𝜌 > 0 and starting volume of 𝑣0 (usually a 

single cell, 10−6mm3). This model assumes a constant division rate for all tumour cells. The 

exponential model has been widely used to model breast cancer tumor growth 

[98,100,109,110].  

The next tumor growth model is the Gompertz model. While it was first developed for 

modelling mortality in life insurance, it was later used by A.K. Laird [111] to model tumor 

cell proliferation. Notably, it has been used by L. Norton to specifically model breast cancer 
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tumor growth [112–114]. This model differs from the exponential in that the growth rate 

decelerates over time, asymptotically reaching a maximum volume. The growth function is 

defined as 

𝑉𝐺𝑧(𝑥) = 𝑣0 exp [ln (
𝑣𝑚𝑎𝑥
𝑣0

) (1 − 𝑒−𝜌𝑥)] , 

where 𝑣𝑚𝑎𝑥 is the asymptotic maximum tumor volume. Norton [113] estimated 𝑣𝑚𝑎𝑥 to have 

an approximate value of 106mm3 (corresponding to 118mm in diameter).  

Another model is a generalized logistic growth model, introduced for modelling breast 

cancer growth by Spratt et al. [115,116]. Like the Gompertz model, the growth rate 

decelerates until it reaches an asymptotic size 𝑣𝑚𝑎𝑥. However, the deceleration begins later 

than for the Gompertz function. The model is represented by the formula 

𝑉𝑔𝑙(𝑥) = 𝑣𝑚𝑎𝑥 [1 + ((
𝑣𝑚𝑎𝑥
𝑣0

)
𝛽

− 1) 𝑒−𝛽𝜌𝑥]

−1/𝛽

, 

with an additional parameter 𝛽 > 0. The parameter β determines the growth deceleration, and 

the deceleration is greater for smaller values of β. Spratt et al. [115,116] found that the values 

𝛽 = 1/4 and 𝑣𝑚𝑎𝑥 = 1.1 × 10
6mm3 gave the best fit to their breast cancer data. The same 

parameter values were later used by Weedon-Fekjær et al. [99,117] to analyze screening data.  

Norton [113] found that the Gompertz model fitted breast cancer data better than the 

exponential function. However, his analysis was based on data from women who had already 

displayed symptoms and declined treatment [118]. Fournier et al. [119] analyzed breast 

cancers in a cohort of women screened at a high frequency. They failed to observe the 

dampening effect in a Gompertzian growth model, and found the growth rates to be 

approximately constant, which supports the exponential model. Talkington & Durrett [120] 

compared the different tumor growth models on data from multiple cancer sites, and also 

concluded that an exponential growth model is a better fit specifically for breast cancer tumor 

growth. 

To account for the great variation in growth between individual tumors, one can model the 

tumor growth rate ρ as a random effect—a sample from some parametric distribution.  

One distribution that has been used for growth rate random effects is the log-normal 

distribution. It is the distribution of choice in conjunction with either the Gompertzian [113] 

or generalized logistic [99,116] tumor growth models. The growth rate 𝜌 then has the 

probability density function 

𝑓𝐿𝑁(𝜌) =
1

𝜌𝜎√2𝜋
exp(−

(ln 𝜌 − 𝜇)2

2𝜎2
). 
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In the exponential growth model, it is more common to model the inverse growth rate 𝑟 =

1/𝜌, and to use a Gamma distribution as the random effects component [109,110,121]. The 

probability density function for R is then 

𝑓𝛾(𝑟) =
𝑏𝑎

Γ(𝑎)
𝑟𝑎−1𝑒−𝑏𝑟 . 

The inverse growth rate 𝑅 = 𝑟 is related to the tumor volume doubling time through 

𝐷𝑜𝑢𝑏𝑙𝑖𝑛𝑔𝑇𝑖𝑚𝑒 = ln(2)𝑟. 

2.5.2.3 Symptomatic detection 

Given enough time, a tumor will progress to a point where it will begin to display symptoms. 

For continuous tumor growth models the time U' from onset to symptomatic detection has 

been modelled [98,100,109,110] by using a continuous hazard function proportional to the 

current tumor volume. If U’ is the time to symptomatic detection, then  

𝑃(𝑈′ ∈ (𝑢, 𝑢 + Δ𝑢]| 𝑈′ > 𝑢) = 𝜂𝑉(𝑢)Δ𝑢 + 𝑜(Δ𝑢), 

for a hazard rate coefficient 𝜂 > 0. Under this model, faster growing tumors surface sooner 

than slow growing tumors, on average.   

Out of the tumor growth functions described above, only the exponential growth gives a 

closed-form expression for the survival function of U'. If we assume an exponential tumor 

growth, the survival function for symptomatic detection—given the inverse growth rate r—is  

𝑃(𝑈′ > 𝑢|𝑟) = exp (−𝜂𝑟𝑣0(𝑒
𝑢/𝑟 − 1)). 

Under these assumptions, the tumor volume at symptomatic detection follows a translated 

exponential distribution, with mean (𝜂𝑟)−1 and offset 𝑣0 [110]. If we also assume that the 

inverse growth rate is gamma-distributed, the marginal tumor volume at symptomatic 

detection follows a Pareto distribution [109]. 

2.5.2.4 Screening sensitivity 

Between the times of breast cancer onset and symptomatic detection, there is an opportunity 

to detect the tumor early through mammography screening.  

Hanin & Yakovlev [109] proposed—for continuous growth models—a model for a tumor 

being detected at mammography screening. They assumed the probability of a tumor of size v 

being detected at screening to be 

𝑃(𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛|𝑣) = 1 − 𝑒−𝛽𝑣, 

for 𝛽 > 0, where v is the (latent) tumor volume. This is a probability which is similar to 

the symptomatic detection model above in that it is also proportional to the current tumor 

volume. 
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An alternative model was later used by Weedon-Fekjær et al. [99], who instead modelled 

the screening test sensitivity (STS) at the time of screening as a logistic function dependent 

on the (latent) tumor diameter. Abrahamsson & Humphreys [100] later extended this model 

to include the woman's mammographic density. 

2.5.3 The CISNET consortium 

In 2000, the US National Cancer Institute set up a consortium for studying the observed 

breast cancer mortality trends from 1975 to 2000 among U.S. women, and for estimating the 

effects of screening and adjuvant treatment. They named it the Cancer Intervention and 

Surveillance Network (CISNET). It consists of six research groups from different 

universities. Each has developed a different natural history model. One is an analytical multi-

state model, but the others use microsimulation approaches with different model assumptions. 

The six research groups, and their respective natural history models, are: 

• Dana-Farber Cancer Institute: The “DFCI”' model is a 6-state Markov model, which 

differentiates between DCIS and invasive breast cancer, and includes breast cancer 

death. It is the only model which analytically estimates survival and overdiagnosis. [122] 

• Erasmus MC: The ''MISCAN-Fadia'' model is a continuous growth microsimulation 

model. It assumes exponential tumor growth, and simulates tumour diameter thresholds 

at which symptomatic detection, screen detection, metastasis, and breast cancer death 

occur. [4] 

• Georgetown University/Albert Einstein College of Medicine: The ''Spectrum/G-E'' 

model is a multi-state microsimulation model. Starting from the SEER incidence data, a 

gamma-distributed sojourn time is sampled and subtracted to determine the pre-clinical 

phase. The screening sensitivity component depends on age, mammographic density and 

screening round. [123] 

• MD Anderson Cancer Center: The ''MDACC'' model is a microsimulation model, 

which uses approximate Bayesian computation to estimate incidence trends, stage shifts 

due to screening, and the effects of different treatments. [124] 

• Stanford University: The ''BCOS'' model is a continuous growth microsimulation 

model. It assumes exponential tumour growth with gamma-distributed growth rates. The 

hazards of symptomatic detection and metastatic spread are proportional to the tumour 

volume. [125] 

• University of Wisconsin: The ''UWBCS'' model is a discrete-event simulation model 

using 6-month intervals. It uses a Gompertz function for tumour growth, with an 

individual gamma-distributed growth rate. Screening sensitivity is assumed to be a 

function of size interval, age, mammographic density, and screening round. [126]  

These models have been used, in a joint effort, to estimate the effects of screening and 

treatment on mortality [127]. More recently, the effects have been estimated based on 

molecular subtypes (ER and HER2 status) [3].  
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2.6 PREDICTION MODELS FOR BREAST CANCER 

2.6.1 Relative Risk Models 

Many statistical models for predicting the future risk of breast cancer exist. The arguably 

most well-known was introduced in 1989 by Gail et al. [128], and is commonly referred to as 

the Gail model.  

The principle behind the Gail model is to first estimate relative risks/odds ratios of the risk 

factors to be included in the model using methods such as logistic regression, Cox 

proportional hazards models, or conditional linear regression. In the original model, a logistic 

regression model was used on the Women’s CARE data [129] to estimate odds ratios of 

family history, age at menarche, age at first birth, and previous breast biopsies [128,130].  

The estimated relative risks are then used to infer age-specific baseline hazard rates in 

external population data (i.e. the SEER data in the original model). Individual risk predictions 

in the larger population can then be made using the baseline hazard function and the 

individual risk factors. The US National Cancer Institute has implemented the original Gail 

model as an online tool called the Breast Cancer Risk Assessment Tool (BCRAT) [131]. 

The Gail model has also been extended to feature additional risk factors, such as HRT use, 

BMI and lifestyle factors [132], mammographic density [133], and PRS [134]. 

The Breast Cancer Surveillance Consortium (BCSC) has created an alternative risk 

prediction tool [135] based on the Gail model [136–138]. The major difference to BCRAT is 

the emphasis on mammographic density, where relative risks of each BI-RADS category has 

been estimated with a Cox proportional hazards model using the BCSC data. The other 

incorporated risk factors are family history and benign breast disease [137,139]. Some studies 

have also incorporated a PRS [138,140]. 

2.6.2 Pedigree Models 

Another type of breast cancer risk prediction model focuses on the genetic risk of breast 

cancer—specifically the risk surrounding BRCA1 and BRCA2 mutation carriership. Two 

models, BRCAPRO [141,142] and BOADICEA (Breast and Ovarian Analysis of Disease 

Incidence and Carrier Estimation Algorithm) [143,144] use nearly identical approaches. Each 

starts by using detailed family histories of both breast cancer and ovarian cancer including the 

relation, cancer history, and age at diagnosis. The family trees (pedigrees) are then used to 

estimate the probability of carrying BRCA1, BRCA2, or carrying neither. The probability of 

having a specific BRCA phenotype given the observed family history is calculated using 

Bayes’ theorem and the population prevalence of each phenotype.  

The BOADICEA model also includes a random effect component in the proportional 

hazard, representing an unmeasured genetic risk, which now can be viewed as a PRS [145].  



 

19 

If the BRCA phenotype is known, the corresponding age-specific incidence rates are used 

for the risk prediction. Otherwise, the prediction is based on weighing the incidence rates of 

each phenotype based on the predicted probabilities of belonging to each phenotype.  

Arguably the second most well-known breast cancer prediction model is the Tyrer-

Cuzick model [146]. Starting from the same premise as BRCAPRO and BOADICEA, the 

Tyrer-Cuzick model uses the same detailed family histories and incidence rates based on 

BRCA phenotype, but adds an additional hypothetical gene (with lower penetrance) which is 

also inferred from the family history. The model then uses relative risks for the other risk 

factors (similarly to the Gail model). 

The Tyrer-Cuzick model developed by its original authors currently operates under the 

name International Breast Intervention Study (IBIS) Breast Cancer Risk Evaluation Tool 

[147]. The IBIS risk model uses the detailed family history, age at menarche, age at first 

birth, age at menopause, height, BMI, benign breast disease history, HRT use, and 

mammographic density [148,149]. 

2.6.3 The Rosner-Colditz model 

A third approach to risk prediction is taken by the Rosner-Colditz model [150]. The model 

is a non-linear Poisson regression model where the log-incidence depends on the reproductive 

states of menarche, first childbirth, each subsequent childbirth, and menopause. The concept 

is based on Pike’s model for breast cancer incidence [151], where a woman accumulates 

“tissue age” at a rate depending on which reproductive state she is in. With each reproductive 

event, the rate decreases [150]. This is an alternative way of incorporating the protective 

effects of e.g. parity, late menarche, and early menopause. If we know a woman’s precise 

information on when these reproductive events occur, her current “tissue age” can be 

determined, and her future risk can be predicted.  

The original Rosner-Colditz model also included other risk factors in its log-incidence, 

such as family history, benign breast disease history, HRT use, BMI, and alcohol use 

[150,152]. Other risk factors have been studied, such as mammographic density and PRS 

[134]. Since the incidence is time-dependent, these risk factors can be time-dependent as well 

when such data is available (e.g. precise period of HRT use or pre- and postmenopausal 

BMI). The model has also been adapted to make subtype-specific risk predictions [153,154]. 
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3 RESEARCH AIMS 

This thesis set out to do the following: 

• Develop a natural history model for breast cancer that can make use of the wealth of 

information available in detailed screening cohorts. This thesis was inspired by a 

previous natural history model developed for modeling tumor size distributions in a 

cases-only study design. With a cohort, there was an opportunity to study the onset of 

breast cancer, and to model both the patient age and tumor size at detection.  

• Provide better understanding of the underlying processes and events that occur before 

a breast cancer is detected. In particular, to study—on a population level—the onset, 

growth, and detectability of breast cancer at mammography. It was also of interest to 

see how well-established risk factors, known to influence the final incidence of breast 

cancer, can be separated into factors for the latent processes leading up to the 

incidence.  

• Understand the interplay between the processes involved, and how mammography 

screening shifts the time of detection and changes the outcome. In doing so, we can 

study the effect screening attendance has on an individual level, and—before 

commiting resources to a clinical trial—we can glimpse at the effects of changing the 

screening patterns. 
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4 MATERIALS AND METHODS 

4.1 DATA SOURCES 

4.1.1 KARMA 

The data featured in this thesis is the Karolinska Mammography Project for Risk Prediction 

of Breast Cancer (KARMA) [155]. KARMA is a Swedish prospective breast cancer 

screening cohort. Women attending their mammography screening at four hospitals 

(Stockholm South General, Helsingborg, Skåne University, and Landskrona) between 

January 2011 and March 2013 were invited to participate. 70 877 out of the 210 233 invited 

women joined.  

At baseline, the participants answered a detailed web-based questionnaire related to breast 

cancer risk factors such as reproductive history and various lifestyle factors. The images 

taken at screening are continuously collected and analyzed as the women continue to attend 

the screening programme. The women are also continuously matched to national breast 

cancer registry data to update their disease status. Blood samples were also collected, and as a 

part of the Breast Cancer Association Consortium, approximately 20 000 women have been 

genotyped. 

4.2 STATISTICAL METHODS 

This thesis centers around the development and application of a new statistical model for the 

natural history of breast cancer. To avoid repetition, the model is not described in detail here–

it has already been implicitly introduced in Section 2.5.2, and is a significant part of the 

results of Study I (Section 5.1). Please refer to these sections or any of the four studies for the 

model description. Here, a recapitulation is provided of a few important concepts and 

formulae that are helpful for understanding the model as it is presented in the studies.  

4.2.1 Conditional Probabilities 

Let X and Y be two random variables with potential outcomes in the respective domains 

𝐷𝑋 and 𝐷𝑌. We denote the joint probability of 𝑋 = 𝑥 and 𝑌 = 𝑦  as 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦). The 

conditional probability of Y given X, denoted 𝑃(𝑌|𝑋), is defined as  

𝑃(𝑌 = 𝑦|𝑋 = 𝑥) =
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)
=
𝑃(𝑋 = 𝑥|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)
,  

where in the second equality we have used the first equality and the symmetry of the joint 

probability. This is also known as Bayes’ Theorem.  

We can get the marginal probability of 𝑋 = 𝑥 from the joint probability by summing over 

all values of 𝐷𝑌: 

𝑃(𝑋 = 𝑥) =  ∑ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑦∈𝐷𝑌

= ∑ 𝑃(𝑋 = 𝑥|𝑌 = 𝑦)

𝑦∈𝐷𝑌

𝑃(𝑌 = 𝑦). 
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If Y is a continuous variable and its domain 𝐷𝑌 is an interval (𝑎, 𝑏), then the summation 

turns into an integral over the probability density function of Y, 𝑓𝑌(𝑦): 

𝑃(𝑋 = 𝑥) = ∫ 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)d𝑦
𝑏

𝑎

= ∫ 𝑃(𝑋 = 𝑥|𝑌 = 𝑦)𝑓𝑦(𝑦)d𝑦.
𝑏

𝑎

 

In this thesis, the notation 𝑃(𝑌 = 𝑦) is used for both discrete and continuous variables. The 

variable type is implied from the context in which the variable is introduced.  

These concepts can be collected into the following set of useful equalities: 

𝑃(𝑌 = 𝑦|𝑋 = 𝑥) =
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)
=
𝑃(𝑋 = 𝑥|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)

=
𝑃(𝑋 = 𝑥|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

∑ 𝑃(𝑋 = 𝑥|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)𝑦∈𝐷𝑌

. 

4.2.2 Left Truncation 

Truncation is a type of bias that occurs when sampling, whereby some outcomes of a random 

variable Y are not included. Left truncation specifically refers to the exclusion of smaller 

values (from the left side of the random variable’s domain). Instead of observing Y with 

probability function 𝑃(𝑌 = 𝑦) we observe the conditional probability of Y given that 𝑌 > 𝑐 

with probability function 𝑃(𝑌 = 𝑦|𝑌 > 𝑐) for some truncation threshold c.  

Left truncation often occurs when a variable relates to time. The example which is relevant 

to this thesis is that recruitment for the KARMA study was restricted to a limited period of 

time, and to women attending screening. The data was also restricted to the first breast cancer 

diagnosis, which had to occur after being recruited. This meant that women under the age of 

40 (who were not yet eligible for screening), and women diagnosed with breast cancer before 

the recruitment period were not included in the study. There is therefore left truncation with 

respect to the age at detection in the data, since the age at detection is observed conditional on 

not being detected before the study started.  

4.2.3 Maximum Likelihood Estimation 

Assume that we have a set of random variables 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛) with a joint probability 

function which is known except for a set/vector of k parameters 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑘). We can 

represent this by writing 𝑝(𝑿; 𝜽). The task is to use the observed outcome 𝑿 = 𝒙 to estimate 

the parameter vector 𝜽.  

For each possible 𝜽, the likelihood (joint probability) of the observed outcome 𝑿 = 𝒙 will 

be different. Instead of viewing the joint probability as a function of x, we can therefore 

consider it as a function of 𝜽. We call this the likelihood function of 𝜽, defined as 

𝐿(𝜽; 𝒙) = 𝑝(𝒙; 𝜽). 
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According to the maximum likelihood principle [156], the correct estimate of 𝜽 is the one 

that maximizes the likelihood function. The intuition for this is that we should assume that 

the observed outcome 𝑿 = 𝒙 is the most common of all the possible outcomes (at least on 

average).  

The maximum likelihood estimate (MLE), 𝜽̂𝑀𝐿𝐸 is therefore the vector among the 

possible 𝜽 that maximizes the likelihood function, i.e. formally 

𝜽̂𝑀𝐿𝐸 = argmax
𝜽∈𝚯

𝐿(𝜽; 𝒙). 

For computational reasons, the natural logarithm of the likelihood function, 𝑙(𝜽; 𝒙) =

ln(𝐿(𝜽; 𝒙)), is usually maximized instead. The MLE is the same for both functions.  

4.2.3.1 Confidence Intervals 

It can be shown that the MLE 𝜽̂𝑀𝐿𝐸 asymptotically follows a multivariate normal distribution 

with mean 𝜽𝑀𝐿𝐸  and variance (−𝐻)−1, where 

𝐻 =
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is the hessian of the log-likelihood function with respect to 𝜽 evaluated at 𝜽𝑀𝐿𝐸 . For each 

𝜃𝑗 ∈ 𝜽, the standard error 𝑠𝑗 is given by √(−𝐻)𝑗,𝑗
−1, i.e. the square root of the j:th diagonal 

element of (−𝐻)−1. This can be used to construct an approximate 1 − 𝛼 confidence interval 

for each 𝜃𝑗: 

𝜃𝑗̂ − 𝑧(1 − 𝛼/2)𝑠𝑗 < 𝜃𝑗 < 𝜃𝑗̂ + 𝑧(1 − 𝛼/2)𝑠𝑗. 

4.2.4 Likelihood-Ratio Tests 

The likelihood ratio test is a goodness-of-fit comparison between two models 𝑀1 and 𝑀2 that 

are nested in the sense that they are both from the same family of model (e.g. linear 

regression models) and that the set of free/unknown parameters of one model is a proper 

subset of the free/unknown parameters in the other. If 𝑀1is nested in 𝑀2, then 𝑀2 has the 

parameter vector 𝜽𝟐 =  (𝜃1, … , 𝜃𝑘−𝑑, 𝜃𝑘−𝑑+1, … , 𝜃𝑘) with k free parameters, and 𝑀1 has the 

equivalent parameter vector 𝜽𝟏 = (𝜃1, … , 𝜃𝑘−𝑑, 𝑐1, … , 𝑐𝑑) with k-d free parameters and d 

fixed parameters. Being nested, the two models have the same likelihood function 𝐿(𝜽; 𝒙) 

with a parameter vector 𝜽 of length k.  
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The likelihood-ratio (LR) can be constructed by maximizing L twice—first over 𝜽𝟏 and then 

over 𝜽𝟐—and then taking the ratio of the two maximized likelihood values: 

𝐿𝑅 =
𝐿(𝜽̂1; 𝒙)

𝐿(𝜽̂2; 𝒙)
. 

It can be shown [157] that 

−2 ln(𝐿𝑅) = −2(𝑙(𝜽̂1; 𝒙) − 𝑙(𝜽̂2; 𝒙)) 

is approximately 𝜒2-distributed with d degrees of freedom. This statistic can therefore be 

used to test if 𝑀2 is a statistically better fit to the data than 𝑀1 (i.e. if the maximum likelihood 

value is significantly greater with 𝑀2 than with 𝑀1). In other words, we can test if adding 

𝜃𝑘−𝑑+1, 𝜃𝑘−𝑑+2, … , 𝜃𝑘 as free parameters to 𝑀1 provides a better fit than keeping them fixed 

at 𝑐1, 𝑐2, … , 𝑐𝑑.  

4.2.5 Receiver Operating Characteristics 

Let us assume that we have a binary classification problem, where there is some binary 

outcome (i.e. positive or negative) and a classifier/test attempting to correctly classify/predict 

the outcome. The positive outcomes that are correctly classified as positive are called true 

positives and the proportion of positive outcomes that are true positives is called the 

sensitivity of the classifier. Similarly, the negative outcomes correctly classified are called 

true negatives and the proportion of negative outcomes that are true negatives is referred to as 

the specificity.  

If the outcome of the classifier is continuous—like in a cancer risk prediction model where 

each person receives a predicted risk between 0-1—a threshold value is chosen, and those 

scoring above the threshold are classified positive, and those scoring below are classified 

negative.  
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The sensitivity and specificity are related in the sense that the more generous the threshold 

is for a positive classification, the number of true positives surely increases, but the number 

of true negatives also decreases. To study this behavior, one can plot the sensitivity against 

one minus the specificity for each possible threshold. This generates an increasing curve 

called the receiver operating characteristic (ROC) curve for the classifier [158]. This allows 

one to study the classifier’s performance at different thresholds, and to also compare different 

tests by comparing their ROC curves. To get an overall assessment of the performance over 

all thresholds, one can calculate the area-under-curve (AUC) of the ROC curves.  

A diagonal line from (0, 0) to (1, 1) is often included in the ROC curve as a reference. This 

line represents a test which classifies by pure chance (and has an AUC of 0.5).  
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5 RESULTS 

5.1 STUDY I 

Study I focused on defining the natural history model, deriving its likelihood function, and 

adjusting it for random left truncation. 

The model is a combination of four submodels, each representing a latent process in the 

natural history of breast cancer. Each of these submodels have already been briefly described 

in Section 2.5.2: 

Process Submodel Unknown parameters 

Onset/Carcinogenesis Moolgavkar-Venson-Knudson model. 𝐴, 𝐵, 𝛿 

Tumor growth Exponential growth function with gamma-

distributed inverse growth rates.  

𝑎, 𝑏 

Symptomatic 

detection 

Continuous hazard function proportional to 

the latent tumor volume. 

𝜂 

Screening sensitivity Logistic function of latent tumor diameter.  𝛽0, 𝛽𝑠 

The four submodels are combined into an individual likelihood per woman jointly based 

on the observed age at detection, observed tumor size at detection, and mode of detection 

(screening vs. symptomatic). In Study I, the expressions for these individual likelihood 

contributions were derived separately for screen-detected cases, symptomatically detected 

cases, and censored (no detected breast cancer). The individual likelihood for being censored 

could be used to make the adjustment for left truncation.  

Study I was published before we had access to the KARMA data. Therefore, parameter 

values were taken from another study combined with parameter values for the MVK onset 

model that calibrated well to the cumulative risk according to GLOBOCAN [159]. Since we 

now have the parameter estimates from KARMA, we can update the results of Study I with 

these new values.  

Figure 6 presents the conditional tumor doubling time distributions for screen-detected 

tumors (in a biennial screening programme between age 40-74) and interval-detected 

symptomatic tumors (between age 40-76). It shows the distributions both from simulating a 

data set (histograms) and from the conditional growth rate formulas derived in the study 

(lines). The median doubling time is now estimated to be 218 days for screen-detected cases 

(quartiles: 132 & 339 days), and 134 days for interval cases (quartiles: 71 & 248 days). The 
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purpose of this result is to show that slower tumors are more likely to be screen-detected than 

faster tumors, simply because they are present for more screening rounds on average. 

Figure 7 shows the time from onset to symptomatic detection (in the absence of 

screening), stratified by the age at detection. It shows boxplots from simulations, and the 

means from both simulations and formula. The mean tumor presence time for cancers 

detected at age 40 is 7.3 years, and for cancers detected at age 75 the mean time is 10.4 years. 

The purpose is to show that, even if the tumor growth rate (and thus tumor presence time) is 

assumed to be independent of the age at onset (as in this study), it is not independent of the 

age at detection. Faster growing tumors are detected sooner, so with time (age) the slower 

growing tumors accumulate in the population, and the tumors detected at older ages are found 

to be slower growing on average than at younger ages. 

  

Figure 6: Tumor volume doubling time distributions for screen-detected and interval cancers.  

Figure 7: The tumor presence times (from onset to detection in the absence of screening) stratified by 

age at detection.  
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5.2 STUDY II 

Study II focused on fitting the natural history model developed in Study I to a mammography 

screening cohort, i.e. KARMA. It also altered the model so that the inverse growth rate 

depended on the age at onset. From here on, the parameterization of the gamma-distributed 

inverse growth rates was changed to its mean-value parameterization with the new 

parameters 𝜃 = 𝑎/𝑏 and 𝜙 = 1/𝑎. This was done so that dependency of the inverse growth 

rate on the age at onset could be incorporated through the link ln 𝜃 = 𝜃0 + 𝜃1𝑡. The 

parameter estimates are found in Table 1.  

Parameter Estimate 95% CI 

A −7.22 ⋅ 10−2 (-3.73, -14.00) 

B 1.18 ⋅ 10−3  (0.65, 2.16) 

δ 9.52 ⋅ 10−2 (2.10, 43.19) 

ln(η) -8.82 (-8.98, -8.66) 

β0 -4.99  (-5.39, -4.60) 

βs 0.49 (0.43, 0.55) 

         β1 (PD) -2.09  (-2.93, -1.26) 

𝜙 0.56  (0.46, 0.68) 

exp(θ0) 0.52 (0.22, 1.23) 

exp(θ1) 1.011 (0.997, 1.025) 

Table 1: The parameter estimates from Study II, including the inverse growth rates dependency on the 

age at onset through 𝜃1.  

Figure 8 displays some results from estimating the tumor growth submodel. On the left 

side are the distributions of the tumor volume doubling times (calculated as ln 2 times the 

inverse growth rate) for tumors with onset at age 40 (top) and onset at age 60 (bottom). The 

estimated median tumor volume doubling time for tumors with onset at age 40 was 0.46 years 

or 167 days, and 0.56 years or 207 days for tumors with onset at age 60. The time it takes for 

a tumor growing at the median tumor doubling time to reach the median tumor size at 

detection (15mm) from 0.5mm is, according to the parameter estimates, 6.7 years for women 

with onset at age 40, and 8.4 years for women with onset at age 60.  

On the right-hand side of Figure 8 are estimated growth curves for tumors with different 

inverse growth rates, starting from 10mm at time 0, for tumors with onset at age 40 and 60 

respectively for the top and bottom panel. The lines represent the median (solid), 25th & 75th 

percentiles (dashed) and the 5th & 95th percentiles (dotted) of the inverse growth rate 

distributions.  

In addition to estimating the tumor growth, Study II produced estimates for the age at 

onset and screening sensitivity. The respective fitted distribution and function is presented in 

Figure 9. It was estimated that 13.4% of women experience breast cancer onset by age 75. 

The screening sensitivity for a 13mm tumor (the median size for screen-detected cases) was 

estimated to be 0.73 for women with a PD of 13%. The sensitivity reduced to 0.58 for women 

with a PD of 50%, and increased to 0.79 for women with a PD of 2%. 
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Figure 9: Left: The fitted distribution for the age at onset with 95% confidence region. Right: Fitted 

screening sensitivity functions for 2% and 50% PD. 

Figure 8: Fitted tumor volume doubling time distributions with 95% confidence regions (left) and 

tumor growth curves (right), for tumors with onset at age 40 (top) and onset at age 60 (bottom). 
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5.3 STUDY III 

Study III turned the model into a risk prediction model for breast cancer. It used the data from 

Study II as a training set and included an additional 26 months of follow-up as a validation 

set.  

The risk factors used in the prediction model—and which submodel they belonged to—are 

listed in Table 2. To include PD (which greatly changes with age) in the onset submodel 

based on only one measurement, we defined the age-specific quartile of PD (AQPD). The 

continuous variables were scaled to have mean 0 and standard deviation 1. In the table are 

also their estimated coefficients in their respective regressions, and their respective p-values.  

Parameter Estimate 95% CI exp(Est) p-value 

Age at onset     

AQPD = 1 0 Reference 1  

AQPD = 2 0.625 (0.426, 0.825) 1.869 <0.001 

AQPD = 3 0.764 (0.556, 0.972) 2.147 <0.001 

AQPD = 4 0.917 (0.696, 1.137) 2.501 <0.001 

Family history (1st deg.) 0.537 (0.382, 0.692) 1.711 <0.001 

Family history (2nd deg.) 0.381 (0.171, 0.590) 1.463 <0.001 

Benign breast disease  0.249 (0.110, 0.388) 1.283 <0.001 

HRT (current use) 0.504 (0.260, 0.748) 1.656 <0.001 

Parity (y/n) 0.012 (-0.178, 0.203) 1.012 0.899 

Age at 1st childbirth 0.097 (0.027, 0.167) 1.102 0.006 

Age at menarche -0.045 (-0.110, 0.020) 0.956 0.179 

BMI 0.181 (0.107, 0.254) 1.198 <0.001 

Tumor growth     

BMI -0.057 (-0.166, 0.052) 0.945 0.304 

Symptomatic detection     

Total breast area -0.336 (-0.469, -0.202) 0.715 <0.001 

Screening sensitivity     

Percent density -0.497 (-0.667, -0.328)  <0.001 

Table 2: List of the risk factors used in the prediction model, with parameter estimates.  

The overall risk prediction performance is summarized in Figure 10. The AUC for the 

ROC was 0.64. The mean predicted risk 0.056 while the observed incidence was 0.060 over 

the 26-month validation follow-up. When separating the predicted risks by observed 

outcome, the cases had an average predicted risk of 0.0075 and non-cases had 0.0056. Cases 

had on average 1.33 times the predicted risk of the non-cases. 

In addition to predicting the overall risk of breast cancer detection, the model can make 

more specific predictions. This study derived formulas for making predictions for 

experiencing onset (including currently having an undetected tumor), detecting a tumor at the 
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next screening or in the interval between, and the probability of having a tumor detected 

below a certain size depending on screening attendance.  

Figure 11 displays the predicted probabilities of a detected tumor within the 26-month 

validation follow-up being less than 10mm in diameter, comparing the probabilities if the 

women attend their next screening or not. The women were separated into groups according 

to their AQPD. Overall, the average probability went up from 0.09 if not attending, to 0.22 if 

attending the screening round. For the lowest AQPD, the probabilities were 0.08 versus 0.26, 

and for the highest AQPD it was 0.10 versus 0.17.  

Figure 11: The predicted probabilities of a tumor detected within 26 months being less than 10mm 

in diameter, if attending the next screening (red), or not attending (grey). One panel for each 

category of AQPD. 

Figure 10: Performance of the risk prediction. Left: ROC curve. Right: Distributions of the predicted 

risks, separated by the observed case status.  
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5.4 STUDY IV 

This study delved deeper into the mammography screening sensitivity. Several factors at the 

mammography determine the final image result. The study investigated the effects that some 

of these acquisition parameters—namely the compressed breast thickness (CBT), breast 

compression pressure (CP) and total x-ray exposure (EXP)—could have on the screening 

sensitivity. The resulting parameter estimates of the screening sensitivity submodel are found 

in Table 3. It was found that, in addition to percent density (PD), CBT had a statistically 

significant effect, with greater thickness being associated with a reduced screening 

sensitivity.  

Parameter Estimate 95% CI Scaled p-value 

𝛽0 (intercept) -2.948 (-4.184, -1.711)   

𝛽𝑠 0.522 (0.461, 0.582)   

PD -3.522 (-4.620, -2.425) -0.660 <0.001 

CBT -0.272 (-0.423, -0.121) -0.340 <0.001 

CP -0.135 (-0.760, 0.490) -0.052 0.672 

EXP -0.004 (-0.010, 0.003) -0.093 0.240 

Table 3: The estimated parameters for mammography screening sensitivity.  

Figure 12 compares the estimated screening sensitivity functions when the model includes 

both PD and CBT versus only including PD (as in Study II and Study III). We can see that 

the addition of CBT helps separate women with low and high screening sensitivity.  

The study also shows examples of mammograms with estimated sensitivities and how 

they change when factoring in CBT. 

 

Figure 12: The estimated screening sensitivity functions for different percentiles of PD, comparing 

models with and without CBT. 
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6 DISCUSSION AND FUTURE PERSPECTIVES 

The work presented in this thesis should be thought of as a beginning. The foundations of a 

natural history model have been laid out, and examples of how it could be useful have been 

presented. What follows are some thoughts on what can be improved, and where to go from 

here.  

We recognize that the model in the thesis relies on strong parametric assumptions. These 

strong assumptions are necessary in order to piece together the underlying natural history 

based on only data from diagnosis. Our confidence in the assumptions is strengthened by the 

biological motivations behind them. The MVK model for onset has a direct cancer-based 

origin. For the tumor growth, the exponential function has been shown in vivo to hold 

reasonably [119,120], and the median tumor doubling times estimated in this thesis are close 

to those estimated in in vivo studies [119,160]. Multi-state Markov models, for example, also 

rely on strong assumptions, but do not have the same biological justifications behind them.  

The model featured in this thesis uses the Moolgavkar-Venson-Knudson model for 

carcinogenesis as its onset component. It is based on the Knudson two-hit hypothesis [107] 

which is in turn based on the apparent heritability of retinoblastoma. While it is now known 

that the two-event hypothesis is an old and outdated concept, what we were primarily after 

was a flexible function that could resemble a time-shifted breast cancer incidence curve. The 

MVK model gave us just that, while also having a connection to cancer biology. It also has 

closed expressions for its hazard, survival, and density functions.  

One could conceivably develop an alternative onset submodel which requires more than 

two events. The Armitage-Doll model of carcinogenesis [99] can handle any number of 

events, but has been shown to fit poorly to breast and ovarian cancer incidence data [102]. 

Currently, ten major ‘hallmarks’ of cancer have been identified [161], and thus a model with 

up to ten events using the same construction as the MVK model could be motivated. But its 

utility is questionable when the focus is on studying the post-onset natural history or when 

studying breast cancer screening.  

The submodel that we identify as needing improvement the most is the one for 

symptomatic detection. It has been borrowed from previous natural history models, and has a 

few convenient properties when combined with the exponential growth and gamma random 

effects [110]. For example, if we view the volume as being proportional to the third power of 

the diameter, one could experiment with different powers. A more general relationship 

between the hazard rate and tumor size could involve e.g. polynomials or cubic splines. 

Further developments to this submodel could lead to better calibration to the observed tumor 

sizes among symptomatically detected cases (Study II), and to better mode-specific risk 

predictions (Study III).  

To model cancer detection through mammography screening, we assumed that the 

screening sensitivity followed a logistic function of tumor diameter. In a study without 



 

38 

parametric assumptions for this kind of screening sensitivity, Wang et al. [162] found that the 

logistic function both underestimates the sensitivity for small tumor sizes and overestimates 

the sensitivity for large tumors—even suggesting that the sensitivity does not reach 1 until 

after tumors reach 70mm. An alternative function with these features could possibly replace 

the logistic function. We can anecdotally note that replacing the diameter in the logistic 

function with the logarithm of the diameter would behave in this way. However, this appears 

to lead to optimization issues in the model likelihood (when it is combined with the other 

submodels). More investigation is necessary.  

In its current state, the model only considers the primary tumor, i.e. the T-stage of the 

cancer. While the tumor size at diagnosis is associated with the prognosis of breast cancer 

[163,164], it is metastasis which predominantly determines the lethality of the disease. 

Isheden et al. [165] has developed a model for the number of affected lymph nodes at 

diagnosis, compatible with a continuous growth model for the primary tumor, which 

calibrated well to breast cancer case data. Recently, Gasparini & Humphreys [166] developed 

a similar model for the seeding and presence of distant metastasis. If these models for the 

spread of breast cancer can be successfully incorporated into the model presented in this 

thesis, stage-specific breast cancer predictions can be made. In Study III, we made 

predictions relating a specific stage-shift for the T-stage, namely about the tumor being less 

or greater than 10mm at detection, depending on whether or not a woman attended her next 

screening round. With these proposed extensions for regional and distant metastasis, other 

highly relevant types of stage-shifts of the N- and M-stages can be studied (e.g. shifting from 

M1 to M0 or from N1+ to N0). These types of stage-shifts are important when evaluating 

screening, and thus also important when considering risk-based screening. 

Another important prognostic factor that is absent from the model is the molecular subtype 

of the tumor. Currently, the model simply assumes that some of the heterogeneity in the 

(inverse) tumor growth rates is due to the tumors belonging to different subtypes, and that the 

subtypes can be considered to occupy different sections of the gamma distribution. The main 

reason why this has not yet been incorporated into the model is that the subtype is unknown 

for the latent tumors, which makes the implementation less straight-forward. One could 

conceivably treat each subtype as competing risks, where the first to lead to onset determines 

the subtype of the final tumor. If one is to use the MVK model for onset it is unclear if, for 

example, the subtypes should be incorporated as separate states within one MVK-like model, 

or if they should have separate MVK models. Also, breast cancers in younger women are 

associated with more aggressive subtypes at diagnosis [167,168], suggesting that the relative 

hazard rates for each subtype should differ with age.  

Once the onset for each subtype has been handled, the differences in aggressiveness 

between the subtypes can then be formalized in the model with different growth rate 

distributions for each (e.g. gamma distributions with different means). This could be done 

either for the four intrinsic subtypes (i.e. luminal A/B, HER2-enriched, and basal-like) or for 

specific receptor statuses (e.g. ER, PR, and HER2 status). 
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Menopausal status and the age when menopause occurs is a possible extension to the onset 

model which is ready to be implemented. In this case, the hazard function of the MVK model 

(specifically the parameter δ) could be extended to be piece-wise constant—either with a 

discontinuity point at 45 or 50 as a proxy for the menopausal transition, or at the specific age 

at menopause when it is known. The same idea can be extended to age at menarche and age 

at first birth (which are currently time-constant effects in the onset model). The resulting 

hazard function would then be reminiscent of Pike’s model [151] (which is also the basis for 

the Rosner-Colditz risk prediction model [150,169]), except for modeling onset rather than 

incidence. 

This thesis heavily featured mammographic percent density—both as a masking factor in 

the screening sensitivity, and as a risk factor for onset. It is well-known that PD greatly 

changes with age [52,53]. In Study II, we had only a single measurement of PD per woman at 

baseline. In Study III, where we wanted to use PD as a risk factor for breast cancer onset, we 

used the baseline measurement of PD and the age at baseline to define the age-specific 

quartile of PD (AQPD). Since we could not assume that the PD would be constant with age, 

we instead assumed that the assigned AQPD was constant with age (i.e. if a woman was in 

the top quartile at age 50 among the women aged 50, she was also in the top quartile at age 30 

among the women aged 30, etc.). In Study IV, we had access to multiple longitudinal 

measurements of PD (and the other acquisition parameters).  

To directly and properly solve the above issue with using PD in the onset submodel, we 

need information about PD from before the screening starts. With multiple longitudinal 

measurements of PD per woman, it might be viable to jointly model the individual PD with 

the rest of the model, for example by assuming it follows a Gompertz or generalized logistic 

function with individual random effects [53].  

Eriksson et al. [170] developed a breast cancer risk prediction model which included the 

presence of microcalcifications and masses in the breast as novel features. With these 

additions their prediction model managed to achieve an AUC of 0.71—a considerable 

improvement compared to alternatives without. This provides a possibility for more dynamic 

risk prediction, whereby findings at a negative mammogram can be used to inform the next 

screening interval or modality. It could therefore be of interest to jointly model the formation 

of these image features together with the natural history model in this thesis. This could for 

example be done through a Poisson process where the rate depends on the presence of and/or 

the size of the tumor.  

While we know of the reduction in breast cancer mortality due to screening, it is also 

known that the screen-detected breast cancers have less aggressive properties (e.g. lower 

grade, ER+, HER2-) on average than interval cancers detected between screening rounds 

[171,172]. This phenomenon relates to a type of bias called length bias, which refers to the 

length of time that cancer can be detected by screening (before being detected e.g. 

symptomatically). This time is, on average, longer for the less aggressive cancer subtypes, 

which allows for more opportunities to detect those cancer early, compared to more 
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aggressive subtypes. Thus, screen-detection is biased towards slow-growing and less 

aggressive tumors. Study I (see Figure 6 above) presented conditional tumor volume 

doubling time distributions for screen-detected and interval cancers. We could see a clear 

selection for slower growing tumors among the screen-detected cancers—merely by the 

mechanics from the assumptions made in the model. This shows that the model can be a 

useful tool when studying length bias and interval cancers.  

The main concern surrounding mammography screening programmes is overdiagnosis—

defined as the proportion of breast cancer cases which are screen-detected but would not have 

been detected without screening (symptomatically) in the woman’s lifetime, i.e. where the 

order of events is screen-detection, death from other causes, and then hypothetical 

symptomatic detection. These breast cancers are therefore not clinically relevant to the health 

of the woman, and the unnecessary treatment in these cases is only harmful.  

The model presented in this thesis jointly models both processes of symptomatic detection 

and mammography screen-detection. With it, a formula can be derived for the conditional 

distribution of the time to (would-be) symptomatic detection given age and tumor size at 

screen-detection (similarly to what has been done for a similar natural history model [173]). 

If this is combined with competing risks of death from other causes, this can lead to a 

formulation for the probability of overdiagnosis by considering the conditional probability 

that death occurs before would-be symptomatic detection, given age and tumor size at screen-

detection.  
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7 CONCLUSIONS 

This thesis has introduced a new biologically motivated natural history model for the onset, 

growth and detection of breast cancer. The model can incorporate a wide range of risk factors 

for breast cancer and can study their effects on specific processes in the natural history.  

The model is also capable of making risk predictions, with similar performance as the 

current roster of breast cancer risk prediction models. The model stands out in that it can also 

make more detailed predictions regarding the mode of detection and tumor size at detection. 

Since it models the underlying processes, it can even predict counterfactual events, such as 

the outcome depending on if a woman attends her next screening or not.  

By combining the natural history modelling framework with the risk prediction 

framework, and by further studying which factors determine the detectability of breast cancer 

at mammography, we might be able to make better informed assessments about 

mammography screening and decisions about individualized screening.  
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