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ABSTRACT 

Amyotrophic lateral sclerosis (ALS) is a relatively rare but incurable and relentlessly 

progressive neurodegenerative disease, characterized by motor neuron loss in the brain and 

spinal cord. Majority of patients die within 3-5 years after symptom onset, commonly due to 

respiratory failure. Until now, except for older age, male sex, family history, and specific 

genetic mutations, other risk factors of ALS remain largely unknown. Alterations in energy 

metabolism and neuroinflammation are known features of ALS, which can be directly or 

indirectly modulated by human gut microbiome and microbial metabolites. Gut microbiome 

and microbial metabolites have also been suggested to have a role in neurodegenerative disease 

through modulating the process of protein misfolding and aggregations and subsequently 

exacerbate disease phenotype. Exploring the association of biomedical factors related to gut 

microbiome alteration with the risk and prognosis of ALS might therefore help to elucidate the 

etiology of ALS. Further, as the survival of patients with ALS varies greatly, ranging from 

several months to more than 10 years, identification of prognostic predictors that are routinely 

measured in clinical practice might help to supervise treatment and improve patient care.  

The first three studies focused on the etiology of ALS.  

Study I examined the association between previous gastrointestinal (GI) biopsy of normal 

mucosa and non-specific inflammation and risk of ALS in a matched cohort study based on 

ESPRESSO (Epidemiology Strengthened by histoPathology Reports in Sweden). After 

excluding the first two years of follow-up after the biopsy from analysis, we found that 

individuals with a GI biopsy result of normal mucosa had an increased risk of ALS, compared 

with their matched reference individuals randomly selected from the general population. 

However, no risk alteration was observed for a GI biopsy result of non-specific inflammation. 

Besides, a GI biopsy result of normal mucosa or non-specific inflammation was not related to 

mortality risk in patients with ALS. 

Study II analysed the potential role of antibiotic use on risk of ALS in a nested case-control 

study conducted using several Swedish national healthcare registers. After excluding all 

prescriptions within one year before diagnosis, patients with ALS were more likely to have 

antibiotic prescriptions before diagnosis, compared with controls, and there was a dose-

response relationship between numbers of antibiotic prescriptions and ALS risk.  

Study III explored the association between hospital-treated infection and risk of three 

neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), 

and ALS, in a nested case-control study conducted in the Swedish national healthcare registers. 

A hospital-treated infection was associated with an increased risk of AD and PD, regardless of 

infection type (bacterial, viral, or other infection) and site (central nervous system, 

gastrointestinal, or genitourinary infection). The associations were primarily noted among 

individuals younger than age 60. Moreover, individuals with multiple events of hospital-treated 

infections before age 40 appeared to have the greatest risk of developing AD and PD. However, 

no association was observed for ALS. 



The fourth study focused on the use of routinely measured blood markers in the prognosis of 

ALS. 

Study IV assessed the predictive role of eight commonly measured blood markers on ALS 

prognosis in a population-based cohort study within the SCREAM (Stockholm CREAtinine 

Measurement) project. At the time of diagnosis, lower serum levels of creatinine and albumin, 

as well as higher serum levels of C-reactive protein (CRP) and glucose, were associated with 

an increased risk of mortality among ALS patients. After ALS diagnosis, decreasing serum 

levels of creatinine and albumin or increasing serum levels of CRP and glucose were indicative 

of an increased mortality risk.  

In conclusion, findings from this thesis work support that specific biomedical factors such as 

previous GI dysfunction, antibiotic use, and hospital-treated infections are associated with the 

later risk of ALS development, as risk factors, triggers, or prodromal symptoms. Moreover, 

commonly measured biomedical markers can be of predictive value in ALS prognosis.  
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1 INTRODUCTION 

Amyotrophic lateral sclerosis (ALS), with a key feature of degeneration of motor neuron in the 

brain and spinal cord, is a relatively rare but incurable neurodegenerative disease. The 

incidence of ALS is estimated as 1.75 per 100,000 person-years whereas the prevalence is 

estimated as 4.1-4.8 cases per 100,000 individuals. ALS commonly occurs after middle age. 

Although rare, the disease is restlessly progressive. Death due to respiratory paralysis typically 

occurs within 3 to 5 years after symptom onset, and no medicine offers a substantial clinical 

benefit for ALS patients as of today. Around 10%-15% of ALS cases are familial where genetic 

factors are the main underlying contributors, the etiology is however elusive for sporadic ALS.  

Although many risk factors have been suggested in either observational studies or Mendelian 

randomization studies (summarized in Table 1 of the Appendix [1]), until now, the established 

risk factors of ALS only include older age, male sex, family history, and genetic mutations. 

Beyond motor neuron degeneration, patients with ALS tend to have defects in energy 

metabolism (e.g., hypermetabolism, weight loss, and diabetes) and neuroinflammation (a well-

established pathological feature of ALS, characterized by activation of microglia and astroglia 

in the central nervous system (CNS)). Due to the rapidly growing research on gut microbiome, 

evidence has accumulated to support its involvement in energy metabolism, immune responses, 

and development of neurodegenerative disease. We therefore, in this thesis, investigated the 

roles of several biomedical factors which might be related to the composition and functionality 

of gut microbiota on ALS risk, including gastrointestinal (GI) dysfunction (Study I), antibiotics 

use (Study II), and hospital-treated infections (Study III). As survival for patients with ALS 

varies greatly, ranging from several months to more than 10 years, we in Study IV assessed 

the prognostic values of several blood markers that are commonly measured in clinical practice 

in ALS.  
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2 BACKGROUND 

2.1 AMYOTROPHIC LATERAL SCLEROSIS 

ALS, also known as Lou Gehrig’s disease in the United States and motor neuron disease in the 

UK, is a relatively rare but incurable and relentlessly progressive neurodegenerative disease, 

characterized by motor neuron loss in the brain and spinal cord. [2] The neuropathological 

features of ALS from gross, microscopic to molecular levels are summarized in the Table 1 of 

the Appendix. [1]  

ALS begins insidiously with local symptoms, but rapidly spreads to majority of muscles, which 

eventually leads to death commonly due to respiratory failure. [3] Although around 10% of 

ALS patients survive 10 years or longer, vast majority of patients die within 3-5 years after 

symptom onset.  

Motor neurons are grouped into corticospinal motor neurons in the motor cortex (upper motor 

neurons) and bulbar or spinal motor neurons (lower motor neurons). In a healthy person, the 

upper motor neurons make direct or indirect connections with the lower motor neurons, which 

subsequently innervate skeletal muscles and control movement. In ALS patients, however, the 

communication between brain and muscles is interrupted by the deficit of either the upper 

motor neurons (presenting as stiffness and spasticity) or lower motor neurons (presenting as 

fasciculation and amyotrophy), or both.  

2.2 CLINICAL SYMPTOMS AND DIAGNOSIS 

As any volunteer muscle can be affected, clinical presentations of patients with ALS are 

heterogeneous. Depending on the involved motor neurons, the clinical symptoms can include 

weakness and atrophy of the extremities (progressive muscular atrophy, affecting mainly lower 

motor neurons), hyperreflexia and spasticity with few findings of lower motor neuron 

dysfunction (primary lateral sclerosis, affecting mainly the corticospinal motor neurons), 

prominent dysarthria (difficulty in articulation) and dysphagia (difficulty in swallowing) with 

tongue atrophy (bulbar ALS, affecting mainly the brainstem motor neurons), and emotional 

lability often accompanied by facial spasticity (pseudobulbar palsy, affecting mainly affect 

frontopontine motor neurons). [2-5] Evidence has further shown that about half of ALS patients 

have cognitive and behavioural impairment, and about 13% of ALS patients might have 

frontotemporal dementia. [4] 

The heterogeneous clinical presentation and varying prognostic profile make the diagnosis of 

ALS challenging. Until today, no definitive diagnostic test exists for ALS, and its diagnosis is 

still based on clinical findings and exclusion of mimics. [6] The current guideline for ALS 

diagnosis is the EI Escorial criteria, [5] which was developed by the World Federation of 

Neurology Research Group on Motor Neuron Disease in 1994 and  revised in 2000 (known as 

Airlie House criteria) [7] and 2008 (known as Awaji-Shima criteria). [8] Diagnosis of ALS 

requires a history of progressive weakness spreading within a region or to other regions (bulbar, 

cervical, thoracic, or lumbar), with evidence of involvement of lower motor neuron and upper 
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motor neuron, and that no alternative disease can explain these presentations. [4-6] According 

to the clinical test result, clinicians can classify the patients into three groups: definite, probable 

or possible ALS. [5, 9] Therefore, diagnostic delay (i.e., time from the first symptom to 

diagnosis) exists, which is approximately one year on average and might make the patients 

miss the best therapeutic window. [3] 

2.3 TREATMENT 

2.3.1 Disease modifying therapies  

No medicine offers a substantial clinical benefit for ALS patients as of today. Riluzole, acting 

by supressing excessive motor neuron firing through reducing glutamatergic neurotransmission 

on presynaptic neurons, [6] is the only widely available medicine approved by the US Food 

and Drug Administration for the treatment of ALS. It can prolong the median survival of ALS 

patients by an average of 2-3 months. [4] However, the efficacy of riluzole appears to be better 

amongst bulbar-onset and older patients, and in the early stage of the disease. [10] Adverse 

effects of riluzole include asthenia, vomiting, dizziness, and liver damage.  

Edaravone, a free-redial scavenger, is approved in Japan (2015) and the United States (2017), 

but not Europe, to treat ALS. It has been shown to slow disease progression amongst patients 

in early stage with definite or probable ALS. [11] 

2.3.2 Symptomatic treatments 

Currently, the mainstay of care for ALS patients is to manage symptoms with pharmacological 

and non-pharmacological interventions. [3] Pharmacotherapy can be indicated to treat 

spasticity (muscle relaxants, e.g., baclofen and tizanidine), sialorrhoea (anticholinergic drugs, 

e.g., atropine), pain (neuropathic pain: gabapentin, pregabalin, and tricyclic antidepressants; 

and nociceptive pain: non-steroidal anti-inflammatory drugs, opioids, and cannabis), muscle 

cramps (e.g., levetiracetam and mexiletine), and depression (e.g., selective serotonin reuptake 

inhibitors). [6]  

Non-pharmacological interventions can be indicated to treat dysphagia (e.g., dietary 

modifications, oral and pharyngeal range-of-motion exercise, and placement of gastrostomy 

tube), dysarthria (e.g., speech therapy and communication techniques based on brain-computer 

interface), as well as respiratory insufficiency (e.g., non-invasive positive-pressure ventilation 

or tracheostomy). [6] 

Overall, multidisciplinary care, including neurologist, psychologist, nutritionist, physical 

therapist, speech therapist and specialized nurse, can prolong survival and increase the quality 

of life of patients with ALS. [6]  
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2.4 EPIDEMIOLOGY 

2.4.1 Incidence and prevalence 

The incidence of ALS is estimated as 1.75 cases per 100,000 person-years (male: 2.03; female: 

1.45). [12] The incidence differs according to ancestral origin. Studies in populations of 

European origin have shown an incidence of 1.59 in Northern America, 1.92 in Northern 

Europe, 2.22 in Southern Europe, and 2.35 in Western Europe, per 100,000 person-years. [12] 

Incidence is lower in East (~0.8 per 100,000 person-years) and South (~0.7 per 100,000 person-

years) Asia [6]. The lower incidence of ALS in Asia may be partially explained by the lower 

prevalence of known ALS genes in Asian population. [13] In addition to the ancestral 

differences, the incidence of ALS appears to be increasing globally, likely due to the improved 

ascertainment, [14] as well as improving survival rate of competitive diseases and the overall 

aging of the global population. [15] Because of the rapid disease progression, the prevalence 

of ALS remains low, with an estimated prevalence of 4.1- 4.8 per 100,000 individuals. [13]  

2.4.2 Risk factors 

About 10%-15% of ALS patients have a clear family history (i.e., familial cases), whereas the 

remaining patients are sporadic cases. [16] Although many risk factors have been suggested in 

either observational studies or Mendelian randomization studies (summarized in Table 1 of the 

Appendix [1]), the established risk factors of ALS to date only include older age, male sex, 

family history, and genetic mutations. 

Genetic risk factors 

Gene mutations account for about 70% of all familial cases and approximately 15% of sporadic 

cases. [17] The first genetic mutation found to cause ALS was reported in 1993 and affects the 

gene SOD1. [3] Due to the evolving technologies for gene mapping and DNA analysis, more 

than one hundred genes have later been identified. [3] These genes can be grouped into several 

categories, including a) genes that perturb protein homoeostasis (e.g., SOD1), b) genes that 

alter RNA homoeostasis and trafficking (e.g., trans-activation response DNA-binding protein 

(TARDBP)), and c) genes that disturb cytoskeletal dynamics in the motor neuron axon and 

distal terminal. [2, 3] The most important ALS genes identified to date include SOD1, TARDBP, 

fused in sarcoma (FUS), and chromosome 9 open reading frame 72 (C9orf72).  

SOD1 gene is located on chromosome 21q22.11 and encodes SOD1 protein (CuZn-superoxide 

dismutase), [16] which is one of the three superoxide dismutase and has the function of 

eliminating free radicals and transforming free superoxide radicals into molecular oxygen and 

hydrogen peroxide. SOD1 mutation accounts for 10-20% of familial ALS and 1-5% of sporadic 

ALS cases, [18] and can trigger neurotoxicity and result in accumulation of aggregated proteins 

and influence the degradation of intracellular protein. The discovery of SOD1 mutation in ALS 

has greatly promoted the understanding of the disease, and many SOD1 transgenic animal 

models of ALS are available to date. [19] 
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TARDBP gene is located on chromosome 1 and encodes TDP-43, a nuclear ribonucleoprotein 

implicated in exon splicing, gene transcription, regulation of mRNA stability, and mRNA 

biosynthesis. [20] TARDBP mutation accounts for ~5% of familial ALS and 1% of sporadic 

ALS, [18] and can lead to the aggregation of TDP-43 characterized by abnormal 

phosphorylation, truncation, and cytoplasmic mislocalization. The dysfunction of TDP-43 has 

been found in both ALS and other neurodegenerative diseases (e.g., frontotemporal dementia). 

[20] FUS gene is located on chromosome 16 and encodes another RNA-binding protein, 

similar to TDP-43, and its mutation leads to self-assembly of proteins, which is also observed 

in ALS patients. [21] 

C9orf72 is located at locus 9p21 of chromosome 9 and is the most commonly mutated gene of 

familial ALS and accounts for ~10% of sporadic ALS cases. [22] It is characterized by an 

expansion of a noncoding hexanucleotide (GGGGCC) up to hundreds and thousands repeats, 

whereas ALS-free individuals have approximately 30 repeats. [19] This expansion has been 

shown in frontotemporal dementia as well. Several mechanisms may contribute to the 

neurotoxicity of the expansion, including a) sequestering RNA binding protein and disabling 

RNA processing machinery by forming RNA foci, [23] b) generating five potentially toxic 

repeat dipeptides after escaping to the cytoplasm, [24] and c) causing vulnerability of motor 

neurons to Ca2+ permeable receptor-mediated excitotoxicity. [22] 

Non-genetic risk factors 

Many lifestyle and environmental factors have been investigated in the past decades as 

potential risk factors for ALS. Exposure to heavy metal (e.g., lead), [25, 26] pesticides, [16] 

electromagnetic field, [27] and air pollution [28] has been shown to be associated with 

increased risk of ALS. Military service [29] and trauma [30] have been related to ALS risk as 

well.  

ALS patients tend to have a higher level of physical fitness and lower body mass index (BMI) 

[31] than average, [18] and this impression is further supported by the evidence that athletes 

(i.e., professional soccer or football players) appear to have a higher risk of ALS. [32] Previous 

studies also explored the influence of diet on ALS risk, and showed that higher intake of 

antioxidants (e.g., vitamin E), fruits, vegetables, [33] and chicken [34] might be associated with 

a lower risk of ALS, whereas fat, [35] red and processed meat, and animal protein [36] might 

be related to a higher risk of ALS. However, the association between alcohol consumption and 

ALS is inconsistent. [35, 37, 38]  

Because observational studies are prone to methodological problems including selection bias, 

measurement error, and confounding, drawing conclusions about causality for the 

abovementioned associations are challenging. Such issue could however be partially tackled 

by using Mendelian randomization analysis, which has the potential to investigate causal 

relationship between risk factors and a health outcome avoiding common methodological 

concerns of observational studies. [39, 40] For example, a causal relationship between smoking, 

[41, 42] physical activity, [42] and blood lipid levels [42, 43] and risk of ALS has been 
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suggested in Mendelian randomization study. We summarized risk factors suggested in 

observational studies or Mendelian randomization studies in the Table 1 of the Appendix. [1]  

2.4.3 Prognostic factors 

Survival for patients with ALS varies greatly, ranging from several months to more than 10 

years. Predictors for better prognosis include younger age at onset of symptoms or diagnosis, 

spinal onset, higher score of the revised ALS Functional Rating Scale (ALSFRS-R) at 

diagnosis, longer diagnostic delay, higher BMI at diagnosis, weight gain after diagnosis, and 

interdisciplinary care. [13, 44] In contrast, presence of frontotemporal dementia and 

depression, respiratory or genitourinary comorbidities, worse nutritional status, and C9orf72 

mutation has been suggested to be related with worse prognosis. [13, 45]  

Because diaphragm is usually affected at the end stage of ALS, tracheostomy is commonly 

used in ALS care. Patient survival could be greatly extended once tracheostomy is in place. 

However, there are considerable differences in the extension of survival among patients with 

tracheostomy compared with patients without this procedure, ranging from 16 months in Italy 

(47 months vs 31 months), [46] 33.9 months in Denmark (56.8 months vs 22.9 months), [47] 

4.1 years in Norway (7.3 years vs 3.2 years), [48] to approximately 7 years in Japan (11.33 

years vs 4.61 years). [49] The exact reasons of this difference need to be investigated further.   

Many biomarkers have emerged for ALS prognosis in the past decade. [50] For instance, higher 

levels of blood creatinine, albumin, [51] and serum retinol-binding protein 4 (RBP4) [52] are 

related with better prognosis, whereas higher levels of C-reactive protein (CRP) in blood, [53] 

neurofilament light chain (NF-L) [54] and phosphorylated form of neurofilament heavy chain 

(pNFH) [55] in the cerebrospinal fluid are associated with worse prognosis. However, the 

ability of the commonly measured blood markers to serve as the predicators for disease 

progression in ALS remains largely unknown, we therefore explored the predictive ability of 

eight blood markers in Study IV.   

 

2.5 MICROBIOME 

2.5.1 Microbiome and health 

Human being has coevolved with trillions of microbes (bacteria, archaea, fungi, and viruses) 

inhabiting in the body, and the main colonization sites are skin, airway, urogenital tract, and 

GI tract. [56] Although until now only minority of these can be cultured, advance in culture-

independent technologies, such as next-generation sequencing technologies, and microbiome 

bioinformatic pipelines have greatly accelerated microbiome research over the past two 

decades. [56] Several large collaborative efforts have been conducted to explore the effect of 

microbiome on human health. These collaborative efforts include Human Microbiome Project, 

[57] the European Union’s Metagenomics of the Human Intestinal Tract consortium, the 
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Japanese Human Metagenome consortium, the Canadian Microbiome Initiative, and the Irish 

Metagenomics of the Elderly programme. [58]  

In human, GI tract hosts the majority of microbial inhabitants, and the function of gut 

microbiome is currently best studied, compared with the other colonization sites. Numerous 

studies have indicated that gut microbiota, microbial metabolites, and their interaction with the 

host, are correlated with a wide array of physiological functions, [59] such as promoting the 

maturation of immune system [60] and regulating intestinal endocrine function. [61] Altered 

microbiome composition has been related to a myriad of diseases, including a) GI diseases 

(e.g., irritable bowel syndrome and inflammatory bowel disease [62, 63]), b) metabolic 

conditions (e.g., diabetes [64, 65] and obesity [66, 67]), c) neuropsychiatric disorders (e.g., 

depression, [68] schizophrenia, [69] autism spectrum disorder, [70] and attention-

deficit/hyperactivity disorder [71]), d) neurodegenerative disease (e.g., Alzheimer’s disease 

(AD) and dementia, [72] multiple sclerosis, [73] Parkinson’s disease (PD), [74] and ALS [75]), 

and e) others, such as cancer and cancer treatment, [76, 77] stroke, [78] cardiovascular disease, 

[79] and brain injury. [80] 

2.5.2 Gut microbiome and ALS 

Due to the rapidly growing research on gut microbiome, evidence has accumulated to support 

its involvement in energy metabolism and neuroinflammation (both of which are key features 

of ALS) and in neurodegeneration in general. [1] 

In order to provide a summary of the existing evidence on gut microbiome and ALS, we 

conducted a comprehensive review of the existing studies (see Appendix [1]). We found 

relatively consistent results from animal studies, including a) a shifted microbiome 

composition in the pre-symptomatic stage of ALS and after disease onset, b) microbial 

composition was unstable with disease progression, c) microbial metabolites had a role on 

modifying disease progression (e.g., butyrate and nicotinamide), and d) gut microbiome could 

modify motor function and affect survival through immune responses. However, publication 

bias might be a concern. 

Although we observed similar findings in human studies, the results are weaker, compared with 

the findings from animal studies. Multiple reasons might contribute to such conflicting results, 

such as random error duo to small sample size, as well as different study populations, 

recruitment methods of cases and controls, sample processing procedures, handling of 

sequencing data, bioinformatics pipelines, and statistical methods.  

We also discussed future perspectives in the microbiome research in human ALS, focusing on 

optimizing study size and design, standardizing approaches, investigating the interactions 

between gut microbiome and other factors, and considering gut microbiome in the prevention 

and therapy of ALS. 
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In this thesis, we focused on several biomedical factors closely related to gut microbiome, 

including GI dysfunction (Study I), antibiotics use (Study II) and hospital-treated infections 

(Study III), and explored their associations with risk of ALS.  

 

2.6 POTENTIAL MECHANISMS FOR GUT MICROBIOME AND ALS 

 

Although the precise mechanisms remain unclear, dysfunction of the gut-brain axis (GBA), 

which comprises the CNS, the autonomic nervous system (ANS), the enteric nervous system 

(ENS), the immune system, and the hypothalamic–pituitary–adrenal axis, might play a role 

in linking gut microbiome to ALS. [81-83] The GBA is bidirectional in terms of both 

anatomical and biochemical aspects. The CNS communicates with the ENS, muscles, and 

gut mucosa via the ANS, both sympathetic and parasympathetic, to regulate the GI motility 

and permeability, mucus secretion, and immunity, which in turn modulate the composition 

and function of gut microbiota. [82, 84] Meanwhile, gut microbiome transmits 

neurochemical signals to the CNS through its derived metabolites, which play key roles in 

the maintenance and modulation of CNS function, host metabolism and immune responses. 

[83, 84] We discuss below a few potential mechanisms linking gut microbiome and ALS in 

the context of the GBA, with a focus on pathways of relevance to energy metabolism, 

immune responses, and pathological protein aggregates (Figure 2.1). 

 

 
Figure 2.1 Potential mechanisms linking gut microbiome and ALS  

2.6.1 Energy metabolism 
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Many ALS patients have been found to demonstrate disturbances in energy metabolism (e.g., 

hypermetabolism, weight loss, and diabetes). [85, 86] Impaired mitochondrial and glycolytic 

energy metabolism in the motor neurons and glia, reduced glucose uptake in the motor-

sensory cortex, and insulin resistance have been found in ALS patients. [85, 87, 88] Gut 

microbiota can contribute to the host energy metabolism through their energy-yielding 

nutrients (e.g., complex carbohydrates, proteins, monosaccharides, short-chain fatty acids 

(SCFAs), and amino acids), [89] as well as via affecting host energy homeostasis and insulin 

sensitivity. [89]  

 

Mitochondrial dysfunction and oxidative stress have been proposed as mechanisms 

underlying neurodegenerative disease including ALS, [90-92] which can be modulated by 

gut microbiota as well. [75, 93] Blancher et al. showed that Akkermansia muciniphila and 

nicotinamide treatment shared a binding site for the transcription factor nuclear respiratory 

factor-1, which is known to modulate mitochondrial biogenesis, electron transport chain 

activity, and oxidative stress. [75, 94] Another bacterial metabolite - Urolithin A - can pass 

through the blood-brain barrier (BBB) and induce mitophagy (a selective degradation of 

mitochondria by autophagy), which can subsequently prevent age-related mitochondrial 

dysfunction and increase muscle function in mice. [95] Two recent studies also suggested 

that lipopolysaccharide derived from Gram-negative bacteria might contribute to 

development of neurodegenerative disease through regulation of oxidative stress and 

inflammation. [96, 97] High nicotinamide adenine dinucleotide phosphate oxidase 2 

activation has been shown among patients with neurodegenerative disease and is correlated 

with high levels of circulating lipopolysaccharide. [98, 99] Declined functional pathways 

involved in carbohydrate metabolism were also reported in the gut microbiota of ALS 

patients, compared with controls. [100] 

2.6.2 Immune responses 
 

Animal and human studies have shown that microbial dysbiosis can damage the integrity of 

gut epithelium and BBB. [101, 102] The intestinal epithelial layer forms a physical and 

biochemical barrier to prevent the infiltration of microbes and large molecules to the 

circulation. [102] Microbial dysbiosis has been shown to result in reduced expression of 

adherens and tight-junction proteins in gut epithelium and subsequently an increased 

intestinal permeability in ALS. [102-104] Probiotic Escherichia coli Nissle has been shown 

to reinforce the intestinal epithelial barrier via the redistribution of tight-junction proteins in 

the gut epithelium, [103] and butyrate treatment was suggested to improve the gut 

permeability in SOD1G93A mice. [105] Germ-free mice were shown to have an increased 

permeability in the BBB during embryonic development, which might be restored by 

postnatal recolonization of microbiota or the administration of butyrate, [106] demonstrating 

therefore a causal role of gut microbiota in BBB development. [56] Similarly, gut microbial 

dysbiosis might increase the permeability of BBB by decreasing the expression of key tight-

junction proteins in the brain microvascular endothelium. [101] As a result, it is possible that 

gut microbial dysbiosis leads to an increased transmission of immune cells and soluble 

molecules, such as hormones, neurotransmitters, proinflammatory cytokines, and metabolites 

- either host or microbial in origin - between the periphery and CNS through the increased 

permeability of the intestinal epithelium and BBB. [101]  
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Neuroinflammation is a well-established pathological feature of ALS. It is characterized by 

activation of microglia and astroglia in the CNS, infiltration of lymphocytes, monocytes and 

macrophages to the CNS, and upregulation of proinflammatory cytokines. [107] Genetic 

mutations related to ALS (e.g., SOD1 and C9orf72) have been shown to promote 

inflammation-mediated motoneuron injury and death. [108] The gut microbiome plays an 

important role in modulating the maturation and function of immune cells in the periphery 

and CNS. [109] Decreased microbial diversity may result in defective microglia, whereas 

microbial recolonization might lead to partially recovered microglia feature. [109] SODG93A 

mice with a shifted microbial composition are characterized by an increased level of 

proinflammatory cytokine and an abnormal amount of Paneth cells in the intestine. [104] 

Paneth cells are specialized intestinal epithelial cells regulating autophagy activity and 

releasing antimicrobial peptides in response to pathogens. [104] Administration of butyrate 

was shown to decrease the percentage of abnormal Paneth cells and restore the antimicrobial 

peptide in the SOD1G93A mice. [105] Butyrate serves as a primary energy source for intestinal 

epithelial cells [110] and has an anti-inflammatory function through promoting regulatory T 

(Treg) cells in the colon by inhibiting histone deacetylase activity and inhibiting 

inflammatory cytokine production. [111] One study suggested that the SODG93A mice 

exhibited peripheral leukocyte change after microbial alteration, and the infiltration of 

leukocytes, microglia, CD8+ T cells, and neutrophils to the spinal cord increased along with 

disease progression. [112] Both positive (Porphyromonadaceae) and negative 

(Lachnospiraceae) correlations were noted between specific bacteria and microglial 

activation in the CNS. [112] Based on the C9orf72 mouse model, Burberry A et al. showed 

an increased infiltration of peripheral immune cells to the CNS as the C9orf72 function 

declined. [113] Further, the study showed that treatment with antibiotics modulated both 

immune cell infiltration and microglial activation, whereas transplantation of pro-survival 

gut microflora significantly improved these immune phenotypes. [113] 

2.6.3 Pathological protein aggregates 

 

A pathological hallmark of ALS is the aggregation of cytoplasmic proteins, including SOD1 

and TDP-43, prominently but not exclusively in the motor neurons. [3] The misfolded SOD1 

and TDP-43 can propagate within and between cells in a prion-like manner, [114] similar to 

α-synuclein in PD and amyloid-β and tau in AD. [115, 116] Although ALS, PD, and AD all 

affect primarily the CNS, the origin of these pathological protein aggregates might be outside 

the CNS. In the case of PD for example, a transmission of α-synuclein aggregates from GI 

tract to the substantial nigra, via the vagus nerve, has been demonstrated. [117] Our group 

[118]  and others [119] have shown that vagotomy is associated with a lower future risk of 

PD.  Studies have also revealed that in mice overexpressing α-synuclein, colonization with 

curli-producing bacteria Escherichia coli accelerated α-synuclein aggregation and 

exacerbated α-synuclein induced behavioral deficits, while oral treatment with a gut-

restricted amyloid inhibitor alleviated the acceleration of pathologic and behavioral 

abnormalities. [120] These results suggest a possibility that carriage of particular bacteria 

may be a factor triggering or exacerbating neurodegenerative disease. Although direct 

evidence for such gut-to-brain transmission does not exist for ALS yet, ALS patients indeed 
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demonstrate symptoms related to GI dysfunction (e.g., delayed gastric emptying, 

constipation, abdominal pain, nausea, and satiety), [121] as patients with PD. [122]  
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3 RESEARCH AIMS 

The overarching aim of this thesis is to explore the roles of different biomedical factors in the 

risk and prognosis of ALS. Toward this end, four constituent studies were conducted with the 

following specific aims (Figure 3.1). 

Study I: To explore whether individuals with GI biopsy result of normal mucosa or non-

specific inflammation have an altered consequent risk of ALS, and whether a GI biopsy result 

of normal mucosa or non-specific inflammation is associated with mortality risk in patients 

with ALS. 

Study II: To assess the association between previous antibiotic use and ALS risk. 

Study III: To investigate the association between previous hospital-treated infection and the 

risk of neurodegenerative disease, including AD, PD, and ALS. 

Study IV: To examine the potential ability of eight commonly measured blood markers to 

serve as prognostic biomarkers in ALS. 

 

 

Figure 3.1 Overview of the thesis. 
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4 MATERIALS AND METHODS 

4.1 OVERVIEW  

The methods used in Study I-IV are summarized in Figure 4.1. 

 

Figure 4.1 Overview of methods used in Study I-IV. 

 

4.2 DATA SOURCES  

4.2.1 ESPRESSO  

ESPRESSO contains all histopathological data in the GI tract, liver, gallbladder, and pancreas 

during 1965-2016 from all 28 pathology departments in Sweden (Figure 4.2). [123] A total of 

2.1 million individuals with 6.1 million histopathological records were identified as one 

individual may have multiple biopsy records. The histopathological data include biopsy date, 

topography (where the biopsy was taken), morphology (biopsy appearance), and free text of 

the histopathology report. The morphology was assigned by the Swedish version of the 

Systematized Nomenclature of Medicine (SNOMED) system. Each individual with 

histopathological data was matched with up to five reference individuals randomly selected 

from the general population by age, sex, calendar year of biopsy, and county of residence. Then 

all study participants were linked to Swedish national healthcare registers to identify clinical 

diagnoses, dispensed medicine, migration status, and vital status. We identified the exposure 

information (i.e., the GI biopsy result of normal mucosa or non-specific inflammation, and 

biopsy location) from ESPRESSO in Study I. 
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Figure 4.2 Time line of the data sources used in this thesis. 

4.2.2 Swedish national healthcare registers 

In Study II and Study III, we linked several Swedish national registers using the individually 

unique personal identity number, which is assigned to all residents staying at least one year in 

Sweden. [124] In Study III, we only enrolled individuals born after 1900 in Sweden whose 

parents were also born in Sweden.  

Total Population Register (TPR), initiated in 1968 and maintained by Statistics Sweden, 

contains information on birth, family relationship, marital status, death, as well as immigration 

and emigration. [125] It is used to identify general population controls and to ascertain follow-

up outcomes. Migration Register is a special register based in the TPR.  

National Patient Register (NPR), maintained by the Swedish National Board of Health and 

Welfare (Socialstyrelsen, NBHW), covers inpatient care since 1964 (nationwide coverage 

since 1987) [126] and outpatient care since 2001 with a coverage of above 80%. Information 

on primary health care is not included in this register. The register includes information on 

dates of admission and discharge, primary and additional diagnoses, as well as procedures. This 

register was used to identify individuals with ALS (Study I-IV), number of healthcare visits, 

and clinical diagnoses of GI diseases (Study I). 

Prescribed Drug Register (PDR), maintained by NBHW, covers information on all 

prescribed drugs dispensed in Sweden since July 2005, including date of prescription and 

dispensing, dispensed items (e.g., substance, brand name, and package), amount, dosage, and 

cost. [127] All medications are coded according to the Anatomical Therapeutic Chemical 

(ATC) classification system. However, it does not include vaccines and drugs used in the 

hospital or nursing home and does not include over-the-counter medications. This register was 

used to identify antibiotic use in Study I and riluzole use in Study II. 

Cause of Death Register (CDR), initiated in 1952 and digitalized in 1961, contains 

information on date of death, underlying and contributing causes of death (based on ICD 

codes), place of death (e.g., hospital, nursing home), autopsy type (from 1992), and death 
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abroad (since 1987). [128] The register was used to define censoring in follow-up (Study I-

IV) and define individuals died due to ALS (Study I). 

Multi-Generation Register contains largely complete information on familial links for all 

individuals born in Sweden since 1932. [129] The register was used to identify parents and 

siblings of cases and their matched population controls in Study III. 

4.2.3 SCREAM 

SCREAM is repository of laboratory data of over 1.1 million adults with at least one creatinine 

test performed between 2006 and 2011 in Stockholm, Sweden, which represented 66% of the 

whole population in the region. [130] The coverage is higher for older adults (>75% for those 

aged 45-64 years, and >90% for ≥65 years), compared with the younger ones (50% for 18-44 

years). All laboratory tests were performed by three different laboratories (Aleris, Unilabs and 

Karolinska), which provide over 90% of services to the Stockholm population. Information on 

date of test, test method, as well as unit of measurement was retrieved. SCREAM was also 

linked to Swedish national healthcare registers to identify clinical diagnoses, dispensed 

medicine, migration status, and vital status. SCREAM was used to identify levels of the eight 

commonly measured blood markers in Study IV.  

4.3 STUDY DESIGN 

4.3.1 Matched cohort study 

Matching exposed to unexposed subjects in a constant ratio can eliminate confounding by the 

matching factors (Figure 4.3). [131] Matching can prevent an association between the exposure 

and matching factors at the initiation of follow-up. This original balance by matching however 

will be broken if the exposure and the matching factors have a role on censoring and outcome 

risk. Therefore, adjusting for matching factors in the analysis is necessary to obtain a valid 

effect estimate (e.g., risk difference or rate ratio). 

 

Figure 4.3 Illustration of the matched cohort study.  
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Study I: We performed a nationwide matched cohort study based on ESPRESSO. For 

individuals with a GI biopsy of normal mucosa (n=483,442) or non-specific inflammation 

(n=566,663) (exposed persons), we randomly selected up to five reference individuals 

(n=2,392,647 for normal mucosa; n=2,724,515 for non-specific inflammation) from the 

general population and individually matched them to the exposed person by age, sex, calendar 

year of biopsy, and county of residence. The reference individuals should be living in Sweden 

and have no GI biopsy record when being selected. Then, the exposed person and their matched 

references were followed from date of biopsy or selection until ALS diagnosis, emigration, 

death, or the end of study (end of 2016), whichever came first, through cross-linkages to the 

Swedish national healthcare registers.  

4.3.2 Nested case-control study 

Nested case-control study is a specific design conducted within an established cohort. It can 

produce the same findings with nearly the same precision compared with cohort study. In a 

nested case-control study, cases that developed the interested outcome at a given time point are 

matched to a random subset of participants who have not experienced the outcome at the time 

(controls). These controls may experience the interested outcome later in time and act as a 

control for other cases. Cases and controls are usually selected by incidence density sampling 

(risk-set sampling, Figure 4.4 ). [132] A nested case-control study design was applied in Study 

II and Study III. 

 

Figure 4.4 Illustration of the incidence density sampling in the nested case-control study. 

Study II: Individuals who lived in Sweden on July 2006 were enrolled as the study population 

and followed from July 2006 until diagnosis of ALS, emigration, death, or December 2013, 

whichever came first, by cross-linkages to the Swedish national healthcare registers. 

Individuals with newly diagnosed ALS in the follow-up period were selected as the cases. For 

each case, five controls individually matched to the case by sex, year of birth, and area of 

residence were randomly selected from the general population via the method of incidence 

density sampling. Eligible controls were those who were alive and without ALS diagnosis 
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when being selected. The index date was defined as the date of ALS diagnosis for cases and 

date of selection for controls, respectively. 

Study III: All individuals born after 1900 in Sweden whose parents were also born in Sweden 

were eligible for this study. We followed these individuals from January 1st 1970 until a 

diagnosis of neurodegenerative disease, emigration, death, or December 31st 2016, whichever 

came first, through cross-linkages to the Swedish national healthcare registers. Individuals with 

a newly diagnosed neurodegenerative disease, including AD, PD and ALS, were identified as 

the cases. Five controls per case, who were individually matched to the case by sex and year 

of birth, were randomly selected from the abovementioned study base using the method of 

incidence density sampling. Date of diagnosis and date of selection were used as index date for 

the cases and their matched controls, respectively. The controls should be alive and free of 

neurodegenerative disease at the index date. 

4.3.3 Population based cohort study  

In a cohort study, a disease-free study population is identified with their exposure status 

determined. The study population is then followed in time until the outcome of interest occurs, 

either prospectively or retrospectively. As a form of longitudinal study, the goal of a cohort is 

usually to measure and compare the incidence of the interested outcome between the exposed 

and unexposed populations. [131] A population-based retrospective cohort study was applied 

in Study IV. 

Study IV: Individuals with a newly diagnosed ALS (n=399) in the SCREAM project were 

enrolled in a retrospective cohort study. The date when the diagnosis of ALS was issued was 

defined as the ALS diagnosis date. All patients were then followed from date of diagnosis until 

emigration out of Stockholm, death, or the end of 2011, whichever came first.  

4.4 MEASUREMENTS 

4.4.1 Exposure  

Study I: The exposed group was defined as those with a GI biopsy result of normal mucosa or 

non-specific inflammation. We used the SNOMED codes M00110 and M00100 to identify 

normal mucosa, and M40000, M40400, M40460, M41000, M42000, M42100, M43000, 

M45000, and M47000 to identify non-specific inflammation. To minimize information bias, 

we treated GI biopsy result as a time-varying exposure (Figure 4.5). Namely, reference 

individuals contributed person-time to the reference group first, and then some of them 

contributed person-time to the exposed group if they received a GI biopsy during the follow-

up.  
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Figure 4.5 Illustration of the time-varying exposure of GI biopsy in Study I. 

Study II: In this nested case-control study, the exposure is antibiotics use before the index date 

of cases and controls. Antibiotics use from July 2015 until the index date was ascertained by 

ATC codes (J01A-J01X) in the PDR. We studied any antibiotics use (classified as 0, 1, 2-3, or 

≥4 prescriptions), antibiotics for respiratory infections and antibiotics for urinary tract or skin 

and soft tissue infections, as well as seven individual antibiotics as the exposure. The airway 

antibiotics included amoxicillin, penicillin, cephalosporin, and macrolides, while the urinary 

tract or skin and soft tissue antibiotics included pivmecillinam, sulfonamide, trimethoprim, 

norfloxacin, ciprofloxacin, nitrofurantoin, flucloxacillin, cloxacillin, and dicloxacillin. The 

seven individual antibiotics included tetracycline (J01AA), penicillin with extended spectrum 

(J01CA), beta-lactamase sensitive penicillin (J01CE), cephalosporin (J01DB and J01DC), 

trimethoprim (J01EA and J01EE), macrolides (J01FA), and fluoroquinolones (J01MA). 

Study III: The exposure is the hospital-treated infection, either inpatient or outpatient, before 

the index date (Table 4.1). We studied any infection as a binary variable (the primary analysis) 

and then classified infection by type (bacterial, viral, or other infection) and site (CNS, 

gastrointestinal, genitourinary, respiratory, or skin infection). We additionally performed 

analysis by age at infection (<40, 40-59.9, or ≥60 years) and frequency of infections (0, 1, ≥2 

events). 

Study IV: The exposure is the serum or plasma levels of eight commonly measured blood 

markers at baseline and during the follow-up, including creatinine (lmol/l), albumin (g/l), 

haemoglobin (g/l), potassium (mmol/l), sodium (mmol/l), calcium (mmol/l), CRP (high-

sensitivity type, mg/l), and glucose (mmol/l). Five markers were available for majority of the 

ALS patients, namely creatinine, haemoglobin, potassium, sodium, and CRP. 
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Table 4.1: The Swedish revisions of ICD codes for hospital-treated infection 

  ICD-8 (1969-1986) ICD-9 (1987-1996) ICD-10 (1997-) 

Bacterial 

000, 001, 002, 003, 004, 005, 073, 076, 080, 

081, 082, 083, 320, 362, 380, 381, 382, 383, 

421, 461, 481, 482, 501, 510, 567, 590, 595, 

597, 612, 613, 614, 616, 620, 622, 630, 635, 

670, 678, 680, 681, 682, 684, 710, 720, 010, 

011, 012, 013, 014, 015, 016, 017, 018, 019, 

020, 021, 022, 023, 024, 025, 026, 027, 030, 

031, 032, 033, 034, 035, 036, 037, 038, 039, 

090, 091, 092, 093, 094, 095, 096, 097, 098, 

099, 100, 101, 102, 103, 104, 390, 391, 392 

001, 002, 003, 004, 005, 073, 076, 

077, 078, 079, 080, 081, 082, 083, 

320, 381, 382, 383, 383, 421, 461, 

475, 481, 482, 510, 567, 590, 595, 

597, 670, 730, 010, 011, 012, 013, 

014, 015, 016, 017, 018, 020, 021, 

022, 023, 024, 025, 026, 027, 030, 

031, 032, 033, 034, 035, 036, 037, 

038, 039, 040, 041, 090, 091, 092, 

093, 094, 095, 096, 097, 098, 099, 

100, 101, 102, 103, 104, 390, 391, 

392, 614, 615, 616, 680, 681, 682, 

683, 684, 685, 686 

A00, A01, A02, A03, A04, A05, A15, A16, 

A17, A18, A19, A20, A21, A22, A23, A24, 

A25, A26, A27, A28, A30, A31, A32, A33, 

A34, A35, A36, A37, A38, A39, A40, A41, 

A42, A43, A44, A45, A46, A47, A48, A49, 

A50, A51, A52, A53, A54, A55, A56, A57, 

A58,  A65, A66, A67, A68, A69, A70, A71, 

A72, A73, A74, A75, A76, A77, A78, A79, 

B95, B96, G00, G01, H60, H70, I00, I01, I02, 

I33, J01, J13, J14, J15, J36, J86, K65, L00, L01, 

L02, L03, L04, L05, L06, L07, L08, M00, M86, 

N30, N34, N70, N71, N72, N73, N74, N75, 

N76, N77, O23, O85, O86, P36 

Viral 

075, 360, 420, 422, 460, 464, 465, 466, 480, 

040, 041, 042, 043, 044, 045, 046, 050, 051, 

052, 053, 054, 055, 056, 057, 060, 061, 062, 

063, 064, 065, 066, 067, 068, 070, 071, 072, 

073, 074, 075, 076, 077, 078, 079, 470, 471, 

472, 473, 474 

070, 071, 072, 074, 075, 077, 078, 

079, 372, 420, 422, 460, 464, 465, 

466, 480, 487, 647, 711, 045, 046, 

047, 048, 049, 050, 051, 052, 053, 

054, 055, 056, 057, 060, 061, 062, 

063, 064, 065, 066 

A08, A60, A80, A81, A82, A83, A84, A85, 

A86, A87, A88, A89, A90, A91, A92, A93, 

A94, A95, A96, A97, A98, A99, B00, B01, 

B02, B03, B04, B05, B06, B07, B08, B09, B15, 

B16, B17, B18, B19, B20, B21, B22, B23, B24, 

B25, B26, B27, B28, B29, B30, B31, B32, B33, 

B34, B97, B99, H10, I30, I40, J00, J04, J05, 

J06, J10, J12, J20, J21, O98, P35, Z21 
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Others 

084, 085, 086, 087, 088, 089, 112, 113, 114, 

117, 120, 121, 122, 124, 125, 126, 128, 130, 

131, 132, 133, 134, 135, 136, 363, 610, 611, 

615, 732, 763, Y41 

084, 085, 086, 087, 088, 112, 113, 

114, 117, 118, 120, 121, 122, 124, 

125, 126, 128, 130, 131, 132, 133, 

134, 135, 136, 370, 675, 771, 137, 

138, 139 

V02, B37, B38, B45, B46, B47, B48, B49, B50, 

B51, B52, B53, B54, B55, B56, B57, B58, B60, 

B61, B62, B63, B64, B65, B66, B67, B68, B69, 

B70, B72, B73, B74, B75, B76, B77, B78, B79, 

B80, B83, B85, B86, B87 B88, B89, B90, B91, 

B92, B93, B94, H16, H32, M01, M02, M03, 

O91, P37, P38, P39, Z22, A59, A63, A64 

CNS 

013, 062, 063, 064, 065, 066, 071, 094, 292, 

320, 323, 324, 390, 474, 040, 041, 042, 043, 

044, 045, 046 

013, 062, 063, 064, 071, 094, 320, 

323, 326, 392, 045, 046, 047, 048, 

049 

A17, A80, A81, A82, A83, A84, A85, A86, 

A87, A88, A89, G00, G01, G02, G04, G05, I02 

Gastrointestinal 
014, 123, 127, 129, 540, 567, 000, 001, 002, 

003, 004, 005, 006, 007, 008, 009 

014, 123, 127, 129, 540, 567, 000, 

001, 002, 003, 004, 005, 006, 007, 

008, 009 

A00, A01, A02, A03, A04, A05, A06, A07, 

A08, A09, B71, B81, B82, K35, K65, K67 

Genitourinary 016, 590, 595, 597 016, 590, 595, 597 N30, N34, O23 

Respiratory 

010, 011, 012, 033, 034, 075, 115, 116, 490, 

501, 503, 510, 460, 461, 462, 463, 464, 465, 

466, 470, 471, 472, 473, 474, 480, 481, 482, 

483, 484, 485, 486 

010, 011, 012, 033, 034, 075, 115, 

116, 473, 475, 487, 490, 510, 460, 

461, 462, 463, 464, 465, 466, 480, 

481, 482, 483, 484, 485, 486 

A15, A16, A37, A38, B27, B39, B40, B41, 

B42, B44, B59, J00, J01, J02, J03, J04, J05, 

J06, J10, J12, J13, J14, J15, J16, J17, J18, J20, 

J21, J22, J32, J36, J40, J41, J42, J86, P23 

Skin 
110, 111, 050, 051, 052, 053, 054, 055, 056, 

057, 680, 681, 682, 683, 684, 685, 686 

110, 111, 050, 051, 052, 053, 054, 

055, 056, 057, 680, 681, 682, 683, 

684, 685, 686 

B00, B01, B02, B03, B04, B05, B06, B07, B08, 

B09, B35, B36, B43, L00, L01, L02, L03, L04, 

L05, L06, L07, L08 
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4.4.2 Outcome 

We mainly identified patients with ALS through the NPR by ICD codes (Study I-IV). In 

Study II, we additionally identified ALS through CDR and prescription of ALS medication 

(e.g., riluzole; ATC code: N07XX02). In Study III, we also identified AD and PD (Table 

4.2).  

Table 4.2. The Swedish revisions of ICD codes for neurodegenerative disease 

Disease ICD-8 (1969-1986) ICD-9 (1987-1996) ICD-10 (1997-) 

AD 290 290A, 290B, 331A F00, G30 

PD 342 332A G20 

ALS 348,00 335C G122 

 

4.5 STATISTICAL METHODS  

4.5.1 Cox proportional hazard model 

Cox proportional hazard model has been widely applied in analyzing time-to-event data, to 

identify difference in survival due to a factor (e.g., treatment, intervention, or prognostic 

factor). [133] The model is a “semi-parametric” procedure as it does not make any assumption 

regarding the shape of the baseline hazard function. However, it requires the proportionality of 

the hazard, implying that the effect of a factor on the hazard is constant over time (i.e., hazards 

of exposed and non-exposed groups are proportional over time). The underlying time scale is 

automatically adjusted for when modeling a Cox model. The proportional hazard assumption 

however could be violated if time-dependent variables are adjusted for but without appropriate 

modeling. We applied the Cox proportional hazards model in Study IV.  

Because we conducted a matched cohort study design in Study I, we applied the stratified Cox 

model to analyze the data. The stratified Cox model is a modification of the Cox proportional 

hazard model that enables to control for a variable that does not satisfy the proportional hazard 

assumption via “stratification”. [134] 

Study I: We applied the stratified Cox model to estimate the association between a GI biopsy 

result of normal mucosa or non-specific inflammation and risk of ALS, with attained age as 

the underlying time scale. We excluded the first two years of follow-up (in the main analysis) 

and first three or four years of follow-up (in the sensitivity analyses) from the analysis to 

alleviate the influence of surveillance bias and reverse causation caused by the known 

diagnostic delay of ALS.  

Study IV: We applied the Cox proportional hazard model to assess the association of eight 

commonly measured blood marker levels at diagnosis with mortality risk among patients with 

ALS, with attained age as the underlying time scale.  
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4.5.2 Conditional logistic regression model 

Conditional logistic regression model is same with logistic regression with the exception that 

its estimates are conditional on the matching set. Compared with logistic regression, there is 

no constant term in its output. The coefficient can be interpreted as the change in the log-odds 

of the outcome for every unit change in a variable while holding other covariates constant. 

[135] An odds ratio can be obtained by taking the exponential of the coefficient. We applied 

conditional logistic regression model in Study I-III. 

Study I: As information on the indication for GI biopsy was unavailable in the study, we 

applied conditional logistic regression model to compare the diagnosed GI diseases during the 

five years prior to date of GI biopsy (exposed group) or date of selection (reference group).  

Study II: Conditional logistic regression model was used in this nested case-control study to 

assess the relationship between previous antibiotics use and risk of ALS. We first explored the 

temporal pattern of the interested association by splitting the time before the index date into 

several periods: 0–1, 1–2, 2–3, 3–4, 4–5, and 5–9 years. Then we excluded antibiotics use 

within one (main analysis), or two or three (sensitivity analyses) years prior to the index date 

to decrease the influence of reverse causation due to diagnostic delay. 

Study III: Conditional logistic regression model was applied to explore the association 

between hospital-treated infections and risk of neurodegenerative disease. Due to the known 

diagnostic delay of neurodegenerative disease, infections diagnosed during five years before 

the index date were excluded from the main analysis. The analyses were first performed for 

any infection and then by type and site of infection as well as by age at infection (<40 y, 40-

59.9 y, and ≥60 y). Further, to examine a potential dose-response relationship within specific 

age windows, we also analyzed frequency of infections (0, 1, and ≥2 events) by age at infection. 

For any and specific infections, we stratified the analysis by sex (male or female) and age at 

index date (<60 y or ≥60 y) to assess whether the associations would differ between male and 

female or young and older individuals.  

We also stratified the analysis for any infection by calendar period (1970-1986 vs 1987-2016) 

to estimate the impact of register coverage on the results. We further restricted the study sample 

to those without a family history of the disease to assess whether the associations would be 

modified by family history. To assess potential misclassification of neurodegenerative disease, 

we performed another analysis by defining neurodegenerative disease through at least two 

hospital visits concerning the same disease. Finally, to assess the robustness of the results to 

the 5-year lag time, we performed another sensitivity analysis by excluding the infections 

experienced during the ten years before the index date. 

4.5.3 Joint model 

Longitudinal study often includes repeated measurement and survival outcomes. Analyzing 

these data separately would be inefficient, as it does not effectively exploit the dependence 

between the process for repeated measurement and the hazard for survival, and may lead to an 
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biased result caused by measurement error. [136] Measurement error in a time-varying variable 

would bias the estimate from the survival analysis (e.g., Cox regression) towards null. 

However, the joint model, which allows the linear mixed effect model for repeated 

measurement data and Cox model for time-to-event data to be modeled together, can correct 

this bias. The longitudinal component usually characterizes the trajectory of a covariate over 

time with random effects. The random effects are then included in a survival model, so the 

relationship between the covariate trajectory and risk of time-to-event outcome can be 

estimated. [137] We applied the joint model in Study IV. 

Study IV: A joint model was applied to estimate the association between the temporal change 

of eight blood markers after ALS diagnosis and risk of death. A linear mixed effect model was 

used for the repeated measurements, while a Cox model for the censored outcome.  

4.5.4 Kaplan-Meier curve 

Kaplan-Meier method is a way to calculate the survival probability in time-to-event data. We 

plotted the Kaplan-Meier curve in Study I and Study IV. We need to acknowledge however 

that Kaplan-Meier method only provides the unadjusted survival probability. 

Study I: To investigate the role of a GI biopsy finding of normal mucosa or non-specific 

inflammation on the survival of patients with ALS, we compared the Kaplan-Meier curves 

between the exposed individuals and their matched references.  

Study IV: We applied the Kaplan–Meier curve to compare the survival of ALS patients with 

a higher level of a specific marker at diagnosis with those with a lower level of that marker. 
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5 RESULTS 

5.1 STUDY I 

5.1.1 Population characteristics 

Mean age at cohort entry was 44.44 and 50.82 years for individuals with a GI biopsy result of 

normal mucosa (≥60 years: 25.45%; female: 61.93%) and for individuals with a GI biopsy 

result of non-specific inflammation (≥60 years: 40.10%; female: 51.02%). During a mean 

follow-up time of ~10 years, a total of 367 and 442 individuals were diagnosed with ALS in 

these two exposed groups, 1,273 and 2,105 in their matched references, respectively (Table 

5.1). 

Table 5.1 Characteristics of cohort participants. Adapted from Table 1 in Paper I. 

  NM 

References for 

NM   NSI 

References for 

NSI 

N 483,442 2,392,647  566,663 2,724,515 

Mean age 44.44 44.33   50.82 50.25 

Aged ≥60, % 25.45 25.19  40.10 38.63 

Female, % 61.93 61.85   51.02 50.87 

Mean of follow-up years 9.97 11.40   9.26 12.18 

 

5.1.2 Normal mucosa or non-specific inflammation and ALS risk or 
prognosis 

To minimize the influence of surveillance bias and reverse causation, we excluded the first two 

years of follow-up after the biopsy and found that a GI biopsy result of normal mucosa was 

associated with a higher risk of ALS (HR=1.22; 95%CI: 1.04-1.42, P=0.0122). The increased 

risk was also noted in subgroup analysis by sex (male or female) and age at cohort entry (<60 

or ≥60 years). In contrast, no clear relationship was observed for a GI biopsy result of non-

specific inflammation (Figure 5.1). Moreover, neither normal mucosa nor non-specific 

inflammation was associated with risk of death after ALS diagnosis. 
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Figure 5.1 Risk of ALS among individuals with a GI biopsy result of normal mucosa or non-

specific inflammation, compared with their matched reference individuals, adjusted for age at 

cohort entry, sex, county of residence, and number of healthcare visits (defined as number of 

healthcare visits from 2 years before to 1 year before biopsy, representing the regular frequency 

of healthcare visit). The first two years after the index date were excluded from the analysis. 

Figure was based on estimates from Table 2 and Table 3 in Paper I. 

5.1.3 GI diagnoses before biopsy 

Compared with their matched reference individuals, individuals with a GI biopsy result of 

either normal mucosa or non-specific inflammation had increased risks of GI diagnoses during 

five years before biopsy (Figure 5.2). Individuals with normal mucosa tended to get functional 

GI diagnoses, including irritable bowel syndrome, intestinal malabsorption, functional 

dyspepsia, and other functional intestinal disorders; while individuals with non-specific 

inflammation tended to get inflammatory GI diagnoses, such as esophagitis, gastritis and 

duodenitis, ulcerative colitis, Crohn’s disease, peritonitis, and appendicitis. 
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Figure 5.2 Scatter plot of log2 transformed odds ratios (ORs) of GI diseases during the five 

years prior to biopsy. ORs were obtained from conditional logistic regression model, and P-

values for all ORs were less than 0.05. Purple circles: ORs are significantly greater for normal 

mucosa than for non-specific inflammation; green triangles: ORs are similar between normal 

mucosa and non-specific inflammation; brown squares: ORs are significantly smaller for 

normal mucosa than for non-specific inflammation. Adapted from Figure 2 in Paper I.  

 

5.2 STUDY II 

5.2.1 Population characteristics 

A total of 2,484 patients and 12,420 matched controls were included in this nested case-control 

study. Male consisted 56.7% of all enrolled patients, and tended to be younger than female at 

diagnosis (Table 5.2).  

Table 5.2. Characteristics of patients with ALS and their matched controls. Adapted from 

Table 1 in Paper II. 
 Patients with ALS  Controls 

  Men Women Total   Men Women Total 

N 1408 1076 2484  7040 5380 12420 

Mean age at the index date, yrs a 67.9 69.7 68.6   67.9 69.7 68.6 

Antibiotics use before the index 

date, % 
62.9 67.9 65.1 

 
58.6 65.9 61.8 

Antibiotics use before the index 

date, % b 
52.5 59.8 55.6 

  
50.4 57.3 53.4 
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a Index date: date of diagnosis for patients with ALS and date of selection for controls. 

b After excluding all antibiotics prescriptions within one year before the index date. 

 

5.2.2 Antibiotic prescription before ALS diagnosis 

Compared with their matched controls, patients with ALS were more likely to receive antibiotic 

prescriptions, which could be tracked back as early as six to eight years prior to diagnosis. Even 

larger difference was observed during the year before ALS diagnosis (Figure 5.3).  

 

Figure 5.3 Percentage of individuals with antibiotic use among patients with ALS and their 

matched controls during the eight years before the index date. Adapted from Figure 1 in Paper 

II. 

 

5.2.3 Antibiotic prescription and risk of ALS 

Without considering the antibiotic prescriptions within one year before diagnosis, we observed 

a dose-response association between number of antibiotic prescriptions and risk of ALS (Figure 

5.4, P for trend = 0.0069). The OR (95% CIs) were 1.06 (0.94–1.19), 1.13 (1.00–1.28), and 

1.18 (1.03–1.35) for 1, 2-3, or ≥4 prescriptions of any antibiotics. Similar results were also 

observed when excluding antibiotic prescriptions within two or three years before diagnosis. A 

significant association was found for beta-lactamase sensitive penicillin as well (OR=1.28; 

95% CI: 1.10–1.50, for more than two prescriptions). 
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Figure 5.4 Association between any antibiotics use and risk of ALS after conditioned on the 

matching factors (age, sex, and area of residence). Any antibiotic prescriptions during the year 

before the index date were excluded.  

5.3 STUDY III 

5.3.1 Population characteristics 

We enrolled a total of 291,941 AD cases, 103,919 PD cases and 10,161 ALS cases in the study. 

The mean age at diagnosis was 67.7, 71.5, and 67.7 for AD, PD, and ALS, and male accounted 

for 46.6%, 55.1%, and 56.8% of the cases, respectively. Compared with controls, individuals 

with neurodegenerative disease had a higher percentage of family history of neurodegenerative 

disease but lower comorbidity (Table 5.3). 

Table 5.3 Characteristics of patients with neurodegenerative disease and their matched controls. 

  AD   PD   ALS 

 Case Control  Case Control  Case Control 

N 291941 1459705  103919 519595  10161 50805 

Mean age at the index date 67.7 67.7   71.5 71.5   67.7 67.7 

Male, % 46.6 46.6  55.1 55.1  56.8 56.8 

Family history of the disease, % 6.3 3.7   2.3 1.4   1.8 0.3 

History of comorbidity a, % 14.0 16.4   15.7 16.0   13.1 13.5 

Index date: date of diagnosis for cases and date of selection for controls. 

a Measured by the Charlson comorbidity index. 

 

5.3.2 Hospital-treated infection and neurodegenerative disease 

There was a slightly higher percentage of individuals with hospital-treated infections among 

individuals with AD or PD, but not ALS, during the 20 years before diagnosis, compared with 

their matched controls.  

After excluding infections diagnosed during five years before the index date, we observed that 

an event of hospital-treated infection was associated with a higher risk of AD (OR=1.16; 

95%CI: 1.15-1.18) and PD (OR=1.04; 95%CI: 1.02-1.06), but not ALS (OR=0.97; 95%CI: 

0.92-1.03) (Figure 5.5). The associations for AD and PD were observed for bacterial, viral, or 

other infections as well as for CNS, gastrointestinal, and genitourinary infections. For AD and 
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PD, the associations were primarily limited to individuals diagnosed younger than 60 and a 

dose-response relationship was observed by number of infections at early age. Individuals with 

more than two events of infection before 40 had the highest risk of AD (OR=2.62; 95%CI: 

2.52-2.72) and PD (OR=1.41; 95%CI: 1.29-1.53).  

After excluding infections experienced during 10 years before the index date, we still observed 

positive associations between any and specific hospital-treated infections and risk of AD and 

PD. For example, for any infection, the OR of AD and PD was 1.18 (95%CI: 1.16-1.19) and 

1.04 (95%CI: 1.01-1.06), respectively. 

 

 

Figure 5.5 Associations between hospital-treated infections and the consequent risks of 

neurodegenerative diseases. Infections diagnosed during five years before the index date were 

excluded to alleviate the potential influence of reverse causation due to diagnostic delay. 

 

5.4 STUDY IV 

5.4.1 Population characteristics 

A total of 399 individuals with a newly diagnosed ALS between 2006 and 2011 in Stockholm 

were included in this retrospective cohort study. Mean age at diagnosis was 66.25 years, and 

231 of the patients were men (57.89%). During a mean of follow-up of 2.36 years, around 60% 

(239 patients) died (Table 5.4). 

Table 5.4. Characteristics of patients with ALS. Adapted from Table 1 in Paper IV. 

 Characteristics   

Median of 

first 

measurement 

Mean (SD) of 

all 

measurements 

No. of patients 399   

Age at diagnosis, mean (SD) 66.25 (12.47)     

Gender, n (%)    

Male 231 (57.89)   
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Female 168 (42.11)   

Biomarker    

Serum creatinine, μmol/L, (n=399)   63.00 60.19 (28.16) 

Albumin, g/L, (n=269)  37.00 32.70 (6.03) 

Haemoglobin, g/L, (n=395)   140.00 128.84 (17.78) 

Potassium, mmol/L, (n=365)  4.00 3.99 (0.42) 

Sodium, mmol/L, (n=353)   140.00 139.24 (3.81) 

Calcium, mmol/L, (n=251)  2.32 2.28 (0.12) 

Log-CRP (mg/L), (n=329)   1.39 2.85 (1.70) 

Glucose, mmol/L, (n=284)   5.75 6.35 (1.95) 

SD: standard deviation  

 

5.4.2 Blood markers measured at baseline and mortality risk 

We found that patients with a lower than median level of serum creatinine (HR=1.67; 95%CI: 

1.31-2.12) or albumin (HR=1.49; 95%CI: 1.13-1.96) had an increased risk of mortality, 

compared with other patients. So did the patients with a higher than median level of log(CRP) 

(HR=1.33; 95%CI: 1.04-1.71) or glucose (HR=1.34; 95% CI: 1.01–1.78) at baseline. However, 

no clear association was found for haemoglobin, sodium, potassium, or calcium (Figure 5.6, 

left). 

 

Figure 5.6 Associations of blood markers at baseline and during follow-up with the risk of 

mortality after ALS diagnosis. Adapted from Figure 1 and Figure 2 in Paper IV. 

5.4.3 Temporal change of blood markers and mortality risk 

By applying the joint model, we found that per SD decrease in serum creatinine (HR=2.23; 

95% CI: 1.81-2.75), albumin (HR=1.83; 95% CI: 1.43–2.36), or haemoglobin (HR=1.18; 95% 
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CI: 0.99-1.40) after ALS diagnosis was related to an increased mortality risk; this was also a 

similar pattern for per SD increase in log(CRP) (HR=1.96; 95% CI: 1.58-2.43) and glucose 

(HR=1.61; 95% CI: 1.21-2.12) (Figure 5.6, right). 

5.4.4 Change pattern of blood markers prior to death 

Compared with patients with a slow progression (survived ≥ 3 years after diagnosis), a greater 

decline in the level of serum creatinine was observed among patients in the very fast (died 

within one year) or medium (survived 1-3 years) progression group. A similar change pattern 

was also found for albumin and haemoglobin. In contrast, a greater increase in the level of 

log(CRP) and glucose was observed during the months preceding death. No clear change 

pattern was found for potassium, sodium and calcium (Figure 5.7).  
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Figure 5.7 Profiles of blood markers prior to death for ALS patients with very fast progression 

(solid cerise curve, died within 1 year after diagnosis), medium progression (dashed orange 

curve, died within 1-3 years after diagnosis), or slow progression (dotted grey curve with 95% 

confidence interval, survived ≥ 3 years after diagnosis). 
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6 DISCUSSION 

6.1 INTERPRETATION OF THE MAIN FINDINGS  

6.1.1 GI biopsy and ALS  

In Study I, we explored the association between GI biopsy result of normal mucosa or non-

specific inflammation and ALS risk for the first time and found that a GI biopsy finding of 

normal mucosa was related to an increased subsequent ALS risk, whereas this was not the case 

for non-specific inflammation. Besides, either normal mucosa or non-specific inflammation 

had a role on survival after ALS diagnosis. 

Our finding provides new, albeit weak, evidence for the involvement of GI dysfunction in ALS, 

either as a prodromal non-motor symptom or as a disease mechanism. [138] Previous studies 

have proposed several hypotheses to elucidate the involvement of GI dysfunction in 

neurodegenerative diseases, in terms of microbial dysbiosis and aggregations of misfolded 

proteins in ENS. [138] 

We have little acknowledge about the reasons for the contrasting results between normal 

mucosa and non-specific inflammation. Chance finding could be possible. Therefore, 

validation for our findings from future studies are needed. If future studies from an independent 

population or studies for other neurodegenerative diseases verify our finding, we may 

hypothesize that a GI biopsy of normal mucosa, as a potentially distinct type of GI dysfunction 

without severe inflammation, might be specifically involved in neurodegenerative diseases 

(e.g., ALS). In a sensitivity analysis, we indeed noted that individuals with a GI biopsy of 

normal mucosa were more likely to receive a functional GI diagnoses during the five years 

before biopsy, while individuals with a GI biopsy result of non-specific inflammation had more 

inflammatory GI diagnoses. 

6.1.2 Antibiotic prescription and ALS 

Study II was the first population-based study to assess the association between antibiotics use 

and the consequent risk of ALS, and noted a dose-response relationship between them. The 

observed association did not differ between antibiotics used for respiratory infection and 

antibiotics used for urinary tract or skin and soft tissue infection, implying that the underlying 

mechanisms for the noted association are unlikely to be specific to certain organ systems.  

This might provide evidence to the involvement of the altered gut microbiome in 

neurodegenerative diseases. Antibiotics have been suggested to greatly affect the microbial 

composition with a lasting effect and result in dysbiosis. [139] Broad-spectrum antibiotics can 

alter the abundance of 30% of the gut bacteria and trigger low microbial richness and diversity. 

[140] As suggested previously, [101, 141, 142] altered gut microbiome, together with its 

metabolites, could indeed contribute to neurodevelopmental and neurodegenerative diseases.  
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However, we have to acknowledge that disentangling the effect of antibiotics from the effect 

of the underlying indications for antibiotics use is almost impossible; therefore, this finding is 

more of an association rather than a causal relationship. 

6.1.3 Hospital-treated infection and neurodegenerative disease 

To our knowledge, Study III is the first to date to comprehensively assess the associations of 

hospital-treated infections with the risk of the three most common neurodegenerative diseases 

in the same study population. We found that hospital-treated infections were associated with 

an increased risk of AD and PD, especially cases diagnosed before age 60. The positive 

associations were observed across infection types and sites but were stronger for infections – 

especially repeated infections - in early or mid-life. These findings are novel and potentially 

important. We hypothesize that infectious events may serve as a trigger for disease onset and 

lead to a diagnosis of neurodegenerative disease at relatively early age (e.g., below 60), 

especially among individuals with underlying disease predisposition. [143-145] 

Our finding has support from previous studies, both in animal and human research. Human 

studies have however mostly examined the role of a specific infection, e.g., herpesvirus for 

AD, [146] influenza, [147] hepatitis C virus, [148] and Helicobacter pylori [149] for PD, and 

the results are inconclusive. [1, 146, 150-153] Given that studies addressed different infections 

and neurodegenerative diseases, it is difficult to disentangle methodological drawbacks from 

real biological differences. A comprehensive examination of different infections, by infection 

types and sites, across different neurodegenerative diseases in a single study population helps 

to allay this concern, as we did in Study III. 

This study did however not support an association of hospital-treated infections with the risk 

of ALS. As we used a specific definition of infections in the study, namely infections requiring 

inpatient or outpatient care, this null finding does not rule out the possibility that milder 

infections not attended by specialist care might still be of importance. Previous studies have 

indeed suggested that infections might contribute to protein aggregation and mislocalization as 

well as glutamate excitotoxicity, known pathological processes of ALS. [153] Enterovirus 

sequences have also been shown in the CNS of ALS patients, [154] whereas disturbed gut 

microbiome composition [1] and increased use of antibiotics [155] have also been suggested 

among patients with ALS. 

6.1.4 Commonly measured blood markers as predictors of ALS prognosis 

In Study IV, we explored the ability of eight commonly measured blood markers in predicting 

disease prognosis after ALS diagnosis and found that serum creatinine, albumin, CRP and 

glucose, either measured at the time of diagnosis or their temporal patterns after diagnosis, 

were associated with ALS prognosis. As majority of patients with ALS die within 1 to 3 years 

after diagnosis, our finding might help to guide patient care in clinical practice.  

Our finding on creatinine is in line with previous studies, indicating that either baseline or 

longitudinal measurement of creatinine was associated with ALS prognosis. [51, 156, 157] One 
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study also found a correlation of creatinine with ALSFRS-R score and muscle strength. [157] 

Compared with previous findings, [51, 158] our study additionally supported a link between 

fast decline in albumin level after ALS diagnosis and a higher mortality risk. The finding that 

declining level of haemoglobin was related to an increased mortality risk supports the 

importance of maintaining nutritional status in the patients with ALS. The fast increasing level 

of CRP during the months prior to death of ALS patients supports the presence of altered 

immune responses and inflammation, [159, 160] which may be caused by respiratory infections 

in the later stage of ALS.  

Our finding of glucose corroborates previous findings, [161, 162] supporting the involvement 

of altered glycolytic metabolism in ALS, including perhaps insulin resistance and glucose 

intolerance. [86, 163] Such dysregulation may be more notable in patients with worse 

prognosis. However, as type 2 diabetes might be related to a lower ALS risk or later onset of 

ALS, [164, 165] future studies are warranted to elucidate the underlying reasons for such 

contradiction.  

This study provides new evidence for the importance of monitoring serum creatinine, albumin, 

CRP, and glucose in ALS care, especially given their easy access. 

 

6.2 METHODOLOGICAL CONSIDERATIONS 

Due to the nature of observational studies, three methodological considerations are discussed 

below. 

6.2.1 Selection bias 

Selection bias arises when the parameter of interest (e.g., prevalence for descriptive measures 

or risk ratio for effect measures) in a target population differs from the parameter in the subset 

of individuals from the target population that is available for analysis. [166]  

In Study I, for the exposed individuals with a GI biopsy result of normal mucosa or non-

specific inflammation, we randomly selected up to five reference individuals from the general 

Swedish population and individually matched them by age, sex, calendar year of biopsy, and 

county of residence. In Study II (antibiotics use) and Study III (hospital-treated infection), we 

applied the incidence density sampling method to select the controls from the general Swedish 

population that were individually matched to cases. As these matching factors (e.g., sex or year 

of birth) are unlikely affected by the exposure and the outcome, or intermediates between the 

exposure and the outcome, these selection methods are unlikely to introduce selection bias. 

[167] However, we have to acknowledge that the random selection method only enables us to 

generalize the effect measure to the population from which the references or controls are 

selected. In Study IV, as we only included individuals with a newly diagnosed ALS in 

Stockholm, the effect measure was only generalize to the Stockholm population who aged ≥18 

years and had at least one measurement of serum creatinine from 2006 to 2011. 
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6.2.2 Measurement bias 

Measurement error in either the exposure or the outcome is a common problem in observational 

studies. [168] It may be nondifferential if the measurement of the exposure does not depend on 

the true outcome conditional on the true exposure and vice versa. Otherwise, it might be 

differential. [169] If the exposure and the outcome are binary, then the independent 

nondifferential measurement error in the exposure and the outcome will bias the effect towards 

the null; this is however not the case if the exposure is polytomous, where the direction of the 

trend of an exposure could be changed. [170] The differential measurement error can bias the 

estimate to varying directions and distort the shape of the dose-response curve. [131] 

Although the four constituent studies in this thesis should not be greatly affected by differential 

measurement error, we have to knowledge that nondifferential measurement error is a concern. 

The misclassification in the exposure and the outcome cannot be ruled out from these studies. 

In Study I, individuals with a GI biopsy result of normal mucosa or non-specific inflammation 

may simultaneously have other biopsy results. In Study II, misclassification error could be 

introduced as the PDR does not have information on antibiotics used before July 2005 and in 

the hospital, nursing home, and over-the-counter. In Study III, because of the incomplete 

coverage of inpatient care data before 1987 and lack of outpatient care data before 2001 in 

NPR, some individuals with hospital-treated infections may have been misclassified as not 

having infection. In addition, although register-based definitions have been shown to have 

satisfactory specificity for neurodegenerative diseases, the positive predictive values are low: 

57% for AD, [171] 71% for PD, [172] and 91% for ALS, [164] suggesting that not all patients 

were captured in the register. Similar to above, such misclassification is also likely to dilute the 

associations toward null. 

6.2.3 Confounding  

Confounding is one of the central challenges in observational studies, especially when causal 

inference is the goal. [173] It could be caused by measured or unmeasured confounders. 

Confounders are factors that explain or produce all or part of the difference between the 

association and the effect that would be obtained in a counterfactual situation. [131] We 

acknowledge that confounding exists in these studies.  

In Study I, Study II and Study III, due to the nature of register-based studies, although we 

adjusted for several confounders (e.g., age, sex, and county of residence), other potential risk 

or protective factors for ALS (e.g., smoking, BMI) were not adjusted for.  In Study IV, the 

lack of clinical characteristics and genetic information in patients with ALS, some of which are 

known to affect disease progression, precluded the possibility to investigate whether the noted 

associations were independent of such factors.  
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6.3 ETHICAL CONSIDERATIONS 

Source datasets used in the four studies were de-identified. The identity of individual study 

participant could therefore not be traced. According to Swedish regulations, informed consent 

from the participants was waived in studies based on national registers. The potential benefits 

of conducting these studies should believably outweigh possible hazards to personal or 

population integrity, through improving our understanding of ALS, a devastating disease.  

Throughout the thesis work, datasets were handled according to the national legislations and 

General Data Protection Regulations, as well as supplementary legislations at the Karolinska 

Institutet (KI). All datasets were stored at secured networks at KI and protected by network 

firewall. Because the KI network is continuously scanned by an intruder detection system and 

all laptops in KI are fully encrypted, the source datasets were always under strict protection. It 

was unlikely that the research of the thesis work has caused secondary harm to the participants. 

Further, documentation for data extraction, analysis, and result interpretation was all archived 

according to KI rules to guarantee reproducibility of the study results.  

The constituent studies in this thesis were approved by the Regional Ethical Review Board in 

Stockholm, Sweden (Dnr, 2014/1287-31/4; Dnr, 2011/917-31/2; Dnr, 2012/1814-31/4; Dnr, 

2011/1730-31/2). 
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7 CONCLUSIONS 

This thesis investigated the roles of biomedical factors on the risk and prognosis of ALS. The 

main conclusions of the four constituent studies were summarized below: 

Study I: Individuals with a GI biopsy of normal mucosa were more likely to get functional GI 

diagnoses during the five years before biopsy; while individuals with a GI biopsy of non-

specific inflammation tended to have more diagnoses of inflammatory GI diseases. A GI biopsy 

of normal mucosa was associated with an increased ALS risk, whereas no clear association was 

noted for non-specific inflammation. Neither normal mucosa nor non-specific inflammation 

was correlated with ALS prognosis.  

Study II: Patients with ALS were more likely to have antibiotic prescriptions before diagnosis. 

Antibiotics use, especially repeated use, was associated with an increased risk of ALS. Positive 

association was also observed for beta-lactamase sensitive penicillin. 

Study III: Individuals with neurodegenerative diseases were more likely to experience 

hospital-treated infections during the 20 years before diagnosis. After excluding infections 

experienced within five years before diagnosis to decrease the potential bias due to diagnostic 

delay, individuals with hospital-treated infections, especially in early and mid-life, were at an 

increased risk of developing AD and PD, especially those diagnosed below 60 years of age. 

No association was observed for ALS. 

Study IV: Lower levels of serum creatinine and albumin whereas higher levels of CRP and 

glucose at diagnosis, as well as decreasing levels of creatinine and albumin and increasing 

levels of CRP and glucose after diagnosis, were associated with worse prognosis in ALS 

patients. 
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8 FUTURE PERSPECTIVE 

Although these studies are based on the Swedish national healthcare registers, low incidence 

of ALS has led to a limited sample size in some analyses, making it difficult to differentiate a 

real signal form noise. Future studies with pooled data from different studies or countries 

should be encouraged.  

Although contrasting result was noted between a GI biopsy of normal mucosa and non-specific 

inflammation in Study I, it is worthy of further investigation to understand whether this finding 

is caused by chance or also applies to other neurodegenerative diseases. Studies with 

information on the indications of GI biopsies may help to elucidate such contrasting finding. 

Because evidence has accumulated to suggest GI dysfunction as a prodromal symptom in 

different neurodegenerative diseases, [174, 175] it would be interesting to explore whether 

other GI diseases (e.g., inflammatory bowel disease, irritable bowel syndrome) are associated 

with ALS risk, as has been suggested in AD and PD. [176-180]  

Future studies with longer study periods are needed to validate the influence of repeated 

antibiotics use on the ALS risk due to the relative short follow-up period in the Swedish PDR 

(from July 2006 to December 2013). Besides, efforts of using different study designs and 

elaborated measurements are warranted to disentangle the effect of antibiotics from the effect 

of underlying indications. 

Future studies in independent populations are needed to validate our finding that infectious 

events might serve as a trigger for disease onset and lead to a diagnosis of neurodegenerative 

disease at relatively early age among individuals with underlying disease predisposition. If 

confirmed, discussion should be initiated to understand how we can best monitor or treat 

infections among such high-risk individuals. Future studies are also needed to better understand 

the roles of specific infectious agents, duration of infections, and treatments of infections (e.g., 

antibiotics, known to affect microbial environment and lead to dysbiosis) on the link between 

infections and neurodegenerative disease. 

The value of adding commonly measured blood markers in prognostic prediction of ALS to 

the routine care of ALS also warrants further investigation due to their low cost and easy access. 

How to integrate such finding to support clinical decision-making and disease monitoring has 

also to be further investigated.  

As the four constituent papers are observational, which are prone to measurement bias and 

confounding, future studies with the goal of causal inference such as Mendelian randomization 

are needed.  
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