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ABSTRACT 

Protein homeostasis is essential for living organisms and a consequence of steps of the gene 

expression pathway such as transcription, mRNA translation as well as the degradation of mRNA 

and proteins. These major cellular events demand tight control, high maintenance, and require a 

large proportion of cellular resources. mRNA translation is regulated by a plethora of cellular 

pathways as well as features of the mRNA molecule itself and is implicated in malignancies such 

as cancer. 

To decipher the contributions of mRNA elements in shaping the proteome, we developed a 

computational approach to identify mRNA features helping to understand their role in post-

transcriptional gene regulation (paper III). While using mTOR-sensitive translation as a model, 

we characterized an mRNA subset, which despite its transcriptional regulation, does not lead to 

altered protein levels. This phenomenon, termed translational offsetting, associated with distinct 

features in the 3’ untranslated region and mRNA stability.   

The initiation step of mRNA translation is widely considered as rate-limiting and is greatly 

influenced by features in the 5’ untranslated region. These characteristics can lead to impaired 

scanning and initiation and have been attributed to cellular cues such as the mTOR pathway and 

the integrated stress response. In paper II, we applied nano-cap analysis of gene expression 

(nanoCAGE) and identified 5’UTR variants containing upstream open reading frames. In 

combination with the development of a reporter-based high-throughput method we studied these 

variants in a 5’UTR-centric manner, which led to the discovery of an mRNA subset being stress-

resistant due to precise transcription start site positioning. 

In paper IV, we studied the coordination of gene expression upon depletion of the transcription 

factor ERα, known for its role in hormone-dependent cancers. Post-transcriptional regulation 

upon ERα depletion is characterized by extensive translational offsetting, which is largely assigned 

to features in the coding sequence of mRNAs. These mRNAs are enriched for codons requiring 

U34-modified tRNAs for their translation, while these modifications are regulated by ERα. 

A large proportion of cancer types are characterized by aberrant tumor suppressor activity such as 

mutations or dysregulated protein levels of p53. Its reactivation by small molecules presents a 

promising strategy for cancer treatment. However, the exact mode of action of such compounds 

remains often elusive. RITA, a small molecule initially discovered for its induction of apoptosis 

upon p53 reactivation, induces cell death in a predominantly p53-independent manner. We studied 

RITA in the context of mRNA translation and found its activity is dependent on the 

phosphorylation of eIF2α, a major regulator of mRNA translation (paper I). 
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PROLOGUE 

Organisms are self-sustaining entities comprised of compartments, i.e., cells, as unicellular 

organisms such as prokaryotes (eubacteria, archaea) (Woese, 1987) and eukaryotes (Protozoa, 

unicellular fungi, unicellular algae; around 10% of all eukaryotes) (Boudouresque, 2015) OR a  

structure   of  innumerable cells called multi-cellular organisms termed eukaryotes (land plants, 

algae, fungi and animals) (Knoll, 2011). All these species can, to some extent, be identified and 

categorized by the blunt eye. However, these observable and unobservable differences are a 

consequence of invisible processes - molecular biology. 

The work of two people established important concepts: Charles Darwin’s theory about “the origin 

of Species” (Darwin, 1859), proposed that variations of species are heritable. Gregor Mendel, who 

laid out basic rules of genetics (Mendel, 1865), showed that genetic information is passed between 

generations within a species. Using salamander embryos, Walther Flemming identified threadlike 

structures in the nucleus (chromatin), which doubled when cells divided (mitosis) (Flemming, 

1882). These threads, colored by basophilic dyes, were named chromosomes (from Gr. chroma, 

Eng. color, “colored bodies”) (Waldeyer, 1888). The term “a gene” (from Gr. genos, Eng. birth, 

generation, category) was established by Wilhelm Johanssen, in an attempt to replace the 

ambiguous expression “Anlagen” (Eng. predisposition), which was commonly used during that 

time (Johannsen, 1909). The chemist Friedrich Miescher, working in the laboratory of Felix 

Hoppe-Seyler located in the castle of Tübingen, sought to identify the molecules building up cells. 

He collected old bandages from the nearby hospital to extract white blood cells from puss. He 

isolated a substance in 1869, which he named “das Nuklein” (from Lat. nucleus, Eng. kernel, core). 

Furthermore, he was able to demonstrate that this substance has an acid and a base component, 

which is composed of nitrogen, oxygen, phosphorous, and hydrogen (Miescher, 1871). Around 80 

years later, James Watson and Francis Crick solved the structure of this substance: the DNA 

double helix. Presenting the basis for the understanding of the molecular mechanisms of gene 
expression (Watson and Crick, 1953). 

Dear reader, 

The above shall be a minuscule summary of important and often forgotten scientific findings 

today’s scientists are basing their stories on. Thus, I see it as essential to mention these. Due to 

constraints in length and time, in this foolish compact form, omitting some researchers involved. 

We will now dive – ab initio – into the context and content of my doctoral work. Welcome! 
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1 INTRODUCTION 

1.1 THE DOGMA OF MOLECULAR BIOLOGY 

Genetic information was initially thought to be encoded by proteins, since these were the only 

known macromolecules at the time which exposed high molecular complexity, in contrast to 

Deoxyribonucleic Acid (DNA). Work from Frederick Griffith showed that by infecting mice with 

strains of Streptococcus pneumonia, bacteria could transfer their, at that point unknown, genetic 

information (Griffith, 1928). Later, Avery and colleagues performed experiments, which showed 

that the extracted DNA from bacteria was the actual macromolecule containing genetic 

information (Avery et al., 1944). Experiments using radioactive labeled phosphorous and sulfur 

confirmed these results (phosphorus is found in DNA, sulfur is found in proteins)  (HERSHEY 

and CHASE, 1952). Genetic information is stored in the nucleus of the cell in form of the DNA. 

It consists of 2 strands in which phosphate groups, as phospho-diester bonds between the C-5 

and the C-3 of deoxyribose molecules, form a backbone. This structure results in the strand having 

a directionality, i.e. 5’ to 3’. A double helix is formed by two independent DNA strands running 

against each other, while four different bases (adenine, thymine, cytosine and guanine) interact by 

pointing towards the strand’s core, of which A = T and C ≡ G form hydrogen-bonds (number of 

dashes represent number of H-bonds), also known as Watson-Crick base-pairing (Watson and 

Crick, 1953). These bases make-up a “code”, the sequence which leads to an organism’s uniqueness 

while containing the information for the organism’s building blocks – proteins (Crick et al., 1961). 

It was evident that DNA could not be involved in the synthesis of proteins, since it was absent at 

the sites in the cell where proteins were made. Moreover it became clear that levels of another large 

biomolecule, ribonucleic acid (RNA) increased when cells actively produced proteins (Brachet, 

1942; Caspersson, 1941). The RNA molecule possesses similarities to the DNA molecule, however 

it contains ribose instead of deoxyribose, resulting in a hydroxyl group at the C-2 of the sugar. 

Furthermore, RNA uses the base uracil instead of thymine and does generally not form a double-

strand (Allen, 1941). These findings were finally combined into the “central dogma of molecular 

biology” (Crick, 1970), which can be summarized as: 

DNA can replicate itself (replication), under cell division (Lehman et al., 1958; Meselson and 

Stahl, 1958). 

RNA is the transcript (transcription) of DNA and can be reverse-transcribed by viruses (Temin 

and Mizutani, 1970) and during telomere lengthening (Greider and Blackburn, 1989). Moreover, 

RNA can be replicated by RNA-dependent RNA polymerases in RNA viruses (Reich et al., 1961). 

The gene product, a protein, is made from an RNA-template (translation). 
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Among the stages of the “Central Dogma”, mRNA translation will be the main subject discussed 

in this thesis. Hence, the processes preparatory to the synthesis of proteins will be discussed in less 

detail, in spite of their importance.  

1.1.1 The genetic code 

In 1902, Emil Fischer and Franz Hofmeister independently discovered that proteins are a chain of 

amino acids connected by peptide bonds (Fischer, 1902; Hofmeister, 1902). It was shown by 

induced mutagenesis in T4 bacteriophages that this information is encoded in triplets along the 

RNA (Crick et al., 1961) and gave rise to (4 x 4 x 4) 64 possible triplets, also called codons. 

However, the number of identified amino acids in proteins was not 64, leading to the conclusion 

that the genetic code is degenerate, i.e. each amino acid is encoded by several codons (Crick et al., 

1961; Jones and Nirenberg, 1966). The first characterized codon, UUU, encoding for 

phenylalanine (Matthaei and Nirenberg, 1961) paved the way to unravel the remaining codons 

(Nirenberg and Leder, 1964; Nirenberg et al., 1965) and led to the identification of the necessary 

adapters between the information encoded in the RNA and the amino acid, i.e. transfer RNAs 

(tRNAs) (Apgar et al., 1962; HOAGLAND et al., 1958; Holley et al., 1965). Of all 64 codons only 

61 encode amino acids. The remaining 3 codons, stop-codons, lead to the termination of protein 

synthesis (Brenner et al., 1965, 1967). The start-codon, an AUG triplet, encoding for methionine, 

leads to peptide-bond formation (Clark et al., 1968; Levin et al., 1972). More recently other non-

canonical start-codons have been identified (Ivanov et al., 2011). Proteins are composed of 20 

amino acids (Ambrogelly et al., 2006), of which 9 are essential and must be supplied through the 

diet in mammals (Reeds, 2000). One class of proteins, selenoproteins, require an additional amino 

acid, selenocysteine, which has a specific catalytic activity necessary in redox-reactions (Johansson 

et al., 2005). This amino acid is encoded by a stop-codon, UGA, which in combination with a 

particular RNA motif in the 3’ untranslated region (3’ UTR), the SECIS Element (Berry et al., 

1991), leads to incorporation of selenocysteine into the peptide-chain (Low and Berry, 1996). 

1.1.2 RNA 

RNAs exist in many different variants and abundances in the cell and can be broadly divided into 

“protein-coding” and “non-coding” classes. Non-coding RNAs such as small nuclear RNA 

(snRNA), tRNA and microRNA (miRNA), to a large extend, fulfill regulatory functions (Eddy, 

2001). Long-non-coding RNAs (lncRNA) are another class of regulatory molecules that have been 
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discovered more recently. Interestingly, some lncRNAs have been found to be translated using 

methods to identify actively translated mRNAs (Aspden et al., 2014; Chen et al., 2020; Ingolia et 

al., 2011; Ji et al., 2015; Lee et al., 2012) and mass-spectrometry of proteins (proteomics) (Chen et 

al., 2020; Karunratanakul et al., 2019; Makarewich and Olson, 2017; Slavoff et al., 2013) . However, 

currently, the functions of lncRNA-encoded proteins remain largely elusive. The most abundant 

RNA species in the cell is ribosomal RNA (rRNA), which comprises the machinery that 

synthesizes proteins, the ribosome. Another subclass is transfer RNAs (tRNAs), which act as 

adaptors between the genetic code (in the form of an mRNA) and the amino-acids used for protein 

synthesis (HOAGLAND et al., 1958). However the RNA subclass which will be most discussed 

in this thesis are messenger RNAs (mRNAs) which, as the transcript of protein-coding genetic 

information (protein-coding genes), are the blueprints for proteins. 

1.1.3 Ribosomal RNA, the Ribosome 

The macromolecule responsible for the synthesis of proteins is the ribosome. Ribosomes are  

composed to 40% of ribosomal proteins and to 60%  ribosomal RNA (Frank, 2000). Since rRNAs 

are the most abundant RNA species in the cell (80%) (Warner, 1999), ribosomes are very abundant, 

with to 105 - 106 ribosomes per cell (Raveh et al., 2016). The discovery of the ribosome was closely 

connected to the advancements of electron microscopy. George Palade discovered small 

structures, closely associated with the endoplasmic reticulum (PALADE, 1955). These were 

initially described as ribonucleic particles (LITTLEFIELD et al., 1955) and later defined as 

ribosomes (ALLFREY et al., 1953; Roberts, 1958). Further structural studies using electron 

microscopy revealed that several ribosomes perform protein synthesis on a single mRNA. The 

uncovering of these structures, first named ergosomes and later polysomes, contributed greatly to 

basic understanding of mRNA translation (Slayter et al., 1963; Staehelin et al., 1963; Wettstein et 

al., 1963). The first structure of the bacterial ribosome was determined much more recently using 

x-ray crystallography (Ban et al., 2000; Harms et al., 2001; Wimberly et al., 2000). Additional 

insights into ribosomal structures including tRNA and the mRNA (Yusupov et al., 2001) and 

subsequent increased resolution (Schuwirth et al., 2005) widened the mechanistic understanding 

of protein synthesis. Moreover, these advancements revealed that peptide bond-formation was 

catalyzed by RNA without the direct involvement of proteins (Nissen et al., 2000) classifying the 

ribosome as a ribozyme, a RNA molecule with the ability to catalyze chemical reactions (Kruger 

et al., 1982). More recently, the first structure of the eukaryotic ribosome was obtained in 

Saccharomyces cerevisiae using x-ray crystallography (Ben-Shem et al., 2010, 2011) and cryo electron 

microscopy (cryo-EM) (Anger et al., 2013; Khatter et al., 2015). These structural insights have not 

only contributed to the understanding of translation mechanisms but greatly enabled the 

development of antibiotics targeting bacterial protein synthesis (Steitz, 2005; Yonath, 2005). 
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Ribosomes consist of two subunits, named after their sedimentation coefficient in Svedberg units 

[S]. In eukaryotes, these comprise the small subunit (40S) and the large subunit (60S), which 

together form the 80S monosome (Anger et al., 2013). Moreover, there are 80 ribosomal proteins 

and around 5,500 nucleotides of ribosomal RNA required for the assembly of one eukaryotic 

ribosome (Armache et al., 2010). These ribosomal proteins, are characterized by high abundance 

and protein stability (Nikolov et al., 1987) and encoded by particularly abundant and stable mRNAs 

containing a specific motif in their 5’ untranslated regions, the terminal oligo pyrimidine tract 

(TOP), whose protein abundance is mainly controlled by mRNA translation (Meyuhas, 2000). 

Ribosomal RNA is characterized by high RNA-stability (Kaempfer, 1969; Meselson et al., 1964) 

and the maintenance of its RNA levels requires 60% of the cellular transcriptional output, in 

addition to the 50% of RNA-polymerase II activity for ribosomal proteins (Warner, 1999). All 

these features renders the ribosome synthesis as highly energy consuming and leads to an 

impressive ribosomal half-life of 12 days (Nikolov et al., 1987). 

 

1.1.4 Messenger RNA 

Messenger RNA is, in contrast to rRNA, one of the least abundant RNA molecules in the cell and 

was initially thought to be an unstable intermediate in E.coli bacteria upon phage infection (Brenner 

et al., 1961; Gros et al., 1961). Moreover, it was shown that apart from extracted ribosomes from 

bacteria, RNA from the soluble fraction was also necessary for protein synthesis (Matthaei and 

Nirenberg, 1961). These findings together revealed that apart from ribosomes another RNA 

species existed carrying the information derived from DNA to the site where proteins are made - 

mRNA. mRNA molecules (Figure 1) are typically 1000 – 3000 nt in length and can be divided 

into three distinct regions: the 5’ untranslated region (5’UTR), the open reading frame (ORF) and 

the 3’ untranslated region (3’UTR). Additionally, mRNAs are characterized by a 5’cap structure 

(m7GpppN) (SHATKIN, 1976) and a long stretch of adenosine bases at the 3’end referred to as 

the polyA-tail (Darnell et al., 1971; Lee et al., 1971). Both structures stabilize the mRNA and 

prevent degradation by exonucleases (Schoenberg and Maquat, 2012), but also play an important 

role during the initiation step of mRNA translation.  

The 5’cap  is added to the first nucleotide of the nascent mRNA strand during transcription from 

its DNA template, while the polyA-tail is added (polyadenylation) after transcription termination 

in the nucleus prior to mRNA transport to the cytoplasm (Edmonds et al., 1971; SHATKIN, 1976; 

Wickens, 1990). However, in germ-line cells polyadenylation can occur in the cytoplasm (Belloc et 

al., 2008). The open reading frame (ORF) is defined by a start codon (AUG) and a stop codon. 

The 3’UTR, situated between the stop codon and the polyA-tail harbors binding sites for RNA 
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binding proteins (RBPs), long non-coding RNAs (lncRNAs) and microRNAs (miRNA) 

(Filipowicz et al., 2008). Additional features in untranslated regions will be discussed throughout 

this thesis. 

 

Figure 1 - The mRNA molecule consists of three distinct regions, which will be discussed in detail in this thesis. The 
5’cap structure is added during transcription (1.1.5) and is important for the initiation of mRNA translation (1.2.1). Features 
in the 5’ untranslated region (5’UTR) are widely implicated in translational control (1.3.2) and are the focus of paper II 
and III. The 3’ untranslated region (3’UTR) plays, among other functions, a role in mRNA stability (1.3.3 and paper 
III). The coding region contains the information for the protein sequence and its codon composition plays a role in the regulation 
of mRNA translation (1.3.4) and papers III and IV. 

1.1.5 Transcription 

The process of copying genetic information from DNA to RNA in the nucleus is called 

transcription (Figure 2). Specific RNA-polymerases catalyze the formation of RNA molecules by 

forming phospho-diester bonds using RNA bases as triphosphates (Roeder and Rutter, 1969; 

Stevens, 1960). The activity of these polymerases is regulated by a plethora of transcription factors 

(Lambert et al., 2018). These act in concert with enzymes modifying histones post-translationally, 

proteins on which DNA is space-efficiently stored,  leading to in- or decreased accessibility of the 

chromatin (Venkatesh and Workman, 2015). Chromatin, an assembly of nucleosomes, is a 

macromolecular structure containing DNA, proteins (Kornberg, 1974) and RNA (Holmes et al., 

1972). Positioning of nucleosomes leading to open chromatin makes sections of the DNA 

accessible for regulators (Lorch et al., 1987), such as transcription factors (Segall et al., 1980). This 

is commonly associated with the initiation of transcription (Lambert et al., 2018). The sites, at 

which transcription starts (transcription start-sites, TSS) are of importance when studying 5’UTRs 

(1.6.4 and paper II). Different RNA species are transcribed with different RNA polymerases, of 

which RNA polymerase II (RNA-pol II) is responsible for the transcription of mRNAs and 

miRNAs, RNA polymerase III for tRNAs and the 5S rRNA. RNA-polymerase I produces the 

remaining rRNAs (Barba-Aliaga et al., 2021). In particular, RNA polymerase II is intrinsically 

regulated by its C-terminal domain (CTD). This domain is the target of many different kinases, 

and its phosphorylation pattern steers RNA polymerase II activity towards different activation 

states (Hsin and Manley, 2012). For instance, phosphorylation at Serine 5 of the CTD recruits the 
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capping enzyme, leading to 5’capping of the nascent mRNA strand (Cho et al., 1997; Ho and 

Shuman, 1999). This event is of importance when transcription start sites are analyzed using cap 

analysis of gene expression (CAGE) or nanoCAGE techniques. This will be discussed in more 

detail later in this thesis (1.6.4). The newly synthesized and capped mRNA molecule (pre-mRNA) 

is then spliced by the spliceosome (Figure 2), consisting of a multitude of snRNAs and proteins 

(Fica and Nagai, 2017). This event serves to further increase the complexity of the genome with 

its 3 billion bases since multiple protein isoforms can be generated from the same mRNA molecule 

(mRNA isoforms) (Chow et al., 1977). This is achieved by the removal of introns from the pre-

mRNA and the joining of exon sequences generating the final mRNA molecule (Shi, 2017). In 

addition, genomic complexity is further increased by alternative splicing (Nellore et al., 2016; Pan 

et al., 2008) that can occur as a result of, for instance, overexpression of the splicing factor SRSF1 

in breast cancer (Anczuków et al., 2012). 
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Figure 2 – A scheme of the gene expression pathway: Pre-mRNAs are transcribed from the genome (DNA) 
followed by splicing (1.1.5). mRNAs are transported or retained in the nucleus (1.1.6). In the cytoplasm, mRNAs can be 
stored, degraded or used for mRNA translation (1.2). Protein synthesis is performed by ribosomes, which associate with 
mRNAs and, due to translational control (1.3), give rise to different amounts of the respective protein. Protein levels (the 
proteome) are mediated by the rate of mRNA translation and protein degradation (1.5). The transcriptome is defined by all 
RNAs in the cell, while the translatome contains all mRNAs associated with ribosomes. 
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1.1.6 mRNA transport from the nucleus 

Once capped and spliced, mRNAs are exported into the nucleus by export-factors like TREX and 

TREX-2 in a transcription-coupled manner via nuclear pore complexes residing in the nuclear 

membrane (Köhler and Hurt, 2007) (Figure 2). This process is tightly coupled to cellular 

mechanisms of  mRNA-quality control (Hieronymus et al., 2004; Hilleren et al., 2001) and has 

been shown to be co-regulated with mRNA-transcription and mRNA-splicing (Köhler and Hurt, 

2007). Interestingly, mRNAs related to  cell cycle progression and survival, such as ODC1, Cyclin 

D1 and c-myc require binding of the cap-binding protein eIF4E including a 3’UTR-motif and do 

not underlie the transport mechanism for bulk mRNA, linking mRNA transport and regulation of 

mRNA translation (Culjkovic et al., 2006; Rousseau et al., 1996). 

1.2 mRNA TRANSLATION 

mRNA translation, a post-transcriptional mechanism of gene expression regulation, is the process 

through which proteins are synthesized by the ribosome, using the mRNA as a template and is 

uni-directional, i.e., in 5’ to 3’ manner. Early experiments showed that proteins are synthesized on 

polysomes, i.e., several ribosomes associated with an mRNA (WARNER et al., 1963). Thus one 

mRNA gives rise for several molecules of the respective protein. The relative rate at which this 

occurs can be measured as translational efficiency of an mRNA, which describes the proportion 

of each mRNA in the cell associated with ribosomes and is therefore a proxy for the resulting 

protein levels (Larsson et al., 2013). The proteome is shaped by the synthesis and degradation of 

proteins and, given the fact, that maintaining cellular protein levels (protein homeostasis or 

proteostasis) of an organism is essential for its survival (Balch et al., 2008), mRNA translation is 

an omnipresent process. Moreover, the rate of protein production per time ranges widely between 

10 to 10,000 proteins per mRNA in comparison to the production of 0.1 to 100 mRNAs per hour 

by transcription (Hausser et al., 2019; Liu et al., 2016; Schwanhäusser et al., 2011) illustrating the 

importance of mRNA translation in mediating rapid changes to the proteome. As such, mRNA 

translation and the necessary energy supply to sustain it are subject to complex mechanism of 

regulation. Indeed, mRNA translation is considered to be the most energy demanding process in 

the cell (Buttgereit and Brand, 1995), up to 28% of the energy stored in adenosine triphosphate 

(ATP) is consumed for the production of proteins (Rolfe and Brown, 1997) and the formation of 

one peptide bond requires 4 high-energy bonds (triphosphates), corresponding to approximately 

25 kcal/mol (Mathews et al., 2000). mRNA translation can be divided into three major steps: 

initiation, elongation and termination including ribosome recycling. Each step is highly regulated 

of which the initiation step is considered to be rate limiting (Mathews et al., 2000; Sonenberg and 

Hinnebusch, 2009).  
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Figure 3 – Initiation of mRNA translation (1.2.1): The binding of eIF4E to the m7G cap structure is rate limiting 
for cap-dependent mRNA translation. This is followed by formation of the eIF4F complex comprised of the scaffold eIF4G 
and the DEAD-box helicase eIF4A. Its assembly is regulated downstream of the mTOR pathway (1.3.1.1) by the regulatory 
4E binding proteins (4E-BPs). The 43S pre-initiation complex is formed between the 40S ribosomal subunit, eIF1, eIF1A, 
eIF5 and eIF3 and the ternary complex of eIF2α, -β, -γ carrying the initiator tRNA (tRNAiMet). The 48S pre-initiation 
complex scans the 5’UTR until a start-codon is recognized, followed by assembly of the 80S ribosome and translation elongation 
(1.2.2). Upon stop codon recognition, translation is terminated (1.2.2) and the 40S and 60S subunits are recycled for a new 
round of mRNA translation. Specific oncogenic mRNAs, such as Vascular endothelial growth factor (VEGF), Cyclins, 
Mouse double minute 2 (MDM2), B-cell lymphoma-extra large (BCL-XL), and MYC proto-oncogene are sensitive to eIF4E 
protein levels, leading to their aberrant protein synthesis when eIF4E is elevated (1.4). The phosphorylation of eIF4E by MAP 
kinase-interacting serine/threonine-protein kinase 1/2 (MNK1/2) regulates translation of a subset of mRNAs and is 
implicated in cancer (1.3.1.3). 

Reprinted by permission from Springer Nature Customer Service Centre GmbH. Nature Reviews Drug Discovery. Bhat M et al. Targeting the translation machinery in cancer. 
Nat Rev Drug Discov. 2015 Apr;14(4):261-78. doi: 10.1038/nrd4504. © 2015 
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1.2.1 Translation initiation 

There are two main mechanism through which initiation of mRNA-translation is thought to occur. 

The first and most prevalent being highly dependent on the 5’cap-structure (Pelletier et al., 2015). 

A secondary mechanism of initiation requires a specific RNA structure, an internal ribosome entry 

site (IRES) (Pelletier and Sonenberg, 1988). Cap-dependent translation initiation requires a 

plethora of initiation factors (eIFs) (Figure 3). The eukaryotic initiation factor 4E (eIF4E) binding 

the 5’cap (Sonenberg et al., 1978), is the rate-limiting step (Duncan et al., 1987) and allows 

recruitment of eukaryotic initiation factors 4G and 4A (eIF4G and eIF4A), which together 

comprise the eIF4F complex (Sonenberg and Hinnebusch, 2009). Recent studies revealed 

additional mechanisms of initiation by DAP5 and eIF3d for a subset of mRNAs. The latter is 

another cap-binding protein requiring a distal stem-loop for eIF4F-independent initiation (Lee et 

al., 2016).  Furthermore, DAP5 was identified as stimulating IRES-driven translation (Liberman et 

al., 2015) and, in combination with eIF3d, modulating translation in a cap-dependent manner 

without requiring the eIF4F complex (de la Parra et al., 2018) controlling T-cell phenotypes (Volta 

et al., 2021). Following cap-recognition the pre-initiation-complex (43S PIC), harboring the 

initiation tRNA (met-tRNAi), together with translation factors eIF1, eIF1A, eIF2 (including several 

subunits such as eIF2α), eIF2B, eIF3 and eIF5 and the 40S ribosomal subunit, scans in 5’ to 3’ 

directionality until a start codon (AUG) is recognized. This leads to subsequent GTP-hydrolysis 

of eIF2 bound GTP by eIF2B and the release of the pre-initiation complex. Next the 60S 

ribosomal subunit is recruited including eIF6, inhibiting the association with free 40S in the 

cytoplasm, and eIF5B, which in turn is released after GTP-hydrolysis and initiation ends by 

forming the 80S initiation complex  (Jackson et al., 2010; Sonenberg and Hinnebusch, 2009). 

Translation takes place in a closed loop formation, thought to be important for its efficiency and 

selectivity for intact mRNAs (Gingras et al., 1999b). The interaction of the poly A binding protein 

(PABP) with eIF4G leads to closed loop formation and enhances translation (Gallie, 1991; Svitkin 

and Sonenberg, 2006). Indeed, mRNAs lacking a polyA-tail, e.g. of replication dependent histones, 

harbor 3’UTR stem-loops, bound by RNA-binding proteins to facilitate closed-loop formation 

(Cakmakci et al., 2008). These well characterized steps (Figure 3) are not only mediated by 

availability and functionality of initiation factors, but likewise by features and structures in the 

5’UTR which will be discussed later in this thesis. 

1.2.2 Translation elongation and termination 

When the 80S ribosome is formed at initiation codons (start-codons), the initiator-tRNA (Met-

tRNAi
Met is recruited to the P-site of the ribosome, while the tRNAi anticodon pairs with the AUG 

of the mRNA. Next, eukaryotic elongation factor (eEF) 1A in a ternary complex with a tRNA 

complementary to the next codon of the mRNA enters the A-site and the interaction between 
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codon and tRNA triggers eEF1A catalyzed GTP-hydrolysis (Dever et al., 2018). Peptide bond 

formation by nucleophilic attack of the free amino group of the amino acid loaded on the 

aminoacyl-tRNA (A-site) and the ester bond between the peptidyl-tRNA (P-site) occurs by 

transferring the nascent poly-peptide chain onto the tRNA in the A-site (Moore and Steitz, 2003; 

Trobro and Åqvist, 2005). This reaction is catalyzed by interaction with rRNA of the large 

ribosomal subunit (Ben-Shem et al., 2011; Trobro and Åqvist, 2005), including stabilization of the 

peptidyl-tRNA by eIF5 (Gutierrez et al., 2013) and repositioning of both tRNAs by subunit 

rotation of both ribosomal subunits (Moazed and Noller, 1989). eEF2, a GTP-dependent 

translocase, leads to translocation of tRNAs in P- and A-site to E- and respectively P-site, allowing 

the next aminoacyl-tRNA to accommodate the A-site (Spahn et al., 2004). 

Translation is terminated by the interplay of eukaryotic release factors (eRFs) 1 and 3 (Hellen, 

2018). eRF1 is a protein with structural similarity of a tRNA. Its amino-terminal domain recognizes 

a stop codon (Bulygin et al., 2010; Chavatte et al., 2002)  and its middle domain promotes hydrolysis 

of the peptide-chain from the tRNA in the P-site (Song et al., 2000). The ribosome is recycled by 

ABCDE1, which requires eEF1 (Pisarev et al., 2010), and splits the 40S and 60S subunit in an 

ATP-dependent manner (Pisarev et al., 2010; Shoemaker and Green, 2011). Recycling of the 40S 

subunit mainly relies on eIF3 and its interplay with eIF1, eIF1A (Pisarev et al., 2007). Together 

with binding of eIF6 to the 60S subunit prevents premature joining of the ribosomal subunits 

(Ceci et al., 2003; Strunk et al., 2011) allowing for a new cycle of mRNA translation beginning with 

translation initiation. 

1.3 TRANSLATIONAL CONTROL 

As illustrated above, translation is an advanced process requiring a large proportion of cellular 

energy and a multitude of translation factors. Understanding how mRNA translation is controlled 

began with the observation that cells alter their protein production upon external stimuli. The 

discovery of the lac-operon established that external signals are essential for cellular survival 

(JACOB and MONOD, 1961). Later experiments showed, that protein production in sea urchin 

eggs, when fertilized, was uncoupled from transcription of new RNA (Hultin, 1961). Reticulocytes, 

stimulated with heme and iron ions, presented a dramatic increase in alpha- and beta-globin protein 

(Bruns and London, 1965). This observation was of particular importance, since reticulocytes do 

not contain nuclei; hence protein production is singularly reliant on translational control (Kruhi 

and Borsook, 1956). Translational control is not exclusively attributed to global activation or 

reduction of protein synthesis, but can also occur in a selective manner. This is achieved by 

regulation via cellular cues impinging on mRNA translation, including intrinsic features of the 

mRNA (cis-factors) or the interaction of the mRNA with proteins or RNAs (trans-factors). These 

aspects will be discussed tin the following sections. 
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1.3.1 Pathways regulating translation 

1.3.1.1 The mTOR pathway 
There are two major cellular cues that regulate mRNA translation. These are pathways downstream 

of the phosphatidyl-inositol-3 kinase (PI3K) and mitogen activated protein kinase (MAPK) (Roux 

and Topisirovic, 2018). The mammalian target of rapamycin (mTOR) is an evolutionary conserved 

Ser/Thr-kinase, and acts as a major regulator for cell proliferation and cell growth. There exist 

three distinct complexes of mTOR; mTORC1, 2 and 3. Of these complexes, the mechanisms for 

mTORC1 and 2 are most studied. (Saxton and Sabatini, 2017) (Figure 4). mTORC3 is the most 

recently described of the complexes and is comprised of the transcription factor ETV7 in complex 

with mTOR. It exhibits similar activity to mTORC1 and 2, while lacking a number of their subunits 

(Harwood et al., 2018). mTORC1 mainly regulates mRNA translation, whereas mTORC2 is 

involved in mediating the stability of protein kinase C (PKC), phosphorylates nascent AKT 

polypeptides and plays a role in actin and cytoskeleton reorganization (Oh and Jacinto, 2011). 

Hormones and growth factors activate mTORC1 by the PI3K pathway upon stimulation of 

receptor tyrosine kinases (RTK), like the insulin receptor (Fruman et al., 2017; Proud and Denton, 

1997). Downstream signaling in this cascade signals occurs via AKT (protein kinase B) and  

tuberous sclerosis complex 1 and 2 (TSC1/TSC2) to RAS-homologue enriched in brain (Rheb), 

which, acting as a GTPase, activates mTORC1 in its GTP-bound state (Dibble and Cantley, 2015). 

The activation of mTORC1 is associated with an increase in mRNA translation mainly by 

phosphorylating the p70-S6 kinase and eIF4E binding proteins (4E-BPs) (Figure 4). S6Ks play an 

import role in regulating cellular and organismal size downstream of mTORC1 (Fingar et al., 2002). 

These kinases phosphorylate rpS6, involved in ribosome biogenesis (Chauvin et al., 2014) and 

eukaryotic elongation factor 2 kinase, which is a negative regulator of mRNA translation by 

inhibiting eEF2 (Kenney et al., 2014). Insulin stimulation leads to inhibition of eEF2K activity 

resulting in increased protein synthesis due to higher elongation rates (Redpath et al., 1996; Wang 

et al., 2001). The other axis of mTORC1’s translational regulation occurs 4E-BPs, which, when 

hypo-phosphorylated under low mTORC1 activity, bind to eIF4E and thereby reduces its affinity 

for the 5’cap, abolishing binding of eIF4G and therefore inhibiting translation initiation resulting 

in decreased protein synthesis (Gingras et al., 1999a; Pause et al., 1994). 
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Figure 4 – Cellular pathways regulating mRNA translation: Mitogenic signals are transferred into the cell by 
receptor tyrosine kinases, such as the Bcr-Abl tyrosine-kinase, Receptor tyrosine-protein kinase erbB-2 (HER2) and tyrosine-
protein kinase Met (MET), which activate the mTOR pathway via PI3K and the RAS-RAF cascade upstream of MNK1/2 
(1.3.1.3). mTOR activity regulates eIF4F complex formation via 4E-BPs and eIF4A activity via S6K leading to increased 
translation initiation (1.3.1.1). Ternary complex (TC) formation is negatively regulated by the kinases: Heme-regulated 
inhibitor kinase (HRI), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), protein kinase R (PKR) and 
general control non-depressible 2 (GCN2) (1.3.1.2). Proteins encoded by eIF4E-sensitive mRNAs (i.e. MYC, MDM2) 
regulate transcription via p53 (MDM2) (1.7) or as transcription factor (MYC) leading to transcription of mRNAs encoding 
translation initiation factors of the eIF4F complex, ribosomal RNA (rRNA) and transfer RNA (tRNA).  

Reprinted by permission from Springer Nature Customer Service Centre GmbH. Nature Reviews Drug Discovery. Bhat M et al. Targeting the translation machinery in cancer. 
Nat Rev Drug Discov. 2015 Apr;14(4):261-78. doi: 10.1038/nrd4504. © 2015 
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1.3.1.2 The integrated stress response 

A response to cellular stresses regulating global protein synthesis is the phosphorylation of the 

alpha subunit of eIF2 (eIF2α) leading to a global decrease of mRNA translation (Prostko et al., 

1993) (Figure 4). Four different kinases mediate this phosphorylation (protein kinase R (PKR)-

like endoplasmic reticulum kinase [PERK], general non-derepressible 2 [GCN2], double-stranded 

RNA-activated protein kinase [PKR], heme-regulated inhibitor kinase [HRI]) each activated by 

different cellular stresses such as endoplasmic reticulum stress, low amino acid availability, heme 

levels or as part of antiviral responses (Sonenberg and Hinnebusch, 2009; Wek, 2018). These 

stresses and subsequent translational decrease can fine tune protein synthesis and reveal distinct 

translational programs to protect from, for example, proteotoxicity, which under extreme 

circumstances can lead to apoptosis (Harding et al., 1999; Walter and Ron, 2011). The translation 

of specific mRNAs induced by phospho-eIF2α span from specific transcription factors (ATF4, 

CHOP), protein processing and degradation (BiP, BACE1), Cell cycle control (CDKN1A), 

feedback control for eIF2α phosphorylation (GADD34), nutrient transport (SLC35A4) and tRNA 

charging (EPRS) (Baird et al., 2014; Koritzinsky et al., 2006; Wek, 2018). Recently it has been 

shown using the ER-stress inducer thapsigargin, that one such translational program acts as a first 

response, and chronic stresses leads to transcriptional reprogramming (Guan et al., 2017). 

1.3.1.3 MNKs and eIF4E phosphorylation 

The activity of the cap-binding protein eIF4E can also be regulated by MAP kinase signal-

integrating serine/threonine-protein kinases (MNKs) which phosphorylate eIF4E by docking onto 

eIF4G (Roux and Topisirovic, 2018). MNKs, exist in two isoforms, and are activated directly by 

ERK and p38, in which ERK is downstream of the RAS pathway and p38 downstream of the 

MAP kinase pathway (Proud, 2015). Furthermore MNK2 plays a role in resistance to rapamycin 

in cancer cells due to sustained mTORC1-activity (Brown and Gromeier, 2017). MNKs are the 

only presently known kinases that phosphorylate eIF4E at Serine 209 (Flynn and Proud, 1995; 

Joshi et al., 1995). However, to date, the precise role of eIF4E-phosphorylation in context of global 

mRNA translation remains unclear. 

1.3.2 Translational control by 5’ untranslated regions 

1.3.2.1 Scanning and initiation 
As previously mentioned, the 5’UTR is comprised of the cap-structure followed by a stretch of 

RNA-nucleotides (5’UTR), until the start-codon (AUG) of the main open-reading-frame (coding 

sequence). 5’UTRs differ in length between different species. The median length of 5’UTRs in 

budding yeast is 53nt, however in human the median length is 218nt but can reach up to 

approximately 1200nt (Leppek et al., 2018). These large variations in length and the combinatorial 
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possibilities in nucleotide composition, result in many possibilities for regulation. Additionally, 

5’UTR complexity can be modulated by RNA splicing, since around 35% of 5’UTR sequences 

contain introns (Pesole et al., 2001), which have been found to be longer compared to those in 

coding regions (Hong et al., 2006). The actual 5’UTR characteristics are determined by usage of 

transcription start sites (TSS), who can be differentially selected in response to altered cellular 

conditions (Livingstone et al., 2015). Efforts have been made to map those TSSs in a 

transcriptome-wide manner (Forrest et al., 2014; Suzuki and Sugano; Suzuki et al., 2015). To date, 

the available information in data-bases on TSSs in cell-lines and tissues is limited and 5’UTRs have 

been shown to be inaccurately annotated to a large extend (Gandin et al., 2016). 

Translation initiation is commonly considered the rate limiting step in protein synthesis, which 

involves scanning of the 5’UTR in 5’ to 3’ directionality, putting the first AUG in a favor for 

initiation. How scanning contributes to translation initiation was initially addressed by Marilyn 

Kozak who described scanning based on the fact that most eukaryotic mRNAs are mono-cistronic, 

i.e., encode for one protein, and lack upstream initiation sites. The insertion of upstream (proximal) 

AUG codons in the pre-proinsulin mRNA, led to the idea that the 43S pre-initiation complex (43 

PIC) scans the 5’UTR until start codon recognition (Kozak, 1983, 1986a). Introducing point-

mutations surrounding the AUG codon especially at position -3 relative to the AUG led to a 

dramatic effect on translation initiation such that an AUG can be completely bypassed giving rise 

to the term “leaky scanning” (Kozak, 1986b). These findings ultimately defined the Kozak 

sequence for vertebrates, 

5’-GCCGCC(A/G)CCAUGG-3’ (Kozak, 1987a) 

as the most favorable sequence context for translation initiation. By modifying the canonical AUG 

to single-nucleotide mutants it was shown that initiation is reduced. Non-canonical start-codons 

initiate at a frequency of 1-10% compared to canonical AUGs depending on gene and study. The 

codons AAG and AGG were shown as non-functional (Clements et al., 1988; Peabody, 1989). In 

some cases, non-canonical start codons can be decoded by the leucyl-tRNA requiring eIF2A 

instead of eIF2, which is necessary for loading of antigenic precursors on major histocompatibility 

complexes (Starck et al., 2012). Start codon recognition in its strong and weak Kozak  contexts is 

controlled by different eukaryotic initiation factors in which eIF1 (Pestova et al., 1998) and eIF5 

play two opposite roles. eIF1 promotes scanning  and inhibits recognition of non-AUG codons  

and eIF5, a GTPase-activating protein for eIF2 helps to dissociate eIF1 from the arrested scanning 

43S PIC also supporting start-codon recognition (Llácer et al., 2018; Zeman et al., 2019). The 

translation of these two initiation factors is tightly auto regulated. The eIF1 mRNA harbors an 

AUG in weak context leading to increased eIF1 translation when eIF1 protein levels are low. The 
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eIF5 mRNA in contrast contains an inhibitory upstream open reading frame (uORF) in weak 

context, which is translated under low eIF1 conditions and bypassed when eIF1 is high (or eIF5 

levels are low) leading to increased eIF5 levels (Ivanov et al., 2010; Loughran et al., 2012). Since 

start-codon recognition is essential to accomplish translation initiation, it is not surprising that 

mRNAs with very short 5’UTRs (≤20nt) show lower translational efficiency resulting from 

increased leaky scanning, which can result in N-terminal truncated proteins (Kozak, 1991b, 1991a; 

Pestova and Kolupaeva, 2002). However some mammalian mRNAs with very short 5’UTRs 

contain an element that promotes cap-dependent but scanning independent initiation. The 

translation initiation of short UTRs (TISU) element, often found in mitochondrial related mRNAs 

(Sinvani et al., 2015), promotes translation of 5’UTRs as short as 5nts and relies on specific 

sequences up and downstream of the AUG, in which downstream nucleotides compensate for 

lacking 5’UTR sequence (Elfakess and Dikstein, 2008; Elfakess et al., 2011). Paradoxically, the 

TISU element relies on eIF1 (Sinvani et al., 2015), which normally prevents initiation at AUGs 

close to the cap (Pestova and Kolupaeva, 2002). A recent study described translation of a group 

of mRNAs with very short 5’UTRs (<50nts) containing a TISU element as highly mTOR sensitive. 

These transcripts encode for proteins with mitochondrial functions and elements of the respiratory 

chain (Gandin et al., 2016) and their regulation relies on eIF4E, however not on the integrity of 

the TISU element. Nevertheless, many mitochondrial proteins contain such an element, suggesting 

that their regulation is connected to energy metabolism (Sinvani et al., 2015). 

 

Figure 5 – Intrinsic features of the mRNA molecule: Sequence elements in the 5’UTR regulate primarily 
translation initiation (1.3.2.2-5, paper III). Upstream open reading-frames (uORFs) regulate initiation at main open 
reading frames (main ORF) (1.3.2.4, paper II). The decoding of specific codons by modified tRNAs plays a role in 
translational regulation (1.3.4, paper III, IV). 3’UTR features alter translation and mRNA stability (paper III) 
mediated by miRNAs and RBPs (1.3.3.1-2). Zip-codes, as binding sites for RBPs, lead to localization of mRNAs (1.3.3.3). 

1.3.2.2 Structures and sequence motifs in the 5’UTR 

Due to their sequence-complexity, 5’UTRs are prone to form secondary structures that can 

influence translation initiation. Longer 5’UTRs are more likely to form structures, show different 

requirements for translation initiation factors compared to shorter sequences. Higher levels of 

eIF4E increase translation of mRNAs with higher structural content in the 5’UTR due to higher 
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demand of eIF4F complex formation, involving RNA helicases like the ATP-dependent RNA 

helicase eIF4A (Svitkin et al., 2001) (Figure 3). Shorter,  less structured 5’UTRs show lower 

dependency on eIF4A, while at the same time being to some extend more mTOR-dependent 

(Gandin et al., 2016). Secondary structures, related to GC-content, proximal to the 5’cap impede 

eIF4F complex formation (Manzella and Blackshear, 1990; Pelletier and Sonenberg, 1985). These 

structures are more dependent on RNA helicases DDX3 (a member of the DEAD-box family), 

which can resolve this stem loop (Soto-Rifo et al., 2012) and DHX29 (Abaeva et al., 2011). 

However, particularly long 5’UTRs in yeast are highly dependent on Ded1 (homolog of DDX3), 

which acts in a mRNA but also eIF4F dependent manner (Gupta et al., 2018). eIF4A however, 

contributes more to global translation initiation as shown in yeast (Sen et al., 2015; Yourik et al., 

2017) . Secondary structures such as G-quadruplexes (RNA G4), a secondary structure formed by 

G-rich sequences (Burge et al., 2006) (Figure 5), and commonly occurring in oncogenic mRNAs, 

are highly dependent on eIF4A activity, when co-varying with other structures such as hair-pins 

(Waldron et al., 2018). This led to the development of specific inhibitors for eIF4A as possible 

cancer treatment (Rubio et al., 2014; Wolfe et al., 2014). Interactions of 5’UTRs with lncRNA have 

been described but appear as a rare phenomenon (Figure 5). The murine Uchl1 mRNA is targeted 

by a lncRNA from the same locus leading to increased ribosome recruitment. This intriguing 

mechanism is controlled by mTOR activity leading to increased cytoplasmic Uchl1 levels, which 

allows a bypass of cap-dependent translation utilizing an alternative initiation mechanism (Carrieri 

et al., 2012). An alternative mechanism involving a well-studied initiation factor to by-pass cap-

dependent initiation, is a stem-loop in the 5’UTR recruiting eIF3 (Figure 5), known for its 

important role in the 43 PIC. Cross-linking experiments found eIF3 bound to around 3% of all 

mRNAs. Mechanistically, eIF3 binds a hairpin in the 5’UTR of c-Jun, a regulator of proliferation, 

which when disrupted reduces eIF3-dependent translation (Lee et al., 2015). This is challenged by 

a previously mapped internal ribosomal entry site (IRES) in proximity, potentially being required 

for initiation by eIF3 (Blau et al., 2012). Structural elements in 5’UTRs can also be a sensor for 

nutrient levels in organisms. One example of this mode of regulation is the iron-responsive element 

(IRE) in the human ferritin 5’UTR, which forms a binding site for  RNA binding proteins such as 

the Iron-responsive element-binding protein (IRP), when iron levels are low. Increased iron levels 

release IRP binding and induce translation of the iron storage protein ferritin (Hentze et al., 1987). 

Some viral mRNAs have the ability to by-pass the scanning mechanisms by recruiting the PIC to 

specific structural sites in the 5’UTR called internal ribosomal entry site (IRES) (Jackson et al., 

2010; Pelletier and Sonenberg, 1988). While extensive biochemical characterization has been 

carried out on specific mRNAs containing these features, a few genome-wide studies are available 

(Baird et al., 2007), albeit approximately 10% of randomly selected mRNAs contain these 

structures (Weingarten-Gabbay et al., 2016). Cap-independent initiation by IRES play an important 
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role in adaptation to nutrient depletion in yeast (Gilbert et al., 2007) and when cells reprogram 

translation under apoptotic conditions, which leads to reduced global translation and a switch from 

cap-dependent to cap-independent initiation. This is mediated by cleavage of the translation factors 

eIF4G, eIF4B and 4E-BPs by caspases and altered phosphorylation of 4E-BPs and eIF2α (Spriggs 

et al., 2005). In parallel rates of mRNA degradation increase (Bushell et al., 2004). To maintain 

apoptotic signaling, selective translation of pro-apoptotic factors is necessary. These specific 

translational programs are initiated by IRES-mediated translation initiation and IRES trans-acting 

factors (ITAFs) (Figure 5). These RNA binding proteins facilitate the assembly of initiation 

complexes independent of the canonical scanning mechanism mediated by eIF4F (Spriggs et al., 

2005). Examples are hnRNPK stimulating c-MYC’s IRES-mediated translation (Evans et al., 2003) 

and PTP binding the IRES of Apaf-1 (Mitchell et al., 2001) and BiP (Kim et al., 2000). 

1.3.2.3 RNA modifications in the 5’UTR 

RNAs can be modified by covalently bound chemical groups, generating N6-methyladenosine 

(m6A) or N1-methyladenosine (m1A) (Dominissini et al., 2012). These reversible modifications are 

generally deposited by methyltransferases (“writers”), read by RBPs (“readers”) and removed by 

demethylases (“erasers”) (Harcourt et al., 2017; Zhao et al., 2016) (Figure 5). m6A can stimulate 

translation, in a cap-independent but scanning-dependent manner utilizing eIF3 (Meyer et al., 

2015) suggesting a similar role to the actual 5’cap for m6A. Cellular stresses such as heat shock 

have been shown to induce an altered m6A pattern across 5’UTRs (Meyer et al., 2015) leading to 

stress induced translation mediated by eIF3 (Meyer et al., 2015). Translation of m6A modified 

mRNAs can also be impaired due to impeded decoding of the CDS by tRNAs at m6A sites (Chio 

et al., 2016), in contrast to m1A modifications in 5’UTRs, shown to be associated with increased 

initiation (Dominissini et al., 2016). However this has been challenged by methodological 

refinement, yielding in an opposite conclusion, such that m1A modifications are low abundant and 

regulate translation in a negative manner (Safra et al., 2017). 

1.3.2.4 Upstream open reading frames 

The development of next-generation sequencing methods and subsequent sequencing of whole 

genomes and transcriptomes of different organisms, enabled the mapping of translation start-sites 

on a transcriptome-wide level. However most sites where initially annotated by AUG-codons at 

the beginning of the longest open reading frame (Saeys et al., 2007) (Figure 5). Studies using the 

ribosome-profiling technique revealed ribosomes present in short open reading frames in 5’UTRs. 

These sequences, termed upstream open reading frame (uORF), predicted to be found in around 

50% of transcripts (Resch et al., 2009) and  evolutionary conserved (Brar et al., 2012; Iacono et al., 

2005), were therefore found to be translatable due to ribosomes present in the initiation and 
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elongation state (Chen et al., 2020; Ingolia et al., 2009; Lee et al., 2012). To this end, however still 

challenging, efforts have been made to optimize the use of translation inhibitors and computational 

analysis of data derived from ribosome profiling experiments in terms of quality control of datasets 

and identification of actively translated ribosomes (Calviello et al., 2015; O’Connor et al., 2016). 

The small peptides encoded by uORFs are not well functionally characterized (Akimoto et al., 

2013; Chen et al., 2020; Parola and Kobilka, 1994), due to  ongoing challenges in detection on a 

proteome-wide level (Oyama et al., 2004; Vanderperre et al., 2013), arguably raising the question 

around their presence and function in general. Furthermore it should be noted that the detection 

of uORFs can underlie biases introduced by inhibitors of initiating and elongating ribosomes 

especially under stress conditions in which mRNA translation is limited (Gerashchenko and 

Gladyshev, 2014).  

uORFs are generally considered to regulate translation by reducing initiation of main ORFs 

(Calkhoven et al., 1994; Kozak, 1984; Werner et al., 1987) (Figure 5, paper II), especially when 

several uORFs are present (Brown et al., 1999; Hinnebusch, 1984; Mueller and Hinnebusch, 1986; 

Thireos et al., 1984). This translational repression leads to alterations in protein levels between 30-

80%, as assessed by comparing datasets from mouse in different developmental stages (Calvo et 

al., 2009). However ribosome profiling performed in mouse embryonic stem cells, human and 

zebrafish only show a modest reduction of 15-30% in translational efficiency (Chew et al., 2016). 

Nevertheless, the ability to repress is more pronounced, when the AUG codon of the uORF lies 

in a strong Kozak context (Lee et al., 2012). Increasing distance between 5’cap and uORF-AUG 

codon results also in stronger reduction of main-ORF translation supporting the notion of more 

efficient initiation at uORFs while having a more robust scanning of the 43PIC (Calvo et al., 2009; 

Kozak, 1991a). Interestingly,  there is no substantial difference between 5’UTRs harboring an 

isolated uORF versus uORFs overlapping with the main ORF (Calvo et al., 2009; Johnstone et al., 

2016). With decreasing distance of the uORF in respect to the main ORF a reduced reinitiation 

potential could be observed using the pre-proinsulin mRNA (Kozak, 1984, 1987b). This was 

confirmed in mouse, human and zebrafish, which showed a depletion of uORF start-codons 

towards the main ORF(Chew et al., 2016). The start codons of uORFs, as defined by mapping 

translation initiation sites, are composed of 25% AUG, 30% CUG, with the majority being AUG 

variants (UUG, GUG, AGG, AACG, AAG, AUC, AUA, AUU) of around 41% (Lee et al., 2012). 

Importantly, despite the different variations of start-codons, robust inhibition of translation by 

uORFs has mainly been shown for AUG start-codons (Arribere and Gilbert, 2013; Calvo et al., 

2009; Ingolia et al., 2012; Johnstone et al., 2016). Nevertheless, yeast cells show a dramatic 

reshaping of transcription start sites and translation during meiosis involving initiation at non-

canonical AUG codons, with a preference of UUG and CUG (Brar et al., 2012). Moreover, 
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terminating ribosomes at uORF stop codons can induce non-sense mediated decay, emphasizing 

the inhibitory potential of uORFs and connecting their regulatory potential to mRNA stability 

(Gaba et al., 2005). In contrast to the high genome-wide occurrence in different species, there is 

only a small number of genes which contain a characterized uORF. Among these, two main 

mechanisms of translational control have been identified. First, the PIC initiates at the uORF AUG 

leading to increased translation of the uORF and subsequent lower translation of the main ORF. 

This is supported by the observed correlation of stronger Kozak contexts of more inhibitory 

uORFs (Calvo et al., 2009; Lee et al., 2012). The second mechanism involves a peptide originating 

from the uORF stalling the 80S ribosome therefore acting as a roadblock to the scanning 43PIC, 

which did not initiate at the uORF AUG due to leaky-scanning (Wei et al., 2012; Werner et al., 

1987). Additionally, an inhibitory peptide functions as an antizyme for the expression of different 

ornithine-decarboxylase homologs mediating polyamine-induced repression of the main-ORF, in 

which interestingly the start codon of the regulatory uORF is an AUU codon (Ivanov et al., 2008).  

As previously mentioned, phosphorylation by four different kinases on Serine 51 at the alpha 

subunit of eIF2 is one of the key regulatory mechanism of translation initiation resulting in global 

reduction of mRNA translation (Figure 3). This leads, however, to induction of a specific 

translational program to prime cells for stress recovery. eIF2α-phosphorylation is mediated by 

different kinases in response to various cellular stresses (Wek et al., 2006) and results in lower 

GTPase-activity of eIF2B leading to decreased availability of functional ternary complexes. A 

proportion of PIC proceeds to scan without available ternary complex resulting in increased leaky 

scanning on start codons. This bypassing of uAUG codons subsequently leads to initiation at the 

main ORF under stress (Hinnebusch, 2014). Most transcripts encoding for such genes with low 

susceptibility to stresses contain these uORFs leading to their low translational efficiency of their 

main ORF in stress-free conditions, in contrast to transcripts without uORFs underlying the stress-

induced reduction of global protein synthesis (Andreev et al., 2015; Lawless et al., 2009; Vattem 

and Wek, 2004). Among the examples for this phenomenon is GADD34, the regulatory subunit 

of the phosphatase PP1, exhibiting auto regulatory activity, which antagonizes eIF2α 

phosphorylation (Choy et al., 2015). Another example is ATF4, a transcription factor leading to 

induction of CHOP and GCN4, leading to cell death if stress conditions persist (Han et al., 2013). 

Two major uORFs in the ATF4 mRNA modulate translation by initiating at a short uORF 

upstream of a second uORF, which overlaps with the main ORF. The remaining ternary complex 

at the stop codon of this uORF, initiates after 60S dissociation at the overlapping uORF preventing 

translation of ATF4. When ternary complex is limited, initiation at the overlapping uORF is 

decreased leading to ATF4 expression (Vattem and Wek, 2004). One of the first characterized 

examples is GCN4 in yeast, which is activated by GCN2 upon amino acid starvation. Here four 
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uORFs regulate translation of the main ORF, demonstrating the same phenomena as in ATF4 

when the remaining 40S subunits reinitiate with ternary complexes at the three following uORFs. 

However this reinitiation is again limited when pospho-eIF2α levels are high, 43S PICs resume 

leaky scanning leading to recognition of the GCN4 start-codon (Hinnebusch, 1997). One common 

feature of these short uORFs is their strong Kozak context leading to robust inhibition and 

subsequently initiation at main ORFs when uORF recognition is moderately impaired. This allows 

fine-tuning of the proteome by reducing global translation and induction of key-transcription 

factors (Hinnebusch, 2005). There has been evidence that eIF3 plays a role in reinitiation after 

short uORFs (Park et al., 2001; Roy et al., 2010), by interacting with structures in the 5’UTR in the 

case of GCN4 and ATF4 mRNAs (Hronová et al., 2017). However, additional factors like DENR 

and MCT-1 are necessary for reinitiation after longer uORFs (Schleich et al., 2014). The role of 

eIF2α phosphorylation is also implicated in different neurological conditions and liver 

development. Loss of Gcn2 in mice and a subsequent decrease in phospho-eIF2α to reduce 

translation of ATF4 mRNA is leading to increased memory (Costa-Mattioli et al., 2005). 

Furthermore, the mutation of the uAUG in the CCAAT/enhancer-binding protein beta 

(C/EBPβ) impairs liver development in mice, herein by dysregulating  the translation of different 

N-terminal isoforms of C/EBPβ (Wethmar et al., 2010). In paper II, we identified 5’UTR variants 

harboring TSSs in distinct distances upstream of uORFs rendering those resistant to the integrated 

stress response.  

1.3.2.5 TOP mRNAs 

A class of mRNAs harboring a C-residue at the cap-site followed by a stretch of 4-15 pyrimidines, 

called “terminal oligo pyrimidine tract” - TOP (Avni et al., 1994; Meyuhas and Dreazen, 2009; 

Perry, 2005), exhibit distinct modes of regulation. The TOP-motif is conserved among all 

vertebrates and the ribosomal proteins in Drosophila melanogaster, however not in yeast and 

Caenorhabditis elegans (Meyuhas and Kahan, 2015). Its function as a cis-regulatory element is strictly 

relying on the integrity and composition of the TOP-motif. Removal of the C at the cap-site 

and/or the replacement of the following base to an A abolishes TOP-functionality (Avni et al., 

1994).  This class of mRNAs is highest expressed (Gandin et al., 2016) and dominated by 80 

ribosomal proteins with a smaller proportion of 5 eukaryotic elongation factors (eEFs) and 2 

eukaryotic initiation factors (eIFs) (Meyuhas and Kahan, 2015). However there are likely more 

mRNAs harboring a TOP-motif. Translation regulation of TOP-mRNAs can be described by an 

“all-or-nothing”-mechanism, in which mRNAs switch between extremely efficient translated 

under normal growth conditions to largely repressed under cellular stress (Gandin et al., 2016; 

Hornstein et al., 2001). Additionally around 30% of TOP-mRNAs  remain translationally repressed 

in optimal growth conditions (Patursky-Polischuk et al., 2009). This might be explained by the fact 
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that ribosome production and maintenance of the protein-synthesis machinery is extreme energy 

consuming (Granneman and Tollervey, 2007). Cells can therefore tune the production of protein-

synthesis components in a dramatic and efficient manner. Indeed, unfavorable growth conditions, 

such as serum starvation or contact inhibition, will cease TOP-mRNA translation (Stolovich et al., 

2002). An unsuccessful  attempt to relieve the translational repression of ribosomal proteins by 

over-expression of eIF4E in quiescent cells underlines the unique mechanism of translational 

regulation of this class of transcripts (Shama et al., 1995). The signal transduction regulating TOP-

mRNA translation relies strongly on the integrity of the PI3K-AKT pathway (Stolovich et al., 

2002), furthermore requiring TSC1/2 and their downstream target, the GTPase Rheb (Bilanges et 

al., 2007; Miloslavski et al., 2014). These findings suggest that TOP-mRNA translation is highly 

dependent on activity of mTORC1, moreover as depletion of amino acids leads to mTORC1 

inactivation, reduced activity of S6K and rpS6 phosphorylation. Subsequently it was shown that 

alterations of S6K and P-rpS6 do not impact TOP-mRNA translation (Tang et al., 2001). Studies 

using Ribosome profiling show that 4E-BPs play a major role in regulating TOP-mRNAs, as 

mouse embryonic fibroblasts lacking 4E-BPs exhibited less repression on TOP-mRNA translation 

upon inhibition with mTOR inhibitors such as Torin1 and INK128 (Hsieh et al., 2012; Thoreen 

et al., 2012). This stands in stark contrast to TOP-mRNAs being shown un-sensitive to eIF4E 

(Shama et al., 1995). Stimuli like oxygen, nutrients and growth factors alter TOP mRNA-translation 

in an mTOR dependent but 4E-BP-independent manner (Miloslavski et al., 2014), suggesting 

another mechanism of mTOR not involving 4E-BPs. TIA-1 and TIAR, factors associated with 

stress granules, have been found to regulate translation of TOP-mRNAs depending on amino acid 

levels mediated by GCN2 and activation of mTOR (Damgaard and Lykke-Andersen, 2011). In 

recent years, La-related proteins (LARP) have been heavily studied and shown to regulate TOP 

mRNA translation (Tcherkezian et al., 2014). The RNA binding protein LARP1, phosphorylated 

by mTORC1 upon association with raptor (Fonseca et al., 2015), has been found to interact with 

the TOP motif in 5’UTRs of TOP-mRNAs via its DM15 domain regulating translation (Fonseca 

et al., 2015; Lahr et al., 2015) and mRNA stability of TOP-mRNAs (Aoki et al., 2013; Blagden et 

al., 2009). More recently, it was proposed that LARP1 also interacts with the 5’cap of TOP-

mRNAs proposing a competitive effect with eIF4E impeding the assembly of the eIF4F complex 

(Lahr et al., 2017; Philippe et al., 2018). Moreover, cap binding of LARP has been shown to be 

mediated by mTORC1 (Hong et al., 2017; Jia et al., 2021). However it has so far been debated if 

LARP1 acts as a repressor or activator of TOP-mRNA translation. While it has been shown to 

repress translation downstream of mTORC1 (Fonseca et al., 2015; Lahr et al., 2017)  an activating 

role has been described suggesting a context dependent effect. In this study LARP1 binds the 5’cap 

and PABP and associates with polysomes in a mTOR-dependent manner (Tcherkezian et al., 

2014). Moreover, LARP1 plays a role in TOP-mRNA stability (Gentilella et al., 2017). To this end, 
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it remains unclear to what extend LARP1 is the key-modulator of TOP-mRNAs and if there are 

other factors at play. 

1.3.3 Translational control by 3’ untranslated regions 

The mRNA sequence downstream of the stop-codon of a main-ORF is defined as the 3’-

untranslated region (3’UTR). These sequences are longer, in comparison to 5’UTRs, ranging 

between several hundred to several thousand of nucleotides (Siepel et al., 2005; Xie et al., 2005). 

Interestingly, 3’UTR length has been increasing during the evolution of mRNAs, suggesting they 

play important functional roles (Chen et al., 2012; Jan et al., 2010). In contrast to 5’UTRs, 3’UTRs 

contain proportionally fewer introns (Hong et al., 2006). This can be explained by the induction 

of non-sense mediated decay by introns downstream of stop codons and the presence of splicing 

signals in 3’UTRs leading to negative selection (Scofield et al., 2007). Similar to 5’UTRs, these 

sequences are responsible for a plethora of regulatory functions, i.e. translational control, mRNA 

degradation and mRNA localization.  

1.3.3.1 microRNAs 

microRNAs (miRNAs), are short RNA molecules of approximately 20nt length (Hutvágner et al., 

2001), which are involved in a myriad of cellular processes and diseases (Calin et al., 2004; Chang 

and Mendell, 2007; Esquela-Kerscher and Slack, 2006; Krützfeldt and Stoffel, 2006) and present 

promising treatment strategies (Krützfeldt et al., 2005; Setten et al., 2019; Soutschek et al., 2004). 

These small RNA molecules bind to sequence motifs in the 3’UTR (Figure 5) and regulate gene 

expression post-transcriptionally by RNA-mediated interference, resulting in altered mRNA- (Farh 

et al., 2005; Friedman et al., 2009; Lim et al., 2005; Sood et al., 2006) and protein-levels (Baek et 

al., 2008; Guo et al., 2010; Selbach et al., 2008). However, miRNA binding sites have also been 

found in coding regions of mRNAs (Chi et al., 2009; Hafner et al., 2010; Hausser et al., 2013; 

Schnall-Levin et al., 2010). RNA interference (RNAi) was initially observed in petunia flowers, 

where transgenic increased expression of chalcone synthetase to increase pigmentation, resulted in 

an inverse effect (Napoli et al., 1990). Later it was observed that only transfection of double-

stranded RNA yielded in gene-silencing effects (Fire et al., 1998). The first miRNA was 

characterized in Caenorhabditis elegans, by the identification of the non-coding gene lin-4, whose 

expression reduced LIN-14 protein levels (Lee et al., 1993). The sequence complementarity of lin-

4 to the 3’UTR of the LIN-14 mRNA suggested a RNAi mechanism (Wightman et al., 1993). This 

was identified as evolutionary conserved, since the let-7 miRNA (Reinhart et al., 2000) was 

identified among many organisms (Pasquinelli et al., 2000) including mammals (Elbashir et al., 

2001). These findings paved the way for several tools for genetic-engineering and treatment against 

diseases, i.e. shRNA and siRNA (Davidson and McCray, 2011). miRNAs are transcribed from a 
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single transcription unit or from introns of their target mRNA (Ramalingam et al., 2014) and 

exported to the cytoplasm (Yi et al., 2003), where they are processed by endonucleolytic cleavage 

(Schwarz et al., 2003; Zeng et al., 2005), allowing target binding and assembling of the miRNA 

induced silencing complex (miRISC) (Iwasaki et al., 2010; Khvorova et al., 2003; Kwak and 

Tomari, 2012). The miRISC then recruits the CCR4-NOT complex, which contains exonucleases 

to remove the polyA-tail of the mRNA (deadenylation) (Fabian et al., 2010) (Figure 5) leading to 

subsequent removal of the 5’cap (decapping) by DCP2 and ultimate degradation of the transcript 

by XRN1 in 5’-3’ directionality (Huntzinger and Izaurralde, 2011). mRNAs targeted by miRNAs 

are, besides being degraded, also translationally repressed. Among all effects induced by miRNAs 

6-29% account for translational repression (Eichhorn et al., 2014) and it is widely accepted that 

miRNAs repress cap-dependent translation (Eulalio et al., 2008; Mathonnet et al., 2007; Ricci et 

al., 2013). Despite the idea that mRNA degradation is a consequence of translational inhibition by 

miRNAs (Bazzini et al., 2012; Béthune et al., 2012), mRNAs can be degraded independently of 

translation (Wakiyama et al., 2007), of which the CCR4-NOT complex has been proposed to be 

translationally repressive in the absence of deadenylation (Eulalio et al., 2008; Zekri et al., 2013). 

More recent studies have presented a wide role for CCR4-NOT beyond mRNA-translation and -

stability, including mRNA localization and codon-usage (Gillen et al., 2021). Translational 

repression has also been linked to DEAD-box helicases like eIF4A1/2 and DDX6 (Fukao et al., 

2014; Nicklas et al., 2015), where structured 5’UTRs remain unresolved due to interference by 

miRISC or the interaction of NOT1, a member of the CCR4-NOT complex, with eIF4A2 (Meijer 

et al., 2013; Wilczynska et al., 2019). Conversely, studies in Drosophila melanogaster have shown a 

release instead of a recruitment of eIF4A and eIF4E (Fukaya et al., 2014). In contrast, mRNAs 

with unstructured 5’UTRs are unsusceptible to miRNA induced translational repression (miRNA 

silencing) (Meijer et al., 2013). Indeed, mRNAs containing IRES, which do not require scanning, 

are rendered as resistant to miRNA silencing, supporting the model of interference with the 

scanning-mechanism of the 43 PIC (Fukao et al., 2014; Fukaya et al., 2014; Meijer et al., 2013). 

This is in contrast to IRES requiring eIF4A, being repressed by miRNAs (Fukao et al., 2014; Meijer 

et al., 2013). DDX6 has also been proposed to play a role in silencing since abolishing the 

interaction between DDX6 and NOT1 reduced the silencing ability (Rouya et al., 2014) and 

repressed translation independent of mRNA degradation (Presnyak and Coller, 2013). Potentially, 

DDX6 represses translation via binding to 4E-T, a transport protein of eIF4E, which in turn 

competes for the interaction with eIF4G disrupting the eIF4E-eIF4G binding. This model is 

challenged by only partial loss of silencing when 4E-T is depleted (Kamenska et al., 2013). 

Moreover, DDX6 has been shown to not associate with miRNA targeted transcripts in a 

transcriptome-wide study (Wilczynska et al., 2019), as opposed to loss of DDX6 in embryonic 

stem cells leading to up-regulation of miRNA targeted transcripts (Freimer et al., 2018). Taken 
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together, the detailed mechanisms of miRISC induced translational repression have yet to be 

delineated. 

1.3.3.2 RNA-binding proteins in 3’UTRs 
The functional elements encoded by 3’UTRs (cis-factors), besides miRNA binding sites, are 

sequence motifs as hubs for RBPs (Figure 5) (Baltz et al., 2012; Dominguez et al., 2018; Ray et 

al., 2013). The sequences required for binding are often short (3-8 nucleotides) and repeated 

(Hennig and Sattler, 2015). A class of sequence motifs that has been studied to a large extend are 

AU-rich elements (ARE). These elements were identified when studying the transformation ability 

of the viral fos-gene (v-fos), whereby the viral isoform is able to transform cells, the cellular gene 

(c-fos) is not. Both genes differed only in the presence of AREs, which led to its degradation, 

rendering c-fos less stable compared to v-fos. This leads to cellular transformation upon v-fos 

expression in mammalian cells (Meijlink et al., 1985; Shaw and Kamen, 1986). ARE’s are generally 

found in 3’UTRs of transcripts encoding for short-lived factors such as oncogenes, growth factors 

and cytokines (Caput et al., 1986) and play a role in mRNA stability or translational regulation 

(Kruys et al., 1989; Lindstein et al., 1989; Meijlink et al., 1985; Shaw and Kamen, 1986). These 

functions are mediated by binding of trans-factors (RBPs), such as HuR and TTP. HuR has been 

found to stabilize ARE-containing mRNAs (Fan and Steitz, 1998), by inhibiting the recruitment 

of the exosome complex to the mRNA (Chen et al., 2001), whereas TTP destabilizes mRNAs by 

recruiting the exosome (Carballo et al., 1998; Hau et al., 2007). Interestingly, TTP has also been 

shown to be a translational repressor by recruiting 4EHP, a cap-binding protein competing with 

eIF4E (Morita et al., 2012). HuD, also binding to AREs, induces cap-dependent mRNA 

translation, thought to bind the polyA-tail and eIF4A in the closed loop formation (Fukao et al., 

2009). Other factors binding to 3’UTRs leading to altered mRNA translation have been identified 

in Drosophila melanogaster embryos. Here, Bicoid binds to a 3’UTR motif of the caudal mRNA  and 

to 4EHP to repress translation (Cho et al., 2005). Cup, another eIF4E-binding protein, represses 

translation of the oskar mRNA via the 3’UTR-binding protein Bruno (Igreja and Izaurralde, 2011; 

Kim-Ha et al., 1995; Nakamura et al., 2004). These repressive mechanisms are important for 

Drosophila development, which requires protein gradients with precise location along the oocyte 

for polarity prior to fertilization (Johnston and Nüsslein-Volhard, 1992). Studies in Xenopus oocytes 

revealed that CPEB, which binds to the CPE motif in 3’UTRs regulating their translation, 

associates with eIF4E through Maskin leading to translational repression similar to the mechanism 

of Cup in Drosophila. This repression is released upon signals inducing maturation (Stebbins-Boaz 

et al., 1999). In order to compensate the expression of X-chromosomal linked genes in organisms 

containing different numbers of X-chromosomes between females and males (X-chromosome 

dosage compensation) in Drosophila melanogaster, 5’ and 3’UTRs are utilized. This is achieved by the 
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RBP Sxl binding to uridine-rich sequences in both UTRs of the msl2 mRNA and inhibiting 

translation independent of 5’cap and polyA-tail (Gebauer et al., 1999, 2003), while impairing 

scanning by the 43S PIC (Hennig et al., 2014). Another mechanism resulting in down regulation 

of translation initiation by inhibited association of the 43S PIC is mediated by the GAIT-complex. 

The 3’UTR of the ceruloplasmin mRNA is bound by a multimeric complex, induced by interferon-

γ, consisting of the ribosomal protein L13a including GAPDH, NS-associated protein 1 and Glu-

Pro-tRNA-synthetase. This complex blocks interaction of eIF3 with eIF4G and impairs binding 

of the 43S PIC leading to decreased translation initiation despite a formation of the closed loop 

between PABP and eIF4G (Kapasi et al., 2007). 

In summary, these mechanisms show that, despite the presence of cis-factors in 3’UTRs (sequence-

motifs), the resulting effect is mediated by trans-factors (RBPs). The diversity of cis-elements in 

mRNAs is further increased by alternative cleavage and polyadenylation of 3’UTRs (Mayr and 

Bartel, 2009; Sandberg et al., 2008; Tian et al., 2005), often in a tissue-specific manner, leading to 

several 3’UTR variants of the same mRNA (Lianoglou et al., 2013). 

1.3.3.3 mRNA localization and transport 

The localization and transport of mRNAs is attributed to features in their 3’UTRs (Jansen, 2001), 

which is mediated by the binding of RBPs into complexes of mRNA and protein – messenger 

ribonucleoproteins, mRNPs. These complexes are then transported to cellular compartments by 

associating with motor proteins. A well-described example for mRNA-transport in the developing 

Drosophila oocyte is the Oskar mRNA. This mRNA is required to be translationally repressed by 

Bruno (1.3.3.2) (Kim-Ha et al., 1995) and localized by microtubules through interactions with 

tropomyosin, Staufen and components of the exon junction complex (EJC) (Micklem et al., 2000). 

In mammalian cells, mRNAs are transported via Zipcode-binding protein 1, binding to zipcode 

sequences in the 3’UTR (Figure 5), as illustrated in the transport of beta-actin mRNA (Ross et al., 

1997). This movement is facilitated by KIF11, a motor-protein associated with tubulin (Song et 

al., 2015). 

Spatial organization of mRNAs also occurs by localization to membrane-less granules, such as 

stress granules (SG) or processing-bodies (P-bodies). These, are characterized by aggregating 

translationally silent mRNAs (Ivanov et al., 2019). P-bodies are linked to mRNA-silencing and 

decay, since the exonuclease XRN1 and silencing factors such as GW182, CCR4-NOT and Ago 

co-localize with these granules and mRNAs lack polyA-tails (Bashkirov et al., 1997; Eulalio et al., 

2007; Sheth and Parker, 2006). SGs are associated with translational inhibition upon cellular 

stresses by phosphorylation of eIF2α (Kedersha et al., 2005; Stoecklin et al., 2013) and are mainly 

characterized by translation initiation factors (Kedersha et al., 2002, 2005). mRNAs in SGs have 
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polyA-tails and can therefore resume being translated (Kedersha et al., 2000). Both intracellular 

aggregations of mRNAs and proteins are considered responses to cellular stress (Stoecklin et al., 

2013) and therefore related to spatial organization of mRNA translation to mediate localized 

protein and mRNA levels. However, a deep mechanistic understanding of these processes is still 

lacking. 

1.3.4 Translational control by tRNAs 

The influence of the coding sequence on mRNA translation is currently not well understood, 

nevertheless it has been shown that elongation of synonymous codons (codons decoding the same 

amino acid) is not equally efficient (Rudorf and Lipowsky, 2015), elongation fidelity can be 

impaired by neighboring codons (Gamble et al., 2016) and ribosomal pausing alters mRNA 

stability (Buschauer et al., 2020; Gillen et al., 2021; Radhakrishnan et al., 2016). Efforts have been 

made to investigate the relationship between codon composition and the availability of the 

respective decoding tRNA. This revealed that, given that each amino acid can be decoded by 

several codons, expression level of tRNAs correlates with the frequency of codons in mRNAs in 

bacteria and unicellular eukaryotes (Ikemura, 1985; Percudani et al., 1997). The advent of high-

throughput methods enabled the quantification of tRNAs on a transcriptome-wide level, resulting 

in the identification of tissue-specific transcription of tRNAs reflecting codon-adaptation of highly 

expressed genes (Dittmar et al., 2006; Plotkin et al., 2004). The influence of global tRNA levels on 

phenotypes has been studied in several cell models, describing distinct tRNA expression related to 

proliferation, metastatic potential and differentiation (Aharon-Hefetz et al., 2020) with 

concomitant codon-composition (codon-usage) in subsets of mRNAs (Gingold et al., 2014; 

Goodarzi et al., 2016; Zhang et al., 2018). However, the impact of tRNAs on translational fidelity 

is still under thorough investigation. Indeed global protein synthesis is linked to mTOR-dependent 

stimulation of tRNA synthesis by RNA pol III (Michels et al., 2010) and translational decrease 

mediated by phosphorylation of eIF2α by GCN2 due to increasing levels of uncharged tRNAs 

(Dever et al., 1992). However, these mechanism alter translation globally. Therefore, the 

mechanisms through which translation is regulated specifically by tRNAs are of great interest. 

Studies in a melanoma model revealed tumorigenesis and resistance to targeted therapy related to 

altered codon usage of HIF1α- dependent on posttranscriptional modifications of tRNAs (Rapino 

et al., 2018). These modifications (wobbling-modifications) (Figure 5 and 25) at the U34 position 

of tRNAs, are catalyzed by a cascade of 3 different enzymes complexes, generating a 5-

methoxycarbonyl-methyl-2-thiouridine (mcm5s2U) at position 34 in the tRNA, which leads to 

increased decoding efficiency of AAA and AAG (Lysine, tRNAUUU); CAA and CAG (Glutamine, 

tRNACUC); GAA and GAG (Glutamic Acid, tRNAUUC), rendering mRNAs enriched in these codon 

sensitive to U34 modifications (Rapino et al., 2017). These modifications have been shown not to 
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be necessary for maintenance of global protein synthesis, but rather play a role in different 

pathophysiological phenotypes such as the unfolded protein response (UPR) during brain 

development (Laguesse et al., 2017), breast cancer progression (Delaunay et al., 2016) and 

tumorigenesis in the intestine (Ladang et al., 2015). Wobbling leads to decoding of the 

aforementioned codons ending with G, and interestingly the cognate tRNAs for these codons 

(tRNACUU (Lysine), tRNACUG (Glutamine), tRNACUC (Glutamic Acid)) are expressed as well. This 

raises the question to which extend U34 modifications are required for sufficient translational 

elongation. Indeed, loss of U34 modifications in yeast led to increased ribosomal densities at AAA, 

CAA and GAA codons (Nedialkova and Leidel, 2015; Zinshteyn and Gilbert, 2013), suggesting 

ribosomal-pausing at codons ending with A. These effects did not reduce global protein levels, 

rendering translation initiation as rate-limiting. However, impaired elongation has been shown to 

affect protein folding (Nedialkova and Leidel, 2015) and has been proposed to be related to a 

hydrophilic pentapeptide encoded by the mentioned A-ending codons leading to protein 

aggregation and decreased expression (Rapino et al., 2021). Distinct translational programs can 

also be related to levels of U34 modifying enzymes and mRNAs requiring U34 modifications 

(paper III, IV). 

1.4 mRNA TRANSLATION IN CANCER 

As mentioned previously, protein synthesis is one of the most energy-demanding processes in the 

cell (Buttgereit and Brand, 1995; Rolfe and Brown, 1997) and must be tightly controlled (Hershey 

et al., 2012; Sonenberg and Hinnebusch, 2007). Aberrant proliferation, survival, angiogenesis, 

energy metabolism and alterations in immune response are considered as hallmarks of cancer and 

can occur as a consequence of dysregulated mRNA translation (Hanahan and Weinberg, 2011; 

Tahmasebi et al., 2018). Initially, differences in transcription rates of genes, leading to changes in 

the transcriptome, were thought to be mainly contributors to altered protein levels and 

subsequently shaping development of cancer and the outcome of cancer patients (van ’t Veer et 

al., 2002; Hawkins and Ren, 2006). However many of the pathways altered in cancer converge on 

mRNA translation. Among those oncogenes are MYC, RAS, PTEN, AKT and tumor suppressors 

like TP53 (Figure 4) (Bhat et al., 2015). Additionally alterations in ribosomal proteins or ribosome 

biogenesis, referred to as ribosomopathies are connected to higher cancer prevalence (Ganapathi 

and Shimamura, 2008). Hyperactivation of the upstream kinases of MNKs, the oncogenes RAS 

and RAF, occurs in many cancer types resulting in increased levels of eIF4E phosphorylation 

(Siddiqui and Sonenberg, 2015). Moreover it was shown that eIF4E phosphorylation levels are 

elevated in human prostate cancer (Furic et al., 2010) and drive translation of SNAIL and MMP3, 

leading to increased metastasis (Robichaud et al., 2014). These findings complemented earlier 

studies,  showing that overexpression of eIF4E in NIH-3T3 cells led to malignant transformation 
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(Lazaris-Karatzas et al., 1990). Additionally, its overexpression in prostate cancer is contributing 

to poor patient outcome (Graff et al., 2009) and synergistic effects between eIF4E and c-MYC 

have been found to lead to lymphomagenesis (Ruggero et al., 2004). A more recent study showed, 

that eIF4E-phosphorylation is attributed to polarization of tumor-associated macrophages, 

depending on Mnk2 (Bartish et al., 2020). Here increased phosphorylation levels of eIF4E are 

associated with an anti-inflammatory macrophage phenotype, proposed to counter cancer-

progression. Interestingly, this macrophage phenotype is driven by differential mRNA-translation 

(Bartish et al., 2020). Taken together, these findings underpin the role of eIF4E in cancer 

development and progression. Besides eIF4E, a plethora of translation factors are altered in 

expression and activity in cancers. Among these, the scaffold protein eIF4G (increased 

expression); the helicase eIF4A (increased expression), regulatory proteins 4E-BP (increased and 

decreased expression) and others (Silvera et al., 2010). Many mRNAs encoding proto-oncogenes 

harbor long and highly structured 5’UTRs or upstream open reading frames (uORFs), which in 

turn require higher levels and activity of cap-dependent translation and initiation factors such as 

eIF4E, eIF4G and eIF4A (eIF4F complex) or alterations of ternary complex and start codon 

recognition by eIF2α, eIF1 and eIF5 (Hinnebusch et al., 2016; Schuster and Hsieh, 2019; Silvera 

et al., 2010; Sonenberg and Hinnebusch, 2009). In greater detail, oncogenic mRNAs such as c-

MYC, CDK2, Mcl-1, survivin and VEGF show a high dependency on eIF4E for their translation 

(Hsieh and Ruggero, 2010), rendering some cancers highly dependent on protein synthesis. Tumor 

cells present dramatically different genetic landscapes resulting in big heterogeneity, making the 

establishment of targeted therapies challenging. Therefore, targeting pathways of the translational 

machinery, which unite many oncogenic signals, is a promising strategy. Additionally, due to 

frequent alterations of translation factors and higher demand for protein synthesis, tumor cells are 

prevalent targets for these therapy approaches (Ruggero, 2013). Considerable big efforts have been 

made to develop therapeutic agents targeting different key steps in translation. Among those, are 

inhibitors for the kinase complexes mTORC1 and mTORC2 such as: asTORin (INK128, Torin1, 

PP242), inhibitors of the initiation factors eIF4E by cap-analogues or eIF4A by silvestrol (Chu et 

al., 2016), Hippuristanol (Bordeleau et al., 2006a) or Pateamin A (Bordeleau et al., 2006b). 

Additionally, inhibition of upstream kinases such as MNK by for example cercosporamide has 

been shown to have promising effects on metastasis mediated by phosphorylation of eIF4E 

(Konicek et al., 2011). The implications of ternary complex formation in cancer are less well 

understood than the formation of the eIF4F complex. However a non-phosphorylatable mutant 

of eIF2α leads to transformation of NIH-3T3 cells (Donzé et al., 1995), and increased levels of 

phosphorylation of eIF2α promote apoptosis (Donzé et al., 2004). This suggests increased 

phosphorylation of eIF2α could be a strategy for anti-cancer treatment (Han et al., 2013). 

Compounds like BTdCPU (Chen et al., 2011) induce phosphorylation of eIF2α by the HRI kinase 
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and salubrinal (Boyce et al., 2005) inhibits its dephosphorylation, showing promising potential in 

sensitizing cancer cells to undergo apoptosis, thus suggesting utility as combination-therapy with 

other anticancer agents (Jeon et al., 2016). Intriguingly a recent study suggested the 

phosphorylation state of eIF2α is a prognostic marker for prostate cancer, which when elevated, 

leads to tumor progression in a model carrying PTEN and MYC mutations bolstering the burden 

of high protein synthesis rates in tumors. These effects could be reversed by ISRIB a small 

molecule that reactivates eIF2α function despite its phosphorylation state by binding to eIF2B 

(Zyryanova et al., 2018), leading to selective cell death of prostate cancer cells (Nguyen et al., 2018). 

1.5 CONTRIBUTION OF TRANSCRIPTION AND TRANSLATION IN 
SHAPING THE PROTEOME 

So far, mechanisms regulating mRNA translation have been discussed. However, the general 

contribution of transcription and translation to the composition of the proteome will be the focus 

of this section. 

Cellular phenotypes are to a large extend shaped by their proteome, i.e. the composition of all 

proteins in the cell.  The composition of the proteome is a result of several steps: transcription and 

mRNA transport give rise to an mRNA pool that underlies mRNA degradation or is used for 

protein synthesis. Protein levels are determined by mRNA translation and protein degradation (Liu 

et al., 2016; McManus et al., 2015). It has raised substantial interest to which extend steps in the 

gene expression pathway contribute to shaping the proteome. Several studies have shown that 

mRNA levels and protein levels correlate imperfectly (Cheng et al., 2016; Schwanhäusser et al., 

2011; Vogel and Marcotte, 2012; Wang et al., 2019), suggesting mRNA translation playing an 

important role in determining protein levels. This was challenged by other studies promoting the 

concept of protein-levels being mainly explained by mRNA levels in a context-dependent manner 

(Battle et al., 2015; Jovanovic et al., 2015; Li and Biggin, 2015; Li et al., 2014). Nevertheless, mRNA 

translation has been shown to be responsible for massive changes of the proteome in perturbed 

systems, such as intracellular stresses (Andreev et al., 2017; Baird et al., 2014; Guan et al., 2017) 

and rapid adaptations to extracellular stimuli (Gerashchenko and Gladyshev, 2014; Hulea et al., 

2018; Jewer et al., 2020). To assess the contribution of transcription and translation systematically, 

a range of methods can be applied. In order to capture changes of the proteome, mass-

spectrometry (Aebersold and Mann, 2016) in combination with labeling methods for newly 

synthesized proteins, such as SILAC can be used, (Mann, 2006; Schwanhäusser et al., 2011). This 

allows to calculate protein degradation rates and can be paralleled by nucleic-acid quantification in 

combination with labeling of newly synthesized RNAs using 4-thio Uridine (4sU) (Rabani et al., 

2011). Notwithstanding these methods providing kinetic information for both RNA and protein, 

methods to capture nucleic-acids on a transcriptome-wide level have different characteristics 
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compared to mass-spec based proteomics, due to the ability to amplify nucleic-acids and the 

dynamic-range of measurement (Wang et al., 2009; Wilhelm and Landry, 2009). Moreover, the 

differences of mRNA and protein half-lives (proteins 46h, mRNA 9h) (Schwanhäusser et al., 2011; 

Vogel and Marcotte, 2012) and methodologies can lead to obscured results and cannot distinguish 

between translation and protein degradation. To interrogate the contribution of mRNA 

translation, the research community has developed experimental and computational methods. 

These will be discussed in the following sections. 

1.6 METHODS TO STUDY mRNA TRANSLATION 

The complete sequencing of the human genome (The Human Genome Project) (Craig Venter et 

al., 2001; Lander et al., 2001) and the advancements in identifying and measuring genes and their 

transcripts on a genome-wide level has enabled to answer many complex biological questions 

(Goodwin et al., 2016). Two now widely used methods revolutionized the way to study gene 

expression: A hybridization based method using known DNA-probes, i.e. DNA-microarrays 

(Brown and Botstein, 1999; Fodor et al., 1991; Niemitz, 2007; Schena et al., 1995), and a newer 

method called RNA-sequencing, largely using a “sequencing-by-synthesis” approach (Bainbridge 

et al., 2006; Mortazavi et al., 2008; Stark et al., 2019; Wang et al., 2009). To date, these methods 

have become available to almost any researcher due to the wide-range of available platforms (Stark 

et al., 2019) and their increasing cost-efficiency [(National Human Genome Research Institute 

(NHGRI), 2021), https://www.genome.gov/sequencingcosts/ (14.12.2021)]. The application of 

these techniques in combination with methods to study mRNA translation enables researchers to 

understand not only the effects of cellular pathways or translation factors impinging on protein-

synthesis, but also allows to integrate the contribution of certain cis-elements of the mRNA (paper 
II,III and IV). 

1.6.1 Polysome profiling 

As previously described, one mRNA molecule gives rise to several molecules of proteins while 

being associated with several ribosomes, e.g. polysomes (Staehelin et al., 1963; Wettstein et al., 

1963). This in turn, allows to relate the efficiency of mRNA translation to the number of associated 

ribosomes on an mRNA (Larsson et al., 2013). Cycloheximide, a fungicide produced by  Streptomyces 

griseus, leads to inhibition of  translation elongation by binding to the E-site of the 60S subunit of 

the ribosome resulting in stalled ribosomes on the mRNA (KERRIDGE, 1958; Schneider-Poetsch 

et al., 2010; Sisler and Siegel, 1967). While cycloheximide is commonly used to stall ribosomes on 

mRNAs, artifacts related to its usage in yeast have been reported  (Gerashchenko and Gladyshev, 

2014; O’Connor et al., 2016). However, a comparison between yeast and human cells indicated 

that these biases are specific to the usage of the organism (Sharma et al., 2021). The separation of 
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heavier mRNAs due to increased numbers of associated ribosomes (polysomal mRNA) from the 

total (cytosolic) mRNA pool allows to analyze the proportion of efficiently translated mRNAs 

under a certain condition. The polysome profiling technique entails this separation by loading the 

lysate derived from cells or tissue on a sucrose gradient, which after sedimentation of the heavier 

polysomal mRNAs by ultracentrifugation, can be analyzed by gradient profiling while measuring 

the absorbance at 254nm (Gandin et al., 2014). This allows to collect fractions containing mRNAs 

associated with distinct numbers of ribosomes followed by analysis using northern blotting, RT-

qPCR, micro array or next-generation sequencing based methods. Generally fractions of mRNAs 

with more than 3 ribosomes are considered as efficiently translated mRNAs, which can be pooled 

together. The mean number of associated ribosomes can be considered as normally-distributed 

along the sucrose gradient (Gandin et al., 2016) (Figure 6), thus changed mean ribosome 

association resulting in shifting along the gradient can be captured by polysome profiling. This is 

also true in cases where mRNAs shift in an extreme manner, e.g. for TOP mRNAs, who are largely 

excluded from polysomal fractions when their translation is inhibited (Amaldi and Pierandrei-

Amaldi, 1990; Tang et al., 2001). However when pooling heavy fractions, measurements of 

mRNAs shifting within heavy polysomal fractions can be obscured and fractions should be 

analyzed independently. Such transcripts have been identified but remain to be further 

characterized (Hulea et al., 2018). Polysome profiling in combination with cycloheximide treatment 

can also be used to quantify global changes of mRNA translation, in cases when regulation occurs 

at the initiation step. Here the area under the polysomal fractions can be quantified after 

normalization. It is however recommended to verify these findings by other methods to quantify 

global protein synthesis such as the incorporation of S35-labeled methionine/cysteine (paper I) 

(Leblond et al., 1957), puromycin (Schmidt et al., 2009) and “clickable” amino acid or puromycin 

derivatives (Dieterich et al., 2007; Nagelreiter et al., 2018). Besides cell lines, polysome profiling 

can be used with tissue samples, e.g. from biobanks (Liang et al., 2018; Sandri et al., 2019; Shin et 

al., 2021). To increase the feasibility especially when sample amounts are low an optimized gradient 

protocol has been developed (Liang et al., 2018) (paper II). This strategy concentrates polysomal 

mRNA to only two fractions, eliminating low mRNA yield due to dilution across many fractions 

when material is limited and making RNA extraction less time consuming (Liang et al., 2018). 
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Figure 6 – Polysome profiling (1.6.1): Tracings of MCF7 cells subjected to polysome profiling under a control 
(DMSO) and a treatment condition (torin1) for 4h. Upper left: mRNAs are separated using ultracentrifugation on a linear 
sucrose gradient (5-50%). mRNAs associated with increasing number of ribosomes are heavier and sediment faster into the 
gradient. This is visualized by measuring the absorbance at 254nm. Fractions collected during gradient profiling are indicated 
by vertical dashed lines. When the translatome is assessed by RNA-sequencing or micro-array analysis, total (cytosolic) mRNA 
and mRNAs associated with more >3 ribosomes (polysomal mRNA) are extracted and analyzed in parallel. Peaks indicate 
the small (40S), big (60S) ribosomal subunits as well as a monosome (80S), and mRNAs with 2, 3, 4, etc. associated 
ribosomes. Upper right: ribosome association is considered to be normal distributed along the sucrose gradient. mRNA A is 
regulated by mRNA abundance (1.6.3.1), leading to decreased mRNA levels under the treatment condition and no shift of 
ribosome association towards lighter fractions. Lower left: mRNA B is regulated by translation (1.6.3.2) and the distribution 
of ribosome association shifts towards lighter fractions of the sucrose gradient. Lower right: mRNA C shifts extremely under 
the treatment, leading to near exclusion from polysomal fractions. This has been observed for TOP mRNAs under inhibition 
of mTOR (1.3.2.5). 

1.6.2 Ribosome profiling 

Hence, mRNAs are associated with ribosomes during translation, parts of the mRNA molecule 

are exposed for endnucleolytic cleavage, while the regions protected by ribosomes are not 

accessible. This is exploited by ribosome profiling when upon cycloheximide treatment, mRNA is 

extracted and digested using RNases (Ingolia et al., 2009, 2012) (Figure 7). This approach was 

initially used to remove excessive mRNA not involved in translation initiation when identifying 

ribosomal binding sites in R17 phages (Steitz, 1969) or the distribution of ribosomes along the 

mRNA (Wolin and Walter, 1988). Later, this approach was combined with next-generation 

sequencing techniques (Ingolia et al., 2009). Key steps in this work-flow are the following: Similar 

as in polysome profiling, Ribosomes are stalled using cycloheximide. Next, the extracted mRNAs 

are subjected to endonucleolytic digestion with RNAses, while unprotected regions of mRNAs are 

cleaved, leading to mRNA fragments protected by ribosomes (Figure 7). Monosomes are then 

purified by a sucrose gradient to yield ribosome protected fragments (RPFs, approximately 28 nts 
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in length). Since, total mRNA samples are necessary for analysis of translation, polyA-selected 

mRNA is randomly fragmented using alkaline hydrolysis in parallel followed by depletion of 

ribsomal RNA. Subsequently, fragments are separated using gel-electrophoresis and bands of 

similar sized fragments of RPFs and fragmented mRNA are excised. These are then used for the 

generation of sequencing libraries. Despite being commony used to study translatomes and other 

aspects of mRNA translation, ribosome profiling is confronted with several caveats and requires 

important considerations: Cells are often pre-treated with cycloheximide, which can lead to 

artifacts by enriching ribosomes close to initiation sites leading to aribitrary stalling upstream of 

initiation sites (Gerashchenko and Gladyshev, 2014; Hussmann et al., 2015; Jackson and Standart, 

2015). Simillarly, harringtonine, which inhibits the transition from initiation to elongation, enriches 

ribosomes at initiation sites (Jackson and Standart, 2015). Moreover, cycloheximide treatment 

allows ribosomal translocation to occure for one cycle prior to stalling (Schneider-Poetsch et al., 

2010) obscuring condon-dependent analysis (Nedialkova and Leidel, 2015). Generally, it is adviced 

to omitt pre-treatment with elongation inhibitors since quick cooling of cells followed by 

harvesting in the presence of elongation inhibitors is sufficient in stalling ribosomes on mRNAs 

((Gonzalez et al., 2014; Guo et al., 2010) and paper I, II, III). The choice of nuclease can be 

critical, since a comparative study of different nucleases revealed biased ribosomal coverage along 

mRNAs and in some cases complete digestion of ribosomes leading to increased contamination 

with ribosomal RNA (Gerashchenko and Gladyshev, 2017). This underlines, that strategies to 

remove ribosomal RNA prior to library preparation is essential. The conformational change of 

ribosomes during elongation can lead to fragments of 21nt (Lareau et al., 2014), hence the stringent 

size selection at 28 nts can influence the capturing of the underlying translatome (Andreev et al., 

2017). Larger fragments have been observed when ribosomes stack together due to ribosome 

stalling (disomes, 40-65 nt) and different conformational changes (Jackson and Standart, 2015). 

Moreover, a study comparing several datasets generated by ribosome profiling in different 

organisms revealed substantial biases related to library construction due to sequence composition 

affecting the identified ribosome positioning (Artieri and Fraser, 2014a). While the initial potocols 

for ribosome profiling describe the fragmentation of total mRNA using alkaline hydrolosis of 

polyA-selected mRNAs followed by depletion of ribosomal RNA (Ingolia et al., 2012) (Figure 7), 

this can introduces additional biases. In paper III, sequencing of total mRNA is performed using 

smartseq2 (Picelli et al., 2013), which circumvents those biases due to sequencing of full-length 

transcripts. 

In order to assess regulation of gene expression at the level of translation using ribosome-profiling 

data, datasets have to be subjected to computational quality-control to eliminate intrinsic biases. 

RUST (Ribo-seq Unit Step Transformation), a method to reduce data-variance, has been shown 
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to detect biases in ribosome profiling datasets and allows for more robust analysis (O’Connor et 

al., 2016). Translating ribosomes are predicted to be found on in-frame codons, such that the 

periodicity of ribosome densities on mRNAs is used as another measure of quality for these data-

sets (Lauria et al., 2018). 

Albeit commonly used to generate data to study translatomes, polysome and ribosome profiling 

both have its advantages and disadvantages. When performing polysome-profiling, intact mRNAs 

associated with ribosomes are extracted, however the information about positioning at codon-

resolution is lost. This information is preserved when conducting ribosome profiling, where 

positioning of the ribosome on the mRNA is maintained. Therefore ribosome profiling can be 

used to study translation elongation (Anthony Schuller et al., 2017; Lareau et al., 2014; Riba et al., 

2019), the influence of codon-composition (Frye and Bornelöv, 2021; Gamble et al., 2016; 

Nedialkova and Leidel, 2015; Yu et al., 2015; Zinshteyn and Gilbert, 2013), identify upstream open-

reading frames (Andreev et al., 2015; Brar et al., 2012; Chen et al., 2020; Chew et al., 2016; Kulkarni 

et al., 2019), frame-shifting (Rato et al., 2011; Yordanova et al., 2018) and termination (Anthony 

Schuller et al., 2017; Lobanov et al., 2017; Selmi et al., 2020; Wangen and Green, 2020). In contrast, 

polysome-profiling allows studying of isoform-specific translation, since intact mRNAs can be 

subjected to deep RNA-sequencing (Floor and Doudna, 2016) while ribosome-profiling only 

provides information of “snippets” of mRNAs. A recent study presented an approach to derive 

isoform specific translatome data from ribosome profiling data-sets, however this relies on 

previously annotated isoforms (Reixachs-Solé et al., 2020). In line with the increased efforts to 

study single cells stemming from cell populations or tissues, ribosome profiling has been made 

applicable to study ribosome positioning in single-cells (VanInsberghe et al., 2021). However, this 

does not enable studying translational efficiencies, since total mRNA expression cannot be 

assessed in parallel. Another method, which reveals ribosome positioning, 5Pseq (Pelechano et al., 

2015), maps ribosomes at the 5’end of co-translationally degraded mRNAs without the need for 

translation inhibitors (Pelechano et al., 2016). This been used to study ribosomal pausing in yeast 

upon oxidative stress (Pelechano et al., 2015) or eIF5A depletion (Pelechano and Alepuz, 2017). 

In cases where translational regulation is studied transcriptome-wide, ribosome-profiling is widely 

applied, albeit several problems: Polysome profiling captures both large and moderate shifts of 

mRNAs across a sucrose gradient (described above, Figure 6). Using ribosome profiling, 

translational efficiencies are determined by ribosome-bound mRNA fragments of more- and less-

efficently translated mRNAs, whereas polysome profiling uses the whole mRNA molecule and its 

distribution. In contrast, ribosome profiling is biased towards heavy shifting mRNAs, such as TOP 

mRNAs under modulation of mTOR activity (Gandin et al., 2016). In turn translational efficiencies 

are influenced by largely shifting mRNAs when using ribosome profiling, leading to misleading 
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biological conclusions (Gandin et al., 2016; Masvidal et al., 2017). In conclusion, the choice of 

methodology has to be made carefully and in line with the strengths and weaknesses of the available 

techniques. 

 

Figure 7 – Ribosome profiling (1.6.2): (Upper) mRNAs are digested, which generates ribosome protected fragments 
(RPFs). Ultracentrifugation of a sucrose gradient is used to purify ribosome protected fragments from the 80S monosome peak. 
(Lower) In parallel, total mRNA is polyA-selected and randomly fragmented using alkaline hydrolysis. The mRNA are used 
to prepare RNA-sequence libraries for RNA-quantification. 

1.6.3 Analysis of modes of translation using anota2seq 

The rapid development of high-throughput methods to study gene expression require appropriate 

methods to analyze the generated data. Albeit a plethora of methods being available, this section 

will only discuss anota2seq. Applicable to all methods for analysis of translatomes, it is required to 

obtain measurements for both total mRNA populations, which contains data for all transcribed 

mRNAs and mRNAs associated with ribosomes using polysome or ribosome profiling. 

Subsequently, analysis is performed between two conditions or more. Moreover, it should be noted 

that total mRNA samples contain both total and translated mRNAs and polysomal mRNA 

represents the proportion with ribosome association at a certain cut-off (Figure 6). The algorithm 

behind anota2seq, analysis of translational activity (anota), was developed, since analysis of datasets 

assessing gene expression using simple log-ratios between translated (polysomal) and total RNA 

led to correlations identified as spurious, i.e., a relationship between two variables seemingly based 

on causality but uncorrelated in reality (Pearson, 1897). Consequently, the obtained conclusions 

using these methods were shown to be strongly influenced by total mRNA levels (Larsson et al., 

2010). To overcome these biases, anota uses a by-transcript linear regression approach between 

expression of total and translated mRNAs in combination with analysis of partial variance (APV) 

(Larsson et al., 2010). In other words a linear model per transcript is fitted for each group of 

replicates per condition, such that the slopes for each condition are equal. The difference of the 

intercept on the y-axis (translated mRNA) corresponds to the difference in translational efficiency 
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(ΔTE, Figure 10). This model describes the changes of translated mRNA levels occurring 

independently of changes on total mRNA levels per condition: 

ܣܴܰ݉ ݈ܽݐ݋ݐ ~ ܣܴܰ݉ ݀݁ݐ݈ܽݏ݊ܽݎݐ +  ݊݋݅ݐ݅݀݊݋ܿ 

Initially, anota was developed for analysis of micro-array derived data and was later modified for 

analysis of data generated by RNA-sequencing methods upon polysome or ribosome profiling 

(Oertlin et al., 2019). Anota2seq has the ability to decipher coordination of gene expression by 

defining three regulatory modes: mRNA abundance, translation and translational buffering. 

 

Figure 8 – Overview of regulatory modes of translation identified by anota2seq: (Upper) Fold-change 
plot of polysome-associated mRNA (or RPF; i.e., translated mRNA) vs. total mRNA. MCF7 cells have been treated with 
insulin for 4h followed by polysome profiling, RNA-sequencing and anota2seq analysis (insulin vs DMSO). Each dot 
represents one mRNA whereas grey mRNAs have been identified as non-regulated by anota2seq. Red dots represent mRNAs 
which, are regulated by translation (1.6.3.2), e.g. a change of polysomal mRNA levels independent of total mRNA levels 
leading to altered protein levels. mRNAs regulated by abundance (1.6.3.1) are colored in green and largely lay on the diagonal 
indicating congruent changes on both: total and polysome-associated mRNA levels followed by changes on protein levels. 
mRNAs whose total mRNA level change while their polysome-associated mRNA levels remain constant are colored in blue 
and are identified as translationally buffered (1.6.3.3). Here, protein levels remain unchanged. (Lower) Depiction of mRNAs 
and their change in ribosome association in the respective regulatory mode. Arrows indicate the observed changes on total and 
polysome-associated mRNA levels. 

Modified from Oertlin C et al. "Generally applicable transcriptome-wide analysis of translation using anota2seq." Nucleic Acids Res. 2019 Jul 9;47(12):e70. doi: 
https://doi.org/10.1093/nar/gkz223 
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1.6.3.1 Regulation by mRNA abundance 

Changes in mRNA abundance are characterized by the in- or decrease of total mRNA levels, due 

to either increased transcription or degradation of a certain mRNA. These changes are paralleled 

by the association of ribosomes, such that the observed protein output follows the same 

directionality as the altered total mRNA level. When assessing this using the anota-model, the 

changes of polysome-associated mRNA levels are not independent of the changes of total mRNA 

levels, e.g. the difference in translational efficiency (ΔTE, intercept on the y-axis) is close to 0.  

 

Figure 9 - Anota model of regulation by mRNA abundance: Translated mRNA levels vs. total mRNA levels 
are plotted for replicate per condition. A linear model with identical slope is fitted for each sample group. The intercept with the 
y-axis reflects the change in translational efficiency. 

1.6.3.2 Regulation by translation 
When total mRNA levels change to a smaller extent than levels 

of translated mRNA, transcripts are regulated by translation. 

Here, the distribution of mRNAs is shifted between heavy and 

light fractions of the polysome profile, such as the regulation of 

TOP-mRNAs (Gandin et al., 2016), inhibition of eIF4A (Chan 

et al., 2019) or selective translation during the integrated stress 

response (Guan et al., 2017; Kaspar et al., 2021). Using the 

anota-model, fitting of linear models 

results in a difference of the 

intercepts on the y-axis, indicating the 

difference in translational efficiency, 

ΔTE ≠ 0.  

Figure 10 – Anota model of regulation by translation: 
Translated mRNA levels are plotted against total mRNA levels. The 
fitting of linear models with identical slopes reveals a difference in 
translational efficiency illustrated by different intercepts on the y-axis 
(ΔTE). 



 

 41 

1.6.3.3 Regulation by (translational) buffering 

Changes by mRNA abundance and translation are defined by changes of translated mRNA levels, 

either with concomitant (abundance) or independent (translation) changes of total mRNA. In 

contrast, translational buffering is defined by changes of total mRNA levels, while the polysome 

association remains unchanged. This can occur in two directions, since during buffering a decrease 

in total mRNA levels leads to an increase in polysome association, while increasing total mRNA 

levels are paralleled by decreased polysome association. In other words, the change in net-

polysome association between the two conditions is near zero. When assessing this regulatory 

mode using the anota-model, total mRNA levels and translated mRNA levels are switched, and 

intercepts with the y-axis are assessed. This reveals if changes reflected on total mRNA are 

independent of changes in translated mRNA: 

ܣܴܰ݉ ݀݁ݐ݈ܽݏ݊ܽݎݐ ~ ܣܴܰ݉ ݈ܽݐ݋ݐ +  ݊݋݅ݐ݅݀݊݋ܿ 

 

 

Figure 11 - Anota model for regulation by translational buffering: Translated mRNA levels are plotted 
against total mRNA levels. (Left) Fitting of similar slopes reveals no change of translated mRNA levels. To assess 
translational buffering, the axis are flipped (right) and the intercept with the y-axis reveals a change of total mRNA levels, 
which is independent of altered levels of polysome-associated mRNA leading to the identification of translational buffering. 

Translational buffering is an intriguing mechanisms, since it entails that changes of total mRNA 

levels do not lead to altered protein levels. While analysis using anota2seq designates those mRNAs 

as buffered, this mode can be further defined in respect to biological contexts. Stimulations or 

perturbations can lead to changes on total mRNA levels, while translation is “offset”, leading to 

no changes of polysome association. This counter-balancing of changes of specific mRNAs 

stabilizing the corresponding protein level has been shown in response to growth factor 

stimulation in HeLa cells (Tebaldi et al., 2012) or upon TP53-loss in HCT116 cells (Liang et al., 

2018). Neuronal stem cells upon loss of Fmr1, leading to the Fragile X syndrome, showed 

offsetting of synaptic proteins despite increased mRNA levels in combination with mitochondrial 
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mRNAs, whose mRNA level decreased (Liu et al., 2018). Paper III and IV will further decipher 

translational offsetting and its underlying mechanism. Transcriptional fluctuations between species 

or organisms belonging to the same family can be seen as compensation through buffering, such 

as differences in ploidy in Drosophila cells (Zhang and Presgraves, 2017) and between yeast strains 

(Artieri and Fraser, 2014b; McManus et al., 2014) lead to similar protein levels by translational-

regulation. Similarly, transcriptional-variation in human tissue (Perl et al., 2017) and between 

individuals (Cenik et al., 2015) has been suggested to be mediated by translational-buffering. 

Finally, a study comparing a range of different species (human, macaque, mouse, opossum and 

platypus) revealed extensive translational regulation between species leading to less divergence of 

the translatome and the proteome as compared to the species-dependent transcriptome (Wang et 

al., 2020). Examples in which components of cellular pathways or protein complexes are 

stoichiometrically buffered upon transcriptional fluctuations have been described in Bacillus subtilis 

and Escherichia coli, whose protein-levels have been shown to be diverging to a lesser extent than 

mRNA levels (Lalanne et al., 2018). This mechanism of buffering by equilibration has also been 

shown for pathways in eukaryotes, while functionally unrelated but genomically neighboring and 

co-expressed genes were buffered on the protein-level (Kustatscher et al., 2017). Finally, the 

identification of mechanisms leading to buffering require adequate analysis-tools (Oertlin et al., 

2019) and can be observed using measures of mRNA and protein-levels, however not capturing 

the contribution of mRNA translation or protein-stability (Taggart et al., 2020). 

1.6.4 nanoCAGE  

As described in 1.3.2, 5’UTRs and its features are involved in a wide-range of translational control 

mechanisms. The in- or exclusion of such features is mediated by the usage of transcription-start 

sites and subsequent capping (1.1.5). In order to understand the impact of 5’UTRs, methods to 

identify and measure these sequences are required. Among those are a 5’-specific version of serial 

analysis of gene expression (5’-SAGE) (Hashimoto et al., 2004), a cap-specific and PCR-free single 

molecule sequencing (HeliscopeCAGE) (Kanamori-Katayama et al., 2011), and Cap analysis of 

Gene Expression (CAGE) (Shiraki et al., 2003; Takahashi et al., 2012). CAGE was developed to 

identify promoters on a genome-wide level (Shiraki et al., 2003) and, due to the lack of current 

RNA-sequencing methods, it relied on Sanger-sequencing (Shiraki et al., 2003). A central feature 

of these methods is the exact mapping of the 5’cap of the mRNA, which in turn allows to map the 

position at which transcription starts with nucleotide precision – the transcription start-site (TSS). 

During CAGE, this is achieved by cap-trapping, which involves biotinylation of the 5’cap-structure 

followed by a pull-down with streptavidin coated beads (Carninci and Hayashizaki, 1999; Carninci 

et al., 1996). This, in combination with polyA-selection by oligo-dT priming, leads to complete 

cDNAs, which are subjected to sequencing (Shiraki et al., 2003). Moreover, the performance of 
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reverse transcription was improved by adding Trehalose and Sorbitol to the reaction. This led to 

higher thermostability of the reverse transcriptase and allowed higher reaction temperatures to 

resolve structures in the mRNA (Carninci et al., 1998, 2002). In order to capture transcripts lacking 

polyA-tails and ensure that the 5’cap was reached, random priming during reverse-transcription 

was introduced (Kodzius et al., 2006). For Sanger-sequencing, CAGE-tags were concatenated by 

molecular cloning and bacterial clones were sequenced (Kodzius et al., 2006). Later, this method 

was adapted for pyro-sequencing for improved throughput (Valen et al., 2009). In line with the 

advancement of sequencing-technologies, CAGE was subsequently adapted for next-generation 

sequencing on the Illumina platform (Takahashi et al., 2012). CAGE, using the cap-trapper and 

restriction-digestion, requires high amounts of RNA-input (5 µg (Takahashi et al., 2012), 25 µg 

(Shiraki et al., 2003)), which restricted this application to large amounts of material. Therefore, 

nanoCAGE, using only nanograms of RNA, was developed (Plessy et al., 2010). This method 

relies on template-switching to capture the 5’cap of transcripts. Upon reaching the 5’cap, reverse 

transcription introduces a stretch of cytosines at the 3’end of the nascent cDNA strand (Hirzmann 

et al., 1993). Next, a template-switching oligo (TSO) containing three guanine ribo-nucleotides 

(ribo-G) at its 3’ end hybridizes with the C-stretch. This leads to an extension of the cDNA with 

the TSO (Matz et al., 1999; Zhu et al., 2001) and to template-switching between the RNA template 

and the TSO while eliminating the requirements of adaptor ligations and allowing the introduction 

of random sequences (unique-molecular identifiers (UMIs) and barcodes) (Kivioja et al., 2012). 

However, this strategy can lead to artifacts, which occur from hybridization between the TSO and 

the cDNA strand due to complementarity of UMI and/or barcode sequences with motifs in the 

nascent strand (Tang et al., 2013). These shorter artifacts, generated by “strand invasion”, depend 

highly on the last six nucleotides of the TSO and can be identified during downstream 

computational analysis of the sequencing data (Tang et al., 2013). Experimentally, strand invasion 

can be avoided by adding a generic spacer between the UMI upstream of the ribo-G at the 3’end 

of the TSO (Tang et al., 2013). The generated cDNA is further synthesized into a double-strand 

by semi-suppressive PCR and adapters are ligated followed by sequencing (Plessy et al., 2010). The 

semi-suppressive PCR uses partial-complementary primers. This excludes short fragments and 

fragments with the same adapters (Plessy et al., 2010). The in this thesis applied, and latest iteration 

of nanoCAGE uses a transposase-based method to introduce sequencing adapters. Here, 

tagmentation leads to sequencing libraries compatible with the illumina platform ((Poulain et al., 

2017) and paper II, IV). A key-feature in today’s nanoCAGE is the usage of barcodes and finger 

prints (UMIs). Barcodes allow for multiplexing samples for sequencing, whereas finger prints are 

used to filter  PCR artifacts (Poulain et al., 2017). Sequencing is performed using a specific 

sequencing primer, which binds directly upstream of the barcode-sequence allowing precise 

mapping of TSSs (Poulain et al., 2017; Salimullah et al., 2011).  
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The application of CAGE by the Fantom consortium led to the first genome-wide identifications 

of promoters and transcription start sites (Carninci et al., 2006; Forrest et al., 2014; Kawai et al., 

2001) and showed that transcripts contain several transcription start-sites, i.e., a range of mRNA 

isoforms (Figure 13, (Forrest et al., 2014). This data is characterized by tags aligning to the 

reference genome, which generates clusters containing peaks of TSS and allows to identify new 

mRNA isoforms as well as new mRNAs (Carninci et al., 2006; Forrest et al., 2014). Moreover, the 

number of tags per transcript can be inferred as a measure of expression of transcripts (Kawaji et 

al., 2014). Due to its cap-specificity other transcripts containing 5’caps have been identified by 

CAGE, such as lncRNAs (Hon et al., 2017) and enhancer RNA (eRNAs) (Andersson et al., 2014; 

Kim et al., 2010). Methods to analyze this data have been developed, such as “TSRchitect” (Raborn 

and Brendel, 2019), “CAGEr” (Haberle et al., 2015) and CAGEfightR (Thodberg et al., 2019).  

 

Figure 12 - Preparation of nanoCAGE sequencing libraries: Reverse transcription is performed using a random 
hexamer primer (black N), including a tail for semi-suppressive PCR (blue N), to amplify mRNAs including their 5’UTR 
(dark green line). When the cap-structure is reached, template switching occurs. The template switching oligo (TSO) containing 
three ribo-Gs at the 3’end binds to the C-overhang and the reaction extends the cDNA strand (red line) incorporating the 
TSO. For early multiplexing of samples, the TSO contains a barcode sequence (yellow N) and unique molecular identifiers 
(UMIs, finger prints) to remove PCR artifacts in the downstream analysis (light blue N). A diagnostic qPCR is performed to 
evaluate the efficiency of the reverse-transcription, followed by semi-suppressive PCR (green and red N) to generate a DNA 
double strand. Next, tagmentation leads to the introduction of adapters for RNA-sequencing. Sequencing is performed using a 
primer (dark blue N) directly upstream of the 5’ barcode leading to mapping of the 5’cap/TSS with nucleotide precision. 

It seems a rather obvious choice to apply these methods in the context of mRNA translation, since 

5’UTR features play an important role and are determined by TSS (1.3.2). Transcription start-sites 

mapped by CAGE exist as wide or narrow, mediated by either CpG island or TATA boxes 
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(Carninci et al., 2006). CpG islands containing promoters are rich in Cytosine and Guanine and 

give rise to broad TTS (Deaton and Bird, 2011), whereas TATA rich core promoters lead to sharp 

transcription-initiation (Ponjavic et al., 2006) and sharp CAGE clusters. However, this distinction 

has been challenged and promoters containing both elements have been identified (Ponjavic et al., 

2006). In regards to mRNA translation, precise TTS-selection is necessary. One example are  TOP 

mRNAs, which have been shown to be transcribed from precise positions (Eliseeva et al., 2013; 

Gandin et al., 2016; Parry et al., 2010; Perry, 2005; Yamashita et al., 2008) due to their requirement 

of distinct sequences at the very 5’ end of the transcript for their regulation (1.3.2.5). Similarly to 

uORFs, whose presence in the 5’UTR can dependent on TSS-selection (paper II). 5’UTR 

isoforms have been demonstrated in breast-cancer, where the stemness factors NANOG, SNAIL 

and NODAL are transcribed with alternative 5’UTRs (Jewer et al., 2020). Each expresses a 5’UTR 

variant which is preferentially translated in a eIF2α-dependent manner under hypoxia leading to a  

stem-like phenotype in breast-cancer (Jewer et al., 2020). This shows that apart from the 

identification of 5’UTR variants their quantification is important. Generally, transcriptome-wide 

studies rely on adequate annotations. In the case for 5’UTRs the longest identified variants are 

usually annotated in databases such as RefSeq or UTRdb (Gandin et al., 2016). However the 

identification of TSSs in MCF7 cells using nanoCAGE revealed that around 30% of annotated 

TSSs give rise to shorter 5’UTRs (Gandin et al., 2016), illustrating the importance of the 

systematical identification of 5’UTRs. The contribution of 5’UTRs to translation initiation on a 

genome-wide level has been studied to some extent by using CAGE (Li et al., 2019; Wang et al., 

2016) and other methods in combination with polysome profiling such as TrIP-seq (Floor and 

Doudna, 2016) or CapSeq 

(Tamarkin-Ben-Harush et 

al., 2017). In order to 

systematically assess the 

contributions of sequence 

contexts in a high-

throughput manner, 

reporter-based methods 

have been used. These use 

constructs largely 

containing libraries of random 5’UTRs 

upstream of reporter start-codons, whose 

protein expression is either measured by 

fluorescence (Dvir et al., 2013), growth 

rate (Cuperus et al., 2017) or polysome 

Figure 13 - Histogram of TSS clusters per transcript in 
T47d breast cancer cells generated by transcriptome-wide 
nanoCAGE. A total number of 53597 clusters were identified, 
while 89.39% transcripts contained more than one TSS. In average 
4.09 TSS per transcript were found. This Figure was kindly 
provided by Krzysztof Szkop. 
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profiling (Sample et al., 2019). These methods in combination with network analysis helped to 

understand the contribution of 5’UTR sequence composition to mRNA translation, however rely 

only to a small extend on actual expressed 5’UTR variants and do not address commonly studied 

5’UTR features regulating translation initiation (1.3.2 and Figure 5). In paper II we apply 

nanoCAGE to identify 5’UTRs derived from narrow TSS selection and use a newly developed 

approach called targeted-nanoCAGE (tgNC). This method uses a mammalian expression vector 

and cloning of previously identified 5’UTR variants up to 182nt upstream of a luciferase open-

reading frame. Luciferase-specific nanoCAGE sequencing in combination with polysome profiling 

allows to study the impact of 5’UTR features independent of other mRNA features such as coding 

region or 3’UTRs. In summary, 5’UTR specific sequencing methods in combination with 

polysome profiling can be a powerful tool to study the influence of 5’UTRs on mRNA translation. 

 

1.7 P53 

P53 (TP53 gene) is one of the most studied genes and proteins in cancer-research. Its discovery as 

an oncogene (Lane and Crawford, 1979; Linzer and Levine, 1979), followed by its characterization 

as a tumor-suppressor (Finlay et al., 1989), has led to a huge body of research and enabled a better 

understanding of cancer on a molecular level. Mice lacking TP53 are characterized by spontaneous 

tumor formation after 6 months (Donehower et al., 1992), in contrast to a mouse model 

constitutively expressing a N-terminal truncated P53 isoform showing growth defects and early 

onset of ageing (Maier et al., 2004).  P53 is a transcription factor (Farmer et al., 1992) binding to a 

10 base-pair DNA-motif in the genome (El-Deiry et al., 1992; Kern et al., 1991), regulating a 

plethora of cellular pathways (Vogelstein et al., 2000) and as the “guardian of the genome” 

counteracts genome-instability (Lane, 1992) a hallmark of cancer (Hanahan and Weinberg, 2000, 

2011). This is achieved by activation of p53 upon extracellular and 

intracellular stresses such as hyper proliferative signals, oxidative 

stress, DNA damage, hypoxia and nutrient depletion (Bieging et al., 

2014). As a result, p53 induces DNA-repair (Tang et al., 1999), cell 

cycle arrest (Martinez et al., 1991), and apoptosis transcriptionally 

(Symonds et al., 1994; Yin et al., 1997). This illustrates p53’s ability 

to suppress tumorigenesis and leads to the selection of cells with 

non-functional p53 during cancer progression (Lutzker and Levine, 

1996).  TP53 is mutated in over 40% of cancers (Hollstein et al., 

1991), mainly at its DNA-binding domain leading to non-functional p53 due to impaired DNA 

binding, protein folding and altered protein-protein interactions (Cho et al., 1994; Kastenhuber 

and Lowe, 2017; Muller and Vousden, 2013; Pavletich et al., 1993). Moreover, truncated p53 

Figure 14 - Reactivation of P53 
and Induction of tumor cell apoptosis 
(RITA). Molecular structure of the 
small molecule used in paper I. 



 

 47 

isoforms have been shown to be implicated in cancer due to alternative splicing, alternative 

promotor usage or alternative translation initiation (Aoubala et al., 2011; Bourdon, 2007; Candeias 

et al., 2016; Khoury and Bourdon, 2011). p53 is destabilized by binding to MDM2 resulting in 

proteasomal degradation and decreased protein levels (Kubbutat et al., 1997). Upon DNA damage 

or replication stress, p53 levels are increased by either phosphorylation leading to reduced MDM2 

binding (Shieh et al., 1997) or MDM2 deactivation by ARF (Pomerantz et al., 1998). However 

under malignancy, these mechanisms are dysregulated by overexpression of MDM2 resulting in 

decreased p53 levels despite its activation  (Fakharzadeh et al., 1991; Finlay, 1993). p53 acts as 

tetramer, and expression of p53-wt and p53-mut in TP53-wt and TP53-mut heterozygous tumors 

results in hetero dimerization and abolishes p53-wt activity by a dominant-negative mechanism 

(Willis et al., 2004).  These mechanisms result in decreased p53-wt activity in cancer and gave rise 

to the development of strategies reinstate p53-wt. Conceptually, p53-mut is to gain p53-wt activity 

and p53-wt levels are to be elevated (Binayke et al., 2019; Wiman, 2010; Zawacka-Pankau and 

Selivanova, 2015). High-throughput screening of small molecule libraries have succeeded in 

finding compounds, which lead to p53 mediated cell death in cancer cells. One such compound is 

RITA (Reactivation of p53 and induction of tumor cell apoptosis), initially identified as binding 

directly to p53-wt leading to impaired binding of MDM2 and MDMX and restoring p53 protein 

levels (Enge et al., 2009; Issaeva et al., 2004). RITA was initially thought to act in a p53-dependent 

manner, however additional studies revealed substantial p53-independent effects ((Surget et al., 

2014; Wanzel et al., 2015; Weilbacher et al., 2014) and paper I). RITA has also been shown to 

inhibit p53 degradation by inhibiting E6 ligase mediated ubiquitylation in cervical carcinoma (Zhao 

et al., 2010a) and reactivating p53-mut in a range of cancer cells (Zhao et al., 2010b). Thioredoxin 

reductase 1 (Trx1) was found to be non-covalently bound by RITA leading to p53-dependent cell-

death in cancer cells (Hedström et al., 2009). This was challenged by a more recent study using 

thermal protein profiling (TPP), to identify RITA’s target in a proteome-wide manner. This 

revealed that RITA treatment is mainly associated with impaired transcription and mRNA 

processing (Peuget et al., 2020). Taken together, the mechanisms by which RITA potently leads to 

cell death in cancer cells still remain to be fully understood. Paper I studies RITA’s impact on 

mRNA translation in combination to its antineoplastic effects. Other compounds such as nutlins, 

which bind directly to MDM2 and increase p53-wt levels (Vassilev et al., 2004) are used in clinical 

trials (NCT00623870, NCT00559533) and have been shown to act in a largely TP53-dependent 

manner (Tovar et al., 2006; Vassilev et al., 2004). Compounds such as Prima-1/Prima-1MET (p53 

reactivation and induction of massive apoptosis) reactivate p53-mut by leading to an active 

conformation of p53 and promote classical p53 downstream effects upon DNA binding such as 

apoptosis (Bykov et al., 2002). Mechanistically, PRIMA-1 binds covalently to cysteine residues in 

p53 upon conversion to a methylene quinuclidinone, a Michael acceptor (Lambert et al., 2009). 
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This leads not only to reactivation of p53-mut but also to increased ROS levels due to thiol-binding 

of Prima-1 to Glutathione (Ceder et al., 2021; Tessoulin et al., 2014) and Trx1 (Peng et al., 2013). 

PRIMA-1 is to date the only compound reactivating p53-mut with positive results in clinical trials 

(Nahi et al., 2006; Rao et al., 2013). 
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 Empirical in the narrower sense is the knowledge that stops at effects without being able to arrive 

at the causes. For practical purposes it often suffices, as for example in therapeutics. 

 The nonsense of the natural philosophers of Schelling’s school on the one hand, and the results of 

empiricism on the other, have provoked in many such a dread of system and theory that they expect progress in physics 

entirely by hand without the aid of the head and would, therefore, like best of all simply to experiment without giving 

any thought to the matter. They imagine that their physical or chemical apparatus should do their thinking for them 

and itself should express the truth in the language of mere experiments. For this purpose, experiments are now 

multiplied ad infinitum and again in these conditions, so that operations are carried on solely with extremely 

complicated and in the end utterly absurd, experiments, namely with such as can never furnish a simple and 

straightforward result. Nevertheless, they are to act as thumb-screws applied to nature in order to force her even to 

speak. 

 The genuine research worker, on the other hand, who thinks for himself, arranges for his experiments 

to be as simple as possible so that he may plainly hear nature’s clear statement and judge accordingly. For nature 

appears always only as witness. 
 
From “On philosophy and natural science”, § 76 in Parerga and Paralipomena II, (Oxford University Press, 1974) 
Arthur Schopenhauer (1788 – 1860) 
Translated by E. F. J. Payne 
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2 AIMS OF THIS THESIS 
The here presented thesis work aims to characterize regulatory modes of mRNA translation and 

to develop new methods to study the contribution of mRNA elements to protein synthesis.  

In paper I we study the mechanism of RITA, a small molecule reactivating p53, and its effect on 

mRNA translation. 

5’UTR specific mRNA sequencing is applied in paper II to identify mRNAs with narrow 

transcription start sites (TSS). We use a newly developed approach, 5’-centric targeted TSS 

sequencing in combination with polysome profiling to contextualize these findings. 

Paper III presents a computational approach to study mRNA features in concert. We use this 

method to characterize translation and translational offsetting. 

In paper IV we investigate the role of the well-studied transcription factor ERα in the regulation 

of gene expression at the level of mRNA-translation in cancer. 
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3 RESULTS AND DISCUSSION 

3.1.1 Study I - RITA requires eIF2α-dependent modulation of mRNA translation for 
its anti-cancer activity 

P53 is a key tumor suppressor, and its loss of function is a common phenotype across many 

different cancer types (1.7). Therefore, the reactivation of p53 by small molecules has been shown 

to be a promising strategy for cancer treatment (1.7.1). Despite many small molecules being initially 

discovered by their ability to reactivate p53, they have been shown to exert their antineoplastic 

activities independent of TP53-status (Wanzel et al., 2015) and target a multitude of cellular 

pathways such as MEK (Lu et al., 2016), the balance of glutathione and reactive oxygen species 

(Tessoulin et al., 2014), JNK/SAPK and p38 (Weilbacher et al., 2014). RITA, a small molecule 

initially identified as inhibiting the MDM2-mediated proteasomal degradation of p53, (Issaeva et 

al., 2004) has been shown to act independently of TP53 status (Wanzel et al., 2015; Weilbacher et 

al., 2014). Moreover a study using NMR-spectroscopy revealed that binding between p53 and 

MDM2 was not abolished by RITA in vitro (Krajewski et al., 2005). It was therefore hypothesized 

that RITA and other small molecules reactivate p53 as a secondary effect or in cooperation with 

other mechanisms.  

This was previously shown for compounds such as Nutlin-3 inducing the DNA damage response 

(Valentine et al., 2011), Prima-1 activating the unfolded protein response (Teoh et al., 2016) and 

Prima-1Met leading to increased reactive oxygen species (ROS) paralleled by p53-reactivation 

(Tessoulin et al., 2014). We treated MCF7 cells harboring p53-wt with RITA, leading to induction 

Figure 15 - (left) Western blot analysis of MCF7 TP53 +/+ and -/- cells illustrating pro-apoptotic effects of RITA by 
PARP-cleavage, which are independent of TP53 status. (right) Polysome profiling of MCF7 cells reveals TP53 independent 
reduction of global protein synthesis upon RITA treatment, as judged by the reduced area under the curve of polysomal 
mRNA and the increased 80S monosome peak. 

Reprinted under creative commons license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Cell Death & Disease. Ristau J et al. RITA requires eIF2α-
dependent modulation of mRNA translation for its anti-cancer activity. Cell Death Dis. 10, 845 (2019). https://doi.org/10.1038/s41419-019-2074-3. © 2019 
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of apoptosis and monitored its effect on mRNA translation using polysome profiling, which led 

to a global reduction of translation. This effect was independent of TP55 status as S35 labeling of 

newly synthesized proteins and polysome profiling in TP53 -/- and +/+ MCF7 cells showed a 

comparable results paralleled by PARP cleavage as measure of apoptosis (Figure 15). Since RITA 

leads to elevated ROS (Shi et al., 2014) we hypothesized that RITA-induced translational inhibition 

was ROS-dependent. While monitoring global protein synthesis under RITA treatment in 

combination with an anti-oxidant N-Acetyl Cysteine (NAC), which decreased ROS-levels, 

translational repression and induction of apoptosis could not be released. Next, we investigated 

classical pathways regulating mRNA translation, such as the mTOR pathway. The activity of 

downstream targets of mTOR, S6K and 4E-BP1, were not altered upon treatment with RITA. 

Polysome profiling using MCF7 cells lacking 4E-BP1 exhibited the same translational repression 

as the WT cells. This concluded that RITA inhibits translation independent of the mTOR pathway. 

Another major cue in regulating protein synthesis is the 

formation of the ternary complex. We assessed this by 

monitoring phosphorylation of eIF2α and observed a time-

dependent increase in eIF2α phosphorylation in MCF7 cells. 

This was also true for the colon cancer cells HCT116 and 

GP5d both harboring p53-wt. Treatment with the integrated 

stress response inhibitor (ISRIB), which restores eIF2B 

activity followed by increased protein synthesis, in 

combination with RITA alleviated the translational 

repression underlining RITA’s effect via ternary complex 

formation. Since the phosphorylation of eIF2α is mediated 

by different kinases (1.3.1.2) such as PERK, we treated 

MCF7 WT cells with RITA in combination with the PERK 

inhibitor GSK2606414. This led to decreased 

phosphorylation of eIF2α and reduced translational 

repression. Intriguingly, using MCF7 WT and GP5d cells, 

induction of apoptosis and p53 protein levels were also reduced upon PERK inhibition. 

Additionally, long term cell growth under RITA treatment in MCF7 TP53 -/-, +/+ and WT cells 

was diminished upon RITA treatment, whereas RITA in combination with GSK2606414 did not 

lead to a noticeable effect. This was not mediated by ROS since concomitant PERK inhibition led 

to rather higher ROS-levels compared to the control. Since these experiments revealed an interplay 

between pro-apoptotic effects of RITA and phosphorylation status of eIF2α, we wondered if 

modulation of eIF2α -phosphorylation results in altered pro-apoptotic effects by RITA. Salubrinal, 

a phosphatase inhibitor of eIF2α, led to increased eIF2α phosphorylation in combination with 

Figure 16 - Western blot analysis of 
HT1080 cells under RITA treatment. 
The induction of p53 depends on the 
phosphorylation of eIF2α. HT1080 KI 
cells contain a non-phosphorylatable mutant 
at S51. 

Reprinted under creative commons license CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). Cell 
Death & Disease. Ristau J et al. RITA requires eIF2α-
dependent modulation of mRNA translation for its anti-
cancer activity. Cell Death Dis. 10, 845 (2019). 
https://doi.org/10.1038/s41419-019-2074-3. © 2019 
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RITA. When assessing early and late 

apoptosis by staining with Annexin V and 

Propidium iodide, eIF2α-phosphorylation 

associated with the pro-apoptotic effects of 

RITA. This relationship was further 

evaluated using colony formation as a 

measure of clonogenicity in MCF7 cells. 

Here RITA treatment led to reduced 

colony formation, which followed the 

modulation of eIF2α phosphorylation, i.e. 

lower colony formation eIF2α-

phosphorylation is high. These results 

underlined the TP53 independent effect of 

RITA, since colony formation was regulated 

independently of TP53 status. Lastly, we 

applied RITA on HT1080 fibrosarcoma 

cells (Figure 16), harboring TP53-WT and 

overexpress a non-phosphorylatable eIF2α-mutant (S51A). This led to the expected reduced p53 

levels in the absence of eIF2α phosphorylation. Moreover, these cells exhibited a reduced 

vulnerability to long-term RITA treatment under a wide range of concentrations in the absence of 

p53 reactivation. This study illustrates how the reactivation of p53 and antineoplastic effects by 

RITA are downstream of eIF2α (Figure 17). Increased PERK activity, in general a pro-survival 

response in context of the integrated stress response, exhibits pro-apoptotic effects upon RITA 

treatment. This underlines the importance of major cellular cues in the context of p53 reactivation 

and can be of great help to improve drug efficacy and stratify treatment. However, the exact 

mechanism how p53 levels are increased upon RITA treatment downstream of eIF2α remain to 

be resolved. Potentially, MDM2, a negative regulator of p53, is translationally or transcriptionally 

down-regulated leading to increased p53 protein levels. A more recent study showed RNA pol-II 

degradation upon RITA treatment  (Peuget et al., 2020), which could lead to decreased MDM2 

mRNA levels, whereby a mechanism downstream of eIF2α suggests a regulation by mRNA 

translation. 

3.1.2 Study II – Precise transcription start site selection in mRNAs with upstream 
open reading frames tunes stress-independent translation 

The features of 5’UTRs are involved in a wide range of translational regulation (1.3.2) and their 

characteristics are dependent on the usage of transcription start sites. While transcription start sites 

Figure 17 - The model describing the RITA-induced 
activation of p53, its anti-cancer activity and reduction of protein 
synthesis downstream of eIF2α, which is mediated by PERK 
activity. 

Reprinted under creative commons license CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). Cell Death & Disease. Ristau J et al. 
RITA requires eIF2α-dependent modulation of mRNA translation for its anti-cancer 
activity. Cell Death Dis. 10, 845 (2019). https://doi.org/10.1038/s41419-019-
2074-3. © 2019 
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are generally dependent on the genomic region of core-promoters, CpG islands and TATA boxes 

give rise to wide or respectively more narrow TSS (Carninci et al., 2006; Ponjavic et al., 2006). A 

well characterized subset 

of mRNAs requiring 

precise TSS selection are 

TOP mRNAs (1.3.2.5). 

These are generated from 

precise TSSs (Gandin et 

al., 2016; Parry et al., 2010; 

Perry, 2005; Yamashita et 

al., 2008), which generates 

a canonical motif 

downstream of the 5’cap 

and is of importance for its 

translational regulation 

(Avni et al., 1994; Levy et 

al., 1991). We applied 

nanoCAGE to a range of 

cell lines and mapped 

transcription start sites in a 

transcriptome wide manner to 

identify capped transcripts 

with narrow TSS. This led, as 

expected, to the identification 

of TOP mRNAs. Intriguingly, 

we found more mRNAs who 

exhibited sharp TSS not 

containing a TOP motif. Instead, those transcripts contained a start codon in their 5’UTR, 

suggesting the presence of an upstream open-reading frame. Analysis of the surrounding 

sequences, the Kozak context, showed these AUG codons are surrounded of a strong context and 

therefore suggested those as translatable. These findings were true for a range of cells lines (stem 

cells, cancer cells and breast epithelia cells) underlining the generality of these findings. Next, we 

analyzed the regions upstream, downstream and within the identified uORFs. Firstly, the presence 

of canonical start-codons, i.e. AUG, was enriched upstream of the uORF in all cell lines, in 

comparison to randomly positioning of the respective codon along the 5’UTR as background 

(Figure 18). In contrast to non-canonical start codons, such as CUG, GUG, UUG and ACG. This 

Figure 18 – nanoCAGE identified 5’UTR variants with narrow 
TSS upstream of uORFs: (Upper) Density plots of identified TSS in H1 
cells upstream of uORFs characterized by the indicated start codons. We 
observed an enrichment of TSS in close proximity to the canonical AUG start 
codon (brown line). (Lower) Unsmoothed distribution of TSS upstream of 
AUG codons in H1 cells. The enrichment exceeded the background + 2SDs 
(grey dotted lines) at 26nts upstream of the start codon. This was reproducible 
across all studied cell lines.   
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enrichment was followed by a depletion within the uORF sequence and even in the region 

downstream of the uORF stop codon. These findings, reproducible across all cell lines, were 

further evaluated by plotting TSS enrichment in an un-smoothened fashion. Strikingly the 

“change-point” at which enrichment increased over the background occurred reproducibly 

between 25-27 nt upstream of the uORF start codon (Figure 18). While 5’UTR lengths are 

important in how mRNA translation is initiated (1.3.2), we hypothesized that this conserved 

distance plays a role in how these transcripts are translationally regulated. To assess this, we 

generated three subsets according to the nanoCAGE-derived distance between TSS and uORF: A 

Figure 19 – targeted-nanoCAGE: A mammalian expression vector (based on pGL.4.13) was modified such that a 
5’UTR library could be cloned downstream of the SV40 promoter and upstream of a firefly luciferase open reading frame. The 
positioning of the PacI restriction site allowed the inclusion of the native Kozak context for each 5’UTR variant. After 
transfection into MCF7 cells and polysome profiling, targeted-nanoCAGE (tgNC) was applied to generate luciferase-specific 
sequencing libraries. tgNC uses reverse transcription followed by a nested PCR with gene-specific primers. At the 5’end template 
switching was performed as described in (1.6.4). Black box: The strategy to study identified 5’UTR subsets with “CloseOnly” 
and “NotCloseUpstream” TSS upstream of uORFs. The identified variant was stepwise extended (“CloseOnly”) or shortened 
(“NotCloseUpstream”) to assess the length dependency and the uORF start codon was mutated in order to study the dependency 
of the uORF. 
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subset containing only transcripts with TSS close to the uORF (“closeOnly”) and a subset 

containing TSS far upstream of the uORF (“NotCloseUpstream”). The third subsets consists of 

transcripts with two different 5’UTR isoforms, close and upstream of the uORF 

(“CloseUpstream”). Moreover, these subsets showed distinct biological functions when 

conducting a Gene Ontology analysis. In order to study these subsets in context of mRNA 

translation, a new method was required.  

We developed a system, which allows to 

interrogate these 5’UTR variants 

independently of the mRNA features 

downstream of the 5’UTR (targeted-

nanoCAGE) (Figure 19). To achieve this a 

mammalian expression vector was modified 

such that a collection of 5’UTR of different 

lengths was cloned directly downstream of its 

TSS. Moreover, the cloning strategy allowed 

to include the endogenous Kozak context for 

each transcript. The collection of variants was 

designed such that the initially identified 

variant was stepwise extended (“CloseOnly”) 

or stepwise shortened 

(“NotCloseUpstream”). Additionally, we 

included similar variants lacking a functional 

uORF start codon (AUG mutation to AGU) 

to assess the contribution of the uORF.  

After transfection of MCF7 the integrated 

stress response was induced by thapsigargin 

to assess stress-dependent translation 

(1.3.1.2, 1.3.2.4). Torin1 was used to inhibit 

mTOR and assess the mTOR-dependency 

of the 5’UTR variants. In order to 

understand the impact on protein output of 

the identified 5’UTR variants, we used 

polysome profiling to measure the 

translational efficiency of the main-ORF (Firefly luciferase) by extracting total and polysome 

associated mRNAs. The nanoCAGE protocol used to generate 5’UTR-specific sequencing 

Figure 20 – targeted-nanoCAGE revealed the 
stress independent translation of “CloseOnly” 
variants: Translational efficiency (residuals) was estimated 
using total and polysome-associated mRNA levels upon 
sequencing of targeted-nanoCAGE libraries under control 
(DMSO) and induction of the integrated stress response 
(1.3.1.2) by thapsigargin. Each dot represents a variant of 
specific length. Linear models assess the contribution of distance 
upstream of the uORF to the translational efficiency across all 
variants. Here, the positioning of the TSS close to the uORF 
(“CloseOnly”) ensures efficient translation under non-stressed 
and stressed conditions. 
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libraries on a transcriptome wide level was modified to specifically sequence mRNAs containing 

the luciferase main ORF. This was achieved using two gene-specific primers and a nested semi-

suppressive PCR. Linear models were used to analyze translational efficiencies as a function of 

distance between TSS and uORF, by class (“CloseOnly” or “NotCloseUpstream”) and treatments 

(thapsigargin, torin1). Short 5’UTRs (“CloseOnly”) revealed a significant relationship between 

length and translational efficiency (Figure 20), whereas the extension of 5’UTRs led to lower main-

ORF translation. This effect was uORF dependent, since variants containing a non-translatable 

uORF (AUG mutation) showed no significant effect of altered 5’UTR length. These effects were 

independent of the mTOR-pathway as treatment with torin1 led to similar results. As discussed 

earlier in this thesis (1.3.2.4), uORFs play an important role in translational regulation under cellular 

stresses. Upon stress-induced phosphorylation of eIF2α, ternary complex formation is decreased 

and uORF start codons are by-passed due to leaky-scanning. This ensures the translation of 

specific main-ORFs under stress conditions. In this study, treatment with thapsigargin for 1h led 

to similar translational efficiencies of short 5’UTRs in comparison to longer variants (figure 20). 

This indicates that the uORF-dependent translation of transcripts belonging to the “CloseOnly” 

subset are not susceptible to cellular stresses by positioning their TSS close to the uORF. In stark 

contrast to the “NotCloseOnly” subset, which exhibited no length-dependent and uORF-

dependent change in translational efficiency under non-stressed conditions. While treatment with 

torin1 did not alter translational efficiency, treatment with thapsigargin led to a gain in translational 

efficiency when shortening the distance between TSS and uORF. Additionally, this relationship 

was dependent on initiation at uORF start-codons, since the AUG-mutation showed no significant 

length-dependency and indicates the requirement of longer 5’UTRs upstream of a uORF for 

appropriate translational regulation under stress. This suggests, besides uORF-dependent 

regulation, other elements between TSS and uORF are required for stress-induced translational 

repression.  

This study identified a subset of uORF-containing mRNAs with short TSS-to-uORF distance due 

to precise TSS selection. Here, the short distance and the uORF are required for efficient 

translation under non-stressed conditions, while under stress main ORF translation is not impaired 

due to close positioning. uORF-containing mRNAs with longer upstream sequences are translated 

length-dependent under stress, while requiring a uORF and other unknown mRNA elements 

presenting a dramatic difference to mRNAs with close TSS and are devoid of length-dependent 

regulation under non-stressed conditions. These findings suggest two distinct strategies to design 

stress-resistant and stress-sensitive mRNA architecture certainly regulated by more detailed 

mechanisms. To this end, we assessed length dependencies, however the effect of the sequences 

upstream or downstream of the uORFs is to be investigated as well. This could be assessed by 
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exchanging 5’UTR regions, such as upstream regions, uORFs and their downstream sequences, 

between the identified subsets (“CloseOnly” and “NotCloseUpstream”) in a systematic manner. 

3.1.3 Study III – Anota2seqUtils uncovers widespread translational offsetting 
associating with 3’UTR features 

mRNA translation is 

regulated by cellular 

pathways (Roux and 

Topisirovic, 2018) as well 

as by intrinsic features of 

mRNAs. These features 

encompass features in the 

5’UTR such as TOP 

motifs (Meyuhas and Kahan, 

2015), GC content (Pelletier 

and Sonenberg, 1985) and 

uORFs (Lu et al., 2004) as well as binding sites for miRNAs (Jonas and Izaurralde, 2015) and RBPs 

(Szostak and Gebauer, 2013) in the 3’UTR. Albeit these mRNA features being widely studied 

independently, methods to study these in concert are lacking. We developed anota2seqUtils, a 

computational approach, to analyze the contributions and interdependencies of mRNA features 

in translatome data. This is achieved by applying linear models on regulated mRNA subsets and 

assesses the contribution of a certain element in a hierarchical manner. Herein, subsets derived 

from analysis by anota2seq (Oertlin et al., 2019) are used, i.e. translation and offsetting (a variant 

of translational buffering, 1.6.3.3, Figure 21). In order to test this computational approach we 

generated a dataset characterized by mTOR sensitive translation. We employed MCF7 cells and 

stimulated mTOR with insulin after starvation. mTOR inhibition was achieved by the active-site 

inhibitor torin1 (Thoreen et al., 2009).  Next, we performed polysome profiling followed by RNA 

sequencing and analysis of the translatome using anota2seq. We identified mRNAs regulated by 

translation, mRNA abundance, but intriguingly also translational offsetting. In order to assess 

mTOR dependency we compared the mRNAs of the identified subsets with their regulation under 

mTOR inhibition. mRNAs regulated by translation and abundance were largely mTOR dependent, 

moreover a sizeable number of mRNAs remained offset when mTOR was inhibited. Next, we 

sought to characterize the differences between mRNAs regulated by translation and offsetting, 

since offsetting remains an overlooked mode of regulation. Indeed, data generated by ribosome 

profiling in mouse embryonic fibroblasts (MEFs), polysome profiling upon torin1 treatment in 

neuroblastoma Be2 cells, and published data of MCF7 cells treated with the mTOR inhibitor 

Figure 21 – Anota2Seq analysis (1.6.3) reveals changes by translation and 
translational offsetting in MCF7 cells after treatment with insulin for 4h upon 16h 
serum-starvation. 
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PP242 and analyzed by micro array (Larsson et al., 2012), showed ample translational offsetting. 

Since total mRNA levels in- or decrease and polysome association remains unchanged when 

mRNAs are offset, we validated this by using Hi-RIEF mass-spectrometry. This revealed that 

albeit total mRNA levels change, the resulting protein levels remain constant when translation is 

offset. Recently the insulin receptor has been shown to directly regulate transcription upon 

translocation to the nucleus (Hancock et al., 2019). We tested this by assessing the regulation of 

previously identified insulin-receptor sensitive mRNAs in our dataset. This showed that mRNAs 

regulated by the insulin receptor are largely regulated by mRNA abundance, indicating that 

translational offsetting upon insulin stimulation is independent of the transcriptional activity of the 

insulin receptor. Next, we used anota2seqUtils on mRNAs regulated by translation and offsetting. 

Since the 5’UTR plays a major role in mTOR dependent translation and different features, such as 

TOP-motifs, PRTE, 5’UTR GC content, 5’UTR length, and uORFs have been described as 

modulating translation (Avni et al., 1994; Hinnebusch et al., 2016; Hsieh et al., 2012; Pelletier and 

Sonenberg, 1985), we tested the contribution of those features. This showed that 5’GC content 

explained the biggest contribution in insulin dependent translation followed by TOP motifs and 

5’UTR length, all associating with increased translational efficiency.  

In the last step of anota2seqUtils the independent contribution of each mRNA feature is analyzed, 

which revealed that 5’GC content, the presence of a TOP motif, and 5’UTR length contribute 

independently. Similar assessment for mRNAs regulated by offsetting under insulin stimulation 

revealed that 5’GC content and 5’UTR length explained the biggest variance and contribute 

independently, while they associate with increased total mRNA levels, which entails reduced 

translational efficiency, i.e. opposite to insulin dependent translation. Since 5’UTR features 

Figure 22 – Anota2seqUtils output of mRNAs regulated by translation, illustrating the relationship of GC 
content of the coding sequence with regulation by translation (light red: translation up, red: translation down) upon insulin 
stimulation (left). (Right) Similar analysis illustrating the relationship between GC content of the 3’UTR of mRNAs 
whose total mRNA level change upon insulin treatment but polysome-association remains constant, i.e. translational 
offsetting (light blue: increasing total mRNA levels, blue: decreasing total mRNA levels). 
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explained around 20% of translation and offsetting 

respectively, we went further and combined 

features of 5’ and 3’UTRs. Here, 3’GC content 

explained the biggest variance followed by 5’GC 

content, TOP motifs and 3’UTR length for 

mRNAs regulated by translation (40% of the total 

variance).  

Similar analysis for translationally offset mRNAs 

showed significant and independent contributions 

for 3’ and 5’GC content only, accounting for 

around 40% of the total variance as well. This 

indicated that translation and offsetting are 

regulated by features in the 5’ and 3’UTR, which 

contribute independently. Next, we performed the 

analysis using a large panel of mRNA features 

encompassing untranslated regions as well as the 

coding sequence. Surprisingly, insulin-sensitive 

translation was mainly explained by GC content of 

the coding sequence and codons (Figure 22), 

which are enriched in translationally down 

regulated mRNAs. Previously identified features, 5’ 

and 3’UTR GC content, were also identified and 

exhibited a strong covariance with features in the 

coding region, indicating potential structure 

formation between these sequences. Similar 

analysis for offset mRNAs resulted in 

substantial differences, since the 3’GC content 

explained the largest variance. This lays in 

contrast to translational offsetting mediated by 

codon usage upon ERα depletion (paper IV). 

Since 3’GC content was found to play a major 

role in insulin induced translational offsetting 

upon anota2seqUtils analysis and 3’UTR 

features are related to mRNA degradation 

(1.3.3.1-2), we hypothesized that offset mRNAs 

Figure 23  – (Upper) Anota2seq fold change plot 
(1.6.3) of MCF7 cells stimulated with insulin. The 
indicated subsets are (pink) mRNAs, which are 
translationally offset in comparison to mRNAs regulated 
by mRNA abundance (green). (Middle) similar subsets 
under stimulation with insulin and mTOR inhibition by 
torin1. The pink subset remains translationally offset and 
its total mRNA levels are “uncoupled” from mTOR 
activity, while reversed mRNAs are regulated in an 
mTOR-dependent manner. (Lower) NanoSTRING 
analysis after Actinomycin D treatment assessing 
mRNA half-lives. Translationally offset mRNAs, 
whose total mRNA levels are uncoupled from mTOR 
are more stable in comparison to mRNAs by mTOR 
inhibition. 
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might be characterized by altered mRNA stability. Indeed, by using previously published datasets, 

we could show that offset mRNAs with increased GC content have higher mRNA half-lives in 

comparison to non-regulated mRNAs. This was further tested using nanoSTRING analysis upon 

Actinomycin D chase in MCF7 cells. Herein, we measured mRNA half-lives of two subsets: a 

subset, whose regulation on total mRNA level appeared to be mTOR independent (uncoupled) 

despite mTOR-dependent polysome association in contrast to a subset regulated completely by 

mTOR (reversed) (Figure 23). Albeit, mRNA half-lives were not regulated by mTOR activity, 

these two subsets showed substantial differences in mRNA stability, since mTOR-uncoupled 

mRNAs were found more stable in comparison to mTOR-reversed mRNAs and the control. This 

is in line with the previously identified lower proportion of A and U (AREs) in 3’UTRs of offset 

mRNAs, which are target for RBPs altering mRNA stability (1.3.3.2). Lastly, we analyzed published 

data of patient derived glioblastoma stem cells (GSC). This dataset consists of RNA-seq data 

generated by polysome profiling of GSCs of different glioblastoma subtypes, whose translatome 

was analyzed upon differentiation. Anota2seq analysis revealed substantial offsetting with stark 

differences in 3’UTR GC content between the offset subsets (Offsetting mRNA up and down). 

Analysis of mRNA stability revealed increased half-life for offset mRNAs with higher 3’GC 

content versus the background, while mRNAs characterized by decreased total mRNA levels and 

3’GC content being translationally offset revealed significant lower mRNA stability as well. In 

paper IV we identified tRNAs, which are modified at their U34 position for efficient decoding of 

codons of offset mRNAs when ERα is depleted (paper IV).  While codon usage did not explain 

offsetting in mRNAs having increased half-lives, we tested if codon usage could play a role in 

translational offsetting in glioblastoma for offset mRNAs having lower 3’GC content. Indeed, in 

this glioblastoma model the latter showed an enrichment for U34-modified codons in comparison 

to mRNAs regulated by decreased abundance, suggesting an alternative mechanism for offsetting. 

In aggregate, this study presents a novel approach to analyze the interplay of mRNA features in 

mRNA translation. Notwithstanding the need of experimental validation of the identified mRNA 

features, anota2seqUtils provides information about the complexity of regulation of mRNA 

translation and eliminates erroneous conclusions due to covariation between mRNA elements. We 

use this approach to decipher the mechanisms of translational offsetting, which is fundamentally 

different to translation, since protein levels do not change. We find that 3’UTR GC content and 

altered mRNA stability associates with offset mRNAs. Intriguingly, Paper IV describes offsetting, 

upon depletion of a transcription factor, dependent on features in the coding region, which 

associates with mTOR-sensitive translation in this study. This suggests that offsetting, despite 

being a general mode of translational regulation, associates with wide-spread mechanisms 

illustrating the importance of precise identification of mRNA elements in respective biological 
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settings. While this study confirms the role of previous identified mRNA elements such as 5’UTR 

features in mTOR-sensitive translation, it also identified features in the 3’UTR and codons 

challenging the classical view of 5’UTR-mediated translational regulation and indicates an interplay 

between these mRNA elements. Therefore, the application of anota2seqUtils in other biological 

contexts can shed light on the underlying mRNA elements contributing to regulation of mRNA 

translation and improves our understanding of post-transcriptional gene-expression. 

3.1.4 Study IV – Translational offsetting as a mode of estrogen receptor α-dependent 
regulation of gene expression 

Estrogen receptor α (ERα) is a 

transcription factor, which is 

associated with increased 

proliferation in prostate 

cancer (Takizawa et al., 2015). 

Generally, prostate cancer is 

treated by hormonal depletion 

to inhibit the androgen 

receptor (AR) (Mohler et al., 

2021). However, there is 

increasing evidence, that 

prostate cancers are also 

driven by estrogen-mediated ERα 

signaling (Bosland et al., 1995; 

Ricke et al., 2006; Takizawa et al., 

2015). Apart from its 

transcriptional activity upon DNA-

binding, ERα has been shown to be involved in signaling of the PI3K/AKT/mTOR-axis in 

prostate (Takizawa et al., 2015) and other tissues such as breast (Levin, 2009), which suggests a 

role in mRNA translation. In this study, we used the BM67 prostate cancer cell line lacking ERα 

upon shRNA mediated knock-down. Translatome data was obtained by polysome profiling 

followed by DNA micro-array analysis, which was further validated by RNA-sequencing (Figure 
24). Anota2seq analysis revealed wide-spread changes of gene expression, of which most mRNAs 

were regulated by translational offsetting. Since translational offsetting leads to changes on total 

mRNA levels despite changes on the resulting protein levels (Oertlin et al., 2019), we validated 

selected targets by qPCR, NanoString using total and polysomal mRNA. Next, the corresponding 

changes on protein levels were validated by western blotting including CHX chase to assess 

Figure 24 – Anota2seq analysis (1.6.3) upon shERα knock-down 
in BM67 cells followed by polysome profiling and RNA sequencing 
shows wide-spread translational offsetting upon loss of ERα. 

Reprinted and modified by permission from John Wiley and Sons creative commons license CC BY 
3.0 (https://creativecommons.org/licenses/by/3.0/). The EMBO Journal (2019) Lorent, 
Kusnadi, van Hoef et al. 38: e101323 
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potential effects on protein degradation of offset mRNAs upon ERα depletion. In summary, 

regulations resulting from micro-array and RNA-sequencing analysis could be validated on mRNA 

and protein levels and alterations of ERα levels did not lead to changes of protein stability for 

offset targets. In 

order to investigate 

a potential role of 

5’UTR features of 

offset mRNAs 

nanoCAGE 

sequencing was performed. 

This revealed 5’UTR 

differences (decreased 

5’UTR length and increased 

fold energy) for mRNAs whose total mRNA levels decreased and translation was offset in 

comparison to mRNAs regulated by decreased abundance. In contrast, mRNAs with increased 

total mRNA levels and offset translation only showed differences when comparing 5’UTR folding 

energies. Abundance of uORFs in strong Kozak context was not different between mRNAs offset 

or regulated by abundance upon ERα depletion. Since ERα regulates the expression of a wide 

range of miRNAs, small RNA sequencing was conducted in order to assess miRNA expression 

upon loss of ERα. While total expression of miRNAs was not altered, a subset of miRNAs was 

differentially expressed. Next, we assessed if translationally offset mRNAs were enriched or 

depleted of target sites for miRNAs with ERα dependent expression, in order to explain miRNA-

dependent changes of total mRNA levels. This revealed that down-regulated but offset mRNAs 

were not enriched in miRNA target sites of upregulated miRNAs and up-regulated but offset 

mRNAs lacked down-regulated miRNA target sites. Since features of the 5’UTR and miRNA 

target sites in the 3’UTR could not explain the observed translational offsetting, we analyzed the 

coding sequence. The codon usage, i.e. the requirement of distinct tRNAs, was assessed. Strikingly, 

mRNAs with increased mRNA levels but offset showed a clear enrichment for distinct tRNA 

subsets in comparison to mRNAs regulated by increased abundance. When assessing global tRNA 

levels upon ERα depletion, no change was observed. This led to the assumption that tRNAs 

require post-transcriptional modifications for their function, as described previously (El Yacoubi 

et al., 2012). DEK, whose mRNA levels increase but translation is offset, requires the 5-

methoxycarbonyl-2-thiouridine modification at U34 (Figure 25), also known as the wobble-

position (Delaunay et al., 2016). Moreover, the codons requiring these modifications were enriched 

in upregulated but translationally offset mRNAs (Figure 26). We therefore hypothesized if the 

expression of the enzymes, necessary for tRNA modification at U34 (Rapino et al., 2017) was 

Figure 25 – tRNA modification pathway leading to U34 modifications 
by the elongator complex proteins 1-6 (ELP1-6), Alkylated DNA repair protein 
alkB homolog 8 (ALKBH8) and Cytoplasmic tRNA 2-thiolation protein 1-2 
(CTU1-2). R corresponds to the RNA backbone of the tRNA. 
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altered in a ERα-dependent manner. Indeed, the factor catalyzing the first step in the modification 

cascade (ELP3) showed decreased protein levels upon loss of ERα. Upon knockout of ELP3 in 

BM67 cells, DEK mRNA levels were increased and protein levels remained unchanged, which 

illustrated a role of tRNA modifying enzymes in translational offsetting. Next, ELP3 KO BM67 

cells were treated with fulvestrant and estradiol, leading to respective degradation and stimulation 

of ERα. This revealed that proliferation of BM67 

cells lacking ELP3 was not altered by either 

treatment, while control cells showed an increase 

upon estradiol and a repression upon fulvestrant 

treatment suggesting ELP3-mediated 

proliferation downstream of ERα. Finally, in 

order to distinguish long-term effects mediated 

by ERα, we used MCF7 as a model for estrogen-

mediated stimulation of ERα. We could show by 

using a previously published data set that 

stimulation with estradiol led to modulation of 

mRNA levels and protein levels of ELP3, 

ALKBH8, CTU2. Moreover, CHIP-Seq data 

measuring DNA binding of ERα revealed 

increased association of ERα on the ELP3 locus 

upon stimulation with estradiol in MCF7 cells. 

Finally, we measured the aforementioned U34 modifications by mass-spectrometry under induced 

inhibition of ERα (72h treatment with fulvestrant). This revealed altered levels of U34 

modifications upon inhibition with fulvestrant in comparison to the control.  

Taken together, this study presents distinct post-transcriptional regulation of gene expression upon 

depletion of ERα dominated by translational offsetting. In this model, translational offsetting upon 

increased mRNA levels is mediated by the usage of codons requiring U34 modifications, whose 

catalysis depends on ERα activity. Since these offset mRNAs underlie an increase of total mRNA 

levels, their association with polysomes remains constant. This raises the question about the 

relationship between impaired decoding and similar polysome-association. Potentially, a result of 

impaired elongation can lead to decreased initiation due to ribosomes stalling. This can lead to 

maintained ribosome association opposing increased mRNA levels, which has to be further 

studied. While offset mRNAs whose levels decrease upon ERα depletion are characterized by a 

depletion of target sites for upregulated miRNA and optimal codons, it indicates two different 

Figure 26 – Average codon frequency of mRNAs 
translationally offset in comparison to mRNAs whose 
levels increase with concomitant ribosome association 
(abundance up). Codons requiring U34 modifications 
(1.3.4) are enriched in offset mRNAs. 

Reprinted and modified by permission from John Wiley and Sons creative 
commons license CC BY 3.0 
(https://creativecommons.org/licenses/by/3.0/). The EMBO Journal 
(2019) Lorent, Kusnadi, van Hoef et al. 38: e101323 
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mechanisms leading to offsetting. Moreover, these findings provide new ideas on treatment 

strategies for cancer with aberrant ERα activity.   
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3.2 CONCLUSIONS 

mRNA translation is regulated by a plethora of cellular pathways and plays a major role during the 

adaptation of gene expression pathways upon extra- and intracellular signals (Piccirillo et al., 2014; 

Roux and Topisirovic, 2018; Sonenberg and Hinnebusch, 2009).  Its wide-spread implication in 

diseases such as cancer (Tahmasebi et al., 2018) has led to a range of therapy approaches (Bhat et 

al., 2015). Despite the role of cellular pathways, features of the mRNA molecule contribute 

strongly to translational regulation (Hinnebusch et al., 2016; Jonas and Izaurralde, 2015; Szostak 

and Gebauer, 2013). This thesis presents methodological advancements, which help to understand 

the contributions of mRNA elements to translational regulation of the gene expression pathway. 

Anota2seqUtils enables to disentangle the contributions of mRNA features to modes of 

translational regulation, such as offsetting. NanoCAGE leads to the identification of regulatory 

elements in 5’UTRs and targeted-nanoCAGE allows 5’UTR-centric analysis of mRNA features 

and their impact on translation. This approach is essential to validate nanoCAGE-derived 5’UTR 

isoforms. Moreover, the work in this thesis provides new mechanistic insights into regulation of 

translation by precise positioning of 5’UTR elements such as uORFs and small molecule-induced 

p53 reactivation through modulation of the translation factor eIF2α. The depletion of the 

transcription factor ERα leads to altered mRNA levels, which are translationally offset. Here, 

offsetting is a consequence of features in the coding-region of mRNAs requiring specific tRNA 

modifications for efficient translation, while insulin-induced offsetting is characterized by features 

in the 3’UTR and altered mRNA stability. Since mRNA features have been studied to a large 

extend independently, today’s era of next-generation sequencing in combination with new 

computational approaches such as anota2seqUtils helps to generate a deeper understanding of 

gene-expression with emphasis on post-transcriptional mechanisms in health and disease. 
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