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Abstract 24 

The ActiGraph has a high ability to measure physical activity, however, it lacks an accurate 25 

posture classification to measure sedentary behaviour. The aim of the present study was to 26 

develop an ActiGraph (waist-worn, 30Hz) posture classification to detect prolonged sitting 27 

bouts, and to compare the classification to proprietary ActiGraph data. The activPAL, a highly 28 

valid posture classification device, served as reference criterion.1 29 

Both sensors were worn by 38 office workers over a median duration of 9 days. An automated 30 

feature selection extracted the relevant signal information for a minute based posture 31 

classification. The machine-learning algorithm with optimal feature number to predict the time 32 

in prolonged sitting bouts (≥5 and ≥10 minutes) was searched and compared to the activPAL 33 
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using Bland-Altman statistics. The comparison included optimised and frequently used cut-34 

points (100 and 150 counts-per-minute (cpm), with and without low-frequency-extension (LFE) 35 

filtering). 36 

The new algorithm predicted the time in prolonged sitting bouts most accurate (bias ≤7 37 

minutes/day). Of all proprietary ActiGraph methods, only 150 cpm without LFE predicted the 38 

time in prolonged sitting bouts non-significantly different from the activPAL (bias ≤18 39 

minutes/day). However, the frequently used 100 cpm with LFE accurately predicted total sitting 40 

time (bias ≤7 minutes/day). 41 

To study the health effects of ActiGraph measured prolonged sitting, we recommend using the 42 

new algorithm. In case a cut-point is used, we recommend 150 cpm without LFE to measure 43 

prolonged sitting, and 100 cpm with LFE to measure total sitting time. However, both cpm cut-44 

points are not recommended for a detailed bout analysis. 45 

Keywords: activPAL, Automated Feature Selection, Bout Analysis, Machine Learning, 46 

Posture Prediction, Sedentary Behaviour 47 

48 

Introduction 49 

Sedentary Behaviour (SB, defined as sitting or reclining with ≤1.5 Metabolic Equivalents)2 is 50 

a substantial part of the modern lifestyle, accounting for the vast majority of waking hours.3 51 

Research has linked SB to a plethora of serious chronic diseases and premature deaths.4, 5 52 

However, the largest body of evidence is based on imprecise and biased self-reports possibly 53 

underestimating the strength of the relationship.6, 7 The technological improvements in the past 54 

years made it feasible to record SB objectively. Nowadays, studies investigating SB use small 55 

and lightweight body worn sensors capable to record free-living behaviour over several days.8 56 

However, the device-based SB measure is not consistent with its definition,9, 10 and research is 57 

far away to stipulate evidence based health recommendations.11 58 

Probably the most frequently used sensor to measure SB is the ActiGraph (ActiGraph LCC, 59 

Pensacola, USA). The ActiGraph with its proprietary counts-per-minute (cpm) was originally 60 

developed to measure physical activity.12 As there is a growing evidence that SB, in particular 61 

the time spent in prolonged bouts, is an independent risk factor for human health,13-17 ongoing 62 

epidemiological studies are interested in measuring both physical activity and SB.8 While 63 

physical activity only depends on the energy expenditure, the definition of SB includes a 64 

posture component: sitting or reclining.2 For this reason, it is of high value for the research 65 

community to have an algorithm for the ActiGraph to predict prolonged sitting bouts. In 66 

particular, those ≥5 and ≥10 minutes assumed to be most relevant for human health.17 67 

To measure sitting, a pragmatic cut-point of <100 cpm for the sensor vertical axis is most 68 

frequently used,18 although there are inconsistent findings whether other cut-points, between 69 

22 to 150 cpm, or machine-learning approaches like the soj3x detect sitting more accurately.1, 70 
3, 19-21 As the cpm measure does not consider body posture, sophisticated machine-learning 71 

algorithms use the ActiGraph raw data to detect sitting.22, 23 However, these algorithms were 72 
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developed without considering feature relevance. We therefore do not know whether they 73 

extract all relevant signal information to classify posture. It is very common to use extensive 74 

feature lists informed by author experience or published algorithms.21, 24-27 Only a few studies 75 

so far investigated feature relevance,28 but rarely as tool for feature selection,27, 29 and never in 76 

combination with a posture classification algorithm. Furthermore, machine-learning algorithms 77 

are typically optimized to have a high sensitivity and specificity to predict posture in a certain 78 

predefined window length (typically 1 minute), but not with respect to predict health-relevant 79 

bout lengths.13, 17 Most algorithms were developed in more or less controlled laboratory 80 

settings, not covering the true variability of real life.26, 27, 30 Moreover, many algorithm 81 

developments were tailored to special population groups like breast cancer survivor or 82 

overweight females. 24, 28  83 

The aim of the present study was therefore to develop a new ActiGraph posture classification 84 

algorithm to detect prolonged sitting bouts in a healthy population with sedentary occupations, 85 

and to compare the new algorithm to classifications based on proprietary ActiGraph data. 86 

Materials and Methods 87 

Study Overview 88 

The ActiGraph was calibrated against the activPAL (PAL Technologies, Glasgow, SCO) in a 89 

healthy office worker population using machine-learning applied on sensor raw data collected 90 

in free-living. To build the algorithm, an automated feature selection based on feature relevance 91 

was used. Since poor health outcome is assumed to be related to the time spent in prolonged 92 

sitting,13, 14, 16 a subsequent bout analysis identified the optimal feature number to predict the 93 

time in bouts ≥5 and ≥10 minutes.17 Moreover, optimized cut-points for proprietary ActiGraph 94 

data were developed and, together with frequently used existing cut-points and the inclinometer 95 

function, included in the bout analysis. 96 

Participants 97 

A convenient sample of 38 participants from the GIH Brain-Health study was used.31 The 98 

Brain-Health Study investigated the association between physical activity pattern and 99 

cognition, mental health and sleep in office workers. Participants were recruited from two 100 

worksites in the area of Stockholm. Office workers able to perform one week of accelerometer 101 

assessment were included. Each participant signed an informed consent prior to study inclusion. 102 

Ethical approval to re-use the Brain-Health data was granted by the regional ethics board (DNR 103 

2018/2315-32). 104 

Data Collection 105 

Participants were instructed to wear an ActiGraph wGT3X-BT at the right waist (firmware 106 

versions 1.9.1/1.9.2/2.5.0/3.2.1 used, 30 Hz, elastic belt) and an activPAL3 (considered as 107 

reference criterion) on the right thigh (firmware 4.2.4, 20 Hz, taped), both attached as 108 

recommended by the manufacturers. Participants kept a diary and noted when the ActiGraph 109 

was not worn at the waist (e.g. during water based activities, sleep). 110 
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Data Preparation 111 

Proprietary software of the sensor manufacturers were used to download sensor data and 112 

generate comma separated raw data and event files for the activPAL (activPAL3, v7.2.38), as 113 

well as raw data and 1-second episode files with and without low-frequency-extension (LFE) 114 

filtering for the ActiGraph (ActiLife, v6.13.3). All files were load into MATLAB 2018a (v9.4, 115 

Mathworks Inc., Nattick, USA). Adjacent events in the activPAL event file with the same 116 

activity code were summarized and treated as single activities.32 Subsequently, the following 117 

data preparation steps were carried out (for a detailed description see data processing plan in 118 

Supporting Information 1): Valid recording time included all days with <95% of the time spent 119 

in mode activPAL code, ≥500 steps and ≥12 hours recording. On the first/last day, valid 120 

recording time was limited to the time after/before the first/last 45-second non-sedentary 121 

activPAL activity. Sleep time was then removed using the Winkler algorithm (Version A) 32. 122 

Since the algorithm is known to underestimate sleep time,32 step tolerance was increased from 123 

20 to 50 and two additional criteria using the thigh rotation angle around the longitudinal axis 124 

applied.33 Before matching the sensor data, the signals were synchronized as the sensor clocks 125 

were out of sync. The offset was neither constant for all sensors nor for a single recording over 126 

time. The time course of the offset between the two sensors over each recording was determined 127 

by 1)  finding the largest cross-correlation between the two normalized sensor x-axes of non-128 

overlapping 3 hour episodes to get the average offset of each 3 hour episode; 2) linear 129 

approximation of the offset over all 3 hour episodes; 3) applying the linear approximated offset 130 

to the ActiGraph time. Next, ActiGraph non-wear episodes were excluded based on the diary 131 

information, sensor contradiction, and prolonged non-wear. Sensor contradiction was defined 132 

as the time when the 3 dimensional ActiGraph raw signal remained constant while the activPAL 133 

detected a posture change or classified the time as active (ActiGraph likely not worn). 134 

Prolonged non-wear was defined as the time when the 3 dimensional ActiGraph raw signal 135 

remained constant for ≥90 minutes. Last, to prevent excessive fragmentation of the data with 136 

respect to the bout analysis, short episodes between excluded episodes were removed. 137 

Minute Extraction – Valid minutes were extracted in two different ways, one for the algorithm 138 

and cut-point development (training minutes) and one for the bout analysis (testing minutes). 139 

The training minutes included only minutes with constant activPAL classifications (sitting, 140 

standing, and active). All activPAL events ≥1 minute were identified, and as many minutes as 141 

possible extracted. An event of e.g. 4.5 minutes of sitting was split in 4 single minutes, the 142 

first/last minute starting/ending 15 seconds after/before the event started/ended. The testing 143 

minutes were extracted according to daytime (starting at midnight) and included all available 144 

minutes on days with ≥10 recording hours, similar as in typical epidemiological studies.4, 5 145 

Machine Learning Algorithm Development 146 

Feature Calculation and Selection – A total of 563 ActiGraph signal features were calculated 147 

for each training minute, of which 409 in the time and 154 in the frequency domain (see feature 148 

table in Supporting Information 2). Features were calculated for each sensor axis and the vector 149 

magnitude, the low pass filtered sensor axes and vector magnitude (Butterworth 2nd order, 150 

0.5Hz cut-off), and the 3d angle of the low pass filtered data. To identify the relevance of each 151 

signal feature, a random forest classifier programmed in Python was used. The classifier run 152 
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100 times, and the 100 most relevant signal features were subsequently inputted into a 153 

sequential forward feature selection to get the final feature ranking. A MATLAB bagged 154 

classification tree ensemble (using standard properties with five bags) iteratively selected the 155 

feature with highest cross-validity on the holdout subjects in each round, similar as in our 156 

previous study, 34 until a maximum cross-validity was found. The feature selected in each round 157 

was assigned to the corresponding rank.  158 

Algorithm Training – Based on the ranking, the training properties for each feature number 159 

were optimized using MATLAB’s built-in hyper-parameter optimisation function for learner 160 

ensembles (fitcensemble), again using the holdout subject approach. The optimisation searched 161 

for the best ensemble learner method (Bag, AdaBoost M2, RUS Boost), split criterion (gdi, 162 

twoing, deviance), number of trees (10 to 500), minimum leave size (1 to n/2, n = number of 163 

minutes), maximum number of splits (1 to n-1), and learning rate (0 to 1). Further details about 164 

the optimisation properties can be accessed online (www.mathworks.com/help/stats/ 165 

fitcensemble.html). Subsequently, 38 holdout algorithms were trained for each feature number 166 

(one for each subject) and used in the bout analysis to identify the optimal feature number. A 167 

detailed description on how classification trees are trained can be found elsewhere.35 168 

Optimized Cut-point Development 169 

Beside the machine-learning algorithms, posture classifications based on cpm data for the 170 

vertical axis and vector magnitude as well as steps-per-minute were developed, all with and 171 

without LFE. The 1-second episode counts and steps were summarized for the extracted training 172 

minutes, and cut-points from 0 to 5’000 to identify sitting and standing inspected. Similar as 173 

for the machine-learning, the cut-points with highest cross-validity on the holdout subjects were 174 

selected and used in the bout analysis to identify the most accurate one. 175 

Bout Analysis 176 

For each testing minute, the selected features as well as the cpm and steps-per-minute were 177 

calculated. The trained holdout algorithms (machine-learning) and cut-points (proprietary 178 

ActiGraph data) were then used to predict body posture of each minute. All ActiGraph 179 

predictions as well as the activPAL reference criterion (the proprietary event file) were 180 

subsequently aggregated in sitting and standing bouts of certain lengths for each day and 181 

subject. A sitting/standing bout was defined as the time the prediction model/activPAL event 182 

file classified a person continuously in sitting/standing, without the allowance of any other body 183 

posture or walking. Additionally, the two most frequently used cpm cut-points, 100 and 150 for 184 

the vertical axis,18 and the inclinometer function were included in the bout analysis (all with 185 

and without LFE). For the inclinometer function, each testing minute was assigned to the most 186 

dominant posture. Note that the proprietary activPAL event file uses another resolution (0.1 187 

seconds) for the behaviour classification than the developed ActiGraph prediction models (60 188 

seconds). 189 

Evaluation and Statistics 190 

Data Preparation – After rejecting the normal distribution with Lilliefors test, descriptive 191 

results for data preparation are presented with median (interquartile-range). 192 
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Algorithm and Cut-point Development - To analyse cross-validity, the balanced holdout 193 

sensitivity and specificity, which is the average of all sensitivities and specificities over all 194 

holdout subjects, was used. For the machine-learning, the balanced sensitivity and specificity 195 

was weighted according to the fraction of each behaviour in the training data. For the 196 

proprietary ActiGraph data, the cut-points to detect sitting and standing were searched 197 

independently. Accordingly, the balanced sensitivity and specificity was calculated for each 198 

posture separately. The holdout approach (also called leave-one-subject-out) trained the 199 

algorithm/cut-point on all but one subject (the holdout), and used the trained algorithm/cut-200 

point to predict the posture on the holdout subject. This procedure was repeated until every 201 

subject served once as holdout, and the cross-validity was calculated among all holdout 202 

predictions. 203 

Bout Analysis - With respect to detrimental health effects of prolonged sitting,13-17 the daily 204 

time spent in sitting bouts ≥5min and ≥10min was considered most important.17 Accordingly, 205 

the algorithm and cut-point with lowest absolute bias to predict the time spent in these bouts 206 

was selected. Additional bout lengths and number of bouts per day are presented to inspect the 207 

prediction performance in detail. For standing, there is no evidence that certain bout lengths are 208 

more relevant for health than others are. Accordingly, only total time spent standing was 209 

analysed. Bias was calculated according to Bland-Altman statistics by subtracting the activPAL 210 

reference criterion from the ActiGraph holdout prediction.36 In case the bias depended on the 211 

mean, the regression approach was used. To simplify comparison, data is in either case 212 

(standard or regression approach) presented at the mean of both methods with bias and standard 213 

error. Significant differences of the ActiGraph methods to the activPAL were detected using 214 

the 95% confidence interval of the bias. 215 

Results 216 

Subjects of the present analysis were 25 men and 13 women. Mean ±SD was 71.2 ±10.2 kg for 217 

body mass and 42.3 ±8.4 years for age. Subjects wore the sensors for 9 (0) days (median with 218 

inter-quartile range in brackets). Sensor offset at first valid data entry was 5.9 (8.7) seconds and 219 

increased with 1.0 (1.3) seconds a day. Data preparation and minute extraction resulted in 220 

200’704 training minutes (3’345 hours) and 255’569 testing minutes (4’260 hours). The posture 221 

in which the time was spent is shown in Table 1. 222 

Machine Learning Algorithm - The automated feature selection identified 26 relevant signal 223 

features (maximum cross-validity), for each of which an algorithm was trained (see feature 224 

ranking information in Supporting Information 2). However, the lowest absolute bias to predict 225 

the sitting time in bouts ≥5 and ≥10 minutes was found for the algorithm with 14 features. This 226 

algorithm combined 16 decision trees and predicted the time non-significantly different from 227 

the activPAL (Table 2, absolute bias ≤7 minutes). The detailed bout analysis (from <5 to ≥30 228 

minutes, Table 2) shows that the time and number of bouts <15 minutes was overestimated by 229 

the algorithm, while longer bouts were accurately predicted. For standing, the bias was non-230 

significantly different from the activPAL (Table 2). 231 
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Optimised Cut-points - All optimised cut-points for proprietary ActiGraph data (cut-points 232 

shown in Table 2) significantly underestimated the time in sitting bouts ≥5 and ≥10 minutes, 233 

except steps-per-minute without LFE (accurate for bouts ≥10 minutes, overestimation for bouts 234 

≥5 minutes, Table 2). The detailed bout analysis uncovers that the time and number of short 235 

bouts was generally overestimated and long bouts generally underestimated. For standing, the 236 

optimised cpm cut-points for data without LFE predicted the time non-significantly different 237 

from the activPAL, but the bias depended on total standing time (marked with † in Table 2). 238 

Existing Cut-points and Inclinometer Function – The existing cut-points for proprietary 239 

ActiGraph data significantly underestimated the time in the two bout lengths, except 150 cpm 240 

without LFE (absolute bias ≤18 minutes, Table 3). However, the 100 cpm with LFE accurately 241 

predicted total sitting time without consideration of a minimum bout length. The detailed bout 242 

analysis shows again that short bouts were generally overestimated and long bouts generally 243 

underestimated, both mostly significant (Table 3). The inclinometer function significantly 244 

underestimated the time in the two bout lengths as well as total sitting and standing time. 245 

Discussion 246 

This study developed a new posture classification algorithm for ActiGraph raw data to predict 247 

the time spent in prolonged sitting bouts as well as total standing time. The posture prediction 248 

of the new algorithm does not differ from the activPAL. For sitting, the bias was <0.0% for 249 

bouts ≥5 minutes and -1.8% for bouts ≥10 minutes. For standing, the bias was -4.9% for total 250 

time without consideration of a minimum bout duration. The algorithm to predict the posture 251 

directly from the ActiGraph raw data file as exported by ActiLife is provided on MATLAB 252 

Central File Exchange (URL is inserted provided that your journal approves the publication). 253 

The study also optimised cut-points for proprietary ActiGraph data. Of these, there was only 254 

one accurately predicting the time spent in sitting bouts ≥10 minutes: the step count with a cut-255 

point of 3 steps-per-minute (without LFE). All others substantially underestimated prolonged 256 

sitting. For standing, the developed cpm cut-points without LFE accurately predicted total time 257 

(vertical axis and vector magnitude). However, the longer the time spent standing the larger the 258 

bias. 259 

Moreover, two frequently used existing cpm cut-points were included in the bout analysis: 100 260 

and 150 cpm on the vertical axis.18 While the 150 cpm without LFE accurately predicted the 261 

time in prolonged sitting bouts (bias of ≤18 minutes or ≤4.6%), all others underestimated 262 

prolonged sitting. However, 100 cpm on the vertical axis with LFE very accurately predicted 263 

the total time spent sitting (bias of ≤7 minutes or ≤1.4%). The result for the 100 cpm with LFE 264 

is in line with Matthews et al. 2018 and the overestimation of short bouts (<20 minutes) and 265 

underestimation of long bouts (≥30 minutes) in line with Kerr et al. 2018.3, 24 The results for 266 

the 150 cpm to detect prolonged sitting is in line with the recommendation in Kim et al. 2015.1 267 

However, due to the significant overestimation of bouts <25 minutes and underestimation of 268 

bouts ≥30 minutes, a detailed bout analysis is not recommended with the 150 cpm. 269 

For all cpm cut-points, there was a substantial difference between the data with and without 270 

LFE, highlighting that the decision whether LFE is used or not has a great bearing, and should 271 



8

future studies sensitize to report the use of LFE.18 Although the results of the existing cut-points 272 

(Table 3) were not directly compared to the optimised cut-points for methodological reasons 273 

(Table 2), it is evident that the optimised cut-points performed worse in the bout analysis despite 274 

the slightly higher balanced sensitivity and specificity (see cross-validity table in Supporting 275 

Information 3). The existing cut-points had far higher sensitivities (+18%) and far lower 276 

specificities (-20%) to detect sitting. From this, we conclude that sensitivity and specificity is 277 

not a universal measure to infer to the accuracy in the bout analysis. Future studies developing 278 

new algorithms to measure prolonged sitting might therefore consider the use of other 279 

optimisation criteria than balanced sensitivity and specificity, combine it as in this study with a 280 

subsequent bout analysis, or weight the sensitivity more than the specificity. In our data set, a 281 

weighting factor between 1.16 and 1.85 for sensitivity would have turned the best method for 282 

proprietary ActiGraph data to predict total sitting time (100 cpm on the vertical axis with LFE) 283 

also into the one with highest balanced sensitivity and specificity. 284 

The ActiGraph inclinometer function performed worst and underestimated prolonged sitting as 285 

well as total standing time by more than 2 hours a day or -32 to -54%. For total sitting time, our 286 

data (bias of -21% and -22%) is in line with Kim et al 2015 who compared the inclinometer 287 

function to an automated wearable camera.1 288 

Methodological Consideration 289 

The machine-learning algorithm development started with an extensive feature number (563) 290 

calculated for an immense amount of training data (200’704 minutes) collected in entirely free-291 

living over several days. The data was labelled with the activPAL, a well-known and highly 292 

valid sensor to measure body posture that is seen as the method of choice to measure sitting in 293 

free-living.1, 20, 37 Before building the algorithm, a random forest classifier in combination with 294 

a sequential forward feature selection identified the most relevant signal features. Although 295 

machine-learning is able to minimize the impact of non-relevant signal features on the predicted 296 

output, this approach was key to end up with an algorithm having only a few features with 297 

limited complexity despite the good bout performance. Our algorithm uses 14 features in 298 

combination with 16 trees, while other algorithms use more than 40 features with 500 trees.24, 299 
35 In a general sense, an algorithm with only a few features and simple architecture is less prone 300 

to overfitting and thus more likely to have a better generalizability than an algorithm with many 301 

features and complex architecture, although the algorithm with many features typically 302 

performs better on the training data.38 In this regard, we recommend to develop algorithms with 303 

as few features as necessary, and to treat each feature for each signal dimension independently 304 

to ensure the algorithm performance is not reduced with non-relevant and/or redundant 305 

features.39 Our final algorithm e.g. uses the signal power of the sensor y-axis, but not the signal 306 

power of the other two sensor axes. For this reason, we recommend to forego predefined feature 307 

lists and to use an automated selection procedure. Interestingly, the algorithm uses only 2 308 

features from the low-pass filtered data, but 12 features from the non-filtered raw data (see 309 

Supporting Information 2). While the low-pass filtered acceleration signal reflects the waist 310 

orientation versus gravity (which is often referred to as inclinometer function) that is sensitive 311 

to body shape and sensor placement, the non-filtered data reflects waist movements and is less 312 

sensitive to body shape and sensor placement. Accordingly, the presented algorithm primarily 313 
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detects the different motion pattern of the waist while sitting and standing, and not a different 314 

waist orientation. 315 

After optimising the training properties for each feature number, the algorithms were developed 316 

with the training minutes and evaluated on the testing minutes. The clear distinction between 317 

training and testing minutes further helped to limit the algorithm complexity and prevent 318 

overfitting. For this reason, the algorithm with 14 features was selected, although the one with 319 

26 had the highest cross-validity in the training data, again supporting our observation that a 320 

high cross-validity does not imply a good bout performance. Although the two data sets 321 

(training: minutes with constant activPAL classification, testing: all minutes on days with ≥10 322 

hours) are not independent of each other as they use the same data recording and subjects, the 323 

start times of the minutes were always different and thus the features not congruent. Even more 324 

importantly, 28% of the testing minutes contained more than one activPAL posture 325 

classification, similar as the data of a typical field study. The combination with the holdout 326 

subject approach makes the algorithm to a large degree independent of the training minutes and 327 

increases its generalizability. Nevertheless, a future study using the presented algorithm should 328 

use exactly the same sensor settings: mounting the ActiGraph wGT3X-BT at the right waist 329 

with an elastic belt and record with 30Hz. However, the study recorded data over several days, 330 

and the raw data looks like the sensors were not always worn in the same way (e.g. upside 331 

down). For this reason, the results of this study should not be compared to studies collecting 332 

data on a daily basis in the presence of a researcher.1 Since the ActiGraph raw data is already 333 

pre-processed, we do not know whether our algorithm depends on the ActiLife software version 334 

used in this study.  335 

The Bland-Altman comparison used the data of each device similar as a typical field study does: 336 

The proprietary activPAL event file with a resolution of 0.1 seconds, and the ActiGraph 337 

predictions on a minute-by-minute level. The bout comparison is therefore questionable for 338 

very short bouts (<1 minute) as the ActiGraph might fail to detect them. However, there is some 339 

evidence that prolonged bouts are health-relevant, and >90% of the daily sitting time was spent 340 

in bouts ≥5 minutes (activPAL data, Table 2). We therefore accepted this limitation for very 341 

short bouts but were able to use the sensors exactly the way as they are used in field studies. 342 

From a health perspective, we do not feel that sitting bouts <1 minute are of critical importance. 343 

Furthermore, the ActiGraph step count (without LFE) allows for 2 steps per minute although 344 

the minute is still classified as sitting. This might imply that different sitting bout definitions 345 

were used in this study, which was not the case. The fact that the ActiGraph records 2 steps in 346 

a minute does not mean that a subject actually took 2 steps. We quite often noticed single steps 347 

in a minute, even though the activPAL classified the entire minute as sitting. Accordingly, the 348 

ActiGraph step count should be interpreted with caution when only a handful of steps are 349 

recorded. 350 

Unless the algorithm is tested in another study population than office workers, its application 351 

in other populations should take place with caution. Our office worker spent 8.0 hours a day 352 

sitting in 47 bouts, of which almost 50% in bouts ≥30 minutes (activPAL data). The female 353 

breast cancer survivors in Kerr et al. 2018 spent 8.1 hours a day sitting in 49 bouts, of which 354 
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approximately 56% in bouts ≥30 minutes (activPAL data).24 The NHANES 2003-2006 study 355 

population in Kim et al. 2015 spent 8.0 hours a day sitting in 93 bouts, of which only 20% in 356 

bouts ≥30 minutes (ActiGraph data with 100 cpm cut-point on the vertical axis).17 However, if 357 

comparing the NHANES data to the 100 cpm in this study (without LFE), our subjects spent 358 

8.4 hours a day sitting in 76 bouts, of which only 26% in bouts ≥30 minutes. Thus, it seems that 359 

our office workers are not fundamentally different from other study populations, but we do not 360 

know whether they are representative. The office workers in Keown et al. 2018 spent 9.8 hours 361 

a day sitting in 49 bouts, of which 67% in bouts ≥30 minutes (activPAL data).40 However, the 362 

comparison to NHANES data highlights that using the 100 cpm on the vertical axis without 363 

LFE is not the preferred choice to analyse the time in and number of sitting bouts. Even the 150 364 

cpm does not allow such a detailed analysis. 365 

This study developed an algorithm to detect prolonged sitting bouts since there is some evidence 366 

that long-lasting, uninterrupted sitting might have detrimental health effects.13, 14, 16 To date, we 367 

do not know which bout length separates detrimental sitting from non-detrimental sitting. One 368 

frequently cited study reports that either 5 or 10 minutes could be a reasonable choice, 369 

especially as compared to no minimum bout length.17 Unfortunately, the study used the 100 370 

cpm on the vertical axis to detect sitting bouts. As can be seen in our data (Table 3), the 100 371 

cpm is not appropriate to detect sitting bouts, and further research is warranted to identify what 372 

separates detrimental from non-detrimental sitting. For this reason, we decided to treat bouts 373 

≥5 and ≥10 minutes equal, even though bouts longer than 10 minutes are included twice. In 374 

regard of the bout length, we decided to develop a minute-based posture classification. Other 375 

authors used shorter durations of e.g. 5 seconds on a very similar dataset to better handle posture 376 

changes within a minute.24 In our data set, 28% of all testing minutes contained at least one 377 

posture change, while 72% were spent in the same posture. There is some evidence that 378 

reducing the window size reduces cross-validity,23 with unknown effects on the bout analysis. 379 

However, we felt that reducing the window size is superfluous for an algorithm aiming to detect 380 

prolonged sitting bouts. A shorter window size increases the computational demands that could 381 

be a severe limitation for large data sets. However, the minute based approach might partially 382 

explain the new algorithm’s overestimation of short bouts. 383 

The combined analysis of two sensors requires that they record synchronously. However, we 384 

noticed a substantial offset between the two sensor clocks. The start offset could be a 385 

consequence of using different clocks (i.e. computers) to initialise the sensors, and the 386 

increasing offset must be a consequence of inexact sensor frequency. We could not find 387 

evidence that other studies observed the same issue, but recommend future studies to inspect 388 

the raw data in detail and ensure their synchronicity. 389 

The feature calculation of the final algorithm does not allow to straightforward convert the 390 

MATLAB code into a universal computer language like C++ since MATLAB specific 391 

functions are used. Thus, the use of the algorithm requires a MATLAB license including two 392 

toolboxes (signal processing, statistics and machine learning), all together resulting in an annual 393 

or perpetual license fee of 600 or 1200 USD. Compared to available freeware, however, the 394 

advantages of MATLAB clearly outweighed the disadvantages for this project. Given the costs 395 
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of the ActiGraph sensors for large field studies, we do not consider the license fee to be a serious 396 

limitation. The final algorithm published on MATLAB Central File Exchange (URL is inserted 397 

provided that your journal approves the publication) directly predicts the posture from the 398 

ActiGraph raw data csv-file and creates a new csv-file in the same data format. The algorithm 399 

can be used even without previous MATLAB experience. 400 

Practical Implications 401 

The results of this study show that there is no single ActiGraph method accurately predicting 402 

the sitting time in certain bout length as well as total sitting time. We therefore recommend 403 

future studies to choose a method depending on the study aim. To analyse the total sitting time 404 

regardless of a minimum bout duration, our recommendation is to use the 100 cpm cut-point 405 

with LFE. To analyse prolonged sitting, our recommendation is to use the developed machine-406 

learning algorithm or the 150 cpm without LFE. The machine-learning algorithm is the most 407 

accurate choice, and allows for a very detailed analysis of bouts ≥15 minutes (time in and 408 

number of bouts) that should be avoided with the 150 cpm. Moreover, the algorithm includes 409 

an accurate total standing time prediction. For the cut-point methods, the study highlights that 410 

the decision whether LFE is used or not is of utmost importance and should be explicitly 411 

reported. Regarding the future algorithm development to detect prolonged sitting, we 412 

recommend considering also other optimisation criteria than sensitivity and specificity with 413 

respect to an accurate bout prediction. The present study analysed the classification capability 414 

of the ActiGraph GT3X to detect prolonged sitting, which should not be equated with SB. For 415 

SB, the sitting classification must be combined with an activity classification and other cut-416 

points than those investigated in this study might solve the SB classification better. 417 

Perspective 418 

To study the health effects of ActiGraph measured prolonged sitting, we recommend using the 419 

new algorithm available on MATLAB Central File Exchange. In case a cpm cut-point should 420 

be use, the 150 cpm without LFE is the best choice. To analyse total sitting time without 421 

consideration of a minimum bout length, the 100 cpm cut-point is the most appropriate choice 422 

only in combination with LFE data. However, we do not recommend using the cpm cut-points 423 

for a detailed sitting bout analysis. Further research is warranted to validate the new algorithm 424 

in an independent sample and different population. 425 
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Tables 515 

  516 

Median (iqr) Range Median (iqr) Range

Valid Recording Time 200.7 (7.3) [81.3 - 224.2]

- Sleep 8.5 (1.3) [6.9 - 10.6]

- ActiGraph Non-Wear 8.2 (11.5) [2.1 - 39.5] 

- Short Episode 0.9 (1.1) [0.0 - 3.6]

Remaining Time 121.3 (15.6) [37.1 - 149.6]

Training Data 90.2 (15.1) [30.3 - 111.7]

- Sitting 62.2 (14.9) [22.8 - 94.3] 72.6 (15.3) [49.8 - 91.3]

- Standing 17.3 (11.8) [ 5.8 - 37.7] 21.0 (10.9) [6.0 - 38.8]

- Active 6.5 (5.5) [1.5 - 13.1] 7.2 (5.6) [2.7 - 15.5]

Testing Data 114.3 (24.6) [31.5 - 149.4]

- Sitting 60.7 (19.5) [20.9 - 98.7] 55.4 (13.4) [38.4 - 78.2]

- Standing 36.3 (14.1) [8.0 - 58.8] 31.5 (10.9) [13.8 - 44.7]

- Active 15.2 (8.3) [2.6 - 26.4] 13.6 (4.9) [8.0 - 21.7]

Absolute Time [hours/subject] Relative Time [%]

The training data contains only minutes with constant activPAL classification, the testing 

data contains all minutes on days with ≥10 hours.

Abbreviations: interquartile-range (iqr)

Table 1: Overview of the recorded time, data preparation, and time used for the algorithm/cut-point development (training) 

and the bout analysis (testing data). Absolute time in hours per subject except sleep (hours per night), relative time in 

percentage of total time per subject. Indicated is the median with interquartile-range (iqr). 
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Reference 

Criterion
ycpm ycpm(LFE) VMcpm VMcpm(LFE) Step StepLFE

Sitting < 16 cpm < 23 cpm < 69 cpm < 170 cpm < 3 spm < 5 spm

Time in Bout

 - ≥5 441.2 ±12.7 0.2 ±6.6 -185.6 ±13.6 * -190.2 ±13.9 * -168.9 ±14.9 * -126.0 ±15.4 * 38.5 ±11.6 * -101.5 ±13.8 *

 - ≥10 397.4 ±12.6 -7.1 ±7.4 -234.9 ±13.1 * -237.7 ±13.1 * -223.2 ±14.5 * -176.9 ±15.6 * 6.5 ±11.9 -132.2 ±13.2 *

 - total 481.7 ±12.5 17.6 ±6.7 * -98.7 ±12.5 * -109.9 ±13.5 * -86.4 ±13.1 * -57.2 ±13.9 * 80.4 ±11.5 * -55.4 ±14.1 *

 - <5 40.4 ±2.1 17.5 ±2.7 * 86.9 ±3.6 * (†) 80.4 ±3.5 * (†) 82.5 ±3.4 * (†) 68.8 ±3.2 * (†) 42.0 ±2.3 * (†) 46.1 ±2.8 *

 - 5-9 43.8 ±1.8 7.3 ±1.9 * 49.3 ±3.5 * (†) 47.5 ±3.6 * (†) 54.3 ±3.3 * (†) 50.9 ±3.0 * (†) 32.0 ±2.2 * (†) 30.7 ±3.0 * (†)

 - 10-14 42.2 ±1.6 5.2 ±1.5 * 11.8 ±2.9 * (†) 10.6 ±3.0 * (†) 14.9 ±3.1 * (†) 23.3 ±2.8 * (†) 21.0 ±2.1 * (†) 13.9 ±2.2 * (†)

 - 15-19 43.9 ±2.0 -1.6 ±2.3 -10.1 ±2.7 * -11.3 ±2.8 * -6.7 ±2.9 * (†) -1.0 ±3.1 (†) 9.3 ±2.5 * 3.3 ±2.7

 - 20-24 37.8 ±2.3 0.2 ±2.0 -18.9 ±3.3 * -18.3 ±3.3 * -17.7 ±3.5 * -9.8 ±3.6 * 5.7 ±2.4 * -3.2 ±2.8

 - 25-29 37.7 ±2.2 -3.1 ±1.7 -23.7 ±2.3 * (†) -23.6 ±2.3 * (†) -21.3 ±2.5 * -18.4 ±2.9 * 0.7 ±2.0 -12.2 ±2.5 *

 - ≥30 235.9 ±11 -8.0 ±7.7 -194.0 ±7.9 * (†) -195.1 ±7.9 * (†) -192.4 ±8.0 * (†) -171.0 ±10.2 * -30.3 ±10.3 * -134.0 ±10.6 *

Number of Bouts

 - ≥5 19.4 ±0.5 2.0 ±0.3 * 4.0 ±0.9 * (†) 3.5 ±1.0 * (†) 5.3 ±0.9 * (†) 6.7 ±0.8 * (†) 8.1 ±0.6 * 4.2 ±0.8 * (†)

 - ≥10 13.4 ±0.4 0.4 ±0.2 -4.4 ±0.6 * (†) -4.6 ±0.6 * (†) -3.8 ±0.6 * (†) -1.7 ±0.6 * (†) 2.7 ±0.4 * -1.1 ±0.5 *

 - total 46.7 ±1.7 8.4 ±2.2 * 46.4 ±2.9 * (†) 42.9 ±2.8 * (†) 45.0 ±2.7 * (†) 38.3 ±2.4 * (†) 26.3 ±1.7 * 25.1 ±2.1 *

 - <5 27.3 ±1.5 6.4 ±2.0 * 42.4 ±2.5 * (†) 39.5 ±2.4 * (†) 39.7 ±2.4 * (†) 31.6 ±2.2 * (†) 18.2 ±1.4 * 20.9 ±1.7 *

 - 5-9 6.0 ±0.3 1.6 ±0.3 * 8.4 ±0.5 * (†) 8.0 ±0.5 * (†) 9.0 ±0.5 * (†) 8.4 ±0.4 * (†) 5.4 ±0.3 * (†) 5.3 ±0.4 * (†)

 - 10-14 3.4 ±0.1 0.6 ±0.1 * 1.2 ±0.2 * (†) 1.1 ±0.2 * (†) 1.5 ±0.2 * (†) 2.2 ±0.2 * (†) 1.9 ±0.2 * (†) 1.4 ±0.2 * (†)

 - 15-19 2.5 ±0.1 0.0 ±0.1 -0.5 ±0.2 * -0.6 ±0.2 * -0.3 ±0.2 (†) 0.0 ±0.2 (†) 0.6 ±0.1 * 0.3 ±0.2

 - 20-24 1.7 ±0.1 0.1 ±0.1 -0.8 ±0.2 * -0.8 ±0.1 * -0.8 ±0.2 * -0.4 ±0.2 * 0.3 ±0.1 * -0.1 ±0.1

 - 25-29 1.4 ±0.1 -0.1 ±0.1 -0.9 ±0.1 * (†) -0.9 ±0.1 * (†) -0.8 ±0.1 * -0.7 ±0.1 * 0.0 ±0.1 -0.4 ±0.1 *

 - ≥30 4.4 ±0.2 -0.1 ±0.1 -3.4 ±0.2 * (†) -3.4 ±0.2 * (†) -3.4 ±0.2 * (†) -2.9 ±0.2 * -0.3 ±0.2 -2.2 ±0.2 *

Standing < 403 cpm < 398 cpm < 1379 cpm < 1484 cpm < 11 spm < 42 spm

Time in Bout

 - total 261.5 ±10.4 -12.7 ±6.4 -13.5 ±9.8 (†) -23.8 ±11.5 * (†) -6.5 ±10.7 (†) -44.9 ±12.7 * -141.8 ±7.5 * (†) 60.8 ±13.4 *

Machine

Learning

Algorithm

Positive bias indicates an overestimation, negative an underestimation. Significant differences to the reference criterion marked with *, biases depending on the time/number in 

bout indicated with † (regression approach used to calculate bias).

Abbreviations: vertical sensor axis (y), counts-per-minute (cpm), steps-per-minute (spm), low-frequency-extension filtering (LFE), vector magnitude (VM).

Table 2: Bias of the machine-learning algorithm and the optimised cut-points for proprietary ActiGraph data to the 

activPAL (reference criterion). Indicated is the mean ±standard error for the reference criterion, and bias ±standard error 

for the ActiGraph methods. Time in minutes per day. 
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Table 3: Bias of the existing ActiGraph methods (counts-per-minute (cpm) and inclinometer function) to the activPAL 

(reference criterion). Indicated is the mean ±standard error for the reference criterion, and bias ±standard error for the ActiGraph 

methods. Time in minutes per day. 

Reference 

Criterion
ycpm ycpm(LFE) ycpm ycpm(LFE) Inclinometer InclinometerLFE

Sitting < 100 cpm < 100 cpm < 150 cpm < 150 cpm

Time in Bout

 - ≥5 441.2 ±12.7 -24.4 ±10.6 * -59.4 ±11.5 * 14.5 ±9.8 -12.9 ±10.4 -148.3 ±20.2 * -143.3 ±20 *

 - ≥10 397.4 ±12.6 -67 ±11.6 * -105.3 ±12.4 * -18.4 ±10.2 -49.6 ±11.0 * -180.3 ±19.5 * -175.5 ±19.7 *

 - total 481.7 ±12.5 23.3 ±10.7 * -6.8 ±11.1 54.4 ±10.5 * 28.4 ±10.6 * -105.8 ±19.6 * -100.4 ±19.2 *

 - <5 40.4 ±2.1 47.7 ±2.7 * (†) 52.6 ±2.7 * (†) 39.9 ±2.7 * 41.2 ±2.7 * 42.6 ±3.4 * (†) 43 ±3.4 * (†)

 - 5-9 43.8 ±1.8 42.6 ±2.5 * (†) 45.9 ±2.5 * (†) 32.9 ±2.3 * (†) 36.8 ±2.3 * (†) 32 ±2.6 * (†) 32.2 ±2.6 *

 - 10-14 42.2 ±1.6 28.6 ±1.8 * (†) 28.6 ±2 * (†) 23.3 ±2.0 * (†) 25.0 ±1.7 * (†) 10.7 ±2.5 * (†) 10.8 ±2.6 * (†)

 - 15-19 43.9 ±2.0 12 ±2.7 * (†) 6.9 ±2.8 * 13.3 ±3.0 * (†) 11.8 ±3.1 * -7.1 ±3.2 * -5.8 ±3.1

 - 20-24 37.8 ±2.3 2.8 ±2.6 -1.1 ±3.2 5.6 ±2.1 * 4.5 ±2.2 * -10.6 ±2.9 * -10.7 ±2.7 *

 - 25-29 37.7 ±2.2 -4.4 ±2.9 -10.4 ±2.8 * 0.3 ±2.4 -2.9 ±2.7 -18.8 ±2.9 * -18.6 ±2.9 *

 - ≥30 235.9 ±11 -106 ±10.1 * -129.3 ±9.8 * -60.8 ±10.0 * -88.0 ±9.6 * -154.6 ±14.1 * -151.3 ±14.4 *

Number of Bouts

 - ≥5 19.4 ±0.5 8.8 ±0.6 * (†) 8.3 ±0.6 * (†) 8.2 ±0.6 * 8.2 ±0.6 * 2.6 ±0.8 * (†) 2.7 ±0.8 * (†)

 - ≥10 13.4 ±0.4 1.8 ±0.4 * 0.7 ±0.5 2.6 ±0.4 * 2.0 ±0.4 * -3 ±0.6 * (†) -2.8 ±0.6 * (†)

 - total 46.7 ±1.7 29.2 ±2.1 * 30.8 ±2.2 * 24.8 ±2.0 * 25.1 ±2.0 * 18.7 ±2.4 * 18.9 ±2.4 *

 - <5 27.3 ±1.5 20.4 ±1.8 * 22.5 ±1.9 * 16.6 ±1.7 * 17.0 ±1.6 * 16.2 ±2.3 * 16.2 ±2.4 *

 - 5-9 6.0 ±0.3 7 ±0.3 * (†) 7.6 ±0.4 * (†) 5.5 ±0.3 * (†) 6.2 ±0.3 * (†) 5.5 ±0.4 * (†) 5.6 ±0.4 *

 - 10-14 3.4 ±0.1 2.6 ±0.2 * (†) 2.6 ±0.2 * (†) 2.1 ±0.2 * (†) 2.3 ±0.1 * (†) 1.1 ±0.2 * (†) 1.1 ±0.2 * (†)

 - 15-19 2.5 ±0.1 0.8 ±0.2 * (†) 0.5 ±0.2 * 0.9 ±0.2 * (†) 0.8 ±0.2 * -0.3 ±0.2 -0.3 ±0.2

 - 20-24 1.7 ±0.1 0.2 ±0.1 0 ±0.1 0.3 ±0.1 * 0.2 ±0.1 * -0.4 ±0.1 * -0.4 ±0.1 *

 - 25-29 1.4 ±0.1 -0.1 ±0.1 -0.4 ±0.1 * 0.0 ±0.1 -0.1 ±0.1 -0.7 ±0.1 * -0.7 ±0.1 *

 - ≥30 4.4 ±0.2 -1.6 ±0.2 * -2 ±0.2 * -0.7 ±0.2 * -1.2 ±0.2 * -2.6 ±0.2 * -2.5 ±0.3 *

Standing

Time in Bout

 - total 261.5 ±10.4 - - - - -140.8 ±19.1 * (†) -138.6 ±19.2 * (†)

Positive bias indicates an overestimation, negative an underestimation. Significant differences to the reference criterion marked with *, biases depending on 

the time/number in bout indicated with † (regression approach used to calculate bias).

Abbreviations: vertical sensor axis (y), counts-per-minute (cpm), low-frequency-extension filtering (LFE).
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Features time

Time Domain x y z VM xy xz yz x y z VM x y z
 1st Percentile 88 66 17 3
5th Percentile 39 76 91 3
10th Percentile 52 93 62 70 4
25th Percentile 43 98 18 3
50th Percentile (Median) 29 51 2
75th Percentile 83 1
90th Percentile 97 1
95th Percentile 25 1
99th Percentile 59 1
Inter-quartile range 36 1
Minimum 92 2 1 2
Maximum 19 1
Range 32 100 2
Mean 5 67 99 1 3
Standard Deviation (SD) 82 1
Coefficient of Variation (CV) 46 1
Skewness 49 1
Kurtosis 4 1 1
Summed absolute Signal Change from Frame to Frame 27 64 22 35 26 47 38 33 8
Lag 1 Frame Autocorrelation 61 1
Lag 1 Second Autocorrelation 0
3rd Moment 1 1 1
4th Moment 40 1
Number of Peaks 42 1
Number of Prominent Peaks 10 60 54 50 65 23 1 6
entropy 95 1
Number of Zero-Crossings 0
Mean Time between adjacent Zero-Crossings 0
Median Time between adjacent Zero-Crossings 0
SD of the Time between adjacent Zero-Crossings 0
Number of Median-Crossings 31 1
Mean Time between adjacent Median-Crossings 0
Median Time between adjacent Median-Crossings 0
SD of Time between adjacent MedianCrossings 0
Dynamic Time Warping (DTW) between Axes 3 1 1
DTW between 1st Derivative of the axes 20 86 37 3
Covariance between axes 79 1
Correlation between axes 24 1
Daytime 21 1
SD of all non-overlapping 5 Seconds Mean 0
SD of all non-overlapping 5 Seconds CV 85 1
Frequency Domain
Mean Frequency 78 15 96 16 4
Power at Mean Frequency ±0.1Hz 63 73 57 68 11 58 45 1 7
Median Frequency 44 1
Power at Median Frequency ±0.1Hz 80 55 90 53 30 48 6
Mean Frequency between 0.3 to 3Hz 56 1
Power at Mean Frequency ±0.1 Hz between 0.3 to 3Hz 0
Median Frequency  between 0.3 to 3Hz 28 41 2
Power at Median Frequency ±0.1Hz between 0.3 to 3 Hz 0
Total Signal Power 9 71 77 89 74 84 1 6
Power below 0.3 Hz 94 75 69 87 72 5
Power between 0.3 and 3 Hz 13 12 6 3 3
Power above 3 Hz 8 34 7 14 3 4
Harmonic Power 81 1
Harmonic Frequency

Usage Count
top 14 (final algorithm) 3 2 2 4 1 2 14

top 100 4 12 12 28 4 1 1 1 7 10 6 1 4 8 1 100

usage countfiltered anglesraw data filtered data

Supporting Information 2 – Table 1: Table of all features including ranks for the top 100. From all 563 features, the 100 most 

relevant ones (identified by the random forest classifier) are indicated with the rank of the sequential forward feature selection. The 

final algorithm uses the 14 top ranked features (rank marked in bolt). Of these, 4 were selected from the vector magnitude and z-

axis, respectively, 3 from the x-axis, 2 from the y-axis, and 1 from the dynamic time warping between x- and y-axis. Most features 

are based on the raw data (12) and 2 on the filtered data. No feature based on the 3d-angle was included in the final algorithm. 



Supporting Information 2 – Table 2: Instructions and MATLAB code to calculate the signal features. * marks 

features for which NaN and ±Inf were replaced with zero. 
Dimensions Instructions / MATLAB Code

rawdata: RAWDATA(:,1:3) x, y, and z, as recorded

vector magnitude: RAWDATA(:,4) = sqrt(RAWDATA(:,1).^2+RAWDATA(:,2).^2+RAWDATA(:,3).^2)

filtered data: RAWDATA(:,5:8) = filter(b,a, RAWDATA(:,1:4)); with CutoffFreq = 0.5; sampfreq = 30; [b,a] = butter(2,CutoffFreq / (sampfreq/2));

filtered angle x: [~,RAWDATA(:,9),~] = cart2sph(RAWDATA(:,6),RAWDATA(:,7),RAWDATA(:,5));

filtered angle y: [~,RAWDATA(:,10),~] = cart2sph(RAWDATA(:,7),RAWDATA(:,5),RAWDATA(:,6));

filtered angle z: [~,RAWDATA(:,11),~] = cart2sph(RAWDATA(:,5),RAWDATA(:,6),RAWDATA(:,7));

Minute Data

Start frame of each minute (frameID) = 1:1800:(NumberOfMinutes-1)*1800;

Data of each Minute (MinData) = RAWDATA(minuteID:minuteID+1799,dimension) % for dimension = 1:11;

# Features

Time Domain

11  1st Percentile prctile(MinData,1);

11 5th Percentile prctile(MinData,5);

11 10th Percentile prctile(MinData,10);

11 25th Percentile prctile(MinData,25);

11 50th Percentile (Median) prctile(MinData,50);

11 75th Percentile prctile(MinData,75);

11 90th Percentile prctile(MinData,90);

11 95th Percentile prctile(MinData,95);

11 99th Percentile prctile(MinData,99);

11 Inter-quartile range iqr(MinData)

11 Minimum min(MinData);

11 Maximum max(MinData);

11 Range max(MinData) - min(MinData);

11 Mean nanmean(MinData);

11 Standard Deviation (SD) nanstd(MinData);

11 Coefficient of Variation (CV) * nanstd(MinData)./nanmean(MinData);

11 Skewness * skewness(MinData);

11 Kurtosis * kurtosis(MinData);

11 Summed absolute Signal Change from Frame to Frame sum(abs(diff(MinData)));

11 Lag 1 Frame Autocorrelation * lag = autocorr(MinData,sampfreq); lag(2);

11 Lag 1 Second Autocorrelation * lag = autocorr(MinData,sampfreq); lag(sampfreq+1);

11 3rd Central Moment moment(MinData(isnan(MinData)~=1),3);

11 4th Central Moment moment(MinData(isnan(MinData)~=1),4);

11 Number of Peaks length( findpeaks(MinData ,'Threshold',1e-4,'MinPeakHeight', mean(MinData) + (max(MinData)-min(MinData))/4) );

11 Number of Prominent Peaks length( findpeaks(MinData ,'Threshold',1e-6,'MinPeakProminence', (max(MinData)-min(MinData))/4) );

11 entropy entropy(MinData);

11 Number of Zero-Crossings C = midcross(MinData(isnan(MinData)~=1),sampfreq); length(C);

11 Mean Time between adjacent Zero-Crossings if size(C,1) < 2; 60; else; mean(diff(C)); end

11 Median Time between adjacent Zero-Crossings if size(C,1) < 2; 60; else; median(diff(C)); end

11 SD of the Time between adjacent Zero-Crossings if size(C,1) < 2; 0; else; std(diff(C)); end

11 Number of Median-Crossings zci = @(MinData) find(MinData(:).*circshift(MinData(:), [-1 0]) <= 0); C = zci(MinData); length(C);

11 Mean Time between adjacent Median-Crossings if size(C,1) < 2; 60; else; mean(diff(C)); end

11 Median Time between adjacent Median-Crossings if size(C,1) < 2; 60; else; median(diff(C)); end

11 SD of Time between adjacent MedianCrossings if size(C,1) < 2; 0; else; std(diff(C)); end

3 Dynamic Time Warping (DTW) between Axes dtw(MinData(:,1), MinData(:,2)); % for x-y, (:,1) and (:,3) for x-z, (:,2) and (:,3) for y-z

3 DTW between Signal Changes from Frame to Frame dtw(diff(MinData(:,1)), diff(MinData(:,2))); % for x-y, (:,1) and (:,3) for x-z, (:,2) and (:,3) for y-z

3 Covariance between axes CovTemp = nancov(MinData(:,1:3)); CovTemp(1,2) % for x-y; CovTemp(1,3) % for x-z; CovTemp(2,3) % for y-z; 

3 Correlation between axes corr(MinData(:,1),MinData(:,2)); % for x-y, (:,1) and (:,3) for x-z, (:,2) and (:,3) for y-z

1 Daytime TIMESINCEFIRSTDAY(frameID,1) - floor(TIMESINCEFIRSTDAY(frameID,1));

11 SD of all non-overlapping 5 Seconds Mean for i = 1:12; TempMean(i) = nanmean(MinData( (i-1)*150+1:(i-1)*150+150,:)); end; std(TempMean)

11 SD of all non-overlapping 5 Seconds CV
for i = 1:12; TempStd(i) = nanstd(MinData( (i-1)*150+1:(i-1)*150+150,:));
TempCV(i) = TempStd(i) ./ TempMean(i); end; std(TempCV)

Frequency Domain

11 Mean Frequency * MeanFreq = meanfreq(MinData,sampfreq);

11 Power at Mean Frequency ±0.1Hz
L = [MeanFreq-0.1 MeanFreq+0.1]; if L(1) < 0; L(2) = L(2)+abs(L(1)); L(1) = 0;  end;
if L(2) > 15; L(1) = L(1) - (L(2)-15); L(2) = 15;end; bandpower(MinData,sampfreq,L);

11 Median Frequency * MedFreq = medfreq(MinData,sampfreq);

11 Power at Median Frequency ±0.1Hz
L = [MedFreq-0.1 MedFreq+0.1]; if L(1) < 0; L(2) = L(2)+abs(L(1)); L(1) = 0;  end;
if L(2) > 15; L(1) = L(1) - (L(2)-15); L(2) = 15;end; bandpower(MinData,sampfreq,L);

11 Mean Frequency between 0.3 to 3Hz * MeanFreqLow = meanfreq(MinData,sampfreq,[0.3 3]);

11 Power at Mean Frequency ±0.1 Hz between 0.3 to 3Hz
L = [MeanFreqLow-0.1 MeanFreqLow+0.1]; if L(1) < 0; L(2) = L(2)+abs(L(1)); L(1) = 0;  end;
if L(2) > 15; L(1) = L(1) - (L(2)-15); L(2) = 15;end; bandpower(MinData,sampfreq,L);

11 Median Frequency  between 0.3 to 3Hz * MedFreqLow = medfreq(MinData,sampfreq,[0.3 3]);

11 Power at Median Frequency ±0.1Hz between 0.3 to 3 Hz
L = [MedFreqLow-0.1 MedFreqLow+0.1]; if L(1) < 0; L(2) = L(2)+abs(L(1)); L(1) = 0;  end;
if L(2) > 15; L(1) = L(1) - (L(2)-15); L(2) = 15;end; bandpower(MinData,sampfreq,L);

11 Total Signal Power bandpower(MinData,sampfreq,[0 15]);

11 Power below 0.3 Hz bandpower(MinData,sampfreq,[0 0.3]);

11 Power between 0.3 and 3 Hz bandpower(MinData,sampfreq,[0.3 3]);

11 Power above 3 Hz bandpower(MinData,sampfreq,[3 15]);

11 Harmonic Power * [~,harmpow,~] = thd(MinData,sampfreq); harmpow(1);

11 Harmonic Frequency * [~,~,harmfreq] = thd(MinData,sampfreq); harmfreq(1);



 Supporting Information 3: Cross-validity table for all optimized and existing methods to detect sitting, standing, and being active, including cut-off for the cut-off based methods (in counts-per-minute (cpm) and steps 
per minute (spm)). The balanced sensitivity and specificity (Balanced) is the mean of sensitivity and specificity over the indicated/all posture. Data analysed on a subject-by-subject level and averaged over all subjects 
with median and non-parametric 95% confidence interval in brackets (after rejecting normal distribution with Lilliefors test). The activPAL served as reference criterion. 

Overall

Sitting Standing Balanced Balanced Sensitivity Specificity Balanced Sensitivity Specificity Balanced Sensitivity Specificity

ML Algorithm - - 90.4 [87.9 - 92.4] 87.8 [84.0 - 90.7] 95.6 [94.7 - 97.2] 79.6 [74.0 - 85.2] 85.2 [79.8 - 87.6] 74.8 [65.5 - 78.8] 96.1 [95.0 - 97.4] 99.2 [98.9 - 99.5] 98.4 [97.9 - 99.1] 99.9 [99.9 - 100.0]

ycpm < 16 cpm < 403 cpm 76.9 [74.5 - 78.0] 71.1 [66.9 - 73.2] 72.0 [67.3 - 77.7] 68.6 [63.1 - 77.7] 63.9 [61.6 - 66.5] 53.6 [47.4 - 58.9] 75.9 [72.1 - 80.2] 96.9 [95.8 - 97.5] 96.3 [93.2 - 97.8] 97.6 [96.9 - 98.5]

ycpm(LFE) < 23 cpm < 398 cpm 76.7 [74.5 - 78.4] 71.4 [67.1 - 73.7] 71.8 [66.8 - 76.1] 71.8 [66.3 - 80.2] 63.8 [60.5 - 66.2] 54.9 [48.6 - 60.3] 74.8 [71.8 - 78.8] 96.6 [96.0 - 97.3] 97.2 [95.4 - 98.9] 97.0 [95.9 - 97.9]

VMcpm < 69 cpm < 1379 cpm 76.6 [74.1 - 77.7] 69.8 [65.8 - 71.8] 71.7 [69.3 - 77.4] 66.4 [55.5 - 74.1] 62.8 [60.6 - 65.2] 51.2 [41.3 - 58.7] 76.0 [72.6 - 80.8] 97.8 [97.2 - 98.3] 97.3 [96.0 - 98.7] 98.5 [98.1 - 98.7]

VMcpm(LFE) < 170 cpm < 1484 cpm 75.9 [73.2 - 76.9] 69.0 [64.4 - 72.1] 76.9 [74.5 - 82.9] 59.6 [49.4 - 67.9] 61.1 [57.9 - 62.4] 39.9 [33.1 - 51.0] 81.2 [77.7 - 84.6] 97.8 [97.5 - 98.3] 97.8 [96.8 - 99.0] 98.2 [97.6 - 98.4]

Step < 3 spm < 11 spm 70.7 [69.7 - 72.3] 61.6 [59.9 - 66.5] 95.2 [94.6 - 96.1] 29.8 [25.2 - 40.9] 51.9 [51.2 - 52.7] 8.0 [7.0 - 11.3] 96.0 [95.5 - 96.7] 98.6 [98.1 - 99.1] 97.7 [96.3 - 98.8] 99.7 [99.6 - 99.8]

StepLFE < 5 spm < 42 spm 75.5 [72.6 - 78.1] 66.5 [62.2 - 71.6] 76.8 [73.7 - 80.8] 57.7 [49.5 - 66.5] 61.2 [56.9 - 63.3] 43.4 [35.2 - 49.6] 79.6 [77.5 - 83.1] 99.4 [99.2 - 99.7] 99.4 [98.9 - 99.8] 99.8 [99.4 - 99.8]

ycpm < 100 cpm - - 67.8 [64.3 - 72.3] 90.7 [88.7 - 92.7] 45.3 [38.0 - 55.6] - - - - - -

ycpm(LFE) < 100 cpm - - 70.1 [65.7 - 73.7] 87.1 [84.5 - 89.7] 54.1 [44.7 - 63.2] - - - - - -

ycpm < 150 cpm - - 66.6 [63.2 - 71.4] 94.2 [93.0 - 95.3] 39.3 [32.0 - 49.5] - - - - - -

ycpm(LFE) < 150 cpm - - 68.5 [65.0 - 72.8] 91.9 [90.7 - 93.7] 45.2 [37.9 - 57.1] - - - - - -

Inclinometer - - - 33.8 [29.6 - 43.9] 27.4 [23.4 - 32.4] 44.5 [33.6 - 58.2] 47.3 [45.6 - 48.1] 0.9 [0.3 - 2.9] 90.5 [86.4 - 93.9] - - -

InclinometerLFE - - - 33.5 [29.4 - 43.7] 27.5 [23.5 - 32.5] 43.8 [33.5 - 57.7] 47.3 [45.6 - 48.1] 0.9 [0.3 - 2.9] 90.5 [86.3 - 93.9] - - -

Cut-Off

Abbreviations: machine learning (ML), vertical axis (y), counts-per-minute (cpm), low-frequency-extension (LFE), vector magnitude (VM), steps-per-minute (spm)
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