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This thesis is devoted to the Alzheimer’s  

disease patients and their families and  

caregivers who accompany them during  

the course of dementia. 

 





 

 

POPULAR SCIENCE SUMMARY OF THE THESIS 

This thesis starts with a summary that involves no domain-specific knowledge or terminology. 

Dementia is a set of symptoms that include difficulties in memory, language, thinking, 

problem-solving and other skills. Most dementias occur in older ages and the greatest risk 

factor for its development is age. Few persons show the first dementia symptoms as early as in 

their 40s. Dementia can be caused by one or more overlapping neurodegenerative diseases. The 

most common diseases underlying dementia are Alzheimer’s disease (AD), cerebrovascular 

disease, Lewy body disease, frontotemporal lobar degeneration, Parkinson’s disease, and 

hippocampal sclerosis. In this thesis we are interested in AD which is the most common cause 

of dementia. 

AD accounts for 60-80% of dementia cases. It is thought that the pathological changes related 

to it may start as much as twenty years before the dementia onset. The persons affected by AD 

do not notice the brain changes until pathology is enough to cause clinical symptoms. In 

general, dementia is associated with the accumulation or change in form of specific proteins 

within or around the neurons (and other related processes that the scientific community is 

investigating). Therefore, sometimes we say that dementia is caused by one or more 

proteinopathies. Specifically, two proteins are consistently reported in AD. The accumulation 

of beta-amyloid protein fragments (beta-amyloid plaques) outside the neurons and twisted tau 

proteins (tau tangles) inside the neurons, are the main pathological hallmarks in AD. The initial 

symptoms of dementia are expressed as memory complaints. Then, individuals show some 

objective symptoms of cognitive decline (mild cognitive impairment). Finally, at the dementia 

stage (clinical AD), the patient develops specific cognitive deficits, well documented in the 

diagnostic manual of neurological disorders. The main initial cognitive deficit in dementia due 

to AD (mild dementia stage) is the impaired episodic memory (recollection of specific 

events/experiences etc.). When the dementia advances, other cognitive functions such as 

orientation, communication, behavior, and judgement become affected (moderate dementia 

stage). In severe dementia due to AD, swallowing, walking, and speaking are affected and 

patients may become bedbound. Currently, there are no effective medications to slow down or 

reverse AD. 

Although AD is characterized by specific pathological hallmarks and cognitive symptoms, 

patients demonstrate great heterogeneity in pathology, cognition and age at dementia onset 

among other characteristics. Recent postmortem (after death) data have shown that 

approximately half of the patients that present with AD pathology (amyloid-beta plaques and 

tau tangles) have at least one more proteinopathy that together with AD causes dementia (this 

can be any of the diseases mentioned in the first paragraph). Some patients are diagnosed with 

AD before the age of 65 and they tend to have less memory deficits (atypical AD), while other 

patients are diagnosed later in life and have more amnestic presentation (typical AD). Atypical 

AD covers an interesting set of clinical syndromes and is an active research field where new 

findings are reported every year. Many research groups are currently working to map the 

heterogeneity in AD with all the available markers that show changes due to the disease 



(biomarkers). AD has a typical pattern of brain atrophy progression that follows the spread of 

tau tangles in the brain, which is well characterized in postmortem studies. However, recently 

it was shown that patients can have patterns of tau tangles that are not typical for AD. Those 

tau tangle patterns are followed by brain atrophy in the same brain regions. Brain atrophy (grey 

matter loss) can be traced using brain magnetic resonance imaging (MRI) scan during life. 

In this thesis, we used advanced statistical models and MRI techniques to understand the 

heterogeneity during aging and in AD dementia. In studies I, II, and III we used structural MRI 

(cross sectional and longitudinal) to assess the brain grey matter (where neuronal cell bodies 

are) heterogeneity in AD dementia. Data collected from four multicenter cohorts (USA and 

Canada, Europe, Japan, Australia), were used to understand the grey matter changes in AD 

dementia. Our results showed that there are two main pathways of atrophy during the AD 

dementia stage (the clinical/dementia part of AD disease). The pathway that most of the AD 

patients have in common starts with atrophy in the temporal lobe of the brain (especially in the 

entorhinal cortex and hippocampus) and extends to other cortical regions (mediotemporal 

pathway). The other pathway, which is expressed in significantly fewer patients, starts from 

the cortex (especially the regions of the parietal lobe) and then involves all the brain regions 

(cortical pathway). Patients of the mediotemporal pathway have more memory problems, they 

tend to be older at the disease onset, and their disease course can be either stable or aggressive. 

Patients that express the cortical pathway are often younger at the disease onset, they have more 

atypical AD symptoms (less memory and more praxis deficits at the AD onset) and their disease 

course is often aggressive. Our findings can be utilized to predict atrophy and clinical 

progression early on during the clinical disease course of AD patients. 

In study IV, we used longitudinal diffusion tensor imaging (special MRI) in a large population 

sample from USA to understand the different white matter (where neuronal axons are) integrity 

profiles that accompany individuals during the aging process and relate this to the risk of 

developing dementia. We discovered that some individuals have good WM integrity during 

aging (healthy agers) while other individuals have low WM integrity (at risk of cognitive 

decline). Another cluster of patients in our results, initially presented with high WM integrity, 

but deteriorated progressively during the years. WM integrity correlated well with cognitive 

health which means that damage in neuron’s axons is associated with cognitive decline. 

Individuals with low WM integrity at the age of 60 years had a greater risk of becoming 

cognitively impaired. Beta amyloid in the brain of the individuals was predictive of overall 

WM health but did not vary between the WM clusters of individuals. WM heterogeneity in 

aging is probably independent of beta amyloid accumulation. However, dementia due to AD 

may be a product of more than one pathological processed in the brain. 

In conclusion, in this thesis we focused on developing statistical methods that helped us to 

understand features of the heterogeneity in AD and in healthy aging. Following this approach, 

we envision setting the foundation for unravelling heterogeneity in AD. This will hopefully 

provide a platform for the future development of dementia modifying treatments and 

personalized prediction of biological/cognitive changes in dementia



 

 

ABSTRACT 

Alzheimer’s disease (AD) is the most common cause of dementia. It is characterized by loss of 

memory and other cognitive functions. Although it is a heterogeneous condition, it has been 

studied as one disease for many decades. Neuropathological data and a large body of in vivo 

neuroimaging literature challenge the hypothesis that AD is a single entity, supporting the 

hypothesis of AD as a heterogeneous disease. 

In this thesis, we set out to understand some aspects of the heterogeneity in AD and aging with 

the help of atrophy and WM integrity markers from magnetic resonance imaging (MRI). The 

main aim of the thesis was to investigate the potential use of statistical and machine learning 

models for the assessment of heterogeneous conditions. In Study I, we utilized whole brain 

atrophy markers and cross-sectional cluster analysis to characterize the neurodegeneration 

variability in a large AD dementia cohort (299 amnestic AD patients). The clusters of patients 

that we discovered presented with distinct atrophy patterns. Some of them exist due to disease 

severity, but we identified topologically variable atrophy patterns too. Patients of the different 

clusters had distinct cognitive symptoms and clinical progression. 

Then, we designed a pipeline that will help us to assess heterogeneous populations when 

longitudinal neuroimaging and clinical data are available (Study II). We tested this pipeline in 

atrophy data from a small dataset of AD patients to assess its usefulness in MRI data and 

heterogeneous conditions. The model fitted the data well and we concluded that it can be used 

in larger scale analyses. Moreover, larger numbers of participants with long follow-up period 

should increase its freedom in searching for heterogeneity in longitudinal neuroimaging 

trajectories. After this methodological study, we used a very large dataset that consisted of 

neuroimaging, cerebrospinal fluid (CSF), and clinical data. We split our data in discovery and 

prediction datasets. The discovery dataset included 𝐴𝛽 positive clinically diagnosed AD 

dementia patients and 𝐴𝛽 negative cognitively unimpaired individuals (CU). Based on this 

dataset (Study III), we aimed to understand whether the observed heterogeneity in AD is 

caused by sampling patient’s data at different disease stages, or if it resembles distinct 

neurodegeneration subtypes. We modelled longitudinal brain atrophy data anchored to the 

clinical dementia onset. Our findings show that all the previously reported atrophy subtypes do 

exist but some of them reflect disease stages rather than subtypes. Most importantly, our 

modeling managed to summarize the observed heterogeneity in neurodegeneration with two 

unique pathways (mediotemporal and cortical). These two pathways have distinct cognitive 

signatures and were evaluated in a large independent AD dataset. Heterogeneity within the 

pathways exist and is likely caused by a complex interaction between protective/risk factors 

and concomitant non-AD pathologies. 

Some findings indicate that WM changes may precede grey matter atrophy in AD. In Study 

IV we investigated whether more than one WM profile exists in the aging population. We 

wanted to understand their association with AD pathophysiological changes and relate them to 

the risk of developing dementia. We discovered four distinct WM integrity patterns with 



different spatial WM integrity distribution in aging. Those patterns were related to different 

longitudinal cognitive profiles and specific white matter tracts informed about cluster 

assignments. 

In conclusion, heterogeneity can be observed not only in AD, but also in the population 

including healthy individuals. In this thesis, we identified distinct pathways of brain atrophy 

and WM integrity. Understanding the heterogeneous patterns of the different 

pathophysiological markers during ageing and the course of AD, will ultimately lead to the 

development of disease modifying (personalized) treatments.
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1 INTRODUCTION 

Memory, both collective and individual is one of the features that has guaranteed our 

civilization’s survival throughout the millennia. Today, people of the advanced societies have 

a longer expected life span than in any other time during human evolution. The biological 

challenges that arise from this initially positive achievement of our societies are mainly 

associated with the aging process of the human body. Life expectancy (at birth) increases fast 

and human evolution has not prepared us to cope naturally with the effects that aging has on 

our biology(Brown, 2015). As a result, an increasing percentage of individuals are diagnosed 

with diseases for which the highest risk is the aging process itself. Dementia disorder 

(Neurocognitive disorder) is the outcome of various age-related diseases. Alzheimer’s disease 

(AD) is one of the underlying causes of dementia. According to the World Alzheimer’s Report 

of 2015, 36 million people were diagnosed with dementia in 2010 and this prevalence is 

projected to double every 20 years and affect 115 million people by 2050 if no treatment 

becomes available (Dartigues, 2009). The estimated costs for dementia have also increased 

from 818 billion dollars in 2015 to one trillion dollars in 2018 (Wimo et al., 2017). Therefore, 

the socioeconomic cost of AD will increase in the future with the aging population. 

While the etiology of AD remains elusive, two main forms of the disease can be identified, 

namely, the rare early onset autosomal dominant variant (also called familial AD) and the more 

frequent sporadic form with no apparent familial aggregation or obvious genetic identification. 

The familial form of AD is characterized by mutations in genes related to the production of the 

beta amyloid (𝐴𝛽) peptide such as Amyloid precursor protein (APP), presenilin 1 (PSEN1), 

and presenilin 2 (PSEN2) (Bertram and Tanzi, 2001, 2008) (see Table 1 in Bertram and Tanzi, 

2008). On the other hand, the sporadic form of AD, which is the most frequent variant of the 

disease and is frequently characterized by a late onset, shows less obvious or no signs of genetic 

aggregation. The e4 allele of the APOE gene is the only genetic factor that has been consistently 

reported as a risk factor for sporadic AD (Bertram and Tanzi, 2008). 

1.1 NEUROPATHOLOGY IN ALZHEIMER’S DISEASE 

The main pathological hallmarks of AD include extracellular amyloid plaques and intracellular 

neurofibrillary tangles (NFT) (Berrios, 1990). Amyloid plaques consist of beta amyloid 

peptides, while NFT consist of hyper-phosphorylated microtubule-associated protein tau 

filaments (Shaw et al., 2009). Amyloid plaques can be found in two morphological forms: 

diffuse plaques (diffuse extracellular beta amyloid deposits) and plaques with a dense core 

(Thal, 2006). Neuritic plaques are beta-amyloid plaques (dense core) surrounded by dystrophic 

neurites that accumulate abnormally hyper-phosphorylated tau protein (Alafuzoff et al., 2009). 

The temporal aggregation of NFT and amyloid plaques seems to follow almost opposing 

topological patterns. 

Amyloid plaques are initially deposited in the isocortex (Braak and Braak, 1991; Thal, 2006). 

The next stage involves allocortical areas such as the entorhinal region and the subiculum. At 

this stage the hippocampal formation, which is an instrumental brain region for the formation 
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of new memories, is to some extent involved. In the third phase the thalamus, hypothalamus 

and basal ganglia are also involved followed by the lower brainstem (medulla oblongata and 

midbrain) in the fourth phase. The fifth and final phase includes the part of the brainstem (pons) 

that was not yet involved in the fourth phase as well as the cerebellum. Amyloid pathology is 

said to be present as early as in the 4th decade of life in 4% of the patients (then, it increases 

annually) (Braak et al., 2011). Therefore, a long preclinical stage of misfolded protein 

aggregation precedes the clinical onset of dementia.  

Traditionally, it is believed that the regional distribution of NFT formation follows a trajectory 

that initially involves the transentorhinal cortex, followed by the entorhinal cortex, 

hippocampus and inferior temporal lobe and finally the isocortex (Braak and Braak, 1991). 

However, the initial deposition area of NFT is still controversial since new neuropathological 

data (Braak et al., 2011) show that pretangle material is initially formed in the nuclei of the 

brainstem and its projections to the cerebral cortex (locus coeruleus). 

Neuroinflammation and neurodegeneration are two other neuropathological hallmarks in AD. 

One of the recent findings on AD pathology is that immunological mechanisms in the brain 

together with neuronal processes (NFT and amyloid plaques) play an important role in the 

disease pathogenesis (Heneka et al., 2015). Finally, neurodegeneration (atrophy and ventricular 

enlargement) is an important feature of the disease since it is typically observed in most AD 

patients (Whitwell et al., 2018b). 
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2 FROM NORMAL AGING TO DEMENTIA 

2.1 NORMAL BRAIN AGING  

The aging process is accompanied by changes in the function and appearance of the brain. 

Cognition, as well as brain white and grey matter, shows different trajectories during adult life. 

Decline in working memory, information processing (speed and flow of information 

processing) and attention functioning are common features observed in the elderly population 

(Salthouse and Ferrer-Caja, 2003). A large body of literature provides evidence that decreasing 

white matter (WM) integrity in the frontal lobe as well as in specific WM tracts (corpus 

callosum) that connect different central nervous system areas (Damoiseaux et al., 2009) is part 

of normal brain aging. Grey matter density reductions (fastest in the frontal lobe) is another 

widely accepted anatomical feature of normal aging (Irwin et al., 2018). All together these 

findings show that with aging, cognitively unimpaired (CU) individuals exert slowly declining 

(on average) cognition, while their brains do not remain intact. It is important to mention that 

cognitive decline related to normal aging does not interfere with everyday life activities of the 

elderly individuals and therefore is not considered significant or clinically relevant. 

Importantly, environmental and genetic factors introduce great variability around the 

population average of cognitive and brain health aging trajectories. 

2.2 SUBJECTIVE COGNITIVE DECLINE 

Elderly individuals often report difficulties regarding their cognitive abilities. These can be 

either rare events or an observation of decline over time. As insignificant as these self-reports 

may sound to an untrained family member or observer, they may carry important early 

messages of an underlying neurodegenerative process. A review on subjective memory 

complaints has shown that increasing age is associated with more complaints (Jonker et al., 

2000). Moreover, at the age span 50-59 years, more than four out of ten individuals have 

memory complaints, while this percentage increases to six out of ten individuals over the age 

of 80 years.  

Reports of decline in any cognitive domain (not necessarily memory) that are subjective and 

cannot be objectively established by cognitive testing, and are reported in more than one 

instance (decline over time) are known in the literature as subjective cognitive decline (SCD) 

(Jessen et al., 2014). These complaints may be indicative or predictive of future cognitive 

decline that interferes with everyday life and this is why their study is important. However, 

normal aging, psychiatric and neurologic disorders other than dementia or even medication and 

substance use can orchestrate these complaints (Jessen et al., 2014).  

Memory complaints in SCD individuals is associated with reduction in grey matter volume 

(Jessen et al., 2006; Schultz et al., 2015). Moreover, some research on the anatomical changes 

in the brains of SCD individuals has also shown that they are quite heterogeneous (Jung et al., 

2016). Given the heterogeneity of the SCD individuals’ population in terms of cognitive 
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complaints and their corresponding atrophy patterns, extensive research and careful follow up 

will shed light on the potential use of this group classification for dementia prognosis. 

2.3 MILD COGNITIVE IMPAIRMENT 

The intermediate condition between cognitively healthy aging and dementia is referred to as 

mild cognitive impairment (MCI). Individuals exhibiting objective cognitive impairment 

beyond the expected one for their age and educational background receive an MCI diagnosis. 

This diagnosis is related to objective signs of cognitive impairment in any cognitive function. 

However, the impairment is not enough to interfere with the everyday life activities of MCI 

patients to the extent that the dementia diagnosis is given. MCI can exert various phenotypes 

due to its heterogeneous nature. A call for standardization in the diagnosis of MCI led the First 

Key Symposium in 2003 to introduce a consensus that established four clinical phenotypes of 

MCI, namely the amnestic, non-amnestic, single and multiple domain (Winblad et al., 2004). 

They recommended that to receive the diagnosis of MCI an individual should neither be CU 

nor meet the criteria for dementia syndrome that were then in use (DSM IV, ICD 10). 

Regarding cognitive decline, the individual should report cognitive decline and impairment in 

objective cognitive tasks (memory, language, visuospatial etc.). Alternatively, an informant 

can report the cognitive decline feature. Moreover, evident cognitive decline (over time) on 

objective cognitive tasks should be present. Importantly, to separate from dementia diagnosis, 

the individuals should have preserved basic daily activities and can have minimal impairment 

in complex instrumental functions.  

The MCI clinical presentation can be caused by multiple etiologies, the most possible of which 

are: degenerative, vascular, metabolic, traumatic, or psychiatric (Winblad et al., 2004). Due to 

the multiple candidates behind MCI not all patients progress to dementia. Some MCIs progress 

to dementia (approximately 15% per year), a large number remain stable in this diagnosis while 

approximately 26% revert to cognitively normal status (Breitner, 2014). 

The strength of the MCI diagnosis is that it manages to include a large number of patients with 

cognitive problems for potential follow up in the future. However, the fact that only a few of 

these patients progress to dementia prompted the research community to investigate the use of 

biological markers in the attempt to further characterize individuals that receive this diagnosis. 

MCI was further investigated by the International Working Group (IWG) for the diagnosis of 

Alzheimer’s disease and it was decided to call the amnestic MCI form prodromal Alzheimer’s 

disease in the case that a supportive biological marker was in favor of that diagnosis (Dubois 

et al., 2014). This specialized diagnosis is very important for Alzheimer’s disease research 

since it increases the chances of early identification of patients that will likely develop 

Alzheimer’s disease. 
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2.4 DEMENTIA 

Dementia is the step after MCI in the dementia continuum. More formally, dementia (major 

neurocognitive disorder) can be defined as a group of cognitive symptoms that severely affect 

a person’s ability to perform everyday activities caused by disease or injury. The clinical 

diagnosis of dementia has a clear list of criteria including (‘Neurocognitive Disorders’, 2013): 

• Evidence of significant decline in one or more of the following cognitive functions: 

perceptual-motor, social cognition, language, learning and memory, executive function 

and complex attention. This evidence can be based on the observation of the indiviual, 

a knowledgeable informant, or the clinician that significant decline in cognition has 

occurred. Moreover, this substantial decline in cognitive skills has to be documented 

by standardized neuropsychological assessment or in its absence, a quantitative clinical 

assessment of another type. 

• Disturbance/Interference of everyday activities due to reported cognitive deficits (at a 

minimum, assistance with complex instrumental activities such as managing 

medications fullfills this criterion). 

• The cognitive deficits should not only occur during a delirium (organically caused 

disturbance/decline in attention and awareness from a previous baseline mental 

functioning that develops over a short period of time). 

• Neurological conditions such as major depressive disorder, schizophrenia have to be 

excluded to arrive at the diagnosis of dementia. 

Dementia is an umbrella term that includes a set of different clinico-pathological entities that 

are diagnosed by the aforementioned criteria. According to the diagnostic and statistical manual 

of mental disorders, dementia can exist due to Alzheimer’s disease, frontotemporal lobar 

degeneration, Lewy body disease, vascular disease, traumatic brain injury, 

substance/medication use, HIV infection, prion disease, Parkinson’s disease, Huntington’s 

disease, multiple etiologies or even other medical conditions (‘Neurocognitive Disorders’, 

2013). For the purpose of this thesis, five conditions (Alzheimer’s disease, vascular disease, 

Lewy body disease, frontotemporal lobar degeneration, hippocampal sclerosis) will be further 

discussed. 

An overview of the most common causes of dementia and their main clinical diagnostic 

features is presented in sections 2.4.1 and 2.4.2 to showcase their clinical similarities and the 

differential diagnosis challenges that arise in clinical practice. 

2.4.1 Alzheimer’s disease clinical diagnosis 

According to the 2021 Alzheimer’s disease facts and figures, approximately 60-80% of all 

dementia cases are estimated to be caused by Alzheimer’s disease (AD). In 1983, a working 

group was established to define criteria for the clinical diagnosis of AD dementia by the 

National Institute of Neurological and Communicative Disorders and Stroke (NINCDS), and 

the Alzheimer’s Disease and Related Disorders Association (ADRDA). It was recognized that 

the prevalence of AD was very high in the older population and therefore common diagnostic 
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guidelines were needed. The definition that was given to AD dementia was: “A brain disorder 

characterized by progressive dementia that occurs in middle and late life (McKhann et al., 

1984). Obtaining an accurate diagnosis of dementia due to AD is a clinically challenging task 

due to the great overlap between different types of dementias. Two groups, one in Europe 

(International working group, IWG) and another one in North America (National Institute on 

Aging – Alzheimer’s Association, NIA-AA), put significant effort into revising AD diagnostic 

criteria since new knowledge has reconceptualized the disease diagnosis during the last two 

decades (Visser et al., 2012). According to the DSM-5 manual, the criteria for AD diagnosis 

consist of: a) meeting the criteria for mild/major dementia (2.4); b) having an insidious onset 

that is followed by gradual progression of impairment in cognitive and behavioral symptoms; 

c) meeting the criteria for probable or possible AD. Those include causative evidence of AD 

genetic mutation (genetic testing, or autosomal-dominant family history together with autopsy 

confirmation, or an affected family member has a positive genetic test), clear evidence of 

decline over time in memory and at least one more cognitive domain, gradual decline in 

cognition but not acute, and no evidence of another etiology; d) the disturbance is not explained 

by cerebrovascular disease, some other neurodegenerative disease, another 

mental/neurological/systemic disorder, or the effects of a substance. We see that criteria for 

AD diagnosis demand an exhaustive process of exclusion of any other possibility that can 

explain the symptoms. Moreover, most patients with AD have multiple medical conditions that 

influence and complicate the diagnosis. This is the reasoning behind the most recent criteria 

suggested by the research community include diagnostic markers that shift the diagnosis from 

neuropsychological to more biological (Jack et al., 2018). 

In terms of symptom severity, the dementia (due to AD) continuum can be categorized in three 

distinct phases: 1) a mild stage when symptoms interfere with some everyday activities but 

most people can function independently (drive, work, leisure activities etc.), 2) a moderate 

stage where dementia interferes with many everyday activities (longest stage) including 

communicating and performing everyday tasks, 3) a severe stage where patients are likely to 

require care around the clock since they need assistance with daily living. Damage in the motor 

area of the brain often causes patients to become bed-bound and conditions related to their lack 

of movement may arise (‘2020 Alzheimer’s disease facts and figures’, 2020). 

 

2.4.2 Other causes of dementia 

2.4.2.1 Cerebrovascular disease 

When blood vessels in the brain are damaged and/or brain tissue is injured from not receiving 

enough blood, oxygen or nutrients, dementia due to cerebrovascular disease may be initiated 

(‘2020 Alzheimer’s disease facts and figures’, 2020). It is estimated that vascular disease is the 

second most common cause of dementia after AD. However, the clinical differentiation 

between vascular disease and AD is not a trivial task. Dementia due to vascular disease can 

occur at any time but it increases exponentially after the age of 65 years. The diagnosis of 
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vascular dementia includes 1) the fulfillment of the dementia diagnosis criteria; 2) the clinical 

features of vascular etiology. These can be either the onset of cognitive deficits after one or 

more cerebrovascular events, or the evidence of significant decline of frontal-executive and 

complex attention functions; 3) evidence of cerebrovascular disease by neuroimaging markers 

and/or history, physical examination (‘Neurocognitive Disorders’, 2013). 

2.4.2.2 Lewy body disease 

Lewy body disease relates to the abnormal aggregations of alpha-synuclein proteins in neurons 

(synucleinopathy). These protein aggregates are also the neuropathological hallmark in 

Parkinson’s disease. Similar to cerebrovascular disease, the clinical presentation of the 

dementia related to Lewy body disease can be challenging to distinguish from dementia due to 

AD, especially in late stages. However, patients with this dementia type present with some 

special clinical features. There are four main diagnostic features for this dementia type: 1) The 

main dementia diagnostic criteria are met, 2) insidious onset with gradual progression (similar 

to AD dementia); 3) core diagnostic features including fluctuating cognition with variations in 

attention and alertness, repeated detailed and well-formed visual hallucinations, spontaneous 

parkinsonism1 that starts after the cognitive decline, and suggestive diagnostic features 

including rapid eye movement and severe neuroleptic sensitivity (‘Neurocognitive Disorders’, 

2013; McKeith et al., 2017); 4) the disturbance is not explained by cerebrovascular disease, 

some other neurodegenerative disease, another mental/neurological/systemic disorder, or the 

effects of a substance. Neuroimaging markers provide significant help in differential diagnosis 

between AD and Lewy body dementia (McKeith et al., 2017). 

2.4.2.3 Frontotemporal lobar degeneration 

Dementia caused by this disease is rarer since it affects 2-10 per 100 000 people and normally 

individuals are younger (60% of cases are between 45 and 60 years old) when diagnosed with 

it (‘Neurocognitive Disorders’, 2013; ‘What are frontotemporal disorders?’, 2019). The term 

frontotemporal lobar degeneration (FTLD) is an umbrella term that includes several dementia 

subtypes, namely the behavioral-variant FTLD, primary progressive aphasia, Pick’s disease, 

corticobasal degeneration and progressive supranuclear palsy. The main proteinopathies found 

in patients with FTLD involve tau and transactive response DNA protein (TDP-43) aggregates. 

This set of dementia syndromes has some common diagnostic features including: a) meeting 

the criteria for mild/major dementia; b) having an insidious onset that is followed by gradual 

progression (like AD); c) for the behavioral variant, three of the following symptoms should 

exist: behavioral inhibition, apathy or inertia, loss of sympathy or empathy, perseverative, 

stereotyped or compulsive behavior, hyperorality and dietary changes and significant decline 

in social cognition and/or executive abilities. For the language variant, decline in language 

ability (form production, word finding, object grammar, or word comprehension); d) sparing 

 

1 Clinical syndrome characterized by tremor, bradykinesia, rigidity, and postural instability (Simon, R. P., 

Aminoff, M. J., & Greenberg, 2009) 
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of memory as well as perceptual motor function; e) the disturbance is not explained by 

cerebrovascular disease, some other neurodegenerative disease, another 

mental/neurological/systemic disorder, or the effects of a substance (‘Neurocognitive 

Disorders’, 2013). In late or major dementia of FTLD type, differential diagnosis is challenging 

while in early stages the relative memory sparing can help to distinguish it from AD. 

2.4.2.4 Hippocampal sclerosis 

Sclerosis of the brain tissue of the hippocampus can cause a distinct dementia type which is 

more often observed in older people than in other dementia subtypes. Since the hippocampus 

is related to memory formation, a main symptom of this dementia subtype is its amnestic 

character. The same protein as in FTLD, TPD-43, has been observed to be misfolded in 

histological assessment of patients (majority) with hippocampal sclerosis (‘2020 Alzheimer’s 

disease facts and figures’, 2020). 
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3 BIOMARKERS IN ALZHEIMER’S DISEASE 

A biomarker is defined as “a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or pharmacologic responses to 

a therapeutic intervention” (Working Group Biomarkers Definitions, 2001). Biomarkers can 

help in the differentiation between different dementias with similar clinical presentation and to 

identify the stage of the underlying pathophysiological process. They are also used to monitor 

potential drug modifying effects (Frisoni et al., 2017). The new definition of AD according to 

NIA-AA in 2011, was “the clinical syndrome that arises as a consequence of the AD 

pathophysiological process” and AD pathophysiological process is defined as the “antemortem 

biological changes that precede the postmortem neuropathological diagnosis of AD as well as 

the neuropathological substrate”(McKhann et al., 2011). To monitor those changes, biomarkers 

that have been used in AD research include fluid and in vivo imaging measures of AD 

pathophysiology (McKhann et al., 2011; Visser et al., 2012; Frisoni et al., 2017).  

3.1 NEUROPSYCHOLOGICAL ASSESSMENT 

Neuropsychological assessment is a valuable and commonly used clinical tool for the diagnosis 

of dementia. It consists of a set of specialized tests that help to assess specific cognitive domains 

that may be affected in the different dementia disorders. The normative levels of functionality 

in the populations can be objectively quantified and therefore reduced scores signify cognitive 

deficits in the respective domains. It is important to understand that environmental factors such 

as sex, education and social class can modify the levels of cognition in some domains. 

Therefore, individual cognitive scores of suspected cognitively impaired persons should be 

compared to environmental background matched data to discover potential cognitive deficits. 

3.2 BRAIN IMAGING IN HEALTHY AGING AND ALZHEIMER’S DISEASE 

Imaging markers include various measures from computed tomography (CT), magnetic 

resonance imaging (MRI) and molecular imaging such as positron emission tomography 

(PET). CT can measure atrophy in vivo, while MRI, among other things, can measure atrophy 

and WM changes. Amyloid and phosphorylated Tau accumulation can be quantified using 

PET. Glucose metabolism can be quantified by FDG PET. 

3.2.1 MRI 

MRI has proven to be of substantial importance in medical research and clinical practice since 

it provides in vivo markers of different biological processes occurring in the brain. Several MR 

sequences have been implemented. Some MRI sequences are used in hospitals or in specialized 

clinics, while other sequences are still used for research only. MRI sequences can be broadly 

grouped into structural, that we use to understand the structural properties of different brain 

regions (the most common sequences are T1, T2, PD) and functional (fMRI), that we use to 

understand brain activity. Many other MRI sequences are used to understand specific properties 

(calcium, CSF flow etc.) of the brain (Grover et al., 2015). 
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3.2.2 Structural 

Structural MRI (sMRI) is a non-invasive method that reveals the structure of various tissue 

types without any exposure to ionizing radiation. A combination of numerous magnetic fields 

causes hydrogen atoms to emit radio frequencies and then receiving coils record them. 

Variations in the acquisition parameters produce images where the WM, grey matter and 

cerebrospinal fluid have different intensities and can be distinguished. In this way the spatial 

specificity of the images can be used to identify pathological findings (tumors, hemorrhages, 

injuries, aneurysms, etc.) as well as brain atrophy due to neurodegenerative diseases. 

3.2.3 Diffusion tensor imaging 

DWI, which is another MR method, utilizes water diffusion properties to generate contrasts in 

MR images. DWI maps the diffusion process of water molecules in different tissues of the 

brain and can be used to map WM tracts in the brain. The loss of neuronal connections due to 

loss of integrity in WM tracts can be studied with this type of contrast, which may have clinical 

implications (Chua et al., 2008). An example application of diffusion tensor imaging (DTI, 

special DWI technique to study WM structures) is the study of fractional anisotropy (FA) and 

mean diffusivity (MD) for the assessment of WM integrity in the pathophysiological 

continuum of AD (Kantarci, 2014). 

3.2.4 Positron emission tomography 

PET is an imaging technique that can measure metabolic processes in the brain. The research 

on particular PET tracers that can identify 𝐴𝛽 and tau protein aggregates expanded significantly 

during recent decades, resulting in tracers that show very good agreement with post-mortem 

neuropathological evidence of abnormal protein accumulation (Saint-Aubert et al., 2017). 

3.3 CEREBROSPINAL FLUID 

The interstitial fluid that forms a cushion around the central nervous system, both in the brain 

and spinal cord is called cerebrospinal fluid (CSF). This fluid has several functions that serve 

the CNS, including buoyancy of the brain parenchyma and support against traumas caused by 

rapid movements of the body and head, flow of important nutrients and cleaning of the CNS 

from harmful substances that were released from the brain tissue (Wright et al., 2012). CSF is 

mostly produced by the choroid plexus, but also from the ventricular ependyma, brain tissue 

and arachnoidal membrane.  

The extraction and analysis of CSF has advanced our knowledge of the AD pathophysiology. 

The levels of 𝐴𝛽 and tau that could only be validated postmortem in the past, can now be 

quantified through CSF extraction. The levels of those proteins correlate very well with 

postmortem pathology but their relationship to amyloid plaques and NFT during the aging 

process is an active research field. Currently validated AD specific fluid markers include CSF 

𝐴𝛽1−40, 𝐴𝛽1−42, Total tau (tTAU) and Phosphorylated tau (𝑝𝑇181). These markers can 

indirectly measure the ongoing amyloid and phosphorylated tau accumulation. Cerebrospinal 
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fluid markers are used in Studies 2, 3 and 4 to assess 𝐴𝛽 status of the identified groups of 

patients and CU individuals.
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4 HETEROGENEITY IN ALZHEIMER’S DISEASE 

The first patient who was diagnosed with AD dementia presented with cognitive deficits that 

did not follow the typical amnestic presentation that is commonly used to describe AD. Early 

clinical onset (EOAD), together with atypical cognitive deficits and the presence of AD-related 

neuropathology, indicated that from the early stages of AD history, this type of disease is 

characterized by heterogeneous symptoms. In 1968 it was recognized that the 

neuropathological findings of early and late onset AD2 cases were quantitatively similar 

(Blessed et al., 1968). The merging of these two age-related forms of dementia together with 

the recognition that AD and senile dementia are the same disease was an important step in the 

clinical diagnosis (Katzman, 1976). Unfortunately, the first NINCDS-ADRDA criteria defined 

AD dementia as a progressive memory decline, which only referred to the amnestic 

presentation of AD (more common among late onset cases), leaving all the atypical non-

amnestic presentations in the dark until researchers revisited the topic to characterize the 

syndrome better, in lack of any disease modifying treatments (McKhann et al., 1984, 2011). 

Increasing attention has been drawn to the non-amnestic presentations of AD and some of the 

main research findings until 2013 are summarized in two review articles (Mendez, 2012; Lam 

et al., 2013). The heterogeneity of the syndrome of AD dementia can be described in terms of 

three key features: age of onset, genetic profile, and comorbidities. 

4.1 CLINICAL SYNDROMES 

Regarding the different clinical syndromes in relation to the AD diagnosis, and the NIA-AA 

criteria of 2011, a probable dementia diagnosis can be made based on amnestic cognitive 

deficits, non-amnestic cognitive deficits, or both. Probable non-amnestic AD dementia 

includes: 1) A language presentation with deficits in word finding, 2) a visuospatial 

presentation, with deficits in spatial abilities including object agnosia, impaired face 

recognition, simultanagnosia, and alexia, and 3) an executive presentation dysfunction with 

impaired reasoning, judgement and problem solving. All the non-amnestic categories should 

include at least one cognitive deficit that is not specific to their atypical presentation. However, 

as mentioned earlier in 2.4.1, the latest 2018 criteria are shifting away from the diagnosis based 

on syndromes and no specific description of criteria for the atypical presentations has been 

incorporated (Jack et al., 2018). 

4.2 CLINICAL SYNDROMES AND AGE OF ONSET 

Regarding the age of onset and related clinical syndromes: 

• Late-onset AD (LOAD), refers to the diagnosis of AD after the age of 65, is 

characterized predominantly by memory impairment. 

 

2 Early onset AD refers to the diagnosis of dementia due to AD before 65 years of age. 
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o Prototypical or typical AD, the most common AD phenotype with LOAD, is 

associated with bilateral hippocampal, temporal and parietal atrophy of diffuse 

form. Clinically more than one cognitive domain apart from the episodic 

memory shows decline. 

o Temporal (or limbic predominant) variant of AD is the syndrome 

characterized by atrophy predominantly in the limbic areas, late-onset (even 

later than typical AD) and isolated episodic memory decline. 

• EOAD (before 65 years of age) can be either autosomal dominant (around 5% of the 

cases) with genetic mutations (see paragraph for familial and sporadic AD) or 

sporadic AD (Mendez, 2012; Graff-Radford et al., 2021). 

o Left language variant AD, logopenic primary progressive aphasia (EOAD in 

most cases). 

o Posterior cortical atrophy (PCA) variant. See (Crutch et al., 2013, 2017) for a 

review in PCA. 

o Right visuoperceptive variant AD. 

o Frontal-executive variant AD. 

Under the diagnosis of probable AD, heterogeneity in clinical presentation is prominent as is 

pointed out by Scheltens and colleagues (Scheltens et al., 2017).  

4.3 NEUROPATHOLOGICAL EVIDENCE 

Recent evidence suggests that several patients with a definite diagnosis of AD do not present 

the typical spatial pattern of neurofibrillary tangles described in the literature, indicating that 

different pathological subtypes within AD might exist. Based on the distribution of NFT in the 

brain, Murray and colleagues described three distinct pathological patterns (Murray et al., 

2011) characterized by predominance of NFT counts in the hippocampus, in the cortex (middle 

frontal, superior temporal, and inferior parietal) or both. The clusters that were found included 

a group of subjects with NFTs predominantly in the limbic areas (limbic predominant), a group 

of subjects with diffuse NFT both in the hippocampus and in the cortex (typical), and a group 

with more NTFs in the cortex (hippocampal sparing). Followed by this classification, Whitwell 

and colleagues investigated the grey matter atrophy patterns of these neuropathologically 

defined subtypes and found good spatial agreement between the two (Whitwell et al., 2012). 

Although other groups have tried to assess AD heterogeneity using neuroimaging (Shiino et 

al., 2006; Karas et al., 2007), the study by Whitwell et al (2012) was the first to use structural 

MRI to investigate AD subtypes defined pathologically with post-mortem data. One of the 

main claims of Whitwell’s study is that hippocampus to cortex grey matter volume ratio can 

be used to classify patients into the three subtypes: typical AD, limbic-predominant, and 

hippocampal-sparing AD. After these two studies, the literature seems to be divided in two 

directions. 
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4.4 BIOMARKERS  

4.4.1 Heterogeneity in MRI markers 

Some studies have focused on understanding the differences in decline and the clinical 

syndromes of the different subtypes defined by MRI, while others have studied the subtypes 

with structural imaging or did both if clinical and imaging data were available. For a complete 

review that covers the majority of published studies in AD subtypes to date you can refer to 

Habes and colleagues who summarized the findings of those studies from a methodological 

perspective (Habes et al., 2020), and Ferreira and colleagues who systematically reviewed the 

same topic from a more bio-clinical perspective and also suggested a framework for 

heterogeneity in AD (Ferreira et al., 2020). 

The studies that used structural MRI can be further subdivided in two main classes: 

• The first class can be called supervised, since the criteria for grouping the subjects into 

clusters are based on prior knowledge. Examples of this approach are the classification 

of subjects according to: post-mortem pathological features (Whitwell et al., 2012), 

ratio of neuroimaging features such as hippocampal to cortical ROIs ratio (Byun et al., 

2015; Planche et al., 2019), atrophy scales assessed in MR images by experienced 

radiologists (medial temporal lobe atrophy, posterior atrophy and global 

atrophy)(Ferreira et al., 2017). 

• The second class can be called data-driven, and both unsupervised and supervised 

machine learning methods are used to identify homogeneous groups of subjects. The 

next lines focus on the methodological background of the data-driven methods. 

The class of studies that assessed AD subtypes with unsupervised or semi-supervised 

multivariate methods used surface or voxel-based morphometry. The advantage of these 

approaches is that, by considering all the features simultaneously, one can explore the 

multivariate dependencies between them, which is of instrumental importance for brain 

structure and function. This makes the data modeling closer to the organization of the brain, 

since we assume that dependencies do exist instead of using only a subset of features or a single 

feature of the brain and disregarding the rest of the information available. One of the attributes 

that might reduce the comparability of studies that are vertex-based to the ones that are voxel-

based, is the exclusion of subcortical regions in the case of the former analysis-type category. 

In chronological order, Noh and colleagues used agglomerative hierarchical clustering to group 

subjects with AD into different subtypes (Noh et al., 2014). The statistical problems that arise 

from the analysis of the almost 80 000 variables for a group of 152 subjects is well described 

in the clustering literature (Babu B Hari, Chandra N Subash, 2011). The same method was used 

later in 2016, in another study (Hwang et al., 2016) of the same research group, and the 

classification results of the Noh and colleagues study were used in the investigation of the 

clinical progression of the hippocampal-sparing subtype (Na et al., 2016). Nevertheless, these 

studies identified clusters of atrophy similar to the ones described by (Whitwell et al., 2012). 

The study by Dong and colleagues is a paradigm of an investigation that used more than one 
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diagnosis in the same model to reveal heterogeneity features in the patients from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI)(Dong et al., 2017). Mild cognitive 

impairment (MCI) and AD subjects were both used in the same model, which introduced an 

important bias. MCI cases that did not progress to AD might have introduced noise, which the 

statistical model has no specific features to separate and estimate. Moreover, as an example of 

a study that used both 1.5 and 3 Tesla scans, another issue might make the interpretation of the 

models hard. The introduction of a variable (fixed effect, etc.) to account for field strength 

might not be enough, because the relationship between field strengths might have a different 

sign for different brain regions. Two studies have taken into account some of the important 

issues that were mentioned above in terms of high dimensionality (Park et al., 2017; Corlier et 

al., 2018). The exclusion of subcortical regions in these vertex-wise studies did not allow 

exploring features of the covariance between hippocampus and other subcortical regions with 

the cortex. One study that should not be disregarded is the one by Varol and colleagues (Varol 

et al., 2017), where support vector machines were used for the identification of AD subtypes, 

as well as incorporating cognitively unimpaired subjects in the modeling. That study used a 

low feature number, which allowed for increased interpretability but not all the patterns that 

were found in previous studies were identified (a minimal atrophy cluster which is 

characterized by low levels of atrophy in the medial temporal lobe is not observed and the 

hippocampal sparing cluster also has extended medial-temporal lobe atrophy). This could be 

due to the small sample of the study or the inclusion of controls and MCI subjects in the same 

model as the AD patients, which might have limited the ability to identify all AD subtypes.  

4.4.2 Heterogeneity in other imaging markers 

The pathophysiological processes in AD are not limited to structural brain images. In 2020, 

two systematic reviews summarized the current findings in the AD heterogeneity field (Ferreira 

et al., 2020; Habes et al., 2020). Different imaging modalities such as DTI, Tau PET and 

amyloid-PET studies have shown some interesting preliminary results. Sui and colleagues, in 

a sample of 48 AD dementia patients from the ADNI cohort found three latent microstructural 

integrity factors (temporofrontal, long fiber bundle including the corpus callosum and superior 

longitudinal fasciculus and parietal) with DTI imaging (Sui and Rajapakse, 2018). Amyloid-

PET has not shown very heterogeneous patterns so far (Jeon et al., 2019). Tau PET has been a 

very interesting and rapidly evolving biomarker. In one study from the Mayo Clinic cohorts, 

three clusters of dementia and MCI patients including mediotemporal, temporoparietal and 

frontal patterns of Tau in a sample of 86 individuals in total are reported (Lowe et al., 2018). 

In another study with data from the same cohorts, a minimal, a more cortical, and a more diffuse 

pattern of tau were identified (Whitwell et al., 2018a). The clusters of patients with higher 

cortical tau uptake were also reported to have the lowest prevalence of APOE e4 allele carriers. 

Finally, a study by Vogel and colleagues in 2020 showed four patterns of tau accumulation 

including limbic predominant and mediotemporal sparing patterns as well as posterior and 

lateral temporal patterns (Vogel et al., 2020). This study included predominantly preclinical 

AD, and therefore it is hard to compare its results with the findings of Murray and colleagues 

(Murray et al., 2011). 
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4.4.3 Heterogeneity in CSF markers 

Under the AD dementia diagnosis, some heterogeneous patterns of CSF markers were also 

identified, showing that extreme variability can also be identified in non-imaging data (Duits 

et al., 2021). More specifically, a study of a large group of patients diagnosed with AD 

dementia or AD dementia with Lewy bodies showed that five groups of different CSF 

(ubiquitin, tau, 𝐴𝛽) exist within AD: low 𝐴𝛽, high incidence of APOE e4 carriers, and late 

dementia onset; low 𝐴𝛽, high tau and early dementia onset; low 𝐴𝛽, high tau, high ubiquitin, 

recent dementia diagnosis; high 𝐴𝛽 and recent dementia diagnosis; low 𝐴𝛽 late dementia onset 

and included most of the AD with Lewy bodies cases (Iqbal et al., 2005). A recent study based 

on CSF proteomics and unsupervised analysis has identified three clusters of AD dementia 𝐴𝛽 

positive patients including a group with high neuronal hyperpasticity and high beta-site 

amyloid precursor protein cleaving enzyme 1 (BACE1) levels (largest cluster in the sample), 

an innate immune activation group and a group with low BACE1 levels and blood brain barrier 

dysfunction (Tijms et al., 2020). 

 





 

 27 

5 STATISTICAL METHODS AND APPROACHES 

5.1 UNSUPERVISED APPROACHES 

Since the focus of this thesis is the assessment of heterogeneity in AD, unsupervised learning 

is the main tool that we use to understand the different cross sectional and longitudinal patterns 

of disease imaging biomarkers (all patients have the same theoretical disease label). 

Unsupervised learning is the branch of data analysis that facilitates, 1) clustering and 2) 

association analyses. The word unsupervised is intended to indicate that the dataset under 

assessment has no target or so-called response variable. As the exact opposite to supervised 

learning (regression or classification), this type of analysis aims to find a response vector (put 

observations into classes), so that similar observations fall into the same class. In this review I 

will focus on clustering analysis. A cluster is a “collection of objects which are similar between 

them and dissimilar to other clusters objects” (Jiawei Han, 2001). The similarity between 

observations can be calculated with a distance measure. The selection of the distance measure 

is very important and affects the clustering result. Different types of variables will need 

different types of distance measures if we desire meaningful clusters. Popular measures of 

distance are Euclidean distance, Mahalanobis distance and Manhattan distance. 

Clustering can be subdivided into two branches, distance-based and model-based. 

• Distance-based clustering explicitly uses some distance measure to define distance and 

then an iterative algorithm is applied to optimize a criterion, which aims to minimize 

the within cluster distances of observations (intra-cluster) and maximize the between 

cluster distance of observations (inter-cluster) (Figure 3). Popular methods include the 

k-means and hierarchical clustering methods. 

• Model-based clustering uses statistically defined distributions to describe the clusters. 

That is, the clusters are assumed to have the shape of a distribution. In this way, we can 

characterize a cluster if we know the parameters that describe its distribution. 

Thereafter, clustering turns into a problem of parameter estimation and common 

likelihood approaches can be utilized to find clusters. A famous model-based clustering 

approach is the Gaussian mixture model clustering. In this model, we predefine the 

number of clusters that we want and the optimization procedure will find the means, 

standard deviations of the Gaussian clusters and also the probabilities of each 

observation belonging to any of the clusters (the clustering part). Different clusters 

might have different shapes. Gaussian clustering can help to identify their shape with 

the estimation of covariance between the variables. Distance is also used in model-

based clustering during the model optimization process. 
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5.1.1 Clustering in high dimensional data. 

The rapid growth of data availability, especially with new applications in bioinformatics and 

neuroimaging, has brought the data analysis community to the fore of a new challenge, called 

high dimensional data analysis. Here I refer to wide datasets that include many more 

measurements (variables) than observations. In the context of neuroimaging, an example 

vertex-wise study might result in more than three hundred thousand variables that correspond 

to cortical thickness measures and 100-200 subjects. This will result in a dataset where the 

variables are thousand times more than the observations. The specification of distance 

measures for high dimensional data is a challenging task and a topic of ongoing research (Babu 

B Hari, Chandra N Subash, 2011). Some of the issues arising from an analysis in these datasets 

are listed here:  

• The clustering tendency will decrease with the increasing amount of noisy variables. 

• As the number of attributes or dimensions increases, the distance measures become 

increasingly meaningless and the empty space (dimensional neighbourhoods with no 

observations) increases exponentially. The resulting clusters tend to be equidistant from 

each other (Aggarwal et al., 2001). 

Some of the ideas behind the engineering of high dimensional clustering methods include 

(Babu B Hari, Chandra N Subash, 2011): 

• Dimensionality reduction: Projection methods that effectively reduce the initial 

dimensions of the dataset. This leads to a dataset representation in a dimension much 

lower than the initial one, where clustering will not suffer from optimization issues. 

Principal component analysis (PCA) is such a method. 

• Subspace clustering: Clustering that effectively discards variables or reduces the 

importance of some variables. This method also leads to a more manageable dataset in 

terms of clustering. The optimization searches for dimension neighbourhoods where 

the data “live”. 

• Bayesian modeling. In terms of model-based clustering, Bayesian modeling can 

introduce bias to the estimation of the cluster parameters. In this way we can explicitly 

add power to the statistical parameters so that we can increase the information provided 

to the clustering algorithm from a study sample perspective. 

A number of models have been proposed in the literature to cluster data referred to as n<<p 

(number of observations is much lower than the number of parameters)(Laurent. Bergé, 

Charles. Bouveyron, 2012). 

5.1.2 Longitudinal clustering: Ideas and models 

Longitudinal data clustering refers to the clustering of observations/subjects where each or 

some of the variables are measured repeatedly over time. Subjects with similar trajectories for 

each variable’s measurements over time are selected to be clustered together. This will 

eventually yield to homogeneous sub-populations in terms of trajectories. Different methods 
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were proposed in the literature, including model-based classification based on mixture models 

(models that have both fixed and random effects) (James and Sugar, 2003; Luan and Li, 2003; 

Komárek and Komárková, 2013, 2014) variants of k-means (Tarpey and Kinateder, 2003; 

Genolini et al., 2013, 2016), and PCA like methods (Greven et al., 2010). These methods use 

similarity like cross sectional data analysis. However, in most of the available longitudinal 

clustering algorithms in contrast to cross sectional clustering two subjects are considered 

similar: 

• If they have similar values at each time point. In this way we account for local 

similarities between subjects. It is intuitive in that, 1) data with all observations for all 

the time points are needed to calculate such similarities, or 2) we define a time 

neighbourhood around which all data points should be similar in terms of their features 

(to incorporate subjects with missing time points). 

• If their trajectories shape is similar. This case can also include data that are irregularly 

sampled (Komárek and Komárková, 2013). Model-based clustering with mixed effect 

will estimate intercepts and slopes to define the shape of each subject trajectory and the 

clustering will be based on this feature. 

5.2 SUPERVISED APPROACHES 

Formally, supervised learning is the term used by the machine learning community to describe 

statistical classification and regression. This set of methods have a complementary yet 

important role in this thesis. After the investigation of potential grouping labels for patients and 

CU individuals with clustering, supervised learning was used to understand how the clusters 

that we created associate with features other than the ones used in the clustering. More 

information on the classification and regression methods that were used in this thesis will be 

provided in the section “participants and methods”. 
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6 AIMS OF THE THESIS 

The overall aim of this thesis is to utilize neuroimaging markers together with unsupervised 

statistical learning methods to define and characterize subtypes of Alzheimer’s disease (AD). 

The specific aims of the different studies included in the thesis are specified below. 

In paper I, we study subtypes of AD based on patterns of atrophy in grey matter using cluster 

analysis. Further, we describe the clinical characteristics and biomarker patterns in the different 

subtypes defined with atrophy markers. 

In paper II, we classify longitudinal atrophy trajectories, while assessing the effects of 

different confounders using Bayesian unsupervised learning in the AD subtypes defined in 

paper 1. Further we present brain atrophy maps of central tendency and dispersion through the 

same model without additional postprocessing. Moreover, we study the convergence of the 

clustering algorithm. 

In paper III, we investigate whether the previously defined subtypes are truly distinct subtypes 

or just groups of patients at different stages of AD. To do this we train a model similar to the 

one from paper 2 where trajectories of atrophy after the clinical onset of the disease are 

estimated in a large multiethnic dataset. 

Finally, in paper IV we extend our investigation to white matter and the general population. 

We explore how white matter integrity varies between groups of individuals over time and also 

its potential associations with rate of cognitive decline. Additionally, we discover differences 

between white matter integrity aging groups in terms of other pathologies (white matter 

hyperintensities and amyloid burden), cognition and demographical characteristics. 

 

 

 





 

 33 

7 PARTICIPANTS AND METHODS 

This section is devoted to the description of the cohorts used in this thesis, the inclusion criteria 

for participants in the studies, a short presentation of the statistical methods that were utilized 

and the study designs of the four papers. 

7.1 Ethical considerations 

All studies in this thesis were conducted according to the reviewed Helsinki Declaration. The 

ADNI study was conducted in multiple centers. Thus, ethical approvals were separately granted 

in each center. The AIBL study was approved by the institutional ethics committees of Austin 

Health, St Vincent’s Health, Hollywood Private Hospital and Edith Cowan University.  

AddNeuroMed is a public AD cohort collected in six sites across Europe, with ethical review 

board approval obtained by each local institution. Approval for the JADNI study was obtained 

from the local ethics committees or institutional review committees at the 38 participating 

clinical sites, including the principal investigator’s site (The University of Tokyo). The MCSA 

study was conducted in Rochester, Minnesota, and the ethical board of Mayo Clinic has 

approved the collection and analysis of the data. Informed written consent for the study 

participation was obtained from all participants/relatives at each clinical site. 

7.2 PARTICIPANTS 

7.2.1 Cohorts 

ADNI 

The ADNI is an initiative that started in 2003 and is still ongoing. It has gone through three 

phases (ADNI, ADNI GO, and ADNI 2) of data collection and renewal of its aims and selection 

criteria and now the 4th phase (ADNI 3) is ongoing. It was launched as a private public 

partnership. The overall goals of ADNI can be summarized as: to test if different imaging 

modalities together with other biomarkers of the human central nervous system, as well as 

neuropsychological criteria and clinical information can help to understand and predict 

progression from MCI to AD. However, many additional aims were added over the years and 

the accumulation of new knowledge in the fight against neurodegenerative disorders. More 

specifically, ADNI strives to reveal new sensitive biomarkers that will help to monitor disease 

progression and treatment and reduce the expenditures of clinical trials. For more information 

visit http://adni.loni.usc.edu/ 

AddNeuroMed 

AddNeuroMed is a pan-European cohort and part of the innovative Medicines Initiative 

(Funded by the EU sixth framework programme). Similar to ADNI and highly harmonized 

with it, the architects of AddNeuroMed set out to understand AD and discover sensitive 

biomarkers of disease progression. Extensive neuropsychological examination and blood 

testing was recorded for most participants, while MRI sampling was applied to a subset of 

participants (followed up for 12 months). The participating institutions that acquired MRIs 
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which were used in this thesis were the following:  University of Perugia (Italy), Aristotle 

University of Thessaloniki (Greece), University of Kuopio (Finland), King’s College London 

(United Kingdom), and University of Toulouse (France). For more information visit 

https://doi.org/10.7303/syn22252881 

JADNI 

The Japanese equivalent of ADNI was a public-private multicenter initiative that started in 

2007 to collect data from many centers around Japan under the leadership of Principal 

Investigator Takeshi Iwatsubo. Extensive neuropsychological data, MRI, and PET (glucose 

metabolism and 𝐴𝛽) were collected in more than one instance for each participant. This study 

aimed to understand similar features of AD as the designers of ADNI and AddNeuroMed but 

in the context of the Japanese populations. For more information visit 

https://humandbs.biosciencedbc.jp/en/hum0043-v1. 

AIBL 

The Australian Imaging, Biomarkers and Lifestyle study of Ageing is a large longitudinal study 

that spans from healthy aging to dementia. Its aims are similar to those of ADNI and JADNI. 

The contribution of this study in AD research is great since it adds information about the 

variability of healthy and dementia data that help to conclude the strength and generalizability 

of potential imaging biomarkers in the fight against AD. The study has assessment intervals of 

18 months, uses MRI, 𝐴𝛽 PET, blood samples, extensive neuropsychological testing, and 

lifestyle questionnaires. More information can be found in https://aibl.csiro.au/. 

MCSA 

The Mayo Clinic Study of Aging aims through the conduction of research to promote healthy 

aging, the development of prediction models for the assessment of risk for cognitive 

impairment, and the prediction and prevention of dementia. It is a community-based study 

(Olmsted County, Minnesota) and as such one of its ultimate goals is to follow up many 

individuals to identify those who will develop cognitive impairment early on and follow them 

up to understand the timeline of pathophysiological changes underlying dementia. Among 

other markers, they collect MRI (structural, functional), PET (𝐴𝛽, tau, glucose metabolism), 

CSF blood and neuropsychological data. For more information visit 

https://www.mayo.edu/research/centers-programs/alzheimers-disease-research-

center/research-activities/mayo-clinic-study-aging/overview. 

7.2.2 Studies I and II participants 

Data from ADNI and AddNeuroMed were used to address the aims of the first study (Table 1). 

Since AddNeuroMed MR protocols are harmonized in order to be used together with ADNI 

participants from both studies were pooled together (Westman et al., 2011). 
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Table 1. Demographics of ADNI and AddNeuroMed in Study I. 
 

AD CU 

N 299 328 

Female/Male 164/135 163/165 

Age* 76 (71-80.3) 74.5 (71.5-78.3) 

Years of education* 12 (8-16) 14 (11-16) 

MMSE* 23 (21-25) 29 (29-30) 

CDR global** 0.9 (0.4) 0 (0) 

ADAS word recall ** 6.32 (1.49) 3.7 (1.3) 

*median (Q1-Q3) where Q1=1st quartile, **mean (sd), MMSE: Mini Mental State Examination, CDR: Clinical Dementia 

Rating, ADAS: Alzheimer’s Disease Assessment Scale. 

The second study included a small subsample of the first study. The inclusion criteria were 

very strict to include AD patients from ADNI that were used in the first study, with no missing 

data in the time interval that was used in the study. Moreover, only 𝐴𝛽 negative in CSF CU 

individuals who were CU during all their future assessments and had no missing MRI 

timepoints (the same as the AD patients) were included (Table 2). 

Table 2. Demographics of Study II where a subset of ADNI was included. 

 AD CU  

N 72  31  

Females/Male 34/38 15/16 

Age at first visit** 76 (7.4) 74 (4.4) 

Age at disease onset* 71 (8.9) - 

Years of education * 16 (3) 16 (3) 

MMSE** 24 (1.5) 29 (0) 

CDR global* 0.72 (0.25) 0 (0) 

APOE e4 allele carrier N (%) 50 (69.4%) 3 (9.7%) 

CSF Aβ1-42* 137.38 (24) 234.11 (21) 

CSF pTau 181* 37.5 (12.6) 18 (4.45) 

ADAS word recall** 6.17 (1.43) 2.81 (0.95) 

*median (mad), **mean (sd), MMSE: Mini Mental State Examination, CDR: Clinical Dementia Rating, ADAS: Alzheimer’s 

Disease Assessment Scale. 

7.2.3 Study III participants 

For Study III, data from ADNI, JADNI, AIBL, and AddNeuroMed were used. All four datasets 

are harmonized to have similar parameters in the MRI scanners. The complete dataset was split 
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into discovery and prediction datasets for the purpose of the analysis. In the discovery dataset 

all CU individuals were 𝐴𝛽 negative, they had at least two MRI measurements and their 

cognitive status remained CU during all the available visits recorded in the four cohorts. As for 

the AD patients of the discovery dataset, they were 𝐴𝛽 positive and had at least two MRI 

measurements (Table 3). The prediction dataset included AD patients that were not 𝐴𝛽 

positive/ had no 𝐴𝛽 information/ or had at most one MRI available (Table 4). 

Table 3. Demographics of the discovery set in Study III. 

 CU AD 

 ADNI JADNI AIBL ADNI JADNI AIBL 

N 158  62  85  207  90  23  

Females/Males 77/81  34/28  40/45  116/91  38/52  10/13  

Age at first visit* 73.5 (5.7) 67.5 (5.8) 70.2 (7.4) 75.7 (7.1) 75 (8.6) 72.6 (9.9) 

Age at disease onset* - - - 72 (7.4) 73 (7.4) 72 (7) 

Education class** 3.65 (0.7) 3.15 (0.9) 2.91 (1) 3.36 (1) 2.57 (1) 2.61 (1) 

APOE e4 allele carrier*** 26 (16%) 8 (13%) 26 (31%) 155 (75%) 55 (61%) 17 (74%) 

APOE e2 allele carrier*** 30 (19%) 5 (8%) 17 (20%) 8 (4%) 4 (4%) 0 (0%) 

MMSE* 30 (0) 30 (0) 29 (1.5) 23 (3) 23 (1.5) 24 (4.5) 

CDR** 0 (0) 0.01 (0.1) 0.03 (0.1) 0.79 (0.3) 0.64 (0.2) 0.67 (0.2) 

*median (mad), **mean (sd), ***n(%), MMSE: Mini Mental State Examination, CDR: Clinical Dementia Rating, ADAS: 

Alzheimer’s Disease Assessment Scale. Education years are categorized in 4 classes (1 =< 0-8 years; 2 = 9-13 years; 3 = 13-

15 years, 4 > 15 years). 

Table 4. Demographics of the prediction set in Study III. 

 AD 

AD 
 ADNI JADNI AIBL AddNeuroMed 

N 216 168 67 120 

Females/Males 119/97 70/98 29/38 41/79 

Age at first visit* 76.4 (7.6) 76.2 (5.6) 76.7 (7.1) 76 (6.6) 

Age at disease onset* 74 (8.9) 75 (5.9) 74.9 (7.4) 72 (5.9) 

Education class** 3.26 (0.91) 2.57 (0.91) 2.5 (1.06) 1.54 (0.82) 

APOE e4 allele carrier*** 115 (53.2%) 74 (44%) 24 (35.8%) 59 (49%) 

APOE e2 allele carrier*** 85 (39.4%) 59 (35.1%) 23 (34.3%) 48 (40%) 

MMSE* 23 (3) 22 (2.9652) 22 (4.4) 22 (5.9) 

CDR** 0.81 (0.35) 0.71 (0.25) 0.84 (0.46) 1.18 (0.5) 
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Aβ positive*** 99 (46%) 16 (10%) 22 (39%) - 

Aβ negative*** 27 (13%) 14 (8%) 2 (3%) - 

*median (mad), **mean (sd), ***n(%), MMSE: Mini Mental State Examination, CDR: Clinical Dementia Rating, ADAS: 

Alzheimer’s Disease Assessment Scale. Education years are categorized in 4 classes (1 =< 0-8 years; 2 = 9-13 years; 3 = 13-

15 years, 4 > 15 years). Aβ status was assessed either with PET or CSF sampling. 

7.2.4 Study IV participants 

In Study IV a subset of the MCSA cohort included participants with repeated measurements 

DTI. In contrast to the other studies here CU, MCI, and AD were used. Table 5 includes an 

overview of the data used. 

Table 5. Demographics and baseline data of MCSA subset used in Study IV. 

 Age group at the baseline scan 

 60-70 70-80 80+ 

N 247 188 118 

Females/Males 119/128 90/98 44/74 

Age at first visit* 65.00 (3.0) 74.90 (3.7) 84.50 (4.1) 

Years of education** 16.00 (2.97) 14.00 (2.97) 14.50 (3.71) 

APOE e4 allele carrier*** 71 (29) 59 (31) 32 (27) 

APOE e2 allele carrier*** 40 (16) 32 (17) 12 (10) 

Gait speed* 121.00 (15.9) 114.00 (18.1) 100.70 (20.8) 

CU*** 230 (93.1) 161 (85.6) 95 (80.5) 

Global cognition*1 0.47 (0.8) 0.05 (1.0) -0.34 (0.9) 

Memory*1 0.45 (0.9) 0.00 (1.2) -0.36 (1.4) 

*median (mad), **mean (sd), ***n (%), CU: cognitively unimpaired, 1: cognitive functionality, normative z-values where 

higher values correspond to better cognitive score. 

7.3 METHODS 

The following section is devoted to the description of the cohorts.  

7.3.1 Diagnostic criteria 

The diagnosis criteria for dementia as well as some other key features of every cohort that were 

included in the thesis are briefly described in Table 6. We will not describe the diagnosis of 

CU or MCI since it is not vital to the studies presented here. 
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7.3.2 Neuroimaging 

The imaging markers that were used for the purpose of this thesis are listed in table 7. 

Table 7. Imaging modalities used in the four studies. 

 Study I Study II Study III Study IV 

T1 sMRI Single* Repeated* Repeated* - 

T2 sMRI - - - Repeated** 

PET - - Single** Repeated** 

DTI - - -       Repeated* 

*Main analysis, **secondary analysis 

Morphometry and image processing 

Morphometry characterizes the shape and size of the brain and its structures. Voxel-based 

morphometry (VBM) is a method that segments MRI images into different brain tissues (white 

matter, grey matter, CSF), normalizes them to a template and applies smoothing (Whitwell, 

2009). Furthermore, some brain atlas provides regional volumes (ROIs) that can be further used 

in the investigation of hypotheses. Surface-based morphometry (SBM) extracts the surface 

between CSF and grey matter and the surface between grey and WM (Dale et al., 1999; Fischl 

et al., 1999). Then we can calculate the distance between the two surfaces and estimate the 

thickness of the cortex in any region to obtain regional values of thickness. Modern software 

with user-friendly programming environments is implemented for both VBM: Statistical 

Parametric Mapping (SPM, www.fil.ion.ucl.ac.uk/spm), FSL, (www.fmrib.ox.ac.uk/fsl) and 

SBM: Freesurfer (http://surfer.nmr.mgh.harvard.edu), Brain Voyager (brainvoyager.com).  

In this thesis, we are using structural magnetization-prepared rapid acquisition gradient echo 

scans MRI (T1) as a tool, for Studies 1, 2 and 3 in our attempt to address the AD heterogeneity 

question from an atrophy perspective. More specifically, we use Freesurfer 5.3 (Study I) and 

6.0 (Studies II and III) pipelines to extract a set of volume and thickness measurements of the 

cortex and deep grey matter structures which we use later in our analyses. As it is 

recommended, we visually inspect the structural MRIs for artefacts and also the output of the 

Freesurfer pipeline for possible issues in the segmentation of the grey matter, WM and CSF. 

In Study IV, we use T2-FLAIR MRI to investigate the correlation between WM 

hyperintensities (WMH) in the aging population with groups that have different WM integrity 

trajectories over the years. 

Diffusion MR 



 

 41 

After the DTI acquisition, the data from the images were reconstructed, underwent 

preprocessing, and were debiased, denoised and the skull was stripped out (Vemuri et al., 

2018). They were further preprocessed with the FSL and BrainSuite software and finally 

diffusion tensors were fitted to extract FA and MD. Lastly, the WM Eve atlas was applied to 

the data to extract regional values (Poulakis et al., 2021). After some cleaning for voxels that 

mostly represented air or CSF, ROIs were used in further analysis. In this thesis we used only 

FA measured by diffusion tensor imaging (DTI) at a ROI level, to assess longitudinal 

heterogeneity in the integrity of WM tracts in cognitively unimpaired and demented elderly 

individuals (in Study IV). 

Other markers 

𝐴𝛽 PET was used to quantify 𝐴𝛽 pathology in Studies III and IV. Based on standardized uptake 

value ratios for AV45 (florbetapir), PiB (Pittsburgh compound B), and FBB (florbetaben) PET, 

𝐴𝛽 positivity (dichotomized variable) was established in Study III (Table 6). In Study IV 𝐴𝛽 

was used as a continuous measure to quantify associations with WM tracts and WM integrity 

clusters of individuals. CSF from Aβ was used as a continuous variable in Study II and as a 

dichotomous variable in Study III (Table 6). 

7.3.3 Analyses preceding the main modeling. 

Before the main analysis we applied transformations of the data so that our results were not 

confounded by batch effects related to specific cohort sampling and design biases. In Study I, 

the data from ADNI and AddNeuroMed were corrected for the effects of age, sex, education, 

and estimated intracranial volume (eTIV). We utilized the residual method, assuming a linear 

effect of the aforementioned confounders in ROI volumes (Voevodskaya et al., 2014). In Study 

II, we accounted for the effects of age, sex, years of education, eTIV, and baseline CSF values 

of pTau181 and 𝐴𝛽1−42. Moreover, in Study II, z-values were calculated for the AD patients 

for CU brain aging, based on a follow-up time matched sample of CU individuals. In Study IV 

a similar approach was followed where all data were z-value transformed based on the first 

visit of each participant. Confounders that we accounted for during the main analysis in Study 

IV included APOE e4 carriership and sex. Age was not accounted for since it was the main 

variable of interest around which the study design was tailored.  

Study III has the most complicated design of data pretreatment among the four studies. A 

sample of 𝐴𝛽 negative CU individuals from three cohorts was used to estimate mixed effect 

models where ROI brain data were used as dependent variables, age was used as fixed effect 

and cohort assignment was used as random effect (together with individual specific random 

effects). Through these estimations we managed to acquire a mean value of healthy anatomy 

at a given age and cohort as well as the variation around this mean. We also managed to predict 

within and between cohort variabilities. For each AD patient and each brain ROI from the 

discovery and prediction cohort of Study IV, a specific atrophy value corresponding to his/her 

age and cohort was subtracted and the result was divided by the model’s standard deviation. 

The resulting value reflects the number of standard deviations below the normative CU value 
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for a specific cohort and the age to which the participant’s brain data corresponds. In other 

words, the question that we answer through this pre-treatment is “how much is the atrophy 

caused by the disease and not by cognitively healthy anatomical aging or cohort?”. 

7.3.4 Unsupervised 

The main methodological part of the four studies consists of clustering algorithms of variable 

difficulty. In Study I, random forest was used to understand the similarity of brain atrophy 

between pairs of AD patients in our cross-sectional dataset. Although the same statistical model 

was utilized in the other three studies (II, III and IV), the methodological differences between 

their designs are substantial, and the interpretations of the results in the three studies are 

completely different. In this section, a short presentation of the methodological designs of each 

study will reveal their similarities and differences. 

Study I 

The main features of this study include its cross-sectional nature, the data used in the clustering 

(Table 1), and the atlas that was applied to the sMRI (Destrieux et al., 2010) data in order to 

consider both sulci and gyri in the model. 

Figure 1. Flowchart of Study I. 

 

The study flowchart (Figure 1) shows that after correction for confounders (see section 7.3.3), 

the next step is the calculation of a similarity matrix trough the random forest method. Random 

forest is no more than an ensemble classifier that consists of several classification and 

regression trees (CART). In the case of clustering, random forest turns into a classification 

model that aims to classify correctly between artificial data (class 1) and the data that we feed 

it with (class 2)(Shi and Horvath, 2006). If the classification is successful, this means that the 

data have an interesting covariance that also makes them potentially clusterable. The similarity 

(proximity) matrix that is produced by random forest informs us on how similar an observation 
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(patient) is to any other observation, considering the brain volumes with which we provided it. 

Then, multidimensional scaling (MDS) summarizes the similarity matrix into few components. 

This is where all the dataset is reduced to a 2D/3D scatter plot that resembles a map where each 

patient is close to another patient if their brain patterns are alike and far away if their brain 

patterns are completely different. A allegory to better understand how MDS works follows: 

imagine that we have a matrix where the kilometric distance of any capital city of Europe to 

any other capital city of Europe is recorded. If we calculate the MDS of this distance matrix 

and then plot it, an approximate map of Europe will be produced. 

Clustering is applied to the reduced data (MDS components) and the number of clusters is 

established. After that step, voxel wise maps for the comparison between each cluster of AD 

patients and the group of CU individuals was produced for the purpose of our analysis. 

Study II 

In Study II our efforts were focused on understanding how longitudinal clustering works and 

adapting it to brain atrophy data. 

Figure 2. Flowchart of Study II. 

 

The design of the study was established so that there would be no additional need for analysis 

to visually assess cluster differences post-clustering as in Study I. The longitudinal raw 

thickness (cortical) and volume (subcortical) data of the AD patients were z-transformed with 

a CU group as a reference level of atrophy on which the mean and standard deviations were 

based (Table 2). Subsequently, fixed and random effects as they were described in section 7.3.3 

were added. 

The model that was used attempted to reconstruct patient’s brain atrophy trajectories given a 

small set of available timepoints and is described in broad terms in section 5.1.2. To increase 

the chances of a successful trajectory reconstruction, the similarity of patients through 
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clustering was also estimated. Through the sequential procedure where the trajectories of 

patients and the patient’s assignments into clusters were estimated, we managed to estimate 

trajectories for each patient by comparing him/her with other patients that fell into the same 

cluster. The ultimate goals of the algorithm were to calculate the chances for each patient to be 

in each cluster and to estimate cluster atrophy trajectories over time. 

Clustering of each patient can be achieved in two different ways: 

• The first method involves the recall of all the simulated chances that a patient belongs 

to each cluster. Then the average chance that a patient belongs to a cluster is calculated. 

The cluster to which the patient is allocated is the one to which the patient has the 

highest average chance to belong to. This is called the maximum probability rule. This 

method disregards clustering uncertainty that can be calculated with Bayesian methods. 

• The second method utilizes the highest porterior density (HPD) credible intervals 

(intepreted as confidence intervals in frequentistic statistics) of the distribution that 

assesses the probability that a patient belongs to any of the clusters. For example, in a 

three-cluster solution a patient will have three HPD intervals, where each one will 

inform us on how well he or she is bunched to each cluster. If none of them shows high 

chances of allocation (for example the HPD takes values higher than 50%), then our 

certainty on the patient cluster assignment is low. 

Figure 3. Longitudinal data presentations under three different timescales. 

 

Three approached for modeling longitudinal AD data. In a), the timepoint approach (green) which is commonly used; b) disease 

duration approach; c) age as a timescale approach. All data are normalized for the effects of aging and cohort. 
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The algorithm that we used (Komárek and Komárková, 2013) included many parameters 

requiring estimation. To achieve an acceptable learning of the parameters we decided to give 

“hints” to the algorithm, by initializing it with different potentially informative clustering 

solutions. Practically, this was achieved by initializing the cluster intercepts with 1) baseline 

data clustering including k-means and hierarchical clustering, 2) results from Study I that 

included our current knowledge on brain atrophy levels in AD, 3) uninformative default values 

of the computational packages that were used. Many models were trained (seven different 

models for 2-8 number of clusters solutions = 49 models), and their performance was assessed 

to conclude the best clustering solution. Finally, fitted values were calculated to visually assess 

the average atrophy profile for each cluster. Moreover, to assess cluster-specific variance, 

dispersion fitted values were also calculated. 

Study III 

Since the main aim of Study III was to understand the effect of disease staging on the observed 

heterogeneity of AD neurodegeneration patterns, disease duration was modeled using the same 

approach as in Study II (for actual data used see section 7.2.3). However, cohort time point in 

Study II was not used here. Instead, the time from clinical dementia onset was used as random 

effect. This introduced a complete change in the methodological approaches of Studies I and 

II. In those studies, for the sake of simplicity, we assumed that disease duration is a common 

linear population effect for all AD patients. In Study III we changed our methodological 

approach and modeled disease trajectories independently and non-linearly for each potential 

neurodegeneration trajectory. Our approach was motivated by the preexisting knowledge that 

some dementia patients have more aggressive disease course than others. The timescale of the 

model that was trained for the purpose of Study III informs us on how atrophy evolves from 

clinical AD onset and onwards. For a very good methodological presentation on how different 

timescales can affect atrophy pattern estimations, the reader should read a recent study by Dicks 

and colleagues (Dicks et al., 2019). 

The differences between three timescales in modelling longitudinal atrophy data is presented 

in figure 3. An example of the timepoint approach that was used in studies I and II but with 

hippocampal atrophy data that were used in study III (table 3 AD data) shows that information 

on trajectories can be seen there too (Figure 3a, green). However, all the temporal profiling is 

lost since the assumption that age at scan or disease duration are population wide effects was 

made. Figure 3c (blue) shows how hippocampal volume reduces with age, assuming that 

disease has the same effect in all AD patients. Finally, figure 3b (red) shows hippocampal 

atrophy in AD patients over 150 months from the disease onset, assuming that age is a 

population wide effect. 
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Figure 4. Flowchart of Study III. 

 

 

Study IV 

In this study, longitudinal unsupervised learning (similar to Figure II) was used to assess 

changes in WM integrity as it can be approximated by FA in DTI. The longitudinal modeling 

of the data for the purpose of this study was different from that of Studies II and III, since a 

population and not a disease-specific sample was assessed. Looking at the DTI marker 

independently of clinical diagnosis did not allow for the use of disease duration as the main 

timescale. Instead, age at scan was chosen (Figure 3c). In this way, the resulting clusters present 

groups of individuals with differential WM aging in the population.  

Through this kind of modeling three linear trajectory alternatives are most likely to be 

discovered: a) Individuals with the average WM aging will represent the most prevalent 
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patterns of WM aging in the population; b) individuals with low WM integrity for their age and 

c) individuals with high WM integrity for their age. WM integrity can of course be 

compromised by disease and this was assessed later in the data analysis. 

Regarding nonlinear modeling alternatives, our analysis allowed for the discovery of clusters 

of patients which will show a different trajectory in one brain region that in another. This could 

mean for example that one cluster of individuals deteriorates first in frontal brain regions and 

then in posterior, while another cluster does the opposite. This modeling approach allowed for 

the discovery of new patterns that have not previously been reported in the literature where 

population-wise approaches are only present for longitudinal data (Gunning-Dixon et al., 

2009). 

7.3.5 Supervised 

Study I 

After the clustering was completed the most important variables from the random forest were 

exported and were used to predict (with a CART model) cluster allocation based on the 

clustering results. The goal of this approach was to find the most important brain regions that 

contribute to the heterogeneity in AD neurodegeneration patterns without overfitting the CART 

model. 

Study II 

Supervised analysis was not applied to the data of Study II. 

Study III 

Discriminant modeling 

To further characterize our clustering model’s ability (section 7.3.4, study III) to generalize in 

unseen data, we utilized its components to build a supervised classifier (Figure 4). Using an 

already published methodology we “turned” the longitudinal unsupervised model into a 

multivariate longitudinal discriminant model (Hughes et al., 2018). Given cross-sectional or 

longitudinal brain data of an AD patient, the new model calculates the chances that the patient 

belongs to any of the longitudinal clusters that were discovered by the longitudinal clustering 

model. Moreover, the data do not need to be included in the cohorts that were used in the 

training of the model. This feature increases the generalizability of the study. 

Graph theory 

Graph theory, a set of methodologies to differentiate properties of a network was also utilized 

in Study III. During the clustering, brain data were utilized as a network since we calculated 

output covariance matrices for cluster intercepts and slopes (random effects). To further 

understand the properties of every discovered cluster, we used these covariance matrices to 

calculate a strength measure for each brain region at a network level. Our data were 

longitudinal, so the cluster slope covariance matrix resembled patterns of atrophy over time. 
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We used one graph theory measure, node strength, for the sake of simplicity. Node strength 

equals the sum of the correlations between one brain region and any other region connected to 

it (Mårtensson et al., 2018). In that way, it summarized the extent to which one brain region 

atrophies are similar to all other regions. 

Study IV 

In Study IV, after the clustering procedure, our next goal was to understand which WM tracts 

were mostly involved in the discrimination between FA clusters. To do this we used Bayesian 

generalized linear mixed effect models with shrinkage priors (Piironen and Vehtari, 2017). We 

used these priors in order to keep only a small set of variables that were most informative for 

the discrimination between clusters. After optimizing models for all cluster combinations, an 

odds ratio system was used to eliminate the most irrelevant WM tracts. Then we combined the 

WM tracts that were important for all the models. That set of regions is important not only in 

separating FA clusters but also in understanding which regions deteriorate in aging in general.  

Finally, we focused on understanding those features that differentiate the various FA clusters. 

To do this, we used the highly discriminative WM tracts from the previous step and trained a 

multivariate multioutput model. WM tracts were used as output and demographic 

characteristics and biomarkers were used as input in the model. This model helped us to 

understand which characteristics differ between clusters over and above WM integrity. 

7.3.6 Other statistical analyses 

Other statistical analyses include a) corrections for multiple comparisons; b) conventional 

methods for the assessment of differences between groups of individuals; estimations of group 

level cross-sectional or longitudinal changes in non-imaging markers. These methods are 

included in the individual papers and they will not be described here. 
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8 RESULTS 

This section presents a summary of the most important results from each study. To make things 

clearer in terms of the literature and our findings the following terms will be used in the results 

and discussion sections. We will refer to groups of individuals found in the literature as 

subtypes of (followed by the type of marker that was assessed in the respective study); we will 

refer to the term cluster for groups discovered in the studies of this thesis; we will refer to 

pattern when trying to describe a cluster or subtype biomarker pattern. 

8.1 HETEROGENEITY IN ALZHEIMER’S DISEASE, A CROSS SECTIONAL 
PERSPECTIVE 

Heterogeneity in the clinical presentation of AD and the proteinopathies that characterize it is 

a topic of great interest because of its implications in clinical practice and in the development 

of precision medicine 

approaches for the treatment 

of AD. The analysis of sMRI 

cross-sectional data from 

north American and 

European data has shown 

that heterogeneous patterns 

of atrophy do exist under the 

diagnostic umbrella of 

dementia due to AD. We 

discovered five subgroups of 

patients with patterns of 

atrophy that are summarized 

in Figure 5. 

A cluster of patients 

characterized with little brain 

atrophy compared to controls 

was named minimal atrophy 

(MA, n ≈ 18%) (Figure 5). 

Another cluster of patients 

had temporal lobe, cingulate 

cortex, and the medial 

orbitofrontal cortex atrophy 

and was described as 

predominantly limbic (LP, 

n= 4%). Next, two clusters 

with diffuse atrophy in the cortex and subcortical regions were identified. One of them was less 

severe (D1, n ≈ 56%), than the other (D2, n ≈ 16%). Finally a cluster with predominantly 

cortical atrophy was named hippocampal sparing (HS, n ≈ 6%) to maintain the same 

Figure 5. Discovered patterns of atrophy in study I. 

 
Cortical volume patterns in different AD patient clusters. Significant 

cortical volume loss in the minimal atrophy (A), the limbic-predominant 

(B), the hippocampal-sparing (C), the diffuse 1 (D), and the diffuse 2 (E) 

clusters compared to the cognitively unimpaired individuals (at a group 

level). Higher values (yellow color) indicate stronger differences between 

groups, threshold at p = 0.001. The color bar denotes −log (p value). 
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terminology as that of the existing literature (Whitwell et al., 2012). The main brain regions 

that showed differential patterns of volumes between clusters of patients were the precuneus, 

middle occipital, superior parietal, and orbital gyri. Differences between age of onset and 

patterns of atrophy were also identified in our sample. The HS cluster included patients of 

younger dementia onset than the other clusters. 

Patients of the different clusters exhibited significantly different clinical picture and 

progression. Patients of the HS cluster showed worse baseline praxis than the MA cluster, while 

patients of the D1, D2 and HS clusters showed worse clinical progression than the MA and LP 

clusters. 

8.2 A FRAMEWORK TO ASSESS HETEROGENEOUS PATTERNS WITH 
LONGITUDINAL INFORMATION 

In Study II we assessed the ability of a Bayesian hierarchical mixture model to cluster 

irregularly sampled longitudinal neuroimaging data of AD diagnosed patients. Three main 

longitudinal patterns were identified: a typical AD pattern (same as diffuse atrophy in Study I) 

(n=47.2%), an MA (n=31.9%) and 

a HS (n=47.2%) pattern (Figure 7). 

Some patients were excluded from 

the final analysis as outliers 

(n=4.2%, clusters with fewer than 

three patients) or as patients that 

had no certain classification to any 

of the clusters (n= 4.2%, patients 

that can belong to more than one 

clusters given the highest posterior 

density intervals of the probability 

to belong in each of the clusters).  

Since in this study we assessed the 

chance that each patient belongs to 

any of the clusters, two measures 

of clustering were examined 

(Figure 6). In figure 6A patients 

are colored based on maximum 

probability classification (MDS 

components 1, 2 and 3). In figure 6B patients are colored based on HPD intervals classification. 

In comparison to figure 6A, in figure 6B we added the uncertain classification with orange 

color (Two subject from cluster 2 and one subject from cluster 7 cannot be classified to any 

cluster with high certainty). In figure 6C colors are the same as in figure 6B, but we excluded 

from the plot the HPD uncertain classification subjects: orange and the outlier clusters 7: black 

and 8: yellow. Finally, in figure 6D the patients are colored exactly as in 6C but the MDS 

Figure 6. Comparison of maximum probability and 

HPD interval classifications of AD patients in Study II. 

 Three-dimensional representation of (Multidimensional scaled (MDS)) 

component-individual probabilities matrix (this matrix includes the 

probability of each subject being in any of the clusters). The scatter plots 

represent subjects and are colored according to the clustering based on two 

approaches, maximum probability and highest posterior density intervals 

(HPD).  
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components 1, 2 and 5 are plotted, to showcase the separation between cluster 4, 5, and 6. The 

names in parenthesis after the cluster numbers refer to Figure 7.  

The patterns of atrophy that 

we discovered in this sample 

(at baseline) are like the ones 

found in Study I. However, 

some more patterns that 

mainly show atrophy severity 

differences were found. Also, 

more years of education and 

steep cognitive decline (CDR, 

MMSE) were related to the 

HS pattern of atrophy. 

Constructional praxis decline 

was also worse for the HS 

cluster. However, we avoided 

doing intensive comparisons 

between clusters of patients 

due to the low sample sizes 

(no statistical tests are 

reported). 

On a methodological note, the 

results of the optimization 

process showed that the model 

is indeed capable of adapting 

to the sMRI data when “smart” 

initial values are provided. 

The clustering solution that 

was chosen as most 

appropriate for interpretation 

was based on initialization of 

the longitudinal model with 

the results from Study I. Thus, 

an initialization close to a local optimal (data specific) can guarantee sufficient optimization 

for the longitudinal model. 

8.3 PATHWAYS OF NEURODEGENERATION IN ALZHEIMER’S DISEASE 

In Study III the sample size and longitudinal follow-up was much greater than in the previous 

two studies. The results of this study should be interpreted from the perspective of clinical 

disease duration since this is the timescale that was used. We identified five brain atrophy 

Figure 7. Fitted values for cortical thickness and subcortical 

volumes for the different patterns of atrophy in Study II. 

 
Each row presents the median fitted values of atrophy of the six components for 

three time points (baseline, 12 and 24 months from the first measurement). Since 

the data from right and left hemisphere were considered separately, each 

component and timepoint has left/right, medial/lateral cortical and one coronal 

subcortical visualization. The data are presented as cognitively unimpaired group 

z-scores. Fixed effects: Intracranial volume = average Intracranial volume, Sex 

= female, Age = 75 years, Time from onset of dementia = 5 years, Education = 

16 years, CSF pTau 181P = 50 pg/ml, CSF Aβ1-42 = 100 pg/ml. Data are 

presented as standard deviations below the estimated mean of the cognitively 

unimpaired population. 
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trajectories that expressed the 320 𝐴𝛽 positive AD dementia diagnosed patients (discovery 

dataset, Table 3). Each patient was well clustered to one of the five patterns (Figure 8).  

Figure 8. Fitted values for cortical thickness and subcortical volumes for the different 

longitudinal patterns of atrophy from AD onset in Study III. 

 

Atrophy fitted values from clinical AD onset. Each row represents one cluster of patients with the corresponding pattern of 

atrophy. The color scale illustrates cortical thinning and subcortical volume loss compared to Aβ negative, cognitively 

unimpaired (CU) individuals. Data are w-value transformed and therefore colors represent standard deviations below the CU 

group controlled for aging. Fitted values are fixed for intracranial volume and MRI scanner field strength. 

The most prevalent cluster of patients (MA, n=59.1%) progressed slowly from no observable 

to medial and then lateral temporal lobe atrophy. The second largest cluster (LPA, limbic 

predominant atrophy, n=29.1%) showed little entorhinal atrophy in the AD onset and spread to 

the whole temporal lobe later, during the disease course. Next, a cluster similar to LPA but with 

somewhat more atrophy in the AD onset (LPA+, n = 7.2%), swiftly developed atrophy in most 

cortical areas during the disease course. A cluster with widespread atrophy at the disease course 

was also identified (diffuse atrophy, DA, n= 1.6%). Patients of that cluster showed steep 

atrophy trajectories that swiftly involved most of the cortex. Finally, an initially cortical atrophy 

cluster of patients was also discovered (HS, n = 3.1%).  

The cluster covariance matrices showed that the DA cluster had higher nodal strength than the 

MA (both intercept and slope covariance) for few medial (frontal, occipital, temporal) regions, 

while the HS had higher nodal strength than the MA (only intercept covariance matrix) for 
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some medial temporal and ventromedial prefrontal regions. Otherwise, the MA had greater 

nodal strength than the other clusters. 

The five clusters of patients 

showed differences in APOE 

e4 carriership, with the MA 

cluster showing the highest 

prevalence of carriers while 

the HS showed the lowest. 

Moreover, patients of the 

LPA+ and HS cluster had the 

highest premorbid 

intelligence (cognitive reserve 

proxy) and showed the 

steepest decline in MMSE 

over time across the whole 

sample. AD specific 

neuropsychological testing 

showed that patients of the HS 

cluster presented with worse 

language and praxis skills, 

while patients of the LPA+ 

cluster showed worse orientation at the AD onset (Figure 9). The five atrophy trajectories 

include all the AD neurodegeneration subtypes that are reported in the literature (minimal 

atrophy, limbic predominant, typical AD, hippocampal sparing). However, we managed to 

summarize all subtypes into two neurodegeneration pathways, a cortical and a mediotemporal 

one. The MA, LPA, and LPA+ clusters belong to the mediotemporal pathway (although they 

have different atrophy dynamics) and the HS cluster belongs to the cortical one. As for the DA 

cluster, we cannot conclude its pathway since we “observed” the patients in a disease stage 

when atrophy was already prominent. 

8.4 WHITE MATTER HETEROGENEITY IN THE AGING POPULATION 

In Study IV our investigation of heterogeneity in WM aging yielded four distinct clusters of 

individuals. The best solution in terms of quality criteria included only two patterns but that 

solution separated the sample into low and high FA patients (marker severity separation). This 

solution was excluded since our initial goal was to understand if non-linear WM integrity 

patterns with spatially different FA distribution exist in the population. The next best solution 

divided the sample into four clusters with evident differences in longitudinal and spatial FA 

distributions which was further interpreted. Two approaches (maximum probability rule and 

HPD intervals) were used to address the clustering allocation issue (section 7.3.4, Study II). 

The HPD intervals method has shown that several individuals did not get well clustered to any 

of the four clusters. However only a few individuals had a high chance of being clustered in 

Figure 9.  Cluster specific cognitive trajectories after the 

clinical onset of dementia in Study III. 

 

The trajectories are estimated with mixed effect models to account for intra 

subject and cohort variability. MMSE: Mini mental state examination; ADAS: 

Alzheimer’s disease assessment scale 
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very different clusters which implies that the trained model represents the whole sample 

(Figure10). 

Figure 10. Cluster–subject probability classification in Study IV. 

 

The individual-cluster matrix was visualized with the MDS method. Each corner of the 3D pyramid represents one cluster. 

The closer a dot is to a corner, the more certain a classification is. More individuals fall between clusters 1 and 2 than clusters 

1 and 4 which means that the latter clusters represent very different WM tract patterns. 

In order of prevalence, cluster 1 (45.5%) had relatively spared WM tracts at baseline (60 years 

of age), while its longitudinal progression was the slowest across the sample (healthy WM 

agers).  

Cluster 4 (21%) showed very low baseline FA (Figure 11). It also reached the lowest values of 

the sample at 90 years of age. Clusters 2 (15.5%) and 3 (18%) presented with intermediate WM 

integrity profiles although some prominent differences existed between them. Cluster 2 started 

at baseline with FA values lower but close to cluster 1. Over time and especially after the age 

of 75 this reduced in FA significantly. Conversely, cluster 3 started with spatially variable FA 

(low FA in internal capsule but high in many other regions). Over time cluster 3 showed FA 

decline rates similar to cluster 4. A fine difference between clusters 2 and 3 is that cluster 3 

ended up with very low FA values in the splenium of the corpus callosum, while cluster 2 

declined more in anterior tracts over time. The cluster specific cognitive profiles followed the 

trends of WM integrity, with cluster 4 occupying the worst baseline values and cluster 3 

following it, especially in cognitive decline rates. As for biomarkers of WM health and 

amyloidosis, WMH developed faster in clusters 2, 3, and 4 than in cluster 1 and amyloid load 

was not significantly different between clusters. Some WM tracts including the anterior internal 

capsule, posterior corona radiata, and genu of the corpus callosum were strong discriminants 

between the identified WM clusters. 

 



 

 55 

Figure 11.  Main findings in Study IV. 

 

Horizontal planes of fitted FA values (tract and region specific) per cluster, corrected for APOE status and sex at different 

ages (left panel). Relationship between cluster WM intercepts and slopes where circle diameter is proportional to cluster 

frequency in the sample (right top panel). Purple to red color spans higher to lower FA z-values, respectively (right bottom). 
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9 DISCUSSION 

This thesis was an effort to combine different statistical methodological approaches with 

neuroimaging data of several types to shed light on the heterogeneity of the most common 

cause of dementia, Alzheimer’s disease (AD). This section will focus on the connection 

between the four studies of this thesis in terms of aims, methods and results. 

In a recent study, Jack and colleagues suggested a new diagnostic framework for AD, that is 

based on the knowledge that we have about the existence of pathophysiological changes in the 

triad of AD, amyloid, tau, and neurodegeneration (AT(N))(Jack et al., 2018). It is clearly stated 

in their manuscript that this framework does not aim to replace the clinical diagnosis but more 

focuses on the use of pathophysiological markers when they are available to increase the 

certainty of correct disease classification. Nonetheless, it introduces a new perspective to the 

diagnosis of AD where the typical AD clinical presentation is not the most important feature. 

In Study I we showed that heterogeneous patterns of neurodegeneration can be found even 

within the amnestic presentation of AD. This means that heterogeneity in AD is not only 

clinical, in the sense that the amnestic versus non-amnestic AD presentations will define their 

neurodegeneration pattern.  

Going back to the main results of Study I, all AD patients had predominantly memory deficits. 

However, our unsupervised classification based on cross-sectional brain atrophy, showed that 

some clusters of patients had a pattern of atrophy that was not “typical” for AD, coupled with 

some specific differences in cognitive status from most patients (who were grouped in other 

clusters by our analysis). This observation leads me to the speculation that in AD, a patient’s 

specific atrophy pattern is usually coupled with region-specific cognitive deficits that are hard 

to disentangle from the main memory component that is usually observed, since the memory 

component is so prominent that it takes over in the diagnostic procedure. An example from our 

results is that some patients had clear memory deficits, but also deficits in praxis (Koedam et 

al., 2010; Whitwell et al., 2012; Lam et al., 2013; Park et al., 2017; Young et al., 2017). This 

group of patients showed excess parietal lobe atrophy (hippocampal sparing, HS) and less 

hippocampal atrophy than another group with a more typical AD pattern of atrophy (Ferreira 

et al., 2020; Habes et al., 2020). In Study I, we also found a cluster with very subtle brain 

atrophy (minimal atrophy, MA) in comparison to the other patients. That group of patients was 

indeed diagnosed with AD, but the signature atrophy of AD had not fully developed at the time 

that they were assessed (Ferreira et al., 2017; Habes et al., 2020).  

Murray and colleagues investigated the distribution of tau in neuropathologically defined AD 

patients with at least NFT Braak stage IV. The results showed that from a NFT distributional 

perspective, three groups of patients exist: a group with more tau tangles in the cortex than in 

the hippocampus (HS), a group with the opposite trend (Limbic predominant, LP) and a group 

with high proportions of tangles both in the hippocampus and cortex (Typical AD) (Murray et 

al., 2011). Those data were correlated with the atrophy that the patients had antemortem and 

the patterns were similar in terms of atrophy distributions at group level (Whitwell et al., 2012). 
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Those atrophy subtypes were reported in numerous studies (see (Habes et al., 2020) for a 

review). They also suggested that the hippocampus to cortex (specific regions, not all cortex) 

atrophy ratio will help to separate neuropathological subtypes. From a neuropathological 

perspective, the three groups describe the sample of Murray and colleagues well. However, 

patients can be at any disease stage when observed antemortem. Therefore, it is possible that 

they may not have a fully developed atrophy signature (Whitwell et al., 2012) for any of the 

neuropathological subtypes described by Murray and colleagues. As a result, the MA cluster 

(Ferreira et al., 2020) of patients cannot be separated clearly from the typical AD with the ratio 

of hippocampus to cortex. This brings into light the issue of disease staging when assessing 

potential biomarkers of AD patients during life. How can we understand and order patients in 

terms of which disease stage they belong to (in each potential biomarker), so that we can 

increase our knowledge about the disease pathophysiological heterogeneity antemortem? This 

was the question that we focused on in Studies II, III, and IV of this thesis. 

Considering that patients can be at any stage of the disease when we sample their data, we 

decided to focus on understanding how a research design that incorporates such data can be 

modeled statistically. In Study II, we altered some features from Study I but deliberately kept 

some others unchanged. The main difference between Studies I and II is that the later was more 

methodological. The focus was on the development of a pipeline that would help us utilize 

longitudinal data to understand AD without losing too much information from the data. 

Moreover, we wanted a model that is appropriate for the data in question in order to avoid 

methodological pitfalls of previous studies in the AD literature (Feczko et al., 2019). The main 

features that we changed from Study I when developing Study II were the inclusion of 

longitudinal data, z-value transformation to account for aging in atrophy data (the exact same 

timepoints from the ADNI study design were used both for CU individuals and AD patients), 

the reduction of the sample to a very restricted dataset that had 𝐴𝛽 and tau from CSF 

biomarkers and the exact same timepoints. However, we kept the timescale of Study I to be 

able to directly compare the longitudinal with the cross-sectional results, without unrealistic 

assumptions. The results of Study II are not very far from those of Study I, though we could do 

more evidence-based longitudinal interpretations. At baseline we identified all the atrophy 

patterns that were found earlier whilst some finer atrophy profiles were also captured. For 

example, the HS pattern of atrophy was expressed in two forms, a late and an early clinical 

onset one. The diffuse atrophy pattern was expressed in three different forms of severity instead 

of two in Study I. I reserve myself from further interpretations of Study II due to the small 

sample size, as the study was mainly a proof of concept. It is of great importance to stress that 

both Studies I and II were built on a methodological assumption that has been utilized by many 

computational studies in AD up until now (Peng et al., 2016; Zhang et al., 2016; Dong et al., 

2017; Ferreira et al., 2017; Fiford et al., 2018; Poulakis et al., 2018). That is, the duration of 

AD has the same effect in the population. This is not an assumption that is mentioned in the 

studies but taking a closer look at the analyses that are done in the field of AD heterogeneity 

they show that disease duration (or the estimated time that has passed from the AD clinical 

onset) is considered to be a population effect that the studies account for (Peng et al., 2016; 
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Zhang et al., 2016; Dong et al., 2017; Ferreira et al., 2017; Fiford et al., 2018; Poulakis et al., 

2018). I speculate that the reason that most of the studies in the field find common group level 

patterns of atrophy is because we tend to simplify our analyses with that assumption. Some 

other studies do not even consider disease duration as a factor that may bias the results (Noh et 

al., 2014; Byun et al., 2015; Dong et al., 2016, Gamberger et al., 2016a; Hwang et al., 2016; 

Na et al., 2016; Park et al., 2017; Risacher et al., 2017; Varol et al., 2017; Sui and Rajapakse, 

2018). Since we have few published studies (in the field of AD heterogeneity) on the effect of 

the disease duration in the different AD atrophy subtypes apart from the common finding, that 

EOAD patients tend to have a more aggressive disease course (Mendez, 2017), we normally 

assume the effect to be a fixed effect. Our lack of knowledge on biomarker-specific trajectories 

during the disease course for every AD subtype, is the result of longitudinal data absence in the 

past studies (2010 until approximately 2020)(Ferreira et al., 2020; Habes et al., 2020). 

Nowadays, many cohorts all around the world gather data systematically that can show the 

course of atrophy for each AD patient on a whole brain level. Based on the availability of those 

systematically collected MRIs, we decided to approach the aims of Study III from a different 

perspective namely, where the disease duration would be the main feature of interest. The 

collection of longitudinal MRI data from four continents led us to that study (Ellis et al., 2009; 

Saykin et al., 2010, Iwatsubo et al., 2018b; Birkenbihl et al., 2020). We utilized the 

methodological approach of Study II but edited the pipeline in such a way that the aging effect 

would be clearly accounted for and the disease duration would be the main timescale of the 

model. In Study II the patient’s data were adjusted so that they would be expressed as z-values 

corrected for the decline in volume and thickness due to aging (slope of atrophy in CU aging). 

The aging effect itself (for example, how much the specific brain region average atrophy is at 

the age of 70 years in the healthy population), was considered to be a fixed effect in the 

longitudinal clustering model that included the AD patients. To improve the methodology and 

make a strict model that would account for the aging effect, we calculated regional-specific 

mixed effect models adjusted for cohort (ADNI, JADNI, and AIBL), that estimated atrophy at 

any age after 55 in Study III. In that way we answered the question, “what is the average 

regional atrophy in the brain of an 𝐴𝛽 negative CU individual at a specific age?”. Given those 

estimations, we calculated AD patient-specific z-values corrected for the aging effect. This 

methodological difference between Study II and Study III became evident when we calculated 

cluster specific atrophy maps. For example, in Study II, the cluster specific atrophy map of the 

MA cluster shows the patterns of atrophy at the first timepoint (corrected linearly for aging). 

On the other hand, in Study III the same atrophy map for the MA cluster corresponds to the 

disease onset estimated atrophy pattern. The two images have different atrophy patterns, and 

they are not interpreted in the same way. Dicks and colleagues show how different anatomical 

patterns yield from different timescales in AD (Dicks et al., 2019). Regarding the disease 

duration feature, this is a variable that added a longitudinal sense of timing in the study of AD 

subtypes.  

We are aware of the drawbacks that the AD diagnosis as a time reference may have. Sex, 

socioeconomic status, location, and even more AD related issues (Mendez, 2017) may 
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compromise the accurate estimation of the dementia due to the AD diagnosis event. Other 

variables, such as age and MMSE have been used to account for the longitudinal effect in 

studies of AD patients (see also Figure 2)(Dicks et al., 2019). However, I believe that MMSE 

is not a specific marker for disease duration in AD. As for the age at scan, it could serve very 

well in the assessment of brain changes during the life of the patients. Unfortunately, both 

MMSE and age have a non-linear relationship to atrophy during the disease course. Moreover, 

if we had used them as model timescales, then it would have been necessary to add the disease 

duration in the model as a population effect (fixed), and this would have cancelled all the 

motivation for Study III. 

The results of Study III show a clearer picture than those of Study II from the point of 

interpretation. The identified patterns of atrophy are not very different, but in Study III it is 

easier to put them in the context of disease duration and connect them with the stage before the 

clinical diagnosis of AD and the neuropathological results. By this I mean that 1) since we have 

obtained estimations of the atrophy patterns at the clinical disease onset for the first time, we 

can connect our study results with the studies in prodromal AD, which is the disease stage 

before clinical AD(ten Kate et al., 2018); 2) since our estimations span from the AD onset 

onwards (eight years after AD onset), they come close to the perimortem brain “image” that 

reflects the neuropathological assessment of AD in terms of proteinopathies. We assumed that 

eight years (after the disease onset) of modeling would be sufficient, since in a very recent 

study (9230 dementia diagnosed patients) where time to institutionalization/death from 

recorded dementia diagnosis has been estimated, an average of five years of survival 

(interquartile range = 2.2 years) after diagnosis was reported (Joling et al., 2020). Moreover, 

the cognitive follow-up data that we modeled a-posteriori in Study III led us to conclusions 

about the patterns of atrophy that have the most aggressive clinical course. The inclusion of 

multi-ethnic data from AD patients allows us to draw more generalizable conclusions. By this, 

I mean that the more data from different samples we include in our models, the more variability 

we include in them. As a result, our statistical estimates (error) better approximate the true 

heterogeneity in the population. The main atrophy patterns that we observed in Study III 

included a mediotemporal pathway of atrophy that was expressed by three clusters of patients 

and was the largest in the dataset and a cortical pathway that was limited in patient number. 

The results were not unexpected if one takes the EOAD literature into account. Patients that 

expressed the cortical pathway had clearly earlier onset of dementia than the ones that 

expressed the mediotemporal pathway. This is something that we also found in Study I (HS 

cluster) and in study II (cluster HS early onset) at group level (by group level, I mean the group 

average age at clinical onset of dementia). The difference is that in Study III, the early onset is 

a much clearer finding in terms of age at onset dispersion at group level. More specifically, the 

distribution of ages at disease onset of the HS cluster of patients in Study III has lighter tails 

than the respective distributions in Studies I and II. Moreover, Study III is the first one that let 

us see the estimated atrophy levels at the disease onset. If we associate the cognitive deficits 

(Alzheimer’s disease assessment scale) as they are estimated at the disease onset with the 

atrophy distribution at the disease onset, the correlations are very clear. We can conclude that 



 

 61 

atrophy development follows two main pathways in AD, namely mediotemporal and cortical 

pathways. 

As mentioned before, variability may still be present within the two pathways of atrophy. The 

results from Study II showed that two different HS patterns exist depending on the age of 

dementia onset. This result was not captured in Study I or III. I believe that this arose due to 

the longitudinal information included in the model of Study II in comparison to Study I. The 

stable atrophy trajectory of the late onset HS cluster (compared to the steep one in early onset 

HS cluster) and its lesser initial atrophy (compared to the early onset HS cluster), separated the 

two clusters. Regarding the differences between the HS clusters in Studies II and III, I believe 

that in Study III the algorithm was optimised to identify the most prominent components of 

atrophy based on disease duration and it may have overlooked the potential existence of the 

late onset HS since its signal may not be as “strong” as for the other atrophy trajectories. Be 

that as it may, it is important to state that variability may still exist within the five clusters that 

were identified in Study III. The algorithm discovered the “strongest” signal in a separation 

into five clusters, but this does not mean that clusters such as the MA (MA at baseline; n = 189 

in the discovery set and n = 313 in the prediction set) cluster are not heterogeneous within 

themselves in morphological terms. This feature is already discussed in Study I where the 

diffuse 1 cluster was the most heterogeneous in terms of atrophy patterns. Future studies may 

further investigate the patients of each cluster in Study III to understand whether more atrophy 

trajectories can be identified.  

One finding that was unique in Study III compared to the previous studies is the separation of 

the mediotemporal pathway in smooth and steep atrophy trajectories. We discovered a cluster 

of AD patients where initial atrophy was limited to the medial temporal lobe, but it developed 

very swiftly to cover all the cortex and hippocampus (in the typical AD manner). It is important 

to recognize that even within the amnestic subtype of AD (also typical in terms of atrophy), 

patients can have very different trajectories of biomarkers and clinical presentation (Vermunt 

et al., 2019).  

The connection between our findings in AD subtypes and the previous literature can be 

summarized regarding some main features of heterogeneity in AD. The age at dementia 

diagnosis (onset of clinical dementia) is a feature that has been studied since the early years of 

AD research. EOAD refers to AD patients with onset earlier than 65 years of age (about 5% of 

the AD cases), while late onset AD (LOAD) refers to AD patients with onset later than 65 years 

of age (Mendez, 2017). On a historical note, although the pathophysiological and pathological 

features of AD and senile dementia were similar, the diagnosis of dementia due to AD, was 

initially given to patients under 65 years of age (Katzman, 1976). On the other hand, the 

diagnosis of senile dementia was given to patients over 65 years of age. To connect our data 

with these features, we should use some early MRI findings that related the age at dementia 

onset with a specific sMRI signature. A study from 2007, concluded that age of onset modulates 

the cortical involvement (atrophy) in AD (Karas et al., 2007). More specifically, it was 

observed that the younger the onset of AD dementia is, the more prominent precuneus atrophy 
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is observed (Karas et al., 2007; Scheltens et al., 2017). Moving on to the progression of early 

onset cases, I have already pointed out that EOAD is related to a more aggressive disease course 

(Mendez, 2017). Moreover, a study from 2016 showed that on a group level, patients with a 

hippocampal sparing pattern of atrophy (more cortical atrophy) had a greater decline rate in all 

cognitive functions than those with typical AD or LP patterns of atrophy (Na et al., 2016). Our 

results in Study I evaluated the HS pattern and showed that it exists in the AD population with 

precuneus atrophy as the main feature. In Studies II and III, longitudinal data were added and 

showed that the HS pattern is among the most rapidly progressive atrophy patterns in AD. The 

cognitive features that were reported in the literature (Young et al., 2017; Ferreira et al., 2020; 

Habes et al., 2020) were re-estimated in all three studies (I, II, and III), and showed that patients 

that have this pattern of atrophy initially show more non-amnestic cognitive features than most 

AD patients, while their deterioration over time in all cognitive domains is among the steepest 

(observed in AD) (Scheltens et al., 2018). 

The MA pattern of atrophy observed in Studies I, II, and III, is similar to other studies in the 

literature (Habes et al., 2020). In the second and third study, this specific atrophy pattern 

occupied some time span, followed by mild atrophy development over time. This pattern was 

also observed in other MRI studies (Dong et al., 2017; Ferreira et al., 2017, Kate et al., 2018b) 

but not in the study by Whitwell and colleagues (Whitwell et al., 2012). Probably, as we discuss 

in Paper III of the thesis, this distinct pattern of atrophy reflects earlier stages of 

neurodegeneration more than a distinct AD subtype. The LPA subtype that has been identified 

consistently in the body of the literature (Whitwell et al., 2012; Ferreira et al., 2020; Habes et 

al., 2020) is, in my opinion, the hardest pattern to understand given the current published data. 

Some studies (Ferreira et al., 2017; Persson et al., 2017; Corlier et al., 2018, Kate et al., 2018a) 

like the first study of this thesis, show that this atrophy pattern is distinct in the population of 

AD and includes more patients with LOAD. In contrast, in Study III we show that this atrophy 

stage can be observed in the mediotemporal pathway of atrophy. On the other hand, Whitwell 

and colleagues have shown that this atrophy pattern correlates with the distribution of 

neurofibrillary tangles in the brain (like, or above Braak stage IV). The term LATE (Limbic-

predominant age-related TDP-43 encephalopathy (LATE): consensus working group report), 

was established by a working group in 2019 to describe the neuropathological findings that 

characterize a late life dementia with distinct stages (TDP-43 proteinopathy first in amygdala, 

then hippocampus, and then middle frontal gyrus)(Nelson et al., 2019). This consensus shows 

the clinical need to characterise a type of dementia that may include hippocampal sclerosis 

pathological findings, frontotemporal lobar degeneration, and AD genetic characteristics, and 

also an amnestic presentation similar to AD. With our atrophy data we cannot say whether the 

LPA patterns in Studies I, II, and III are pure AD as defined by Murray and colleagues (Murray 

et al., 2011) or a more mixed type as in LATE. It is of worth to say that our LPA is 

predominantly an amnestic cluster of probable AD dementia patients with slow atrophy 

progression and cognitive deterioration. Here it is important to mention that LOAD plays a 

role, since LATE and our LPA patterns of atrophy are associated with late onset dementia 

diagnosis. 
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The differences between EOAD and LOAD are of great interest since they show a source of 

variability within AD that may lead to the etiologies behind it. Two features led us to Study IV. 

Firstly, the knowledge that WM changes may occur before grey matter changes in the AD 

brain. High concentrations of 𝐴𝛽1−42 in the CSF correlate well to WM changes in DTI for 

sporadic and familial AD patients (Li et al., 2014, 2015). Regarding the sporadic AD cases, 

this correlation extended to the MCI and even subjective cognitive impairment individuals. 

Moreover, WM changes are more prominent in EOAD than in LOAD patients (Canu et al., 

2013; Caso et al., 2015; Daianu et al., 2016). In addition, these changes have been associated 

with posterior WM tracts in most studies (Canu et al., 2013; Caso et al., 2015; Daianu et al., 

2016). Driven by these results and being predominantly interested in the AD heterogeneity, we 

decided to assess WM at a population level (include CU, MCI, and dementia). We chose to 

look at the aging population instead of only AD patients, to observe the general trajectories of 

WM health and to understand which of those are more related to AD pathology and dementia 

risk even before grey matter atrophy is prominent. Study IV builds on Study II in the sense that 

the statistical pipeline used is the same, but with some changes in the study design to adapt to 

the population level study. The participants had a much greater age span than the ones in Study 

II. If we had used the timepoint timescale (visit 1, visit 2 etc) that was used in Study II, we 

would have assumed (implicitly) the population ages in the same linear manner in terms of 

WM integrity, which is not true. Moreover, age from dementia onset (Study III) was impossible 

to use since most of the participants were CU. Thus, we decided to use as a timescale for our 

longitudinal model the age at scan, and modeled between 60 and 90 years of age. With this 

timescale we managed to assess whether different WM profiles exist in the aging population, 

which includes healthy and cognitively impaired individuals. 

The results of Study IV show that four different WM trajectories can summarize the 

population’s WM integrity aging. There is a cluster of healthy WM agers that represents the 

majority of the population (cluster 1). This cluster does not remain unaffected by aging, but 

WM integrity deterioration in those individuals is limited. On the other extremity, we 

discovered a group that accounted for around 20% of the sample and showed low initial WM 

integrity and steep decline over time (cluster 4). WM integrity was clearly associated with 

cognitive status and the cluster with steep declines in FA had the highest percentage of 

cognitively impaired individuals. It is important to mention that corpus callosum was a region 

that deteriorated with aging in all individuals within our sample. Between those two clusters, 

two more WM clusters were identified. They where almost equal in sample representation and 

initial FA values. One of them (cluster 2) deteriorated similarly to cluster 1, while the other 

(cluster 3) deteriorated similarly to cluster 4. All clusters contained MCIs but the MCIs of 

cluster 3 had the steepest memory decline over time. This makes cluster 3 an interesting group 

of individuals for the understanding of the FA signature that shows increased risk of dementia 

development with affected memory as a predominant feature. Regarding the association fibers 

(brain WM fibers connecting regions of the same brain hemisphere) that are related to AD 

dementia, we found baseline differences in the parahippocampal part of the cingulum between 
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clusters, which may explain the differences in memory decline between them (Wang et al., 

2012; Ito et al., 2015). 

There are two interesting results from Study IV that may help to connect it with Studies I-III. 

Amyloid burden as it is measured by PiB PET, was not different between the clusters as defined 

by longitudinal WM integrity markers. This probably means that WM deterioration is 

associated with cognitive decline and relates to dementia but independently of 𝐴𝛽 pathology. 

I believe that dementia is a result of independent and dependent pathologies. In this special 

case it seems that 𝛢𝛽 is one pathology path and WM integrity decline is another, in the sense 

that a more aggressive WM health profile increases the risk of dementia but is not associated 

with more 𝐴𝛽 in the brain. Importantly, overall 𝐴𝛽 load is associated with FA decline, but not 

with different FA trajectories. The second interesting result that connects WM health clusters 

with the heterogeneity in AD lies in the anterior-posterior WM health gradient that we found. 

Consistent with the literature (Grieve et al., 2007; Gunning-Dixon et al., 2009), we found that 

anterior WM tracts decline more with aging than the posterior ones. This finding is in line with 

a hypothesis supported by many, that the late myelinated WM tracts decline first with aging 

and disease (Brickman et al., 2012). The interesting finding however, is that clusters 3 and 4 

had greater WM integrity decline in posterior projection and brainstem fibers than clusters 1 

and 2. Nevertheless, cluster 4 also had significant decline in anterior fibers. This makes cluster 

3 a group of individuals with a selective decline in basal-posterior fibers as well as steep 

cognitive decline. If we relate our finding to the literature where it is supported that EOAD 

patients are affected more in posterior WM regions (Canu et al., 2013; Daianu et al., 2016), 

then we can speculate that the profile of WM integrity in more atypical AD (higher percentage 

of EOAD) is probably similar to that of cluster 3 in our study (Sui and Rajapakse, 2018). Again, 

this is a population level study and direct connections with dementia other than the percentage 

of cognitively impaired individuals in each study may be farfetched. However, through cluster 

3 we may be seeing the first changes that lead to more atypical AD phenotypes or EOAD. More 

data on the progression of the patients that fall into cluster 3 may help to untangle this 

hypothesis. I believe that it is very hard to discuss the existence of different WM profiles in 

each AD subtype, since subtypes of AD may be partially associated with pathologies other than 

the ones that affect WM integrity. However, our findings in Study IV show that some 

characteristics of the heterogeneity observed in AD can also be potentially traced in WM health 

(Ferreira et al., 2018). 

Until now, in the discussion of the results of this thesis, I have not discussed anything about 

ante mortem tau glucose metabolism (FDG-PET) or tau concentration findings in PET in the 

AD heterogeneity field. More results are becoming available and every year a handful of 

studies are added to the literature. However, as mentioned above, in this thesis we focused on 

grey matter atrophy and WM integrity brain markers. Moreover, we had a strong focus on the 

developments of analytical methodologies (not statistical models) that would allow for the 

analysis of those markers. Therefore, the discussion is also focused on the above-mentioned 

features. Although we know that the correlation between tau PET, FDG-PET and atrophy is 
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close in AD, more research should be done to understand the relationship of the three markers 

in the context of disease heterogeneity.  

I take this opportunity to write a methodological note. To date, very few statistical models can 

cope with many features, such as vertex/voxel/region-based brain imaging data from more than 

one modality, or with a combination of imaging and non-imaging data. When we see 

publications with such data, only summary markers are available from each modality to reduce 

the optimization problem (Gamberger et al., 2016b; Young et al., 2017). If we try to understand 

what the assumptions and challenges of modelling full-scale data with unsupervised statistics 

are, we will most probably come to the conclusion that it is almost impossible to do so with the 

tools currently available. Therefore, I personally believe that before we set out to answer 

multifactorial questions, such as the heterogeneity of psychiatric/neurological disorders, we 

should first develop methods that can take the right input (the data of interest, even if they 

consist of thousands of variables) and acquire an output that we can interpret in depth (no black 

box models), so that we can draw biologically plausible conclusions. 

The studies of this thesis have weak and strong points depending on from which angle we 

examine them. The statistical approaches that we used to model the data in each of the four 

studies, assume theoretical conditions that may not adapt perfectly to the data. However, as in 

each statistical model that examines our world’s phenomena, assumptions need to be made for 

the models to hold their properties. We did our best to adapt the models as well as possible to 

the designs of the four studies. Moreover, we interpreted our findings according to the 

assumptions and limitations of our modeling approaches in order to reduce scientific bias. In 

the future, as we did in this thesis, we envision working on further developing our models, so 

that we can increase our adaptation to real life data. 
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10 CONCLUSIONS AND FUTURE DIRECTIONS 

In this thesis, we investigated how neuroimaging markers can help us to understand 

heterogeneous neurodegeneration processes in aging and AD. To realize this study plan, we 

employed statistical models that helped us to test the existence of subpopulations (defined with 

neuroimaging) in cohorts from Europe (AddNeuroMed), North America (ADNI, MCSA), 

Japan (JADNI), and Australia (AIBL). 

Our results help to answer some relevant questions about WM aging and the heterogeneity in 

AD. Given the amount of data that I have worked with and all the methodological approaches 

that we used, we can now say that the variability in atrophy trajectories in AD dementia is 

evident, may have different etiologies, and is predictive of future atrophy and cognition. Two 

main pathways of atrophy are expressed within AD (A cortical pathway and a mediotemporal 

pathway). These pathways converge if the disease course is long enough. Moreover, they are 

associated, among other features, with the disease onset of AD patients and their cognitive 

reserve. EOAD patients have a higher chance of following the cortical pathway, while LOAD 

have a higher chance of following the mediotemporal one. WM health introduces even more 

variability in this phenomenon, as we discovered groups of individuals with healthy and at-risk 

WM aging profiles. WM heterogeneity is not directly correlated with the accumulation of 𝐴𝛽 

in the brain of individuals, but AD heterogeneity may be a result of both traditional AD 

pathology (NFTs and 𝐴𝛽 plaques) as well as differential WM changes in the aging brain.  

Future research in AD heterogeneity should focus on assessing how markers of brain 

pathophysiology, that can be obtained during or even before the clinical dementia stage, can be 

merged with our existing knowledge in atrophy pathways. Following this scientific “trail” 

without predispositions and biases, one day we may complete the puzzle of AD heterogeneity 

and understand its underlying etiologies. 

 

 

 

 

 

 

 





 

 69 

11 ACKNOWLEDGEMENTS 

I would like to take some space here for expressing my deep gratitude to some people without 

whom this thesis would have been somewhere between “unbearable” and “impossible”. 

Eric Westman, my main supervisor, without you this thesis would not have been possible. 

Thank you for your support and guidance during the doctoral studies. Most importantly, thank 

you for your patience, for the scientific independence that you provided me with, and for being 

open minded regarding my methodological peculiarities. The environment that you have built 

in the group has supported me and the other doctoral students during our PhD trip. 

Joana Pereira, thank you for all your support from day one at KI. Moreover, thank you for 

our long scientific discussions that introduced me in neuroscience and help me to develop my 

scientific “senses”. 

Daniel Ferreira (Dani), thank you for your valuable support during the whole duration of the 

PhD. You help in the formation of my scientific hypotheses in AD during the PhD cannot be 

measured in words. 

Örjan Smedby, thank you for your support in the thesis’s studies throughout the PhD. 

Anette Eidehall, thank you for answering all my questions and supporting me throughout the 

thesis. 

Sebastian, thank you for your support. Studies of this scale wouldn’t have been possible 

without your help. 

I want to thank my friends and colleagues from the office: Gustav, Una, Ale, Olga, Nira, 

Patri, Lissett, Rosaleena, Atef, Anna (Marseglia), Anna (Canal), Anna (Inguanzo), Sofia, 

Mite, Theofani (and others). Thank you for the very interesting discussions and the 

opportunity to meet you and exchange ideas about Science and life. You are very talented 

people and I feel lucky that I met you. 

I also want to express my gratitude to some other people from the extended group neuroimaging 

group: Emilia, Farshad, Soheil, Urban, Anna, Divya, Milan, Kris, Lucia, Irene (and 

others). It’s been a pleasure discussing and getting to know you.  

Olof, thank you for the help and hospitality that you showed to me and also for the honor to 

work with you in one of your studies. 

Lars-Olof, thank you for starting this division, for your continuous support to all the group, 

and for the research spirit that you inspire us with.  

I also want to thank some people from the division and department that helped to have such a 

pleasurable environment at the office. Laetitia, Elena, Juraj, Kosta, Antoine, Mona-Lisa, 

Amit, Medoune, Lorena, Axel, Nuno, Giacomo, Hazal, Ceren, Tuan, Vesna, Agneta, Mia, 



 

70 

Dorota (and others). The discussions, lunches, conferences, department meetings and other 

forms of social interactions with you, made my life at KI a beautiful experience. 

Moreover, I want to thank some people from Mayo Clinic in Rochester, MN, USA. Prashanthi 

Vemuri, thank you for the warm welcome to your research group and the time that you spent 

to introduce me to the aging research. Robert Reid, thank you for all the help with the DTI 

data and for introducing me to diffusion imaging and tractography. Scott Squires and Scott 

Przybelski, thank you for your help with IT and data management. 

I also want to thank my family for, among other things, supporting my decisions in life and 

believing in me more than myself. Without you, this thesis would not have been possible. My 

friends, thank you for your support during my studies. Elektra, thank you for your support 

during the PhD studies and also for the cover of the thesis.  

 



 

 71 

12 REFERENCES 

Aggarwal CC, Hinneburg A, Keim DA. On the Surprising Behavior of Distance Metrics in 

High Dimensional Space. 2001. p. 420–434 

Alafuzoff I, Thal DR, Arzberger T, Bogdanovic N, Al-Sarraj S, Bodi I, et al. Assessment of 

β-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta 

Neuropathologica 2009; 117: 309–320. 

Babu B Hari, Chandra N Subash GTV. Clustering Algorithms For High Dimensional Data – 

A Survey Of Issues And Existing Approaches [Internet]. Special Issue of International 

Journal of Computer Science & Informatics 2011; 2Available from: 

https://www.semanticscholar.org/paper/Clustering-Algorithms-For-High-Dimensional-Data-

–-A-Babu-Chandra/04300c5f580b6842d508f50701437bb2d6dcf1f8#citing-papers 

Berrios GE. Alzheimer’s disease: A conceptual history. International Journal of Geriatric 

Psychiatry 1990; 5: 355–365. 

Bertram L, Tanzi RE. Of replications and refutations: The status of Alzheimer’s disease 

genetic research. Current Neurology and Neuroscience Reports 2001; 1: 442–450. 

Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of 

systematic meta-analyses. Nature Reviews Neuroscience 2008; 9: 768–778. 

Birkenbihl C, Westwood S, Shi L, Nevado-Holgado A, Westman E, Lovestone S, et al. 

ANMerge: A Comprehensive and Accessible Alzheimer’s Disease Patient-Level Dataset. 

Journal of Alzheimer’s Disease 2020: 1–9. 

Blessed G, Tomlinson BE, Roth M. The association between quantitative measures of 

dementia and of senile change in the cerebral grey matter of elderly subjects. The British 

journal of psychiatry : the journal of mental science 1968; 114: 797–811. 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta 

Neuropathologica 1991; 82: 239–259. 

Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the Pathologic Process in 

Alzheimer Disease: Age Categories From 1 to 100 Years. Journal of Neuropathology & 

Experimental Neurology 2011; 70: 960–969. 

Breitner JCS. Mild cognitive impairment and progression to dementia: New findings. 

Neurology 2014; 82: e34–e35. 

Brickman AM, Meier IB, Korgaonkar MS, Provenzano FA, Grieve SM, Siedlecki KL, et al. 

Testing the white matter retrogenesis hypothesis of cognitive aging. Neurobiology of Aging 

2012; 33: 1699–1715. 

Brown GC. Living too long. EMBO reports 2015; 16: 137–141. 

Byun MS, Kim SE, Park J, Yi D, Choe YM, Sohn BK, et al. Heterogeneity of regional brain 

atrophy patterns associated with distinct progression rates in Alzheimer’s disease. PLoS ONE 

2015; 10: e0142756. 

Canu E, Agosta F, Spinelli EG, Magnani G, Marcone A, Scola E, et al. White matter 

microstructural damage in Alzheimer’s disease at different ages of onset. Neurobiology of 

aging 2013; 34: 2331–40. 



 

72 

Caso F, Agosta F, Mattavelli D, Migliaccio R, Canu E, Magnani G, et al. White Matter 

Degeneration in Atypical Alzheimer Disease. Radiology 2015; 277: 162–72. 

Chua TC, Wen W, Slavin MJ, Sachdev PS. Diffusion tensor imaging in mild cognitive 

impairment and Alzheimerʼs disease: a review. Current Opinion in Neurology 2008; 21: 83–

92. 

Corlier F, Moyer D, Braskie MN, Thompson PM, Dorothee G, Potier M-C, et al. Automatic 

classification of cortical thickness patterns in Alzheimer’s disease patients using the Louvain 

modularity clustering method. In: Romero E, Lepore N, Brieva J, editor(s). 14th International 

Symposium on Medical Information Processing and Analysis. SPIE; 2018. p. 109750S 

Crutch SJ, Schott JM, Rabinovici GD, Boeve BF, Cappa SF, Dickerson BC, et al. Shining a 

light on posterior cortical atrophy. Alzheimer’s & Dementia 2013; 9: 463–465. 

Crutch SJ, Schott JM, Rabinovici GD, Murray M, Snowden JS, van der Flier WM, et al. 

Consensus classification of posterior cortical atrophy. Alzheimer’s & dementia : the journal 

of the Alzheimer’s Association 2017; 13: 870–884. 

Daianu M, Mendez MF, Baboyan VG, Jin Y, Melrose RJ, Jimenez EE, et al. An advanced 

white matter tract analysis in frontotemporal dementia and early-onset Alzheimer’s disease. 

Brain Imaging and Behavior 2016; 10: 1038–1053. 

Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface 

reconstruction. NeuroImage 1999; 9: 179–194. 

Damoiseaux JS, Smith SM, Witter MP, Sanz-Arigita EJ, Barkhof F, Scheltens P, et al. White 

matter tract integrity in aging and Alzheimer’s disease. Human Brain Mapping 2009; 30: 

1051–1059. 

Dartigues JF. Alzheimer’s disease: a global challenge for the 21st century. The Lancet 

Neurology 2009; 8: 1082–1083. 

Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and 

sulci using standard anatomical nomenclature. NeuroImage 2010; 53: 1–15. 

Dicks E, Vermunt L, van der Flier WM, Visser PJ, Barkhof F, Scheltens P, et al. Modeling 

grey matter atrophy as a function of time, aging or cognitive decline show different 

anatomical patterns in Alzheimer’s disease. NeuroImage: Clinical 2019; 22: 101786. 

Dong A, Honnorat N, Gaonkar B, Davatzikos C. CHIMERA: Clustering of heterogeneous 

disease effects via distribution matching of imaging patterns. IEEE Transactions on Medical 

Imaging 2016; 35: 612–621. 

Dong A, Toledo JB, Honnorat N, Doshi J, Varol E, Sotiras A, et al. Heterogeneity of 

neuroanatomical patterns in prodromal Alzheimer’s disease: links to cognition, progression 

and biomarkers. Brain : a journal of neurology 2017; 140: 735–747. 

Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing 

research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet 

Neurology 2014; 13: 614–629. 

Duits FH, Wesenhagen KEJ, Ekblad L, Wolters E, Willemse EAJ, Scheltens P, et al. Four 

subgroups based on tau levels in Alzheimer’s disease observed in two independent cohorts. 

Alzheimer’s Research & Therapy 2021; 13: 2. 



 

 73 

Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, et al. The Australian Imaging, 

Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 

1112 individuals recruited for a longitudinal study of Alzheimer’s disease. International 

Psychogeriatrics 2009; 21: 672–687. 

Feczko E, Miranda-Dominguez O, Marr M, Graham AM, Nigg JT, Fair DA. The 

Heterogeneity Problem: Approaches to Identify Psychiatric Subtypes. Trends in Cognitive 

Sciences 2019; 23: 584–601. 

Ferreira D, Nordberg A, Westman E. Biological subtypes of Alzheimer disease. Neurology 

2020; 94: 436–448. 

Ferreira D, Shams S, Cavallin L, Viitanen M, Martola J, Granberg T, et al. The contribution 

of small vessel disease to subtypes of Alzheimer’s disease: a study on cerebrospinal fluid and 

imaging biomarkers. Neurobiology of Aging 2018; 70: 18–29. 

Ferreira D, Verhagen C, Hernández-Cabrera JA, Cavallin L, Guo CJ, Ekman U, et al. Distinct 

subtypes of Alzheimer’s disease based on patterns of brain atrophy: Longitudinal trajectories 

and clinical applications. Scientific Reports 2017; 7: 46263. 

Fiford CM, Ridgway GR, Cash DM, Modat M, Nicholas J, Manning EN, et al. Patterns of 

progressive atrophy vary with age in Alzheimer’s disease patients. Neurobiology of Aging 

2018; 63: 22–32. 

Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a 

coordinate system for the cortical surface. Human brain mapping 1999; 8: 272–84. 

Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, et al. Strategic 

roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. The Lancet 

Neurology 2017; 16: 661–676. 

Gamberger D, Ženko B, Mitelpunkt A, Lavrač N. Homogeneous clusters of Alzheimer’s 

disease patient population. BioMedical Engineering Online 2016; 15: 78. 

Gamberger D, Ženko B, Mitelpunkt A, Shachar N, Lavrač N. Clusters of male and female 

Alzheimer’s disease patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database. Brain Informatics 2016 

Genolini C, Ecochard R, Benghezal M, Driss T, Andrieu S, Subtil F. kmlShape: An Efficient 

Method to Cluster Longitudinal Data (Time-Series) According to Their Shapes. PLOS ONE 

2016; 11: e0150738. 

Genolini C, Pingault JB, Driss T, Côté S, Tremblay RE, Vitaro F, et al. KmL3D: a non-

parametric algorithm for clustering joint trajectories. Computer methods and programs in 

biomedicine 2013; 109: 104–11. 

Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, et 

al. New insights into atypical Alzheimer’s disease in the era of biomarkers. The Lancet 

Neurology 2021; 20: 222–234. 

Greven S, Crainiceanu C, Caffo B, Reich D. Longitudinal functional principal component 

analysis. Electronic Journal of Statistics 2010; 4: 1022–1054. 

Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E. Cognitive aging, executive 

function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR American 

journal of neuroradiology 2007; 28: 226–35. 



 

74 

Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. 

Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. Journal of 

Clinical and Experimental Hepatology 2015; 5: 246–255. 

Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS. Aging of cerebral white 

matter: a review of MRI findings. International Journal of Geriatric Psychiatry 2009; 24: 

109–117. 

Habes M, Grothe MJ, Tunc B, McMillan C, Wolk DA, Davatzikos C. Disentangling 

Heterogeneity in Alzheimer’s Disease and Related Dementias Using Data-Driven Methods. 

Biological Psychiatry 2020; 88: 70–82. 

Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, et al. CSF 

biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical 

progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts. 

Alzheimer’s & Dementia 2018; 14: 1470–1481. 

Heneka MT, Carson MJ, Khoury J El, Landreth GE, Brosseron F, Feinstein DL, et al. 

Neuroinflammation in Alzheimer’s disease. The Lancet Neurology 2015; 14: 388–405. 

Hughes DM, Komárek A, Czanner G, Garcia-Fiñana M. Dynamic longitudinal discriminant 

analysis using multiple longitudinal markers of different types. Statistical Methods in 

Medical Research 2018; 27: 2060–2080. 

Hwang J, Kim CM, Jeon S, Lee JM, Hong YJ, Roh JH, et al. Prediction of Alzheimer’s 

disease pathophysiology based on cortical thickness patterns. Alzheimer’s and Dementia: 

Diagnosis, Assessment and Disease Monitoring 2016; 2: 58–67. 

Iqbal K, Flory M, Khatoon S, Soininen H, Pirttila T, Lehtovirta M, et al. Subgroups of 

Alzheimer’s disease based on cerebrospinal fluid molecular markers. Annals of Neurology 

2005; 58: 748–757. 

Irwin K, Sexton C, Daniel T, Lawlor B, Naci L. Healthy Aging and Dementia: Two Roads 

Diverging in Midlife? [Internet]. Frontiers in Aging Neuroscience 2018; 10Available from: 

https://www.frontiersin.org/article/10.3389/fnagi.2018.00275/full 

Ito K, Sasaki M, Takahashi J, Uwano I, Yamashita F, Higuchi S, et al. Detection of early 

changes in the parahippocampal and posterior cingulum bundles during mild cognitive 

impairment by using high-resolution multi-parametric diffusion tensor imaging. Psychiatry 

Research - Neuroimaging 2015 

Iwatsubo T, Iwata A, Suzuki K, Ihara R, Arai H, Ishii K, et al. Japanese and North American 

Alzheimer’s Disease Neuroimaging Initiative studies: Harmonization for international trials. 

Alzheimer’s & Dementia 2018; 14: 1077–1087. 

Iwatsubo T, Iwata A, Suzuki K, Ihara R, Arai H, Ishii K, et al. Japanese and North American 

Alzheimer’s Disease Neuroimaging Initiative studies: Harmonization for international trials. 

Alzheimer’s & Dementia 2018; 14: 1077–1087. 

Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA 

Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & 

Dementia 2018; 14: 535–562. 

Jack CR, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining 

imaging biomarker cut points for brain aging and Alzheimer’s disease. Alzheimer’s & 

Dementia 2017; 13: 205–216. 



 

 75 

James GM, Sugar CA. Clustering for Sparsely Sampled Functional Data. Journal of the 

American Statistical Association 2003; 98: 397–408. 

Jeon S, Kang JM, Seo S, Jeong HJ, Funck T, Lee S-Y, et al. Topographical Heterogeneity of 

Alzheimer’s Disease Based on MR Imaging, Tau PET, and Amyloid PET [Internet]. 

Frontiers in Aging Neuroscience 2019; 11Available from: 

https://www.frontiersin.org/article/10.3389/fnagi.2019.00211/full 

Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, et al. A 

conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s 

disease. Alzheimer’s & Dementia 2014; 10: 844–852. 

Jessen F, Feyen L, Freymann K, Tepest R, Maier W, Heun R, et al. Volume reduction of the 

entorhinal cortex in subjective memory impairment. Neurobiology of Aging 2006; 27: 1751–

1756. 

Jiawei Han MK. ‘Data mining: Concepts and techniques.’ 1nd ed. Morgan Kaufmann 

Publishers; 2001 

Joling KJ, Janssen O, Francke AL, Verheij RA, Lissenberg‐Witte BI, Visser P, et al. Time 

from diagnosis to institutionalization and death in people with dementia. Alzheimer’s & 

Dementia 2020; 16: 662–671. 

Jonker C, Geerlings MI, Schmand B. Are memory complaints predictive for dementia? A 

review of clinical and population-based studies. International Journal of Geriatric Psychiatry 

2000; 15: 983–991. 

Jung NY, Seo SW, Yoo H, Yang JJ, Park S, Kim YJ, et al. Classifying anatomical subtypes 

of subjective memory impairment. Neurobiology of Aging 2016; 48: 53–60. 

Kantarci K. Fractional Anisotropy of the Fornix and Hippocampal Atrophy in 

Alzheimerâ€TMs Disease [Internet]. Frontiers in Aging Neuroscience 2014; 6Available from: 

http://journal.frontiersin.org/article/10.3389/fnagi.2014.00316/abstract 

Karas G, Scheltens P, Rombouts S. Precuneus atrophy in early-onset Alzheimer ’ s disease : a 

morphometric structural MRI study. 2007: 967–976. 

Kate M, Dicks E, Visser PJ, Flier WM Van Der, Teunissen CE, Barkhof F, et al. Atrophy 

subtypes in prodromal Alzheimer’s disease are associated with cognitive decline. Brain : a 

journal of neurology 2018: 1–14. 

Kate M ten, Dicks E, Van der Flier WM, Teunissen CE, Scheltens P, Barkhof F, et al. 

ATROPHY SUBTYPES IN ALZHEIMER’S DISEASE IDENTIFIED THROUGH NON-

NEGATIVE MATRIX FACTORIZATION. Alzheimer’s & Dementia 2018; 14: P1638–

P1639. 

ten Kate M, Dicks E, Visser PJ, van der Flier WM, Teunissen CE, Barkhof F, et al. Atrophy 

subtypes in prodromal Alzheimer’s disease are associated with cognitive decline. Brain 2018; 

141: 3443–3456. 

Katzman R. Editorial: The prevalence and malignancy of Alzheimer disease. A major killer. 

Archives of neurology 1976; 33: 217–8. 

Koedam ELGE, Lauffer V, van der Vlies AE, van der Flier WM, Scheltens P, Pijnenburg 

YAL. Early-Versus Late-Onset Alzheimer’s Disease: More than Age Alone. Journal of 

Alzheimer’s Disease 2010; 19: 1401–1408. 



 

76 

Komárek A, Komárková L. Clustering for multivariate continuous and discrete longitudinal 

data. Annals of Applied Statistics 2013; 7: 177–200. 

Komárek A, Komárková L. Capabilities of R Package mixAK for Clustering Based on 

Multivariate Continuous and Discrete Longitudinal Data. Journal of Statistical Software 

2014; 59: 1–38. 

Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Clinical, imaging, and pathological 

heterogeneity of the Alzheimer’s disease syndrome. Alzheimer’s Research & Therapy 2013; 

5: 1. 

Laurent. Bergé, Charles. Bouveyron SG. HDclassif: An R Package for Model-Based 

Clustering and Discriminant Analysis of High-Dimensional Data. Journal of Statistical 

Software, Articles 2012; 46: 1–29. 

Li X, Li T-Q, Andreasen N, Wiberg MK, Westman E, Wahlund L-O. The association 

between biomarkers in cerebrospinal fluid and structural changes in the brain in patients with 

Alzheimer’s disease. Journal of Internal Medicine 2014; 275: 418–427. 

Li X, Westman E, Ståhlbom AK, Thordardottir S, Almkvist O, Blennow K, et al. White 

matter changes in familial Alzheimer’s disease. Journal of Internal Medicine 2015; 278: 211–

218. 

Lowe VJ, Wiste HJ, Senjem ML, Weigand SD, Therneau TM, Boeve BF, et al. Widespread 

brain tau and its association with ageing, Braak stage and Alzheimer’s dementia. Brain 2018; 

141: 271–287. 

Luan Y, Li H. Clustering of time-course gene expression data using a mixed-effects model 

with B-splines. Bioinformatics (Oxford, England) 2003; 19: 474–82. 

Mårtensson G, Pereira JB, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I, et al. Stability of 

graph theoretical measures in structural brain networks in Alzheimer’s disease. Scientific 

Reports 2018; 8: 11592. 

McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis 

and management of dementia with Lewy bodies. Neurology 2017; 89: 88–100. 

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis 

of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group* under the auspices of 

Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 

1984; 34: 939–939. 

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The 

diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National 

Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for 

Alzheimer’s disease. Alzheimer’s & Dementia 2011; 7: 263–269. 

Mendez MF. Early-onset Alzheimer’s Disease: Nonamnestic Subtypes and Type 2 AD. 

Archives of Medical Research 2012; 43: 677–685. 

Mendez MF. Early-Onset Alzheimer Disease. Neurologic Clinics 2017; 35: 263–281. 

Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. 

Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical 

characteristics: a retrospective study. The Lancet Neurology 2011; 10: 785–796. 



 

 77 

Na HK, Kang DR, Kim S, Seo SW, Heilman KM, Noh Y, et al. Malignant progression in 

parietal-dominant atrophy subtype of Alzheimer’s disease occurs independent of onset age. 

Neurobiology of Aging 2016; 47: 149–156. 

Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, et al. Limbic-

predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. 

Brain 2019; 142: 1503–1527. 

Noh Y, Jeon S, Lee JM, Seo SW, Kim GH, Cho H, et al. Anatomical heterogeneity of 

Alzheimer disease Based on cortical thickness on MRIs. Neurology 2014; 83: 1936–1944. 

Park J-Y, Na HK, Kim S, Kim H, Kim HJ, Seo SW, et al. Robust Identification of 

Alzheimer’s Disease subtypes based on cortical atrophy patterns. Scientific reports 2017; 7: 

43270. 

Peng G, Wang J, Feng Z, Liu P, Zhang Y, He F, et al. Clinical and neuroimaging differences 

between posterior cortical atrophy and typical amnestic Alzheimer’s disease patients at an 

early disease stage. Scientific Reports 2016; 6 

Persson K, Eldholm RS, Barca ML, Cavallin L, Ferreira D, Knapskog AB, et al. MRI-

assessed atrophy subtypes in Alzheimer’s disease and the cognitive reserve hypothesis. PLoS 

ONE 2017; 12: e0186595. 

Piironen J, Vehtari A. Sparsity information and regularization in the horseshoe and other 

shrinkage priors. Electronic Journal of Statistics 2017; 11: 5018–5051. 

Planche V, Coupé P, Helmer C, Le Goff M, Amieva H, Tison F, et al. Evolution of brain 

atrophy subtypes during aging predicts long-term cognitive decline and future Alzheimer’s 

clinical syndrome. Neurobiology of Aging 2019; 79: 22–29. 

Poulakis K, Pereira JB, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I, et al. Heterogeneous 

patterns of brain atrophy in Alzheimer’s disease. Neurobiology of Aging 2018; 65: 98–108. 

Poulakis K, Reid RI, Przybelski SA, Knopman DS, Graff-Radford J, Lowe VJ, et al. 

Longitudinal deterioration of white-matter integrity: heterogeneity in the ageing population 

[Internet]. Brain Communications 2021; 3Available from: 

https://academic.oup.com/braincomms/article/doi/10.1093/braincomms/fcaa238/6108098 

Risacher SL, Anderson WH, Charil A, Castelluccio PF, Shcherbinin S, Saykin AJ, et al. 

Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. 

Neurology 2017; 89: 2176–2186. 

Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, et al. Amyloid imaging 

results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. 

Neurobiology of Aging 2010; 31: 1275–1283. 

Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A. Tau PET 

imaging: present and future directions. Molecular Neurodegeneration 2017; 12: 19. 

Salthouse TA, Ferrer-Caja E. What needs to be explained to account for age-related effects 

on multiple cognitive variables? Psychology and Aging 2003; 18: 91–110. 

Saykin AJ, Shen L, Foroud TM, Potkin SG, Swaminathan S, Kim S, et al. Alzheimer’s 

Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, 

progress, and plans. Alzheimer’s and Dementia 2010; 6: 265–273. 



 

78 

Scheltens NME, Tijms BM, Heymans MW, Rabinovici GD, Cohn-Sheehy BI, Miller BL, et 

al. Prominent Non-Memory Deficits in Alzheimer’s Disease Are Associated with Faster 

Disease Progression. Journal of Alzheimer’s Disease 2018; 65: 1029–1039. 

Scheltens NME, Tijms BM, Koene T, Barkhof F, Teunissen CE, Wolfsgruber S, et al. 

Cognitive subtypes of probable Alzheimer’s disease robustly identified in four cohorts. 

Alzheimer’s & Dementia 2017; 13: 1226–1236. 

Schultz SA, Oh JM, Koscik RL, Dowling NM, Gallagher CL, Carlsson CM, et al. Subjective 

memory complaints, cortical thinning, and cognitive dysfunction in middle‐age adults at risk 

of AD. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 2015; 1: 33–

40. 

Shaw LM, Vanderstichele H, Knapik-czajka M, Clark CM, Aisen PS, Petersen RC, et al. 

Cerebrospinal Fluid Biomarker Signature in Alzheimer’s Disease Neuroimaging Initiative 

Subjects. Pathology 2009; 65: 403–413. 

Shi T, Horvath S. Unsupervised Learning With Random Forest Predictors. Journal of 

Computational and Graphical Statistics 2006; 15: 118–138. 

Shiino A, Watanabe T, Maeda K, Kotani E, Akiguchi I, Matsuda M. Four subgroups of 

Alzheimer’s disease based on patterns of atrophy using VBM and a unique pattern for early 

onset disease. NeuroImage 2006; 33: 17–26. 

Simon, R. P., Aminoff, M. J., & Greenberg DA. Clinical neurology. 10th ed. Lange Medical 

Books/McGraw-Hill; 2009 

Sui X, Rajapakse JC. Profiling heterogeneity of Alzheimer’s disease using white-matter 

impairment factors. NeuroImage: Clinical 2018; 20: 1222–1232. 

Tarpey T, Kinateder KKJ. Clustering Functional Data. Journal of Classification 2003; 20: 

93–114. 

Thal DR. The Development of Amyloid beta Protein Deposits in the Aged Brain. Science of 

Aging Knowledge Environment 2006; 2006: re1–re1. 

Tijms BM, Gobom J, Reus L, Jansen I, Hong S, Dobricic V, et al. Pathophysiological 

subtypes of Alzheimer’s disease based on cerebrospinal fluid proteomics [Internet]. Brain 

2020Available from: https://doi.org/10.1093/brain/awaa325 

Varol E, Sotiras A, Davatzikos C. HYDRA: Revealing heterogeneity of imaging and genetic 

patterns through a multiple max-margin discriminative analysis framework. NeuroImage 

2017; 145: 346–364. 

Vemuri P, Lesnick TG, Przybelski SA, Graff-Radford J, Reid RI, Lowe VJ, et al. 

Development of a cerebrovascular MRI biomarker for cognitive aging. Annals of Neurology 

2018: 705–716. 

Vermunt L, Sikkes SAM, van den Hout A, Handels R, Bos I, van der Flier WM, et al. 

Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to 

age, sex, and APOE genotype. Alzheimer’s & Dementia 2019; 15: 888–898. 

Visser PJ, Vos S, van Rossum I, Scheltens P. Comparison of International Working Group 

criteria and National Institute on Aging–Alzheimer’s Association criteria for Alzheimer’s 

disease. Alzheimer’s & Dementia 2012; 8: 560–563. 



 

 79 

Voevodskaya O, Simmons A, NordenskjÃ¶ld R, Kullberg J, AhlstrÃ¶m H, Lind L, et al. The 

effects of intracranial volume adjustment approaches on multiple regional MRI volumes in 

healthy aging and Alzheimer’s disease. Frontiers in Aging Neuroscience 2014; 6: 264. 

Vogel JW, Young AL, Oxtoby NP, Smith R, Ossenkoppele R, Strandberg OT, et al. 

Characterizing the spatiotemporal variability of Alzheimer&#039;s disease pathology. 

medRxiv 2020: 2020.08.20.20176883. 

Wang Y, West JD, Flashman LA, Wishart HA, Santulli RB, Rabin LA, et al. Selective 

changes in white matter integrity in MCI and older adults with cognitive complaints. 

Biochimica et Biophysica Acta - Molecular Basis of Disease 2012 

Westman E, Simmons A, Muehlboeck J-S, Mecocci P, Vellas B, Tsolaki M, et al. 

AddNeuroMed and ADNI: Similar patterns of Alzheimer’s atrophy and automated MRI 

classification accuracy in Europe and North America. NeuroImage 2011; 58: 818–828. 

Whitwell JL. Voxel-Based Morphometry: An Automated Technique for Assessing Structural 

Changes in the Brain. Journal of Neuroscience 2009; 29: 9661–9664. 

Whitwell JL, Dickson DW, Murray ME, Stephen D, Tosakulwong N, Senjem ML, et al. 

Neuroimaging correlates of pathologically-defined atypical Alzheimer’s disease. The Lancet 

Neurology 2012; 11: 868–877. 

Whitwell JL, Graff-Radford J, Tosakulwong N, Weigand SD, Machulda M, Senjem ML, et 

al. [ 18 F]AV-1451 clustering of entorhinal and cortical uptake in Alzheimer’s disease. 

Annals of Neurology 2018; 83: 248–257. 

Whitwell JL, Graff-Radford J, Tosakulwong N, Weigand SD, Machulda MM, Senjem ML, et 

al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical 

Alzheimer’s disease. Alzheimer’s & Dementia 2018; 14: 1005–1014. 

Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina AM, Winblad B, et al. The worldwide costs 

of dementia 2015 and comparisons with 2010. Alzheimer’s & Dementia 2017; 13: 1–7. 

Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund L-O, et al. Mild 

cognitive impairment - beyond controversies, towards a consensus: report of the International 

Working Group on Mild Cognitive Impairment. Journal of Internal Medicine 2004; 256: 

240–246. 

Wright BLC, Lai JTF, Sinclair AJ. Cerebrospinal fluid and lumbar puncture: a practical 

review. Journal of Neurology 2012; 259: 1530–1545. 

Yamane T, Ishii K, Sakata M, Ikari Y, Nishio T, Ishii K, et al. Inter-rater variability of visual 

interpretation and comparison with quantitative evaluation of 11C-PiB PET amyloid images 

of the Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI) multicenter study. 

European Journal of Nuclear Medicine and Molecular Imaging 2017; 44: 850–857. 

Young AL, Marinescu R-V V, Oxtoby NP, Bocchetta M, Yong K, Firth N, et al. Uncovering 

the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and 

Stage Inference. bioRxiv 2017: 236604. 

Zhang X, Mormino EC, Sun N, Sperling RA, Sabuncu MR, Yeo BTT. Bayesian model 

reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer’s disease. 

Proceedings of the National Academy of Sciences 2016; 113: E6535–E6544. 

Neurocognitive Disorders [Internet]. In: Diagnostic and Statistical Manual of Mental 



 

80 

Disorders. American Psychiatric Association; 2013Available from: 

https://psychiatryonline.org/doi/10.1176/appi.books.9780890425596.dsm17 

What are frontotemporal disorders? Available at: https://www.nia.nih.gov/health/what-are-

frontotemporal-disorders National institute of Aging 2019 

2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 2020; 16: 391–460. 

 


