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POPULAR SCIENCE SUMMARY OF THE THESIS 

Selenium is an essential micronutrient for human health, selenium deficiency or overdose 

leads to health problems, so optimal intake (50-200µg/day) is necessary to maintain proper 

health. Selenium at high doses is more deadly to cancer cells than to normal cells because 

cancer cells can easily absorb selenium. Too much accumulation of selenium compounds 

triggers several metabolic pathways that cannot be controlled by cancer cells, which becomes 

a disadvantage for cancer cell growth and leads to cancer cell death. In this project, we are 

investigating different ways to target cancer cells with different selenium compounds.  

In the first project, we used selenium compounds for acute promyelocytic leukemia (APL). 

APL is a cancer of the white blood cells, the standard treatment for this disease is ATRA (all -

trans retinoic acid) in combination with arsenic trioxide (ATO). This treatment leads to many 

side effects after treatment. When sodium selenite was used instead of ATO, we observed  a 

significant reduction in diseased cells. We propose that ATRA in combination with selenite 

provides a better treatment with minimal or no side effects.  

Selenium toxicity may be enhanced in cancer cells by increasing selenium uptake capacity. In 

my second project, we investigated several natural and synthetic chemical compounds that 

can increase the expression of an important protein that can directly or indirectly enhance 

selenium uptake in cancer cells. Our results showed that selenium in combination with a 

diphenyl diselenide compound increased selenium uptake by cancer cells several-fold, 

thereby inducing cancer cell death. 

A major problem with chemotherapy is that cancer-killing compounds not only kill the 

cancer cells but also affect the surrounding normal cells, which is considered a side effect  of  

cancer treatment. The only way to reduce such harmful effects is to find a way to target  only 

the cancer cells and leave the normal cells unharmed. In the fourth project, we specifically 

targeted liver cancer cells using mRNA coupled with microRNA techniques in combination 

with selenium compounds. To increase the uptake of this mRNA into the target cells, we used 

a lipid nanoparticle carrier as a vehicle. Our results showed that selenium compounds are 

highly metabolized and induce cancer cell-specific (liver) toxicity using this system. 

In the fifth project, we investigated the effects of selenium directly in tissue sections from 

patients with pancreatic cancer. Resected tumor tissue from pancreatic cancer patients was 

sliced and incubated with selenium compounds for two days. Our results showed that 

selenium compounds induced cell death in cancer cells while preserving the surrounding 

normal pancreatic cells. 

Our experimental findings showed the usefulness of selenium compounds in treating cancer 

and their potential application in cancer chemotherapeutics. This simple drug can be given to 

cancer patients by carefully evaluating their response to selenium compounds using our tissue 

culture model.    



ABSTRACT 

Selenium is an essential micronutrient for humans, it has a narrow margin between 

antioxidant and pro-oxidant effects. Redox-active selenium compounds have the potency to 

increase ROS levels in cancer cells, providing a plausible window for therapeutic 

intervention. Redox-active selenium compounds such as sodium selenite (Se), selenocystine 

(SeC), and Se-methylselenocysteine (MSC) have been shown to inhibit growth, angiogenesis, 

and induce apoptosis by altering the redox potential (oxidative stress) in various tumor cells 

in vitro. Different selenium compounds produce different metabolites that act on tumor cells 

through multiple pathways. Sodium selenite is readily reduced to hydrogen selenide (HSe-) 

by extracellular cysteine, whereas selenocysteine is reduced to HSe- by enzymatic conversion 

by selenocysteine lyase. Another important selenium compound, MSC, is a prodrug 

metabolized to methylselenol by kynurenine aminotransferase 1 (KYAT1 or CCBL1). 

Hydrogen selenide (HSe-) and methylselenol (MS) are two important intermediate 

metabolites that are highly redox-active by inducing the production of ROS and initiating cell 

death via redox-regulated signaling pathways. Hydrogen selenide is more readily taken up by 

the cell compared to selenite. These intermediate molecules can effectively redox cycle with 

oxygen in the presence of NADPH and thiols, thus enhancing oxidative stress in malignant 

cells. Nevertheless, the anti-cancer properties of selenium compounds have not been fully 

characterized. In this work, our objective was to describe the anti-cancer properties of various 

selenium compounds using different methods and experimental models that are easily 

translatable from in vitro to in vivo. 

Selenite at physiological concentrations in combination with ATRA completely abolished the 

expression of the PML/RARα oncoprotein and increased the expression of the transcription 

factors RAR, PU.1 and FOXO3A, providing a plausible basis for the increased differentiation 

in cells of acute promyelocytic leukemia (APL). The extracellular milieu is important for 

selenite cytotoxicity, i.e. selenite is readily reduced to hydrogen selenide (HSe-) by 

extracellular cysteine, the xCT (cystine/glutamate transporter) antiporter is very important for 

HSe- turnover. Diphenyl diselenide, a small- molecule compound, increases the expression of  

xCT and its key regulatory genes such as NRF2 and ATF4 in vitro. When diphenyl diselenide 

was co-incubated with selenite or selenocysteine, we observed multiple sensitizing effect s in 

almost all cancer cell lines tested. This provides a strong correlation between extracellular 

thiols and the cytotoxicity of selenite and selenocysteine. 

Kynurenine aminotransferase 1 (KYAT1 or CCBL1) is a PLP-dependent enzyme and plays 

an important role in MSC metabolism. KYAT1 has dual enzyme activity, transamination and  

β-elimination towards the single substrate. MSC is considered a prodrug that is not toxic as 

long as it is not metabolized by KYAT1. MSC is reduced by transamination to β-

methylselenopyruvate (MSP) and by β-elimination to monomethylselenol. Several assays 

exist to determine the transamination activity of KYAT1, but very few simple assays exist  to 

determine the β-elimination activity of KYAT1, which is not reliable because it is not a d irect  

measure of MS. We introduced a simple novel coupled assay to determine the β-elimination 



 

 

activity of KYAT1. This assay method combines two enzyme systems, i.e. thioredoxin 

reductase1 (TrxR1) and KYAT1. MS is an excellent substrate for thioredoxin reductase1. 

MSC is metabolized to MS by β-elimination activity, and this can be used as a substrate for 

TrxR1, which is monitored spectrophotometrically by the oxidation of NADPH.  

Overexpression of KYAT1 may be an advantage in exploring the anti-tumor property of 

MSC, as it plays an important role in MSC metabolism. Both metabolites of MSC (MSP and  

MS) play critical roles in anti-tumor activity. MSP is known to inhibit HDAC activity, while 

MS has been shown to increase the formation of ROS and induce redox imbalance in the 

tumor. We used therapeutic mRNA techniques to induce KYAT1 expression using a lipid 

nanoparticle (LNPs)-based delivery system in hepatocellular carcinoma (HCC) cells. the 

addition of antisense microRNA122 (HCC-specific) with KYAT1mRNA showed precise 

targeting of HCC cells. Our results demonstrate successful targeted therapy in HCC cells with 

MSC. 

The choice of the model system is very important in drug screening. Cell culture, 2D and  3D 

models are widely used, but the reproducibility is very low when transferred to in vivo. Our 

group has established an ex vivo slice culture model for pancreatic ductal adenocarcinoma 

(PDAC). We used this ex vivo model to test the anti-cancer properties of sodium selenite and  

MSC. Our results, both by histology and transcriptomics data, show that sodium selenite at  a 

concentration of 15 µM (concentration below MTD in humans) exhibited pronounced anti-

tumor activity by targeting multiple hallmark genes that support cancer growth and 

progression. 

In this work, we have shown that redox-active selenium compounds as potential anti-cancer 

agents by (1) mechanisms to facilitate uptake by altering the expression of SLC7A11 (xCT) 

through small-molecule pharmacological compounds, (2) increasing the metabolizing 

enzymes (KYAT1) using different methods and targeted therapy (3) used different model (ex 

vivo) to mimic the in vivo settings. 
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1 BACKGROUND 

1.1 CANCER 

Cancer is the second cause of mortality responsible for several millions of deaths every year 

around the world. It is not a single disease, but it is a group of diseases characterized by 

uncontrolled/unregulated growth of transformed cells (1). There exist multiple causes for 

cancer cell initiation such as unrepairable mutations during cell division, heredity, chemical 

exposures, physical agents, radiations, infections, autoimmune disorders and diet (2-5). 

Normal cells acquire neoplastic behaviors by acquiring eight hallmarks of cancer such as 

sustaining proliferative signaling, evading growth suppression, activating invasion and 

metastasis, enabling replicative immortality, inducing angiogenesis, resisting cell death, 

deregulating cellular energetics and avoiding immune destruction (6, 7).  

1.1.1 Cancer incidence 

According to the World Health Organization in 2012, 14.1 million new cancer cases were 

diagnosed and 32.6 million people living with cancer around the world within 5 years of 

diagnosis. An estimated 8.2 million people died in 2012 and 8.8 million in 2015 due to cancer 

(excluding non-melanoma skin cancer). In Europe, it was estimated that 3.9 million new cases 

with 1.9 million deaths (excluding non-melanoma skin cancer) occurred in 2018 (8, 9). In the 

United States, 1.7 million new cases with 0.6 million deaths were estimated in 2018 (10). 

Among visceral cancers, liver and pancreatic cancers are among the most important causes of 

cancer-related death (11). They both have a poor prognosis with limited treatment 

possibilities. There exist multiple treatment modalities such as chemotherapy, surgery, 

radiation therapy, immunotherapy, hormonal therapy, and laser therapy. Personalized 

medicine or targeted therapies are relatively new entrants in the field of cancer treatment (12-

15), but so far with marginal or no effect in visceral cancer. Successful treatment of cancer 

remains to be a challenging task despite remarkable progress in therapeutic options. 

1.1.2 Liver Cancer 

Liver cancer is the fifth most common type of cancer worldwide and ranked second in cancer-

related mortality. Most liver cancer arises from the hepatocytes (hepatocellular carcinoma 

(HCC), >70%) and the intrahepatic bile ducts (cholangiocarcinoma (CC), >15%) (16). HCC is 

one of the most common liver cancers and the prognosis remains poor for this disease. There 
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are several known risk factors for the development of HCCs, the common characteristics 

among them were cirrhosis, viral hepatitis, alcohol use, tobacco use, metabolic factors, 

nonalcoholic fatty liver disease (NASH) and genetic susceptibility (16-18). Due to late 

diagnosis, only 5 to 15% of patients are eligible for surgical resections, late-stage patients are 

treated with sorafenib (a multikinase inhibitor). Prolonged use of sorafenib results in mutable 

side-effects (19, 20) with an average survival time of only 3-5 months. Further research is 

necessary to improve the patient’s survival and early diagnosis of the disease. 

1.1.3 Pancreatic cancer 

Pancreatic cancer is an increasing health problem with 460,000 new cases diagnosed 

worldwide in 2018 with 331,000 deaths per year. Pancreatic ductal adenocarcinoma (PDAC) 

is one of the most common forms of pancreatic cancer (~85%), which originates from the 

exocrine component, and it is the most common and lethal form of pancreatic cancer. It is the 

12th most common type of cancer with a poor prognosis and the seventh leading cause of 

cancer-related mortality (9, 11). The major risk factor for the progression of this disease is 

exposure to carcinogens, chronic pancreatitis, tobacco use, type 2 diabetes mellitus, obesity, 

and inherent mutations (21-23). It is one of the most aggressive types of cancer with a 5-year 

survival rate of between 6 and 9 % in the USA (22). Surgery is the most effective treatment in 

PDAC but only 20% of patients are eligible for surgery because of late diagnosis. However, 

surgery is never curative but prolong survival by one to three years (24), in the remaining 

80% of patient’s tumor is locally too advanced and spread to the peritoneal cavity or distant 

parts of the body such as the liver and lungs (22, 24). These patients are subjected to 

chemotherapy. Gemcitabine has been used as a first-line of chemotherapy to treat PDAC (25), 

recent development in adjuvant therapy such as FOLFIRINOX (folinic acid, fluorouracil, 

irinotecan and oxaliplatin) regimen demonstrated a significantly longer survival among 

patients with resected pancreatic cancer, with the expense of higher prevalence of side-effects 

(26, 27). This illustrates the critical need for more effective medical treatments both for first- 

and second-line therapy to increase the patient’s survival. So far, no treatments have been 

proven efficient for pancreatic cancer. 
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1.2 DIVERGENCE OF METABOLIC PATHWAYS IN CANCER 

1.2.1 Energy metabolism in cancer cells 

Typically, normal cells generate ATP (energy) by utilizing glucose via glycolysis (2 ATP), 

Krebs’s cycle (2 ATP) followed by oxidative phosphorylation (32 ATP) in the presence of 

oxygen to generate 36 molecules of ATP at the expense of 2 ATP (1 glucose = 36 ATP). 

Glycolysis occurs in the cytoplasm and the latter two cycles in mitochondria. In cancer cells, 

however, the primary source of energy is from glycolysis, and this process is termed the 

Warburg effect (28). Therefore, this results in the consumption of relatively higher amounts of 

glucose to generate ATP (1 glucose = 2ATP) for their energy source (29) as aerobic 

glycolysis. Even though it is an energy-consuming process, cancer cells use the end product 

(lactic acid and bicarbonic acid) as an advantage for their growth and survival i.e. eluding 

from the host immune defense system (29). These abnormal metabolic pathways also activate 

several oncogenes (e.g., AKT, RAS, MYC) (30, 31) and often suppress the tumor suppressor 

genes P53 (32) and the anti-apoptotic protein BCL2. During tumor progression, the tumor 

microenvironment becomes more acidic, making it stressful for the normal cells around the 

tumor. Tumor cells promote angiogenesis to fulfill their nutrient and oxygen needs, but the 

newly formed blood vessels are usually immature and abnormal. This in turn makes the 

oxygen supply limited to the cancer cells creating the hypoxic condition (32). This condition 

leads to the overexpression of several proteins such as hypoxia-induced factor 1-alpha (HIF1-

α), TWIST (protein favors cancer metastasis and EMT) (33, 34) and VEGF (for new blood 

vessel formations) (35). Such metabolic reprogramming leads cancer cells to rely on the 

glycolysis pathway, reduced oxygen requirements, and high consumption of lactate to meet 

their energy needs (36). Pharmacological targeting of such key adaptive metabolic pathways 

has been explored in cancer drug development and currently, few candidate drugs are in 

clinical trials for their efficacy evaluation (37, 38).  

1.2.2 Cellular redox homeostasis 

The equilibrium between the oxidation/reduction (redox) reactions in the biological system is 

termed redox homeostasis. Redox homeostasis inside the cell mainly depends on the 

production and clearance of reactive oxygen and nitrogen species (ROS and RNS, 

respectively), which are generated during mitochondrial respiration, in peroxisomes and via 

the endoplasmic reticulum (38, 39). ROS is an important component for the normal cellular 

functions and modulation of intracellular ROS level is vital for many cellular signaling 
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pathways such as proliferation, differentiation, cell cycle and anti- and pro-apoptotic signaling 

(40). In contrast, elevated levels of ROS are deleterious and reduced levels of ROS are 

detrimental (6). The basal level of ROS production during cell metabolism decides the fate of 

the cells (41). ROS play crucial roles in stimulating multiple kinases such as PKC (protein 

kinase C), p38 MAPK (p38 mitogen-activated protein kinase), ERK (extracellular signal-

regulated kinase ½), PI3K/Akt (phosphoinositide 3-kinase/serine-threonine kinase), PKB 

(protein kinase B) and JNK (JUN N-terminal kinase) (42-44). ROS modulate the expression 

of transcription factors such as NRF2 (nuclear factor erythroid 2-related factor 2), AP1 

(activator protein 1), NF-κB (nuclear factor κB), HIF-1α (hypoxia-inducible transcription 

factor 1α) and P53, all of which are involved in regulating the expression of several 

antioxidant genes (44-46). The above explains the importance of ROS in both normal and 

pathophysiological functions of cells. Under normal physiological conditions, ROS 

homeostasis is maintained by the ROS scavenging antioxidant systems such as vitamins (A, C 

and E), enzymes (SOD, catalase, GPx, GR, peroxidase, TRX and HO-1) and antioxidant 

molecules (GSH, coenzyme Q, ferritin, bilirubin and free thiols). When intracellular ROS 

production is in excess, be it either endogenous due to pathological conditions or by external 

stimuli, it often leads to DNA damage and the malfunctions of proteins. Malignancies are 

such pathological conditions in which uncontrolled cells proliferation fuels higher metabolic 

turnover and alters cellular redox balance.  

1.2.3 Redox imbalances in cancer cells 

Recent studies suggest that cancer cells of multiple origins acquire redox imbalance (mostly 

oxidative environment) when compared to benign primary cells. The degree of oxidation or 

reduction is associated with the aggressive behavior of a tumor (47, 48). ROS at elevated 

levels can be deleterious to cellular proteins, lipids and DNA, leading to malfunction of cells 

and has been associated with tumorigenesis. Elevated ROS levels induce genomic instability 

either directly or by inducing the overexpression of NOX via PKC. The latter is also 

responsible for high cell proliferation and invasiveness in several tumors (49). It has also been 

shown that NOX is responsible for the generation of ROS by a feedback loop mechanism 

(50).  

Due to high metabolic turnover, cancer cells generate higher levels of ROS but the deleterious 

effects of ROS are often effectively evaded by adaptive mechanisms including overexpression 

of several antioxidant enzymes (SOD, catalase, GPX, GR, PRDXs, TRX, TXNRD1 and HO-
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1) (51-54), transcription factors (NRF-2, AP1, NF-κB and HIF-1α) that regulate the 

expression of many antioxidant genes (55-57) and genes (GCL and GS) for the production of 

cellular thiols (GSH) (58). To escape from cell death, cancer cells downregulate the proteins 

responsible for pro-apoptotic and apoptotic signals (P53, ERK, JNK, MAPK, c-Raf, caspase 9 

and BAX) (59-61) and overexpress anti-apoptotic proteins (BCL-2 family) (62).  Moreover, 

ROS induces the expression of PI3K/Akt which promotes cancer metastasis via inducing 

MMP-9 (matrix metalloproteinase-9) (63). The above-mentioned reprogramming of key cell-

signaling pathways explain the adaptive response to oxidative stress and partly explain the 

mechanism of resistance to cancer chemotherapeutic drugs.   

1.3 CONVENTIONAL CANCER TREATMENT 

Several regimens exist for cancer treatment including chemotherapy, immunotherapy, 

radiation therapy, hormone therapy and surgery. The treatment regime depends on the stage 

and aggressive behavior of the tumor. Most solid tumors are treated with surgery and/or in 

combination with chemo/radiotherapy, while non-solid tumors are treated with chemotherapy 

or immunotherapy or radiation therapy or a combination of all three or any two regimes. Over 

200 standard chemotherapeutic agents are approved in the US to treat cancer. The 

advancement in chemotherapeutic regimen is rapidly increasing but the major limitation is 

that non-tumor cells are also affected and development of chemoresistant (64). Further 

combination with radiation therapy sensitizes these cells to chemotherapy but side effects are 

again the major problems. To reduce the side-effects, now immunotherapy was employed 

such as Pembrolizumab (immune checkpoint inhibitor), thanks to the advances in the 

knowledge of cancer pathogenesis. By combining these therapies, the patient’s survival rate 

has increased, but the quality of patient’s life is still questionable, so new innovative treatment 

regimens such as personalized medicine and targeted therapy are in need to increase the 

patient’s survival rate and increase the quality of life of the patients. 

1.4 THE NOVEL THERAPEUTIC REGIME IN CANCER TREATMENT 

1.4.1 mRNA based treatments 

Synthetic mRNA has emerged as an effective gene transfection tool in a wide range of 

therapeutic applications such as a vaccine, cancer treatment and various genetic disorders (65). 

It can be either silencing disease (RNAi-mediated) causing genes or overexpressing therapeutic 

proteins into the target organ exogenously. mRNA-based therapy has various advantages over 
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DNA-based delivery. mRNA does not integrate into the host genome, smaller than DNA, 

protein translation occurs directly in the cytoplasm, less immunogenic response, less time for 

translation into protein hence it results in rapid and efficient protein expression in target  t issues 

with a longer half-life and less prone to enzyme degradation (66, 67). One major challenge in 

this regime is the cell membrane and its complex structure, so it is important to select a suitable 

vehicle system to deliver the therapeutic mRNA into the target organ or tissue (68).  

1.4.2 Lipid nanoparticle-based delivery system   

Lipid nanoparticles (LNPs) are one of the most advanced platforms for delivering synthetic 

mRNA into humans safely and recently LNPs are evaluated in several clinical trials in 

delivering therapeutic mRNA/siRNAs (68, 69). Encapsulating therapeutic targets (drug or 

mRNA/siRNAs) into LNPs can protect them during transport and facilitate delivery into the cell 

membrane via a fusion-based pathway (70, 71). Disease-specific antibodies can also be 

incorporated into LNPs to target the pathogenic cells or tissues (72) 

1.4.3 MicroRNA based targeted therapy 

MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA 

silencing. These RNAs are involved in many physiological and pathological processes by 

targeting most protein-coding transcripts (73). However, these are often dysregulated in cancer 

in which they are either over-expressed or under-expressed (74, 75). In conditions, when these 

are under-expressed in tumors compared to normal counterparts, it provides a novel strategy to 

target cancer cells by increasing the expression of certain proteins that can inflict cell death. 

This could be achieved by delivering a synthetic mRNA containing the antisense miRNA-

binding sequence into the target organ or tissues (76). While the mRNA will be silenced in 

normal cells by the presence of the target microRNA. 

Delivery of synthetic therapeutic mRNA using LNPs along with disease-specific antibodies and  

microRNA tagging strategy might be a novel strategy to target cancer cells with high specificity 

and accuracy without intervening in normal cell functions. 

1.5 IS REDOX IMBALANCE IN CANCER CELLS AN AMENABLE THERAPEUTIC 

TARGET? 

Several studies have conclusively shown that cancer cells exhibit a higher basal level of ROS 

than normal cells (38, 47, 77, 78) (Fig. 1). But cancer cells escape from ROS-induced cell 
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damage and death by activating different antioxidant defense mechanisms and other signaling 

pathways. When these redox regulatory mechanisms of tumor adaptation are targeted for 

anticancer therapy, adaptive ROS homeostasis is perturbed and leads to cell death by 

apoptosis, necrosis, or necroptosis (79). The underlying concept relies on the hypothesis that 

further elevation in ROS levels will damage cancer cells, while a similar increase in ROS 

levels in normal cells is within their tolerance levels (38). In several studies, it has been 

shown that several redox-active selenium compounds induce oxidative damages in cancer 

cells, thereby presenting these as candidate molecules with potential applications in cancer 

chemotherapy.  

 

Figure 1: A conceptual schematic showing how modulation of ROS levels may be used f or cancer 
therapy. Adapted from Misra et al 2015 (77).  

1.5.1 Redox-active selenium compounds 

Selenium is an essential micronutrient that acts as an antioxidant and pro-oxidant. Its 

biological effects strictly depend on chemical speciation, applied dose and the exposure 

duration and properties of the target cell. The window of requirement and toxicity is quite 

narrow for selenium (80, 81). The biological activity of selenium is known to be mediated 

through selenoproteins, which contain the 21st amino acid, selenocysteine (82). Several 

selenoproteins catalyze the reduction of disulfide bonds in proteins and peptides and thus play 

critical roles in protein folding (82, 83). The selenoprotein, glutathione peroxidases (GPx) is 

the key enzyme involved in the detoxification of hydrogen peroxide to water molecules at the 

expense of 2GSH molecules (84, 85). Other important selenoproteins like mammalian 
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thioredoxin reductases (TrxR) regulate cell growth and apoptosis, among other functions (86). 

It is also important in activating several low molecular weight antioxidants (87-89). 

Inorganic selenium compounds such as selenite are shown to be oxidants of reduced 

glutathione (GSH) and they could oxidize a large quantity of GSH in the presence of oxygen 

(90). It is readily reduced non-enzymatically by cysteine and enzymatically by the Trx system 

or GLRX systems. Selenite and selenodiglutathione (GS-Se-SG) are highly redox-active and 

have a high reactivity towards thiols (91).  However, some selenium compounds such as Se-

methylselenocysteine and selenomethionine are not redox-active. Metabolic transformation 

converts these compounds into monomethylselenol which is highly redox-active, cytotoxic to 

cancer cells and implicated in anticancer properties. Such redox-active selenium compounds 

and their applications as experimental chemotherapeutic agents will be elaborated in detail in 

the following sections. 

1.5.2 Selenium compounds in cancer treatments 

In the past few decades, there has been increased interest in using redox-active selenium 

compounds in cancer prevention and cancer treatment. Our research group was the first to 

conduct a human phase I clinical trial in terminally ill cancer patients (92) to find the MTD 

(maximum tolerated dose) of selenite. This phase I clinical trial from our group showed that 

the tolerable dose (MTD) for selenite is 10.2 mg/m2 body surface with a short half-life 

(18.25h) (92). 

1.6 DIFFERENT REDOX-ACTIVE SELENIUM COMPOUNDS AND THEIR 

METABOLIC TRANSFORMATIONS 

There exist several organic and inorganic selenium compounds. Among these, sodium selenite 

has been extensively investigated as an experimental cancer therapeutic agent. Several studies 

indicate that selenocystine, is also an interesting candidate with potent anticancer properties. 

Other compounds such as selenomethionine and Se-methylselenocysteine require enzymatic 

cleavage to generate redox-active metabolites. The following section describes the 

metabolism of sodium selenite, selenocystine and Se-methylselenocysteine and their tumor 

cytotoxic effects in preclinical studies.   
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1.6.1 Sodium selenite  

Sodium selenite (Na2SeO3) is a redox-active selenium compound (93). Intracellularly selenite 

reacts with GSH (major intracellular thiol) to form selenodiglutathione (GS-Se-SG), which is 

further metabolized into selenide (94, 95) by GSH, cysteine, thioredoxin (TRX), thioredoxin 

reductases (TrxR) (96), or the glutaredoxin (GLRX) system. Thioredoxin, thioredoxin 

reductases and GSH pathways rely on NADPH production for sustaining their activity and 

they are essential to prevent the redox imbalance through the reduction of protein disulfides 

and glutathione disulfide (94, 96, 97). During the reaction, hydrogen selenide is generated as 

an intermediate metabolite which can be further metabolized and used for selenoprotein 

biosynthesis (98). Excess hydrogen selenide redox cycle in the presence of oxygen and thiols 

leading to a non-stoichiometric consumption of thiols, resulting in the generation of 

superoxide anion (96, 99, 100) (Fig. 2). Superoxide anion is highly reactive and 

spontaneously oxidizes different biomolecules including proteins and lipids. 

 

Figure 2: Scheme for the selenite reaction with thiols to generate hydrogen selenide and superoxide 
anion. Adapted from Kumar et al., 1992 (96, 101). 

Like any other chemical agents, cellular uptake determines the cytotoxicity of sodium 

selenite. The influx of selenite anion is really poor (102). However, the reduction of selenite 

to selenide greatly accelerates the uptake of selenium from selenite (102, 103). Therefore, the 

extracellular reductive milieu is a key determinant of selenite cytotoxicity (103). While GSH: 

GSSG redox couple plays a critical role in maintaining the intracellular redox potential, and 

the extracellular redox potential is mainly regulated by the cysteine:cystine redox couple. In 

this context, cystine-glutamate exchanger (Gene: SLC7A11, Protein name: xCT) plays a 

critical role by taking up extracellular cystine in the exchange of intracellular glutamate (104). 

Cystine is reduced intracellularly to cysteine and excess cysteine effluxes out of the cells by 

multiple transport systems, including MRP (Fig. 4).  It has been shown that malignant cells 

overexpress the xCT antiporter and MRP transporters as an adaptive mechanism to survive 

and detoxify xenobiotics. Their expression is associated with multidrug resistance and poor 

prognosis in cancer patients (105). If cysteine is in excess in the extracellular milieu, selenite 

is reduced to selenide by extracellular thiols (103). Selenide is highly permeable and cytotoxic 

to cancer cells (105). The fraction of selenide that enters the cells reacts with GSH and 
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follows a similar reaction to generate superoxide, eventually leading to apoptosis or necrosis 

depending on the strength of the stimuli (96, 100). 

Findings from several studies have shown that selenite exerts higher cytotoxicity to cancer 

cells than normal healthy cells (103, 106) It has also been shown that several drug-resistant 

cancer cell lines are highly sensitive to selenite treatment compared to their non-sensitive 

counterparts. It has been shown that sodium selenite exhibit higher cytotoxicity to human 

malignant mesothelioma, glioma and osteosarcoma cells (107) compared to their 

nonmalignant counterparts (108, 109). Selenite treatment induces apoptotic cell death in 

various cancer cell lines such as ovarian cancer (110), lung (111), acute promyelocytic 

leukemia (APL) (112), breast (113), colorectal (114), mesothelioma (107), liver (115) and 

prostate cancer (84, 116, 117). 

Selenite targets several cellular signaling pathways and triggers oxidative stress (84, 110, 111, 

113) as mentioned earlier. Few of the studies are highlighted here. Selenite was shown to 

induce apoptosis in leukemic cell lines (NB4 cells) via inducing caspase-3 cleavage by 

activating pro-apoptotic protein BCL2 (112). Selenite at pharmacological concentration 

induced cytotoxicity by increasing the expression of cyclin B1, Cdc2, p34 and p21 and 

downregulated PCNA and cyclin D1 and cleavage of PARP and induce cell cycle arrest in p53 

wild-type colorectal cancer cell lines (114) and prostate cancer cell lines (116, 117), while 

these effects were limited in mutated or p53 null cell lines (114, 116, 117). In another study, 

prolonged exposure (72 h) of selenite treatment elevated the expression of SODs and 

modulated the expression of important genes such as AP1 (113), NF-kB and HIF1α and leads 

to apoptotic cell death in a prostate cancer cell line (LNCaP) (84). In the drug-resistant lung 

cancer cell line (A549), selenite treatment resulted in upregulation of different kinases such as 

MAPKs and (PI3K)/AKT pathway, pro-apoptotic protein Bax, death receptor such as Fas, DR4 

and suppressed the expression of anti-apoptotic protein such as Bcl-2, Bcl-xL and pro-

caspases -3, -8 and -9. Increased generation of ROS elicited collapse in mitochondrial 

membrane potential and resulted in the loss of mitochondrial membrane protein (MMP) (111). 

It was also shown that selenite downregulated the genes responsible for angiogenesis such as 

HIF and VEGF (118) which are key for cancer metastasis, among others.  

1.6.2 Se-methylselenocysteine 

Se-methylselenocysteine (MSC) itself is not an active cytotoxic compound. Its metabolic 

transformation into methyselenol (CH3SeH) and β-methylselenopyruvate (MSP) was reported 
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to have cancer-preventive and anti-tumor properties (98, 119-122). MSC is enzymatically 

metabolized by several enzymes, but KYAT1 (Kynurenine aminotransferase 1) and KYAT3 

(Kynurenine aminotransferase 3) play major roles, among others. These enzymes are also 

known as CCBL1 (Cysteine-S-Conjugate Beta-Lyase 1) (123, 124) and CCBL2 (Cysteine-S-

Conjugate Beta-Lyase 2) (125), respectively, because of their dual functionality in 

transamination and beta-elimination reactions with single substrates (126). KYAT1 

metabolizes MSC into CH3SeH (MS) or β-methylselenopyruvate via beta-elimination or 

transamination pathways, respectively. The present discussion is focused on the metabolic 

transformation of MSC by the KYAT1 enzyme as there are very few published studies on 

KYAT3, and the mechanism of action is not yet completely delineated.  

KYAT1 is a multifunctional PLP-dependent (pyridoxal 5’-phosphate) enzyme involved in 

cleaving carbon-sulfur bonds, catalyzing the amino acid substrates into corresponding α-keto 

acids (127-129). KYAT1 is also shown to cleave carbon-selenium bonds because of the 

structural similarities between sulfur and selenium (123). In general, the KYAT1 enzyme 

favors transamination over a beta-elimination reaction. When MSC is used as a substrate, it 

favors beta-elimination over transamination (123, 124, 130). This might be because of a 

weaker C-Se bond as compared to the C-S bond (124, 131, 132). KYAT1-mediated cleavage 

of MSC is shown in Figure 3. During transamination reaction, PLP is converted into PMP 

(pyridoxamine 5’-phosphate). Moreover, the presence of PMP and PLP plays a crucial role in 

determining the reaction (123, 127, 133). To increase the rate of beta-elimination reaction, the 

enzyme requires PLP as a co-factor. As a consequence, the addition of α-ketoacid as co-

substrates ensures to maintain the PLP-form of the enzyme for an effective and continuous 

beta-elimination reaction (130), thereby facilitating the generation of methylselenol from 

MSC (Fig. 3B), which has important implications on cancer cell survival as outlined below.  

Methylselenol is known to be highly redox-reactive and cytotoxic to the cells at higher 

concentrations and antagonizes the growth and survival of cancer cells (120, 134). It is 

involved in redox signaling, alters the cell signaling pathways and exhibits anti-proliferative 

and pro-apoptotic properties as shown in different malignant cells (122, 128, 132).  

The transamination product of MSC, β-methylselenopyruvate (MSP) structurally resembles 

butyrate which is a known HDAC inhibitor (119, 135-137). HDAC inhibition triggers 

apoptosis and cell cycle arrest in cancer cells through chromatin remodeling (137). MSP was 

also reported to be involved in several biological regulations such as downregulating 

important genes including HIF-1α, VEGF, and GLUT1, abrogate transcription of androgen 
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receptor proteins and inhibit HDAC (128, 138). MSC has been shown to induce apoptosis in 

several cancer cell lines such as colon cancer (137, 139), prostate (119, 140), osteosarcoma 

(141), renal cancer (142), fibrosarcoma (122) and head and neck carcinoma (143, 144).  

The beta-elimination product of MSC, methylselenol, is highly redox-active and reduces the 

invasiveness of tumors by inhibiting MMP-2 and induce cell cycle arrest and apoptosis via 

multiple cell signaling pathways in fibrosarcoma cells (145). It has been shown to upregulate 

tumor suppressor genes such as CDKN1C/p57KIP2, HMOX1, cell adhesion and signaling 

molecule genes PECAM1 (inducing Bax-mediated apoptosis), PPARG (increases growth 

inhibition, apoptosis and differentiation of tumor cell populations) in fibrosarcoma cells (145). 

Methylselenol was also shown to downregulate important tumor progression genes such as 

BCL2A1, PI3K/AKT, HHIP protein involved in the hedgehog signaling pathway, Wig1 zinc 

finger protein which is a p53 target protein, phosphorylate ERK1/2 signaling and c-Myc 

oncoprotein in fibrosarcoma, colon and prostate cancer cell lines (122, 145, 146). 

 

Figure 3: The proposed mechanisms of KYAT1 enzyme in metabolizing (Top) se-
methylselenocysteine via transamination into β-methylselenopyruvate and L-methionine in the 
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presence of 2-keto-methiobutyrate as a co-substrate and (Bottom) The beta-elimination of se-
methylselenocysteine into methylselenol, pyruvate and ammonium. The conversion of PLP to PMP is 
shown in both the reaction, the addition of 𝜶-keto acid enhances the conversion of PMP to PLP for the 
continuous beta-elimination reaction to happen. Adopted from Selvam et al., 2018 (101). 

Whereas MSP treatment resulted in cleavage of caspase -3, -6, -7 and -9 and PARP in a dose-

dependent manner and induced the expression of p21, which depend on Sp1/Sp3 site. Deletion 

of Sp1/Sp3 abrogated p21 expression in colorectal cancer and it also altered the expression of 

p53 gene (137). Similar effects were also seen in a prostate cancer cell line (119). In the 

follow-up study, the same group investigated a renal cancer cell line and reported that MSC 

treatment sensitized the TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand)-

resistant cancer cell lines by increasing the apoptotic cell death and cell cycle arrest at sub-G1 

phase by downregulating BcL-2, increased DEVDase activity, cleavage of procaspase-3 and 

PARP (142). MSC increased the expression of Connexin-43 in a dose-dependent manner and 

induced apoptosis in prostate cancer cell lines (140).  

1.6.3 Selenocystine 

The selenium analog of cystine, selenocystine (SeC) has potent anti-cancer properties. It is an 

analog of cystine in which sulfur is replaced with selenium. It is also a redox-active selenium 

compound that has the potency to oxidize cellular thiols such as cysteine, GSH and 

homocysteine in the presence of hydroperoxides (147).  

Figure 4: The function of xCT (SLC7A11) antiporter and MRPs in selenite and selenocystine uptake 
across the cell membrane (Art: Sougat Misra who owns the copyrights of this image). 

 



 

14 

SeC is believed to be taken up by the same transporters for cystine namely SLC7A11 (103, 

148), SLC7A9 (149) and SLC7A13 (150). Among these SLC7A11 is thought to have a major 

role in SeC transport across the cell membrane (151). Inside the cytoplasm, SeC is reduced by 

enzymes such as TrxR (152), GR (153) and GLRX1 (100) in the presence of excess NADPH to 

form selenocysteine. Selenocysteine spontaneously reacts with GSH to form selenocysteine-

glutathione selenenyl sulfide (CysSeSG) (154). Further CysSeSG is metabolized into hyd rogen 

selenide by selenocysteine beta-lyase enzyme (SCLY) (154, 155) or by GR in the presence of 

GSH and NADPH (153, 154). As described earlier, the intermediary metabolite HSe- is highly 

cytotoxic (96, 100). A schematic representation of selenocystine uptake and metabolism is 

shown in figure 4. 

1.7 SELENIUM COMPOUNDS AS ANTI-TUMOR AGENTS: STUDIES ON ANIMAL 

MODELS  

Selenium compounds have been widely used as experimental chemotherapeutics either as 

single agents or in combinations with commonly used cytostatic drugs to increase the efficacy 

of the treatment and/or to reduce the side effects caused by the cytostatic drugs. In 1949, 

Clayton and Baumann showed the anti-proliferative effect of sodium selenite in liver tumors 

induced by an azo dye in rats (132). Rats fed with 5 ppm of sodium selenite for 4 weeks 

reduced the tumor burden by 50% in the liver. Another study in 2005 by Björkhem-Bergman 

et al., showed similar results in a chemically induced hepatocellular carcinoma model in rats 

(156). Milner and Hsu in 1981 showed the prolonged life span of sodium selenite treated 

cerebellar deficient folia (CDF) mice transplanted with L1210 leukemic cells into the 

peritoneal cavity. This study showed that the mice which received 40 µg of selenite/day i.p. 

for 7 days resulted in 90% cure (157). Watrach et al., 1984 showed the dose-dependent effect 

of sodium selenite in growth inhibition of human breast cancer cells i.e. MCF7 and MDA-MB 

231 cell lines. When these were transplanted into nude mice, treatment with 0,8 µg of Se/g 

body weight resulted in 80-93% of tumor reduction without any effects to the normal cells 

(158). Following this, Baldew et al., 1989 showed the chemo-protective role of sodium 

selenite (2 mg of Se/kg body weight, 1h before cisplatin treatment) in cisplatin-induced 

nephrotoxicity in BALB/c mice and Wister rats with Prima breast carcinoma and MPC 11 

plasmacytoma without reducing the antitumor activity (159).  

MSC has been shown to inhibit the growth of prostate cancer cells in xenograft models (160). 

MSC is efficiently metabolized and excreted as methylated selenium compounds even at a 

low dose (64 µg/kg in rats) and it was shown that it can be readily accumulated in the 

pancreas, liver and kidney (161). In a later study, it was shown that 2 ppm of MSC 
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supplement in rats caused an inhibitory effect on the cancer cell population (98). This study 

confers that MSC has higher antitumor activity than selenite and selenocysteine (98). Cao et 

al., 2004 investigated the effect of MSC in combination with different cytostatic drugs i.e., 

Irinotecan, FU, Oxaliplatin, Taxol, Cisplatin, and Doxorubicin in human colon and head and 

neck tumor xenograft models in mice. This study comprised both drug-resistant and drug-

sensitive, colon (HCT-8 and HT-29) and head and neck (FaDu and A253) cancer models. The 

cure rate in the combination treatment with MSC was 100% in animals bearing xenografts of 

the drug-sensitive tumor (FaDu and HCT-8), whereas, in the resistant tumor (A253 and HT-

29), the cure rate was 60% and 20% respectively (162). Furthermore, MSC protected against 

cytostatic drug-induced side effects. In another study, MSC co-treatment with irinotecan in 

head and neck tumor (FaDu) bearing xenograft mice model unveiled the inhibitory potential 

of MSC towards HIF-1α and its transcriptional targets VEGF and CAIX, thereby reducing 

anti-angiogenic activity (143). MSC in combination with cyclophosphamide (CTX), cisplatin, 

oxaliplatin, and irinotecan reduced the side effects caused by these cytostatic drugs and 

increased the therapeutic index in synergy in xenograft athymic nude mice and Fischer rat 

model (163).  

As discussed earlier and from the above studies, it is evident that the redox-active selenium 

compounds target multiple signaling pathways in multiple malignant cells. This appeals to 

further investigations on these redox-active selenium compounds for further clinical 

evaluation as potent cancer chemotherapeutic agents either alone or in combination with 

commonly used cytostatic drugs.  

1.8 A SUITABLE MODEL SYSTEM FOR DRUG TESTING 

The preference of the experimental model plays a vital role in the field of drug testing to 

investigate the drug response and efficacy of the drug in killing or attenuating cancer cells. The 

standard approach for drug testing involves mainly the use of commercially available 2D or 3D 

cancer cell lines, which is easier for high-throughput drug screening (164). Even though it is 

easy to work, one major problem in the cell culture model is the uncertainty about the origin of 

the cell lines, mycoplasma contamination, absence of tumor microenvironment and in some 

cases changes in phenotype characteristics of the cells which makes the results unreliable or 

difficult to translate into in vivo settings (165). 

Animal models in cancer research mainly comprise immune-suppressed mice xenograft models 

transplanted with human-derived tumor cells or tissues and use of genetically engineered mouse 
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models such as knockout and knock-in studies (166, 167). However, interspecies discrepancies 

render these results difficult to translate to humans. Besides mouse is a mouse, not a human, and 

thus the metabolism and tolerance of study drugs could vary greatly among different species 

(168).  Developing new experimental models that closely resemble a human in vivo setting is of  

utmost importance to overcome these limitations. 

1.8.1 Ex vivo organotypic tissue slice model 

The advantage of the organotypic slice culture model is that it depicts the in vivo complexity of  

the tumor environment with minimal manipulation of the tissue. This technique involves the 

thin slicing of tissues using krumdieck tissue slicer or vibratome and culturing in optimized 

culture conditions (164, 169). Short-term exposure of study drugs (24-96h) in the tissues should  

be sufficient to determine the efficacy of the drug and to select the choice of treatments (170). 

This technique will help to screen the drug that responds to individual patients.  Ex vivo slice 

culture model was successfully used to study the drug response in various cancer types such as 

breast, liver, lung and prostate (171-173). Our group has recently established an ex vivo 

organotypic slice culture model for human PDAC. We have successfully cultured the sliced 

tissue (350 µM thickness) for up to four days with good preservation of tissue integrity and 

viability (174). These features represent the slice culture a state of the art with a low-throughput  

but high-content experimental platform for drug testing, screening and investigations on drugs 

that respond to individual PDAC patients (Fig. 5). Such personalized treatment methods need to 

extensively be studied to increase the cancer patient’s survival.  

 

Figure 5 Schematic representation of workflow in PDAC ex vivo model of human surgical specimens. 
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2 RESEARCH AIMS 

The overall aim of this thesis was to explore the use of redox-active selenium compounds as a 

potential anti-cancer agent and to decipher its mechanisms to facilitate its uptake by various 

methods and models. 

The specific aims of each project were as follows: 

I. The study aimed to use sodium selenite in combination with ATRA in the treatment 
of acute promyelocytic leukemia (APL) 

 
II. The study aimed to investigate the cytotoxicity of different selenium compounds 

alone or in combination with other synthetic and natural compounds that could 
modulate cellular redox homeostasis and to evaluate if these redox-modulatory 
compounds could enhance the cytotoxicity of selenium compounds. 

 

III. The study aimed to establish a simple, reliable and reproducible assay to detect the 
KYAT1 enzyme’s beta-elimination product (methylselenol) of MSC. 

 

IV. The study aimed to investigate the cytotoxic effects of MSC in HCC cell lines by 
selectively inducing KYAT1 expressions via therapeutic mRNA-microRNA 
techniques and regulate the expression of KYAT enzymes to increase the metabolism 

of MSC. 
 

V. The study aimed to investigate the feasibility and reproducibility of the ex vivo tissue 

slice culture model for drug sensitivity testing and to test redox-active selenium 
compounds in human PDAC surgical specimens. 
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3 MATERIALS AND METHODS 

3.1 ETHICAL CONSIDERATION 

In project Ⅱ, Ⅳ, & Ⅴ we used human surgical samples. In project Ⅱ & Ⅳ we used human 

liver hepatocytes cells isolated from Dr. Ewa Ellis’s lab, permit nr. 2010/678-31/3, 2017/269-

31 and 2016/1309-31, 2019-04866. In project Ⅴ the tissues samples were collected from 

surgical specimens of primary PDAC patients resected at Karolinska University Hospital. 

Written informed consent was obtained from all patients before surgery. The study was 

approved by the Regional Ethical Review Board, Stockholm (diary number 2012/1657-31/4, 

2013-044, 2018/2654-32 and 2019-04866). All study procedures were performed following 

the relevant guidelines and regulations with the declaration of Helsinki. 

3.2 VIABILITY ASSAY 

The WST1-proliferation assay kit was used in project Ⅰ and Ⅱ, additionally, ATP based  

CellTiter-Glo® Cell Viability Assay was also adopted to check the variability between two 

different methods. Other proliferation/cytotoxicity assays were also carried out i.e., QuantTM -

iT PicoGreen ds DNA assay kit following manufacturer’s instructions, Trypan blue and acid 

phosphatase assay for validation of cytotoxicity/proliferation data from other assays. We have 

used ATP based CellTiter-Glo® Cell Viability Assay as a standard method for project Ⅳ, 

because the WST1-proliferation assay interferes with MSC metabolism and we observe an 

unreliable absorbance. 

3.3 COUPLED BETA-ELIMINATION ACTIVITY ASSAY FOR KYAT1 

The enzyme KYAT1 metabolizes MSC into methylselenol via β-elimination activity. By a 

coupled TrxR1-KYAT1 assay, the generation of methylselenol was monitored. This method 

was optimized for both pure proteins and crude cell extracts. Briefly, 100 μL of reaction 

mixture contained 100 mM potassium phosphate buffer pH 7.4, 5 mM of Se-

methylselenocysteine, 100 μM of dimethyl-2-oxoglutarate, 100 μM of α-keto--(methylthio) 

butyric acid sodium salt, 10 μM of pyridoxal 5’-phosphate hydrate, 0.4 μg mammalian 

thioredoxin reductase1 (TrxR1), 400 μM of NADPH and 50 ng of pure KYAT1 protein or 20 

μg of protein from whole cell lysate. The reaction mixture was pre‐incubated for 5 min at 37 

°C before adding TrxR1 and NADPH. Continuous measurement of NADPH consumption 

was recorded at 340 nm for every 30s using a spectrophotometer. The assay mixture without  

TrxR1 was used as blank. Under this condition, the extinction coefficient was 6220 M−1 cm−1  

for NADPH.  

3.4 LIPID NANOPARTICLE TRANSFECTION 

Cells were seeded at a different seeding density for each cell line (depending on their 

doubling time). The next day LNP encapsulated mRNA+/-miRNA were diluted with EMEM 
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medium with required concentration and equilibrated for 30 min. Media from cell culture 

were aspirated and replaced with media containing LNPs and incubated for 16-24 h and 

treated with respective compounds by changing the media containing the study compounds.    

3.5 EX VIVO ORGANOTYPIC SLICE CULTURE MODEL 

Fresh surgical PDAC primary samples were sliced into 350µM thick slices using a 

vibratome. The first cut slice was immediately fixed and embedded in paraffin for 0 h control. 

Subsequently sliced PDAC rested on an insert placed in a culture dish containing optimized 

culture media. The next day the culture media was replaced with media containing the study 

drug. Tissues slices were harvested after 48 h of treatment for further evaluation. 

Most of the methods used in this thesis were systematically explained in the published papers 

and manuscripts. For detailed information about the specific methods, please read the method 

section in each paper. 
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4 RESULTS AND DISCUSSION 

4.1 PAPER Ⅰ 

Selenite promotes all-trans retinoic acid-induced maturation of acute promyelocytic 

leukemia cells.   

Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML), which 

is identified by a specific t (15;17) chromosomal translocation that encodes a fusion of 

promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) protein. PML/ RARα 

fusion results in abnormalities in the proliferation/ differentiation coupling of hematopoietic 

stem cells at early developmental stages and prevent apoptosis of promyelocytes and block 

the normal granulocytic differentiation (175, 176). PML/ RARα shares common DNA 

binding sites with RARα and PU.1, both of which are important transcription factors for 

myeloid and lymphoid cell differentiation (177, 178). 

In recent years, APL has become a highly curable disease with complete remission (CR) in 

almost all patients (175, 176, 179). In the late 80’s, the efficacy of all-trans retinoic acid 

(ATRA) in the treatment of APL patients was published. ATRA alone resulted in 85% CR 

(180). Further in the 90’s, arsenic trioxide (ATO) was added to the treatment regime. This 

combination had a major effect on APL treatment i.e., it accounts for about 80% to 95% CR 

(175, 180, 181). ATRA induces differentiation of APL cells and arrests the growth of 

leukemia-initiating cells (LIC) (182) while ATO leads to the degradation of RARα by 

binding to PML/ RAR α oncoprotein and induce apoptosis to leukemic promyelocytes. It also 

down-regulates the Bcl-2 gene, which is an integral intercellular membrane protein that 

suppresses programmed cell death (176, 181). The major problem in using this combination 

is that ATO is a carcinogen that mainly causes skin cancer, increased activity of cytochrome 

P-450, upregulation of multidrug resistance protein 1 (MDR1) and inhibition of thioredoxin 

reductase. A high dosage of ATRA often leads to ATRA syndrome associated with elevated 

WBC count. Our results demonstrate that replacing selenite instead of ATO in combination 

with ATRA increased the differentiation of NB4 cells (APL). This was evident by high levels 

of CD11b expression at both mRNA and protein levels. Flow cytometry data revealed that 

the combination treatment significantly increased the level of HLA-DR and CD68 

(monocytes/macrophage marker), CD62L and CD16 (neutrophil lineage marker) in CD11b+ 

cells. This data strongly indicates that the NB4 cells underwent differentiation in the 

combination treatments. Targeted degradation of PML-RARα represents an established 

mechanism of complete remission in APL. Herein, we have shown a similar mechanism of 

action by sodium selenite, a redox-active selenium compound with inherent catalytic capacity 

to participate in thiol/disulfide interaction reactions involved in the removal of zinc from 

zinc/thiolated coordination sites (183). Experimental evidence on selenite-mediated inhibition 

of DNA binding activity of zinc finger (184) transcription factor SP1 and release of zinc are 

congruent with our data. Selenite in combination with ATRA induced important transcription 
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factors PU.1 and FOXO3A, and the redox-regulatory enzymes such as Grx1, Grx2, TrxR1, 

Trx, TrxR2 and Trx2.  

Taken together with the above results, it is evident that selenium at physiological 

concentration showed a potent cytotoxic effect in APL cells when combined with a low dose 

of ATRA it increased the differentiation potential of APL cells.  

4.2 PAPER Ⅱ 

Microenvironment redox control by SLC7A11 is a druggable target in cancer. 

Selenite is known to be toxic to various types of cancer cells (112, 185), with 

autophagy/apoptosis being the major cell death pathways (186). Selenite induces pro-

apoptotic activity by its ability to consume cellular GSH and induce oxidative stress (187). 

Selenite-induced oxidative stress is the result of converting GSH to GSSG (oxidized 

glutathione) accomplished by generating selenodiglutathione and superoxide anions i.e. ROS. 

Cancer cells that are resistant to certain cytostatic drugs are often sensitive to selenite. 

Previous investigations from our research group have shown that the levels of extracellular 

thiols correlate with susceptibility to selenite treatment (91). In 2009 our group showed that 

the cystine/glutamate transporter (xCT) renders cancer cells to be highly susceptible for 

selenite cytotoxicity due to the facilitation of extracellular reduction by cysteine (103). 

Increased cellular uptake and cytotoxicity of redox-active selenium compounds, such as 

selenite and selenocystine, is regulated by the xCT antiporter and ASC/MRP transport 

systems. The activation of the cystine/glutamate transporter (xCT) renders cancer cells to be 

highly susceptible to selenite toxicity (103). xCT transporter expression has been increasingly 

connected to tumor growth and drug resistance and is regulated by the antioxidant response 

element (ARE). This transporter is essential for the uptake of cystine required for the 

synthesis of intracellular GSH (188). NFE2L2 controls different antioxidant pathways such as 

production, regeneration and utilization of GSH, the thioredoxin pathway, NADPH 

production and quinone detoxification and it is a direct regulator of xCT (97). The uptake of  

hydrogen selenide is more rapid than that of selenite itself. Thereby, if the expression of  xCT 

(cystine/glutamate exchange) can be enhanced, it facilitates the production of more HSe- 

from sodium selenite. Concomitantly, the uptake of HSe- by the cancer cells can be 

dramatically increased and induce cell death. 

This study focuses on two key selenium compounds, sodium selenite and selenocystine. The 

cytotoxicity of these compounds was evaluated in more than 20 different cancer cell lines. 

Our results showed that sodium selenite was more cytotoxic than selenocystine. Based on the 

earlier findings that extracellular redox potential imparts a key role in the cytotoxicity and the 

plausible roles of xCT antiporter in maintaining extracellular redox potential, we screened 

different natural and synthetic compounds that could alter the extracellular redox potential 

into a more reductive milieu. Diphenyl diselenide is highly effective in altering the 

extracellular redox potential by increasing the expression of SLC7A11, the gene encoding for 

xCT. Selenite and selenocystine in combination with diphenyl diselenide, showed a several-
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fold cytotoxic effect in most of the tested cancer cell lines. When we interrogated the 

mechanism behind the observed effect, we found out that diphenyl diselenide increased the 

activities of transcription factors NRF2 and ATF4, both of which directly regulate the 

expression of SLC7A11. Several redox regulatory genes were also overexpressed following 

treatment with diphenyl diselenide. When we tested the cytotoxicity of these selenium 

compounds as a single agent or in combination with diphenyl diselenide in normal cells 

(primary human hepatocytes and peripheral blood mononuclear cells), potentiation of 

cytotoxicity was minimal or absent. 

4.3 PROJECT Ⅲ 

A Novel Assay Method to Determine the β‐Elimination of Se‐Methylselenocysteine to 

Monomethylselenol by Kynurenine Aminotransferase 1. 

Kynurenine aminotransferase 1 (KYAT1) is a multifunctional PLP-dependent enzyme 

involved in cleaving carbon-sulfur bonds, which transforms the amino acid substrates into 

corresponding alpha-keto acids and vice-versa. It is involved in transamination and beta-

elimination activity with a single substrate. The presence of pyridoxamine-5’-phosphate 

(PMP) and pyridoxal 5’-phosphate (PLP) determine the nature of its pathway either 

transamination or beta-elimination (123, 127, 133). KYAT1 is also shown to cleave the 

carbon-selenium bond, because of its weaker bond compared to the C-S bond (131, 132). 

KYAT1 plays a major role in Se-methylselenocysteine (MSC) metabolism. KYAT1 converts 

MSC into methylselenol (MS) via β-elimination activity. MS is highly volatile, redox-active, 

and has great potency in inducing ROS in cancer cells, their use in cancer chemotherapeutics 

is being extensively investigated by several research groups.  MS is highly unstable, so it is 

difficult to detect during the reaction. Only a few assays are described, but they are not 

reliable and reproducible, because they measure pyruvate a metabolite that is produced during 

the β-elimination reaction. We developed a novel and simple assay that can monitor the 

production of MS generation in a continuous assay. MS is an excellent substrate for 

thioredoxin reductase 1 (TrxR1). KYAT1 generates MS and this can be utilized as a substrate 

for TrxR1, why we combined these two enzymes and detected the β-elimination product 

using NADPH oxidation spectrophotometrically. The calculated apparent Km and Vm ax  were 

5.84 ± 0.95 mM and 1.12 ± 0.08 nmol/min respectively, the turnover number (Kcat/Km) was 

27.4 mM−1 min−1 for the above enzyme reaction. We used KYAT1 overexpressed cells, 

several inducers and inhibitors of the KYAT1 enzyme to validate the reproducibility of this 

enzyme assay.  

4.4 PROJECT Ⅳ 

Targeted enzyme assisted chemotherapy (TEAC) – a novel microRNA-guided and 

selenium-based regimen to specifically eradicate hepatocellular carcinoma  

Se-methylselenocysteine (MSC) is a pro-drug which is relatively non-toxic to cancer cells at 

low concentrations compared to other selenium compounds e.g. selenite. MSC cytotoxicity in 



 

24 

cancer cells is based on the metabolic enzyme that cleaves MSC into its active products either 

β-methylselenopyruvate or methylselenol. Both the metabolites of MSC have 

chemotherapeutic and chemopreventive properties. β-methylselenopyruvate act as an HDAC 

inhibitor and induce apoptosis in cancer cells. The other metabolite MS is highly cytotoxic 

and has the potency to generate an ample amount of ROS by oxidizing thiols. We initially 

investigated the sensitivity of MSC towards different hepatocellular carcinoma cell lines. 

Results from the cytotoxicity experiments showed similar cytotoxicity in all the tested HCC 

cell lines and human primary hepatocytes. The concentrations of MSC required to achieve 

half-maximal growth inhibition in these cells were too high. We posited that the 

overexpression of KYAT1, an enzyme that converts MSC into its toxic intermediate 

methylselenol, could further potentiate the cytotoxicity of MSC. To achieve this, we used a 

KYAT1 overexpression plasmid and LNP (lipid nanoparticle)-encapsulated KYAT1mRNA, 

as two different approaches to increase the expression of KYAT1 in HCC cell lines. Both 

these approaches successfully increased the expression of active KYAT1 as shown by 

enzyme assay. When HEPG2 and Hep3B cells were transfected with KYAT1-LNP, we found 

MSC cytotoxicity was potentiated in both the cell lines. However, the required dose level to 

induce cytotoxic effects was still too high. Since KYAT1 possesses both transamination and  

beta-elimination activity, we hypothesized that selective inhibition of transamination act ivity 

may increase the beta-elimination activity, and thereby MSC would be more cytotoxic due to 

increased generation of methylselenol. We screened several KYAT1 inducers and inhibitors 

using transamination and β-elimination activity assays. When these compounds were used 

along with MSC in KYAT1-overexpressed HCC cells, we observed a different cytotoxicity 

profile with different modifiers. AOAA, an inhibitor of KYAT1, apparently inhibits the 

enzyme, which was reflected by complete protection from MSC cytotoxicity in HCC cell 

lines. All α-keto acid analogs that we have used showed a certain degree of sensitization, but  

individual compounds behaved differently between the cell lines. Of those, PPA, KMB and  

IPA showed sensitization towards MSC in all three HCC cell lines.  

When KYAT1mRNA was tagged with HCC specific microRNA (miR122) we observed a 

cancer cell-specific MSC cytotoxicity. MicroRNA122 is known to be widely expressed in 

normal hepatocytes whilst downregulated in HCC. The liver-specific microRNA miR122 

accounts for about 70% of total microRNAs in the liver and plays an important role in liver 

metabolism and hepatocyte differentiation. Multiple (3X) sequence of antisense miR122 was 

added at the 3’end of KYAT1mRNA and transfected into HCC cell lines. The cell with high 

miR122 expression (Huh7) had a protective effect with MSC cytotoxicity, on the other hand , 

cells with minimal miR122 expression became more sensitive to MSC treatment. The overall 

concept is that miR122 antisense elements bind endogenous miR122 and prevents the 

translation of KYAT1mRNA into protein, while cells with minimal or no miR122 translate 

KYATmRNA into protein thereby sensitizing the cells to MSC cytotoxicity. Our results 

indicate that miRNA antisense targets are efficient in achieving tumor-specific cytotoxicity in 

cell types where miR122 are modulated. 
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4.5 PROJECT Ⅴ 

Redox-active selenium compounds are superior chemotherapeutics to pancreas cancer 

in an ex vivo model of human surgical specimens 

Redox-active selenium compounds were shown to have potent anti-tumor and 

chemopreventive properties by several preclinical studies. These studies are mostly based on 

cell culture, 2D or 3D models, Knock-out or Knock-in mouse models and patient-derived 

xenograft models. The major limitations in these models are tumor microenvironment and 

species differences. New drug testing methods that mimic the in vivo settings are in need to 

test the study drug with all the cancer tissue components including the tumor 

microenvironment. In 2019 our group published a unique ex vivo organotypic culture model 

for PDAC (174). In this study, we adopted an ex vivo organotypic slice culture model to test  

the efficacy of sodium selenite and se-methylselenocysteine (MSC) in pancreatic 

adenocarcinoma surgical specimens. 

Pancreatic cancer (mainly PDAC) has a poor prognosis because of late diagnosis. The 

difficult part in treating pancreatic cancer is because of the stroma which can scavenge the 

cytotoxic drug and protect cancer cells from drug-induced effects.  Our results showed that 

selenite was more potent than MSC in PDAC culture. Selenite showed prominent cancer 

clearance at the dose lower than the published MTD for humans (92) with intact stromal 

components. Selenite and MSC showed a dose-dependent response in all nine investigated 

PDAC cases. MSC in combination with α-ketoacid (IPA) increased the efficacy of MSC 

cytotoxicity. Our transcriptomic data for selenite revealed that it targeted multiple pathways 

that are important for tumor cell growth, invasion and progression. This ex vivo model creates 

a new regime of personalized medicine that mimics in vivo system to evaluate drug response 

for individual PDAC patients in a short time. This kind of clinical setting is important to the 

prognosis for patients with PDAC. 
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5 CONCLUSIONS 

In this thesis work, we focused on highlighting the usefulness of redox-active selenium 

compounds in cancer chemotherapeutics. Our preclinical studies with different approaches 

helped us to understand the metabolism and nature of different redox-active selenium 

compounds. In my first study, we showed that selenite is a potent redox-active compound  in 

destabilizing zinc-finger oncogenic PML/RARα protein thereby increases the oncoprotein 

degradation, in combination with ATRA it induced transcription factors responsible for the 

cell differentiation. In my second project, we have identified several small-molecule 

pharmacological compounds that increase the metabolism and uptake of  selenium 

compounds, thereby increasing cancer eliminating efficacy. A compound such as diphenyl 

diselenide in combination with redox-active selenium compounds showed a remarkable 

cytotoxic effect in most of the cancer cell lines without affecting normal cells in vitro.  Our 

vision to introduce a simple and reliable assay to detect methylselenol was also accomplished  

in this thesis. In my third study, We have coupled two enzymes (TrxR1 and KYAT1) system 

to detect methylselenol (MS) generation via spectrophotometry. TrxR1 uses MS as a 

substrate and these were monitored by the oxidation of NADPH to NADP+. 

In my fourth project, we have employed an LNP-encapsulated therapeutic mRNA-

microRNA-based genetic regulation approach for targeted-therapy. Our result demonstrated 

the precise targeting of MSC cytotoxicity to liver cancer cells without affecting normal 

hepatocytes in vitro.  Another advantage in using this system with MSC is that KYAT1 is a 

harmless metabolic enzyme so any off-target effects would be less serious, while induction of  

cell death protein might cause deleterious effect even with negligible leakage in the systems. 

The addition of α-ketoacid in combination with MSC increased the efficacy of MSC 

metabolism and related cytotoxicity in HCC cell lines.  Finally, we showed the usefulness 

and effectiveness of the ex vivo PDAC slice culture organotypic model in drug testing, mainly 

selenium compounds. Our transcriptomic data showed substantial evidence to support the 

multi-pathway targeting potential of selenium compounds in the pancreatic cancer ex vivo 

model. Selenite at a concentration below published MTD showed remarkable efficacy in 

eradicating cancer cells with the highly preserved stromal component. 

Our experimental data highlighted different aspects of redox-active selenium compounds and, 

to bring this simple and inexpensive drug into clinical practice. Further systematic 

investigations are needed to understand the pharmacology and clinical applicability of these 

compounds in cancer treatments.  
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6 FUTURE PERSPECTIVE 

My thesis work tried to answer several research questions in using redox-active selenium 

compounds in cancer chemotherapeutics with targeted and personalized therapy using various 

methods and a unique ex vivo PDAC model. Project Ⅳ can be extended to various cancer 

types by identifying cancer-specific microRNAs and antigens. Cancer-specific antibodies can 

be incorporated on the surface of the LNPs to target only cancer cells without any off -target  

effect on normal cells, furthermore, the inclusion of disease-specific microRNA can increase 

the efficacy of targeted therapy. A site-directed mutagenesis approach in KYAT1 will be 

applied to target the sequence responsible for enhancing the β-elimination activity and 

suppress the transamination activity. This will benefit the production of highly cytotoxic 

metabolite methylselenol. By combining the above microRNA and antibody techniques along 

with mutated KYAT1, we can achieve high precision in targeting cancer cells with no or 

minimal effect to normal cells with MSC.  

In project Ⅴ, our readout mainly focuses on the tissue outgrowth, but there are PDAC 

samples that did not show any outgrowth, but the tissue slice is viable and preserved during 

incubation. So, further advanced techniques such as tumor-specific markers or some other 

high throughput techniques should be combined to increase the effectiveness of this model 

for routine robust evaluation of drug responses. The concept from project Ⅳ will be 

employed in the PDAC ex vivo model to validate our targeted therapy strategy. We are also 

investigating the feasibility to extend our ex vivo slice culture model to another cancer type 

such as hepatocellular carcinoma (HCC). Finally, comparing the drug response from the ex 

vivo model to in vivo model is also necessary to understand the effectiveness of this model 

and for further clinical trial evaluation. Our group has already done a clinical phase Ⅰ trial 

“SECAR” to evaluate the cytotoxicity and pharmacokinetics of sodium selenite in end -stage 

cancer patients. Our experience from a previous clinical trial and the above results encourage 

us to follow-up with our second clinical trial “SEACAT”, to evaluate the MSC cytotoxicity 

and the feasibility of delivering therapeutic mRNA-microRNA (Wt or mutant KYAT1 with 

miR122)  via LNPs in liver compromised cancer patients. This approach might open up a 

new venture for personalized medicine with redox-active selenium compounds alone or in 

combination with small-molecule pharmacological compounds. 
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