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POPULAR SCIENCE SUMMARY 

 «Excessive sitting is a lethal activity» claimed The New York Times (USA). Dagens Nyheter 

(SWE) headlined «Being sedentary is as deadly as smoking», and the Tagesanzeiger (SUI) 

postulated «Sitting all day is life-threatening». These are three examples of thousands of 

newspaper articles published in the last decade about the detrimental health effects of sedentary 

behaviour – the scientific term for inactive sitting. Inactive means that the energy expenditure 

is a maximum of 50% higher than when lying, while active would mean the energy expenditure 

is more than 50% higher. The World Health Organization recently updated its physical activity 

guidelines and included sedentary behaviour for the first time. The guidelines recommend that 

«all adults limit the amount of time spent being sedentary», because «high amounts of 

sedentary behaviour are associated with diabetes, cardiovascular disease, and mortality». 

However, the evidence relied on by the World Health Organization is not based on measuring 

sedentary behaviour. Only a handful of scientific studies to date measured the inactivity and 

the sitting component of sedentary behaviour. These studies have shown that measuring only 

one of its components gives incorrect results. 

For this reason, this thesis developed new methods to simultaneously measure both 

components of sedentary behaviour – inactivity and sitting. It validated the most promising 

method to verify whether it actually measures the two components, and finally used it to 

measure the true amount of sedentary behaviour in daily life. 

The results demonstrate that it is possible to measure inactivity and sitting with only one single 

body-worn sensor, ideally worn on the thigh. Consequently, there is no need to approximate 

sedentary behaviour with inactivity or sitting. The results also show that physical activity 

sensors, with which all the evidence for the detrimental health effects was collected, measure 

inactivity and not sedentary behaviour. 

So far, it has been estimated that we spend about 55% – 65% of our wake-time sedentary. 

However, this thesis shows that office workers, prone to be among the most sedentary people, 

spend about 60% of the wake-time sitting and 55% of the wake-time inactive, but only 45% of 

the wake-time sedentary. The reason for the difference is that they accumulate 2 hours a day of 

active sitting and almost 2 hours a day of inactive standing, both with considerable variability. 

Some office workers spend one third of their sitting time active, while others spend most of 

their standing time inactive. This difference plays a vital role in the prevention of chronic 

diseases related to sedentary behaviour. It determines how we can combat the adverse health 

effects: by promoting active sitting or promoting standing. 

Hence, research should be careful with the term sedentary behaviour and specify whether it 

examines inactivity, sitting, or sedentary behaviour. At present, the recommendation to reduce 

sedentary behaviour should be interpreted as a recommendation to reduce inactivity, and the 

detrimental health effects should be combat with activity rather than standing. For office 

workers, this questions the use of standing desks, but analysing their impact on human health 

requires another thesis, ideally using a method developed in here.  



 

 

ZUSAMMENFASSUNG 

«Übermässiges Sitzen ist eine tödliche Aktivität» behauptete die New York Times (USA). 

Dagens Nyheter (SWE) titelte «Still sitzen ist so tödlich wie Rauchen», und der Tagesanzeiger 

(SUI) meinte «Den ganzen Tag sitzen ist lebensgefährlich». Tausende Zeitungsartikel haben 

in den letzten Jahren über die gesundheitsschädlichen Auswirkungen von Sedentary Behaviour 

berichtet, dem wissenschaftlichen Fachbegriff für inaktives Sitzen. Inaktiv bedeutet, dass der 

Energieverbrauch maximal 50% höher ist, als beim Liegen, während er bei aktivem Sitzen 

mehr als 50% höher ist. Die Weltgesundheitsorganisation hat kürzlich ihre Empfehlungen für 

körperliche Aktivität aktualisiert und zum ersten Mal inaktives Sitzen einbezogen. Sie 

empfiehlt, dass «Erwachsene die Zeit, in der sie inaktiv sitzen, begrenzen», denn «Personen 

die häufig inaktiv sitzen, haben häufiger Diabetes, Herzkreislauferkrankungen, und sterben 

früher». Ein Blick auf die von der Weltgesundheitsorganisation angeführten Beweise zeigt 

jedoch, dass die zugrundeliegenden Studien nicht inaktives Sitzen gemessen haben, sondern 

Inaktivität oder Sitzen. In Tat und Wahrheit haben bisher nur eine Handvoll Studien Inaktivität 

und Sitzen gleichzeitig gemessen, und diese haben gezeigt, dass die Messung nur einer der 

beiden Komponenten zu falschen Ergebnissen führt. 

Deshalb wurden in dieser Arbeit neue Methoden entwickelt, um beide Komponenten 

gleichzeitig zu messen: Inaktivität und Sitzen. Zudem wurde die vielversprechendste Methode 

validiert um zu überprüfen, ob sie effektiv beide Komponenten misst. Schlussendlich wurde 

die Methode verwendet, um das tatsächliche Ausmass von inaktivem Sitzen zu messen. 

Die Ergebnisse zeigen, dass es grundsätzlich möglich ist, Inaktivität und Sitzen mit nur einem 

einzigen am Oberschenkel getragenen Sensor zu messen. Folglich gibt es keinen Grund, nur 

Inaktivität oder nur Sitzen zu messen. Die Ergebnisse bestätigen zudem, dass bisherige Studien 

tatsächlich nur Inaktivität und nicht inaktives Sitzen gemessen haben.  

Bisher wurde vermutet, dass wir 55% bis 65% unseres Tages (ohne Schlaf) inaktiv sitzen. 

Diese Arbeit zeigt jedoch auf, dass Büroangestellte etwa 60% des Tages sitzen und 55% des 

Tages inaktiv sind, aber nur 45% des Tages inaktiv sitzen. Der Grund für diesen Unterschied 

ist, dass sie 2 Stunden pro Tag aktiv sitzen, und fast 2 Stunden pro Tag inaktiv stehen. Einige 

verbrachten sogar einen Drittel ihrer Zeit im Sitzen aktiv, während andere den grössten Teil 

ihrer Zeit im Stehen inaktiv waren. Diese Beobachtung spielt eine entscheidende Rolle bei der 

Prävention chronischer Krankheiten: Sollen die gesundheitsschädlichen Auswirkungen von 

inaktivem Sitzen mit aktivem Sitzen oder Stehen bekämpft werden? 

Die Wissenschaft sollte mit dem Begriff Sedentary Behaviour vorsichtiger umgehen und klar 

spezifizieren, ob Inaktivität, Sitzen oder inaktives Sitzen gemessen wird. Die Empfehlung 

inaktives Sitzen zu reduzieren muss gegenwärtig als Empfehlung zur Reduktion der Inaktivität 

verstanden werden. Die gesundheitsschädlichen Auswirkungen müssen deshalb mit Aktivität 

bekämpft werden. Für Büroangestellte stellt dies natürlich die Verwendung von Stehpulten in 

Frage. Die Analyse derer Auswirkungen auf die Gesundheit erfordert jedoch weitere 

Forschung, idealerweise unter Verwendung einer hier entwickelten Methode.  



 

 

ABSTRACT 

Sedentary behaviour, defined by a sitting body posture with minimal-intensity physical 

activity, is an emergent public health topic. The time spent sedentary is associated with the 

incidence of non-communicable chronic diseases such as type 2 diabetes and cardiovascular 

disease and significantly shortens life-expectancy in a dose-response relationship. Office 

workers are at particular risk of developing diseases related to sedentary behaviour due to their 

excessive sedentary work. Even though thigh-worn posture sensors are recommended to 

measure sedentary behaviour, the vast majority of the evidence was collected with waist-worn 

physical activity sensors, and we still lack a method to measure the posture and the physical 

activity component of sedentary behaviour simultaneously. 

This thesis aims to advance the measurement of sedentary behaviour in an office context by 

developing new device-based methods to measure both components simultaneously, and by 

validating and subsequently applying the most promising method to measure the actual amount 

of sedentary behaviour in the daily life of office workers. 

The method development showed that it is possible to measure both components of sedentary 

behaviour with only one sensor, preferably worn on the thigh or waist. While an accelerometer 

is sufficient for the thigh, an inertial-measurement-unit is preferable for the waist due to a 

significantly improved posture classification. The method validation subsequently confirmed 

that waist-worn physical activity sensors, the prevailing choice to measure sedentary 

behaviour, measure minimal-intensity physical activity. Furthermore, the study uncovered a 

serious postural dependency causing a systematic overestimation of minimal-intensity physical 

activity while sitting compared to standing. The subsequent method application considered the 

posture dependency and combined a thigh-worn posture sensor with a waist-worn physical 

activity sensor to POPAI, the Posture and Physical Activity Index. POPAI has a sensitivity of 

92.5% and a specificity of 91.9% to measure sedentary behaviour and classified 45.0% of the 

office workers wake-time sedentary. The posture sensor alone overestimated sedentary time by 

30.3%, and the physical activity sensor alone overestimated sedentary time by 22.5%. The 

difference can be explained by active sitting (2.0 hours per day) and inactive standing (1.8 

hours per day), both of which are much more common than previously thought. 

This thesis confirms the recommendation to use a thigh-worn accelerometer to measure 

sedentary behaviour and adds the information that such a sensor is also able to measure physical 

(in-)activity in sitting. Thus, there is no need to approximate sedentary behaviour with sitting, 

nor is there a need to approximate it with inactivity. In fact, these approximations lead to 

inaccurate and imprecise results substantially overestimating sedentary behaviour. Due to the 

predominant use of physical activity sensors to measure sedentary behaviour, 

recommendations to limit sedentary behaviour should address a limitation of the time spent 

inactive rather than the time spent sitting. If it turns out that sitting matters, one could expect a 

much stronger relationship between sedentary behaviour measured with a combined method 

such as POPAI and detrimental health effects. 
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PREFACE 

A bicycle ride around the world begins with a single pedal stroke [Scott Stoll, bike adventurer]. 

I did my first pedal stroke in the world of sedentary behaviour back in 2012 when I discussed 

a potential master thesis with two engineers, Daniel and Lukas. Daniel’s vision was to make 

seated office work active, and Lukas was the one who transferred Daniel’s vision into prototype 

office chairs. From that discussion on, the three of us developed a new office chair with a 

unique type of seat motion. As movement scientist, I started studying seated body movements 

in the movement laboratory – at this early stage of the project of course without a chair – and 

we spent hours discussing how to transfer the free-sitting movements to a chair [1, 2]. All the 

discussions, revisions, nightshifts, and prototypes seem to have been somehow successful. By 

the end of 2014, we sat on our first hand-built office chair, and more than six years later, I still 

enjoy sitting on this chair every day. 

After launching a new product, an engineer's mind starts to optimise it, aiming to make it better, 

simpler, more durable, and transfer the technology into other areas [3]. In contrast, a movement 

scientist’s mind starts to think about its daily use. How do office workers control the moveable 

seat? Find the answer in [4]. Does the moveable seat make a difference in terms of physical 

activity? Do they use it while daily office work? At that time, I did not even know that my 

sedentary research had already started. As scientists, we set-up a randomised controlled trial 

with office workers from a local insurance company to investigate whether and how the new 

chair affects their sitting behaviour. However, an almost endless, frustrating literature search 

told me that there is apparently no way to measure active sitting, although I came across a large 

number of studies examining inactive sitting (the layman’s term for sedentary behaviour). 

Therefore, I took a couple of sensors, a video camera, three chairs and all my workmates, did 

a spontaneous calibration study, and we could start our randomised controlled trial as planned. 

At the same time, I swore myself to come back to this method issue when the opportunity arises 

to solve the myth of why we are able to measure inactive sitting but not active sitting. 

Now that you are reading the preface of my doctoral thesis about the measurement of sedentary 

behaviour, it is evident that this opportunity arose. It makes me even more proud that I could 

include our office chair in one of the studies that comprise this thesis. Before I let you dive into 

the topic, I want to clarify the use of an imprecise expression in this thesis for the sake of 

readability. According to the Merriam-Webster dictionary, behaviour is the way in which 

someone conducts oneself or behaves, and it has a plethora of components and facets. However, 

with the focus on sedentary behaviour, behaviour is here always seen as physical behaviour 

with only two components, body posture and physical activity. 

Och nu önskar jag alla en god läsning. 

 

Roman Kuster 

Flemingsberg, February 2021 
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1 BACKGROUND 

1.1 SEDENTARY BEHAVIOUR AND HEALTH 

Sedentary Behaviour (SB) is a substantial part of our modern lifestyle, accounting for the vast 

majority of the wake-time. The average adult citizen in high-income countries spends around 

8 – 10 hours or 55% – 65% of the wake-time sedentary [5-8], and the further a country is 

digitally developed, the more its citizens report to be sedentary [9]. 

High levels of SB are associated with the incidence of non-communicable chronic diseases 

such as type 2 diabetes, cardiovascular disease, and cancer [10, 11], and significantly reduce 

life expectancy in a dose-response relationship [12-15]. An estimated 4% – 6% of all deaths in 

high-income countries can be traced back to SB [16, 17]. Only people who collect very high 

amounts (≥30 minutes per day) of moderate- to vigorous-intensity physical activity (MVPA) 

might be able to counterbalance the detrimental health effects of SB [12, 18].  

Preliminary evidence furthermore indicates that regularly interrupting SB with active breaks in 

light-intensity physical activity (LIPA) might have acute positive effects on disease-relevant 

biomarkers [19-22]. However, evidence lacks that these effects lead to improved long-term 

outcomes, and inconsistent results were reported whether the sedentary accumulation pattern 

(i.e. the time spent in long sedentary bouts) is associated with mortality [23-26]. 

In summary, the time has not yet come to formulate evidence-based quantitative health 

guidelines [23, 27]. The recently updated (November 2020) physical activity guidelines of the 

World Health Organization (WHO) include for the first time SB, but without quantifying a 

health-relevant threshold [28]. One reason for this lack is the considerable variation in the 

measurement of SB [12]. Thus, there is an urgent need to develop device-based methods to 

quantify SB compliant with its definition [10]. 

1.2 OCCUPATIONAL SEDENTARY BEHAVIOUR AND WORKPLACE 
INTERVENTIONS 

Up to 72% and 81% of the European Union and the United States population, respectively, 

works in the tertiary service sector, with primarily computer-based sedentary work activities 

[29]. In Sweden, 85% of all employees use a computer at work, >50% use a computer for >50% 

of the working time, and almost 25% for almost 100% of the working time [30]. The trend 

towards more sedentary computer time is not limited to working hours and is expected to 

continue in the future [30, 31]. 

Office workers spend around 65% – 75% of their working time sedentary [32-34], and 

accumulate a large part of it in long bouts ≥30 minutes [35-37]. At the same time, office work 

is characterised by only a marginal amount of non-stationary activities like walking (around 

7% of the work time) [37, 38]. Thus, office workers are at an increased risk of developing SB-

related chronic diseases, even though they typically accumulate slightly more recreational 

MVPA than non-office workers [34, 39]. 
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Due to the large proportion of the population exposed to high levels of sedentary office work, 

its health effects must be seen as a serious public health issue. Slogans like sitting is the new 

smoking have been introduced to highlight the detrimental health effects [40, 41], and the use 

of workplace equipment to break up SB is recommended, either by breaking it up with standing 

or physical activity [42]. 

Workplace interventions to break up sedentary time with standing show low- to moderate 

quality evidence to reduce sedentary working time by around 30 – 100 minutes per day [43-

45], without compromising performance and productivity [46, 47]. However, there is 

conflicting evidence whether standing increases physical activity compared to sitting [48-52], 

questioning whether standing is a sufficiently large stimulus to counteract the detrimental 

health effects of SB. Furthermore, there is conflicting evidence regarding a compensation effect 

outside working hours. Using a sit-stand desk at work has the potential to reduce sedentary 

office time, but it also has the potential to increase the sedentary time outside working hours 

[53, 54]. 

Workplace interventions to break up sedentary time with physical activity are less well 

studied and show inconsistent findings [43-45, 55]. From controlled experiments, it is known 

that workplace equipment such as cycling desks and some activity-promoting office chairs can 

increase the energy expenditure [56-59], with conflicting results about their effects on work 

performance and productivity [46, 47, 59, 60]. 

In general, several reviews concluded that the original studies examining the effects of 

workplace interventions use inconsistent, non-standardised, and non-objective SB 

measurements [61-63]. Thus, there is an urgent need to develop device-based methods to 

quantify the effects of workplace interventions on SB. 

1.3 SEDENTARY BEHAVIOUR – AN EVOLVING DEFINITION  

An essential prerequisite for studying a behaviour and its health effects is a clear definition of 

the behaviour itself, and a serious limitation of the sedentary research field is the definition’s 

evolution with its resulting ambiguity [64]. 

The term sedentary has initially been used to describe those individuals not engaging in a 

certain amount of physical activity (e.g. <10% of the daily energy expenditure spent in MVPA, 

less than the public health recommendations), to describe a reference group showing the lowest 

amount of physical activity, or to describe activities performed while sitting [65-68]. 

Historically, the term sedentary originates from the Middle French word sédentaire, which 

derives from the Latin sedentarius, a synonym for sitting and not in the habit of exercise [69, 

70]. However, there are three alternative SB definitions in use: 
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 Owen and colleagues proposed in 2000 that sedentary behaviour may be defined as 

having a MET (Metabolic Equivalent) value between 1.0 and 1.5 [71, p. 156]. 

According to the Owen-Definition, SB is defined by a particular physical activity 

intensity only (1.0 – 1.5 MET) and represents the lower end of the physical activity 

spectrum. The most serious limitation of the Owen-Definition is that it does not include 

the sitting component from which the term sedentary originates [70]. 

 Marshall and Ramirez proposed in 2011 that sedentary behaviour is best 

operationalised as sitting [72, p. 520], arguing that there are so few behaviours that 

involve sitting with a MET >1.5. According to the Marshall-Definition, SB is defined 

by a particular body posture only (sitting) and independent of physical activity. The 

most serious limitation of the Marshall-Definition is that we lack evidence whether 

there are actually so few behaviours that involve sitting with a MET >1.5.  

 The Sedentary Behavior Research Network proposed in 2012 that one should define 

sedentary behaviour as any waking behaviour characterised by an energy 

expenditure ≤1.5 MET while in a sitting or reclining posture [73, p. 540]. The 

combination of a posture and a physical activity component was later confirmed in a 

terminology consensus project among experts in the field and is widely used [74]. The 

definition simply fuses the two earlier ones by combining the posture component of the 

Marshall-Definition (sitting) with the physical activity component of the Owen-

Definition (1.0 – 1.5 MET). The most serious limitation of this definition is that we 

lack valid methods to measure both components simultaneously [10]. 

In summary, caution must be paid when comparing different studies regarding their SB 

definition. Henceforward, SB refers to the combined posture and physical activity classification 

as defined by the Sedentary Behavior Research Network [73]. The two components of SB are 

referred to as sitting (equal to the Marshall-Definition of SB) and, following the terminology 

in Holtermann et al. (2017), minimal-intensity physical activity (minPA, equal to the Owen-

Definition of SB) [64]. Note that, in here, reclining is considered a sitting posture. 

METABOLIC EQUIVALENT – A LIKEWISE EVOLVING DEFINITION 

The MET used to define the physical activity component of SB is a dimensionless quantity to 

allow comparisons among different individuals performing different tasks. The value is 

calculated by dividing the metabolic rate while a particular task by the resting metabolic rate 

(reference value). Conceptually, a MET value of 1.5 indicates that a person uses 1.5 times the 

energy expenditure at rest. However, there are three alternative reference values in use, leading 

to three alternative MET definitions [75]:  

 METStandard: From a historical perspective, 1 MET was standardised to a fix oxygen 

uptake of 3.5 ml×kg-1×min-1, approximately equal to 1 kilocalorie×kg-1×hour-1 [76]. 

This value was measured for a 70 kg, 40-year-old man under resting conditions and 

represents an absolute intensity measure (1.5 MET equals 5.25 ml×min-1×kg-1) [77, 78]. 
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 METAdapted: To account for anthropometric effects on the resting metabolic rate, the 

Harris-Benedict equation can be used to adapt the METStandard to gender, age, and height 

[79]. The resulting METAdapted represents an estimated relative intensity measure [75]. 

For the author of this thesis, 1.5 METAdapted equals 5.20 ml×min-1×kg-1. 

 METMeasured: To account for other individual factors such as genetics and 

environmental factors such as temperature, the individual resting metabolic rate must 

be measured. This makes the METMeasured a true relative intensity measure, which can 

be interpreted as work-to-rest-ratio [80]. For the author of this thesis, 1.5 METMeasured 

equals 5.79 ml×min-1×kg-1 at 26.8° Celsius. 

The distinction between the three MET definitions might be subtle, but it matters which MET 

definition is used to classify physical activity [75, 80-82]. The absolute scale (METStandard) has 

a long tradition in physical activity research [78, 83]. In contrast, the relative scale 

(METMeasured) got popular to interpret the MET as a multiple of the resting metabolic rate [74, 

84]. The METAdapted represents a simplified version of the METMeasured without the need to 

measure the resting metabolic rate [75, 82]. However, it is debatable which MET definition is 

best to take [75, 85, 86]. 

In summary, caution must also be paid when comparing studies with the same SB definition 

regarding their MET definition. Analogous to the physical activity and SB guidelines published 

by the WHO (defining one MET as the energy equivalent expended by an individual while 

seated at rest [28, p. 1452]), the METMeasured as the true work-to-rest-ratio that can be 

interpreted as a multiple of the resting metabolic rate is used here. 

1.4 THE 24-HOUR BEHAVIOUR FRAMEWORK 

With the gaining popularity of time-use epidemiology and compositional data analyses [87, 

88], it is important to embed the measurement of SB in a 24-hour behaviour framework, which 

takes both its posture and physical activity component into account (Figure 1, p. 7). 

Posture is typically divided into sitting, standing, and locomotion. According to the Merriam-

Webster dictionary, sitting is defined as resting on the buttocks or haunches [89], standing is 

defined as supporting oneself on the feet in an erect position [90], and locomotion is defined 

as an act or the power of moving from place to place and as such, strictly spoken, not a posture 

[91]. Here, locomotion is taken as a summary term for all non-stationary (i.e. non-sitting and 

non-standing), predominantly active behaviours. Further details about locomotion can thus be 

found in the corresponding physical activity research [92]. 

Physical activity is typically divided into LIPA (1.5 – 3.0 MET), moderate-intensity physical 

activity (3.0 – 6.0 MET), and vigorous-intensity physical activity (≥6.0 MET), whereas the 

latter two are here combined to MVPA (≥3.0 MET) [28, 78]. To summarise all activities below 

the lower threshold of LIPA, minPA (≤1.5 MET) is used here [64]. 
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Bedtime is included in the 24-hour behaviour framework as it takes up a substantial part of the 

day. Bedtime consists mainly of sleep, which is defined neither by a particular body posture 

nor by a particular physical activity intensity. The Merriam-Webster dictionary defines sleep 

by the absence of wakefulness and by the loss of consciousness of one's surroundings [93]. 

Regarding the combined posture and physical activity classification here, no further separation 

of bedtime into sleep and non-sleep is made. Details about bedtime and sleep can be found in 

the corresponding sleep research [94]. 

The present thesis focuses on stationary activities at the lower end of the physical activity 

spectrum (Figure 1) and separates the activity level of sitting and standing into inactive 

(minPA with MET ≤1.5) and active (LIPA and MVPA with MET >1.5). Thus, the behaviours 

studied are SB (a synonym for inactive sitting), active sitting, inactive standing, active standing, 

and locomotion (without activity classification). The sum of these five behaviours is, consistent 

with the literature, called wake-time, even though this is an imprecise expression considering 

that bedtime is not equal to sleep. An alternative would be to call it sensor wear-time. However, 

this term assumes that the sensor is not worn for part of the day and is therefore incompatible 

with the gaining popularity of 24-hour recording protocols. 

 

Figure 1. 24-hour behaviour framework to classify human behaviour into posture (1st level, inner ring) 

and physical activity (2nd level, outer ring). The outermost text expresses the combined posture and 

physical activity classification, with 1.5 MET separating inactive (minPA, ≤1.5 MET) from active 

behaviours (LIPA and MVPA, >1.5 MET). Framework inspired by the work of Tremblay et al. (2017) 

[74]. Abbreviations: minimal-intensity physical activity (minPA), light-intensity physical activity 

(LIPA), moderate- to vigorous-intensity physical activity (MVPA). 
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1.5 STATE-OF-THE-ART MEASUREMENT OF SEDENTARY BEHAVIOUR 

The choice of the measurement instrument is of utmost importance as it defines how the 

definition of SB is operationalised, and thus which behaviours are considered sedentary. 

Studies measuring SB either use self-reporting or device-based methods [95, 96]. 

1.5.1 Self-Reporting Methods 

For a long time, self-reporting with questionnaires was the only way to measure free-living 

behaviours. For SB, the majorities of questionnaires captured TV viewing or total daily sitting 

time as a proxy [96]. More recently developed questionnaires and diaries examine detailed 

context information of SB such as the domain (e.g. occupation, transportation, or leisure) [6, 

97]. These methods are still quite often in use, and a substantial part of the evidence for the 

detrimental health effects of SB is based on self-reports [98-101]. In general, self-reporting is 

easy to use, cost-effective, readily accessible, provides context information, and has a low 

participant burden. However, it lacks accuracy and precision due to social/cultural desirability 

and recall bias, as well as information about the accumulation pattern [96, 102, 103]. 

Nevertheless, under certain conditions (e.g. national surveillance, focus on domain-specific 

SB), it is still a reasonable choice to measure SB, preferably alongside device-based methods 

[97, 102]. Depending on the method used, self-reporting underestimates SB by up to 100 – 400 

minutes per day compared to device-based methods [102, 103]. 

1.5.2 Device-Based Methods 

With the rapid technological development in the last decades, device-based methods became 

more accessible, affordable, and thus popular. Although there is an incredible number of 

wearable sensor technology available, body-worn accelerometers are the method of choice to 

measure SB [104, 105]. Accelerometers are small and lightweight, easy to use, allow 

independent recordings for several days, and put only a minimal burden on the participants. 

However, compared to self-reporting, they are expensive, time-consuming, and do not collect 

context information. Due to different placements and data processing techniques, device-based 

methods can be divided into two groups: sensors to measure posture (sometimes referred to as 

inclinometers), and sensors to measure physical activity (sometimes referred to as motion 

sensors) [106]. 

Posture sensors determine the sensor’s orientation versus gravity. Attached to the thigh, they 

are well known to provide an accurate estimate of the time spent sitting, standing, and in 

locomotion [107-112]. The most commonly used posture sensor to measure SB is the activPAL 

(PAL Technologies Ltd, Glasgow, SCO). The activPAL classifies each instance with a thigh 

orientation closer than approximately 20° to horizontal as sitting [107], and the time spent 

sitting is taken as a direct estimate of SB [108]. Thus, the sedentary estimate is based on the 

posture information only, complying with the Marshall-Definition of SB. However, it remains 

unknown whether there are actually so few behaviours that involve sitting with MET >1.5 

(active sitting, Figure 1, p. 7) as claimed [72], and thus whether the measurement of sitting is 

an accurate approximation of SB.  
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Physical activity sensors convert the raw acceleration signal into a proprietary count unit to 

describe the sensor’s movement intensity within a predefined epoch [113-115]. Attached to the 

waist or wrist, the counts represent a measure of physical activity, and corresponding cut-points 

provide an estimate of the time spent at different intensity levels [113, 115-117]. The cut-points 

to classify physical activity differ between sensors, placements, and study populations. The 

most commonly used physical activity sensor is a waist-worn ActiGraph GT3X (ActiGraph 

LCC, Pensacola (FL), USA), for which the time spent below 100 counts-per-minute (cpm) on 

the vertical axis is taken as a direct estimate of SB [118]. Thus, the sedentary estimate is based 

on the physical activity information only, complying with the Owen-Definition of SB (called 

minPA here). However, it remains unknown how many behaviours involve a low physical 

activity level (minPA) without a sitting posture (inactive standing, Figure 1, p. 7), and thus 

whether the measurement of minPA is an accurate approximation of SB. Even more confusing, 

the ActiGraph cpm cut-points were calibrated and validated to measure SB, to measure minPA, 

and to measure sitting, and all studies recommend vertical axis cut-points in between 22 and 

200 cpm for the waist placement [108, 109, 119-123].  

In summary, the activPAL is the recommended sensor to measure SB, but most evidence for 

the detrimental health effects of SB was collected with the waist-worn ActiGraph 100 cpm cut-

point [124], with conflicting evidence what the cpm actually measures. 

1.6 DEVICE-BASED METHOD DEVELOPMENT 

Due to the limitations of posture and physical activity sensors to measure both components of 

SB, numerous studies aimed to advance the device-based measurement of SB and calibrated 

body-worn sensors against established reference criteria [125-127]. The calibration is required 

because body-worn sensors do not provide a direct behaviour measurement. The fundamental 

principle of a calibration is to predict 1) the behaviour of interest 2) with a body-worn sensor 

suitable for field recordings and 3) a specific data processing (Figure 2). The calibration’s key 

output is an algorithm specifying how the recorded signal needs to be processed to predict the 

behaviour of interest. Depending on the scope of the calibration, additional aspects of a method 

can be examined, such as the sensor placement [128], the number of sensors [129], or the 

classification technique [130]. This is done by developing several algorithms and comparing 

their cross-validities to predict the behaviour of interest. 

 

Figure 2. Method development framework. The calibration defines the new method, while the 

validation replicates the calibration in a new setting and study population without modifying it. The 

application represents the new method’s field use and is strictly spoken not part of the development, but 

its ultimate goal. Framework inspired by the work of Keadle et al. (2019) [131]. 
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As part of the method development, a validation should follow the calibration to assess the 

validity of the calibrated method in an independent setting and study population [131]. While 

the calibration modifies the algorithm to optimise its cross-validity in the training data, the 

validation assesses the method’s validity to estimate its generalisability to new data, without 

modifying the method. Both, the calibration and the validation thereby compare the method to 

established reference criteria, while the final application uses the new method without reference 

criteria to measure the behaviour of interest in the target population. Due to the similarity of 

the calibration and validation, the validation study might be used to recalibrate the algorithm if 

the validity is deemed insufficient for future applications. In such a case, it is recommended to 

proceed with another validation study to assess the validity of the recalibrated algorithm before 

applying the new method in the target population. 

Experts in the field repeatedly asked to work with raw sensor data and machine learning to 

advance the device-based measurement of SB [132-134]. This is why the present thesis focuses 

on methods using machine learning applied to raw sensor data. However, this should not be 

interpreted as the superiority of machine learning over traditional methods, nor as machine 

learning to be the only method to work with raw sensor data [126]. The method development 

framework in Figure 2 (p. 9) also applies to traditional method developments. 

1.6.1 Behaviour of Interest 

BEHAVIOUR DEFINITION 

The definition of SB, the behaviour of interest, consists of two components: a particular body 

posture (sitting), and a particular physical activity intensity (minPA, ≤1.5 MET) [73]. However, 

it is common practice to simplify the classification and use either sitting or minPA as a proxy 

for SB [135-140]. Sometimes even sitting activities with MET >2.0 or standing activities are 

considered sedentary [141-143], which means that these behaviours are classified as SB in later 

field use. In fact, studies considering posture and physical activity, such as the one by Pavey et 

al. (2017), are rare [136]. 

REFERENCE CRITERIA AND STUDY ENVIRONMENT 

The choice of valid reference criteria and the study environment are mutually dependent and 

directly related to the behaviour definition. Roughly, calibration studies can be divided into 

two groups: a minority is conducted in free-living, and the vast majority is conducted in 

controlled environments [127]. 

Studies conducted in free-living typically include a convenient sample of around 20 

participants [127]. They use the same natural environment in which the method is later applied. 

This means that a representative part of the daily life in a representative population is recorded 

[144]. As reference criteria, the studies use a posture sensor [136, 137] or direct observation 

[145, 146]. Studies using a posture sensor are limited to the posture classification, while direct 

observation is used for the posture and the physical activity classification [128, 147, 148]. 

Trained researchers thereby observe the participants either physically or with pictures recorded 
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by a wearable camera to categorise the daily activities in a predefined taxonomy (e.g. “sitting 

at a desk”, “sitting quietly and watching TV”) [145, 147]. Each category is subsequently 

assigned to a certain body posture and MET value. The MET value is usually taken from the 

Compendium of Physical Activity, a large database that assigns a METStandard value to various 

kinds of daily activities [149]. The MET value is then used to classify physical activity. 

Direct observation is very suitable for field recordings, but it has a limited validity to classify 

physical activity. It typically classifies seated activities as minPA and non-seated activities as 

LIPA or MVPA, thus turning the physical activity classification into a posture classification 

[128, 147, 148]. Furthermore, using the Compendium of Physical Activity means that SB is 

classified on group level, ignoring individual variations (e.g. “sitting at a desk” is always 

assigned to a MET of 1.3 and classified as SB regardless of the actual individual behaviour) 

[149]. 

Studies conducted in controlled environments typically include a convenient sample of 

around 25 participants [127]. These studies separate the posture and physical activity 

classification, whereas posture is most commonly prescribed and verified with direct 

observation [107, 138, 142], and physical activity is classified with an indirect calorimeter 

[150]. Indirect calorimeters measure the volume as well as the oxygen and carbon dioxide 

concentration in the inhaled and exhaled air, and their output is used to calculate the MET value 

of a given task (METStandard, METAdapted, or METMeasured). The MET value is then used to 

classify physical activity. 

Indirect calorimeters are known to have a high validity to measure physical activity [151], but 

they are very expensive, uncomfortable to wear, record only for a few hours, and require a 

steady state to conclude on the actual physical activity level of a given task [152]. Accordingly, 

their use in free-living is severely limited and very rare [120], which is why the studies are 

conducted in controlled environments [135, 140, 153]. 

The controlled environment requires that a representative part of the daily life is translated into 

a representative task selection in a representative MET level [144, 154]. From field studies, it 

is well known that the vast majority of the time is spent <2 MET [155]. Nevertheless, most 

studies record activities with an average MET of 3 – 4 that would be classified as MVPA [135, 

140, 141, 150]. Consequently, the methods typically have a higher validity for higher MET 

values [115, 116, 141]. Furthermore, it is essential to include tasks just at the border of the 

categories to strengthen the methods ability to discriminate the behaviours in later field use 

[147]. For SB, this means just around 1.5 MET. However, most studies use task clusters with 

an artificial large MET gap between sedentary and non-sedentary tasks, e.g. driving and office 

work for SB with MET ≤1.5 versus dusting and laundry for LIPA with MET ≥2.4 [135]. This 

large gap oversimplifies the SB classification by ignoring MET levels just above 1.5, and it 

ignores seated activities with >1.5 MET (active sitting) and non-seated activities with ≤1.5 

MET (inactive standing). In fact, even though studies conducted in controlled environments 

use an indirect calorimeter, they often use predefined task clusters to define SB, thereby 

ignoring the measured MET values [135, 141]. 
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In summary, the choice of the reference criteria and study environment is a decision between 

a limited validity for the physical activity classification in a natural setting (direct observation 

in free-living) and a high validity for the physical activity classification in an artificial setting 

(indirect calorimetry in a controlled environment). The vast majority of calibration studies are 

conducted in controlled environments [127]. 

1.6.2 Body-Worn Sensor 

SENSOR TYPE 

The selection of the body-worn sensor type is of utmost importance as the entire behaviour 

classification is based on the available input signal. Most methods use accelerometers due to 

their ease of use and excellent field suitability [104, 105]. Accelerometers measure the velocity 

change and represent a direct measure of motion variability. When attached to the waist or 

wrist, they can be used to classify physical activity [113, 115-117]. The acceleration signal can 

also be used to determine the sensor's orientation versus gravity. When attached to the thigh, 

they can be used to classify posture [109, 110]. However, the inactive nature of SB might make 

accelerometers not the optimal choice. 

Little movements and a limited motion variability characterise SB, and other sensor types 

might be more suitable to measure physical activity in quasi-static conditions, such as 

electromyography (EMG). Furthermore, today’s sensors include a 3D accelerometer, a 3D 

gyroscope, and a 3D magnetometer, forming so-called inertial-measurement-units (IMUs), like 

the ActiGraph GT9X. However, it is unknown whether the additional sensor signals are of any 

value for the measurement of SB. 

SENSOR PLACEMENT 

Posture sensors are worn on the thigh [110], and physical activity sensors on the waist, with 

newer protocols recommending the wrist to increase wear-time compliance [113, 156-158]. 

Only little is known about other sensor placements [125]. New methods are most often 

developed for the waist or the wrist placement, and the thigh is ranked fourth after the ankle 

[125-127]. However, direct comparisons between sensor placements are rare, with conflicting 

evidence which placement is most valid for measuring SB [125, 127]. 

NUMBER OF SENSORS 

Only little is known about the optimal number of sensors, with limited evidence that a two-

sensor-system might increase the validity of the behaviour classification [127, 129, 159, 160]. 

However, field-studies rarely use two-sensor-systems to measure SB [8, 161, 162], and most 

new methods employ a single sensor [125-127]. 
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1.6.3 Data Processing 

CLASSIFICATION TECHNIQUE 

Calibration studies match signals from body-worn sensors with valid reference criteria, and 

there is an indefinite number of classification techniques [126]. The measurement of physical 

activity and SB started with single cut-points [113, 163], and advanced to linear regression 

[164, 165] and supervised machine learning techniques [125, 127]. These typically use support 

vector machines, k-nearest neighbours, artificial neural networks, or decision tree ensembles, 

with no technique appearing to be superior to the other [125-127]. Machine learning is typically 

used with time and frequency domain features from the pre-processed or raw acceleration 

signal as input [125, 127, 145]. Although the selection of relevant features plays a crucial part 

[127, 166], most studies use an arbitrary feature set informed by author experience or extensive 

feature lists [134, 136, 137, 150]. Accordingly, only limited knowledge is available about 

relevant signal features to classify SB [130, 134, 157, 167, 168]. While Liu et al. (2012) 

recommended to include only the most relevant features, Kate et al. (2016) concluded that 

algorithms perform better the more features they include [130, 134]. 

ALGORITHM ARCHITECTURE 

Due to the combined posture and physical activity classification required to measure SB, the 

classification can be split into its single components using a hierarchical algorithm architecture. 

This enables combining a priori knowledge of human behaviour with different classification 

techniques, signal sources, or existing algorithms [145, 153, 169-172]. Regarding the 24-hour 

behaviour framework (Figure 1, p. 7), a hierarchical classification architecture might first 

classify the posture (algorithm 1) and then the activity level of sitting (algorithm 2) and standing 

(algorithm 3). Thus, the final algorithm of such a combined classification consists of several 

sequential but independent algorithms. 

TEMPORAL RESOLUTION 

Posture sensors classify the behaviour in an event-based manner by detecting posture 

transitions [110], and physical activity sensors classify the behaviour in predefined 60-second 

epochs [113]. Studies calibrating new methods often use epoch lengths of 30 or 60 seconds 

[125, 127]. Some studies investigated shorter epochs of e.g. 12.8 [173], 10 [136], 5 [137], or 

even 1 second [139], with a tendency that the cross-validity drops the smaller the epoch gets 

[125]. Generally spoken, the temporal resolution is a balance between physiological relevance 

and methodological feasibility [106]. In terms of SB, there is some preliminary evidence that 

the physiological relevance might be somewhere in between 5 – 10 minutes where sedentary 

bouts start to have detrimental health effects [174]. On the other hand, the methodological 

feasibility is a trade-off between a detailed behaviour classification and a sufficiently stable 

acceleration signal to reach a certain classification accuracy. A completely different approach 

is to first segment the data in an event-based manner like posture sensors, and second classify 

the activity level of each event [145, 171, 175].  
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1.7 RATIONALE 

The sedentary research field is an emerging public health topic. The numbers of original articles 

and reviews about SB covered by Web of Science (Clarivate, Philadelphia (PA), USA) has 

grown exponentially over the past three decades (Figure 3). On average, the annual number 

increased by 17% (35%) (median with interquartile range). In the same period, the annual total 

number of original articles and reviews covered by Web of Science increased by only 4% (3%). 

Thus, in the 1990s, one in 122’422 studies listed in Web of Science was about SB, while in the 

2010s, it was one in 2’147 studies. However, the sedentary research field is still claimed to be 

in its infancy: in studies calibrating new methods [146, 176]; in studies analysing the 

relationship with chronic diseases [101, 177-179]; in studies investigating SB interventions 

[98, 180]; and in studies examining SB guidelines [181, 182]. 

 

Figure 3. Crude estimate of the annual number of original articles and reviews about sedentary 

behaviour in the last three decades. Numbers taken from a Web of Science Core Collection search with 

query: TOPIC: (“sedentary behavio*”), refined by document types (article or review). Last updated on 

8 February 2021. 

The lowest common denominator in all of these studies is the need for a valid method to 

measure the two components of SB compliant with its definition. Since we still lack such a 

method, there is a need 1) to calibrate new methods to measure the two components of SB; 2) 

to validate the most promising method; and 3) to apply it in a field study to measure the actual 

amount of SB in real life. This also enables to specify the bias introduced when measuring only 

the posture or the physical activity component of SB. Due to their extensive amounts, office 

workers are a population at highest risk of developing SB-related chronic diseases, and there is 

a particular need to measure SB in the office context. 
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CALIBRATION 

 A seated posture with low energy expenditure characterises SB, and the activity-related 

energy expenditure is most likely spent to a large degree on keeping body posture. Thus, 

the measurement of thigh orientation would be a very direct measurement of the seated 

body posture, and the activity measurement of the muscles as primary energy-

consuming tissue would be a very direct measurement of the energy expenditure. 

Accordingly, there is a need to develop a method to measure SB with accelerometry 

and EMG. 

 The use of thigh-worn posture sensors is justified by their almost perfect validity to 

classify posture, and the use of waist-worn physical activity sensors is justified by their 

respectable validity to classify physical activity. Furthermore, the lightweight and small 

sensor housings of accelerometers (e.g. ActiGraph GT3X) and IMUs (e.g. ActiGraph 

GT9X) make the sensors very suitable for field recordings. This makes them also a 

convenient candidate for the measurement of SB, but only very little is known about 

the optimal sensor placement and whether the additional signal types of IMUs are of 

any value for the combined posture and physical activity classification. Accordingly, 

there is a need to investigate where to place which sensor type to measure SB with only 

one sensor. 

 Much data has already been recorded, in particular with the waist-worn ActiGraph 

GT3X. Thus, a new algorithm to measure SB with the same input signal as for the 

physical activity classification could be applied retrospectively, without the need to 

collect new data. Accordingly, there is a need to develop a posture classification for the 

waist-worn ActiGraph GT3X. 

VALIDATION 

 Before a new method is used in a field study, it is important to know its validity to 

measure the behaviour of interest. Accordingly, there is a need to assess the validity of 

the most promising new method to measure SB. 

APPLICATION 

 Due to the lack of valid methods to measure SB, the actual amount of SB in daily life 

is still unknown. Accordingly, there is a need to measure the actual amount of SB in 

daily life, as well as to measure the amount of active sitting and inactive standing to 

figure out whether there are actually so few behaviours that involve sitting with MET 

>1.5 (active sitting) and behaviours that involve standing with MET ≤1.5 (inactive 

standing). At the same time, this analysis shows whether the time spent sitting (as 

measured by posture sensors) and the time spent in minPA (as measured by physical 

activity sensors) are valid approximations of the time spent sedentary. 
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2 RESEARCH AIMS 

This thesis aims to advance the measurement of SB in office work by calibrating new methods 

to measure the posture and the physical activity component of SB compliant with its definition, 

and by validating and applying the most promising method to measure the actual amount of 

SB in the daily life of office workers. Broken down to the three parts of the method 

development framework (Figure 2, p. 9), this translates into the following specific aims. 

THE CALIBRATION AIMS TO 

I) develop a new method to measure SB with accelerometry (posture component) and 

EMG (physical activity component). 

II) develop new methods to measure both components of SB with single IMUs to 

figure out where to place which sensor type. 

III) develop a new algorithm to measure the posture component of SB with a waist-

worn ActiGraph GT3X. 

THE VALIDATION AIMS TO 

IV) specify the validity of the most promising method to measure SB. 

THE APPLICATION AIMS TO 

V) measure the actual amount of SB in the daily life of office workers, and investigate 

how much time they spend active sitting and inactive standing to figure out whether 

the time spent sitting and the time spent in minPA are valid approximations of the 

time spent sedentary. 
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3 MATERIALS AND METHODS 

3.1 OVERVIEW OF DATA COLLECTIONS AND STUDIES 

This thesis follows the method development framework (Figure 2, p. 9) and covers the 

calibration (Study I – III), the validation (Study IV), and the final application (Study V). 

In Study I (data collection A, Figure 4), a thigh-worn accelerometer (posture) and an upper-

body-worn EMG system (physical activity) were calibrated to measure the two components of 

SB. In Study II (data collection B), a large number of IMUs placed on various body segments 

were calibrated to figure out where to place which sensor type to measure both components of 

SB with only one sensor. In Study III (data collection C), a waist-worn ActiGraph GT3X, the 

most commonly used physical activity sensor, was calibrated to measure posture. Study I and 

II were conducted in a controlled environment and Study III in free-living. In here, the results 

of the three studies were compared to identify the most promising new method, i.e. the one 

with the highest cross-validity to measure SB deemed most suitable for field recordings. 

The measures to limit the spread of COVID-19 stopped the ongoing free-living validation study 

with the calibrated methods, and no new data could be recorded. The selection of the most 

promising method for the validation and application was therefore restricted to methods with 

data captured before March 2020. Accordingly, the Posture and Physical Activity Index 

(POPAI), a new combination of the most commonly used posture sensor (thigh-worn 

activPAL) and the most commonly used physical activity sensor (waist-worn ActiGraph 

GT3X), was identified as the most promising method with available data. The high validity of 

the activPAL to classify posture is well-established [107-112], which is why the validation 

Study IV assessed only the validity of the ActiGraph cpm cut-points to classify the activity 

component of SB (minPA). Due to the conflicting evidence of what the cpm cut-points measure 

(minPA, SB, or sitting [120-122]), the study also analysed the sensor's validity to measure SB 

and sitting. For this purpose, the data collected for Study II (data collection B) were reused. 

Subsequently, POPAI measured the actual amount of SB in the daily life of office workers in 

a final cross-sectional field Study V. This last study used the same data as Study III (data 

collection C) but included a larger sample. 

 

Figure 4. Overview of the three data collections (A – C) and the five studies (I – V) with respect to the 

method development framework. Abbreviations: Electromyography plus Accelerometer (EMG+), 

Inertial-Measurement-Unit (IMU), Posture and Physical Activity Index (POPAI).  
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3.2 ETHICS 

This project followed the ethical principles outlined in the latest version of the Declaration of 

Helsinki [183]. All participants were adult office workers and free to decide whether to 

participate, and they could withdraw their consent at any time without reasoning. The ethics 

committee of Stockholm County approved all studies (DNR 2018/554-31 for Study I, II, and 

IV; DNR 2016/796-31 for Study III and V). The participants shown in Figure 5 (p. 23) gave 

their written consent to include their images. 

Study I, II, and IV collected data in Switzerland and obtained a declaration of non-objection 

from the ethics committee of the Canton of Zurich. All participants gave their written consent 

after receiving detailed information about the study. Conducting the studies was a public task, 

which is why participants were insured under state liability. Participation in the studies was 

judged no riskier than regular office work, and no adverse events occurred. Participants 

received a detailed analysis of their energy expenditure, and a homemade elderberry jam and 

syrup. 

Study III and V reanalysed data previously collected for another purpose [184]. Therefore, an 

addendum was sent in and approved by the ethics committee of Stockholm County (DNR 

2018/2315-32) to reanalyse the data without the participants’ consent. Only the raw sensor 

data, the wear-time diary, and the participants’ age and body weight were used to conduct the 

studies, all in encrypted form. 

3.3 PARTICIPANTS 

Due to the large and still growing proportion of office workers in the general population [29-

31] with excessive amounts of SB [32-38], office work is the single largest contributor to SB 

in the population. Thus, only office workers between 18 and 65 years were included (Table 1). 

The office workers in data collection A and B had to confirm that they have no silicone allergy 

due to the use of a silicone facemask for indirect calorimetry. Data collection B further limited 

study participation to office workers with ≥70% employment rate spending ≥50% of their 

working hours at an office desk. These additional inclusion criteria ensured that only office 

workers with an excessive amount of occupational SB and thus at increased risk of developing 

SB-related chronic diseases were included. 

The recruiting in data collection A and B used flyers, emails, and word of mouth. A 

convenient sample of 25 and 30 office workers from Winterthur and Zurich (Switzerland) was 

included. Data collection C used the internal communication channels of the involved 

companies to recruit 330 office workers from two worksites close by Stockholm (Sweden). 

Study III included a convenient sample of 38 office workers, and Study V followed Martin 

Bland’s recommendation for method comparison studies and included a sample of 100 office 

workers [185]. 

Note that Study II and Study IV used the same sample, and Study III was conducted on a sub-

sample of Study V (Table 1), resulting in a total of 155 office workers enrolled in the studies. 
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Table 1. Participant characteristics. 

Data Collection A B C 

Study I II & IV III V 

Sample Size 25 30 38 100 

Gender (male/female) 13 / 12 14 / 16 25 / 13 61 / 39 

Age (years) 30.8 ± 8.4 

[20.0 – 61.0] 

38.8 ± 9.0 

[23.8 – 57.0] 

42.3 ± 8.4 

[27.0 – 59.0] 

40.8 ± 9.2 

[21.0 – 64.0] 

Height (m) 1.75 ± 0.09 

[1.55 – 1.90] 

1.74 ± 0.08 

[1.55 – 1.91] 

N/A N/A 

Weight (kg) 69.8 ± 9.6 

[57.0 – 93.0] 

71.2 ± 11.0 

[55.0 – 100.0] 

71.2 ± 10.2 

[55.1 – 93.0] 

71.6 ± 12.6 

[49.2 – 104.0] 

BMI (kg/m2) 22.9 ± 2.5 

[18.5 – 28.7] 

23.6 ± 3.3 

[19.5 – 33.0] 

N/A N/A 

Place of Data Recording Winterthur Winterthur Stockholm Stockholm 

Responsible University ZHAW & KI ZHAW & KI GIH GIH 

Numbers given in counts or mean ± standard deviation and [minimum – maximum]. Abbreviations: 

Not Applicable (N/A, height was not measured in data collection C), Body Mass Index (BMI), 

Zurich University of Applied Sciences (Zürcher Hochschule für Angewandte Wissenschaften, 

ZHAW), Karolinska Institutet (KI), Swedish School of Sport and Health Sciences (Gymnastik- och 

idrottshögskolan, GIH). 

 

3.4 DATA COLLECTION AND PROCESSING 

An overview of the three data collections (A – C) for the three calibration studies (I – III) in 

relation to the method development framework is given in Table 2 (p. 22). All three calibration 

studies used the same SB definition, including the posture (sitting) and the physical activity 

component (minPA with MET ≤1.5). However, as the cpm cut-points are an established 

method to measure physical activity with the ActiGraph GT3X [113, 118, 122], Study III 

calibrated only a posture algorithm. Accordingly, the choice of a valid reference criterion (a 

posture sensor) allowed using data collected in free-living. In contrast, data collection A and B 

used direct observation (posture) and indirect calorimetry (physical activity) as reference 

criteria and therefore took place in a controlled environment. Illustrative pictures for each data 

collection are given in Figure 5 (p. 23). 
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Table 2. Overview of the three data collections (A – C) for the three calibration studies (I – III) in 

relation to the method development framework. 

 Data Collection A 

for Study I 

Data Collection B 

for Study II 

Data Collection C 

for Study III 

Behaviour of Interest    

Behaviour Definition Sitting with ≤1.5 MET Sitting with ≤1.5 MET Sitting 

Reference Criteria    

- Posture Direct Observation Direct Observation Posture Sensor 

(activPAL3) 

- Physical Activity Indirect Calorimetry 

(COSMED K5) 

Indirect Calorimetry 

(COSMED K5) 

N/A 

Study Environment    

- Setting Controlled Controlled Free-Living 

- Activities Office Tasks Office Tasks N/A 

- MET, Median (iqr) 1.50 (0.18) 1.58 (0.20) N/A 

Body-Worn Sensor    

Sensor Type EMG (ZHAW) plus 

Accelerometer 

(ADXL345) 

IMU(a) 

(Xsens Biomech 

Awinda) 

Accelerometer 

(ActiGraph  

wGT3X-BT) 

Sensor Placement EMG: Forearm, Upper 

Arm, Shoulder, Back 

Accelerometer: Thigh 

Head, Sternum, Waist, 

Wrist, Arm, Shoulder, 

Thigh, Shank, Foot 

Waist 

Sensor Number EMG: 8 

Accelerometer: 1 

15(b) 1 

Data Processing    

Classification 

Technique 

Decision Tree Decision Tree 

Ensemble 

Decision Tree 

Ensemble 

Algorithm Architecture 1st level: Posture 

2nd level: Physical 

Activity 

1st level: Posture 

2nd level: Physical 

Activity 

1st level: Posture 

 

Temporal Resolution 60 seconds 60 seconds 60 seconds 

a) two ActiGraph accelerometers (waist- and wrist-worn) not used in the calibration (Study II) but 

in the validation (Study IV) were additionally used; b) each of the 15 IMUs was calibrated 

individually. Abbreviations: Metabolic Equivalent (MET), Not Applicable (N/A), interquartile 

range (iqr), Electromyography (EMG), Zurich University of Applied Sciences (Zürcher Hochschule 

für Angewandte Wissenschaften, ZHAW), Inertial-Measurement-Unit (IMU). 
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Figure 5. Illustrative pictures for each data collection. a) the EMG+; b) Participant performing the 

Deskwork task on Conventional Chair; c) Mouse task on Conventional Chair; d) Typing task on Saddle 

Chair; e) Deskwork task on Active Chair; f) Sorting task at Standing Desk; g) sensor placement in data 

collection C. Task and workplace explanations are given in Table 3 (p. 24). Picture a, b and g previously 

published under CC BY license in MDPI journals. Abbreviation: Electromyography plus Accelerometer 

(EMG+). 

3.4.1 Controlled Environment (Data Collection A and B) 

In data collection A and B for Study I, II, and IV, participants were equipped with the 

measurement instruments and completed various everyday office tasks at the workstation of 

the author of this thesis at the Zurich University of Applied Sciences. The task selection was 

inspired by previous studies investigating physical activity in office work [48, 129, 186-188] 

and included computer-based, hybrid, and non-computer based office tasks (Table 3, p. 24). 

They were performed at four workplaces (Figure 5): A Conventional Chair representing 

conventional office work, a Saddle Chair with elevated seat height representing a seated 

workplace intervention to reduce the hip flexion angle, an Active Chair representing an active 

workplace intervention to reduce minPA, and a Standing Desk representing a standing 

workplace intervention to reduce sitting. The Saddle Chair was used to challenge the posture 

classification and not to investigate the seated posture from a biomechanical perspective. The 

Active Chair is described in detail in Kuster et al. (2016 and 2018) [1, 2]. In short, the chair has 

a moveable seat in the frontal plane, allowing the chair user to move the pelvis to the left and 

right while keeping a stable upright position of thorax and head to not interfere with office 

work demands. To ensure the seat motion was used, an oral prompting reminded the participant 

every minute to move the seat if they did not. The Saddle Chair was only analysed in Study II, 

and the Active Chair was only analysed in Study IV. 

Task and workplace order was randomised using the random permutation function of 

MATLAB (Version 2018a, MathWorks Inc., Natick (MA), USA), but two identical tasks and 



 

24 

workplaces were never recorded in succession. Each task was performed for 5 minutes as 

steady state was reached latest after 4 minutes in the pilot study (n=3). In data collection A, 

participants completed as many tasks as possible in 45 minutes. All participants completed 

Watching a video on the Conventional Chair, Typing on the Conventional Chair and at the 

Standing Desk, and Walking. In data collection B, all participants completed all tasks. To 

account for different workstation designs, half of the participants in data collection A and a 

third in data collection B used a Laptop (Figure 5c and 5d, p. 23). The remainder used a desktop 

computer (Figure 5b, 5e, and 5f, p. 23). The execution of the tasks was neither demonstrated 

nor standardised in any form. Participants placed the working material in their own way and 

performed the tasks at their own speed. After completing all office tasks, a 10-minute resting 

metabolic rate measurement was conducted following best practice recommendations to define 

the METMeasured of each participant [189-192]. Data collection A took place between 22 May 

and 18 June 2018, and data collection B between 12 September and 12 November 2018. 

 

Table 3. Office tasks and workplace designs in data collection A and B for Study I, II, and IV. 

 Data Collection: A B 

 Representative for… Study: I II IV 

Computer-Based Tasks     

Watching (a video) office activities without own intervention x   

Mouse (navigating in a game) office activities with predominant mouse use x x x 

Typing (typing a text) office activities with predominant keyboard use x x x 

Hybrid Tasks     

Deskwork (successive short 

non-/computer based tasks) 
office activities with intermittent computer use x x x 

Non-Computer Based Tasks     

Sorting (successive short 

non-computer based tasks) 
office activities without computer use  x x 

Walking non-stationary office activities x x  

Workplaces      

Conventional Chair conventional office work x x x 

Saddle Chair a seated workplace intervention  x  

Active Chair an active workplace intervention   x 

Standing Desk a standing workplace intervention x x x 

Illustrative pictures for tasks and workplaces are given in Figure 5 (p. 23). Note that the Saddle Chair 

was only used for the Typing task. Chair Manufacturers: Conventional Chair: Vitra, Birsfelden, 

SUI; Saddle Chair: HAG Capisco, Flokk, Oslo, NOR; Active Chair: rotavis, Winterthur, SUI. 

 

The reference criteria were in both data collections direct observation for the posture 

classification (classifying each task as sitting, standing, or locomotion) and an indirect 

calorimeter (K5, COSMED Srl, Rome, ITA) for the physical activity classification (classifying 
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sitting and standing tasks into inactive or active). The calorimeter was chosen as it is the only 

established reference criterion to classify physical activity individually, and the K5 is 

considered valid even at low physical activity intensities [193, 194]. The device was calibrated 

in the morning of each recording as recommended by the manufacturer and recorded with 0.1 

Hz in the mixing chamber mode. Data were downloaded with Omnia Version 1.6.2 (data 

collection A) and 1.6.7 (data collection B) (COSMED Srl, Rome, ITA) and converted into 

kilocalories using the Weir equation [195]. To obtain the MET value for each task, data 

collection A used the median MET of the final two minutes, and data collection B used the 

median MET during steady state. Steady state was defined as the time from the first minute 

with less than 10% deviation from the median of all subsequent minutes until the end of the 

task. The MET value was then used to classify the activity level of the task into inactive 

(minPA, ≤1.5 MET) or active (>1.5 MET). Reanalysing Study I data with the steady-state 

detection used in Study II resulted in the same physical activity classification. 

Data collection A for Study I used an EMG plus accelerometer system (EMG+) developed 

within a Bachelor thesis at the Zurich University of Applied Sciences (Figure 5a, p. 23) [196]. 

The device was self-developed because existing EMG systems were not considered suitable 

for long-term field recordings. The EMG electrodes (Ambu BlueSensor N, Ambu A/S, 

Ballerup, DNK) were placed by the researcher bilateral on the most prominent muscle bellies 

of M. extensor digitorum (forearm), M. biceps brachii (upper arm), M. deltoideus pars anterior 

(shoulder), and M. erector spinae (back). The accelerometer (ADXL345, Analog Devices, 

Norwood (MA), USA) was placed after verbal instruction by the participants lateral on the left 

thigh with two elastic straps. The analogue EMG signal was processed with a differential 

amplifier, a high-pass filter (cut-off frequency 1.8 Hz), a rectifier, a low pass filter (cut-off 

frequency 110 Hz), and together with the accelerometer signal converted to a raw digital signal 

at 30 Hz. The raw signal was cut into 60-second epochs and directly used to develop the 

classification algorithms. 

Data collection B for Study II used a full-body inertial motion capture system (Biomech 

Awinda, Xsens Technologies B.V., Enschede, NLD) consisting of 15 IMUs. The IMUs, each 

featuring a 3D accelerometer, a 3D gyroscope, and a 3D magnetometer, were placed according 

to the manufacturer’s recommendation on the head, sternum, and waist (all unilateral), the 

wrist, upper arm, shoulder, thigh, shank, and foot (all bilateral). The IMUs recorded at 60 Hz, 

and the raw signal was cut into 60-second epochs and directly used to develop the classification 

algorithms. 

Data collection B for Study IV used a waist-worn ActiGraph wGT3X-BT and a wrist-worn 

ActiGraph GT9X-Link, both worn on the left body side. The ActiGraphs recorded at 30 Hz, 

and the raw signal was converted to cpm using ActiLife Version 6.13.4 (ActiGraph LCC, 

Pensacola (FL), USA). Following the recommendation for low-intensity activities [197], only 

the low-frequency-extension filtered data are presented here.  
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3.4.2 Free-Living Environment (Data Collection C) 

Data collection C for Study III and V was conducted by the Swedish School of Sport and Health 

Sciences within the Brain-Health-Study. The Brain-Health-Study investigated the association 

between physical activity patterns and cognition, mental health, and sleep in office workers 

[184]. It is a 3-arm cluster randomised controlled trial targeting physical activity and SB with 

two multi-component interventions. Study III and V used the baseline data before any 

intervention took place. Participants wore an activPAL3 on the thigh (attached with waterproof 

adhesive film) and an ActiGraph wGT3X-BT on a belt around the waist during waking hours, 

both on the right side (Figure 5g, p. 23). Each participant kept a diary to note sensor wear-time. 

The activPAL recorded at 20 Hz, and the ActiGraph at 30 Hz. The studies used the raw sensor 

data and the proprietary data processing output of the corresponding software: event file for the 

activPAL generated with activPAL3 version 7.2.38, and low-frequency-extension filtered 

counts-per-second file for the ActiGraph generated with ActiLife version 6.13.4 (only Study 

V). Participants included in Study III were recorded between 22 February and 14 April 2017, 

and participants included in Study V were recorded between 24 October 2016 and 14 April 

2017. 

Data preparation for Study III and V started with the activPAL wear-time detection to 

ensure only days with ≥500 steps, ≥12 recorded hours (without bedtime), and ≤95% of the time 

spent in the most dominant activPAL posture were included [198]. Bedtime was identified with 

an algorithm developed by Winkler et al. (2016) [198]. This algorithm classifies the longest 

activPAL sitting bout between subsequent noons (12:00 – 12:00) as bedtime and expands 

bedtime in case it is directly preceded/followed by another long sitting bout. As the algorithm 

slightly underestimates bedtime [198], both studies used a modified version. Study III 

expanded bedtime if a second algorithm, developed by Lyden et al. (2016) [199], detected a 

lying event preceding/following bedtime. The Lyden algorithm classifies each activPAL sitting 

event as lying when the thigh rotation angle around the longitudinal axis exceeds 65° to the 

horizontal (0° corresponds to sitting upright). Study V combined the Winkler algorithm with a 

visual inspection, and adjusted bedtime start and stop if required using the diary information.  

The two sensor clocks were thereafter synchronised since there was an obvious delay between 

the sensors, evident in the raw signal comparison. Major signal changes (e.g. from a smooth 

line to a fidgeting curve) typically occurred a couple of seconds delayed on the ActiGraph 

compared to the activPAL. The delay was neither constant among the different sensor pairs nor 

among the time of the same sensor pairs. The delay was linearly approximated for each sensor 

pair by searching the highest cross-correlation between the two normalised sensor x-axes (both 

pointing anteriorly while sitting) over consecutive, non-overlapping 3-hour episodes. The 

approximated delay was applied to the ActiGraph clock. Further details about the sensor 

synchronisation can be found in the supplementary online material of Paper V.  

ActiGraph non-wear-time was then excluded by inspecting all activPAL events overlapping an 

ActiGraph epoch with constant raw signal, and removing those in which the activPAL recorded 

a posture change or locomotion (sensor contradiction), and those in which the ActiGraph signal 
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remained constant for ≥90 minutes (prolonged non-wear). Last, short episodes in between 

longer excluded episodes were excluded to prevent excessive fragmentation of the data. 

In Study III, the event file of the activPAL (with the posture classification sitting, standing, 

and locomotion) served as reference criterion, and the raw ActiGraph data were directly used 

to develop the posture classification algorithm. The minute-by-minute raw data were extracted 

in two different ways: one for the algorithm development (training minutes), and one for the 

final algorithm selection (testing minutes). The training minutes included only minutes with 

constant activPAL classification. The testing minutes included all available minutes on days 

with ≥10 valid hours, just as a typical field study would extract the data [200, 201].  

In Study V, the event file of the activPAL was combined with the ActiGraph counts-per-

second file to the combined posture and physical activity classification of POPAI. POPAI 

started with the activPAL posture events and classified each sitting and standing event with the 

ActiGraph cpm cut-points into inactive and active. Thus, POPAI detected inactive sitting 

(equal to SB), active sitting, inactive standing, active standing, and locomotion (Figure 6). The 

activity classification used a minute-by-minute resolution, and the cut-points with the highest 

validity observed in Study IV (75 cpm for sitting, 150 cpm for standing). The remaining 

fraction of each event and events <1 minute were classified with the corresponding fraction of 

the cpm cut-point (e.g. 37.5 counts for a 30-second sitting event) as no major differences exist 

when applying cut-points to shorter events [109]. In case the activity classification changed 

during an activPAL event, the event was split accordingly.  

To compare with POPAI, the single sensor data were processed in a state-of-the-art manner. 

For the activPAL, the event file was directly used, whereas sitting was considered sedentary 

[108]. For the ActiGraph, vertical axis cut-points of 100 and 1’952 cpm were used to classify 

the behaviour into minPA, LIPA, and MVPA [113, 118, 122], whereas minPA was considered 

sedentary. Only the sedentary estimates were used here. 

 

Figure 6. Exemplary classification of a 20-minute recording with the activPAL, ActiGraph, and POPAI. 

Indicated are the behaviour duration (minutes:seconds) and the ActiGraph counts. Modified version of 

a figure in Paper V, published under CC BY license in an MDPI journal. Abbreviations: minimal-

intensity physical activity (minPA), light-intensity physical activity (LIPA), moderate- to vigorous-

intensity physical activity (MVPA), Posture and Physical Activity Index (POPAI).  
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3.5 DATA ANALYSIS AND STATISTICS 

The entire analysis and statistics, summarised in Table 4, was conducted in MATLAB (Version 

2018a, 2019a, and 2020a), except the Generalised Estimation Equations (SPSS Version 27, 

IBM, Armonk (NY), USA). To compare the studies, the validity is given as balanced sensitivity 

and specificity (mean of sensitivity and specificity) to equally account for the true positive and 

the true negative behaviour detection [157]. Note that the cross-validity always refers to the 

calibration (whereas the cross indicates that data of every participant was used for training and 

testing/validating the algorithm), while the validity always refers to the validation. Both cross-

validity and validity represent a measure of concurrent validity against established reference 

criteria [202]. Whenever inferential statistics were used, data were checked for normal 

distribution and the corresponding parametric or non-parametric alternatives are given (e.g. 

mean with 95% confidence interval or median with non-parametric 95% confidence interval). 

The level of significance was set to 0.05. 

 

Table 4. Overview of statistical analyses. 

 Study I Study II Study III Study IV Study V Thesis 

Descriptive Statistics       

Counts and Percentage       

Mean (sd) and Median (iqr)       

Minimum and Maximum       

5th and 95th Percentile       

Sensitivity and Specificity       

ROC Curve / AUC       

Cohen’s Kappa       

Inferential Statistics       

Lilliefors Test for Normality       

95% Confidence Interval       

Standard Error       

Friedman Test       

Wilcoxon Test       

Kruskal-Wallis Test       

Mann-Whitney U Test       

Bland-Altman Statistics       

Generalised Estimation Equations       

Matthews Correlation Coefficient       

Pearson Correlation Coefficient       

The column Thesis contains only the additional analyses performed here. The signal features (e.g. 
mean, 5th percentile) for the algorithm development in Study I – III are not included. Abbreviations: 
standard deviation (sd), interquartile range (iqr), Receiver Operating Characteristic (ROC), Area 
Under the ROC Curve (AUC). 
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3.5.1 Calibration (Study I – III) 

The algorithm development in Study I – III followed the 24-hour behaviour framework (Figure 

1, p. 7). Each study developed a posture algorithm (1st level), and Study I and II additionally 

two activity algorithms (2nd level), one for sitting and one for standing. Study I and II finally 

combined the three algorithms to classify the behaviour compliant with the 24-hour behaviour 

framework. Study III was limited to the posture classification. 

Each algorithm was developed with a similar supervised machine-learning technique. 

The fundamental principle of supervised machine learning is to train an algorithm to map an 

input signal (here: the sensor data) to a known output signal (here: the posture or physical 

activity classification of the reference criteria). Starting with the raw sensor data, the algorithm 

development included a feature generation, a feature filtering, a feature inclusion, an algorithm 

optimisation, and a final algorithm selection.  

The feature generation transferred the raw sensor data into a limited number of characteristic 

signal features describing the sensor signal within a given epoch. All studies used time-based 

features (e.g. mean, 5th percentile) and frequency-based features (e.g. mean frequency, total 

signal power) calculated for non-overlapping 60-second epochs. The full feature list of each 

study can be found in the Papers and their supplementary online material. The features were 

calculated for the raw data, and in Study II and III additionally for the low-pass filtered data 

(Butterworth 2nd order, 0.5 Hz cut-off), and the 3D angle of the low-pass filtered data [157]. 

The feature filtering then removed non-relevant features so that the subsequent computational 

demanding steps did not need to examine the full feature list. Study I used a manual feature 

filtering with histograms and Pearson correlation coefficients. Study II and III used an 

automated feature filtering with a random forest classifier to identify the top 100 ranked 

features (program available at https://github.com/RomanKuster/featureranking). 

The feature inclusion subsequently included the features iteratively into the algorithm, with 

each iteration adding the most relevant remaining feature (known as forward feature selection). 

Relevance was assessed by calculating the cross-validity with the leave-one-subject-out 

approach [125, 127]. This approach trains an algorithm on all but one subject (the holdout) and 

cross-validates the prediction on the holdout subject. The training and cross-validation are 

repeated until every subject served once as holdout, and the cross-validity is calculated over all 

holdout subjects. Study I used a simple decision tree with the area under the receiver operating 

characteristic curve and the Matthews correlation coefficient to measure the cross-validity. 

Study II and III used a bagged decision tree ensemble with five trees and the balanced 

sensitivity and specificity to measure the cross-validity. The feature inclusion stopped when 

the cross-validity reached a maximum value (no further increase for all remaining (Study I) or 

the next ten (Study II and III) features). This iterative procedure finally resulted in as many 

algorithms as features included (i.e. the first algorithm with one feature, the second algorithm 

with two features, etc.).  
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The algorithm optimisation then identified in Study II and III for each algorithm the optimal 

training properties (e.g. which ensemble learner method and split criterion, the number of trees 

and splits in each tree), and retrained each algorithm accordingly. Since Study I trained only 

simple decision trees, the algorithm optimisation analysed whether combining the decision tree 

with the largest area under the receiver operating characteristic curve and the tree with the 

highest Matthews correlation coefficient further increased the cross-validity and combined 

them accordingly. 

Study I trained the posture algorithm with the accelerometer features only, and the two activity 

algorithms (for sitting and standing) with all available features (EMG and acceleration). For 

consistency with Study II and III, the algorithms with the highest balanced sensitivity and 

specificity were selected and combined to generate the combined posture and physical activity 

classification. The remaining algorithms can be found in Table 4 of Paper I. 

Study II trained the posture and the two activity algorithms separately for each sensor 

placement and signal type (accelerometer only, accelerometer plus gyroscope, accelerometer 

plus magnetometer, accelerometer plus gyroscope and magnetometer). To identify the signal 

type with highest cross-validity for each placement, Friedman-tests followed by post hoc 

Wilcoxon tests with Bonferroni-adjusted p-values were used. Unless there was a significant 

effect of signal type, only the accelerometer results were selected to account for the fact that 

the additional sensor signals make the sensor more expensive and the processing more 

complex. Due to their almost exclusive use in field studies, only the results of the thigh (right 

side), waist, and wrist placement (left side) are shown here. The results of the remaining 

placements can be found in Table 3 and 4 of Paper II. To simplify readability, the developed 

methods are capitalized and given with abbreviated sensor type (e.g. “Thigh Accel” for the 

thigh accelerometer method, “Waist IMU” for the waist IMU method, etc.). 

Study III trained a posture algorithm for a waist-worn ActiGraph wGT3X-BT on data 

collected in free-living and focused on detecting long sitting bouts. This is why the algorithm 

with the lowest Bland-Altman bias for the daily time spent in sitting bouts ≥5 and ≥10 minutes 

was finally selected. 

The comparison between the methods developed in Study I – III was done separately for 

1) the classification of SB; 2) the classification of sitting; 3) the classification of the activity 

level while sitting; and 4) the overall behaviour classification compliant with the 24-hour 

behaviour framework. The comparison included paired (methods developed in the same study) 

and unpaired data (methods developed in different studies), which is why the Kruskal-Wallis 

Test for unpaired data was used as omnibus test. In case of a significant effect, a pairwise post 

hoc comparison with Bonferroni-adjusted p-values identified the methods causing the effect. 

The Wilcoxon test was used for paired data and the Mann-Whitney U test for unpaired data. 
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3.5.2 Validation (Study IV) 

Study IV analysed the validity of waist- and wrist-worn ActiGraph cpm cut-points to measure 

minPA, SB, and sitting using the Conventional Chair, the Active Chair (active workplace 

intervention), and the Standing Desk (standing workplace intervention, Figure 5, p. 23). 

To test whether there was a workplace effect on the MET values, the minPA classification, 

and the cpm values, Generalised Estimation Equations followed by pairwise post hoc 

comparisons with Bonferroni-adjusted p-values were used. 

The ActiGraph cut-point validity was assessed with Cohen’s kappa including 95% 

confidence intervals [203] and the receiver operating characteristic curve with balanced 

sensitivity and specificity, both for 0 – 250 cpm for the waist vertical axis and 0 – 8’000 cpm 

for the wrist vector magnitude. The agreement with the reference criteria was considered poor 

(kappa <0.00), slight (0.00 – 0.20), fair (0.21 – 0.40), moderate (0.41 – 0.60), substantial (0.61 

– 0.80), or almost perfect (≥0.81) [204]. The validity for minPA, SB, and sitting was analysed 

across all workplaces and the validity for minPA additionally for each workplace separately. 

To calculate the validity of POPAI, the validity of the ActiGraph cut-points with the highest 

kappa were combined with the average validity of the activPAL reported in the literature: 

sensitivity and specificity of 97.3% and 98.4% to classify sitting, 88.8% and 97.5% to classify 

standing, and 94.1% and 96.4% to classify locomotion [107, 109, 110]. 

3.5.3 Application (Study V) 

Study IV measured the actual amount of SB in daily life with the combined posture and 

physical activity classification of POPAI. The analysis included active sitting and inactive 

standing to analyse whether these two behaviours are actually so few as thought, as well as 

active standing and locomotion to comply with the 24-hour behaviour framework (Figure 1, p. 

7). The results are described in a pie chart with mean, standard deviation, and 5th and 95th 

percentile, all in percentage of the daily wake-time. The pie chart also includes bedtime and 

sensor non-wear time, both in absolute numbers (hours per day). To visualise the behaviours 

in relation to daytime, profile plots show the proportion of each behaviour in non-overlapping 

15-minutes epochs, separately for men and women on weekdays and weekend days. 

To specify the bias of posture and physical activity sensors to measure SB, the sedentary 

estimates of the single sensors were compared to POPAI using Bland-Altman statistics. The 

bias was considered a measure of accuracy, and the 95% limit of agreement a measure of 

precision [205]. Bias and 95% limit of agreement were expressed relative to POPAI. The bias 

of the activPAL was expected to depend on the amount of active sitting, and the bias of the 

ActiGraph was expected to depend on the amount of inactive standing. Thus, the Pearson 

correlation coefficient was used to identify the variance of the bias that can be explained with 

active sitting (activPAL) and inactive standing (ActiGraph). Due to the emerging evidence that 

the sedentary accumulation pattern might matter [19-22], the Bland-Altman comparison was 

repeated for the time spent in long sedentary bouts of ≥10 and ≥30 minutes. 
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4 RESULTS 

4.1 CALIBRATION 

4.1.1 Recorded Behaviour 

All three calibration studies recorded the majority of data while sitting, followed by standing 

and locomotion (Table 5). In Study I and II, participants spent most of their sitting and standing 

time inactive (synonymous with sedentary for sitting). No activity classification was done in 

Study III. 

 

Table 5. Recorded behaviour in the three calibration studies (reference criteria). 

Study Sitting Standing Locomotion 

 inactive active inactive active  

I 39.7% 5.9% 34.2% 5.7% 14.6% 

II 38.0% 12.0% 28.3% 11.7% 10% 

III (training minutes) 70.5% 21.9% 7.6% 

III (testing minutes) 55.4% 30.6% 14.0% 

Amount of time spent in each behaviour in % of the total recording time. The training 

minutes in Study III contained only minutes with constant posture classification, and 

the testing minutes all minutes on days with ≥10 recording hours. 

 

In Study I, the resting metabolic rate was 2’011 (802) kilocalories×day-1, and the METMeasured 

was 4.1 (1.3) ml×kg-1×min-1 at 27.2° (1.4°) Celsius (median with interquartile range). In Study 

II, the resting metabolic rate and the METMeasured were significantly lower (1’696 (607) 

kilocalories×day-1 and 3.5 (0.9) ml×kg-1×min-1, p≤0.047) at a significantly lower temperature 

(25.0° (1.6°) Celsius, p<0.001, Mann-Whitney U test). The General Estimating Equation 

detected no MET difference between the same tasks and workplaces in Study I and II 

(p=0.650), which is why descriptive data were merged (Table 6). 

  

Table 6. MET and activity classification for each task and workplace in Study I and II. 

Task Conventional Chair Saddle Chair Standing 

Watching 1.09 (0.22), 100.0% n=25  1.13 (0.20), 100% n=13 

Mouse 1.20 (0.20), 90.7% n=43  1.20 (0.24), 100% n=44 

Typing 1.26 (0.28), 94.5% n=55 1.20 (0.27), 96.7% n=30 1.27 (0.18), 89.1% n=55 

Deskwork 1.36 (0.33), 71.7% n=46  1.34 (0.30), 68.5% n=45 

Sorting 1.72 (0.42), 16.7% n=30  1.75 (0.33), 16.7% n=30 

Median MET with interquartile range, % of participants classified as minPA (MET ≤1.5), and sample

size (n). Walking had a MET of 3.16 (0.89), with 0% of participants classified as minPA (n=55).

Abbreviations: Metabolic equivalent (MET), minimal-intensity physical activity (minPA). 
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4.1.2 Sedentary Behaviour Classification 

In Study II, the additional sensor signals of the IMU outperformed the accelerometer data to 

classify SB only for the waist (p=0.006, Wilcoxon Test). However, since the waist 

accelerometer is so commonly used in field studies, both methods were kept in the analysis. 

Across all calibrated methods to classify SB (Table 7), there was a significant overall effect 

(Kruskal-Wallis, χ2(4) = 53.9, p<0.001). The post hoc comparison showed that the EMG+, the 

Thigh Accel, and the Waist IMU outperformed the Waist Accel and the Wrist Accel, and the 

Waist Accel outperformed the Wrist Accel (Figure 7). The EMG+ used the thigh-worn 

accelerometer and six of the eight EMG channels to classify SB. 

 

Table 7. Cross-validity to classify sedentary behaviour. 

Study Method Balanced Sensitivity Specificity 

I EMG+ 96.7 [90.0 – 100.0] 93.3 [80.0 – 100.0] 100.0 [100.0 – 100.0] 

II Thigh Accel 93.4 [91.1 – 96.3] 95.0 [86.9 – 100.0] 96.7 [92.4 – 100.0] 

II Waist IMU 91.9 [88.0 – 93.2] 91.0 [85.0 – 100.0] 96.7 [88.0 – 100.0] 

II Waist Accel 84.9 [80.0 – 88.9] 80.0 [69.3 – 92.9] 92.7 [87.9 – 96.7] 

II Wrist Accel 75.1 [70.0 – 78.3] 80.0 [65.0 – 90.0] 76.7 [66.3 – 83.5] 

Numbers are given in % with median and 95% confidence interval, sorted by balanced 

sensitivity and specificity (Balanced). Abbreviations: Electromyography plus Accelerometer 

(EMG+), Accelerometer (Accel), Inertial-Measurement-Unit (IMU). 

 

Figure 7. Boxplot of the cross-validity (balanced sensitivity and specificity) to classify sedentary 

behaviour. Significances of the post hoc comparison indicated with p-values at the bottom. 

Abbreviations: Electromyography plus Accelerometer (EMG+), Accelerometer (Accel), Inertial-

Measurement-Unit (IMU).  
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4.1.3 Sitting Classification 

Across all calibrated methods to classify sitting (Table 8), there was a significant overall effect 

(Kruskal-Wallis, χ2(5) = 219.6, p<0.001). The post hoc comparison showed numerous 

statistical differences between the methods, except between the EMG+ and the Thigh Accel, 

and between the Waist Accel developed in Study II and III (Figure 8). The EMG+ used only 

the thigh-worn accelerometer to classify sitting.  

 

Table 8. Cross-validity to classify sitting. 

Study Method Balanced Sensitivity Specificity 

I EMG+ 100.0 [100.0 – 100.0] 100.0 [100.0 – 100.0] 100.0 [100.0 – 100.0] 

II Thigh Accel 100.0 [99.3 – 100.0] 100.0 [100.0 – 100.0] 100.0 [100.0 – 100.0] 

II Waist IMU 94.0 [91.3 – 98.0] 100.0 [92.0 – 100.0] 100.0 [92.0 – 100.0] 

II Waist Accel 89.6 [86.0 – 94.0] 92.0 [79.4 – 100.0] 92.0 [88.0 – 97.8] 

III Waist Accel 87.8 [84.0 – 90.7] 95.6 [94.7 – 97.2] 79.6 [74.0 – 85.2] 

II Wrist Accel 74.0 [69.6 – 78.0] 79.1 [70.5 – 88.0] 72.0 [57.1 – 84.0] 

Numbers are given in % with median and 95% confidence interval, sorted by balanced 

sensitivity and specificity (Balanced). Abbreviations: Electromyography plus Accelerometer 

(EMG+), Accelerometer (Accel), Inertial-Measurement-Unit (IMU). 

  

Figure 8. Boxplot of the cross-validity (balanced sensitivity and specificity) to classify sitting. 

Significances of the post hoc comparison indicated with p-values at the bottom. Abbreviations: 

Electromyography plus Accelerometer (EMG+), Accelerometer (Accel), Inertial-Measurement-Unit 

(IMU). 

The Waist Accel developed in the free-living Study III overestimated the time spent in sitting 

bouts ≥5 minutes by 0.2 [-6.4 – 6.8] minutes per day and the time spent in sitting bouts ≥10 

minutes by 7.1 [-0.3 – 14.5] minutes per day compared to the activPAL (Bland-Altman bias 

with 95% confidence interval). 
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4.1.4 Physical Activity Classification while Sitting  

Across all calibrated methods to classify the activity level while sitting (Table 9), there was no 

significant overall effect (Kruskal-Wallis, χ2(4) = 4.1, p=0.40, Figure 9). The EMG+ used only 

six of the eight EMG channels to classify physical activity while sitting. 

 

Table 9. Cross-validity to classify physical activity while sitting. 

Study Method Balanced Sensitivity Specificity 

II Wrist Accel 97.2 [86.6 – 100.0] 96.7 [81.3 – 100.0] 94.4 [86.8 – 98.9] 

II Waist IMU 94.5 [86.6 – 100.0] 90.0 [84.4 – 96.7] 90.6 [86.4 – 95.2] 

I EMG+ 93.3 [80.0 – 100.0] 100.0 [88.4 – 100.0] 90.0 [86.0 – 95.7] 

II Thigh Accel 90.0 [85.0 – 95.7] 92.5 [80.0 – 100.0] 87.8 [84.1 – 96.7] 

II Waist Accel 90.0 [83.2 – 95.0] 92.9 [80.0 – 100.0] 90.0 [85.5 – 95.0] 

Numbers are given in % with median and 95% confidence interval, sorted by balanced 

sensitivity and specificity (Balanced). Abbreviations: Electromyography plus Accelerometer 

(EMG+), Accelerometer (Accel), Inertial-Measurement-Unit (IMU). 

 

 

Figure 9. Boxplot of the cross-validity (balanced sensitivity and specificity) to classify physical activity 

while sitting. Abbreviations: Electromyography plus Accelerometer (EMG+), Accelerometer (Accel), 

Inertial-Measurement-Unit (IMU). 

4.1.5 Overall Behaviour Classification 

Across all calibrated methods classifying the behaviour in line with the 24-hour behaviour 

framework (Table 10), there was a significant overall effect for the overall behaviour 

classification (Kruskal-Wallis, χ2(4) = 54.6, p<0.001). The post hoc comparison showed the 

same significances as for the SB classification. The EMG+, the Thigh Accel, and the Waist 

IMU outperformed the Waist Accel and the Wrist Accel, and the Waist Accel outperformed 

the Wrist Accel (Figure 10). The EMG+ used the thigh-worn accelerometer and all eight EMG 

channels for the overall behaviour classification.  
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Table 10. Cross-validity to classify posture and physical activity. 

Study Method 
Sedentary 

Behaviour 

Active 

Sitting 

Inactive 

Standing 

Active 

Standing 
Overall 

I EMG+ 
96.7 

[90.0 – 100.0] 

97.1 

[90.0 – 100.0] 

100.0 

[95.0 – 100.0] 

100.0 

[94.2 – 100.0] 

96.3 

[94.2 – 98.4] 

II Thigh Accel 
93.4 

[91.1 – 96.3] 

92.9 

[89.6 – 97.9] 

95.0 

[93.3 – 96.8] 

96.0 

[80.0 – 100.0] 

93.2 

[92.0 – 97.5] 

II Waist IMU 
91.9 

[88.0 – 93.2] 

93.3 

[86.3 – 98.2] 

91.9 

[89.2 – 94.6] 

92.3 

[88.5 – 99.3] 

93.0 

[90.1 – 94.3] 

II Waist Accel 
84.9 

[80.0 – 88.9] 

87.8 

[83.0 – 90.7] 

85.7 

[82.3 – 88.3] 

90.0 

[86.3 – 98.9] 

89.2 

[86.9 – 91.3] 

II Wrist Accel 
75.1 

[70.0 – 78.3] 

89.4 

[71.6 – 96.2] 

68.5 

[62.1 – 76.8] 

80.0 

[75.0 – 94.6] 

81.6 

[79.1 – 86.5] 

Balanced sensitivity and specificity in % with median and 95% confidence interval, sorted by overall 

column. All methods detected Locomotion with a cross-validity of 100.0% [100.0% – 100.0%] (data 

not shown). Abbreviations: Electromyography plus Accelerometer (EMG+), Accelerometer (Accel), 

Inertial-Measurement-Unit (IMU). 

 

Figure 10. Boxplot of the cross-validity (balanced sensitivity and specificity) for the overall behaviour 

classification. Significances of the post hoc comparison indicated with p-values at the bottom. 

Abbreviations: Electromyography plus Accelerometer (EMG+), Accelerometer (Accel), Inertial-

Measurement-Unit (IMU).  
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4.2 VALIDATION 

4.2.1 Workplace Effects 

There was an overall workplace effect on the MET value and the minPA classification 

(p<0.001, detected with General Estimating Equations). The post hoc comparison showed that 

the Active Chair caused the highest MET value (1.53 [1.39 – 1.71] versus 1.39 [1.29 – 1.47] 

for the Conventional Chair and 1.36 [1.34 – 1.48] for the Standing Desk (median [95% 

confidence interval]), p<0.001). The Active Chair also caused the lowest minPA classification 

(48.3% versus 70.9% for the Conventional Chair and the Standing Desk, p<0.001). No 

differences were found between the Conventional Chair and the Standing Desk (p=1.000). 

There was an overall workplace effect on the ActiGraph cpm value for the waist (p<0.001) but 

not the wrist (p=0.742, detected with General Estimating Equations). For the waist, the post 

hoc comparison showed that the Active Chair caused the highest cpm value (150 [117 – 243]), 

followed by the Standing Desk (113 [101 – 176]) and the Conventional Chair (59 [36 – 88]) 

(p≤0.001).  

4.2.2 Validity of ActiGraph Cut-Points 

Across all workplaces, the ActiGraph waist and wrist placements reached a moderate validity 

to classify minPA (kappa ≤0.58), a fair validity to classify SB (≤0.36), and a slight validity to 

classify sitting (≤0.06, Figure 11). The balanced sensitivity and specificity confirmed kappa, 

with the minPA classification reaching the highest value (≤78.1%), followed by the SB 

classification (≤68.8%) and the sitting classification (≤53.5%). For the waist, the highest kappa 

was reached at around 80 cpm to classify minPA, and for the wrist, the highest kappa was 

reached at around 3’650 cpm to classify minPA. 

 

Figure 11. Kappa and receiver operating characteristic curve of cpm cut-points to detect minimal-

intensity physical activity (minPA), sedentary behaviour (SB), and sitting. The shaded areas indicate 

the 95% confidence interval of kappa. Abbreviations: counts-per-minute (cpm). 

Separated by workplace, the validity to classify minPA increased for the Conventional Chair 

and the Standing Desk to substantial (kappa ≤0.69, balanced sensitivity and specificity ≤82.4%, 

Figure 12), and decreased for the Active Chair to fair for the waist (≤0.38 and ≤68.9%, 

respectively) but remained moderate for the wrist (≤0.51and ≤75.5%, respectively). However, 



 

 39 

for the waist, the highest kappa was reached at lower cpm cut-points for the Conventional Chair 

(around 75 cpm) than for the Standing Desk (around 150 cpm). When using the same cut-point 

for both workplaces (e.g. 100 cpm with a kappa of 0.65 for both workplaces), there was a higher 

sensitivity (95.8% vs 89.7%) but lower specificity (63.4% vs 74.9%) for the Conventional 

Chair compared to the Standing Desk (indicated with arrows in Figure 12). No such posture-

dependency was found for the wrist, but the highest kappa was reached at lower cpm cut-points 

for the Active Chair (around 2’000 cpm) than for the Conventional Chair and the Standing 

Desk (around 6’000 cpm). 

 

Figure 12. Kappa and receiver operating characteristic curve of cpm cut-points to detect minimal-

intensity physical activity, separated by workplace. The arrows indicate the values of the 100 cpm waist 

cut-point for the Conventional Chair and Standing Desk. Abbreviations: counts-per-minute (cpm). 

4.2.3 Validity of the Posture and Physical Activity Index 

The validity of the combined posture (activPAL) and physical activity (waist-worn ActiGraph) 

classification of POPAI is given in Table 11. POPAI uses the 75 cpm cut-point with a 

sensitivity and specificity of 95.1% and 69.7% to classify minPA while sitting (equal to SB), 

and the 150 cpm cut-point with a sensitivity and specificity of 93.2% and 70.9% to classify 

minPA while standing (equal to inactive standing). Combined with the activPAL, POPAI has 

a validity to classify the five behaviours investigated in this thesis of 87.8%, with locomotion 

(95.2%) and SB (92.2%) having the highest validity. 

 

Table 11. Validity of the Posture and Physical Activity Index. 

 Sedentary 

Behaviour 

Active 

Sitting 

Inactive 

Standing 

Active 

Standing 
Locomotion 

Balanced 92.2% 82.6% 88.5% 80.4% 95.2% 

Sensitivity 92.5% 67.8% 82.8% 63.0% 94.1% 

Specificity 91.9% 97.3% 94.3% 97.9% 96.4% 

The validity was calculated by combining the validity of the activPAL to classify posture described in 

the literature [107, 109, 110] with the validity of the 75 cpm (physical activity in sitting) and 150 cpm 

cut-point (physical activity in standing) observed in here. Abbreviation: Balanced sensitivity and 

specificity (Balanced), counts-per-minute (cpm). 
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4.3 APPLICATION 

4.3.1 Descriptive Time Use 

The 100 office workers provided 725 valid days, with an average wake-time of 15.0 ± 0.8 hours 

per day. The office workers spent on average 45.0 ± 8.2% of the wake-time sedentary, 13.7 ± 

4.1% active sitting, and 12.0 ± 5.4% inactive standing (mean ± standard deviation, Figure 13).  

Of the total sitting time, 23.9 ± 7.0% [14.6% – 35.6%] was spent active, and of the total 

standing time, 41.3 ± 12.6% [22.1% – 63.5%] was spent inactive (mean ± standard deviation 

[5th – 95th percentile]). The visual inspection of the behaviour profiles in Figure 14 shows a 

different accumulation pattern for weekdays and weekend days, and indicates that men 

accumulated slightly more time in SB and active sitting, while women accumulated slightly 

more time inactive standing. 

The single sensors classified 58.6 ± 8.4% (activPAL) and 55.1 ± 7.7% (ActiGraph) of the wake-

time sedentary (mean ± standard deviation). 

 

Figure 13. 24-hour behaviour framework measured with POPAI. The numbers indicate the mean ± 

standard deviation [5th – 95th percentile]. Bedtime and non-wear are given in absolute numbers (hours 

per day), and the remainder relative to wake-time (100% equals 15.0 hours), n=100. Abbreviations: 

Posture and Physical Activity Index (POPAI).  
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Figure 14. Behaviour profiles showing the occurrence of each behaviour in 15-minute epochs during 

weekdays and weekend days, separately for men (n=61) and women (n=39). 

4.3.2 Bland-Altman Comparison 

The activPAL and the ActiGraph substantially overestimated total sedentary time. Relative to 

POPAI, the activPAL overestimated sedentary time by 30.3% [28.5% – 32.1%], and the 

ActiGraph by 22.5% [20.6% – 24.5%] (bias with 95% confidence interval), both with wide 

95% limit of agreement (Figure 15). The bias depended for both sensors not on sedentary time, 

but for the activPAL on active sitting (1.0 [1.0 – 1.0]) and for the ActiGraph on inactive 

standing (0.92 [0.89 – 0.95], r2 with 95% confidence interval). Prolonged sedentary time was 

likewise overestimated by both sensors (Figure 15). Relative to POPAI, the activPAL 

overestimated the time spent in bouts ≥10 minutes by 82.6% [77.3% – 87.8%] and the time 

spent in bouts ≥30 minutes by 232.9% [218.1% – 247.8%] (bias with 95% confidence interval). 

The ActiGraph overestimated the time spent in bouts ≥10 minutes by 25.4% [22.8% – 27.9%] 

and the time spent in bouts ≥30 minutes by 35.8% [31.0% – 40.6%]. 

 

Figure 15. Bias and 95% limit of agreement of the activPAL (grey) and the ActiGraph (black) relative 

to POPAI. POPAI data given relative to wake-time. Abbreviations: Posture and Physical Activity Index 

(POPAI), Confidence Interval (CI).
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5 DISCUSSION 

First, the calibration studies developed new methods to advance the measurement of SB in an 

office context by classifying posture and physical activity compliant with the definition of SB. 

The new methods reached cross-validities between 75% (Wrist Accel) and 97% (EMG+) to 

measure SB, demonstrating that it is possible to measure both components of SB in a 

respectable cross-validity on an individual level. The subsequent validation study showed that 

waist- and wrist-worn ActiGraph cpm cut-points measure physical activity (minPA with MET 

≤1.5) and not SB or sitting. However, the optimal waist cut-point to classify minPA depends 

on body posture. A lower cut-point should be used for sitting (75 cpm) than for standing (150 

cpm). The final application study considered the posture dependency and used the combined 

posture and physical activity classification of POPAI with a validity of 92.2% to measure SB. 

POPAI measured a substantially lower amount of SB in the daily life of office workers (45% 

of the wake-time) compared to the single sensors (55% – 59%) because active sitting (14%) 

and inactive standing (12%) are much more common as previously thought. This leads to the 

conclusion that approximating SB with sitting (posture sensors) or minPA (physical activity 

sensors) leads to inaccurate and imprecise estimates overestimating sedentary time. Future 

studies are advised to measure SB by classifying posture and physical activity simultaneously. 

For the time being, the health recommendations on SB must be viewed critically. 

5.1 CALIBRATION 

5.1.1 Method Comparison 

A thigh accelerometer should be the method of choice to measure the two components of 

SB when the results of the calibration studies (Figure 7, p. 34) are combined with practical 

aspects of data recording such as the number of sensors, sensor pricing, and ease of use. This 

conclusion confirms the recommendation to use a thigh accelerometer to measure SB [6, 108, 

109] and adds the information that a thigh accelerometer can be used to classify minPA while 

sitting, demonstrating that there is no need to use sitting as a proxy for SB. The thigh was also 

among the methods with the highest cross-validity to classify the overall behaviour, including 

active sitting, inactive standing, active standing, and locomotion. 

The other two methods with similar cross-validity to measure SB were the EMG+ and the 

Waist IMU. The EMG+ required six EMG channels and a thigh-worn accelerometer limiting 

its suitability for field use. The waist placement required an IMU, which makes the sensor more 

expensive and complicates data processing. However, the waist placement has so far been the 

prevailing choice in large-scale field studies to measure physical activity and SB. This thesis 

showed that the waist is an equally valid alternative to measure SB only when an IMU is used. 

THIGH PLACEMENT 

The thigh accelerometer was used by two methods for the posture classification (EMG+ in 

Study I and Thigh Accel in Study II) and solved the classification both times almost perfectly. 

The EMG+ used only the accelerometers y-axis (pointing upwards while standing), and 
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classified a minute as sitting when the 5th percentile was ≥-7.59 m/s2. This translates to a thigh 

orientation closer to 51° to the horizontal for 57 seconds of a minute to detect sitting. The 51° 

is substantially larger than the 20° required for the activPAL [107] but comparable to the 45° 

required for the Acti4 software [138]. However, the activPAL uses an event-based and Acti4 a 

2-second-based approach, while here a minute-based approach was used. The Thigh Accel in 

Study II combined the 90th percentile of the accelerometer y-axis with the band power above 3 

Hz of the accelerometer x-axis (pointing anteriorly while standing) due to the inclusion of the 

Saddle Chair in Study II (Figure 5d, p. 23). The Saddle Chair is a seated workplace intervention 

to decrease the hip flexion angle and causes a vertically aligned thigh, making it impossible to 

separate sitting from standing only with the thigh orientation. This is why a second feature to 

be seen as a measure of the thigh movement pattern was included. 

In summary, the one-feature EMG+ algorithm should be the method of choice to detect sitting 

unless a future study records participants sitting on a Saddle Chair. Applying this algorithm 

(trained on 30 Hz data, sensor worn on left body side) to Study II data (60 Hz, sensor worn on 

right body side) shows a perfect sitting classification for the Conventional Chair, but the 

expected misclassification for the Saddle Chair. This leads to the conclusion that the posture 

algorithm is independent of the recording frequency, the sensor manufacturer, and the body 

side. A future validation study might combine the EMG+ posture algorithm with the physical 

activity algorithm of the Thigh Accel trained in Study II to measure SB. 

WAIST PLACEMENT 

The waist accelerometer was also used in two studies for the posture classification (Study II 

and Study III), with likewise no different cross-validity (Figure 8, p. 35). Both studies used a 

similarly valid reference criterion (direct observation in Study II, posture sensor in Study III), 

but Study III recorded data in free-living while Study II used a controlled environment. Thus, 

the Waist Accel trained in Study III should be the posture algorithm of choice due to the natural 

study setting. Furthermore, this algorithm had a bias of fewer than 8 minutes per day to measure 

the time spent in long sitting bouts. However, the number must be viewed with caution. The 

bias was calculated on minutes extracted slightly differently than for the algorithm training 

(testing versus training minutes) but using the same participants. Just as the cross-validity is 

not a measure of an algorithm's generalisability, neither is the presented bias. 

The Waist IMU outperformed the Waist Accel in Study II with a significantly improved 

posture classification. The additional sensor signals could, for example, be found in the 

ActiGraph GT9X-Link, but not in the ActiGraph wGT3X-BT used in Study III. In general, the 

posture classification is a much more challenging task for waist sensors than thigh sensors. The 

waist orientation changes from standing to sitting by around 18° [206], while the thigh 

orientation changes by around 90°. Furthermore, waist sensors are loosely worn with an elastic 

belt, while thigh sensors are rigidly attached with adhesive film. Interestingly, all presented 

waist algorithms primarily used features to be seen as a measure of the waist movement pattern 

rather than the waist orientation. To better account for the waist orientation, future studies are 

warranted to attach waist sensors with adhesive film, and/or realign the sensor orientation to 
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the waist in instances with known waist orientation [8, 207]. Attaching the sensor with adhesive 

film might also positively influence wear-time compliance and avoid sensor misplacement (e.g. 

upside down, wrong body side). 

WRIST PLACEMENT 

The wrist accelerometer got popular as it allows for 24-hour recording protocols with high wear 

comfort and wear-time compliance [156-158], but the difference to the waist and thigh might 

be marginal when using a 24-hour protocol for these placements [208, 209]. Here, the wrist 

placement has shown its strength in the activity classification but dropped significantly in the 

posture classification compared to the other placements. Accordingly, the wrist placement had 

the significantly lowest cross-validity to detect SB, and it must be questioned whether a higher 

wear-time compliance could counterbalance the lower cross-validity. 

EMG+ 

The EMG+ solved the SB classification with the highest cross-validity, but it is not the 

recommended method due to seven sensors limiting its field suitability. The system should be 

seen as a first step towards the measurement of SB with EMG. In contrast to accelerometers 

and IMUs, EMG can measure the activity of quasi-static postures. Whether this advantage is 

relevant for the measurement of SB must be questioned based on the results presented. 

However, there is a need to examine whether the number of EMG channels can be reduced and 

whether a more sophisticated algorithm as for the other methods developed here improves the 

cross-validity. Furthermore, incorporating the device into a smart textile will likely increase 

the field suitability, and it might make the number of EMG channels irrelevant (Figure 16). In 

its current form (Figure 5a, p. 23), the system might be more suitable for ergonomic workplace 

assessments due to the additional information it provides (muscular activity over an entire 

working day). For the field measurement of SB, it might be a sledgehammer to crack a nut. 

 

 

Figure 16. A revised version of the EMG+ (accelerometer not shown) to improve its suitability for field 

use. The smart shirt uses only the three most relevant EMG channels presented in Paper I, including one 

reference electrode. Abbreviations: Electromyography plus Accelerometer (EMG+), Electromyography 

(EMG). 
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5.1.2 Comparison to Literature 

CONTROLLED STUDY ENVIRONMENT 

The presented cross-validities to measure SB in Study I and Study II are low compared 

to the literature. Cross-validities to measure SB with accelerometers range up to 99.7% for 

the thigh, up to 98.2% for the waist, and up to 98.8% for the wrist [128, 173]. The presented 

cross-validities are 6.3% (thigh), 13.3% (waist), and 23.7% (wrist) lower. However, unique in 

comparison to the literature, Study I and II included tasks with an average MET of 1.1 – 1.8 

(except walking), recorded the same tasks while sitting and standing, and classified SB on an 

individual level with consideration of posture and physical activity. Accordingly, the same task 

could be classified for one individual as SB, but for another as active sitting. This stays clearly 

in contrast to previous calibration studies having a large MET gap between sedentary and non-

sedentary tasks, with all sitting tasks being classified as SB [128, 135, 173]. Thus, the 

algorithms presented in the literature classify SB through a correctly detected posture OR 

activity level. In contrast, the algorithms presented here classify SB through a correctly detected 

posture AND activity level. When comparing the literature data to either the posture OR the 

physical activity classification (i.e. to the higher of the two), the cross-validities presented here 

are 0.3% higher for the thigh, 8.2% lower for the waist, and 1.6% lower for the wrist. 

A rare exception of equating sitting with SB is a calibration study by Pavey et al. (2017), 

which included a stationary+ category summing the active sitting, inactive and active standing 

categories of the present thesis [136]. The study presented a wrist-worn accelerometer method 

with a cross-validity to measure SB of 89% (13.9% higher as here). However, the study also 

neglected individual variations by classifying SB on task level, which turns the SB 

classification into a task detection. For all these reasons, the comparison to the literature on 

controlled study environments should be made with caution. 

FREE-LIVING STUDY 

The cross-validity of the Waist Accel in Study III is in a similar range compared to the 

literature. The posture algorithm has a cross-validity to detect sitting of 87.8% compared to 

the activPAL, while Ellis et al. (2016) reported a cross-validity of 90.8% compared to direct 

observation, and Kerr et al. (2018) reported a cross-validity of 66.7% compared to the activPAL 

[137, 157]. All three studies used the same waist-worn ActiGraph, but the study by Kerr et al. 

(2018) used a 5-second epoch to classify sitting, while the other two used a 60-second epoch. 

5.1.3 Generalisability 

The generalisability of the new methods to measure SB cannot be assessed based on the 

presented cross-validities. The cross-validity, calculated with the leave-one-subject-out 

approach, is an established measure of the method performance in the calibration data, but it 

does not generalise to the validity in future method use in other populations and settings [125]. 

It has been repeatedly observed that the validity drops around 0% – 20% from the calibration 

(cross-validity) to the validation (independent validity) [125, 127, 146, 147, 210, 211]. Since 
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the measures to limit the spread of COVID-19 stopped the free-living validation study with the 

new methods, the drop for the new methods can only be estimated. 

CONTROLLED STUDY ENVIRONMENT 

There are a couple of arguments why the validity drop for the presented methods might 

be small with respect to potential reasons discussed in the literature [146, 147, 211]. 

 Limited variability within the study population: Both controlled calibration studies 

recorded participants in a broad range of age (≤24 to ≥57 years), weight (≤57 to ≥93 

kg), height (1.55 to ≥1.90 m), and BMI (≤19.5 to ≥28.7 kg/m2), with balanced gender. 

 Standardised nature of the included tasks: The tasks were not standardised nor 

demonstrated; participants performed the tasks in their own way and speed. In fact, a 

considerable variation was observed for Deskwork and Sorting, but not for Watching, 

Mouse and Typing, which might naturally have less variability. 

 Ignoring transitions between tasks: Transitions between tasks were ignored due to the 

use of an indirect calorimeter requiring a steady state. Given the prolonged nature of 

SB in office work [35-37], this limitation is likely less critical in office work than in 

other daily life situations such as household activities. 

 Limited amount of tasks not representing the full variability seen in free-living: The 

studies included a broad range of office tasks, from an inactive Mouse task up to an 

active Sorting task, recorded the same tasks while sitting and standing, with part of the 

participants using a laptop and the remainder a desktop computer. 

Furthermore, the validity drop is typically larger for locomotion (walking, running, cycling) 

than for sitting and standing. Montoye et al. (2018) recommended focusing on tasks that lie at 

the border of the behaviour categories to strengthen the methods' ability to separate the 

behaviours, just as Study I and II did [147]. This also includes recording tasks that are naturally 

performed while sitting and standing, such as office tasks, while sitting and standing, as well 

as to cover a MET range seen in free-living (<2 MET [155]). Furthermore, the forward feature 

selection and algorithm optimisation resulted in relatively simple algorithms (≤22 features, 

≤169 decision trees) compared to the literature (≥40 features, ≥500 decision trees) [137, 153, 

157]. All these aspects can be interpreted as arguments why the validity of the presented 

methods might drop closer to 0% than to 20% when moving from the calibration to the 

validation.  

There are also arguments why the validity drop for the presented methods might be large.  

 The combined use of two algorithms to classify SB, one for posture and one for minPA, 

might mean that the drop is twice as large. 

 The studies included only office tasks, which is why it remains unknown how the 

methods perform outside the office. 
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 The forward feature selection, with each iteration evaluating the cross-validity on all 

data, might have led to overfitting since, from the second iteration onwards, the 

algorithm development was no longer independent of the algorithm evaluation. 

Despite the sample size of Study I and II being comparable with the literature [127], it is 

questionable to extrapolate from 25 and 30 office workers recruited in one geographical area 

to the entire office worker population. In both studies together, 20% of the participants were 

overweight (BMI ≥25) and 4% obese (BMI ≥30), but only 8% in Study I and 33% in Study II 

were older than 40 years. Participants in Study II reported to sit for 78% of the working hours 

at the office desk, while the average office worker spends 65% – 75% of the work-time 

sedentary [32-34]. Thus, the included sample might be representative of a relatively young 

office worker population with a balanced gender. 

FREE-LIVING STUDY 

The validity drop of the new ActiGraph posture algorithm developed in Study III might 

be smaller due to the natural, free-living study setting. The ActiGraph sensor was also included 

in data collection B, and these data can be used to get a first idea of the algorithms 

generalisability. In fact, the validity drops by 5.8% from the cross-validity (Study III) to the 

validity in the population and setting of Study II (Table 12). However, data collection B was 

conducted in a controlled environment recording only office tasks, and the validity will likely 

drop more when the algorithm is applied to field data. On the other hand, Study II recorded the 

same tasks while sitting and standing, which might make the posture classification more 

challenging as in free-living where some tasks are more likely to be performed while sitting 

and others while standing. Furthermore, the ActiGraph was worn on the left body side in Study 

II, and the axes had to be rotated to the right body side to use the algorithm. This makes the 

validity more likely to appear too low rather than too high. Without rotating the axes, the 

validity dropped by 20.8%, clearly indicating that body side matters. Last, the sample in Study 

III consisted mostly of men (61%). Even though there was no difference between the validity 

for men and women when applying the algorithm to Study II data, a future validation study has 

to prove whether the algorithm is equally valid for both genders. 

 

Table 12. ActiGraph posture algorithm developed in Study III applied to Study II data. 

Study  Balanced Sensitivity Specificity 

III Cross-Validity 87.8 [84.0 – 90.7] 95.6 [94.7 – 97.2] 79.6 [74.0 – 85.2] 

II Validity 82.0 [74.0 – 86.0] 100.0 [96.0 – 100.0] 70.0 [56.0 – 78.5] 

Numbers are given in % with median and 95% confidence interval. Abbreviation: Balanced 

sensitivity and specificity (Balanced). 

 

In summary, it is imperative that a future validation study analyses the validity independent 

of the development to specify the methods’ generalisability to new data. 
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5.2 VALIDATION 

The ActiGraph cpm cut-points measured minPA most valid, no matter whether the waist or the 

wrist placement was used. Across all workplaces, the highest validity to measure minPA was 

reached at around 80 cpm for the waist, and at around 3’650 cpm for the wrist (balanced 

sensitivity and specificity of 78% with kappa = 0.58 for both placements). Thus, it is strongly 

recommended that studies using an ActiGraph cpm cut-point talk about minPA. The 

measurement of SB and sitting with ActiGraph cpm cut-points is far less valid. 

5.2.1 ActiGraph Cut-Points to Assess Workplace Interventions 

For the Standing Desk, representing a standing workplace intervention, the cpm waist and 

wrist cut-points reached a substantial validity to detect minPA, just like for the Conventional 

Chair (kappa = 0.69). However, the most valid waist cut-point was substantially higher for 

standing (around 150 cpm) than for sitting (around 75 cpm), indicating an important limitation 

of the cpm cut-points. When using the same waist cut-point for sitting and standing (e.g. the 

popular 100 cpm), the detection of minPA has a higher sensitivity (+6.1%) but lower specificity 

(-11.4%) for sitting. This means that minPA is more validly detected while sitting (higher 

sensitivity), but more LIPA minutes are wrongly classified as minPA (lower specificity). 

Accordingly, minPA is systematically overestimated while sitting compared to standing, and 

sitting is considered less active than standing. Here, conventional seated office work had an 

average of 59 cpm and standing office work an average of 113 cpm at the same activity level. 

Studies investigating the use of sit-stand desks should therefore avoid using ActiGraph cpm 

cut-points. The reduced occupational minPA time when office workers use a sit-stand desk, as 

observed by Mansoubi et al. (2016), might simply reflect the systematic overestimation of 

minPA while sitting compared to standing [53]. 

The systematic overestimation of minPA while sitting can be remedied with posture specific 

cut-points, which means the ActiGraph should be combined with a posture sensor and different 

cut-points for sitting (75 cpm) and standing (150 cpm) should be employed (as for POPAI). An 

equal valid alternative would be to use a wrist-worn ActiGraph, for which no posture 

dependency was found. However, the most valid wrist cut-point here (3’650 cpm) is 

substantially higher as reported by others (1’853 cpm in [123], 2’860 cpm in [212]), and future 

studies are needed to clarify this issue. Without the unique Active Chair investigated here, the 

most valid wrist cut-point would have been even higher (Figure 12, p. 39). 

For the Active Chair, representing an active workplace intervention, both placements 

showed a substantial lower validity to detect minPA compared to the Conventional Chair and 

the Standing Desk. The additional discriminant validity analysis presented in Paper IV 

indicated a poor (wrist) and fair (waist) validity to detect changes in minPA caused by the 

Active Chair. The wrist placement failed to detect any cpm differences between the Active 

Chair and the Conventional Chair. In contrast, the waist placement detected a cpm difference, 

but no single cut-point reached a suitable validity to separate inactive from active sitting. 

Accordingly, neither the waist nor the wrist can be recommended to investigate minPA when 
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using a seated workplace intervention such as the Active Chair, which actually reduced minPA 

and thus SB. 

5.2.2 Misleading Posture Interpretation of ActiGraph Cut-Points 

The ActiGraph cpm cut-points do not measure sitting, although several studies calibrated them 

to do so. For example, Koster et al. (2016) reported a balanced sensitivity and specificity of 

75.9% to detect sitting with the waist-worn 100 cpm cut-point (here: 46.7%), and 79.1% to 

detect sitting with the wrist-worn 1’852 cpm cut-point (here: 51.2%) [123]. Interestingly, the 

numbers reported by Koster et al. (2016) are very close to those reported here for minPA 

(77.1% and 76.4% for waist and wrist). The difference is likely caused by the study setting. 

Study IV used a controlled environment and measured the same tasks while sitting and 

standing. Hence, the reported validity to detect sitting is independent of minPA. In contrast, the 

study by Koster et al. (2016) was conducted in free-living, with a well-known agreement 

between the activPAL-measured sitting and the ActiGraph-measured minPA time [6, 213]. As 

different ActiGraph cut-points are recommended to detect sitting in different studies [108, 109, 

123] and sometimes even within the same study depending on the performed activities [121], 

the agreement between activPAL-measured sitting and ActiGraph-measured minPA varies 

substantially. This issue becomes all the more apparent when looking at prolonged sitting. The 

ActiGraph 100 cpm cut-point significantly underestimates the time spent in prolonged sitting 

[137, 213], indicating that long sitting bouts contain some LIPA minutes breaking up minPA 

but not sitting. Strictly spoken, studies calibrating ActiGraph cpm cut-points to measure sitting 

search for an intensity threshold that results in the most similar amount of time compared to 

sitting. In other words, the reported cut-points reflect more a description of the activity level 

while sitting rather than an actual posture detection. However, a detailed description of the 

activity level while sitting requires a synchronised analysis with both sensors, as for example 

with POPAI. 

5.2.3 Posture and Physical Activity Index 

POPAI has a validity of 92.2% to measure SB (balanced sensitivity and specificity). This value 

is within the 95% confidence interval of the calibrated methods reaching the highest cross-

validities to classify SB (Table 7, p. 34). Since the cross-validity is subject to a certain validity 

drop when moving from the calibration to the validation, POPAI must be seen as at least equal 

but most likely superior to the calibrated methods. However, the validity for the physical 

activity classification in POPAI relates only to office work, and the validity outside the office 

remains unknown. Furthermore, it is important to note that the presented validities were 

calculated by combining the reported validity of the activPAL to classify posture with the 

validity of the ActiGraph to classify minPA, and a future validation study might report slightly 

different values. Apparent from Table 11 (p. 39), POPAI has a substantially higher sensitivity 

and slightly lower specificity to detect SB and inactive standing compared to active sitting and 

active standing. Thus, POPAI might slightly overestimate minPA while sitting (equal to SB) 

and standing. 
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5.3 APPLICATION 

5.3.1 Descriptive Time Use 

POPAI classified 45.0% ± 8.2% of the wake-time or 6.8 ± 1.2 hours a day sedentary, while the 

single sensor estimates were well within the 55% – 65% or 8 – 10 hours per day reported in the 

literature [5-8]. In contrast to previous studies, POPAI differentiates between SB, active sitting, 

and inactive standing. Both active sitting and inactive standing account for a significant amount 

of time: active sitting for 2.0 ± 0.6 hours per day, and inactive standing for 1.8 ± 0.8 hours per 

day. The behaviour profiles indicate that both behaviours are spread throughout the wake-time, 

with differences between weekdays and weekend days. Interestingly, the separation by gender 

indicates that men accumulated more time sedentary and active sitting, while women 

accumulated more time inactive standing. This observation is in line with Johansson et al. 

(2020), which observed more sitting in men and more standing in women [37]. POPAI adds 

the information that men sit more inactive and active, while women just stand more inactive. 

However, a detailed gender analysis is reserved for future studies. 

5.3.2 Bland-Altman Comparison 

The single sensors substantially overestimate SB compared to POPAI: the activPAL by 30.3%, 

and the ActiGraph by 22.5%. Together with the wide 95% limit of agreements (Figure 15, p. 

41), this indicates a low accuracy and low precision of the single sensors. When taking into 

account that POPAI might overestimate SB, the true bias of the single sensors would be even 

larger. The overestimation aggravated when looking at sedentary time spent in bouts ≥10 and 

≥30 minutes, most severely for the activPAL (up to 233%). This indicates that prolonged SB 

is broken up more often by activity (i.e. active sitting) than by changing posture (i.e. inactive 

standing).  

The reason for the overestimation of SB is active sitting and inactive standing. Active 

sitting explains the activPAL bias perfectly (r2=1.00), and inactive standing explains the 

ActiGraph bias almost perfectly (r2=0.92). On average, one out of four sitting minutes was 

active, and two out of five standing minutes were inactive. Apparent from the 95th percentile, 

some office workers even spent one out of three sitting minutes active, while others collected 

more than half of the standing minutes inactive. Should a future study confirm the gender 

differences with more active sitting and less inactive standing in men, it would mean that the 

activPAL bias might be larger and the ActiGraph bias might be smaller for men and vice-versa 

for women. Future studies are thus recommended to investigate the bias with respect to gender, 

but also with respect to time (weekday vs weekend day, worktime vs non-worktime). 

The overestimation of SB by the single sensors confirms the results previously reported 

for other sensor combinations [169, 170]. As here, the sample in Fanchamps et al. (2017) spent 

more time sitting than in minPA, leading to a larger bias for the posture sensor [169]. In 

contrast, the sample in Myers et al. (2017) spent more time in minPA than sitting, leading to a 

larger bias for the physical activity sensor [170]. Other studies using both sensors without a 

combined analysis reported quite similar amounts of activPAL and ActiGraph measured SB 
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[6, 213]. Here, the more sitting than minPA and thus the larger bias for the activPAL could be 

a result of the male dominance in the sample (61% of the participants). However, the office 

sector is, at least in Sweden, dominated by men (58%) [30]. 

To check whether the bias was introduced by the posture specific cut-points, the POPAI 

processing was repeated using the 100 cpm cut-point for sitting and standing. This increased 

sedentary time from 45.0% to 47.1% of the wake-time, and thus reduced the activPAL and 

ActiGraph bias from 30.3% to 24.4% and from 22.5% to 17.0%. However, Study IV 

demonstrated that the posture-dependent cut-points are more valid, and the presented 

sensitivity and specificity of POPAI (Table 11, p. 39) make an overestimation of SB more 

likely than an underestimation. 

In conclusion, SB makes up the largest part of the wake-time, but it is not as omnipresent as 

claimed with the single sensors neglecting active sitting (activPAL) or inactive standing 

(ActiGraph). Approximating SB with sitting or minPA substantially overestimates sedentary 

time, and neither the activPAL nor the ActiGraph can be recommended to measure SB. Since 

the time spent active sitting and inactive standing might be different for men and women, future 

studies should investigate the bias in relation to gender. 

5.4 IMPLICATIONS 

5.4.1 Device-Based Method Development  

The present thesis used a method development framework to embed the various steps and 

decisions required to develop new device-based methods to measure SB (Figure 2, p. 9). The 

framework was inspired by the work of Keadle et al. (2019), which separated the development 

into an initial mechanical signal testing (phase 0), followed by a laboratory development (phase 

1), semi-structured evaluation (phase 2), naturalistic validation (phase 3), and adoption (phase 

4) [131]. The three parts used in here correspond to phase 1 (calibration), phase 3 (validation), 

and phase 4 (application), with the most serious difference that the measures to limit the spread 

of COVID-19 made it impossible to conduct the validation (phase 3) in a naturalistic setting. 

Phase 0 and 2 were intentionally omitted here. 

Phase 0 aims to ensure the reliability and validity of the raw sensor data. This phase was omitted 

due to the use of established sensors from renowned manufacturers (Study II and III), or since 

it was already covered in the Bachelor thesis developing the EMG+ (Study I) [196]. Phase 2 

aims to refine or recalibrate the algorithm developed in phase 1. This phase would have been 

included here if the validation (phase 3) would have yielded an insufficient validity. In this 

case, the validation data would have been used to recalibrate the algorithm [210], and a new 

data collection would have been used to assess the validity. This procedure is also 

recommended for a future validation study in case the validity is deemed insufficient for the 

intended application, or when the algorithms are used with sensors other than those used here. 

Ideally, such a validation includes an assessment of reliability by recording part of the 

participants twice (test-retest reliability). As there was a lack of valid methods to measure the 

two components of SB compliant with its definition, this thesis focused on validity, which 
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should be followed by an examination of reliability [202]. The sedentary research field so far 

primarily focused on validity, and the reliability of the behaviour classification is somewhat 

underrepresented. 

BEHAVIOUR OF INTEREST 

This thesis strictly applied the SB definition of the Sedentary Behavior Research Network, used 

well-established reference criteria considered valid, and classified the behaviour on an 

individual level. Interestingly, the studies are among the first to measure SB compliant with its 

definition in such an exact and individual manner. It should generally be viewed critically that 

calibration studies simplify the behaviour classification, for example, by using predefined task-

clusters instead of calorimetry results [135, 141], or by classifying physical activity with direct 

observation [128, 147, 148]. With direct observation, all seated office tasks in Study I and II 

would be classified as “sitting at a desk” with 1.3 MET or as “sitting tasks” with 1.5 MET and 

thus sedentary in both cases [149]. However, a very serious limitation in here is that all methods 

classifying SB were developed in controlled environments due to a lack of valid reference 

criteria for the physical activity classification in free-living. To overcome this limitation, future 

studies are required to examine the validity of indirect calorimetry in field studies, especially 

concerning the steady-state criterion. In the stopped free-living validation study, an algorithm 

to detect steady state in walking seemed most suitable [214, 215]. Another field-ready but less 

valid solution would be POPAI as a best-available reference method.  

BODY-WORN SENSOR 

This thesis investigated which sensor type should be placed at which body segment to measure 

SB, and recommends to use a thigh accelerometer or a waist IMU calibrated to measure sitting 

and minPA. EMG was also successfully used for the physical activity classification, but the 

limited field suitability and additional information the EMG+ collects (muscular activity) might 

make it of greater value for ergonomic workplace assessments than for the field measurement 

of SB. For the accelerometers, neither the sensor manufacturer (Analog Devices, Xsens, 

ActiGraph) nor the recording frequency (30 Hz and 60 Hz) influenced the cross-validity. 

Despite some evidence that two-sensor-systems might detect SB more valid, field studies rarely 

use two-sensor-systems, which is why no such combination was calibrated. However, POPAI 

is a two-sensor-system. Until the calibrated methods are validated, the recommendation is to 

use POPAI to measure SB. 

DATA PROCESSING 

Experts in the field repeatedly asked to work with raw sensor data and machine learning to 

develop new methods, which is why this thesis did so. However, this thesis has not investigated 

the classification technique, the algorithm architecture, nor the temporal resolution (epoch 

length). Numerous studies already compared different machine-learning methods, with none 

outperforming the other [125-127]. The thesis followed the recommendation of Liu et al. 

(2012) to identify the most relevant signal features when building an algorithm [134]. All 

identified features were published alongside the algorithms in the supplementary online 
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material to inform future method developments. The algorithm architecture was, for 

physiological reasons, predefined and consistent with the 24-hour behaviour framework. Each 

method calibrated to measure SB uses a hierarchical architecture and first classifies posture and 

second physical activity, both in 60-second epochs. This temporal resolution was deemed 

sufficient concerning the prolonged nature of SB. However, the high validity of posture sensors 

to detect sitting events might make an event-based posture classification followed by a minute-

based physical activity classification as in POPAI the better choice for future method 

developments. One key advantage of the hierarchical algorithm architecture is that the single 

classification algorithms can be used in whatever combination, as long as the required input 

signal is available. 

5.4.2 State-of-the-Art Measurement of Sedentary Behaviour 

It is well established that posture sensors provide a valid measurement of posture (i.e. sitting, 

standing, and locomotion) [107-112], but there was conflicting evidence what physical activity 

sensors measure [120-122]. Study IV, therefore, analysed the cpm cut-point validity of the 

ActiGraph and observed the far highest validity to measure minPA. Accordingly, studies using 

a waist- or wrist-worn ActiGraph sensor with cpm cut-points should always interpret their 

results as minPA and not as SB or sitting. However, it is important to keep in mind that the 100 

cpm waist cut-point systematically overestimates minPA while sitting compared to standing. 

Even though solely based on office work, it seems unlikely that the recommendation to use a 

lower cut-point to classify minPA in sitting (75 cpm) than in standing (150 cpm) holds not true 

outside office work, but the most valid cpm cut-point might be different. 

The placement and processing define whether a particular sensor is a posture (thigh-

worn) or physical activity sensor (waist- or wrist-worn), and not the sensor manufacturer. 

From studies attaching the ActiGraph to the thigh, it is well known that the sensor provides 

equal valid posture estimates [111, 138, 216]. However, whether waist-worn physical activity 

sensors will once provide equal valid posture estimates than posture sensors [e.g. 137, 157, 

Study III], and thigh-worn posture sensors will once provide equally valid physical activity 

estimates than physical activity sensors [e.g. 217, 218, Study II] remains subject for further 

research. As long as this is not the case, the valid measurement of SB requires both sensors, 

ideally combined with self-reporting to collect context information. 

5.4.3 The 24-hour Behaviour Framework 

The 24-hour behaviour framework used in here (Figure 1, p. 7, and Figure 13, p. 40) first 

separates posture and second the physical activity level, which is exactly the other way round 

as in Tremblay et al. (2017) [74]. The order was chosen because it was expected that a different 

motion behaviour changes physical activity in sitting compared to standing and locomotion, 

mainly because the pelvis remains relatively stable while sitting. This decision appears to be 

justified by the results. The validity of the popular waist-worn ActiGraph cpm cut-points 

depends on posture, and Study II showed that the upper-body-worn sensors outperform the 
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lower-body- and waist-worn sensors for the physical activity classification in sitting, but not in 

standing. 

Unique in here was the separation of sitting and standing into inactive and active. The 

relevance of this separation was confirmed by POPAI, which showed that 23.9% of the total 

sitting time was spent active, and 41.3% of the total standing time was spent inactive. Future 

studies are therefore recommended to make this separation as well. Inactive and active standing 

was separated with a threshold of 1.5 MET, just as for sitting. In contrast, the Sedentary 

Behavior Research Network recommends using a threshold of 2.0 MET, arguing that a couple 

of standing activities considered inactive have a MET in between 1.5 and 2.0 [74]. However, 

standing with 1.8 MET would then be classified as inactive standing (≤2.0 MET) and LIPA 

(1.5 – 3.0 MET) at the same time, which would be confusing. In case there are different health 

effects of sitting and standing at the same MET value, they should be attributed to posture. 

5.4.4 Sedentary Behaviour – A Still Evolving Definition 

The present thesis followed the recommendation of the Sedentary Behavior Research Network 

and defined sedentary behaviour as any waking behaviour characterised by an energy 

expenditure ≤1.5 MET while in a sitting or reclining posture [73, p. 540]. This definition is 

widely used but not the only one. When defining SB only by its posture component [72], active 

sitting must also be considered sedentary. When defining SB only by its physical activity 

component [71], inactive standing must also be considered sedentary. However, even when 

considering only the physical activity component, as for example outlined in a new expert 

statement of the Prospective Physical Activity, Sitting and Sleep Consortium [219], a preceding 

posture classification might be justified to account for different movement patterns affecting 

physical activity while sitting and standing. Future studies might thus use the information 

presented in this thesis, no matter how they define SB. 

While conducting this thesis, the Sedentary Behavior Research Network revised the SB 

definition and included lying [74]. On the one hand, this simplifies the measurement of SB 

since there is no need to separate sitting from lying. On the other hand, however, it pronounces 

an existing measurement challenge: the detection of sleep. So far, bedtime was excluded from 

SB due to the lying posture, but with the new definition, only sleep should be excluded, and 

there is a need to develop methods to detect sleep, posture, and physical activity to comply with 

the new definition. 

There is a lack of evidence for the relevance of the posture component of SB. The largest 

body of device-based evidence for the detrimental health effects of SB was collected with 

waist-worn physical activity sensors (i.e. ActiGraph GT3X with 100 cpm cut-point) [124]. 

Evident from Study IV and V, this sensor measures minPA and not SB, supporting the message 

that only the physical activity component of SB is of relevance. Accordingly, it is reasonable 

to argue that the current measurement of SB is just physical inactivity by another name. When 

assuming a constant MVPA and bedtime, the time spent in SB measured with physical activity 

sensors is just the inverse of the time spent in LIPA [220]. Thus, there is an urgent need to use 
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device-based methods able to classify posture and physical activity to assess the relevance of 

the posture component. Some preliminary evidence indicating different effects of sitting and 

minPA on cardiometabolic biomarkers was already collected [213, 221]. 

The physical activity threshold of SB (≤1.5 MET) was arbitrarily chosen, and it should be 

verified whether this threshold was chosen sensibly. The frequently cited guidance paper by 

Garber et al. (2011), for example, set the lowest physical activity threshold to ≤2.0 MET [78]. 

The definition of 1.0 MET is ambiguous. Upon introduction, the MET was defined by a fix 

oxygen consumption of 3.5 ml×kg-1×min-1 (METStandard), representing an absolute intensity 

measure [77, 78]. However, it is common practice to interpret the MET as multiple of the 

resting metabolic rate, which implies the use of a relative measure (METMeasured) [74, 84]. The 

well-established thresholds for, e.g., moderate-intensity physical activity (3.0 – 5.9 MET) were 

defined as absolute intensities, and should be adapted to the study populations age (e.g. 4.8 – 

7.1 MET for 20 – 39 years, and 4.0 – 5.9 MET for 40 – 64 years) [78]. For SB, the MET level 

is never adapted, and it is debatable which MET definition is best to take [75, 85, 86]. An 

alternative would be to replace the MET with, for example, the mass-specific net oxygen 

uptake as outlined in Arvidsson et al. (2019) [222]. This value does not express the oxygen 

consumption relative to a reference value, but calculates the difference to a reference value, 

and seems to better account for age and stature. 

Here, the METMeasured was used to eliminate individual and environmental factors. As a result, 

there were no differences between the individual office tasks in Study I and II (Table 6, p. 33), 

but a significant difference in the average METMeasured (4.1 and 3.5 ml×kg-1×min-1), most likely 

as a result of the different ambient temperatures in the two studies (27.2° and 25.0° Celsius). If 

the METStandard had been used, participants in Study I would have had 17% higher MET values 

on average, resulting in different physical activity classifications between the studies. More 

precisely, the studies did not express the METMeasured as oxygen consumption, as outlined in 

the physical activity and SB guidelines of the WHO [28], but in kilocalories, which also 

considers carbon dioxide production and make 1.0 MET equal to the resting metabolic rate 

[71]. For low-intensity activities as recorded here, the difference is likely small or even 

inexistent. The inclusion of carbon dioxide only comes into play for the anaerobic energy 

expenditure, but it is reasonable to have a consistent method across the entire physical activity 

spectrum. Accordingly, to eliminate individual and environmental factors, it might be wise to 

change the definition of SB to any waking behaviour characterised by an energy expenditure 

≤1.5 times the resting metabolic rate while in a sitting, reclining, or lying posture. On the one 

hand, concluding on a relative intensity (multiple of the resting metabolic rate) with a sensor 

having an absolute scale (acceleration in m/s2) will never be perfect. On the other hand, given 

the large effect the use of the METStandard would have had here, it might be the better alternative. 

In summary, the measurement of SB compliant with its definition is a huge challenge and 

requires an accurate detection of wake-time, body posture, and physical activity. So far, there 

is no single device-based method able to measure all three components. This fundamentally 

questions the relevance of SB for human health. The only studies considering the posture and 
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the physical activity component showed that considering only one component overestimates 

SB [169, 170, Paper V]. Two ways could resolve this issue: 1) adapting the definition of SB to 

the possibilities of the device-based methods with which the evidence was collected by 

equating SB with minPA; 2) developing the device-based methods further to measure SB 

compliant with its definition and, unless successfully done, not conclude on SB with single 

body-worn sensors. As it is predominantly measured nowadays, SB is nothing else than minPA, 

with minPA overestimated while sitting compared to standing. 

5.4.5 Occupational Sedentary Behaviour and Workplace Interventions 

Office workers are known for their excessive amounts of SB [32-34] that they often accumulate 

in long bouts [35-37]. However, the single sensors with which all the evidence was collected 

substantially overestimate SB, most prominent for long bouts. The 100 office workers in Study 

V spent 49% of the sitting time in bouts ≥30 minutes (measured with the activPAL, the 

previously recommended sensor to measure SB), but only 18% of the sedentary time in bouts 

≥30 minutes (measured with POPAI, the new recommended method to measure SB). As the 

single sensors overestimation of sedentary time is not limited to office hours (Figure 14, p. 41), 

there is no reason to question the sedentary nature of office work in general, but the exact 

figures need to be quantified in future field studies with valid methods. Such studies ideally 

include self-reporting methods to analyse whether the context in which SB takes place is 

relevant for its detrimental health effects. 

A variety of devices is currently used to study workplace interventions. The Cochrane 

review by Shrestha et al. (2018) [45], for example, considered the ActiGraph, the activPAL, 

and the SenseWear armband (BodyMedia Inc., Pittsburgh (PA), USA) valid to measure SB. 

Only studies using self-reports were judged to have a high risk of bias. This example shows 

how the various methods to measure SB are considered interchangeable even though they 

measure different behaviours. 

The vast majority of workplace interventions aim to break up SB with standing, most 

often using a sit-stand desk [45]. The effects of sit-stand desks on posture should be analysed 

with a posture sensor, such as the activPAL. The use of a physical activity sensor such as the 

ActiGraph is not valid to detect body posture. Furthermore, the popular waist-worn ActiGraph 

records more cpm while standing than while sitting, leading to the conclusion that standing is 

more active than sitting even when there is no real activity difference. Accordingly, the effects 

of sit-stand desks on physical activity should be analysed with a combined thigh-worn posture 

and waist-worn physical activity sensor and posture specific cut-points. An alternative to assess 

physical activity only would be to use a wrist-worn ActiGraph, but this sensor might fail to 

detect potential compensation effects [53, 54]. 

A minority of workplace interventions aim to break up SB with physical activity. These 

interventions typically use cycling desks or activity-promoting office chairs, such as the Active 

Chair in here. The Active Chair reduced SB by reducing minPA, which, however, was not 

validly detected by the ActiGraph cpm cut-points. This is all the more remarkable as the chair 
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directly affected the waist motion. One can assume that other active workplace interventions 

not involving a substantial waist motion, such as cycling desks, might have a similarly low or 

even lower validity (the activity underestimation of cycling is well described in the literature 

[117, 223, 224]). Thus, ActiGraph cut-points should not be used to assess the effects of active 

workplace interventions, and we lack a valid method to do so. 

Another minority of workplace interventions aim to break up both components of SB 

simultaneously (e.g. treadmill desks). No such intervention was analysed here, which is why 

one can only speculate about the validity of device-based methods. However, since the 

measurement of SB itself requires both sensors, the use of only one seems useless. There might 

be a compensation effect, making sitting less active or shifting standing to sitting, and posture 

or physical activity sensors alone will not detect these effects. The same conclusion might also 

be true for other, non-environmental based workplace interventions not discussed here, such as 

activity breaks or standing meetings. 

In conclusion, future studies investigating workplace interventions to break up SB should 

carefully select their measurement method and preferably measure posture and physical 

activity. Systematic reviews are advised to separate the original studies by the measurement 

method (self-reporting, posture sensors, physical activity sensors, and combined posture and 

physical activity methods). The simultaneous analysis of posture and physical activity will 

likely lead to new evidence regarding occupational SB, minPA, and sitting. For the time being, 

the recommendation to use workplace interventions must be viewed with caution. In here, 

standing office work was equally active than seated office work, confirming the findings in 

[48, 51, 52] and contradicting the findings in [49, 50]. Whether the Active Chair combined 

with oral prompting increases physical activity in everyday office work needs to be assessed in 

a future field study. However, there is first a need to develop a valid method to measure the 

effect of such an active workplace intervention on SB. 

5.4.6 Sedentary Behaviour and Health  

SB accounts for the vast majority of the wake-time, but it is not as omnipresent as 

previously claimed. The strict application of the SB definition led to 45% of the wake-time 

spent sedentary, while the individual sensors measuring either sitting or minPA led to 55% – 

59%. The difference can be explained by the fact that sitting is not always inactive, and standing 

is not always active. The consequences of this observation for human health must be analysed 

in future studies using a combined posture and physical activity classification such as POPAI. 

If the combined occurrence of sitting and minPA is relevant, one would in fact expect an even 

stronger relationship between SB and adverse health outcomes. As the overestimation of the 

single sensors aggravated for prolonged SB, future studies are required to verify the preliminary 

evidence that the sedentary accumulation pattern matters for human health. 

The WHO’s recently updated physical activity guidelines (November 2020) include for the 

first time SB [28]. This could be seen as a huge milestone in the research field’s journey to 

maturity. However, it is advisable to reflect upon the research field's credibility. Even though 
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the WHO recommends breaking up SB by any kind of physical activity and not by standing, 

the definition of SB was adopted from the Sedentary Behavior Research Network. Thus, strictly 

spoken, it supports implicitly the message that SB can be broken up by standing. Based on the 

available evidence collected with physical activity sensors [124], it is advisable not to 

recommend a reduction of the sitting time as done, for example, in the American guidelines 

(move more and sit less [225, p. 2025]). However, in doing so, SB could be seen as the lower 

end of the physical activity spectrum, questioning its posture component [23]. In fact, the 

inclusion of SB in the physical activity guidelines reflects more an inclusion of minPA than an 

inclusion of SB. The WHO is thus advised to remove the posture component from the guideline 

definition or to replace SB with minPA to comply with the available evidence.  

 

 





 

 61 

6 CONCLUSIONS 

 A thigh accelerometer calibrated to classify sitting and minimal-intensity physical 

activity simultaneously should be the method of choice to measure sedentary behaviour 

with a single body-worn sensor. The waist is an equally valid alternative only in case 

an inertial-measurement-unit is used. 

 The ActiGraph counts-per-minute cut-points measure minimal-intensity physical 

activity, and neither sedentary behaviour nor sitting. However, wearing the sensor on 

the waist systematically underestimates physical activity while sitting compared to 

standing, which is why posture specific cut-points should be used: 75 counts-per-

minute for sitting, and 150 counts-per-minute for standing (vertical axis).  

 Standing workplace interventions should be investigated with a combined posture and 

physical activity classification. Active workplace interventions should not be 

investigated with the methods examined here. 

 POPAI, the Posture and Physical Activity Index, should be the method of choice to 

measure sedentary behaviour. POPAI combines the proprietary data processing of a 

thigh-worn activPAL with a waist-worn ActiGraph, and has a sensitivity and specificity 

of 92.5% and 91.9% to measure sedentary behaviour compliant with its definition. 

 Sedentary behaviour accounts for 45% of the wake-time and is not as omnipresent as 

the measurement of posture or physical activity suggests (≥55%). The overestimation 

of posture (30.3%) and physical activity sensors (22.5%) can be explained by active 

sitting and inactive standing, both of which take about 2 hours per day, with large inter-

individual variation. The overestimation of the single sensors aggravates when 

analysing sedentary time spent in long bouts. 

 There is a lack of evidence for the relevance of the posture component of SB. The 

sedentary behaviour guidelines should thus be interpreted as recommendations to 

reduce minimal-intensity physical activity. The World Health Organization is advised 

to remove the posture component from the guideline definition or to change the 

wording from sedentary behaviour to minimal-intensity physical activity to comply 

with the available evidence. If the posture and the physical activity component are 

relevant, one could expect a much stronger relationship between sedentary behaviour 

and detrimental health effects. 

 It is recommended to replace the metabolic equivalent in the sedentary behaviour 

definition with the resting metabolic rate to account for individual and environmental 

factors. 

 Research needs to stop mixing sedentary behaviour, minimal-intensity physical 

activity, and sitting to clarify the relevance of each behaviour to human health. 
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7 POINTS OF PERSPECTIVE 

 There is a need to use POPAI to measure sedentary behaviour in all kinds of studies all 

over the research field. Numerous studies already recorded data with the two sensors 

[6, 137, 162, 184, 213]. These studies are advised to repeat their analyses with POPAI 

to uncover the true relevance of sedentary behaviour, minimal-intensity physical 

activity, and sitting. Detailed instructions on how to use POPAI are published in the 

supplementary online material of Paper V. 

 There is nothing more obvious than calibrating an activPAL to measure minimal-

intensity physical activity. The thigh is the recommended placement to measure 

sedentary behaviour, and the activPAL is an established and highly valid thigh sensor 

to measure sitting in an event-based manner. With POPAI as a reference, the same data 

as in Study III can be used. The additional participants of Study V could serve as the 

population for validating both, the new activPAL activity algorithm and the ActiGraph 

posture algorithm developed in Study III. This study will tell whether one can reduce 

POPAI and thus the measurement of sedentary behaviour to only one sensor. Expect to 

see this study published soon. 

 There is a need to validate the methods developed here before applying them in future 

field studies. The validation should ideally take place in free-living, although the use of 

valid reference criteria for the physical activity classification is not without limitation. 

Indirect calorimetry requires a steady state to draw valid conclusions about physical 

activity. However, there are algorithms addressing this issue in other research areas that 

might be applicable to sedentary behaviour [152, 214]. An alternative to overcome the 

pragmatic decisions required when creating a controlled environment is to use POPAI 

as a best-available reference method. The validation should include an assessment of 

reliability, and both should be investigated with respect to the participant characteristics 

(e.g. gender, job type). If the validity is deemed insufficient for a future application or 

if the algorithms are used with sensors other than those used here, the algorithms shall 

be recalibrated. 

 There is a need to compare the data (i.e. signal features) collected in controlled 

environments and free-living. Such a study might explain the cause for the validity drop 

when moving from the calibration to the validation. The study might also identify 

features that remain stable to be recommended for future method developments in 

controlled settings. Furthermore, detailed misclassification analyses of new methods in 

free-living (e.g. in Study III with the help of POPAI) might further advance the 

knowledge to develop more valid classification algorithms in the future. 

 There is a need to investigate why the raw data of the activPAL and the ActiGraph have 

a temporal mismatch, and why no one else reported on it previously. 
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8 PERSONAL CONCLUSIONS 

A bicycle ride around the world ends with a single pedal stroke, but this very last pedal stroke 

will not be your last. My pedals already started to spin again – well, they never stopped – with 

the activPAL calibration. As soon as I finish the study, I will enjoy all the pedal strokes between 

Stockholm and Winterthur. I cannot wait to feel every single of them. 

I started my sedentary research to measure active sitting on our self-developed office chair and 

ended up trying to solve the myth of why we are able to measure inactive sitting but not 

active sitting. The answer was, unfortunately, quite disappointing: We could neither measure 

inactive sitting nor active sitting, at least before POPAI. Accordingly, I am very proud to 

contribute with POPAI and this thesis as a whole to the knowledge about measuring physical 

(in-)activity while sitting. In fact, I was very surprised about the large numbers POPAI 

displayed for active sitting – an astonishing 2 hours a day! From the randomised controlled 

trial with the office workers from the local insurance company and the couple-of-sensors-

video-camera-three-chairs-workmate-algorithm, the only reason why I even suspected that 

there is such a thing as active sitting, I expected to see around 5% or 45 minutes per day at 

maximum. With the knowledge and skills I gathered during this thesis, however, it might be 

worth to reanalyse the data with a better algorithm from Study II. From Study IV, I now know 

that the moveable seat can make a difference in terms of physical activity and break up 

sedentary behaviour if the chair is actively used. However, whether office workers use it 

actively in everyday office remains a question for my future work. 

As a movement scientist, I am trained to question whether I measure what I claim to measure. 

On a very detailed level, this can quickly turn into a never-ending story, and there are pragmatic 

decisions to be made and uncertainties to be accepted. I made and accepted a couple of them 

myself while conducting this thesis. However, I was repeatedly surprised how the sedentary 

research field handles this issue. One chapter in this thesis is about the evolution of the 

sedentary behaviour definition, including changes in the definition while I conducted this 

thesis. Another chapter is about the state-of-the-art measurement of sedentary behaviour, 

describing methods developed more than a decade ago. Interestingly, revising the definition 

had absolutely no influence on how the behaviour is measured. From my movement science 

perspective, I consider the best and most reasonable behaviour definition to be useless as long 

as we are not able to measure the behaviour. There is even the risk to stipulate 

recommendations (move more and sit less) that might not hold true when we might once be 

able to measure what we already claim to measure. On the other hand, I also consider the best 

and most valid method to be useless as long as there is no simple way to use it. Dozens of 

methods have been developed in the last couple of years with sophisticated algorithms 

(including here), but hardly any has been validated, let alone used in a field study. With that in 

mind, I see a lot of work for a movement scientist in the field of sedentary behaviour, and I will 

continue pedalling once I arrive in Winterthur. Wherever the pedals will take me, a bicycle ride 

from Stockholm to Winterthur ends with a single pedal stroke, but this very last pedal stroke 

will not be my last.
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