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ABSTRACT 
 

Antibiotic resistance is an increasingly difficult problem in the clinic, where conventional 

antibiotics are failing, and new alternative solutions are in high demand. Infections caused by 

Gram-negative bacteria with multi drug resistance (MDR) mechanisms are increasing globally, 

and treatment options are limited. Plasmids encoding β-lactamases spread easily between 

bacteria, and the overuse of antibiotics select for MDR strains. β-lactamases are either serine-

β-lactamases that are inhibited by certain β-lactamase inhibitors, and metallo-β-lactamases 

(MBLs), which are more difficult to inhibit with drugs. The current approach to fight MDR 

pathogens has mainly focused on finding β-lactamase inhibitors to use in combination with 

conventional antibiotics in the clinic.  

The overall aim of this thesis was to study the role of the cellular micro-environment and the 

importance of the innate immune system for antibiotic resistant bacterial infections.  

In Paper I we hypothesized that human cells secreted factors that could impair β-lactamase 

function and thus restore antibiotic susceptibility in resistant bacterial isolates. We found that 

thiols produced by the cells acted as zinc chelators that inhibited the degradation of 

cephalosporin antibiotics in VIM-1 producing K. pneumoniae. Notably, free thiols in urine 

samples had the same effect, suggesting that the environment at the site of infection can be 

highly important for antibiotic susceptibility and possibly also for the effect of antibiotic 

treatment in a clinical situation 

In Paper II, we hypothesized that induction of innate effector molecules would reduce 

intracellular growth of MDR K. pneumoniae and exert synergistic effects with conventional 

antibiotics. We tested this by infecting human macrophages with MDR K. pneumoniae. 

Notably, induction of innate immunity in these cells resulted in improved intracellular killing 

of MDR K. pneumoniae. The inducers were combined with traditional antibiotics, which 

resulted in an additive killing effect. The data suggests that inducing innate immune effectors 

can be an effective alternative or addition to conventional treatments in infections caused by 

MDR K. pneumoniae. 

Finally, in Paper III, we tested the hypothesis that ESBL E. coli would be more susceptible to 

innate effectors compared to non-ESBL isolates. The ESBL producing isolates had lower 

survival in serum and whole blood than non-ESBL isolates, suggesting a biological cost for 

resistant isolates. In vivo studies with zebrafish embryos showed that the non-ESBL isolates 

killed the embryos more efficiently than ESBL isolates. The biological cost was not related to 

the ESBL plasmid per se as shown by experiments where the ESBL plasmid was transferred 

from a clinical isolate to a neutral background in non-resistant E. coli.  

Together, this thesis has highlighted the importance of considering the micro-environment at 

the site of infection, which may determine the effect of antibiotics. Next, I have shown that 

induction of innate immune effectors could be an alternative or additive treatment option for 

infections caused by MDR K. pneumoniae. Finally, I present data showing that ESBL E. coli 

are more susceptible to innate effectors than non-ESBL E. coli. 
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1 INTRODUCTION 

Bacterial strains may acquire resistance at a fast rate, and MDR strains have rapidly 

circumvented the effects of many available antibiotics. There is an undisputable need for a 

better understanding and improved treatment of infections caused by antibiotic resistant 

bacteria, which have become problematic in hospital settings, the community and environment 

in many parts of the world. The population most affected by antibiotic resistant bacterial 

infections are the elderly and immunocompromised, resulting in a higher risk for sepsis and 

death and making the hospital setting an important arena for the rise in resistant bacterial 

strains. This is not only affecting survival rates of patients, but is also associated with a high 

cost increase for the health care sector, where morbidity, mortality and lengths of hospital stays 

increase1. It is estimated that the number of annual deaths caused by antimicrobial resistance 

will reach 10 million in the year 2050. In comparison, the number of deaths caused by road 

traffic accidents, cancer and diabetes combined are expected to be around 11 million 

annually2,3,4.  

Hospital acquired infections come in fifth as the leading cause of death in the acute care, where 

the at-risk population is mainly infants, the elderly and immunocompromised patients. Within 

the hospital setting, bacteria can spread from health care workers to patients as well as between 

patients. Importantly, opportunistic bacteria can use plastic devices, such as catheters and 

ventilators as scaffolds for their growth and may thus cause disease. It is important to take 

preventive measures to inhibit the transmission between patients with proper hand hygiene, 

which has been shown to be effective. With the rise of antibiotic resistance, hospital-acquired 

infections are becoming increasingly difficult to handle5. The burden of disease varies for 

different bacteria, where extended spectrum cephalosporin resistant Gram-negative bacteria, 

together with carbapenem resistant Gram-negative bacteria constitute a special and emerging 

problem1. 

The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp) are of 

high interest because of their ability to become resistant to our available antibiotics. In recent 

years, the level of threat has shifted from the Gram-positive methicillin-resistant 

Staphylococcus aureus (MRSA) to Gram-negative β-lactamase producing strains. From that 

category the World Health Organization (WHO) published a list of bacteria that are considered 

a priority and in urgent need for new antibiotics; the Gram-negative E. coli, K. pneumoniae and 

P. aeruginosa are in priority 1. The field of antibiotic resistance has mostly focused on the 

bacterial pathogens and mechanisms of resistance within the bacteria6, while the contribution 

of host immunity has been overlooked and understudied. This thesis will focus on two highly 

relevant groups of antibiotic resistance mechanisms, the extended spectrum β-lactamases 

(ESBL) and carbapenemases and how bacteria that can acquire these resistance mechanisms 

interact with innate immune factors contributing to the initial responses and killing of bacteria.  
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1. INNATE IMMUNE DEFENSES 

For bacteria to establish infections, a first step is to circumvent the efficient and thorough innate 

immune system. The bacteria need to enter from the environment, through the mucosal and 

epithelial barrier and into the bloodstream to cause an infection, commonly through the 

digestive tract or the urinary tract. For the bacteria to enter through the epithelial barrier into 

the bloodstream, there is a need to overcome obstacles, such as antimicrobial peptides (AMPs), 

the mucosal barrier, tight junctions, phagocytes, and when it comes to the bloodstream the 

complement system is important to mediate bacterial killing7. 

1.1 THE MUCOSAL BARRIER SYSTEM 

The mucosal barrier that separates our internal organs from the external environment consists 

of different parts that include, from the outer layer inwards; a layer of commensal bacteria that 

form the microbiota, a mucus layer that gradually increases in thickness, and the epithelial cell 

layer. The commensal bacteria exist in symbiosis with the host and can be found in e.g. the 

gastrointestinal tract, the urinary tract, the lungs and the skin. They are essential for the host 

because of their direct competition with potential pathogens as well as their production of 

metabolites, such as butyrate and other short chain fatty acids, that can induce AMP- production 

in epithelial cells, as well as provide important nutrition for these cells. In addition, the 

microbiota can influence the function of immune cells in the submucosa, and reciprocally the 

immune cells can regulate the microbiota, keeping a controlled environment without 

inflammation. Underneath the microbiota, pathogens encounter a mucus layer consisting of a 

thick mucus (mucin proteins and lipids) produced by goblet cells in the epithelial layer. The 

epithelial layer itself is a network connected via tight junctional structures to prevent the 

invasion of microbes. If the pathogen succeeds to enter through the epithelial barrier, it will 

encounter an army of phagocytic cells that reside in the connective tissue (Figure 1)8. Both 

epithelial cells and immune cells express pattern recognition receptors (PRRs), such as the Toll-

like receptors (TLRs) and cytoplasmic NOD-like receptors (NLRs). These receptors recognize 

conserved microbe-associated molecular patterns (MAMPs), which upon binding cause 

structural changes to the receptor complex that initiates intracellular mechanisms, such as the 

NFκB pathways that are important for initiating inflammatory responses. Depending on the 

type of MAMP sensed by the receptor, different pro-inflammatory states can be regulated. If a 

bacteria reaches or breaches through the epithelial cell layer, the PRRs sense the different 

MAMPs, such as flagellin, peptidoglycan and lipopolysaccharide (LPS). Once cells are 

activated through their PRRs, they react by either communication through cytokines with other 

immune cells, or initiate direct killing by antimicrobial effectors in immune cells9.  
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Figure 1. The mucosal barrier. The mucosal barrier is regulated by cross talk between the microbiota, epithelial 

cells and immune cells. A gradient of mucus prevents the commensal bacteria to come in contact with the cells, 

keeping a homeostasis without inflammation. Picture adapted from Wu et al10. 

 

1.2 ANTIMICROBIAL PEPTIDES 

AMPs are recognized for their potent bactericidal activity and play an important role in the first 

line of defense against invading bacteria. They are expressed in both epithelial cells and 

leukocytes, such as macrophages and neutrophils. AMPs are amphipathic with a net positive 

charge as well as a hydrophobic side. Their antimicrobial mechanism of action is thought to 

involve an initial electrostatic interaction with lipids in the bacterial outer membrane or cell 

wall and a subsequent secondary hydrophobic contact that disrupts the membrane, leading to 

bacterial lysis4. AMPs can also have additional functions not directly related to their 

antimicrobial activity, such as chemotaxis, anti-tumor activity, stimulation of cell proliferation, 

LPS neutralization and degranulation of mast cells11,12. 

AMPs can be subdivided in different families, with the major families in mammals being the 

cathelicidins and the defensins. The defensins are further characterized into two families, α and 

β-defensins, that are similar in secondary structure (small and cysteine rich), but lack homology 

in amino acid sequence11. LL-37 is the only human cathelicidin and its expression can be 

induced by different stimuli and molecules. For example, vitamin D3 has a major role in the 
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regulation of  LL-37 expression13. Additional known inducers of LL-37 are butyrate (abundant 

in the gut)14 and  its synthetic analogue phenylbutyric acid (PBA)15 as well as Entinostat16, that 

function as histone deacetylase inhibitors  (HDAC inhibitors). Importantly, while the 

identification of novel AMP inducers is interesting from a biological point of view, it has also 

given rise to the development of host directed therapy (HDT) to fight infections, an innovative 

potential therapeutic approach to counter bacterial infections through stimulation of the host 

immune system by exogenously applied small-molecular compounds13. 

 

1.3 ANTIMICROBIAL PROTEINS 

In addition to AMPs, antimicrobial proteins (defined as mature and active proteins larger than 

100 amino acids) are present in humans, which can exert direct or indirect killing of bacteria19. 

For instance, lysozyme is an enzyme abundantly found in tears, saliva and mucus. It catalyzes 

the hydrolysis of the peptidoglycan in the bacterial cell wall, resulting in lysis of the bacteria. 

Gram-positive bacteria are highly susceptible to the activity of lysozyme20, whereas Gram-

negative bacteria are protected by LPS of the outer membrane. Other antimicrobial proteins are 

for example lactoferrin, calprotectin and lipocalin-2 (LCN2). LCN2 is a 25 kDa secretory 

glycoprotein that was originally purified from neutrophils21, but is also expressed by epithelial 

cells and is upregulated upon stress, such as gastrointestinal damage, bacterial infection or 

inflammation22. The antimicrobial activity of LCN2 comes from its ability to bind and 

neutralize iron bound siderophores, which allows it to compete for available iron and prevent 

bacterial iron acquisition that is essential for the bacterial growth23. Siderophores are produced 

by some bacterial strains, including Klebsiella pneumoniae, and are secreted to acquire iron 

from the environment24.  

 

1.4 CELLS OF THE INNATE IMMUNITY  

One important component of innate immunity are phagocytes that directly attack or engulf 

invading bacteria. They are found in tissues or circulating in the bloodstream, where they search 

for foreign invaders. Professional phagocytes include macrophages, neutrophilic granulocytes 

and dendritic cells. Macrophages can be either tissue resident or differentiate from blood 

derived monocytes upon entering inflamed tissues and phagocytose microbes that have 

penetrated the mucosal barriers. Upon activation, these macrophages also promote secretion of 

cytokines and chemokines that recruit more immune cells to the site of infections. Neutrophils 

contain granules filled with various antimicrobial factors, including AMPs. Once a bacterium 

is phagocytosed, these granules fuse with the bacteria-containing phagosome, promoting direct 

killing of the pathogen25. Another part of the antimicrobial arsenal of phagocytes is reactive 

oxygen species (ROS). The release of ROS is largely depending on external factors, such as 

stress and the presence of microbes, and can either be considered beneficial as an immune 

response, or harmful in the case of excessive stress26,27. The general ROS production and 

release is highly regulated, and mostly generated in the mitochondria. The cells maintain ROS 
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at low levels and exhibit a steady-state to reach a balance of generation and elimination of the 

free radicals28. In phagocytes, ROS are mainly produced by a multiprotein electron transferase 

NADPH oxidase (NOX2) complex. The produced ROS can oxidize proteins, DNA and 

carbohydrates, resulting in killing of pathogens29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. TLR activation results in an innate immune respnse. A bacterial component is recognized by a 

TLR-receptor on the cell surface, resulting in regulation of genes that promote an innate immune response. 

Picture adapted from Stocks, et al (2018)30. 

 

Finally, the dendritic cells serve a special function among phagocytes and provide a link 

between the innate immune system and the adaptive immune system through antigen 

presenting abilities. They can activate T cells by presenting phagocytosed antigens and 

initiating antigen specific immune responses31.  
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1.4.1 MACROPHAGES 

Although all of the above mentioned cell types are important for the innate immune system, 

I have mainly worked with macrophages as a model system in this thesis. Monocyte derived 

macrophages (MDMs) have previously been catagorized into two types; M1 and M2 

depending on the polarization and inflammatory state of the cells. The fundamentals of the 

characterization is based on the observation that macrophages either kill pathogens (M1 

type), while other macrophages contribute to tissue repair (M2 type)32, in other words pro-

inflammatory (M1) or anti-inflammatory (M2) responses. Although it is convenient to 

group the macrophages into two distinct groups, this characterization may represent a 

simplistic view33. In vitro macrophages can be induced by certain compounds that 

differentiate them into M1 (GM-CSF, INFᵧ and LPS) or M2 (M-CSF and IL-4) 

macrophages. However, the situation in vivo represent a much more complex system 34. 

The M1/M2 paradigm can be considered as a spectrum, where certain stimuli also can cause 

the cells to differentiate outside of the spectrum. Since macrophages are considered specific 

to the organ they reside in and have the ability to alter their location-based differentiation, 

it can be concluded that the double-ended M1-M2 spectrum can be useful for simple 

clarification of the inflammatory responses, but not enough to characterize the cell type33,35. 

Macrophages can detect pathogens through various pattern recognition receptors that sense 

common and conserved components of pathogens, receptors such as the toll-like-receptors 

(TLR). TLRs can bind to microbial components, where the most extensively studied 

antigen-receptor binding is the lipopolysaccharide (LPS) binding to TLR-4. Upon binding, 

a signaling cascade initiates an innate immune response leading to cell activation through 

the NFκB pathway, resulting in a pro-inflammatory response36. 

When a macrophage is activated, different forms of defense mechanisms can be initiated 

to eliminate pathogens in the extra- or intracellular compartments. Cytokines and 

chemokines are secreted to activate and recruit more immune cells, as well as AMPs and 

ROS for direct killing of the pathogen. When the pathogen is phagocytosed, intracellular 

elimination mechanisms occur, where autophagy is an important contributing factor in the 

pathogen elimination. The pathogen is transfered by several regulated steps to the 

autophagosome and fuses with the lysosome, where autophagy can promote the addition 

of antimicrobial peptides and ROS to the lysosome to enhance the killing. This form of 

autophagy is regulated by genes downstream the NFκB pathway, such as the ATG genes 

(ATG-14, ATG-5, Beclin-1). Autophagy is particularly important for the control of 

intracellular bacterial infections. However, certain virulent bacteria, including 

Mycobacterium tuberculosis (Mtb), has developed mechanisms to evade autophagy37,38. 
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1.5 ANTIMICROBIAL FACTORS IN THE BLOOD 

The blood has many different antimicrobial components. A potent antimicrobial response is 

the complement mediated killing of bacteria in serum. When bacteria enter the bloodstream 

and their antigens are detected, the activation of the complement system can occur through 

three different pathways called the Classical pathway, the Alternative pathway and the Lectin 

pathway. Activation of these pathways leads to the serial activation of complement components 

where  activation of specific complement components results in opsonization of the bacteria 

with C3 fragments that bind to the bacterial surface and label it for more efficient phagocytosis. 

Activation of the complement system can also kill bacteria directly through the formation of a 

membrane attack complex (MAC). A variety of protein fragments are involved in the activation 

of the MAC and the destruction of the bacteria is through lytic effects25,26. In vitro, the 

complement pathway can be inhibited by either a physical (heat) or chemical (sodium 

polyanethole sulfonate, SPS) inactivation. SPS is currently used as an anti-coagulant and 

complement inhibitor in blood cultures in the clinical setting, and blocks the activation of the 

classical and alternative complement pathways, whereas the lectin pathway is not inhibited41. 

Not all bacteria are equally sensitive to direct complement killing, where some strains can be 

serum resistant and thus thrive in human blood. Depending on the surface of the bacteria, the 

susceptibility to serum can vary42,43. In addition to the complement system, other antimicrobial 

factors, such as lysozyme, can assist in the killing of bacteria in the blood20.  

E.coli is the most common cause of bloodstream infections, where strains with resistance to 

serum often express capsules or modified LPS, where a longer LPS structure is associated with 

serum resistance and initiation of complement-activation is located at a longer distance from 

the bacterial surface44. The blood also contains circulating monocytes and neutrophils that 

produce antimicrobial agents, including reactive oxygen species (ROS) and nitric oxide (NO) 

which exhibits potent effects on bacterial survival29.  A range of antimicrobial peptides and 

proteins can be found in the blood, mainly within circulating leukocytes and platelets and 

secreted in response to infection. Lysozyme and phospholipase A2 enhance the lysis of cells 

and work in combination with the complement system for efficient killing45,46. Additionally, 

LL-37 and bactericidal permeability increasing protein (BPI) neutralize endotoxins and cause 

direct killing of the pathogen47,48. When bacteria evade the bactericidal factors of the blood, 

bacteremia can develop, which can lead to sepsis, organ failure and sometimes death44. 
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2. GRAM-NEGATIVE BACTERIA  

Since the discovery of penicillin, methicillin resistance in Staphylococcus aureus and 

vancomycin resistant enterococci, Gram-positive bacteria were considered of most concern. 

More recently, Gram-negative infections have emerged as the most difficult to treat and cause 

clinical problems due to bacterial resistance49. Gram-negative bacteria allow for a silent and 

rapid exchange of genes, carrying resistance mechanisms to strains causing community onset 

and health-care associated infections50. 

 

2.1 THE OUTER MEMBRANE OF GRAM-NEGATIVE BACTERIA 

The outer membrane of Gram-negative bacteria is rich in lipopolysaccharides (LPS). LPS are 

large lipid molecules consisting of lipid A, an inner and outer saccharide core and a hydrophilic 

O-antigen. The lipid A acts as an anchor between the outer membrane and the sugar moieties 

of the LPS molecule and plays a role in stabilizing the bacterial outer membrane with its 

hydrophobic saturated fatty acyl chains49. Depending on the bacterial species, lipid A can 

present a different extent of acetylation and phosphorylation in different bacteria. In addition, 

the symmetry (depending on number of acyl chains) of the lipids can vary. The degree of 

phosphorylation of the lipid A can determine the net charge of the membrane (at specific areas 

or overall), giving a negative charge to the membrane49. The net charge is an important factor 

for the host immune response, including cationic AMPs that interact with the negatively 

charged areas, resulting in breakdown of the membrane49. The second part of the LPS is the 

inner core, which consists of sugars and is more highly conserved among bacterial species than 

the other two parts. The inner core is important for cell viability and has certain antigenic 

properties when the LPS does not contain any O-antigen51. The O-antigen consists of 

polysaccharides and stand out from the bacterial membrane into the extracellular environment. 

This glycan can vary in length and consists of repeating sugar units and can either be present 

or lacking in the LPS structure52. When the O-antigen is present, the LPS is referred to as 

smooth LPS (S)-form, while LPS lacking O-antigen is called rough LPS (R)-form. The O-

antigen plays an important role in pathogenicity and virulence of bacteria and is a highly 

immunogenic antigen and recognized by the host immune system. Rough LPS leaves the cell 

more permeable and thus more susceptible to antimicrobial agents and environmental factors, 

such as stress, which indicates that changes in LPS can have a great impact on the bacteria51. 

The outer membrane of Gram-negative bacteria is important for antimicrobial resistance 

properties, especially in bacteria such as K. pneumoniae that can also be coated with a thick 

polysaccharide capsule outside of the outer membrane and as a result is less affected by AMPs, 

phagocytosis and complement mediated killing in human serum40,53.  
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2.2 ENTEROBACTERALES 

Two of the most problematic Gram-negative bacteria with regard to antibiotic resistance belong 

to the family of Enterobacterales (formerly called Enterobacteriacae). They are non-spore 

forming, generally ferment glucose, reduce nitrate and can be either motile with flagellas or 

non-motile. The Enterobacterales are found in nature and constitute a part of our natural 

microbiota but can also become pathogenic and cause disease. In part, this depends on their 

ability to transfer and acquire specific virulence factors between strains. Numerous virulence 

factors can be transmitted between bacteria on mobile genetic elements; plasmids, which can 

result in highly pathogenic strains. The pathogenic strains have often acquired special adhesion 

or colonization attributes (pili), which help them to colonize places they usually do not reside 

in (e.g small intestines or urethra). These bacteria can also produces enterotoxins54. Similarly, 

transmission of genetic material between strains can lead to antibiotic resistant strains, where 

the overuse of antibiotics selects for these strains to survive and cause disease. Two members 

of the Enterobacterales family are E. coli and K. pneumoniae, which are common causes of 

bacterial infections, especially in the hospital setting1. Their ability to easily acquire resistance 

is of high concern today, with emergence of strains expressing extended-spectrum β-lactamases 

(ESBL) and carbapenemases55. Bacterial species, such as K. pneumoniae and E. coli have 

developed a protective mechanism by producing several iron-binding molecules, called 

siderophores (e.g enterobactin, salmochelin, yersiniabactin). Since iron is important for 

bacterial growth, siderophores constitute an excellent target for host immunity. Consequently, 

the host has developed ways to restrict access to iron by using LCN-2, which binds to 

siderophores and thus block iron-uptake by bacteria. It has been shown that LCN-2 is necessary 

for protection of the lung against K. pneumoniae and E. coli24,56. 

E. coli normally resides in the gastrointestinal tract and coexist with humans throughout the 

lifespan without any complications. Commensal E. coli is considered opportunistic and only 

cause infection when the gut barrier is breached or in immunocompromised individuals where 

the balance between the gut microbiota and the immune system is dysregulated. E. coli mainly 

cause gastrointestinal infections, urinary tract infections and sepsis/meningitis54.   

Similarly to E. coli, K. pneumoniae is carried by humans, mainly in the GI-tract, but can also 

be found in the upper respiratory tract and skin. The bacteria are rod shaped, non-motile and 

can have a variety of capsules that can be serotyped (K-typing) and are associated with 

virulence factors57. Infections caused by K. pneumoniae are mainly hospital acquired and 

presents as pneumonia, urinary tract infection or sepsis, mainly in the immunocompromised, 

neonates or the elderly58. However, hypervirulent strains can cause community acquired 

infections in previously healthy humans. These strains often belong to certain capsule 

serotypes, such as K1 and K259. In addition to K-typing, O-antigens are also used to type the 

bacteria, where O1 serotype is highly prevalent in clinical isolates. The capsule can protect 

against host immune responses, including phagocytosis, complement-mediated killing and 

AMPs57.  
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3. ANTIBIOTIC RESISTANCE 

The first antibiotic was discovered by Alexander Fleming in 1928, isolated from the fungus 

Penicillium notatum60. Since then, a range of additional antibiotic-classes have been 

discovered, including cefalosporins, carbapenems, macrolides, and quinolones to mention the 

most important. However in recent years, with the arising problem of antibiotic resistance, 

inventing new classes of antibiotics has proven difficult and bacteria have rapidly gained 

resistance to the few novel antibiotic drugs that have been introduce to the market61.  

Antibiotics can be categorized in different ways according to their structure or mechanism of 

action. The classification by target includes antibiotics that interfere with the bacterial cell wall, 

the protein synthesis and DNA synthesis. β-lactams comprise the largest group of antibiotics 

and  have been shown to be very potent against bacteria for decades. All β-lactams have a 

conserved ring structure with various additional chemical groups for a variety of functions. The 

four membered β-lactam rings are responsible for the antibacterial effect by binding as a 

substrate to the Penicillin Binding Protein (PBP) on the bacterial wall, that cross link the 

peptidoglycan in the genesis of the cell wall, thus impairing cell wall synthesis for replicating 

cells resulting in lysis of the bacteria. The β-lactams have multiple sub-classes that include 

penicillins, cephalosporins, carbapenems and monobactams, where carbapenems are reserved 

for the most complicated Gram-negative infections. Multiple resistance mechanisms exist, such 

as active efflux, reduction of bacterial membrane and cell wall permeability, altering 

transpeptidases, and the enzymatic inactivation of β-lactam antibiotics by β-lactamases62. 

Today,  resistance mechanisms have been discovered in bacteria that can affect every type of 

available antibiotics, and a special concern is the β-lactamase producing Gram-negative 

bacteria. In particular, the resistance to carbapenems is problematic and widespread, by virtue 

of the expression of carbapenemases61. When a bacteria is resistant to multiple antibiotic types, 

the terminology MDR (Multi drug resistance) is used, while XDR and PDR refer to extensively 

drug-resistant and pandrug- resistant (pan referring to all antibiotics), respectively63. 

 

3.1.  HORIZONTAL GENE TRANSFER 

Bacteria have the ability to exchange genetic material (plasmids) through different 

mechanisms, which is crucial for their evolution64. The three main mechanisms for horizontal 

gene transfer are transformation, transduction and conjugation. Transformation is the process 

where foreign DNA from the environment is incorporated into the bacterial genome, often from 

either lysed cells or actively secreted material65. Transduction occurs through bacteriophages, 

where the phages replicate inside the bacterial cell and bacterial DNA can be incorporated in 

the phage capsids66. The third mechanism is conjugation, an important factor in antibiotic 

resistance. The genetic material is transferred from a host cell to a recipient cell through a 

passage or a secretion system, where the system is usually expressed by proteins on the 

plasmid67. Antibiotic resistance genes can be carried on plasmids and transferred between 

bacteria via horizontal gene transfer, most commonly through the third mechanism, plasmid 
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conjugation. This results in a complicated fight against antimicrobial resistance, where one 

bacterium can spread a resistance mechanism easily to surrounding bacteria68,69.  

 

3.2. β-LACTAMASES 

The emergence of antibiotic resistance is not recent, but represent ancient events designed in 

nature that helped bacteria or fungal species to survive in a hostile environment full of 

competing species secreting antibiotic compounds. With the use of antibiotics, strains that did 

not contain any defenses against antibiotics were eliminated, while the bacteria that contained 

resistance mechanisms survived, and in that way were selected to survive and spread70. β-

lactamases are enzymes produced by bacteria that can cleave the four membered ring of β-

lactams, resulting in the inactivation of the antibiotic. This resistance mechanism is of special 

concern, where the gene expression of these enzymes can be transported between bacteria on 

plasmids, allowing for a fast spread. These enzymes have been classified by the Ambler system 

into different groups; A, B, C and D β-lactamases based on the molecular size and similarities 

in active sites of the enzymes71. Older classifications were made from the type of hydrolysis 

by the active site of the enzyme and how the enzymes cleave the antibiotics; serine-β-

lactamases and metallo-β-lactamases61. Classes A, C and D all belong to the group of serine-

β-lactamases (SBL) while class B belongs to metallo-β-lactamases (MBL)62. 
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Figure 3. The activity of β-lactamases. β-lactam antibiotics bind to the penicilling-binding-protein (PBP) on the 

bacterial membrane, and impair the cell wall synthesis. β-lactamases are produced by the bacteria and cleave the 

beta-lactam ring of the antibiotics, which prevent them from binding to the PBPs. Figure reused with permission 

from the publishing journal72 

 

 

SERINE-β-LACTAMASES This group of β-lactamases have a serine amino acid in the active 

site of the enzyme that catalyzes the hydrolysis of the amide bond in the four membered β-

lactam ring, opening up the structure and preventing it to bind the PBP for inactivation of the 

cell wall synthesis. The importance of the serine residue is the interaction with the β-lactam, 

forming a covalent serine-bound acyl intermediate. The different groups of serine-β-lactamases 

show a conserved structure of the active site, suggesting a common origin in evolution, and are 

considered to go back 2 million years73. Various serine-β-lactamases have been identified and 

they are becoming more visible in health care, including extended spectrum β-lactamases 

(ESBL) that are known to break down cephalosporins, Klebsiella pneumoniae carbapenemase 

(KPC) and the oxacillinase (e.g OXA) that can hydrolyse carbapenems and penicillins 

respectively. The ESBLs have been shown to be inhibited by clavulanic acid, however the 

ESBL-producing bacteria pose a threat both in community and hospital settings, where 

outbreaks have been associated with ESBL carrying E. coli. A certain virulent variant of ESBL, 

the CTX-M family, has shown dominance within the ESBL-producing Gram-negative 

population. With the ESBL-producing isolates becoming more prominent in the hospitals, 
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antibiotics such as carbapenems, that had been reserved for more complicated infections, were 

increasingly used. This increased usage has resulted in isolates that have gained multiple β-

lactamases (MDR strains), where the combinations of β-lactam antibiotics and clavulanic 

acid/inhibitors is insufficient. This selection of strains with carbapenem resistance has made 

various available antibiotics inefficient against infections, and underlines the importance of 

finding alternative ways of resolving difficult infections73.  

 

METALLO-β-LACTAMASES The second type of β-lactamases are the metallo-β-

lactamases (MBL). The first MBLs identified were the enzymes IMP (Imipenemase-type 

metallo-β-lactamase) and VIM (Verona Integrated metallo-β-lactamase) that spread within 

Gram-negative pathogens including Enterobacteriales. More recently, the NDM (New Delhi 

metallo-β-lactamase) was identified in a patient in Sweden, arriving from India74. The different 

resistance genes are often associated with certain geographic areas, where they are thought to 

have originated, however the strains are spreading fast through the different parts of the world. 

As the name indicates, use of metals is essential for the function of MBL enzymes, where either 

one or two zinc ions are necessary to catalyze the hydrolysis of the β-lactam antibiotics. The 

hydrolysis does not result in a covalently bound intermediate. The enzyme catalysis begins 

with the binding of the β-lactam in the active site of the enzyme that contains the metals, where 

zinc stabilizes the hydroxide ion in the binding site, that with a nucleophilic attack reacts with 

the carbonyl carbon of the β-lactam, leading to the formation of a tetrahedral-intermediate that 

results in breaking of the amide bond of the β-lactam. The active sites of these enzymes are not 

as conserved as the serine-β-lactamases, but have more variety, which indicates that they did 

not have a common evolutionary origin. The MBLs belong to the Ambler B class of β-

lactamases and have constituted a real challenge and have shown to be difficult to inhibit in 

vivo62. 

 

3.3. β-LACTAMASE INHIBITORS To treat infections caused by resistant bacterial strains, 

different combinations of antibiotics have been used, and the use of broad spectrum antibiotics 

has given the strains the opportunity to accumulate different resistance mechanisms and 

become resistant to multiple antibacterial agents at once. In addition to combining different 

types of antibiotics, treatments of infections caused by antibiotic resistant pathogens have 

focused on combining β-lactamase inhibitors with antibiotics61. A number of serine-β-

lactamase inhibitors have been identified, including the above mentioned clavulanic acid, as 

well as sulbactam and tazobactam. Other novel inhibitors have been made available, such as 

avibactam, relebactam and vaborbactam, however none of these show activity agains 

MBLs75,76. The zinc dependency of the MBLs led to the finding that EDTA (divalent metal 

chelator) could be used as an inhibitor77. However EDTA is highly toxic and thus not a viable 

treatment option as an MBL inhibitor in humans. Nevertheless, EDTA is used in the laboratory 

to identify MBL-expressing isolates. While the synthesis of MBL inhibitors have not given 

much success in recent years, multiple studies have shown that chelating zinc can be a viable 
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option, and currently zinc chelating molecules and other possible inhibitors are being studied78. 

The natural compound aspergillomarasmine A has been shown to inhibit NDM-1 and VIM-2 

enzymes through inactivation by Zn2+ binding in the active site, and has shown efficiency in 

K. pneumoniae infected mice79. Certain compounds, such as thiol containing chemicals, can 

have zinc chelating abilities and have been proposed as inhibitors in combination with 

antibiotics80,81. The problem that may arise with these inhibitors is the toxic effect of the zinc 

chelation on the host. Research has thus focused on screening for compounds that do not bind 

the ions directly, but bind the active site of the metallo-β-lactamase82. The most promising 

inhibitors today are bicyclic boronates that have shown inhibition against both serine-β-

lactamases and metallo-β-lactamases83. 

Interestingly, eukaryotic cells have a regulated environment that is also depending on metals, 

such as zinc. Thus, it would be interesting to search for endogenous zinc chelators that possibly 

could be used to inhibit bacterial MBLs.  

 

4. BACTERIAL FITNESS 

Current research has revealed that the bacterial acquisition of antibiotic resistance mechanism 

comes at a certain cost of fitness for the bacteria84. Studies focusing on competition between 

susceptible and resistant bacteria have shown that the growth rate is slower when resistance 

mechanisms are present85–87. The current explanation for this is that increased energy is needed 

for the expression of different efflux pumps and enzymes, which can explain why the 

acquisition of resistance could alter the energy distribution of the bacterial cell, resulting in a 

cost of fitness85. Strains can also gain resistance against heavy metals (copper, silver, arsenic) 

in the environment, which might affect the survival in different circumstances88. In a study by 

Schrag et al, the presence of plasmids carrying resistance genes were associated with slower 

growth, which suggests that there is a cost of fitness for genetic alterations89, however this cost 

is strain-specific and the contribution of host defenses against resistant bacteria has been less 

studied.  

The cost of fitness has been efficiently studied on bacterial strains carrying chromosomally 

encoded resistance genes90–92. However plasmid borne resistance has recently been studied to 

a higher extent, where strains carrying antibiotic resistance encoded on plasmids come with a 

cost resulting in lower fitness87,90,93,94. Methodologically, the biological cost has mostly been 

studied with competition assays, where strains with selection markers are co-cultured, and the 

survival recorded. Other studies that include in vivo models have recorded similar results, 

mainly in murine models84. The research on biological cost of fitness for resistance acquisition 

in relation to host recognition and innate immune responses is very limited. 

It was concluded from research on strains transfected with an ESBL plasmid versus non-ESBL 

that no effect was observed on fitness in serum, however the focus of physical attributes of the 

bacteria was not taken into account95. Other studies on K. pneumoniae and E. coli from urinary 
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tract infections reported either no effect or beneficial effect of plasmid acquisition, indicating 

discrepancies and unclear data on serum sensitivity of ESBL and non-ESBL pathogens96,97. 

An important observation concerning the research on cost of fitness is that conditions used to 

assess growth are often similar to standards developed to test for antibiotic resistance, where 

bacteria are grown in optimal conditions. These standards are necessary to get comparable 

results around different laboratories, however it fails to take into account the physiological 

environment of infection, including innate immune factors. Different studies have addressed 

this issue, where the culture broth was adjusted by using a more physiological cell culture 

media (RPMI) supplemented with Luria broth (LB), which proved to have a major impact on 

experimental outcomes98. With new perspectives on host-pathogen interactions, by including 

the physiological environment of infection, research on bacteria and antibiotic resistance, and 

antibiotic resistance testing can most likely be improved99.  

An interesting research approach is to spread the focus from direct bactericidal effects to a 

broader perspective by addressing the problem from multiple directions. Using a monotherapy 

drug has been shown to result in a rapid acquisition of resistance mechanisms. While it is 

important to continue the search for more antibacterial drugs, another possible alternative 

would be to study and utilize pre-existing innate host defenses100.  

 

5. BLOODSTREAM INFECTIONS AND SEPSIS  WTIH FOCUS ON 

ANTIBIOTIC RESISTANCE 

When bacteria enter the bloodstream of patients, referred to as bacteremia, the immune system 

may react in a dysregulated manner, resultng in sepsis. According to the “Sepsis Definitions 

Task Force“, the term Sepsis-3 is defined as a101; 

“life-threatning organ dysfunction caused by a dysregulated host response to infection“ and 

“Septic shock is a subset of sepsis in which underlying circulatory and cellular/metabolic 

abnormalities are profound enough to substantially increase mortality“101. 

To cause an infection, bacteria can cross the mucosal barrier and invade different organs, such 

as the urinary tract, lungs, skin and soft tissues, which is followed by fever, chills and/or 

hypertension. E. coli and K. pneumoniae are two common causes of bacteremia and sepsis102. 

The dramatic increase in antibiotic resistance in those species, makes them highly dangerous 

infectious agents in a clinical setting, where rapid discovery and treatment is important to avoid 

morbidity and mortality. The spread of antibiotic resistance varies in different parts of the 

world, for example, a study by Quan et al, showed that E. coli isolated from bloodstream 

infections exhibited an ESBL-phenotype in 55% of the cases in certain parts of Asia103. In the 

EU the prelevance of ESBL β-lactam resistance in E. coli was 14.9% in 2017. Notably, the 

prevalence of carbapenem resistance in K. pneumoniae  was over 10%, while carbapenem 

resistance in E. coli is rare in the EU population (<1.6%)72,104. 
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6. HOST DIRECTED THERAPY 

With fewer available antibiotic treatments, due to increased antibiotic resistance of bacteria, 

novel and alternative methods need to be explored to resolve bacterial infections. The innate 

immune system consists of various ancient effectors that attack invading pathogens, and 

research on the innate immune effector systems has revealed that they can be manipulated and 

induced by external stimulation using simple drug-like compounds14,17,18,31,100,105. While 

monotherapy, with either antibacterial drugs or innate antimicrobial effectors pose the risk of 

resistance106, inducing multiple immune responses through different mechanisms could be a 

key strategy in the search for alternative methods100. 

Some bacteria have developed mechanisms to alter or suppress the immune responses of the 

host for its own advantages to establish an active infection. Both epithelial cells and innate 

immune cells have a basal expression of AMPs to prevent bacteria from entering through the 

barrier and establish an infection. Studies have shown that Shigella species have the ability to 

downregulate the expression of human cathelicidin (LL-37) and human beta defensin 1 (hBD-

1) through plasmid DNA to evade the immune survival at the first line of defense107, while 

other studies reported that secreted proteins from the Shigella bacteria mediated the 

downregulatory effect 108. As a proof of concept, Shigella was found to downregulate CAP-18 

(the cathelicidin ortologue in rabbits) in the large intestines in a rabbit model109. More studies 

have demonstrated a downregulation of cathelicidin by Vibrio cholerae and E. coli in the large 

intestines through cholera and labile toxins, respectively110. In addition, it has been found that 

Neisseria gonorrhoeae downregulate LL-37 in a human cervical epithelial cell line111. 

Currently known inducers of AMPs in humans include vitamin D3, which is a potent inducer 

of the CAMP (cathelicidin antimicrobial peptide) gene expression13. This induction has been 

studied in vitro and in vivo, where it is specific through gene responsive elements in the vitamin 

D3 receptor (VDR) in primates, an element inserted late in evolution. For this reason, rodent 

cathelicidin genes do not respond to vitamin D3 and rodents have therefore not been candidates 

for in vivo experiments studying vitamin D3 -mediated effects on cathelicidin-expression112,113. 

In the gut, the microbiota, the epithelial cells and immune cells exist in a homeostatic system, 

which in the healthy state prevent pathogenic bacteria to invade the body and promote the 

normal flora to thrive. This homeostatic system involves the release of metabolic products such 

as butyrate (a short chain fatty acid) from the normal flora, which results in the production and 

secretion of AMPs. Butyrate is a known inducer of LL-37 and has been studied along with 

phenylbutyrate (PBA) as potential drugs for host directed therapy114. Butyrate and PBA are 

histone deacetylate inhibitors (HDACi) that can regulate gene expression through histone 

modifications15,115. 
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Figure 4. Host-directed therapy. A) The normal gut microbiota is dependent on expression of AMP‘s. Mucins are 

indicated by the grey zone at the apical site of the cells and AMPs by symbols. B) Some pathogens (red) can 

downregulate the expression of AMPs and disrupt the epithelial barriers. C) Downregulation can be counteracted 

by inducers. D) The pathogens are eliminated when AMP expression is restored. Figure reused with permission 

from the publishing journal100. 

 

The two inducers, vitamin D3 and PBA, have been studied in combination, where both in vitro 

and in vivo studies have revealed a synergistic induction of CAMP gene expression in the 

presence of both vitamin D3 and PBA15,116,117. Another potent inducer was found through 

screening of a chemical library to search for the induction of AMPs and the HDACi Entinostat, 

an approved drug used in combination with chemotherapy of cancer, was identified. Entinostat 

was effective in a rabbit-model for Shigella spp and Vibrio Cholera infections. However, the 

drug was found to be slightly toxic at higher concentrations118,119. Therefore, the search for 

additional AMP-inducers have continued and our research-group has identified a novel class 

of inducers (aroylated phenylene diamines), where the compound HO-53 was selected for 

further studies120. 

Pathogens such as Mycobacterium tuberculosis (Mtb), Salmonella and Legionella have 

evolved and acquired the ability to circumvent or block autophagy inside cells121. Autophagy 

is an important cellular defense mechanism to eliminate phagocytosed pathogens, and serves 

as an interesting target mechanism for host directed therapy38. Vitamin D3 has been shown to 

activate autophagy as well as inducing the autophagy genes (ATG-5 and Beclin-1). The 

combination of vitamin D3 and PBA showed a further increase in autophagy activation122,123.  

The activation of autophagy is a delicate balance, where the beneficial effect appears to be 

pathogen specific. Mtb have the mechanism to specifically downregulate autophagy by 

blocking the fusion of the phagosome and lysosome within the cell. With this, the bacteria can 

survive intracellularly in human macrophages, which contributes to their virulence124,125 

Activating the autophagy has been linked to increased killing of Mtb126. In contrast, 

Staphylococcus aureus and Pseudomonas aeruginosa on the other hand can use autophagy to 

their benefit and cause disease, making the induction of autophagy a delicate mechanism to 

manipulate127–129.  
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Another important mechanism for bacterial killing and clearance is the ROS production. ROS 

is used both during phagocytosis, is released as a response to pathogens, and has to be closely 

regulated to avoid self damage to the cells29. The induction of ROS-production in a controlled 

and local manner could be an interesting approach aas a part of host-directed therapy against 

bacterial infections. 

A link between ROS and antibiotic susceptibility has been proposed, where the increase in 

ROS upon antibiotic treatment has been recorded after ciprofloxacin treatment, as well as the 

killing efficacy of antibiotics, such as aminoglycosides, fluoroquinolones and β-lactam 

anticiotics was shown to be decreased under anaerobic conditions. The link between ROS and 

the effects of antibiotics has been contradictory due to difficulties in measuring ROS.130. 

The concept of host-directed therapy as a way to fight MDR bacteria is a promising research 

topic that deserves increased attention, and will be further studied and discussed in this thesis. 
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2 AIM OF THE THESIS 

 

The general aim of the thesis is to gather knowledge on the connection between the innate 

immune system and multidrug resistant bacteria, to study host-pathogen interactions and 

examine the effects of host innate effectors on resistance mechanisms in Gram-negative 

bacteria. 

 

• To study the impact of cellular supernatants on the effects of antibiotics against 

multidrug resistant K. pneumoniae (Paper I) 

 

• To  evaluate the effect of novel inducers of innate immune effectors (AMPs, ROS and 

autophagy) in human macrophages to eliminate multidrug resistant K. pneumoniae. 

(Paper II) 

 

• To evaluate the survival of ESBL and non-ESBL E. coli isolates against innate 

immune effectors in vitro and in vivo (Paper III)
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3 METHODOLOGICAL CONSIDERATIONS 

 

Here I will review some methodological aspects in relation to my studies. I will focus on the 

isolates selected for the studies and the main methods used, including bacterial survival, cell 

culture and infections in vitro and in vivo as well as plasmid transfer.  

In Study I-III, clinical isolates were used (E. coli and K. pneumoniae), isolated from 

bloodstream infections, retrieved from blood cultures and analyzed at the Karolinska 

University Laboratory in Stockholm (2013-2014). The isolates were characterized for 

antibiotic susceptibility and β-lactamase expression. In study III, a collection of randomly 

selected ESBL and non-ESBL E. coli isolates was used. 

Bacterial survival was evaluated with two methods in Study I-III, with a colony forming unit 

assay (CFU assay) and with Bioscreen C survival curve generator. For both methods, a colony 

from a blood agar plate was cultured in the desired broth (LB or MHB broth) at 37°C and 

allowed to reach exponential phase. The bacterial suspension was then diluted to a working 

concentration (Optical density, OD600) with appropriate conditions for each experiment in 

either a 96 well round bottom plate (CFU assay) or a Honeycomb plate (Bioscreen). 

Whole blood/serum killing of bacteria was performed with a CFU assay in Study III. Blood 

was collected from healthy volunteers in either a heparin tube (whole blood) or coagulation 

tube (serum). The whole blood and serum were diluted in broth to a final concentration, and 

bacteria suspension added to the well. A CFU assay was then performed and survival was 

analyzed with viable CFU counts. 

 

 

 

 

 

 

 

 

 

Figure 5. CFU counting. When bacteria had been treated with the selected treatment (drugs, blood components, 

inducers), the suspension was diluted tenfold to produce 8 dilutions including the initial suspension. Each dilution 

was plated on a blood agar plate divided into 8 parts to visualize the logarithmic differences in bacterial survival. 

The lowest dilution with countable colonies (10-50 CFUs) was used for CFU counting. A picture from the author’s 

experiments.  
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Statistical analysis of viable CFU counting can be complex due to the extreme range of 

CFU/ml between conditions and experiments. To account for this, the CFU/ml were log 

transformed (where 0 CFU counts were considered as 1 CFU to allow for the logarithmic 

transformation). This transformation was followed by an ANOVA or t-tests for normally 

distributed conditions, or Mann-Whitney and Kruskal-Wallis in the case of ranked test.  

To study the effect of AMP inducers in Study II, primary cells (peripheral blood mononuclear 

cells) were isolated from buffy coats and cultured into macrophage like cells in the presence of 

human macrophage colony stimulating factor (M-CSF), directing the differentiation towards 

an M1 state (pro-inflammatory) (phenotype confirmed via flow cytometry by a collaborating 

group)131. The cells were chosen for their phagocytosis and differentiation potentials. While 

human monocyte cell lines are available (THP-1 cells), the primary macrophages were 

considered more relevant for the purpose of AMP induction. The cells were analyzed through 

bacterial infections, Real-time PCR (RT-PCR) and Western blot analysis. 

The primary macrophages were used as a model for a gentamicin protection assay in Study 

II, where the cells were stimulated with the treatment and infected with either a WT or MDR 

K. pneumoniae. The isolates used for the infection were susceptible to the antibiotic 

gentamicin, which is known to have no or limited intracellular activity. Gentamicin was added 

to the macrophages to kill extracellular bacteria, allowing for evaluation of live intracellular 

bacteria through lysing of the cells, plating and counting viable colonies. In study II, the use 

of vitamin D3 as an inducer required the macrophages to be from humans (AMP induction and 

responses alter between species), however in study III the need for a human cell line was not 

present and the mouse macrophage cell line RAW 264.7 was cultured and used in the 

gentamicin protection assay. Using a cell line eliminates the need for live donors and can 

provide rapid and reliable results without donor variation. 

In study I, supernatants were collected from HT-29 cells, a cell line established from human 

colon cancer cells120. The cells were selected for the relevance to intestinal infections and were 

only used to produce supernatants, eliminating the need to establish a primary cell model. The 

supernatants were further used in the search for an endogenous β-lactamase inhibitor. 

In study III, a Zebrafish embryo infection model was utilized for in vivo experiments. The 

zebrafish have emerged as an exceptional tool to study the immune system. The optical 

transparency of the fish, the accessibility to visualize the organs and the rapid development 

from embryo to fish gives this model a great advantage. The jump from in vitro cell culture to 

in vivo mouse studies is very high, and the zebrafish model reduces this jump in both time, cost 

and accessibility.  

The generation of genetically altered lineages is highly successful in the zebrafish, where gene 

inactivation and transient gene knockdown has proven a useful tool to gain information into 

genetics and cell biology. The model has been used extensively to research hematopoietic and 

lymphoid development, where gene expression data from microarrays can be used to study 
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differences in gene expression between wild type and mutant embryos. This research is crucial 

in the understanding of genetic conditions and genetic diseases in humans132.  

The zebrafish is an efficient tool for drug discovery, having the advantage of phenotype-based 

screening, where more variables such as pain, sedation, tumor metastasis, vascular tone and 

gut motility of a disease can be recorded. The model also provides a very early insight into a 

drug’s toxicity on different organs, which is limited in cell-based assays. The relevance of an 

animal model to human physiology is an important factor to consider. There are always 

limitations on each animal model used, however recent studies have shown that 82% of disease-

associated targets in the zebrafish are shared with humans, where the zebrafish physiology is 

highly conserved133. 

The focus of this thesis is based on the innate immune system. The zebrafish have been found 

to exhibit innate immune defenses the resemble the human innate immune system. They have 

circulating erythrocytes, neutrophils, eosinophils, lymphocytes, macrophages, dendritic cells, 

exhibiting a highly conserved hematopoietic system134.  

The zebrafish express TLR’s on the surfaces of macrophages and dendritic cells and recognize 

conserved pathogenic traits through PAMP’s132. The complement system of the zebrafish has 

been studied extensively, showing all the homologs of the mammalian complement 

components being present. This suggests that the complement system in the zebrafish is similar 

to the mammalian/human complement system, both structurally and functionally135. Finally, 

antimicrobial peptides have been discovered in the zebrafish136, emphasizing the relevance 

of this animal model to the research on innate immune defenses and host directed therapy. 

In study III, the method of zebrafish microinjections was utilized, where bacteria were injected 

into the embryos and the survival of the embryo/fish recorded over 5 days. This method does 

not allow for pre-treatment of the fish since the embryo can only be injected once due to the 

embryos fragility, however the method shows great promise when studying different bacteria 

in the fish, or the effect of genetic modulation to the innate immune defenses. 

In study I and study III, a bacterial trans-conjugation method was used to transfer plasmids 

from one bacterial strain to another. Plasmid trans-conjugation requires a defined selection for 

each strain, which can be difficult to achieve with clinical isolates. For this method, a two-step 

trans-conjugation was performed, moving the resistance plasmid from the clinical isolate into 

an intermediate strain with a double selection. This method constitutes of a donor strain 

containing VIM-1 (Study I) or ESBL (Study III), an intermediate strain, and a final recipient 

strain. Importantly, the donor strain is required to be susceptible to chloramphenicol, and 

resistant to the selection antibiotic (AB) (e.g ampicillin). The intermediate strain was 

susceptible to the selection antibiotic, resistant to chloramphenicol, and dependent on 2,6-

diaminopimelic acid (DAP)(Δdap). For the first step of the plasmid transfer, using a selection 

antibiotic, DAP and chloramphenicol selects only for the intermediate strain that has acquired 

the plasmid (with a DAP (-) control showing no growth). For the second step of the transfer, a 

final recipient strain, susceptible to the selection antibiotic was trans-conjugated with the 

intermediate strain, selecting the final product with the selection antibiotic only without DAP, 
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allowing the growth of the final recipient that has acquired the plasmid only (no DAP, with 

selection antibiotic) (Figure 6) 

 

 

Figure 6. Plasmid transconjugation selection. Strains with different selection markers were used to form the final 

product of a final recipient strain containing an ESBL/VIM-1 plasmid. The donor strain (clinical isolate) 

conjugated with an intermediate strain (resistant to CHL, DAP dependent and AB susceptible), resulting in a the 

intermediate strain containing the plasmid (selection AB killing intermediate without plasmid, chloramphenicol 

killing the original donor). In the second step, the intermediate+plasmid strain (CHL resistant, AB resistant, DAP 

dependent) is conjugated with a final product (AB susceptible) and selected with AB only (no DAP), allowing for 

the growth of the final recipient that has acquired the resistance plasmid. Selections were performed with single 

selection controls. 

 

To avoid the occurrence of false positive growth, all steps of the trans-conjugation included a 

single or zero selection controls. If the intermediate strain with the plasmid grew in the absence 

of DAP, a false positive selection had occurred. This was followed closely, and the plasmid 

acquisition was confirmed with a colony PCR using primers for the transferred plasmid on all 

strains involved in the selection (donor strain, intermediate strain, intermediate strain with the 

plasmid, the final recipient strain and the final recipient strain with the plasmid). 

To conclude, the main methods used in Study I-III have been described in detail, including 

the rationale to why these cells and methods were chosen. For further detailed methods, see 

papers I-III. 
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4 RESULTS AND DISCUSSION 

(for more detailed information, see papers I-III)  

THE IMPORTANCE OF THE MICRO- ENVIRONMENT FOR THE EFFECTS OF 

ANTIBIOTICS DURING INFECTION 

Study I was concluded in the published paper “Klebsiella pneumoniae expressing VIM-1 

metallo-β-lactamase (MBL) is re-sensitized to cefotaxime via thiol-mediated zinc chelation”. 

The study was focused on searching for cellular factors with the capacity to inhibit 

carbapenemases. Antibiotic resistance in bacteria is normally measured in a standardized 

nutritious experimental environment, which is important to maintain consistency and accuracy 

between different laboratories137. The general conditions under which antibiotic resistance is 

evaluated is however not representative of the local host environment where the infection is 

established98.  

In this study, K. pneumoniae isolates expressing different β-lactamases were screened for 

susceptibility against cefotaxime when cultured in the presence of cell culture supernatants 

from colon epithelial cells. The cells produce and metabolize various components that can 

influence bacterial survival and antibiotic susceptibility. Two of the isolates tested (both 

expressing VIM-1 metallo-β-lactamases) showed increased susceptibility to cefotaxime, while 

clinical isolates expressing NDM, KPC and OXA did not. Different antibiotics were tested 

together with the supernatant, however a restored susceptibility was detected only for 

cefotaxime and ceftriaxone (third-generation cephalosporins). Given that the VIM-1 enzyme 

is a zinc dependent metallo-β-lactamase, the role of metal chelation was studied by exchanging 

the supernatant for RPMI cell culture media supplemented with EDTA. By using EDTA 

treatment, as well as metal supplementation in the supernatant, it was concluded that zinc 

chelation was an important factor for the observed resensitization effect.  

To study if the supernatant contained a zinc chelation component, or if the cause for this effect 

was the lack of available zinc, the supernatant was subjected to various filtration- and chemical 

treatments. The active component was identified as a small (<3kDa), hydrophilic compound.  

Finally, with the use of L-cystine and L-cysteine, and substituting the cell culture media  to 

DMEM without L-cystine, it was concluded that the cells convert L-cystine (from 

RPMI/DMEM media) to L-cysteine (generating free thiols) that chelate available zinc, and thus 

prevent the VIM-1 enzyme from hydrolyzing the antibiotics. This was confirmed further by 

the addition of glutathione (both oxidized and reduced form), and the use of L-cystine that 

emits a fluorescent signal when reduced to L-cysteine. Blocking the thioredoxin pathway 

resulted in a dose dependent decrease in the conversion of L-cystine to L-cysteine. 

To study if the genetic background of the bacteria was responsible for the observed 

resensitization, a two-step plasmid transconjugation was performed on the VIM-1 producing 

strain (AO15200). The plasmid was transferred to two neutral backgrounds (E. coli ATCC 

25922 and MG1655). The E. coli strains carrying the VIM-1 plasmid exhibited the same re-
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sensitization to cefotaxime in the presence of L-cysteine, confirming that the zinc chelation 

ability of thiols inhibited the activity of the enzyme. 

Gram-negative bacteria are a common cause of urinary tract infections that can lead to 

bacteremia and sepsis138,139. Urine is a thiol rich fluid and the growth of the bacteria was studied 

in urine samples from healthy volunteers140. When the supernatant was replaced with diluted 

urine, the VIM-1 producing bacteria was susceptible to cefotaxime. When the urine was 

fractionated, the effect was observed in the same fractions where L-cysteine was found, 

confirming that the thiols in urine were a contributing factor to the re-sensitization to 

cefotaxime. Re-introducing zinc into the system regained the resistance and growth of the 

bacteria.  

MBLs require zinc to hydrolyze β-lactam antibiotics. Given the data from Study I on VIM 

producing strains the same should apply to other MBLs. The three common MBLs include 

VIM, IMP and NDM, where IMP expressing strains were not accessible for this study, but 

NDM strains were screened. However, NDM-producing clinical isolates are known to carry 

other resistance plasmids (such as ESBL), which would counteract the effect observed in the 

supernatant. When a lab strain expressing only NDM resistance was acquired, a similar 

resensitization effect against cefotaxime was observed in the presence of L-cysteine. 

 

 

 

Figure 7. A graphical summary of Study I. The main results from Study I have been compiled into a graphical 

summary.  
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INDUCING THE INNATE IMMUNE SYSTEM TO ELIMINATE MDR BACTERIA 

In Study II, we hypothesized that induction of innate immune effectors in human macrophages 

would contribute to intracellular killing of MDR bacteria. To that end, primary macrophages, 

differentiated to an M1 pro-inflammatory phenotype141, were treated with known inducers of 

AMPs for 24 h before the addition of both MDR and antibiotic susceptible K. pneumoniae. All 

inducers: PBA, vitamin D3, PBA + vitamin D3, HO53 and HO53 + vitamin D3, reduced the 

intracellular survival of both K. pneumoniae strains.  Notably, the inducers did not have a direct 

killing effect on the bacteria. 

Antibiotics that were found ineffective against the MDR K. pneumoniae were added to the cells 

during the infection to study the potential of further enhancing the killing of the bacteria. The 

antibacterial effect of azithromycin, cefotaxime, ciprofloxacin and fosfomycin was found to be 

enhanced with different combinations of inducers. Azithromycin activity was enhanced when 

the cells had been treated with PBA, vitamin D3 + PBA, HO53 and HO53 + vitamin D3. 

Similarly, cefotaxime activity was enhanced with PBA + vitamin D3, HO53 and HO53 + 

vitamin D3. Ciprofloxacin activity was enhanced together with PBA, + vitamin D3, HO53 and 

HO53 + vitamin D3, while fosfomycin had less potent killing enhancement with the inducers, 

showing a difference only with the combination of PBA + vitamin D3 and HO53 + vitamin D3. 

This suggests that pretreatment of human macrophages with inducers of innate effectors has 

the potential to sensitize the cells to allow for enhanced killing of MDR bacteria. In addition, 

some conventional antibiotics have been shown to directly activate innate effector mechanisms 

in host-cells100. This phenomenon likely contributed to the enhanced intracellular killing 

observed in this project. Host directed therapy exploits alternative and more diverse ways to 

eliminate pathogens, whereas monotherapy with conventional antibiotics may be ineffective or 

lead to rapid development of resistance. 

To dissect which effector systems were involved in the enhanced bacterial killing, 

transcriptional changes of a number of key genes were analyzed.  Notably, the expression of 

the CAMP-gene, encoding LL-37 and HBD-1 was induced by PBA, vitamin D3 and HO53. 

The inducers activated other AMPs, such as HBD-2 and HBD-4, and the oxidative stress genes 

nitric oxide synthase-2 (NOS2), dual oxidase 2 (duox2), the catalase encoding gene CAT and 

glutathione peroxidase 3 (GPx-3). Finally, the inducers activated autophagy related genes (atg5 

and atg12), indicating a diverse innate immune response by the inducers including 

antimicrobial peptides, reactive oxygen/nitric species and autophagy. 

The inducers were originally selected based on the induction of the CAMP gene encoding LL-

37, however more diverse effects on innate immune effectors were observed. To study to which 

degree LL-37 was involved as a contributing factor in the outcome of the bacterial killing, LL-

37 was silenced in the macrophages with siRNA. Bacterial growth was restored when LL-37 

was silenced, despite the presence of the inducers, PBA and/or vitamin D3, emphasizing the 

importance of LL-37 for bacterial killing. HO53, an HDACi, did not show the same effect on 

bacterial growth, suggesting a different mechanism of action for this compound within 
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macrophages (Figure 5). Next, we used macrophages deficient in reactive oxygen species 

production from a patient with a genetic mutation in the CYBB gene, and healthy macrophages 

where the CYBB-gene was silenced. Interestingly, an impaired intracellular killing capacity 

with PBA, vitamin D3, PBA + vitamin D3, HO53 and HO53 + vitamin D3 was observed in 

these cells, indicating that macrophages indeed require ROS production to inhibit bacterial 

growth (Figure 6). Finally, the importance of autophagy was confirmed using an autophagy 

inhibitor, resulting in the same trend of increased bacterial growth and abolished effect of the 

inducers (Figure 7). The results from Study II underline the potential to induce innate immune 

responses, alone or in combination with conventional antibiotics, to combat infections caused 

by MDR K. pneumoniae. 

Figure 8. A graphical summary of Study II. The main results from Study II have been compiled in a graphical 

summary 

 

 

ESBL-PRODUCING E. COLI ARE MORE SUSCEPTIBLE TO INNATE 

EFFECTORS THAN NON-ESBL E. COLI 

 

In Study III we hypothesized that ESBL-producing E. coli would be more susceptible to innate 

immune effectors than non-ESBL E. coli. The rationale was based on the fact that 

immunosuppression is a risk-factor for invasive infections with MDR bacteria in general. 

However, the underlying mechanisms are poorly understood. To test this hypothesis, E. coli 

isolated from bloodstream infections were analyzed in the presence of innate immune defenses. 

The isolates were randomly selected from a larger collection and categorized into ESBL-

producing isolates or non-ESBL isolates, and the susceptibility to innate immune defenses were 

studied (serum, whole blood, AMPs, intracellular killing in macrophages). A total of 60 isolates 

(out of n=142) fit the criteria; E. coli ESBL producing (n=30) or non-ESBL isolates (n=30). 

First, the isolates were tested for survival in human serum and ESBL producing isolates 

survived to a significantly lower degree compared to non-ESBL isolates.  
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From the collection of 60 E. coli isolates, 10 isolates were randomly selected from both groups, 

resulting in a selection of 21 isolates (10 ESBL, 10 non-ESBL and 1 ATCC reference strain), 

which were chosen for further analysis. Again, the ESBL isolates exhibited significantly lower 

survival in human whole blood and serum, and heat inactivation of the serum abrogated the 

killing. This suggests that the complement system is an important contributor to the difference 

of survival between ESBL and non-ESBL producing isolates in serum. The intracellular 

elimination of the pathogens was also studied with RAW 264.7 macrophages, where ESBL 

producing isolates had lower intracellular survival compared to non-ESBL isolates. 

The cost of fitness associated with antibiotic resistance has been studied mostly in the form of 

internal fitness of bacteria, such as growth rate85. The results from Study III however suggest 

that there is a biological cost connected to the ESBL phenotype in the form of increased 

susceptibility against innate immune responses. The reason for this cost could be related to the 

presence of the ESBL plasmid itself, or connected to the genetic background (chromosomal 

genes) of the bacteria. Both alternatives were explored by 1) transferring the ESBL plasmid 

from a clinical isolate to a clean background via plasmid trans-conjugation, and 2) analyzing 

the genomes of the different isolates and comparing non-ESBL isolates to ESBL isolates.  

A trans-conjugation setup was utilized, moving the ESBL plasmid from a clinical isolate, 

through an intermediate selection strain, and finally into an ATCC 25922 lab strain. The results 

showed no significant difference between the ATCC 25922 strain and the ATCC-ESBL 

conjugate in either serum or whole blood, suggesting the plasmid transfer did not alter the 

survival of the bacteria. The 21 isolates were sequenced and genomic data was compared with 

regard to: serotype, sequence type, antibiotic resistance and virulence factors. With a small 

cohort of 21 subjects, correlation studies were difficult to perform, however a difference was 

observed in the serotype distribution of the E. coli isolates where the two groups showed a 

distinct separation in O and H antigens.  

The increased susceptibility to serum was further studied in an in vivo zebrafish embryo model. 

Embryos injected with RS020 (non-ESBL) had lower survival compared to RS006 (ESBL), 

which confirmed the results that the ESBL isolates were eliminated more efficiently than non-

ESBL isolates in vivo. Additionally, the transconjugants were studied in the zebrafish model, 

and no significant difference in survival of the embryos injected with the ATCC 25922 strain 

and ATCC-ESBL transconjugant was observed. 

The data from Study III suggests that increased serum susceptibility of ESBL producing 

isolates is dependent on the genetic background and potential structural differences in the 

bacteria, and not the ESBL plasmid acquisition per se. The study was limited to a small number 

of clinical isolates and expanding the sequencing and genetic analysis to a larger collection 

could most likely provide better information. 
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Figure 9. A graphical summary of Study III. The main results from Study III have been compiled in a graphical 

summary 

 

Together, Study I-III highlight the importance of the tissue micro-environment and innate 

immune defenses for the pathophysiology and treatment of multidrug resistant bacteria. 

Studying the host-pathogen interactions and environment could be the key to solving the 

increasingly difficult problem of antibiotic resistance, where according to Study I, the 

contribution of the host is an important consideration. Study II addressed the possibility of 

using inducers of innate immune defenses (AMPs, ROS, autophagy etc), which could be a 

promising alternative or addition to current treatment options. Finally, Study III presents the 

differences between ESBL producing and non-ESBL E. coli in the presence of blood and its 

components underlying the contribution of the host response to invading pathogens.  

Finding ways to regulate the environment at the site of infection and the availability of 

metabolites, nutrition and metals could lead to the discovery of new and improved β-lactamase 

inhibitors. 
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5 FUTURE PERSPECTIVES 

Past research on antibiotic resistant bacteria has mainly been focused on the direct inhibition 

of the resistance mechanisms, as well as finding new antibacterial compounds. The search for 

inhibitors of MBLs has been ongoing for years, however no clinically available inhibitors are 

currently accessible. A novel compound, ANT431, has been developed as an MBL inhibitor142. 

The inhibitor was active against purified NDM-1 and VIM-2 enzymes and in combination with 

meropenem on NDM-1 Enterobacterales, however, the activity had limited range against 

different MBLs. The limited range of MBLs inhibited by this compound will most likely 

prevent the inhibitor to become a clinical candidate, but can be used as a model for further 

research143. Multiple inhibitors for serine-β-lactamases have been discovered, and research is 

still ongoing in developing new compounds. A new inhibitor VRNX-5133 has been developed, 

showing activity against both serine-β-lactamases, as well as VIM and NDM in P. 

aeruginosa144. The development of novel β-lactamase inhibitors is constantly ongoing, 

however the use of monotherapies might become outdated, since resistance to both β-lactams 

and β-lactamase inhibitors is emerging rapidly143.  

Targeting the host-pathogen interaction could be an alternative option to combat antibiotic 

resistant bacteria. Accessing the problem from diverse directions, along with the discovery of 

novel antimicrobials and inhibitors, is a promising alternative for future research and 

treatment100. More diverse ways to target the host-pathogen interactions have been proposed, 

such as the neutralization of virulence factors, blocking epithelial adherence and biofilm 

formation, the use of monoclonal antibodies against key pathogens, toxin neutralization and 

more specific methods to alter this interaction during infection, that focus on suppressing the 

growth and survival of the bacteria, leaving them harmless instead of directly killing the 

pathogen145. For this to become an alternative, methods of antibiotic susceptibility need to 

evolve in the direction where the host environment is taken into account, determining minimum 

inhibitory concentrations in assays that are relevant for in vivo infections99. 

The use of omics and computer simulations is becoming increasingly accessible and useful in 

many fields of biology. Sequencing technologies are more cost efficient and the generation of 

whole genome sequencing data has become a standard technique. The gradual development in 

omics (such as transcriptomics, metabolomics and proteomics) allows for a broader use of 

datasets, combining different methods to determine structure, function and potential 

antimicrobial activity of compounds. The interaction between pathogens and antimicrobials is 

complex and can include many different targets and pathways. Computational models will 

likely become a leading technological method in the host-pathogen interactions and the 

discovery of novel antimicrobials146,147.  
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6 CONCLUDING REMARKS 

The studies compiled in this thesis have together highlighted the importance of considering 

the host cellular environment, metabolism and immune responses in the fight against MDR 

infections. Host-cells regulate both the extracellular and intracellular environment through 

metabolism and maintain a controlled tissue micro-environment. The availability of 

nutrients, metabolites and essential metals can limit (or sustain) the bacterial survival and 

potential of infection. Targeting the antibiotic resistance mechanisms directly by limiting 

the availability of extracellular components needed by the bacterium (Study I) or inducing 

the cellular response to infection could be key factors in managing the infection (Study 

II). It is vital to gain more information if the host response can possibly distinguish 

between non-resistant and resistant pathogens. Given the results that MDR strains may be 

more sensitive to innate immune defenses (Study III), the development of host directed 

therapy emerges as a strong and promising alternative or addition to mono-therapeutic 

methods. The fields of pharmacology, immunology and microbiology have remained 

separate, while research areas in oncology, for example, have evolved together with 

immunology. This has resulted in a breakthrough in cancer therapeutics and sets an 

example how merging fields can improve research and communication145 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Study I-III compiled in a schematic picture. Study I explored the role of tissue environment in 

the process of antibiotic resistance. In Study II, inducers of innate immune effectors were used to reduce 

intracellular bacteria survival within macrophages. Study III showed that the innate immune system affects 

non-resistant and resistant bacteria differentially, all together emphasizing the importance of developing 

host directed therapy treatments.   
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