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ABSTRACT 
 
Autophagy is a conserved catabolic pathway triggered by stress conditions in which portions 

of the cytoplasm, damage organelles, misfolded proteins and intracellular bacteria are 

delivered and degraded in the lysosome/vacuoles. Thus, an efficient induction and 

completion of the process is required to ensure a proper homeostasis of the cell. Autophagy 

has been considered a cytoplasmic event where the role of the nucleus on the regulation of 

this pathway was underestimated. However, recent findings elicited the role of histone 

modifying enzymes on the transcriptional regulation of autophagy-related (ATG) genes.  

 

In line with those results, we focused on the role of the two histone modifying enzymes 

regulating the histone 3 lysine 36 (H3K36) trimethylation, Rph1/KDM4A and Set2/SETD2, 

on the regulation of autophagy. In paper I, we investigated the function of the histone 

demethylase, Rph1/KDM4 as a negative regulator of autophagy, whereas in paper II we 

uncovered the role of the histone methyltransferase, Set2/SETD2, as a positive transcriptional 

regulator of ATG genes, as the impact on the differential expression of ATG14 splice 

isoforms that results on the inhibition of the autophagosome-lysosome fusion. Moreover, in 

paper III, we identify that SETD2 inactivating mutations on clear cell renal cell carcinomas 

(ccRCC) lead to an aberrant ATG12-containing complexes and accumulation of free ATG12, 

which is associated with a differential expression of ATG12 isoforms and reduced autophagic 

flux.  

 

Whereas the previous studies report the involvement of histone modifying enzymes and on 

the short-term regulation of autophagy, we also aimed to decipher the epigenetic mechanism 

responsible for the long-lasting effects of autophagy. In paper IV, we found that short 

autophagy stimulus is associated with an upregulation of de novo DNA methyltransferase 3A 

(DNMT3A) responsible of an increase of DNA methylation on selected ATG genes. 

Eventually, this epigenetic memory involves a persistent decrease of baseline autophagy. 

Moreover, in paper V, we uncovered the mechanism upstream on the regulation of 

DNMT3A expression by ULK3-mediated phosphorylation and activation of GLI1.  

 

Overall, these insights bring light on novel mechanisms and signaling pathways controlling 

short and long-term transcriptional regulation of autophagy by histone modifying enzymes, 

alternative splicing and DNA methylation. 



LIST OF SCIENTIFIC PAPERS 
 

I.  Amélie Bernard, Meiyan Jin, Patricia González-Rodríguez, Jens Füllgrabe, 
Elizabeth Delorme-Axford, Steven K. Backues, Bertrand Joseph and Daniel J. 
Klionsky. Rph1/KDM4 Mediates Nutrient-Limitation signaling that leads to the 
transcriptional Induction of autophagy. Current Biology, 25, 546-555, March 2, 2015.  
 

II. Patricia González-Rodríguez, Elizabeth Delorme-Axford, Amélie Bernard, Kathleen 
Grabert, Vassilis Stratoulias, Jens Füllgrabe, Daniel J. Klionsky and Bertrand Joseph.  
Set2/SETD2 regulates expression of ATG14 isoforms and autophagosome-lysosome 
fusion. Manuscript. 
 

III. Patricia González-Rodríguez, Pinelopi Engskog-Vlachos, Hanzhao Zhang, Adriana 
Natalia Murgoci, Ioannis Zerdes and Bertrand Joseph. SETD2 mutation in renal clear 
cell carcinoma suppress autophagy via regulation of ATG12. Cell Death and 
Diseases (2020)11:69.  
 

IV. Patricia González-Rodríguez, Mathilde Cheray, Jens Füllgrabe, Maria Salli, Virginia 
Cunha, Agata Lupa, Wenbo Li, Qi Ma, Kristian Dreij, Michael G. Rosenfeld and 
Bertrand Joseph. The DNA methyltransferase DNMT3A contributes to autophagy 
long-term memory. Autophagy (Accepted) 
 

V. Patricia González-Rodríguez, Mathilde Cheray and Bertrand Joseph. ULK3-
dependent activation of  GLI1 promotes DNMT3A expression upon autophagy 
induction. Manuscript. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

RELATED PAPERS, NOT INCLUDED IN THE THESIS 
 
 

SI. Carles Solà-Riera, Shawon Gupta, Kimia T. Maleki, Patricia González-Rodríguez, Dalel 
Saidi, Christine L. Zimmer, Sindhu Vangeti, Laura Rivino, Yee-Sin Leo, David Chien 
Lye, Paul A. MacAry, Clas Ahlm, Anna Sned-Sörensen, Bertrand Joseph, Niklas K. 
Björkström, Hans-Gustaf Ljunggren and Jonas Klingström. Hantavirus inhibits TRAIL-
mediated killing infected cells by downregulating death receptor 5. Cell Rep. 2019. 
28(8):2124-2139. 
 



CONTENTS 
 
1 INTRODUCTION ................................................................................................ 1 
 

1.1 AUTOPHAGY .............................................................................................. 1 
 
1.2 CYTOPLASMIC REGULATION OF AUTOPHAGY .................................. 6 
 
1.3 THE ROLE OF AUTOPHAGY IN PHYSIOLOGY AND DISEASES ........ 11 
 

1.3.1 PHYSIOLOGICAL ROLE OF AUTOPHAGY ................................ 12 
1.3.2 AUTOPHAGY AND DISEASES .................................................... 15  
1.3.3 AUTOPHAGY AS THERAPEUTIC TARGET. A Matter of 

Activation or Inhibition .................................................................... 18 
 

1.4 THE NUCLEUS AS A MASTER REGULATOR OF AUTOPHAGY ........ 19 
 

1.4.1 TRANSCRIPTIONAL CONTROL OF AUTOPHAGY ................... 19 
 
1.4.2 EPIGENETIC REGULATION ........................................................ 22 

1.4.2.1   DNA Methylation: principle, regulation and implications .......... 23 
1.4.2.2   Epigenetic regulation by histones modifications ........................ 25 
1.4.2.3.  Epigenetic regulation of alternative splicing - A potential 
regulation of autophagy-related genes alternative splice forms ............... 28 
 

1.4.3 SHORT-TERM TRANSCRIPTIONAL REGULATION OF 
AUTOPHAGY ..................................................................................... 30 

 
1.5 CELULAR MODELS  ................................................................................ 31 

1.5.1  Mouse cell lines ................................................................................. 31 
1.5.2  Human cell lines ................................................................................ 32 
 

1.6  ANIMAL MODELS ................................................................................... 33 
1.6.1   Saccharomyces cerevisiae................................................................. 33 
1.6.2.  Dario Rerio ...................................................................................... 34 
 

2 AIMS OF THE THESIS ..................................................................................... 35 
3 RESULTS AND DISCUSSION .......................................................................... 37 
4 CONCLUDING REMARKS .............................................................................. 51 
5 FUTURE PERSPECTIVES ............................................................................... 55 
6 ACKNOWLEDGEMENTS  ............................................................................... 58 
7 REFERENCES ................................................................................................... 62 
 
 
 
 
 
  



 

 

LIST OF ABBREVIATIONS 
Ab Amyloid-b 
Ac Acetylation  
AD Alzheimer Disease 

AKT Protein kinase B 
AMPK AMP-activated protein kinase 

APP Amyloid precursor protein 
ATG Autophagy-related  

ATG14L ATG14-like 
ATG16L ATG16-like 

AV Autophagic vesicles  
BCL-2 B-cell lymphoma 2  

BECN1 Beclin-1 
ccRCC Clear cell renal cell carcinoma  

CBZ Carbamazepine 
CK1 Casein kinase 1 

CMA  Chaperone-mediated Autophagy 
CL Cardiolipin 

CLEAR Coordinated Lysosomal Expression and Regulation 
CpG Cytosine-phosphatase-guanine 

Ctv Cytoplasmic-to-Vacuole 
BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3 

DMSO Dymethyl sulfoxyde 
DNA Deoxyribonucleic acid  

DNMT DNA methyltransferase 
E2F1 E2-transcription factor 2 

EIF2AK2 Eukaryotic translation initiation factor 2-alpha kinase 2  
ER Endoplasmic reticulum 

ESCRT Endosomal sorting complexes required for transpor 
EZH2 Enhancer of Zeste 2 polycomb repressive complex 2 subunit 

FBXO22 Ubiquitin ligase complex SCF 
FOXO Class O of forkhead box 

FPKM Fragments per Kilobase per million  
FUND1 FUN14 domain-containing protein 1 

GABARAP γ-aminobutyric acid receptor-associated protein 
GABARAPL γ-aminobutyric acid receptor-associated protein-like 



GFP Green fluorescent protein  

GIS GIg1-2 suppressor  
GLI Glioma-associated oncogene homolog zinc finger protein 

GRO-seq Global run-on sequencing  
GSK3b Glycogen synthase kinase 3b  

HAT Histone acetyltransferase 
HCQ Hydroxychloroquine 

HDAC Histone deacetylase 
HDM Histone demethylase 

HD Huntington Disease  
HEK293 Human embryonic kidney 293 cells  

HIF1A Hypoxia-inducible factor 1a 
JMJD Jumonji-C domain containing  
KAT8 Lysine acetyltransferase 8 

hMOF Human orthologue of males absent on the First  
HMTs Histone methyltransferases 

HSC70 Heat shock cognate 71 kDa protein  
HTT Huntingtin 

IL1b Interleukin-1b 
KDM4 Lysine (K)-specific demethylase 4 

LAMP2A Lysosome-associated membrane protein 2 
MAP1LC3 Microtubule-associated protein 1 A/B light chain 3  

MEF Mouse embryonic fibroblasts  
MHC class II Major histocompatibility complex class II 

LIR LC3-interacting domain/region  
MAPK Mitogen-activated protein kinase 

mRNA Messenger RNA  
MTOR Mechanistic target of rapamycin kinase  

NBR1 Neighbor of BRCA1 gene 1  
NF-κB nuclear factor κ-light-chain-enhancer of activated B cells 

NIX NIP-like protein X 
PARP Poly (ADP-ribose) polymerase 

PAS Phagophore assembly site 
PBRM1 SWI/SNP chromatin remodeling complex 1 

PD Parkinson Disease 
PE Phosphatidylethanolamine  



 

 

PI3KC3/VPS34 Serine/threonine-protein kinase VPS34 

PI3KR4/VPS15 Serine/threonine-protein kinase VPS15 
PINK1 PTEN-induced kinase 1  

PKA Protein Kinase A 
PLA Proximity ligation assay  

PMN Piecemeal microautophagy of the nucleus 
PTMs Postranslational modifications 

PolyQ Polyglutamine 
PtdIns3K Phosphatidylinositol 3-kinases 

RAB Ras-associated binding 
RB1CC1/FIP200 RB1 inducible coiled-coil 1  

RCC Renal cell carcinoma  
RFP Red fluorescence protein  

RIM15 Regulator of IME2 
RNA Ribonucleic acid 

RNA pol II RNA polymerase II  
ROS Reactive Oxygen Species 

RT-qPCR Real time quantitative polymerase chain reaction   
S6K1 Ribosomal protein S6 kinase beta-1 

SETD2  SET domain-containing 2  
shRNA  Small hairpin RNA  

shRNP Small heterogeneous ribonucleoproteins 
SNCA Alpha-synuclein 

SNX17 Syntaxin-17 
SQTSM-1/p62 Sequestrosome-1  

SNAP29 Synaptosomal-associated protein 29 
STAT Signal transducer and activator transcription 

STK36 Serine/threonine kinase 36  
STS Staurosporine  

SUFU Suppressor of fused protein  
TET Ten-eleven translocation  

TFEB Transcription factor EB 
TIP60 TAT-interacting protein 60 kDa 

TLR Toll-like receptor  
TP53 Tumor protein 53 

ULK Unc-51-like autophagy activating kinase  



VAMP8 Vesicle-associated membrane protein 8 

VHL Von Hippel-Lindau 
VPA Valproic acid/Valproate 

WIPI WD repeat domain phosphoinositide-interacting protein 2 
ZKSCAN3 Zinc-finger protein with KRAB and SCAN domain 3  

  
 



 

 1 

1 INTRODUCTION 
1.1 AUTOPHAGY  

In 1963, Christian De Duve, who discovered the organelle responsible for degradation of 

macromolecules in the cell, the lysosome, later coined the concept of “Autophagy”. This term 

corresponds to the two Greek words “auto” and “phagein” (self-eating) and relates to the 

self-digestion of cytoplasmic components by a lysosomal degradation pathway (Ashford and 

Porter, 1962; Sutherland and De Duve, 1948). Autophagy, corresponds to an evolutionary 

conserved catabolic pathway where cytosolic components are degraded within the lysosome 

(in mammals) or vacuole (in yeast and plants). Subsequently, the degraded cargo is recycled 

depending on the requirement of the cell and is used for different anabolic pathways (Levine 

and Klionsky, 2004; Xie and Klionsky, 2007).  

 Currently, two types of cargo selection by autophagy are known, nonselective or 

selective autophagy. However, those two concepts were not clearly defined until the 1990s. 

Oshumi and colleagues demonstrated that nonselective autophagy is associated with a bulk 

of random cytoplasmic components that are engulfed by an “autophagic body”, also known 

as autophagosomes, upon nutrient deprivation in Saccharomyces Cerevisiae (Yeast) (Baba 

et al., 1994; Takeshige et al., 1992) (Figure 1). Interestingly, they found that within those 

cytoplasmic bodies, the cargo corresponded to lipid and glycogen granules, ribosomes, 

endoplasmic reticulum (ER) and mitochondria engulfed and were indistinguishable from the 

components in the cytoplasm. These findings suggested that the sequestering of cargo 

occurred in an unspecific manner, which are in turn degraded within the vacuole resulting in 

a global turnover of new macromolecules that are then released back to the cytoplasm 

(Takeshige et al., 1992).   

 At the same time, Klionsky et al., characterized for the first time the concept of 

selective autophagy, by the demonstration of the import of the aminopeptidase I within the 

vacuole in yeast (Klionsky et al., 1992). In selective autophagy, specific substrates such as 

protein aggregates, damaged mitochondria or bacteria are selectively targeted by autophagy 

receptors and therefore degraded through this pathway (Figure 1). Interestingly, each process 

involves specific cellular components and accordingly to the substrate/cargo recruited by the 

autophagosome it is identified as a unique name. For instance, mitophagy for selective 

degradation of mitochondria, ribophagy for ribosomes, etc.   
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Figure 1. Non-selective and selective autophagy. Non-selective autophagy is a cellular response to the scarcity 
of available nutrients. A bulk of random cytoplasmic components are taken up into the precursor of 
autophagosomes, the phagophore (shown in green) and subsequently degraded. Selective autophagy degrades 
specific cytoplasmic components such as protein aggregates, pathogens and damaged organelles that are 
targeted by specific proteins (shown in red and yellow) or a specific sequence of amino acids that is acts as a 
signal of recognition by selective autophagy receptors (shown as purple and pink). In both conditions, the cargo 
is engulfed by the “autophagic body” or phagophore.  

 To date, different types of non-selective and selective autophagy pathway have 

been described, which rely on the cargo delivered into the vacuole or lysosome. In yeast, 

selective autophagy includes the cytoplasm-to-vacuole (Ctv) pathway also known as 

macroautophagy, mitophagy, pexophagy, piecemeal microautophagy of the nucleus (PMN), 

reticulophagy and ribophagy. In eukaryotes, selective autophagy includes macroautophagy, 

mitophagy, pexophagy, PMN, reticulophagy, ribophagy as in yeast. Additionally, 

aggrephagy and xenophagy are exclusively described in higher eukaryotes (Kim et al., 2007; 

Nakagawa et al., 2004; Roberts et al., 2003; Sakai et al., 2006; Scott et al., 1996; Shintani et 

al., 2002; Shintani and Klionsky, 2004; Wickner and Schekman, 2005). Whereas there are 

several types of autophagy, the three types primary described are: Macroautophagy, 

microautophagy and chaperone-mediated autophagy.  

  Macroautophagy 

 

Macroautophagy, generally referred to as autophagy, is the most studied type of autophagy. 

The induction of this process is triggered by several types of cellular stress such as nutrient 

depletion, hypoxia, pathogens or drugs. The hallmark of autophagy is the exclusive formation 

of a double membrane vesicle known as an autophagosome, whose arrangements take place 

by subsequent steps right after autophagy is induced. The first event after induction is the 

formation of the phagophore, the precursors of the autophagosome, the key organelle of this 
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process. The phagophore consists of a single sheet of a lipidic membrane that elongates and 

expands due to the addition of lipids from several sources until it closes. When the 

phagophore fuses, it generates the autophagosome. Upon the maturation process, 

microtubules support the movement of autophagosomes towards the lysosome. Eventually, 

the autophagosome fuses with the lysosome, generating an autolysosome. In this step, the 

release of the acid hydrolytic enzymes of the lysosome is essential for the degradation and 

breakdown of the autophagic-cargo (Figure 2). Thereafter, the obtained macromolecules 

such as amino acids, lipids, metabolites, etc. are re-used for different cellular purposes with 

the goal to keep cellular homeostasis (Feng et al., 2014; Mizushima et al., 2008; Xie and 

Klionsky, 2007; Yin et al., 2016). Of note, this is the main type of autophagy studied and 

focus of this thesis. 

 
 
Figure 2. Macroautophagy. This pathway is divided in different steps: vesicle isolation, phagophore 
expansion and closure, Autophagosome lysosome-fusion and degradation. During the isolation of the 
membrane the phagophore starts to form and to recruit the cargo that potentially will be degraded. Next, the 
formation of the autophagosome takes place when the phagophore expands, recruit the cytosolic cargo and 
fuses, creating a double membrane vesicle. Later, the lysosome fuses with the autophagosome (generating 
an autolysosome) and promotes the degradation of the components inside the organelle.  
 

  Mitophagy  

 
Mitophagy is a specific type of degradation of damaged or non-functional mitochondria by 

autophagy. Mitochondria is considered the one of the core organelles and as act as the “power 

source” of the cell for being able to generate energy from several metabolic pathways, but 

also cellular respiration and control of cell death (Ashrafi and Schwarz, 2013; Palikaras and 

Tavernarakis, 2014). Then a meticulous regulation and turn-over of mitochondria known as 

mitophagy is important to act as a quality control process within the cell. Mitochondria 

degradation through autophagy mostly occurs upon stress-triggered conditions such as 

generation of Reactive Oxygen Species (ROS), a process that decreases the efficiency of the 
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respiratory chain and therefore alteration of its function which is critical for cell homeostasis 

(Palikaras and Tavernarakis, 2014; Quinsay et al., 2010). Mitochondria can be degraded 

through autophagy in two ways: PINK/PARKIN-dependent autophagy o ubiquitin-

independent autophagy. But there is also an autophagy-independent mitochondria 

degradation through the endo-lysosomal pathway (Figure 3) (Cadete et al., 2016; Hanna et 

al., 2012; Liu et al., 2012; McLelland et al., 2016). 

 
Figure 3. Mitochondrial degradation. Endo-lysosomal mitochondrial degradation corresponds to the 
internalization of the mitochondria directly within endosomes by the recruitment of Endosomal Sorting 
Complex Required for transport (ESCRT) on the endosomes. ESCRT recruitment is mediated by ubiquitination 
of proteins on the mitochondrial surface mediated by PARKIN (PARK). Moreover, mitochondria can be cleared 
in two different types of autophagy. On the PTEN-induced kinase 1 (PINK1) and PARKIN-dependent 
degradation, upon stress conditions PINK1 is translocated to the surface of the mitochondria, which 
phosphorylates PARK. Then, PARK interacts with its substrates by ubiquitination. The ubiquitin residues, are 
recognized by a ubiquitin-adaptor protein such as sequestrosome-1 (SQTSM-1/p62), which contains a LIR 
(LC3-interacting domain) that allows its binding to MAP1LC3. Moreover, mitochondria can be also cleared in 
a ubiquitin-independent manner without the implication of PINK1 or PARK, but relying on LC3 contribution. 
In this case, NIX and BNIP3, CL or FUNDC1 contain LIR domain that allows the binding to LC3 and 
mitochondrial degradation though autophagy.  

   Microautophagy  

 
Microautophagy, has been widely considered a non-selective degradative process. During 

this process, the cytoplasmic cargo “in bulk” is taken up by the vacuole (plants and yeast) or 

lysosome for degradation. The lysosomal membrane protrudes and invaginates in order to 

promotes the degradation of the cytosolic components. Once the cargo is inside, its 

degradation occurs in a short and efficient manner by the hydrolytic proteases that are present 

in the lysosome (Nakamura et al., 1997)(Figure 4). Whereas microautophagy has been 

always considered a non-selective pathway, in yeast it has been found to degrade selective 

cargo such as peroxisomes, a mechanism known as micropexophagy, micromitophagy 
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(degradation of portions of the mitochondria), microlipophagy or piecemeal microautophagy 

(Kvam and Goldfarb, 2004)Vevea et al., 2016). All these types of microautophagy provide 

further evidence of a microautophagy selective degradation process in yeast. Instead, in 

higher eukaryotes some genes involved in this process are not conserved from yeast. 

However, in mammalians recent studies reveal a similar degradative process with common 

features as in yeast, named endosomal-microautophagy, where the cargo is internalized 

within the lysosome or late endosomes (multivesicular bodies). The mechanism of 

internalization of the cargo can occur in two different manners: ESCRT-independent 

(microautophagy) or ESCRT-dependent (endosome-microautophagy) (Galluzzi et al., 2017; 

Mukherjee et al., 2016; Uytterhoeven et al., 2015). 

 
Figure 4. Microautophagy. Simplified representation of the mechanism for microautophagy. Firstly, the 
membrane of the lysosome is evaginated and then wrap and sequesters the cytoplasmic cargo. The material is 
engulfed in a small vesicle inside the lysosome that eventually is degraded by the action of the hydrolytic 
enzymes of the lysosome. 

  Chaperone-mediated autophagy (CMA) 

 
Chaperone-mediated autophagy (CMA), is known as a type of autophagy that degrades 

selectively proteins that contains the KFRQ-domain in their amino acid sequence (Dice, 

2007). This domain is recognized by the cytosolic chaperone protein, Heat shock cognate 

protein of 70 kDa (HSC70) that brings the protein to the surface of the lysosome. Lysosome-

associated membrane protein 2A (LAMP2A) sits on the lysosome and acts as a receptor 

specific for this pathway by direct interaction with HSC70 and the protein to be degraded. 

The protein-chaperone recognition with the LAMP2A monomer drives the formation of a 

LAMP2A multimeric complex of 700 kDa (Bandyopadhyay et al., 2008; Cuervo, 2010). 

Ultimately, the protein to be degraded is unfolded and introduced into the lumen of the 

lysosome with the help of the luminal form of HSC70 (Lys-HSC70) within the lysosome 

(Figure 5). Once inside, the hydrolytic enzymes lead to the cargo degradation (Cuervo and 

Dice, 1996; Kaushik et al., 2006; Tekirdag and Cuervo, 2018). 
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Figure 5. Chaperone-mediated autophagy (CMA). Degradation of proteins that contain the KFRQ motif by 
binding to the chaperone HSC70 allows an encounter with LAMP2A, which is a lysosomal transmembrane 
protein. HSC70-substrate and LAMP2A interaction promotes the formation of a multimeric complex of 
LAM2A. The protein is unfolded and translocated within the lysosome mediated by the luminal HSC70. Finally, 
proteases inside the lysosome break-down the protein in simple molecules that can be reused in anabolic 
pathways.  
 

1.2 CYTOPLASMIC REGULATION OF AUTOPHAGY  
 
Autophagy is a dynamic process that requires a wide-range of components to ensure its 

completion. Studies in the yeast system have contributed to the identification of more than 

30 ATG genes that are involved in this process (Klionsky et al., 2003). As previously 

mentioned, autophagy is a process that is an evolutionarily conserved mechanism from yeast 

to mammals. Noteworthy, although there are a large number of genes related to this pathway 

that differs through evolution, however, the core molecular machinery of autophagy is 

considered to be regulated by ATG genes that are also conserved (Yang and Klionsky, 2010). 

These core ATG proteins have distinct roles and functions, are classified by their contribution 

to the different steps of the autophagy pathway: autophagy induction and phagophore 

formation, autophagosome expansion, autophagosome maturation, cargo recruitment and 

degradation (Mizushima, 2007)(Figure 7).  

 

Autophagy induction and phagophore formation 

 

Induction of autophagy most commonly occurs upon stress conditions, which essentially 

requires, but is not limited to, the repression of the mechanistic target of rapamycin kinase 

(mTOR), a core component of several molecular pathways involved in protein synthesis, cell 

proliferation and cell cycle progression ((Saxton and Sabatini, 2017). Therefore, inhibition 

of mTORC1 is enough to induce autophagy upon limited nutrient availability (Kanazawa et 

al., 2004). Instead, autophagy can also be induced in an mTOR-independent manner, for 
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instance by AMP-activated protein kinase (AMPK) sensing (Sarkar, 2013). Downstream, 

Autophagy related 1 (Atg1) protein in yeast or Unc-51-like autophagy activating Kinase 1/2 

(ULK1/2) in mammals is auto-phosphorylated and promotes the formation of a large complex 

with Autophagy related 13 (ATG13) and Autophagy related 17/ RB1 inducible coiled-coil 

1/Focal adhesion kinase family interacting protein of 200 kDa (Atg17/RB1CC1/FIP200) 

(Hara et al., 2008; Kabeya et al., 2005; Kamada et al., 2000). 

  

ULK proteins are a serine/threonine kinase that belongs to a family containing five 

different homologs: ULK1, ULK2, ULK3, ULK4 and the Serine/threonine kinase 36 

(STK36)(Jung et al., 2009). Among these, so far only ULK1 and ULK2 play a role in the 

initiation of autophagy, while the function of the other homologs such as ULK3 or ULK4 

still remains to be elucidated. However, new reports support the fact that ULK3 is 

upregulated upon nitrogen starvation or amino acid deprivation conditions (Jung et al., 2009; 

Young et al., 2006). Moreover, few studies report the involvement of ULK3 expression on 

the initiation of autophagy, as well as the contribution on the regulation of GLI zinc finger 

family proteins (GLI, also known as Glioma-associated oncogene homolog zinc finger 

protein) that are part of the Hedgehog signaling pathway (Goruppi et al., 2017; Kasak et al., 

2018; Maloverjan et al., 2010b). The authors show that ULK3 is a kinase with an intrinsic 

auto-phosphorylation activity, is then able to phosphorylate GLI1 and GLI2 proteins in the 

cytoplasm. ULK3-mediated phosphorylation of GLI1 proteins promotes its translocation into 

the nucleus and enhances transcriptional activity of GLI-targeted genes (Maloverjan et al., 

2010a; Maloverjan et al., 2010b)(Figure 6). 
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Figure 6. A model of ULK3-mediated GLI proteins regulation upon activation of the Hedgehog pathway.  
In the absence of a signal that triggers the Hedgehog pathway, ULK3 is recruited at the microtubules, which 
possibly interacts with the suppressor of fused protein (SUFU), which promotes the inactivation of ULK3 
activity. SUFU binds to GLI1/2 and phosphorylates it. ULK3-SUFU promotes the C-terminal processing of 
GLI1/2 that it is exposed to the cytoplasm. Therefore, the protein kinase A (PKA), Casein kinase 1 (CK1) and 
Glycogen synthase kinase 3 b (GSK3b) are kinase proteins recruited to GLI1/2 sites and generates a truncated 
form of GLI1/2 that it is able to translocated into the nucleus acting as a repressor of GLI target genes. On the 
other hand, activation of the pathway leads to activation of ULK3, which mediates phosphorylation and 
activation of GLI1/2 proteins. Eventually, GLI1/2 translocate into the nucleus and enhance transcription of 
target genes.  

 

Once ULK1 is activated, it promotes the recruitment of ATG13 and FIP200, which 

contributes to the initiation of the phagophore in a specific location known as the phagophore 

assembly sites (PAS). The proper recruitment of ULK1 to the PAS is essential for the binding 

and recognition of other effectors during the phagophore formation, the precursor of the 

autophagosome (Itakura and Mizushima, 2010).  

 

In order to guarantee a proper vesicle nucleation, the activity of the ULK1-ATG13-FIP200-

ATG101 complex and its recruitment to the PAS lead to association of an additional kinase 

complex, known as phosphatidylinositol 3-kinases (PtdIns3K) complex (He and Klionsky, 

2009). This complex consists of the several components: class-III phosphatidylinositol 3-

kinase Serine/threonine-protein kinase VPS34 (PI3KC3/VPS34), Serine/threonine-protein 

kinase VPS15 (PI3KR4/VPS15), BECLIN-1 (BECN1) and ATG14L (ATG14-like). The 

major role of this complex is the recruitment to the PAS and phosphorylation of 

Phosphatidylinositol 3-phosphate at the site of formation of the autophagosome and 

recruitment of other proteins such as WD-repeat protein Interacting with Phosphoinositide 2 

(WIPI2) or ATG9. The latter will contribute to the transport and sealing of the 

autophagosome (Itakura and Mizushima, 2010; Matsunaga et al., 2010; Zhou et al., 2017).   

 

Autophagosome expansion and closure by ubiquitin-like conjugation complexes 

 

In this step, the action of two ubiquitin conjugation complexes work simultaneously with the 

purpose of promoting the lipidation and incorporation of the main autophagic marker, 

Microtubule associated protein 1A/1B-light chain 3 (MAP1LC3/LC3) or ATG8 in yeast, 

during the expansion of the autophagosome (Jatana et al., 2020; Nguyen et al., 2016; Xie et 

al., 2008).  

 

The first ubiquitin-like complex corresponds to the ATG12-ATG5-ATG16L complex. 

Initially, ATG12 is activated by the E1-like enzyme ATG7. Next, the E2-like enzyme ATG10 
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promotes the covalent binding of ATG5 to ATG12, which forms the ATG12-ATG5 

conjugate. Furthermore, ATG12-ATG5 forms a complex with a coiled-coil protein ATG16L 

(ATG16-like 1). The subsequent ATG12-ATG5-ATG16L starts to homo-oligomerize and 

form larger complexes (Hanada et al., 2007).  

 

The second ubiquitin-like conjugation complex, is responsible for the conjugation of 

the group phosphatidylethanolamine (PE) to the MAP1LC3. During this process, the ATG4 

protein cleaves the C-terminal of LC3, exposing a glycine residue. Following, ATG7 binds 

to LC3 and transfer this group to an E2-like ligase ATG3. This interaction promotes the 

conjugation of PE to the exposed glycine residue of LC3 (Ichimura et al., 2000; Satoo et al., 

2009). The addition of PE allows ATG8/LC3 to remain attached to the phagophore 

membrane, this lipidated form is known as ATG8-PE or LC3-II (Geng and Klionsky, 2008). 

Under full nutrient conditions, LC3 is in the cytosol (known as LC3-I) while upon autophagy 

induction it is recruited to both sides of the phagophore, which then corresponds to ATG8-

PE/LC3-II (Ichimura et al., 2000). 

 

During this process, the ATG12-ATG5-ATG16 complex is necessary for a proper 

recruitment of LC3 to the PAS, however further studies are needed to fully understand this 

process. During the vesicle expansion LC3 locates on the surface controlling the size of the 

autophagosome and recognition of potential molecules to be degraded through this pathway 

(Xie and Klionsky, 2007).  

 

Autophagosome maturation, cargo recruitment and degradation  

 

One of the major differences between yeast and other organisms, is the presence of 

different homologs of the yeast Atg8 protein in higher eukaryotes. These, belong to the ATG 

family members and can be divided in two distinct subfamilies: MAP1LC3 (MAP1LC3A, 

MAP1LC3B, MAP1LC3B2 and MAP1LC3C), γ-aminobutyric acid receptor-associated 

protein (GABARAP) and γ-aminobutyric acid receptor-associated protein-like 

(GABARAPL) (containing GABARAPL1, GABARAPL2 and GABARAPL3) (Grunwald et 

al., 2020; Jatana et al., 2020; Weidberg et al., 2010). The major functions of LC3A/B/B2 

isoforms is to promote phagophore elongation and identification of potential substrates that 

will then be degraded by this pathway, while LC3C has been reported to have a role in 

autophagosome formation and secretory pathways (Koukourakis et al., 2015). On the other 

hand, GABARAPL family members play a major role in the process autophagosome 
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maturation (Weidberg et al., 2010). Therefore, this suggest that LC3 and GABARAPL 

isoforms could play distinct roles in the different stages of autophagy.  

It is extensively known that ATG8 family members, are able to recognize the cargo 

that potentially will be degraded through this pathway. As previously mentioned, the 

recruitment of the cargo is thought to occurs in a non-selective manner, however on the last 

decades studies support the idea that cargo recognition is carried out in a selective way. This 

selection is through direct interaction with autophagy receptor/adaptor proteins (Wild et al., 

2014). For instance, the most known autophagy adaptor proteins are p62 and NBR1 

autophagy cargo (NBR1) that are recruited to the autophagosome through their LC3-

interacting region (LIR) to LC3. Later, p62 recognizes ubiquitinated substrates, such as 

protein aggregates or damaged mitochondria for their degradation. In fact, proteins involved 

in different cellular pathways that contain a LIR-motif are selectively degraded by autophagy 

(Birgisdottir Å et al., 2013; Komatsu et al., 2007; Liu et al., 2016) . 

 

 Later, the autophagosome fuses with the lysosome, creating the autolysosome by the 

action of Ras-associated binding (RAB) GTPases and several SNARE proteins such as 

Syntaxin-17 (STX17), Vesicle-associated membrane protein 8 (VAMP8) and the 

involvement of ATG14. (Kimura et al., 2007; Mizushima, 2007; Mizushima et al., 2011). 

Indeed, it has been reported that ATG14 contains two distinct isoforms: the long and the 

short. The long isoform, contains a cysteine domain that allows both the formation of the 

phagophore in the PtdIns3K complex but also is the unique isoform able to homo-oligomerize 

and promote autophagosome-lysosome fusion. Whereas, the short isoform lacks of the 

cysteine domain and therefore can only promote phagophore formation (Diao et al., 2015).  

 

Eventually, the mature autophagosome fused with the lysosome, acquiring the name of 

autolysosome is acidified by the lysosomal hydrolytic enzymes. These enzymes degrade the 

cargo inside such as lipids, protein aggregates, pathogens and even organelles with the goal 

to provide nutrients in form of macromolecules. These are secreted back by lysosomal 

permeases towards the cytoplasm and can be re-used for a wide number of cellular pathways 

(Mizushima, 2007).  



 

 11 

 
 
Figure 7. Autophagy machinery. A schematic process of the autophagy machinery and the proteins and 
complexes involved in the different steps of this process.  
 

1.3 THE ROLE OF AUTOPHAGY IN PHYSIOLOGY AND DISEASES  
 
As previously described, autophagy is a tightly regulated process that works in a coordinated 

and meticulously manner, essential to ensure a proper induction and completion of the 

pathway. Its induction is normally triggered upon different types of cellular stress such as 

starvation conditions, hypoxia, ER stress, protein aggregates or misfolded proteins but also, 

pathogens, damaged organelles or even drugs (Bartholomew et al., 2012; Feng et al., 2014; 

Levine and Kroemer, 2008).  Thus, a basal and physiological level of autophagy is required 

for the maintenance of cell homeostasis and cellular functions.  

 

Autophagy is considered to play an essential role in physiological events such 

as embryogenesis, cell differentiation, adaptation to environmental changes, aging, cell death 

and cell survival (Levine and Klionsky, 2004; Mizushima et al., 2008). However, impairment 

of autophagy may be involved in the pathogenesis of a wide range of human diseases 

including neurodegenerative diseases, diabetes, cardiovascular diseases, cancer, chronic 

inflammation and immune diseases (Levine and Kroemer, 2008). 
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Figure 8. The physiological and pathological role of autophagy. Baseline autophagy is found to prevent 
aggregate-protein accumulation, reduce ER-stress and ROS that in this way maintains cellular homeostasis. 
Moreover, autophagy plays an essential role in different physiological events including cell death during 
developmental embryo stages, cell differentiation, degradation of misfolded proteins as a quality control 
mechanism, energy supplier under stress conditions, longevity and a mechanism to overcome infections. On the 
other hand, autophagy deficiency enhances aging, promotes cancer among others such as inflammation and 
neurodegenerative diseases and acts as a mechanism that pathogens use to evade the immune system.  
 

Thus, autophagy is considered as a versatile pathway, which can be considered as a 

double-edged sword since its activation/inhibition could be either beneficial by promoting 

cell survival or deleterious by leading to cell damage (Levine and Klionsky, 2004; Shintani 

and Klionsky, 2004). 

1.3.1 PHYSIOLOGICAL ROLE OF AUTOPHAGY 
 
In normal conditions, autophagy is in a low basal level, being essential for cellular and 

physiological functions and cell homeostasis.  

 

Autophagy - A quality control checkpoint under physiological conditions 

 

Recent studies confirm that neuron specific Atg5 and Atg7 knockout mice exhibit a delay in 

neuronal development that leads to a motor and behavioral retardation compared to wild-type 

animals. Moreover, histological approaches showed the loss of Purkinje cells in the 

cerebellum in autophagy deficient neuron specific mice, as well as distinct morphology that 
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might be responsible for the developmental defect shown. It has been suggested that these 

results are an accumulation of cytosolic protein aggregates within the neurons. Overall, this 

suggests that the impact of basal autophagy in neurons, is an important mechanism for proper 

neuronal development, but also to promote the clearance of damaged organelles and 

misfolded proteins that otherwise could promote progression of neurodegenerative diseases 

(Hara et al., 2006).   

 

Interestingly, in the liver during fasting, proteins are degraded in a quicker manner in 

order to generate the fuel required to compensate the punctual lack of nutrients. However, in 

Atg7-deficient hepatocytes, and then autophagy deficient, a decrease on protein turn-over due 

to the impossibility to generate autophagosomes and therefore protein degradation is 

observed. These cells also exhibit an accumulation of protein aggregates as well as damaged 

mitochondria, suggesting that autophagy is important in normal physiological conditions in 

order to remove damage components upon fasting (Komatsu et al., 2005). 

 

Role in organism development and cell fate decision 

 

One of the first indications that autophagy is important for embryo development is the role it 

plays during fertilization and during pre-implantation. During this event, autophagy is highly 

upregulated, due to a dramatic decrease on the phosphorylation of the ribosomal protein S6 

kinase 1 (S6K1) activity by an inhibition of mTOR. In fact, oocytes that lack Atg5-/- in mice 

causes a developmental delay upon fertilization, and blastocyst divisions are retained at a 

stage of 4-8 cells due to an impairment of protein recycling. In fact, it is well known that 

during fertilization there is a need of increased protein turn-over as well as removal of 

maternal factors that are no longer required. On the other hand, production of other factors 

that are essential during embryo development must be robustly produced during these early 

stages (Merz et al., 1981; Tsukamoto et al., 2008). 

 

Autophagy also plays an important role at birth and after placenta withdrawal. During 

this process, the termination of the placental nutrient source to the fetus provokes a temporary 

but severe starvation, which triggers an acute autophagy response (Kuma et al., 2004). 

Indeed, the lack of nutrients during the embryo-to-neonatal transition is one of the main 

causes of death of Atg-deficient mice, which corroborate that autophagy is essential during 

this process.  Here, autophagy acts as a survival mechanism, which acts as a source of amino 
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acids and energy, required before nutrient supply that latter restore through the milk 

(Schiaffino et al., 2008).   

 

Recent studies also report the physiological requirement of autophagy during cell 

differentiation and cell fate. For instance, autophagy is necessary for the generation of 

neurons from neuronal stem cells during neuronal development. In fact, lack of Atg5, Atg7 

or Vps34 in neurons impaired their differentiation and neurogenesis, affecting neuronal 

depolarization and axon growth (Casares-Crespo et al., 2018; Inaguma et al., 2016; Lv et al., 

2014). Whereas Ambra1 and Beclin-1 mutants show severe effects on the neuronal tube 

formation and an increase of proliferation rate of neuronal tissues during embryonic 

development (Fimia et al., 2007; Yazdankhah et al., 2014). These studies bring evidence that 

autophagy is essential of cell differentiation and proliferation. 

 

Modulating inflammation and the immune response 

 

A specific type of autophagy named xenophagy, is triggered upon pathogens infection. 

During xenophagy, autophagosomes target, encase and eradicate pathogens such bacteria and 

viruses, suggesting that this process is crucial for the maintenance of an efficient immune 

system (Yang and Klionsky, 2020; Zhou and Zhang, 2012) Beyond the role of autophagy on 

pathogens clearance, it also mediates cellular events required to for innate and adaptive cell 

immunity, such autophagy-mediated antigen presentation to the major histocompatibility 

complex (MHC class II), or delivery of the antigen viral nucleic acids in the form of an 

antigens to the Toll-like receptor 7 (TLR7), with the consequent activation of interferon 

signaling (Schmid and Münz, 2007). In addition, basal autophagy prevents the auto-

activation of the immune system. The importance to maintain a low basal level of autophagy 

it fundamental for inhibiting inflammation to keep down leukocyte activation upon infection. 

In fact, baseline autophagy inhibits interleukin 1b (IL1-b) secretion whereas autophagy 

induction increases its secretion (Dupont et al., 2011).  

 

Physiological cell death and aging 

 

During the last decades, whether autophagy is considered a survival or deleterious process 

remains a subject of debate. Nevertheless, recently in the field autophagy has been considered 

as a survival mechanism, as produce nutrients upon stress conditions. Thus, this pro-survival 

acquisition is considered as an adaptive response and cytoprotective mechanism upon cell 
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damage. However, if the stimulus is prolonged over the time, excessive and uncontrolled 

autophagy eventually can be deleterious leading to cell death (Levine and Klionsky, 2004). 

Thus, the importance of cellular adaptation is essential for survival to acute environmental 

cues. Physiological autophagy-mediated cell death occurs mainly upon development. For 

instance, in drosophila autophagic degradation of the anti-apoptotic protein BRUCE, 

activates caspases leading to cell death (Nezis et al., 2010). 

 

One unstoppable physiological event during life is aging. Aging is a multifactorial 

and physiological process defined as a decline and deterioration that occurs in most of the 

organisms (Harman, 1991; López-Otín et al., 2013). One of the cellular signatures that occurs 

during aging is a decline in baseline autophagy. Indeed, calorie restriction or fasting (one of 

the most robust inducers of autophagy) that it is started during adulthood is known to have 

beneficial effects on several physiological mechanistic processes by decreasing oxidative 

stress or inflammatory responses but also increasing longevity in mice (Barbosa et al., 2018). 

In fact, rapamycin was the first pharmacological drug to extend lifespan in mice (Harrison et 

al., 2009). However, while this study suggests that activation of autophagy may play a role 

in lifespan extension and slow down the ageing process, the responsible molecular 

mechanism still need to be elucidated.  

1.3.2 AUTOPHAGY AND DISEASES 
 
Autophagy dysregulation it has been reported to be involved in the pathogenesis of a wide 

range of human diseases including neurodegenerative diseases, diabetes, cardiovascular 

diseases, cancer, chronic inflammation and immune diseases (Levine and Kroemer, 2008).  

It follows a description of the most relevant for this thesis.  

 
Neurodegenerative diseases 

 
The dependence of neurons on autophagy in many instances acts as a beneficial mechanism 

that allows the clearance of protein aggregates. The inefficient degradation of those 

aggregates eventually leads to diseases and death (Komatsu et al.; Komatsu et al., 2005). In 

fact, alterations on the degradation of protein aggregates have been confirmed in Alzheimer 

disease (AD), which is the most common cause of early dementia (Harman, 2001). AD is 

characterized by the development of senile plaques that are constituted mainly of Amyloid b 

(Ab) and neurofibrillary tangles composed of tau proteins (Armstrong et al., 1998). Patients 

with AD develop a gradual loss of their cognitive abilities and one of the main features of 

this patients is the increased of accumulation of autophagic vesicles (AV) containing 
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Amyloid precursor proteins (APP) and Ab peptides, which can then lead to neurotoxicity 

(Zhang et al., 2012).   

 

Not limited to AD, autophagy is also a key pathway for other types of 

neurodegenerative diseases such as Parkinson disease (PD) and Huntington diseases (HD). 

PD patients are characterized by an accumulation of a-synuclein (SNCA) into cytoplasmic 

inclusions named Lewy bodies where macroautophagy, and specifically mitophagy, appears 

to be the main pathway involved in the clearance of protein aggregates. For example, 

mutations in genes that regulates mitophagy, such PARKIN and PINK1, are common in PD 

patients (Ishihara-Paul et al., 2008). These mutations abolish the ability to remove damage 

mitochondria and brings evidence that this pathway is involved on SNCA clearance.  

Eventually, accumulation of mitochondria in PD leads to an increase in ROS and oxidative 

stress, leading to death of dopaminergic neurons. But also, SNCA protein contains a KFERQ-

like motif making it susceptible as a substrate for CMA degradation (Alcalay et al., 2010; 

Issa et al., 2018). However, SNCA mutants and dopamine-modified SNCA can bind to both 

Hsc70 and LAMP2A but cannot translocate within the lysosome, which eventually blocks 

CMA and accumulation of other cytosolic proteins that are degraded through this pathway 

(Martinez-Vicente et al., 2008). HD, is a dominant autosomal disease caused by the repeats 

of the exon 1 of the gene that encodes for huntingtin (HTT) protein. The mutant protein 

contains a Polyglutamine (PolyQ) repeats, that results in neurotoxic aggregates with the 

potential to be cleared by autophagy or CMA. However, autophagosomes fail to recognize 

and recruit the cytosolic cargo due to an aberrant interaction between p62 with the mutant 

huntingtin that leads to a slower turnover, decay and increased accumulation of inefficient 

autophagic vesicles inside neurons (Martinez-Vicente et al., 2010).  

 
Cancer 
 

Defects in autophagy have been associated with an increased susceptibility to DNA damage 

and metabolic stress that may lead to aberrant mutations and ultimately cancer. In this field, 

autophagy has been shown to play a dual role in tumor suppression or tumor progression that 

might contribute to a variety of ways at different stages of tumorigenesis. This has been 

shown to be a complex process that is highly dependent on many factors including genetic 

predisposition and the type of cancer (Eisenberg-Lerner et al., 2009). In early steps of cancer 

development autophagy is considered as a cytoprotective tumor-suppressor mechanism, 

whereas during tumor progression autophagy act as the fuel, a nutrient supplier that fulfill 

the excessive metabolic demands of the tumor cells (Degenhardt et al., 2006; White, 2015; 
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White and DiPaola, 2009). For instance, some autophagy related genes, such as Beclin1, 

Atg4, Atg5, Atg7 among others are considered as tumor suppressor genes. In fact, monoallelic 

deletion of beclin1 in mice lead to spontaneous tumors. Also, Atg5 and atg7 specific 

hepatocytes deficiency in mice develop liver tumors due to an excessive increase of 

mitochondrial damage and oxidative stress (Komatsu et al., 2005; Qu et al., 2003). 

 

During tumor growth, autophagy can act as an oncogenic factor, as its activation help 

the tumor to overcome stressful conditions. In fact, advanced pancreatic cancers show an 

increase of baseline autophagy to ensure a proper and sustained tumor growth (Yang et al., 

2011). Suppression of autophagy by beclin1 or FIP200 depletion enhances cell death and 

reduces tumor progression in osteosarcoma and mammary tumors (Liang et al., 1999; Qu et 

al., 2003; Wei et al., 2011). Additionally, genetic depletion of Atg genes in tumor mouse 

models also exhibit a dramatic decrease of the tumor volume. Hence, autophagy may play an 

essential role as regulator of tumor promotion in advanced cancers. During tumor 

development, cells loss cell adhesion acquiring the ability to invade adjacent tissues and 

metastasize to other regions of the organism. In this stage, autophagy inhibition limits cancer 

to metastasizes stage and therefore the progression of cancer, thus high levels of autophagy 

were shown to correlate with a poor patient prognosis (Galluzzi et al., 2015) (Figure 9). 

 
Figure 9. The dual role of autophagy as preventing or promoting cancer progression. Autophagy is 
considered the yin and yang of the cell as an increase controversy on the role of autophagy in the different stages 
of tumor development as either activation or inhibition of autophagy have different outcomes in the fight against 
cancer. 
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Based on the impact of autophagy in different stages of cancer, currently the field is 

focus on the a deeper understanding the interplay between autophagy and cancer to find the 

right target and drugs that can be used for chemotherapeutic purposes to defeat cancer.  

1.3.3 AUTOPHAGY AS A THERAPEUTIC TARGET. A Matter of Activation or 
Inhibition. 

 
The use of mTOR-dependent autophagy inducing agents, such as rapamycin has been 

proposed to treat neurodegenerative diseases in mouse models. Rapamycin is a selective 

inhibitor of mTORC1 used as a therapeutic treatment in transgenic mouse models of AD 

(APP mutants), prion diseases, PD (SNCA mutants) or HD (Htt mutant). Additionally, 

treatments that target autophagy in an mTOR-independent manner by inhibiting inositol 

monophosphate have also raised interest as a therapeutically approach. For instance, 

Carbamazepine (CBZ) or Valproic acid (VPA), enhances cellular clearance of huntingtin and 

a-synuclein (Lin and Qin, 2013; Xiong et al., 2011; Zhang et al., 2007), whereas, Trehalose, 

a disaccharide with pharmacological chaperone activity, acts as AMPK activation and 

enhance autophagy activity (Sarkar et al., 2007). Therefore, treatment with Trehalose 

enhances the removal of cytotoxic protein aggregates that have accumulated in the cell. 

However, it is still unclear whether enhanced autophagy is a beneficial treatment for 

neurodegenerative diseases. For instance, treatment with Astemizole, a lysosomotropic drug, 

similar to Hydroxychloroquine (HCQ), results in the inhibition of Autophagosome-

Lysosome fusion but also inhibit prion infection between cells (Chong et al., 2006).  

 

Moreover, many anti-tumoral chemotherapeutic drugs are used to treat cancer, by 

inhibiting or promoting autophagy depending on the tumor stage. For instance, as in other 

diseases, autophagy inducing treatments like rapamycin water-soluble derivatives including 

Temsirolimus or Everolimus are widely use as anticancer drugs (Yazbeck et al., 2008). For 

instance, Everolimus is used to treat pancreatic cancer and breast cancer, the latter in 

combination with an aromatase enzyme inhibitor, Exemestone (Amaral et al., 2012), whereas 

Temsirolimus is highly used to treat Glioblastoma when combined with Desatinib (another 

autophagy inducer)(Milano et al., 2009; Yan et al., 2016). However, recent studies show a 

negative clinical outcome on the use of rapalogs as treatment against glioblastoma due to the 

sole inhibition of the mTORC1 complex, thus activation of mTORC2 suggest glioma 

resistance to rapalog treatment and a need to change to potent dual inhibitors of both 

complexes, which shows a higher efficacy in counteracting glioblastoma growth, 

invasiveness and cell death of glioblastoma (Mecca et al., 2018). Other clinical trials suggest 



 

 19 

a successful combination of histone deacetylases (HDAC) inhibitors and VPA with 

Temsirolimus as a treatment for hepatocellular carcinoma and Burkat leukemia/lymphoma 

by inducing cell death (Ji et al., 2015). In overall, those compounds rarely work efficiently 

alone rather combination of compounds burst the effect and increase the cell response to fight 

against the disease. 

1.4 THE NUCLEUS AS A MASTER REGULATOR OF AUTOPHAGY 
 
Autophagy was considered to be purely regulated by cytosolic proteins as enucleated cells 

can undergo autophagy and display LC3 puncta (Joseph, 2015; Tasdemir et al., 2008). 

Nevertheless, over the past decades, the nucleus has taken special attention regarding 

autophagy regulation due to the identification of a wide number of transcription factors, 

histone post-translational modifications as well as microRNAs related to this process (Ozeki 

et al., 2017; Pietrocola et al., 2013). 

1.4.1 TRANSCRIPTIONAL CONTROL OF AUTOPHAGY  
 
The first evidence of transcriptional regulation of autophagy was revealed by a transcriptional 

response of Atg8-induced by nitrogen starvation in yeast (Kirisako et al., 1999).  However, 

it was not until years later when the nucleus and transcription factors regulating ATG genes 

were considered as a major regulator of autophagy in coordination with the cytoplasm (Beck 

et al., 1999; Mammucari et al., 2007). In fact, aberrant expression of Autophagy-related genes 

by dysregulation of transcription factors due to mutations and/or post-translational 

modifications, triggers a signaling cascade that affects autophagy. For instance, disrupted 

transcriptional BECLIN1 expression, due to deletion on its genomic sequence occurs in the 

50-70% of breast cancer as well as downregulation of WIPI genes in 100% of the patients 

with pancreatic cancer (Aita et al., 1999). However, the upstream mechanisms upstream that 

leads to an aberrant transcriptional ATG genes regulation still remains to be elucidated.  

 
FOXO transcription factors  

 
The class O of forkhead box (FOXO) transcription factors are involved on autophagy by 

dependent or -independent transcriptional activation of ATG genes in a diverse cell types and 

organisms (Liu et al., 2014; Mammucari et al., 2007; Sanchez et al., 2012); (Matsuzaki et al., 

2018). Activation of FOXO transcription factors are mainly regulated by nuclear/cytosolic 

shuttling upon stressful conditions such as nutrient deprivation. In these conditions, AKT-

mediated phosphorylation of FOXO3 is inhibited, which promotes its translocation into the 

nucleus and the expression of ATG-targeted genes including ATG4, ATG12, BECN1, BNIP3, 



 

20 

LC3, ULK1/2 and VPS34 in neurons or cardiomyocytes (Audesse et al., 2019; Schips et al., 

2011), whereas FOXO1, other member of the FOXO transcription factors family, also 

promotes transcription of other ATG genes such as ATG5 in neurons or ATG14 in cancer 

(Audesse et al., 2019; Xu et al., 2011). Moreover, reports show that cytosolic FOXO1 

positively regulates autophagy in a transcriptional-independent manner, by its acetylation 

and direct binding to key components of the autophagy machinery as ATG7 (Liu et al., 2014).  

In fact, mutations of FOXO family members have been found to negatively affects autophagy 

and has been associated to neurodegenerative diseases and cancer (Pino et al., 2014). 

 
TFEB, and its transcriptional counterpart ZKSCAN3   

 
Transcription factor EB (TFEB) is considered the main regulator of most of the ATG 

genes. Following autophagy induction in response to stress, such as starvation, lysosomal 

stress or treatment with mTOR inhibitors (Torin1 or Rapamycin), TFEB is highly 

upregulated, dephosphorylated and translocated to the nucleus. Subsequently, TFEB undergo 

its transcriptional program by direct binding to TFEB target genes and increase its expression, 

that range from autophagy-related genes (ATG4, ATG9B, MAP1LC3B, UVRAG or WIPI1) to 

CLEAR (Coordinated Lysosomal Expression and Regulation) genes that are involved in 

lysosomal biogenesis (Settembre and Ballabio, 2011). On the other hand, the zinc-finger 

protein with KRAB and SCAN domains 3 (ZKSCAN3) is considered to be the physiological 

TFEB counterpart, as inhibits the expression of multiple ATG genes, such as ULK1 or 

MAP1LC3 under nutrient replete conditions, whereas upon autophagy induction shuttles back 

to the cytoplasm from the nucleus, having the opposite cellular dynamics compared to TFEB 

(Chauhan et al., 2013). TFEB mutations or loss-of-function act as a main driver of multiples 

diseases associated with autophagy dysfunction such as neurodegenerative diseases and 

results in a metabolic imbalance of the lipid catabolism in the liver that leads to obesity in 

mouse models (Cortes et al., 2014; Settembre et al., 2013; Wang et al., 2016). These data 

suggest TFEB as a main regulator of ATG genes but also lysosomal genes, being a central 

component that define autophagy status, which eventually its dysregulation plays an essential 

role in various pathological disorders.  

 
STAT transcription factors.  

 
The signal transducers and activators transcription (STAT) proteins are a family of 

cytoplasmic transcription factors that translocate into the nucleus upon inflammatory 

challenge or oxidative stress. STAT3, a member of the STAT family, either enhances or 

inhibits autophagy. A constitutive basal level of cytoplasmic STAT3 regulates autophagy in 
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a transcriptional-independent manner as it recruits and sequester FOXO1, FOXO3 and 

Eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) transcription factors 

under growth conditions (Mammucari et al., 2007). On the other hand, lack of nutrients 

STAT3 releases those transcription factors allowing them to undergo their transcriptional 

program, as previously described. On the other hand, nuclear STAT3 can either enhance or 

inhibit autophagy. For instance, STAT3 acts as negative transcriptional regulator of 

autophagy as enhance B-cell lymphoma 2 (Bcl-2) transcriptional levels (Shen et al., 2012; 

Tai et al., 2014; You et al., 2015). On the other hand, STAT3 also has the ability to promotes 

autophagy induction by activate transcription of the hypoxia-inducible factor a (HIF1A) and 

BNIP3. STAT3-mediated BNIP3 expression disrupts BECLIN1 and BCL-2 interaction 

which eventually promotes autophagy induction (Shen et al., 2012). 

 
Figure 10. Simplification of the transcriptional regulation of autophagy-related genes during nutrient 
deprivation conditions.  STAT3 regulates FOXO1/FOXO3, EIF2AK2 as well as TFEB versus ZKSCAN3 
cellular dynamics and transcriptional regulation of autophagy-related genes. Whereas it is known that EIF2AK2 
translocate towards the nucleus and enhance autophagy, it is still unknown specifically the autophagy-related 
genes that are targeted by this transcription factor. Of note, here we show the transcriptional master regulators.  
 

Other transcription factors 
 

Other transcription factors have been shown to be involved in the autophagy pathway such 

as Tumor protein 53 (TP53/p53) or TP63/p63, whom are activated by DNA damage or 

stimulated by oncogenes, are reported to inhibit mTORC1 via its transcriptional regulation 

of several ATG genes including ULK1, ATG2, ATG4, ATG7 and ATG10 (Huang et al., 
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2012; Kenzelmann Broz et al., 2013). Under normoxia conditions, nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB) is recruited to the promoter of the hypoxia-

inducer activator of autophagy, BNIP3, by silencing its expression, while under hypoxia NF-

κB is released allowing E2-transcription factor 2 (E2F1), a transcriptional activator of ATG 

genes, to bind to the promoter of ULK1, ATG5 and LC3 and enhance their expression 

(Polager et al., 2008; Shaw et al., 2008).  

1.4.2 EPIGENETIC REGULATION 
 
The term epigenetics was first coined by Conrad Waddington in 1952 as “a definition of the 

branch of biology which studies the causal interactions between genes and their products 

which brings the phenotype into being”. However, that definition did not explain the 

transgenerational inheritance, mitotic inheritance or the long-term effects on gene 

activation/repression as well as chromatin states. Thus, years later Nanney, Riggs and 

Holliday, and further modified by Bird and others evolve the term “epigenetics” to a 

“mechanism that involves mitotically and meiotically hereditable changes in the gene 

function that are not explained by changes on the DNA structure, as well as the cell property 

to remember an event in the past.”. As seen, the term “epigenetics” does not bear complete 

similarities with the previous descriptions. Nowadays, epigenetics refers to “the information 

of the DNA, that switch on/off genes, beyond of what it is encoded on the DNA sequence, 

with the potential of being hereditable. As well as long-term alterations on the transcriptional 

cell potential that are not necessarily hereditable” (defined by the NIH Roadmap 

Epigenomics Mapping Consortium(Cavalli and Heard, 2019). In fact, epigenetics is able to 

describe the mechanism behind the phenotypic differences present on tissue and cell types in 

the organism. As all the cells in the organism share the same genome, different cell types 

have different transcriptome and expression patterns, different proteome and thus different 

cellular functions, which are controlled by epigenetic modifications (Margueron and 

Reinberg, 2010). These modifications include DNA methylation, histone post-translational 

modifications, nucleosome positioning, RNA silencing and alternative splicing. In fact, these 

epigenetic marks are stablished during development in order to ensure cell identity and 

throughout life (Jones and Taylor, 1980). However, environmental cues can promote changes 

on some epigenetic modifications in order to ensure the transcription of genes required to 

undergo a specific and successful cellular response upon stimuli that otherwise would be 

repressed (Klosin et al., 2017). 
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1.4.2.1 DNA Methylation: principle, regulation and implications  
 
DNA methylation is considered of being one of the main mechanisms that represses gene 

expression under different conditions (Compere and Palmiter, 1981; Holliday and Pugh, 

1975; Weber and Schübeler, 2007). In fact, the methylation of the DNA has deep effects on 

the regulation of several cellular pathways including transcription repression, binding of 

transcription factors, modulation of the structure of the chromatin, preservation of the 

integrity of the genome, X-chromosome inactivation, genomic imprinting, embryogenesis 

and development (Baylin and Herman, 2000; Holliday and Pugh, 1975). The establishment 

and maintenance of the DNA methylation pattern is due to the action of DNA 

methyltransferase (DNMTs) enzymes, responsible for catalyzing the transfer of a methyl 

group to the fifth carbon of a cytosine residue localized on the CpG dinucleotides generating 

5-methylcytosine (Bird, 2011; Moore et al., 2013)(Figure 11). Instead, demethylation is 

mediated by Ten-eleven translocation (TET) enzymes: TET1, TET2 and TET3. TET 

enzymes are responsible for converting 5-methylcytosine to 5-hydroxymethylcytosine in one 

DNA strand, thereafter, is removed by DNA repair or dilution during replication (Wu and 

Zhang, 2014).   

 
Figure 11.  DNA Methylation mechanism. DNA methylation occurs on the fifth carbon of a cytosine, which 
is mediated by DNMTs enzymes, whereas DNA demethylation is carried out by TET enzymes.  
 

The DNMTs family is composed of: DNMT1, DNMT2, DNMT3A, DNMT3B and 

DNMT3L enzymes. Although DNMT2 has been found to have conserved catalytic domains 

in prokaryotes and eukaryotes; its inactivation in embryonic stem cells does not perturb the 

maintenance or de novo methylation of the DNA, suggesting that DNMT2 is not required for 

the above-mentioned mechanisms  (Okano et al., 1999). On the other hand, DNMT1 is the 

enzyme responsible for the maintenance of the methylation of the DNA following each cell 

mitotic division and consequently ensure the identity of the cell, whereas DNMT3A and 
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DNMT3B are crucial for the establishment of de novo methylation, particularly during 

embryonic development stages (Okano et al., 1999). Although, DNMT3A and DNMT3B 

share similarity in their structure and function, recent studies demonstrate that they differ on 

the preference for targeting DNA sequences in vivo by generating a different gene expression 

pattern upon different stimuli (Challen et al., 2014; Robertson, 2005). For instance, 

DNMT3B plays an essential role during early development, as Dnmt3b knockout mice are 

embryonically lethal whereas Dnmt3a knockout mice survive up to one month after birth 

suggesting that DNMT3A is required for a regular cell differentiation, indicating the distinct 

functions of both enzymes. DNMT3L lack of the DNA methyltransferase domains and 

therefore its ability to bind and methylate the DNA. More recent findings demonstrate that 

DNMT3L enhance DNA methyltransferase activity of DNMT3A and DNMT3B independent 

of the targeting sequence (Suetake et al., 2004). 

 

One of the most characteristic features of DNA methylation is the fact that it can be 

an inherited mechanism over offspring generations, known as transgenerational epigenetic 

inheritance. In fact, mice that have been undergone to high-fat diet, diabetes or starvation is 

shown to reproduce the same alterations in the resulting progeny (Gapp et al., 2016; Wei et 

al., 2015). In human, epidemiological studies suggest a link between DNA methylation and 

environmental cues, such as starvation on the regulation of the organism and the ability to 

impact in the offspring generations (Bygren, 2013; Kaati et al., 2007). Disruption of this 

mechanism could be also considered as a hallmark of multiple pathologies. In fact, mutations 

in DNMT3A catalytic domain have been found to be mutated in the 20% of Acute Myeloid 

Leukemia patients (Yan et al., 2011), whereas mutations in DNMT1 and DNMT3B are rare, 

which suggest an important role of DNMT3A as tumor suppressor gene by preventing 

malignancies. DNMT3A has also been involved in the pathogenesis of autoimmune diseases, 

metabolic and neurologic disorders as well as aging (Dayeh et al., 2014; Jung and Pfeifer, 

2015). Recent studies suggest DNA methylation, as an “epigenetic clock” of the cell, as the 

measurement of DNA methylation levels of CpG sites in blood cells acts as an estimator of 

the biological age and predictor of life expectancy (Bell et al., 2019; Horvath, 2013). 

However, the mechanism involving age-related DNA methylation patterns as well as the 

influence of lifestyle during life still need further investigations.  
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1.4.2.2 Epigenetic regulation by histones modifications  
 
All the information required to keep cell homeostasis is written in the DNA. Hence it is 

important to keep a strict regulation of how and when this information is expressed. DNA is 

highly compacted as chromatin, which consists of repeating units of nucleosomes that are 

composed of a core set of two copies of four histones (H2A, H2B, H3 and H4) and 147 pair 

of bases of DNA. Single nucleosomes are connected by a piece of 20-80 base pairs of DNA 

and a linker histone H1 that stabilizes the structure (Kornberg, 1974; Kornberg and Lorch, 

1999)(Figure 12).   

 
Figure 12. Structure of the nucleosomes. The nucleosomes consist of 147 base pairs of DNA that are wrapped 
around the histone core, composed by two copies of each of the histones H2A, H2B, H3 and H4. The histone 
H1, acts as a linker that stabilize the nucleosomes. The histone tails can undergo post-translational modifications 
the most common are phosphorylation, methylation, acetylation and ubiquitination, which are regulated by 
“writers” (add the mark) and “erasers” (remove the mark) and responsible for the specific addition or removal 
of a type of histone modification).  
 

Histones are a family of proteins with a positive charge that wraps the negatively 

charged DNA that allows the compaction and regulation of the genetic material. Histones are 

able to undergo post- translational modifications (PTMs), playing an essential role in the 

condensation of DNA and transcription activation/repression. Histones post-translational 

modifications occur in the histone tails that protrude from the nucleosome, which involves 

from acetylation, methylation, ubiquitination, citrullination, ADP-ribosylation, 

SUMOylation to phosphorylation (Figure 13). These modifications are tightly regulated by 

chromatin modifying enzymes that in turn will either transfer or remove the modification. 

For instance, histone acetylation is carried out by the action of histone acetyltransferases 

(HATs) that add the acetyl group, while histone deacetylases (HDACs) are responsible for 

the deacetylation and thus removal of the acetyl group. Alike, the addition of the methyl 

group to the histones is regulated by histone methyltransferase (HMTs) and removed by 

histone demethylases (HDMs) (Bannister and Kouzarides, 2011)(Figure 12-13).  
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Figure 13. Histones post-translational modifications. Types of histone modifications and the most common 
ones that are studied.  
 

For instance, histone 4 lysine 16 acetylation (H4K16ac) provides an open-like 

chromatin structure resulting in activation of gene transcription. On the other hand, 

methylation occurs specifically on an arginine or lysine residues mainly at gene promoter 

regions. Moreover, depending on where the methylation occurs will have a different outcome 

by either repressing or activating gene expression. In fact, Histone 3 lysine 9 and 27 

trimethylation (H3K9me3/H3K27me3) are linked with repressed chromatin whereas histone 

3 lysine 36 trimethylation (H3K36me3), H3K4me3 and H3K79me3 are found to be 

associated to transcriptionally active regions (Cavalieri, 2020)(Figure 14).  

 
Figure 14. Histones dynamics and regulation of gene expression. Depending on the post-translational 
modification could either condense or open the chromatin allowing transcription factors binding and gene 
expression. Although it is not limited to transcriptional inhibition, histone mark methylation causes 
nucleosomes to pack tightly together. The DNA is inaccessible, transcription factors cannot bind and gene 
expression is repressed. On the other hand, histone marks such as acetylation and also methylation or 
ubiquitination results in loose packing of the nucleosomes, the DNA is accessible for transcription factors to 
bind and activate gene transcription of targeted genes.  
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However, histones marks do not work alone as the interplay with DNA methylation 

create a specific “epigenetic signature” on the DNA that dictate a specific biological outcome 

to define cellular identity, response to intracellular stimulus or extracellular stresses. 

 

Set2/SETD2 and rph1/KDM4 regulates Histone 3 Lysine 36 Trimethylation 

 

Of interest for this thesis, H3K36me3 is specifically mediated by the histone 

methyltransferase SET-containing domain 2 protein (Set2, in yeast; SETD2/HYPB/KMT3A, 

in the mammalian system), whereas demethylation is carried out by the regulator of PHR1 

(Rph1, in yeast; KDM4A-C in mammals) and the nucleolar protein 66 (NO66) (Figure 15). 

The distribution of the H3K36me3 mark is observed at body regions of active genes, in exons 

rather than introns (Wagner and Carpenter, 2012).  

 
Figure 15. H3K36me3 regulation. H3K36me3 is modulated by the HMT, SETD2, and HDMs such as 
KDM4A-C and NO66.  
 

SET-domain containing histone 3 lysine 36 trimethyltransferase, was firstly introduced 

by Edmunds et al. whom studies made a detailed analysis of the global distribution of H3K36 

trimethylation over the genome in mammalian cells. However, it was Faber and colleagues 

who isolated and identified SETD2 from hematopoietic stem cells as a huntingtin interacting 

protein, a key protein linked to the pathogenesis of Huntington disease (Faber et al., 1998). 

At the same time, studies on Saccharomyces cerevisiae identified γSET2 interaction with the 

RNA polymerase II (RNA pol II) in its serine2 phosphorylated C-terminal domain (CTD), 

suggesting the link of γSET2/SETD2 on transcription elongation (Strahl et al., 2002). One of 

the main differences between yeast and mammals is the fact that in yeast SET2 catalyzes the 

addition of the methyl group in all the methylation status of H3K36 whereas in mammals it 

is the unique enzyme responsible for the trimethylation of H3K36 (Sun et al., 2005). 

 

The main functions for SETD2-mediated H3K36me3 is to regulate RNA pol II, 

nucleosome positioning, alternative splicing and DNA repair (McDaniel and Strahl, 2017; 
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Tiedemann et al., 2016). SETD2 mediated H3K36me3 mark is associated with nucleosome 

dynamics and transcription initiation by direct binding with FACT and the CTD domain of 

the RNA pol II (Carvalho et al., 2014). In addition, SETD2 plays also an essential role in 

murine embryonic stem cell differentiation as Setd2 deficiency in mouse embryonic stem 

cells promotes a deep effect on endoderm differentiation by downregulation of endoderm-

related genes through SETD2-mediated mitogen-activated protein kinase (MAPK) signaling 

pathway (Zhang et al., 2014). Furthermore, it has been confirmed that SETD2 acts as a main 

regulator of DNA repair. as H3K36me3 is required for the interaction with hMutSα in order 

to start the DNA mismatch repair response in several kinds of cancer cell types (Li et al., 

2016). In fact, mutations in SETD2 have been highly associated with several types of cancer 

such as clear cell renal cell carcinoma, gliomas, acute leukemia, breast and lung cancer 

(Fontebasso et al., 2013; Morris and Latif, 2017; Zhu et al., 2014). For instance, it is common 

that patients with clear cell renal cell carcinoma (ccRCC) harbor mutations or loss of function 

on SETD2 gene leading to a global decrease of DNA methylation, increased genome 

instability, aberrant splice variants and defective cell cycle arrest (Morris and Latif, 2017).  

 

On the other hand, demethylation of H3K36me3 can be carried out by the histone 

demethylase enzymes, KDM4A-C and NO66 (Labbé et al., 2014; Sinha et al., 2014). The 

lysine (K)-specific demethylase 4 (KDM4) enzymes and the nucleolar protein 66 (NO66) are 

members that belong to the KDM4/JMJD2 histone demethylase subfamily within the family 

of Jumonji-C domain containing (JMJD) enzymes. Among the proteins able to demethylate 

H3K36, KDM4A is the most studied one. KDM4A is able to demethylates di- and 

trimethylated lysine by targeting H3K9me2/me3 and H3K36me2/me3. However, the 

efficiency is higher on demethylating H3K9me3 rather than H3K36me3 (Klose et al., 2006). 

In addition, depletion of KDM4A and KDM4C leads to an aberrant vascularization in 

zebrafish and spurious differentiation of endothelial cells of mice embryonic stem cells (Wu 

et al., 2015).  

1.4.2.3 Epigenetic regulation of alternative splicing – A potential regulation of ATG 

alternative splice forms 

 
Alternative splicing stands on controversy to the central dogma of molecular biology that 

states that one gene generates one protein. Alternative splicing is a mechanism to generate 

from a single gene to multiple proteins, known as isoforms, which structure and function are 

different (Gilbert, 1978). The main function of the splicing of RNA is to process the pre-

mRNA into mature mRNA. An event that can occur in different ways: the removal of non-
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coding introns, inclusion of introns, exon skipping or exon retention (Beyer and Osheim, 

1988). The most common studied mechanism on the regulation of alternative splicing is the 

recruitment of the spliceosome, a complex composed by small nuclear ribonucleoproteins 

(snRNPs), and a large number of protein splicing factors that allows the recognition of the 5’ 

and 3’ splice sites on the immature pre-mRNA that eventually generates the mature mRNA 

(Wahl et al., 2009). Alternative splicing can also be regulated co-transcriptionally by the 

involvement of the transcriptional machinery such as RNA pol II in coordination with 

transcription factors.  In fact, a decrease on the rate of transcription elongation by RNA pol 

II in Drosophila melanogaster might enhance the recognition and inclusion of alternative 

exons, whereas higher processivity of RNA pol II promotes the skipping of the alternative 

exon (de la Mata et al., 2003). 

Recent studies underline the connection between histone modifications and the 

regulation of alternative splicing (Brown et al., 2012; Kim et al., 2011). In fact, the 

enrichment of H3K36me3 on the exons is higher as compared to introns within the same gene 

in both Caenorhabditis elegans and humans, suggesting the link between chromatin-

mediated alternative splicing (Kolasinska-Zwierz et al., 2009). Therefore, based on the fact 

that SETD2 regulates RNA pol II transcription elongation by H3K36me3 recognition and the 

enrichment of H3K36me3 in exon-intron boundaries, it is not surprisingly to suggest the 

potential role of H3K36me3 histone mark on the regulation of alternative splicing. If so, 

exons susceptible to be spliced would have an increased H3K36me3 enrichment on exons 

excluded by alternative splicing. Other studies show the impact of SETD2 downregulation 

on the differential expression of PKM2, TPM1 and TPM2 variants promoted by alternative 

splicing (Luco et al., 2010). Furthermore, latest studies show the involvement of other 

proteins on the regulation of chromatin-mediated splicing. For instance, the histone-lysine 

N-methyltransferase SMYD3, a histone modification reader also recognizes H3K36me3 and 

is suggested to play a role on promoting intron retention (Guo et al., 2014) or the effect of 

SPOP, a ubiquitin E3-ligase, on regulating alternative splicing through the direct interaction 

with SETD2 ensuring its stability and therefore modulating H3K36me3 (Zhu et al., 2017). 

These studies suggest that SETD2 mediated H3K36me3 define exons rather than the 

frequency of alternative splicing. Although SETD2 has been linked to alternative splicing, 

how it is fully regulated still remains to be elucidated, as there is still controversy on the 

understanding of the molecular machinery behind SETD2- mediated H3K36me3 alternative 

splicing and the influence of potential interaction partners.  
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1.4.3 Short-term transcriptional regulation of autophagy 
 

Moreover, recent studies revealed the role of several histone modifying enzymes linked to 

histone modifications on the regulation of autophagy, which offers an epigenetic explanation 

on the short-term regulation of autophagy (Table 1). Recent studies elucidate how H4K16 

deacetylation is mediated by KAT8/hMOF downregulation resulting on a feedback 

regulatory loop by a reduced expression of ATG genes (Fullgrabe et al., 2014). H3K4me3 

decreases in parallel with H4K16ac downregulation upon autophagy induction, suggesting a 

coordinative work between two histone marks in the control of autophagy, and therefore 

preventing from cell death (Fullgrabe et al., 2013). These findings described one of an 

increased number of histones marks that are linked to the regulation of autophagy.  

 

Additionally, G9A/EHMT2, leaves the promoter of the core ATG genes, which 

promotes a decrease of the repressive demethylated Histone 3 Lysine 9 (H3K9me2) histone 

mark and of H3K9 acetylation resulting in an increase of ATG genes expression upon short 

autophagy stimuli (Artal-Martinez de Narvajas et al., 2013). Other studies reveled an mTOR-

mediated positive regulation of H3K56ac, which is downregulated upon rapamycin 

treatment, thus mTOR inhibition promots the expression of ATG genes. In the same lines, the 

enhancer of Zeste 2 polycomb repressive complex 2 subunit (EZH2) is histone 

methyltransferase for H3K27me3 that represses the expression of mTOR-related genes (Wei 

et al., 2015).  

 

Interestingly, some histone modifying enzymes have a dual role on the regulation of histone 

modifications but also regulation of autophagy via interaction with other components. 

However, whether those two roles are interconnected still requires further investigation. For 

instance, downregulation of the histone deacetylases 1 (HDAC1) due to mutations or 

treatment with HDAC inhibitors are found to induce autophagy (Oh et al., 2008). Under 

nutrient deplete conditions the Glycogen Synthase Kinase-3 (GSK3) it is activated, thus 

enhances the activity of the histone acetyltransferase TIP60 through phosphorylation, which 

results on the acetylation of ULK1, required for autophagy initiation (Lin et al., 2012). 

 

Taken together, these studies suggest an orchestrated mechanism to keep basal levels of 

autophagy, mediated by histone modifying enzymes, histones modifications and transcription 

factors. During autophagy induction, autophagy-regulated cytoplasmic proteins are the first 

step of action, followed by a quick induction of transcription factors that allows a sustain 

autophagy. However, uncontrolled autophagy induction could lead to cell death if it is 
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prolonged over time. Hence, in order to avoid autophagy-mediated cell death a decrease of 

active histone marks regulate ATG genes is found after autophagy induction.  
Table 1. Histone modifications involved in short-term regulation of autophagy  
 

Histone Mark Regulator Impact on Autophagy  References 

 

H3K4me3 â 

 

WNT/β-catenin pathway 

 

Inhibition by WNT degradation 

 

(Wang et al., 2017) 

 

H3K9me2 â 

 

G9A/EHMT2 

 

Inhibition 

 

(Artal-Martinez de Narvajas et al., 

2013) 

H3K9ac á SIRT6 Activation (Artal-Martinez de Narvajas et al., 

2013; Jin et al., 2011) 

H3K27me3 á EZH2 Inhibition  (Wei et al., 2015) 

 

H4K20me3 á 

 

SETD8/SUV420 

 

Inhibition  

 

(Kourmouli et al., 2004) 

 

H3K56ac â 

 

EP300 and KAT2A 

 

Inhibition  

 

(Chen et al., 2012) 

 

H4K16ac â 

 

KAT8/hMOF 

 

Inhibition  

 

(Fullgrabe et al., 2013) 

 

H3K14ac á 

 

HDAC9 

 

Activation 

 

(Zhang et al., 2019) 

 

H3K18ac â 

 

P300/HDAC9 

 

Activation 

 

(Zhang et al., 2019) 

 

H3R17me2 á 

 

CARM1  

 

Activation  

 

(Shin et al., 2016) 

 

H2BK120 â 

 

USP44 

 

Activation  

 

(Chen et al., 2016) 

    
 
* â, downregulation upon autophagy induction; á, upregulation upon autophagy induction  
 

1.5 CELULAR MODELS 
 
Different cellular models are commonly used by scientists in the field to reveal the role of 

autophagy in physiological and pathological contexts, as well as epigenetics. In fact, cell 

culture is normally the first experimental set up, moving next to animal models or primary 

cell types to further validate the findings obtained in cell lines. Here, it is stated the cellular 

models that are of interest for this thesis.  

1.5.1 Mouse cell lines  
 
Mouse cell lines are established form mouse tissue from different organs, such the liver, 

neurons and fibroblasts. The fact of using one cell line or another depends on the downstream 

application such as protein assessment of retroviral vector production or feeders. In 

particular, Mouse Embryonic Fibroblasts (MEF) are widely used in the autophagy field as 

represent a powerful tool to test gene function of ATG genes on different cellular pathways. 
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For instance, innumerable studies using MEF Knockout cells for Atg genes such as Atg7-/-, 

Atg5-/-, Ulk1-/-, FIP200-/- or for the gene of interest for the different studies, thus allowing 

the comparison of the indicated effect between deficient cells and Wild-type MEF cells. For 

instance, ATG7 is essential for autophagy induction, autophagosome biogenesis and 

therefore the formation of a functional autophagosome, hence genetic depletion lead to the 

incapacity to undergo autophagy  (Komatsu et al., 2005; Tanida et al., 2001).  

 
Studies in humans always raise a special interest since the research performed has the goal 

of understanding the human body and thus, how to overcome specific diseases. Therefore, in 

most of the studies the use of human cell lines, primary cells or even patient cells from a 

biopsy or blood are an important model to the studies in every field, of course among those 

the field of autophagy and transcriptomic. As occurs in mice, the use of specific cell line 

depending on the downstream procedure or hypothesis it is to choose a proper cell line. For 

instance, Human Embryonic Kidney 293 (HEK-273) cells are used widely use to knockout a 

gene of interest as the cells respond very well to treatment. However, they might be suitable 

to validate findings or a signaling pathway but HEK cells lack of the desired phenotype, 

which offers a limitation of this model leading to the use of other cell lines such as SH-SY5Y 

cell lines (derived from neuroblastoma cells), if the study will be performed in neurons 

(Xiong et al., 2011). In other fields like cancer, cancer cell lines have been broadly used to 

study how dysregulation of autophagy, mutation of a transcription factor or histone 

modifying enzymes or disruption of the splicing machinery that are commonly 

downregulated in different types of cancer and contributes to tumor development (Baylin and 

Herman, 2000; Ellis et al., 2009; Robertson, 2001; Wible et al., 2019). 

 

Renal cell carcinoma  

 

Renal cell carcinoma (RCC) cell lines are of interest to this thesis, which study on their cell 

biology allowing the finding of treatments that are applied later to the clinic (Hsieh et al., 

2017b). RCC are primary tumors originating in the tubules. Considered a heterogeneous 

group of tumors, they can be classified depending on their histology into different subtypes 

as chromophobe RCC, papillary RCC and clear cell renal cell carcinomas (ccRCC). Among 

these tumors, the latter is the most predominant subtype. One of the main features of this type 

of tumor is the inactivation of the tumor suppressor gene, von Hippel-Lindau (VHL) is 

present in most of the tumors. VHL is a E3 ubiquitin ligase that targets both HIF1α and HIF2α 

transcription factors for its degradation under normoxia. However, in hypoxia conditions, 
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lack of VHL promotes the activity of these transcription factors, and the activation of targeted 

genes that have an impact in a wide number of cellular pathways involved in angiogenesis, 

glycolysis, and apoptosis (Dalgliesh et al., 2010; Network, 2013; Sato et al., 2013). Recent 

high-throughput sequencing studies brought new genes into, beyond the VHL mutation, that 

are frequently mutated and contribute to the development of the disease (Maxwell et al., 

1999). In fact, genes located also on chromosome 3p have been found to be downregulated 

including the components of the SWI/SNP chromatin remodeling complex (PBRM1) and the 

SETD2(Hsieh et al., 2017a; Sato et al., 2013). The latter, has the highest frequency in ccRCC 

subtypes as it is observed in approximately 10% of ccRCC primary tumors, increasing to 

30% in metastatic ccRCC patients, which is associated with SETD2 inactivation. These 

observations suggest a role of SETD2 as a tumor suppressor gene, highly involved in driving 

tumor development, progression and metastasis on ccRCC tumors (Fahey and Davis, 2017). 

There are different types of cells that are established for all the different subtypes of RCC, 

papillary, clear cell or chromophobe. Although the scientific community refer to all of the 

subtypes as Renal Cell Carcinoma, it is important to characterize the cells regarding their 

genetic profile and markers that differs between the subtypes. For instance, 769-P and CAKI-

1 cell lines are both considered as the clear cell type but have different genetic profiles as 

CAKI-1 harbors a SETD2 mutation whereas is wild-type for VHL. On the other hand, 769-P 

has the opposite genetic profile being SETD2 wild-type, but defective for VHL, which 

suggests that an essential characterization of RCC cell lines, such as their genetic background 

is essential for proper understanding of the underlying treatments as well as novel discoveries 

of new drugs (Brodaczewska et al., 2016).  

1.6 ANIMAL MODELS  
 
A wide number of animal models are used to study epigenetics and autophagy. However, 

Saccharomyces cerevisiae and Dario Rerio are of interest for this thesis. 

1.6.1 Saccharomyces cerevisiae  
 
Saccharomyces cerevisiae, also known as yeast, is a well-studied model system employed to 

study conserved molecular mechanisms involved in a wide range of cellular pathways in 

multiple fields due to the high degree of conservation with higher eukaryotes as well as 

cellular pathways. In the 1980s, yeast research on the field of autophagy became 

fundamental, enhancing the discovery and characterization of the pathway as well as the 

molecular roles of ATG genes. An interesting fact of this unicellular eukaryotic organism is 

its rapid response to stimuli upon short exposure to stimuli and adaptation to different 



 

34 

environments. Moreover, S. cerevisiae is a model system that offers the capability to do in 

vivo genetics in a flexible and quick manner for the study of cellular pathways compared to 

other model systems. Another advantage and useful approach is the efficient homologous 

recombination system, which allows the alteration of any selected chromosome sequence. 

Sections of the chromosomes can be manipulated by and reintroduced in plasmids that can 

be maintained through cell division. Taken together, these techniques make this model 

essential to many research fields, such as cancer and neurodegenerative diseases. Specific for 

the autophagy field, yeast offers specific autophagy assays to monitor different steps of the 

pathway such as the Pho8Δ60 assay, which relies on the measurement of alkaline 

phosphatase activity. This assay is a quantitative approach to monitoring autophagy and 

autophagic flux based on the activity of the enzyme from vacuolar delivery of zymogen 

(Klionsky, 2007; Klionsky et al., 2012; Noda and Klionsky, 2008) 

1.6.2 Danio Rerio 
 
Danio Rerio, commonly known as Zebrafish, have many characteristics that made of them a 

good animal model to study autophagy and epigenetics (Cavalieri, 2020; Klionsky et al., 

2016). Zebrafish are translucent to microscopic observation, which allows to monitor live 

imaging of cellular changes, especially during development, as well monitoring 

autophagosomes formation in vivo using transgenic GFP-Lc3 fish. Besides of its 

characteristic of being a translucent animal, it is also an easy model to knockdown a gene 

function of atg genes (Hu et al., 2011; Kyöstilä et al., 2015). Additionally, zebrafish are 

relatively permeable to water-soluble molecules, thus it makes an ideal animal model to 

monitor pharmacological drugs and for drug discovery in vivo. Interestingly, due to zebrafish 

genome has a 70% of homology with the human as well as almost the 99% of the genes 

involved during development (Howe et al., 2013). Moreover, epigenetics and transcriptional 

mechanism are also conserved from in higher organisms, thus makes of this animal model 

excellent to explore changes on the epigenetic state such as DNA methylation or histone 

modifications, on normal physiological events as well as under exposure to environmental 

stressors (Ali et al., 2014; Rai et al., 2008). 
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2 AIMS OF THE THESIS 
 
This thesis aims to increase the knowledge on how the nuclear and cytosolic mechanisms 

regulates the outcome of autophagy in two lines of research: first, gaining more insight on 

the transcriptional mechanism that regulates short-term response to autophagy, and second 

extend further this research on the mechanism behind the long-term regulation of this process.  

 

The specific aim for each particular study are:  

 

§ Paper I. Previous studies investigated the potential involvement of histones 

modifications on the regulation of autophagy. In paper I, our focus is to determine 

the role of the histone demethyltransferase for H3K36me3, Rph1/KDM4A, as a 

potential transcriptional regulator of autophagy in yeast and mammals.  

 

§ Paper II. As previously reported in paper I, the role of Rph1/KDM4A as a negative 

regulator of autophagy. In paper II, we aimed to uncover the role of SETD2, the 

histone methyltransferase with an opposite function of Rph1/KDM4A on the 

regulation of H3K36me3, as a regulator of the autophagy pathway.  

 

§ Paper III. Renal Cell Carcinoma (RCC) has a high frequency of SETD2-inactivating 

mutations. In Paper III, our goal was to determine how the loss of SETD2 observed 

in a RCC subtype, clear cell renal cell carcinoma, might impact the autophagy 

machinery and therefore bring light on the possible therapeutic interventions when 

targeting this process in this type of cancers.  

 

§ Paper IV. The identification of histone modifications and histone modifying 

enzymes are associated with short-term transcriptional regulation. In paper IV, we 

aim to decipher the impact of a brief autophagy stimuli can promote a epigenetic 

mechanism responsible for a long-term regulation of autophagy.  

 

§ Paper V.  Here, we aim to identify the upstream signaling pathway that could mediate 

the regulation of DNMT3A upon short autophagy induction that contribute to 

MAP1LC3 genes downregulation and thus reponsible for the long-lasting responses 

to autophagy, described in paper IV. 
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3 RESULTS AND DISCUSSION  
 

3.1 PAPER I. Rph1/KDM4A mediates nutrient-limitating signaling that leads 
to the transcriptional induction of autophagy 

 
The expression of most ATG genes and their consequent proteins are dramatically increased 

under stress conditions such as starvation (Jin et al., 2014). Recent studies in yeast and 

mammals show the important role of transcription factors as well as histone modifying 

enzymes and histones modifications on the short-term regulation of autophagy(Fullgrabe et 

al., 2013).  However, very few transcription factors that contribute to the induction of specific 

ATG genes have been identified. Here we identify the involvement of Rph1/KDM4 as 

transcriptional regulator of autophagy (Figure 16). 

3.1.1 Rph1 acts as transcriptional repressor on the expression of autophagy 
related genes  

 
Firstly, with the aim of identifying new transcriptional regulators of autophagy we screened 

over 150 yeast mutant strains. Furthermore, the analysis of the expression of a set of ATG 

genes in the library created previously lead to the identification of Rph1, as a candidate to be 

a transcriptional repressor of autophagy. Rph1 is the only known histone demethylase 

enzyme for H3K36me3 in Saccharomyces cerevisiae   (Tu et al., 2007), and has a paralog 

protein, Gis1, that shares high similarity in the JmjC-domain in the N-terminus but only has 

a modest histone demethylase activity due to a mutation in the cofactor binding site (Klose 

et al., 2006). With the purpose of analyzing the impact of Rph1 as a transcriptional regulator 

of autophagy we analyzed the expression level of a set of ATG genes in rph1Δ strains 

compared to wild-type strains. Our results show that the ATG selected genes were found to 

be up-regulated in rph1Δ in growing conditions. The paralog Gis1Δ also increased, albeit to 

lower extend, the expression of ATG genes, and the double mutant Rph1Δ gis1Δ results to 

enhance even more the expression of those genes compared to RPH1 deletion. Additionally, 

in line with the changes found at mRNA level, the rph1Δ mutant also promoted an increase 

at protein level of the selected genes compared to wild-type cells.  
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3.1.2 Rph1 acts as a negative regulator of autophagy and this is not 
dependent on its histone demethylase activity 

 
The previous results rendering Rph1 as repressor of ATG genes suggest it is a negative 

regulator of autophagy. For this propose, we made used of the Pho8Δ60 assay and the GFP-

ATG8 processing assay to measure autophagic flux. Our results showed in opposition to the 

wild-type cells that under nitrogen starvation at different timepoints, autophagic flux was 

highly increased in rph1Δ and rph1Δ gis1Δ cells, whereas the short-term induction was 

attenuated after a prolonged time of starvation. This data unravels that lack of RPH1 

contributes to an immediate increase of transcription of ATG genes and response to nitrogen 

starvation with the aim ensure a proper autophagy induction, while prolong stimulation 

abolishes the differences found in shorter timepoints, which may be regulated by other 

mechanism. Moreover, we aimed to elucidate whether the JmjC-containing histone 

demethylase domain or the DNA-binding domain were responsible for its activity to regulate 

autophagy. Rph1H235A mutant for the histone demethylase domain exhibit no differences 

compared to wild-type, whereas overexpression of Rph1 and the Rph1H235A mutant lead to a 

reduction of autophagy activity compared to wild-type cells. On the other hand, Rph1 mutant 

that prevents DNA-binding (Rph1Δz) exhibit an increase of autophagy activity as rph1Δ yeast 

strains. Taken together these data suggest that the effects found are independent of the histone 

demethylase activity and is not required for its function on the regulation of autophagy, rather 

the DNA-binding ability, so may contribute to the recruitment of other transcription factors 

that could mediated the epigenetic regulation on the expression of ATG genes.  

3.1.3 Autophagy induction promotes Rim15-mediated phosphorylation of 
Rph1 required for proper initiation of autophagy 

 

As previously uncovered, depletion of RPH1 during nutrient rich conditions induced the 

expression of ATG genes, but no effects were found after nitrogen starvation. Recent studies, 

reveal a similar mechanism describing the impact of oxidative stress or DNA damage as a 

trigger of Rph1 phosphorylation and dissociation from the promoter of target genes allowing 

gene expression to cope with cellular stress (Liang et al., 2013). Additionally, we found that 

Rph1 phosphorylation is essential for autophagy induction. Therefore, we aimed next to 

identify the phosphatase or kinase responsible for this effect. Rim15, showed to be a good 

candidate as it has been linked previously to the regulation of transcription factors upon 

nitrogen starvation by mediating Ume6 phosphorylation and inhibition and therefore 

upregulation of Atg8 (Bartholomew et al., 2012). In fact, RIM15 deletion partially blocked 

the expression of the ATG genes and ATG proteins previously analyzed accompanied by a 
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reduction of the autophagy activity due to the lack of regulation of Rph1 in those conditions. 

These findings strongly depict Rim15-mediated Rph1 phosphorylation as an upstream 

regulation and Rph1 role on the regulation on ATG genes such as ATG7 expression, the most 

upregulated gene on rph1Δ yeast strains upon autophagy induction.  

3.1.4 The function uncovered by Rph1 in yeast is evolutionary conserved by 
its homolog KDM4A in the mammalian system 

 
To further test whether the previous mechanism was conserved in higher organisms, we 

studied the role of the Rph1 homolog in mammalian cells, KDM4A. The analysis of several 

ATG genes involved in different steps, such as ATG7 and ATG14 suggest an increase on the 

expression of those genes in HeLa cells with a reduced expression of KDM4A, whereas 

MAP1LC3B had no major effect. Furthermore, the loss of KDM4A suggested an increase in 

baseline autophagy and enhance autophagic flux compared to the control cells, while 

overexpression of KDM4A act as a repressor of autophagy. Finally, similar to Rph1 findings, 

we found that KDM4A increased phosphorylation might act as a button that allows 

autophagy induction.  

 
Figure 16. Role of Rph1 on the regulation of autophagy. Rph1 is a negative transcriptional repressor of ATG 

genes in nutrient rich conditions, while under nitrogen starvation Rim15 inhibited by phosphorylation promotes 

ATG genes expression.  
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3.2 PAPER II. Set2/SETD2 regulates the expression of ATG14 splice forms 
and impacts on autophagosome-lysosome fusion  

 
Here, we extended our investigation on the role of the sole histone methyltransferase for 

Histone 3 Lysine 36 trimethylation, Set2/SETD2, on the regulation of autophagy. We 

wondered whether Set2/SETD2 would also impact autophagy as we found for Rph1/KDM4A 

in Paper I.  

3.2.1 Set2/SETD2 positively regulates autophagy in yeast and mammals 
 

In order to understand the impact of Set2 on autophagy, we firstly analyzed in set2Δ yeast 

strain the autophagy levels in comparison to wild-type cells. Our analysis showed a decrease 

on Atg8 lipidation in cells that lack of Set2 expression only under nitrogen starvation whereas 

not big changes were found at baseline conditions. Additionally, we wondered whether the 

decrease found on autophagy was linked to a regulation on the transcription of ATG genes 

regulating this pathway. For this propose, we analyzed the mRNA levels of several ATG 

genes and found a global decrease in the expression of most of the ATG genes analyzed under 

starvation conditions, with the exception of ATG1 that remained unchanged.  

 

Furthermore, we wanted to validate whether our findings in yeast were evolutionary 

conserved in higher eukaryotes. For this propose we either decreased or increased the 

expression of the mammalian SETD2 in HeLa Cells. Our data showed that SETD2 

downregulation promotes a decrease in LC3-II levels, whereas its overexpression lead to a 

higher increase compared to their respective control cells at baseline levels. These data 

suggest that SETD2 positively enhance autophagy, which is further validated with 

Bafilomycin A1 treatment, a late inhibitor of autophagy. Interestingly, SETD2 OE followed 

by Bafilomycin A1 did not show a further increase in autophagy suggesting that this process 

might be tightly regulated with the aim of avoiding an oversaturation of the system that could 

lead to cell death. As shown in yeast, we also aimed to analyze a set of ATG genes in cells 

that lack SETD2 expression. Results shown a significant downregulation of several genes 

such as MAP1LC3B, ATG7 and ATG14. Among these, ATG14 appeared to be the most 

regulated gene by SETD2, results that were further validated by overexpressing SETD2. As 

a whole, these results highlight several observations. We can conclude that Set2, as in the 

mammalian system, is a positive transcriptional regulator of autophagy. Although, this 

mechanism is evolutionary conserved from yeast to mammals, there are minor differences 

between both systems. For instance, in the yeast system decrease of Set2 expression results 

in a global downregulation of ATG genes, while in the mammalian system this regulation 
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seems to be more specific for certain genes, in particular for ATG14. These findings might 

bring the possibility that in lower eukaryotes requires a wider transcriptional regulation of 

ATG genes occurs by Set2, whereas in the mammalian system SETD2 might be more targeted 

on the regulation of specific ATG genes in order to display a similar or more specific effect. 

However, in both systems Set2/SETD2-mediated gene transcriptional regulation of ATG 

genes enhance autophagy.  

3.2.2 In mammals, SETD2 is a transcriptional regulator of ATG14 isoforms 
 
Next, our aim was to elucidate the impact of ATG14 in both systems. In set2Δ yeast strains, 

its deficiency decreased Atg14 levels in both at protein and mRNA levels under starvation 

conditions. Interestingly analysis on mammalian cells revealed two ATG14 bands at protein 

expression in SETD2 deficient cells, which might suggest that SETD2 mediates the 

expression of ATG14 isoforms. In fact, research for ATG14 on Uniprot database provided 

the existence of two distinct isoforms (Figure 17).  

 
Figure 17. ATG14 sequence in yeast and ATG14 isoforms in the mammalian system. Similarity of ATG14 

amino acidic sequence between S. cerevisiae and Homo Sapiens, as well as the differences on the different 

ATG14 variants. In orange is displayed the conserved cysteine-rich domain responsible for homo-

oligomerization that allows autophagosome-lysosome fusion. The canonical protein, corresponds to the long 

isoform, whereas the short isoform, lack the cysteine-rich domain and the ability to homo-oligomerize.  

 

These findings, were further validated by the analysis of both isoforms by RT-qPCR, 

suggesting in the mammalian system that SETD2 transcriptionally regulates the differential 

expression of ATG14 isoforms. 

3.2.3 Set2/SETD2 decreases autophagic flux and inhibit autophagosome-
lysosome fusion 

 
Based on the fact that Set2 positively regulates autophagy in yeast but also in mammals by 

specifically regulating ATG14 isoforms, we wanted to determine whether this might impact 

autophagy activity with the assays previously used in paper I. Taken together those results 

indicate that lack of Set2 results in a decrease of autophagy activity after short-term 

induction. On the opposite, Set2 overexpression appeared to show no differences, suggesting 

that overexpression of Set2 might be subjected to a more restrictive regulation that could 
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result to be deleterious for the cell. In fact, previous studies report that SETD2 upregulation 

correlates with an increase in apoptotic-related genes expression and contributes to cell death 

(Xie et al., 2008). Thus, the previous report and our findings suggest that the amplitude of 

the signal by Set2/SETD2 overexpression might be tightly regulated to ensure a quick and 

efficient induction of autophagy in a controlled manner that avoided the saturation of the 

system and allowed the cell to return to its constitutive basal level of autophagy. Similar 

analysis to monitor autophagic flux with the mRFP-GFP-LC3 reporter assay in mammalian 

cells revealed that SETD2 deficiency is associated with a decrease of LC3 punctae, while 

autophagy induction for 24 hours resulted in a decrease on the number of autolysosome but 

an accumulation of autophagosomes. This data brings light on the specific step of the 

pathway that it is affected by SETD2 modulation, which is the fusion of the autophagosome 

and lysosome, thus leading to an accumulation of autophagosomes that are not degraded 

(Figure 18). Additionally, analysis of p62 degradation with the purpose to monitor 

autophagic flux showed an accumulation of p62 in cells that lacked SETD2 expression, 

validating upon autophagy induction, which corroborates that Set2/SETD2 deficiency 

decreases autophagic flux. In the mammalian system not only decreases autophagic flux but 

also SETD2 deficiency impaired autophagosome-lysosome fusion. This effect suggests that 

the lack of ATG14 long isoform in these conditions might contribute to autophagy inhibition 

by preventing the formation of the STX7-SNAP29 complex with VAMP8, thus lead to an 

unsuccessful completion of the pathway by abrogating autophagosome-lysosome fusion 

(Figure 18).  

 
Figure 18. Summary of the mechanism uncover by Set2/SETD2 regulation on the differential expression 
of ATG14 isoforms and its impact on the autophagosome-lysosome fusion. 
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3.3 PAPER III. SETD2 mutation in renal clear cell carcinoma suppresses 
autophagy via regulation of ATG12  

 
As reported in paper II the role of SETD2 on the regulation of autophagy, here we report 

whether the deficiency of SETD2 in the context of ccRCC and how might impact the 

autophagic core machinery.  

3.3.1 SETD2 mutation in clear cell renal cell carcinoma cell lines promotes a 
reduced autophagic flux 

 
Firstly, we aim to determine the impact of SETD2 loss of function in ccRCC on autophagy 

we monitored the occurrence of autophagy, by an increase lipidation of LC3, in a set of RCC 

cells that were either SETD2-competent or SETD2-deficient. Of note, these RCC cell lines 

were also selected taking into consideration whether they are wild-type for VHL or not, which 

could impact on the interpretation of the unique effects caused by SETD2 deficiency. 

Analysis of LC3 expression in RCC cells with SETD2-inactivating mutations exhibited a 

decrease in autophagy level when comparing with RCC competent cells, whereas mRNA 

expression levels of the LC3B gene displayed a small increase in SETD2 deficient cells 

suggesting that the decrease in LC3 at protein levels is not a due to a transcriptional regulation 

in these cells. Furthermore, we aimed to acquired more knowledge on the impact of SETD2 

deficiency on autophagy. 
 

For this propose, we analyzed autophagic flux, as we performed in paper II.  In addition to 

mRFP-GFP-LC3 and p62 accumulation treatment we analyzed p62/LC3 co-localization to 

monitor occurrence of autophagosome formation in ACHN and CAKI-1 cells. Altogether, 

these results indicated a reduced autophagic flux in RCC cells that lack SETD2, as compared 

to SETD2-competent RCC cells.  

3.3.2 SETD2 deficient RCC cells accumulate free-ATG12 and ATG12 
associated complexes  

 
Next, we aimed to get further explanation on how the decrease in autophagic flux by SETD2 

deficiency might be due to impairment of the autophagy machinery that are involved in LC3 

lipidation in ccRCC cells. For this propose, we analyzed the protein levels of the two 

ubiquitin-like protein conjugation systems, which catalyze ATG12-ATG5 and forms a 

multimeric complex with ATG16L1 that allows the addition of the 

phosphatidylethanolamine group to LC3B. The other ubiquitin-like conjugation system 

involves the activity of ATG7, which also facilitates the previous reaction. Analysis of ATG7 

protein expression showed no major differences, whereas striking differences were found 
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when analyzing ATG12 protein level in SETD2-deficient versus SETD2-competent RCC 

cells. In fact, we found that SETD2-inactivating mutations lead to a global increase of ATG12 

protein expression levels but also an increase of free-ATG12 and the accumulation of an 

additional ATG12-associated complexes, which might explain the observed decrease in LC3 

lipidation, autophagosome formation and reduced autophagic flux, that promotes cell 

migration.  

3.3.3 Loss-of-function of SETD2 promotes a differential expression of ATG12 
isoforms and impacts on their migration capability  

 

As found in paper II, where we uncover SETD2-mediated alternative splicing regulation of 

ATG14, we wondered whether this regulation could occur on RCC SETD2-deficient cells 

and control the expression of different ATG12 variants by RT-qPCR. In fact, it has been 

reported the existence of two ATG12 isoforms that are generated by alternative splicing. 

Therefore, we sought to uncover how SETD2 might play a role in the expression of ATG12 

isoforms in SETD2-compentent and SETD2-deficient RCC cells. Our results indicate that 

SETD2 loss-of-function is correlated with an increase of ATG12 short isoform compared to 

the long isoform, which might contribute to the abnormal formation of additional ATG12-

containing complexes.  

3.3.4 SETD2 mutation in patients is accompanied by a decrease in H3K36me3 
expression and it is associated with increased ATG12 expression and 
worse prognosis 

 
Furthermore, we extended our efforts to investigate the correlation between the increased 

ATG12 gene expression levels with SETD2 expression and thus if it could be used as a 

survival prognostic marker on patients that suffer from ccRCC carcinomas. To further test 

this hypothesis, we analyzed the expression levels of H3K36me3 and ATG12 expression in 

ccRCC tumor biopsies, which exhibited that SETD2-deficient tumor correlates with an 

increase in ATG12 expression in these patients. Thereafter, we analyzed gene expression 

data sets available at the Human Protein Atlas to test if SETD2 and ATG12 expression levels 

could be linked with survival of these patients. Analysis performed was based of the fragment 

per kilobase of transcript per Million mapped reads (FPKM) for both genes in ccRCC patients 

and the correlation between expression levels and patient survival was assessed. Analysis of 

this data supports that low expression of SETD2 is associated with high expression level of 

ATG12 and should be considered as an unfavorable prognostic factor for ccRCC patients.  
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3.4 PAPER IV. The DNA methyltransferase DNMT3A contributes to long-term 
memory of autophagy 

 
Histones modifications or histone modifying enzymes, which are considered to promote 

reversible changes on the expression of specific genes offers an epigenetic explanation for 

short-term regulation of autophagy (Described in paper I and paper II). Here, in Paper IV, 

we aimed to investigate long-term responses to autophagy that could be mediated by long-

lasting epigenetic effects such as DNA methylation.   

3.4.1 Brief autophagy induction is associated with a persistent 
downregulation of MAP1LC3 at protein and transcriptional level 

 
To investigate this possibility, we generated a panel of cells that were previously exposed to 

an autophagic stimulus with either mTOR-dependent (starvation or treatment with Torin1) 

or mTOR-independent (carbamazepine, Trehalose or Clonidine) inducers for 4 hours and 

then left to recover under normal cell culture conditions from 1 to 4 weeks. Thereafter, 

baseline autophagy by monitoring LC3 expression was analyzed in these cells previously 

exposed to autophagy as well as their parental counterparts (or control cells) (Figure 19).   

 
Figure 19. Scheme of the in vitro model used in the study.  

 

Analysis of the latter, revealed that these cells previously exposed to an autophagy stimulus 

showed a decrease at baseline level of LC3 after the recovery time. This data was further 

confirmed by Bafilomycin A1 treatment, which confirms a total and persistent reduction of 

LC3 protein level. Subsequently, we wanted to elucidate if this reduction is linked to a 

transcriptional downregulation of MAP1LC3 isoforms. For this purpose, using the same 

model displayed in Figure 19, we monitored MAP1LC3 isoforms gene expression level after 

a recovery period in a panel of cell lines. We found that the MAP1LC3B mRNA expression 

was reduced in those cells previously exposed to starvation, Torin1, Trehalose or Clonidine 

compared to their respective controls, whereas MAP1LC3B2 expression decreased on 

starvation, Torin1 and Trehalose. Moreover, we analyze the expression of 84 genes either 

directly involved in the autophagy machinery or the regulation of this process and found that 

MAP1LC3A and MAP1LC3B were the most downregulated genes after a recovery period. 

Collectively these data reveal that a brief and transient autophagy induction is coupled with 
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a long-lasting transcriptional downregulation of MAP1LC3, which corresponds to the 

decrease found in LC3 protein expression levels.  

 

Interestingly, the found effect was found to be abrogated in cells that lack ATG7. In fact, we 

made use of Wild-type MEF as well as Atg7-deficient MEF cells in order to compare whether 

autophagy induction is required to the DNMT3A-mediated long-term signature. After a 

recovery period, we found that autophagy-deficient Atg7-/- MEF cells shows no effect on 

LC3B either at protein (by monitoring LC3-I) and mRNA levels when compared to the 

autophagy-proficient wild-type cells.  

3.4.2 DNMT3A is upregulated and recruited to MAP1LC3 promoters and 
leads to DNA methylation upon autophagy induction 

 
Furthermore, we ought to develop our investigations on the understanding on the mechanism 

that explains the persistent transcriptional repression of MAP1LC3 isoforms after recovery 

in those cells previously exposed to an autophagy stimulus. Firstly, we performed a re-

analysis of previous data obtained from Global Run-On sequencing (GRO-seq) of cells 

treated by rapamycin for a short time and looked to the gene expression of DNMT3A under 

these conditions. Deep analysis of GRO-seq data supported with protein expression analysis, 

revealed an increase in DNMT3A under autophagy induction. With the purpose to 

demonstrate whether DNMT3A is behind the effect observed, we analyzed DNMT3A 

recruitment on the potential CpG sites on the promoter regions of the MAP1LC3 isoforms 

upon short autophagy induction and therefore, analyzed DNA methylation in these regions 

after a recovery period. Our results revealed an increase of DNMT3A recruitment on 

MAP1LC3 promoters upon short autophagy induction associated with an increase of DNA 

Methylation at these CpG sites after a 4-week period of time. These results, support that 

DNMT3A mediates DNA methylation of MAP1LC3 loci upon a short autophagy stimulus 

that could explain an epigenetic and hereditable mechanism for the long-term and persistent 

downregulation of MAP1LC3.   

 

Intriguingly, WT MEF cells also lead to DNMT3A upregulation upon autophagy induction, 

whereas the lack ATG7 or ATG5 (either atg7-/- or atg5-/- MEF cells or HeLa cells 

transfected with siRNA against ATG5 or ATG7) exhibit a dramatic decrease on DNMT3A 

expression at both protein and mRNA level, which abrogate the ability in these cells to 

acquire the described autophagy long-term epigenetic memory. 
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3.4.3 Long-lasting decrease of MAP1LC3 levels impacts the cells response 
to a second autophagy stimulus as well as sensitizing these cells to an 
apoptotic stimulus  

 
Given the fact that LC3 downregulation has a major impact on the autophagy pathway, we 

further checked the impact of a second autophagy stimulus on the previous autophagy 

exposed cells compared to those that have not been exposed and therefore exposed for the 

first time to an autophagy stimulus. Our data showed that cells previously exposed to 

autophagy inducers were able to induce autophagy, but showed a reduced LC3 protein level 

compared to the parental cells. We further extended our investigation to check whether a 

second stimulus has an impact on the transcriptional expression of MAP1LC3B and 

MAP1LC3B2 isoforms, previously found to be a target of DNMT3A upon the first autophagy 

stimulus. Our findings reveal a decrease on the expression of both isoforms upon the second 

stimulus in the “previously autophagy-exposed” cells when compared to the untreated ones 

after a recovery period. These findings suggest that DNMT3A-mediated methylation of 

MAP1LC3 isoforms does not completely suppress the expression of these genes but rather 

decreases their expression, allowing the cells to respond to a second autophagy stimulus 

although with less amplitude in comparison to the non-stimulated ones.  

 

Moreover, due to the well-known interplay between autophagy and apoptotic pathways, we 

speculated whether those cells previously exposed to an autophagy stimulus differed when 

were stimulated after a recovery period with an apoptotic stimulus. In order to address the 

impact of a short autophagy stimulus on the way the cells respond to a stimulus that triggers 

apoptosis, cells previously exposed to autophagy were treated with Staurosporine (STS) as 

well as the untreated counterparts after a recovery period. Interestingly, these cells that were 

exposed initially to an autophagy stimulus display an increase of Caspase-3 processing and 

cleaved-PARP, as well as a quicker response to STS treatment after recovery, as compared 

to control cells. In overall, those results suggest that those cells that were previously 

challenged to an autophagy stress and left to recover show an increased sensitization to an 

apoptotic stimulus but also seems to undergo cell death faster.  

3.4.4 Short autophagy induction leads to a persistent MAP1LC3 
downregulation in vivo 

 
Next, we aimed to demonstrate, our previous findings in cell lines, using an animal model, 

such as Dario Rerio (Zebrafish). Therefore, larvae were exposed to clonidine or DMSO (as 

control) 4 hours and either collected to monitor autophagy induction or left to recover for 3 

days. After recovery, Lc3-II protein expression of those zebrafish larvae previously exposed 
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to clonidine showed a decrease compared to the control ones, which correlated with a 

significant decrease in map1lc3b mRNA levels. Additionally, we analyzed available genome 

datasets that monitor the impact of the placenta withdrawn after birth. Analysis of those 

datasets revealed that among the analyzed genes involved in the autophagy pathway, a 

sustained downregulation of Map1lc3b was found right after birth. These results bring an 

additional demonstration of Map1lc3b downregulation over time after autophagy induction 

in vivo and validates our previous findings in vitro.  

3.5 PAPER V. ULK3-dependent activation of GLI1 promotes DNMT3A 
expression upon autophagy induction  

 
Here, in paper V, we identify the upstream signaling pathway involved in the regulation of 

DNMT3A gene expression upon the initial autophagy stimulus, which was found to be 

recruited to the promoters of MAP1LC3 isoforms and leads to a sustained downregulation 

after a recovery period. 

3.5.1 Autophagy induction promotes GLI1 expression and recruitment to the 
DNMT3A promoter  

 
Here, we aimed to uncover the transcription factor behind DNMT3A regulation upon short 

autophagy induction by recapitulating the transcription factors that have an impact on 

DNMT3A expression based on literature research. Among the tested candidates, GLI1 was 

the one that showed an increase in affinity and impact on DNMT3A expression upon 

autophagy induction. In fact, GLI1 increased at both protein and mRNA level when treated 

with autophagy inducers, either with mTOR-dependent (Torin1 or Rapamycin) or mTOR-

independent (Carbamazepine, Trehalose or Clonidine). Moreover, this increase of GLI1 

expression was associated with an increase in its phosphorylation status on serine residues, 

leading to its translocation into the nucleus and recruitment to the DNMT3A promoter after 

autophagy induction for 1 and 2 hours. 

3.5.2 ULK3-mediated phosphorylation of GLI1 promotes its activation and 
translocation into the nucleus and impacts on the long-term regulation 
of MAP1LC3 expression upon autophagy induction  

 
 
Thereafter, we wondered what signaling pathway was responsible for triggering GLI1 

phosphorylation, activation and translocation into the nucleus after autophagy induction. 

Recent reports, linked ULK3-mediated activation and translocation of GLI1 but also ULK3 

upregulation and role on autophagy initiation by serum starvation (Kasak et al., 2018; 

Maloverjan et al., 2010a; Maloverjan et al., 2010b). These observations bring light to build a 
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hypothesis if ULK3-mediates GLI1 activation by phosphorylation upon autophagy induction. 

In order to address and demonstrate such statement, we firstly performed proximity ligation 

assays (PLA) experiments to examine the interaction between ULK3 and GLI1, as well as 

whether the lack of ULK3 impacts on the phosphorylation of GLI1 upon autophagy induction 

with Torin1. In fact, a significant increase on ULK3/GLI1 interaction was found under 

autophagy induction. Moreover, repression of ULK3 expression by using a small hairpin 

RNA (shRNA) successfully repressed GLI1 phosphorylation of Serine residues under 

autophagy stress conditions compared to the cells infected with shRNA control, whereas 

autophagy induction lead to an increase of GLI1 phosphorylation and thus activation.  

 

Finally, in order to prove that GLI1 might have an impact on the mechanism uncovered on 

paper IV by using the same experimental set up, we aimed to analyze whether GLI1 

deficiency affects autophagy long-term memory. For this propose, we made use of Gli1-/- 

deficient MEF cells and WT MEF cells. After one-week recovery, LC3 expression was 

monitored at protein and messenger level. Interestingly, WT MEF cells showed the expected 

reduction in LC3 levels, whereas Gli1-/- deficient cells were unsuccessful on the acquisition 

of the mentioned phenotype.  
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4 CONCLUDING REMARKS  
 
An increasing number of transcription factors and histone modifying enzymes revealed a 

complex network of components bringing the nucleus into the picture on the regulation of 

the autophagy process. This thesis highlights novel and additional evidences for the role of 

the nucleus on the regulation of autophagy by uncovering mechanisms involved in the short-

term and long-term regulation of this process. These studies are based on the regulation of 

Autophagy-related genes by histone modifying enzymes as well as the differential expression 

of ATG genes splice isoforms. Additionally, this thesis uncovers a hereditable epigenetic 

mechanism and the upstream signaling pathway responsible for long-lasting effects of 

autophagy.  

 

The main findings of the present studies are summarized below:  

 

• The histone demethyltransferase Rph1/KDM4A is a negative transcriptional 

regulator of ATG genes in nutrient-rich conditions. A mechanism conserved from 

yeast to mammals.  

 

• Rph1/KDM4A histone demethylase activity is not crucial on the regulation of 

autophagy, while the DNA binding ability is strictly necessary. Depletion of 

RPH1/KDM4A enhance autophagy activity and increases autophagic flux in basal 

conditions. Whereas its overexpression promotes cell death and inhibit autophagy.  

 
• Rim1-mediates Rph1 inhibition by phosphorylation under nitrogen starvation 

conditions and therefore autophagy induction.  

 
• Set2/SETD2 promotes autophagy induction in yeast and mammals. Set2 positively 

regulates autophagy by induction of ATG genes in yeast. However, in the mammalian 

system lack of SETD2 regulates the differential expression of ATG14 splice variants 

in mammals, which downregultes autophagy by inhibiting autophagosome-lysosome 

fusion.  

 
• ccRCC progression and recurrence in patients is associated with a decrease in SETD2 

expression and a reduced autophagic flux.  
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• SETD2 loss-of-function mutation, but not VHL mutation, in ccRCC cell lines impacts 

on the expression of different ATG12 splice variants that lead to the occurrence of 

additional ATG12-containing complexes and accumulation of free ATG12, which 

enhances cancer migration of ccRCC and it is associated with unfavorable prognosis 

in patients.  

 

 
Figure 20. Schematic overview of Paper I, II and II.  

 
• A short autophagy stimulus is associated with an upregulation of DNMT3A 

expression, recruitment and DNA methylation that leads a sustained decrease of ATG 

genes expression in these cells previously autophagy-exposed cells, after a recovery 

period in vitro and in vivo.  

 
• Cells have acquired this “autophagy epigenetic memory”, exhibit the ability to 

respond to a second autophagy stimulus but to a  lower extend due to the presence of 

a lower baseline as compared to control cells that has been exposed for the first time 

to autophagy, but are also sensitized to an apoptotic stimulus.  

 

• ULK3-mediated GLI1 phosphorylation and transcriptional activation followed by 

subsequent DNMT3A upregulation upon short autophagy induction, which 

eventually leads to the observed effect described in paper IV.  
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Figure 21.  Schematic of the findings of Paper IV and paper V. 
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5 FUTURE PERSPECTIVES 
 
During the past years, emerging studies have focused on the understanding and crosstalk 

between the nucleus and the cytoplasm in the regulation of autophagy. In fact, dysfunction 

of autophagy-relevant transcription factors and histone modifying enzymes are linked to the 

onset of a broad range of diseases (Di Malta et al., 2019; Levine and Kroemer, 2008). This 

field is evolving dramatically and the mechanisms already known might only represent small 

pieces of a large puzzle. However, we still have the need to find and place new pieces in this 

puzzle that will offer the complete picture.  

 

Although this thesis offers new insights on novel epigenetic and transcriptional mechanisms 

and signaling pathways that control autophagy, it would be interesting to address several 

questions that our findings bring to the field.  

 
For instance, when we uncovered the mechanism behind Rph1-mediated phosphorylation by 

Rim15, there is no clear evidence on the mechanism behind Rph1 degradation. In humans, 

the ubiquitin ligase complex SCF (FBXO22) targets KDM4A for proteosomal turnover (Tan 

et al., 2011). However, it would be of interest to analyze whether this complex also regulates 

KDM4A activity and degradation upon autophagy induction, or if not, which components 

are responsible. KDM4A, in the mammalian system has other homologs that also regulates 

H3K36me3 demethylation. Thus, analysis on the impact on autophagy of the other KDM4 

isoforms might help in the understanding of the mechanism and interplay of KDM4 

demethylases as therapeutic targets and may lead to the development of therapies to combat 

cancer and other diseases. In fact, ER-a positive breast tumors show an upregulation of 

KDM4A and KDM4B levels (Kawazu et al., 2011), that based on our findings would inhibit 

autophagy and eventually promote tumor progression. However, it might be also suitable to 

provide a co-treatment of a combination of KDM4 inhibitors with autophagy inducers such 

as Everolimus or Temsirolimus, among others, which might be more successful as a 

therapeutic treatment in these types of cancers. 

 

According to new and interesting data published from Jacomin and colleagues, the homolog 

of KDM4A in Drosophila, Sequoia, interacts directly with Atg8a in the nucleus via its LIR-

motif in nutrient rich conditions and prevents autophagy to occur (Jacomin et al., 2020). In 

line with this data, it would be valuable to further demonstrate the role of Atg8a on the 

nucleus and if it acts as a regulator of other histone modifying enzymes, such as Set2/SETD2.  
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Indeed, unraveling the mechanisms between histone modifications with alternative splicing 

machinery as well as DNA methylation has been a target of multiple studies (Luco et al., 

2010; Rahhal and Seto). In fact, it has been reported that SETD2 is involved in the occurrence 

of both alternative splicing as well as DNA methylation. Thus, high-throughput screening to 

discover the impact of SETD2 on the generation of other alternative splice isoforms of ATG 

genes would be of interest on the context of autophagy. As well as whether autophagy 

induction regulates alternative splicing. In line with others and our findings on SETD2-

mediated differential expression of ATG14 isoforms might have an implication on 

Huntington diseases. In fact, SETD2 interacts with the Hh protein through its WW domain, 

which eventually inhibits SETD2 function (Passani et al., 2000). For instance, it would be 

worthy to demonstrate in further studies if Hh-mediated sequestration of SETD2 might lead 

to an aberrant expression of ATG14 isoforms as well as other ATG splice variants that would 

inhibit autophagy. This mechanism would explain the reason behind patient’s disease worsen 

and how treatments targeting autophagy that ameliorate the symptoms fail over time. The 

same could be applied for different types of cancer that carry SETD2-inactivating mutations. 

Here, treatments whose main target is to enhance autophagy, might be inefficient to be used 

in the clinic. The lack of specific isoforms like ATG14(L) that inhibit autophagosome-

lysosome fusion and thus autophagy, even though if the treatment used enhances autophagy 

the completion of the process would still be ineffective, suggesting the need of new treatment 

or a combination of treatments.  

 

SETD2 also interacts with DNMT3A and DNMT3B, suggesting the role of H3K36me3 as a 

trigger to recruit these DNA methyltransferases to a specific genomic region that undergoes 

active transcription (Neri et al., 2017). Moreover, DNMT3A carries the ability to read 

H3K36me3 and H3K36me2 (with more affinity) and be recruited to these sites (Xu et al., 

2020). These results are highly relevant to our findings on DNA methylation mediated long-

term epigenetic memory of autophagy, as might bring some light on what triggers or which 

factors are responsible for the specific targeting of DNMT3A to ATG genes upon autophagy 

induction.  

 

Additionally, it might be of need to check how long and sustainable this epigenetic memory 

is in vitro and in vivo. This, it will be surprising as results published by Bygren and colleagues 

show that starvation affects your lifespan and your progeny, suggesting that starvation leads 

to stable and hereditable changes in our genome (Bygren, 2013). Moreover, as we found in 

cell lines that two autophagy stimuli impact on the way the cells respond it would be of 
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interest to check whether differences on the number of starvation cues might also impact on 

the longevity of the whole organism. There is supporting data that autophagy declines with 

aging, whereas the mechanism responsible for it is still unknown. Our results bring that DNA 

methylation induced by short autophagy stimulus could explain the natural mechanism of 

aging.  Therefore, this research could be extended to analyze whether short autophagy stimuli 

as well as intermittent autophagy cues might impact not only the longevity but also on the 

onset of age-related diseases.  

 

During the past decade, many anticancer drugs (like rapamycin) act by inducing autophagy 

and provide direct advantage on inhibiting tumor growth in several types of tumors such as 

colorectal cancer, breast cancer and children with high-grade gliomas (Meng and Zheng, 

2015). For instance, Temsirolimus (a rapamycin analogue) is the first drug used in clinical 

trials in pediatric patients with these tumors. Whereas in the phase I the treatment resulted 

effective and was well tolerated on the phase II the treatment resulted less effective than 

expected. Suggesting the combination of Temsirolimus with other chemotherapeutic drugs 

like Erlotinib. 

 

Understanding the reason why cancer cells are able to adapt to clinical treatments will 

improve autophagy-based chemotherapeutic approaches. Our new findings shed light on how 

new nuclear mechanisms regulates long-term autophagy and how cancer cells stimulated 

with an autophagy inducer may adapt over time. The fact that tumors show a decreased basal 

level of autophagy compared to the non-treated cells might be due to an acquisition of an 

epigenetic memory of autophagy that make the tumor less responsive, being able to 

remember the initial and following treatments. In order to provide more translational 

evidence of our project, analysis of patient samples treated with autophagy inducers and 

analyze whether they have acquired this epigenetic memory, might bring valuable results and 

hint to which type of treatment or combination of treatments would be more suitable in order 

to avoid resistance to it.  

 

In conclusions, this is very promising time for the field of autophagy. New insights on the 

mechanisms involving the nucleus on the regulation of autophagy that brings light and hope 

on the understanding of the biology of age-related diseases, cancer, among others. Hopefully, 

we can move one step forward on the treatment and cure of these diseases and increase the 

treatment opportunities.  
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