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ABSTRACT 

Uterine stromal sarcomas are a heterogenous group of tumors ranging from low-grade 

stromal sarcomas with a relatively good survival but high risk of recurrence, to 

undifferentiated uterine sarcomas with a far worse prognosis. Little is known about their 

biology, and prognostic markers are lacking. The treatment options are limited mainly to 

surgery. Chemotherapy and radiotherapy have little or no effect on survival. Recent success 

with immunotherapy has opened a promising research field with potential to gain new 

insights into the biology, prognosis and therapy of uterine stromal sarcomas. 

In paper I we examined the correlation of clinicopathological factors, biomarkers and 

YWHAE-FAM22 translocation with prognosis in undifferentiated uterine sarcomas. 

Twenty-six cases from the Karolinska University Hospital’s archive were included, out of 

which 22 of them had paraffin blocks for translocation status and immunohistochemical 

analysis of p53, p16, Ki67, Cyclin-D1, estrogen receptor, progesterone receptor and 

Anillin. Our findings show that the cases could be divided into two prognostic groups based 

on mitotic index; the high mitotic index group with a statistically significant worse 

prognosis than the group with low mitotic index.   

In paper II we wanted to validate the results from paper I in an independent cohort of 

cases. A total of 40 cases of undifferentiated uterine sarcomas were included from the 

Norwegian Radium Hospital, the Mayo Clinic and Skåne University Hospital. Mitotic 

index was recorded and the cases were divided into high and low mitotic index groups 

based on the cut-off from paper I. The analysis showed that one-third of the patients 

survived beyond five years. In the adjusted survival analysis, mitotic index group and tumor 

stage were prognostic factors. 

In paper III we identified molecular subgroups of undifferentiated uterine sarcomas and 

evaluated the possible correlation with different clinicopathological parameters. The cohort 

of paper III consisted of 50 cases with undifferentiated uterine sarcomas from six different 

institutions. All cases had formalin-fixed paraffin-embedded tumor material used for 

isolation of DNA and RNA. In total 50 cases were analyzed for gene expression, copy 

number variation, cell morphometry and protein expression. Four groups with different 

mRNA expression pattern were identified. Gene ontology analysis showed an activation of 

pathways related to genital tract development, extracellular matrix, muscle function and 

proliferation in the different groups. The result of the chromosomal copy number analysis 

showed a spectrum of variation, from cases that were diploid or near diploid to cases with 



extensive chromosomal aberrations. The adjusted Cox Proportional Hazard model showed 

that the mitotic index group, the hormone receptor expression and the mRNA group had a 

statistically significant impact on overall survival. In the ontology analysis, the mRNA 

group with the worst prognosis showed overexpressed pathways related to the extracellular 

matrix (ECM). When further analyzed by image analysis the ECM group was characterized 

by reduced cell density and increased nuclear size compared to the other groups. The ECM 

group also showed higher expression of the four ECM related proteins matrix 

metalloproteinase 14, collagen 1, collagen 6 and fibronectin, when evaluated with 

immunohistochemistry. 

In paper IV we analyzed the prognostic significance of different immune markers in low-

grade endometrial stromal sarcomas (LGESS). The cohort consisted of 21 cases identified 

by searching the pathological database at the Karolinska University hospital and the 

Stockholm region cancer registry. All cases had formalin-fixed paraffin-embedded tumor 

material and follow-up data. Tissue microarrays consisting of two biopsies of tumor 

material from each case were constructed. Multiplex fluorescent immunohistochemistry in 

combination with digital image analysis in QuPath was used to quantitatively assess the 

expression of different immune markers, including CD8, FOXP3, CD68, CD163, IDO1, 

B7-H4 and PD-L1. A low ratio of CD8+/FOXP3+ cells was significantly associated with a 

favorable prognosis in LGESS. For patients with a high quantity of CD8+ T cells and B7-

H4, a trend towards better survival was seen. The expression of B7-H4 is also a potential 

therapeutic target. 
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1 INTRODUCTION 
Uterine sarcomas comprise 1-3% of malignancies of the female genital tract. The most 

common histological type is leiomyosarcoma, followed by endometrial stromal sarcoma1. 

Because of the rarity of endometrial stromal sarcomas our knowledge about their biology 

and behavior is limited. The possibility to draw conclusions from studies are also affected 

by changes in the classification system over the years.    

  

1.1 HISTOPATHOLOGY AND WHO CLASSIFICTAION OF ENDOMETRIAL 
STROMAL TUMORS 

The classification system of endometrial stromal tumors has changed several times the last 

half century. In the 2003 World Health Organization (WHO) classification of gynecological 

malignancies, endometrial stromal tumors were divided into endometrial stromal nodule, 

low-grade endometrial stromal sarcomas and undifferentiated endometrial sarcomas 

(UES)2. Previously, stromal sarcomas had been divided into low- and high-grade based on 

mitotic count, but since the high-grade endometrial stromal sarcomas lacked histological 

resemblance to endometrial stroma they were instead thought to be best regarded as 

undifferentiated sarcomas. The differentiation between low-grade endometrial sarcomas 

and UES was based on the low-grade tumors’ resemblance to endometrial stroma and their 

lack of significant atypia and pleomorphism. UES on the other hand, lack specific 

differentiation and have marked cellular atypia2.  

 

In 2008, Kurihara et al. examined 18 cases of low-grade endometrial stromal sarcoma and 

13 cases of UES. Based on nuclear atypia, they divided the cases of UES into one group 

with nuclear uniformity and one group with nuclear pleomorphism. They concluded that the 

uniform group shared histological characteristics with low-grade endometrial stromal 

sarcomas. However, the significance of this classification was unclear since there were no 

apparent differences in outcome between the groups3. 

 

In 2012, Lee et al. described a translocation, t(10;17)(q22;p13), resulting in a fusion 

between YWHAE and either FAM22A or FAM22B in endometrial stromal sarcomas4. 

When they later compared 13 cases of YWHAE-FAM22 endometrial stromal sarcomas 

with 20 cases of low-grade endometrial stromal sarcoma without the fusion, they concluded 
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that YWHAE-FAM22 rearrangements where associated with high-grade morphology and a 

more aggressive clinical behavior 5. 

 

In the most recent WHO classification of gynecological tumors, the endometrial stromal 

tumors are once again divided into endometrial stromal nodules, low-grade endometrial 

stromal sarcomas, high-grade endometrial stromal sarcomas and undifferentiated uterine 

sarcomas (UUS)6. 

 

Endometrial stromal nodule is a tumor consisting of cells resembling the proliferative-

phase of endometrial stroma. It has a well-circumscribed margin and is considered as a 

benign tumor.6 

 

Low-grade endometrial stromal sarcoma (LGESS) is also composed of cells resembling 

proliferative-phase endometrial stroma, but it has an infiltrative, tongue-like growth pattern 

and is a malignant tumor. Immunohistochemically, the tumor is typically positive for 

cluster of differentiation (CD) 10, estrogen receptors (ER) and progesterone receptors (PR). 

It can also be positive for smooth-muscle actin and occasionally for desmin, but negative 

for h-caldesmon6. One study reported that the immunohistochemical marker interferon-

induced transmembrane protein 1 (IFITM1) is a more specific marker compared to CD10 in 

differentiating low-grade endometrial stromal sarcomas from smooth muscle neoplasms7. 

Generally, patients with stage I disease have a good prognosis with 5- and 10-year survival 

of 98% and 89%, respectively. However, recurrence is common. The most common place 

for recurrence is the pelvis and abdomen8. 

 

High-grade endometrial stromal sarcoma is a malignant tumor consisting of a mixture of a 

high-grade round cell component and a low-grade spindle cell component. The mitotic 

activity is usually high, and necrosis is common. The tumor typically harbors the YWHAE-

FAM22 (also known as YWHAE–NUTM2A/B) fusion previously described. 

Immunohistochemically, the high-grade component is CD10, ER and PR negative but 

shows strong diffuse cyclin D1 positivity. The low-grade spindle cell component is positive 

for CD10, ER and PR6. In a study by McCluggage and Lee, 19 of 19 cases were positive for 

CD56 and 17 of 20 cases were positive for CD999. Abnormal bleeding is the most common 

presenting symptom5. High-grade endometrial stromal sarcomas are more aggressive than 

low-grade endometrial stromal sarcomas, but do not behave as aggressively as 

undifferentiated uterine sarcomas10. 
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Undifferentiated uterine sarcoma (UUS) is a high-grade sarcoma with no specific 

differentiation. It is a diagnosis based on exclusion, and other uterine tumors must be ruled 

out. It typically presents in postmenopausal women as abnormal uterine bleeding, a pelvic 

mass or symptoms secondary to extra uterine spread11. Histologically, the tumors grow 

destructively into the myometrium in sheets. Immunohistochemically, the tumors are 

variably CD10 positive. ER and PR are typically weakly positive or negative6. The majority 

of the patients present with disseminated disease, and most patients die due to the disease 

within two years of diagnosis12. However, this is a heterogenous group of tumors and some 

patients survive longer.  

 

1.2 TNM/FIGO STAGING 
Until 2009 the International Federation of Gynecology and Obstetrics (FIGO) criteria for 

endometrial carcinoma was used for uterine sarcomas. To reflect the different biology and 

behavior of the tumors, separate criteria for uterine sarcomas were introduced in 200913. 

The FIGO criteria are basically the same as American Joint Committee on Cancer TNM 

system. Both systems are based on three factors: the primary tumor size and if the tumor 

extends beyond the uterus (T), regional lymph node involvement (N) and presence of 

distant metastasis (M). Based on the TNM/FIGO classification, the stage of the tumor is 

defined14,15.  

  



 

4 

Primary tumor 

TNM 

category 

FIGO 

stage 

Criteria 

TX  Primary tumor cannot be assessed 

T0  No evidence of primary tumor 

T1 I Tumor limited to the uterus 

T1a IA Tumor 5 cm or less in greatest dimension 

T1b IB Tumor more than 5 cm 

T2 II Tumor extends beyond the uterus, within the pelvis 

T2a IIA Tumor involves adnexa 

T2b IIB Tumor involves other pelvic tissues 

T3 III Tumor infiltrates abdominal tissues 

T3a IIIA One site 

T3b IIIB More than one site 

T4 IVA Tumor invades bladder or rectum 

Regional lymph nodes 

TNM 

category 

FIGO 

stage 

Criteria 

NX  Regional lymph nodes cannot be assessed 

N0  No regional lymph node metastasis 

N0(i+)  Isolated tumor cells in regional lymph node(s) no greater than 0.2 
mm 

N1 IIIC Regional lymph node metastasis 

Distant metastasis 

TNM 

category 

FIGO 

stage 

Criteria 

M0  No distant metastasis 

M1 IVB Distant metastasis (excluding adnexa, pelvic and abdominal tissue) 

  
Table 1. TNM and FIGO staging of uterine sarcomas, excluding adenosarcomas. Modified 

from AJCC Cancer staging manual 8th edition 201716. Reprinted with permission from 

Springer International Publishing. 
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1.3 TREATMENT OF ENDOMETRIAL STROMAL SARCOMA 
Standard treatment for all uterine sarcomas is hysterectomy17,18. Endometrial stromal 

sarcomas tend to recur locally or in the lungs. Systematic lymphadenectomy has not been 

found to improve survival, and is not indicated19.  

 

In low-grade endometrial stromal sarcomas, the ovaries are usually removed because the 

tumors typically express ER and PR. However, there are discrepancies in the results of 

studies examining how ovarian-sparing surgery impacts overall survival and progression-

free survival20. Hormone replacement therapy on the other hand is associated with higher 

relapse rates, and not recommended18,21. Tamoxifen is contraindicated as it has a 

proliferative effect on the endometrial stroma22. Retrospective studies have shown 

effectiveness of hormonal therapy with progestins, aromatase inhibitors and gonadotropin-

releasing hormone analogues as adjuvant and recurrent therapy23,24. Few studies have 

investigated response of endometrial stromal sarcoma to chemotherapy, but the response 

rates are low and chemotherapy should only be used when hormonal therapies are 

ineffective17. The role of radiotherapy is limited, and it does not improve overall survival. 

Palliative radiotherapy can be used for recurrent or metastatic disease17,18. 

 

Undifferentiated uterine sarcomas usually do not express hormone receptors, and hormonal 

therapies are generally not used18.  External pelvic radiotherapy is reported to decrease 

regional recurrence, but impact on survival is unknown. The experience of adjuvant 

chemotherapy is also limited25. One randomized study compared adjuvant 

polychemotherapy (doxorubicin, ifosfamide, and cisplatin) followed by pelvic radiotherapy 

versus radiotherapy alone in uterine sarcomas (53 leiomyosarcomas, 9 undifferentiated 

sarcomas and 19 carcinosarcomas). Adjuvant polychemotherapy combined with 

radiotherapy increased the 3-year disease free survival, but had no effect on overall 

survival. Due to lack of recruitment of patients, the study was stopped earlier than 

planned26,27. 
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2 TUMOR BIOLOGY 
Hanahan’s classic hallmarks of cancer consists of six capabilities: sustaining proliferative 

signaling, evading growth suppressors, resisting cell death, enabling replicative 

immortality, inducing angiogenesis, and activating invasion and metastasis28. Since then, 

the awareness of the tumor cells’ interaction with its microenvironment has increased. The 

tumor microenvironment consists of different cells including fibroblasts, endothelial cells 

and immune cells, but also non-cellular parts 29. 

 

2.1 TUMOR MICROENVIRONMNET 
Both the cellular and the non-cellular parts of the tumor microenvironment play important 

roles for cancer development. The extracellular matrix (ECM) consists of different 

biochemical components, including collagens, proteoglycans and glycoproteins. These 

biochemical components give the ECM unique physical, biochemical and biomechanical 

properties. The physical properties give the tissue its architecture and integrity, but is also 

functioning as a barrier and movement track, and can both have negative and positive roles 

in cell migration. The biochemical properties of the ECM affect the capability of cell 

signaling, and the cells’ possibilities to interact with the microenvironment. The 

cytoskeleton of the cells is linked to the ECM via adhesion complexes. This works as a 

mechanosensing machinery, and allows the cell to react to the ECM’s biomechanical 

properties30.  

 

2.2 THE CELL CYCLE 
The cell cycle is divided into two parts, mitosis (M phase) and interphase. The M phase can 

be further divided into prophase, prometaphase, metaphase, anaphase and telophase 

representing different stages of mitosis. The interphase consists of the phases G1, S and G2. 

The G1 phase (gap 1) represents the gap between mitosis and DNA replication. In this 

phase, the cell is metabolically active, but does not replicate its DNA. The DNA replication 

takes place during the S phase. In the G2 phase (gap 2) DNA synthesis is finished and the 

cell prepares for mitosis31. 

 

The cell cycle is regulated by both extracellular signals and internal signals. A series of 

control points coordinate and regulate the progression through the different phases of the 

cell cycle. For example, if the appropriate growth factors are not available in G1, the cell 
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cycle stops and the cell enters a quiescent stage called G0. There are also several cell cycle 

checkpoints controlling that damaged DNA is not replicated and passed on to daughter 

cells31. 

 

In normal tissue the cell cycle is carefully controlled to maintain a homeostasis of the cell 

number, and one of the hallmarks of cancer is the cancer cells’ ability to sustain 

proliferative signaling28,32. In contrast to most normal cell linages in the body, cancer cells 

also have an unlimited replicative potential28.  

 

 
Figure 1. The cell cycle consists of the phases G1, S, G2 and M. The M-phase can be 

further divided into prophase, prometaphase, metaphase, anaphase and telophase. G0 is a 

quiescent stage. Created with BioRender.com.  
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2.3 TRANSFORMATION OF GENETIC INFORMATION 
Transforming the information in the DNA to proteins requires a process sometimes called 

the central dogma. It is based on three steps:  

1. DNA replication: copying DNA to DNA  

2. Transcription of DNA to messenger RNA (mRNA) 

3. Translation of mRNA to proteins 

2.4 GENOMIC INSTABILITY 
Cancer cells are characterized by genomic instability caused by mutations affecting 

different pathways regulating the cell cycle and repair of DNA damage. It increases the 

cell-to-cell variation leading to better chance to adaptation to the tumor microenvironment, 

as well as increasing the chances of beneficial mutations. Genomic instability both includes 

nucleotide mutations (base substitutions, deletions, insertions) and chromosomal instability 

(gains and losses of whole or parts of the chromosomes and chromosomal rearrangements). 

One result of chromosomal instability is aneuploidy, and the degree of chromosomal 

instability often correlates with karyotypic complexity33. However, the relationship and 

mechanisms of aneuploidy, chromosome instability and tumorigenesis is complex and 

largely unknown34.  

 

2.5 MOLECULAR CHARACTERISTICS OF SARCOMAS 
Sarcomas in general can be classified into two categories: one with near diploid karyotypes 

and simple genetic alterations and one with complex and unbalanced karyotypes. In the first 

category of tumors, translocation-associated sarcomas are the most common variants and 

the tumors tend to arise de novo. The majority of the karyotypically complex sarcomas 

arise de novo, but they can also arise from dedifferentiated less aggressive forms35.  

 

In a study by the Cancer Genome Atlas Research Network, 206 cases of adult soft tissue 

sarcomas were characterized. One of the findings was that these sarcomas had low 

mutational burden, and only three significantly mutated genes were identified: TP53, 

ATRX and RB1. Copy number alterations were on the other hand frequent36.  

 

A number of gene rearrangements has been described in low-grade endometrial stromal 

sarcomas. The most common is the translocation t(7;17)(p15;q21) resulting in JAZF1-

SUZ12 fusion. Many other fusions are described, including JAZF1-PHF1, EPC1-PHF1, 

MEAF6-PHF1, ZC3H7B-BCOR and MBTD1-CXorf6712. All these fusions are believed to 
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affect genes involved in transcriptional regulation in endometrial stromal progenitor cells, 

leading to oncogenic effects. Clinically and histologically, they are all similar10. 

High-grade endometrial stromal sarcomas are, as previously described, characterized by the 

YWHAE-FAM22 fusion. In 2017, Hoang et al. described a new type of high-grade 

endometrial stromal sarcoma37. The tumors mimicked myxoid leiomyosarcomas 

morphologically, and also had overlapping immunohistochemical profile. All cases 

harbored ZC3H7B-BCOR gene fusions. Clinically, the tumors seemed to have a more 

aggressive behavior than low-grade endometrial stromal sarcomas37. 

 

Due to the rarity of undifferentiated uterine sarcomas, there is limited genomic data. The 

data available show complex karyotype and frequent p53 alteration10. Most lack 

chromosomal translocations, but JAZF1-SUZ12 fusion has been reported and probably 

represents dedifferentiated low-grade endometrial stromal sarcomas6. 
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3 BIOMARKERS 
In medicine, a biological marker (or biomarker) is an indicator that can be measured to give 

information of a normal or abnormal process or disease. In cancer diseases, biomarkers are 

used in three main ways: for diagnosis, for prognosis and to predict or monitor treatment 

response. It can also be used for risk assessment, for example BRCA mutation, as a risk 

factor for ovarian and breast cancer.  

 

Often used biomarkers in pathology include analysis of different histological parameters, 

immunohistochemistry and genetic analysis.   

 

3.1 MITOTIC INDEX 
Mitotic counting is used in different types of tumors both for diagnostic and prognostic 

purposes. In invasive breast cancer, the number of mitoses per 10 high power fields (HPF) 

is a part of the Nottingham histological grade38. The Nottingham grade has been shown to 

be an important prognostic factor39,40. 

 

The most common method is to count the number of mitotic figures in a specific number of 

high-power fields in hematoxylin and eosin stained histological slides, resulting in a mitotic 

index. Different tumors have different cellularity, which will affect the mitotic index. It has 

been proposed that the mitotic count should be based on the number of cells in the 

specimen instead of HPF41. A volume corrected mitotic index has also been proposed to 

correct for differences in the thickness of the histological sections42. However, these 

methods are time consuming and have not been widely used. 

 

Several other factors are also known to affect the mitotic index, such as time to fixation and 

adequate macroscopic and microscopic sampling43–45. It is also of importance to define the 

area to count, not only the number of HPF, because of variations of the visual field areas 

between different microscopes46. Mitotic index has been shown to be reproducible if a 

protocol for counting is followed47. 

 

3.2 ESTROGEN AND PROGESTERONE RECEPTORS 
The estrogen receptor (ER) exists in two forms, ERα and ERβ. The ER is located in the 

nucleus and acts as a binding protein for the hormone estrogen. ERα and ERβ are encoded 
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by the genes ESR1 and ESR2, respectively, and numerous mRNA splice variants exist. 

Little is known about the exact function of these different splice types. Estrogen has been 

associated with the development of different types of cancer, including breast cancer, 

endometrial cancer and ovarian cancer.48 The progesterone receptor is also located in the 

nucleus where it regulates hormone response target genes and acts as a transcription 

factor49. 

 

In endometrial stromal sarcomas, ER and PR are expressed mainly in the low-grade tumors 

and to a lesser extent in the high-grade tumors6,50. 

 

3.3 P53 
P53 coordinates transcription programs that contribute to tumor suppression51. P53 can both 

activate and repress expression of genes involved in apoptosis, senescence and cell cycle 

arrest, but also for instance metabolism, necrosis and stem cell maintenance52. In many 

human cancers the p53 signaling pathway is mutated or functionally inactivated, but the 

p53 gene can still be wilde-type53. Mutations in p53 itself or disruptions in pathways 

signaling to p53, lead to loss of p53 wild-type function. However, mutations in p53 in itself 

can also lead to gain of new functions such as induction of angiogenic factors, metastasis or 

inactivation of the tumor suppressors p63 and p7352.  

 

3.4 KI67 
Ki67 is a protein associated with cell proliferation. It is present in the cell cycle phases G1, 

S, G2 and M, but not in resting cells in the G0 phase54. It has been suggested that Ki67 

functions as a surfactant that enables chromosome motility by preventing them from 

collapsing after nuclear envelope disassembly55. Immunohistochemical evaluation of Ki67 

can provide prognostic and predictive information in for example breast cancer56,57.   

 

3.5 CYCLIN-D 
There are three forms of D cyclins in mammalian cells, D1, D2 and D3. They regulate the 

transition of the cell cycle from G1 to S phase by acting as activators of cyclin-dependent 

kinase (CDK) 4 and CDK658. CDK4/6 phosphorylates the retinoblastoma protein, priming 

it for inactivation. The inactivation leads to activation of genes required for initiation of the 

S phase59. 
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Cyclin D1 is the most studied D cyclin. Overexpression of cyclin D1 leads to dysregulation 

of CDK activity resulting in cell growth and contribution to neoplastic growth. Cyclin D1 is 

frequently overexpressed or amplified in different types of malignancies, e.g. pancreatic 

cancer, non-small cell lung carcinoma, endometrial cancer and mantle cell lymphoma58. 

 

In endometrial stromal sarcomas, it has been shown that cyclin D1 is a sensitive and 

specific diagnostic immunohistochemical marker for t(10;17)(q22;p13) high-grade 

endometrial stromal sarcomas60.  

 

3.6 P16 
P16 acts as a tumor suppressor by inhibiting the effect of CDK4 and 6, resulting in cell 

cycle arrest at the G1-S boundary61. P16 is also involved in cellular senescence which is a 

special form of a stress-induced, durable cell-cycle arrest that prevents cancer. Senescent 

cells are characterized by expression of anti-proliferative molecules, e.g. p1662. Loss of p16 

function is frequent in many human tumors63. 

 

3.7 ANILLIN (ANLN) 
Anillin is a protein that interacts with cytoskeletal components and is involved in 

organizing the cytoskeleton during cytokinesis. After the cell division is completed, anillin 

is degraded64. Anillin expression has been shown to be upregulated in different cancer 

types, and it has also been linked to metastatic potential and poor prognosis65.  
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4 TUMOR IMMUNOLOGY 

4.1 BACKGROUND 
The immune system has a dual role in the progression of tumors and can kill early tumor 

cells, but it can also select tumor cells that can evade surveillance66. The immune system 

recognizes different antigens expressed by the tumor cells and can separate them from 

normal cells. Some of the antigens are shared between different tumor types, others are 

unique to the tumor67. Avoiding recognition and destruction by the immune system is one 

of the hallmarks of cancer28.  

 

The immune system is regulated by stimulatory and inhibitory signals that normally 

regulate self-tolerance, wound-healing and different homeostatic mechanisms68. To avoid 

recognition and destruction, the tumor can either turn off the immune response, or create 

resistance mechanisms in the local microenvironment69. 

 

4.2 TUMOR INFILTRATING LYMPHOCYTES 
All types of immune cells can be present in tumors, including B cells, T helper cells, T 

regulatory cells, macrophages, dendritic cells and cytotoxic T cells. The type of immune 

cells, the quantity of cells and also the location of the cells (e.g. the center of the tumor or  

the invasive margin) varies in different tumor types70.  

 

The major histocompatibility complex (MHC) class I and II is necessary for antigen 

presentation. MHC class I is expressed on all nucleated cells and binds endogenous 

proteins. MHC class II is mainly expressed on antigen-presenting cells (APCs) and presents 

exogenous proteins71. 

 

For tumor destruction mediated by cytotoxic T lymphocytes (CTLs) MHC class I is crucial. 

However, in tumors, MHC I is frequently downregulated, and tumor cells usually do not 

express MHC class II71. 

 

CD8+ T cells have the capacity to kill tumor cells through recognition of antigenic peptides 

presented by MHC I on the tumor cells. The recognition of an antigenic peptide by the T 

cell receptor (TCR) initiates cytotoxic effector functions. The cytotoxic functions are either 
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direct through exocytosis of cytotoxic granules into the target cell, or indirect through 

secretion of cytokines72. 

 

Even though CD8+ CTLs are considered the most important T cells for tumor elimination, 

CD4+ T cells are also of importance. CD4+ T cells help with the priming of CD8+ T cells 

to optimize the effector and memory functions of CTLs. This is partly done via interaction 

with dendritic cells73. 

 

A high amount of tumor infiltrating lymphocytes (TILs) is associated with a positive 

clinical outcome in several tumor types, including melanoma, head and neck, urothelial, 

breast, bladder, colorectal, ovarian, prostatic and lung cancer70. In sarcomas, TILs have 

been reported mainly in gastrointestinal stromal tumors, where it correlates with survival. 

In other soft tissue sarcomas, the presence of TILs varied. Most studies are limited by small 

sample sizes and by the vast spectrum of subtypes of soft tissue sarcomas74. 

 

4.3 T REGULATORY CELLS 
Regulatory T cells (Tregs) are a subset of T cells that can either develop in the thymus by 

antigen stimulation (natural/thymic Tregs), or differentiate from naïve T cells in peripheral 

tissues (peripherally induced Tregs). However, it is unclear if the peripherally induced 

Tregs are functionally stable75. The main regulatory transcription factor for Tregs is 

FOXP375. 

 

In the tumor microenvironment, Tregs are recruited by different chemokines produced by 

tissue associated macrophages (TAMs) but also as a result of hypoxia. In certain tumor 

types, for example follicular lymphoma, it has also been shown that conventional CD4+ T 

cells can be converted to Tregs76. 

4.3.1 Immunosuppressive mechanisms of Tregs 
There are several ways Tregs exhibit their suppressive activity. Among the most important 

ones are inhibition of APCs through the cytotoxic T-lymphocyte associated protein 4 

(CTLA-4) pathway, secretion of inhibitory cytokines and downregulation/killing of APCs 

and effector T cells by expression of granzyme and perforin. In addition, FOXP3 directly 

affect transcription of different genes, such as upregulating CTLA-4 transcription75. 
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4.3.2 Tregs as a prognostic marker 
For most tumors high numbers of Tregs are associated with a poor prognosis71. A high ratio 

of CD8+ T cells/Tregs has been shown to be a beneficial prognostic marker in several types 

of cancer, such as ovarian cancer77. However, in some tumors high numbers of Tregs have 

been associated with an improved survival78,79.  

 

4.4 TUMOR ASSOCIATED MACROPHAGES  
Macrophages can perform different functions important for the immune system. Depending 

on the stimuli, macrophages can be driven into different functional phenotypes. Two main 

types have been suggested, M1(classic activation) and M2 (alternatively activated). M1 has 

an inflammatory phenotype, expresses inflammatory chemokines and can produce 

inflammatory cytokines such as TNF, IL-12, IL-23 and IL-6. In addition, M1 promotes Th1 

response and has microbicidal and tumoricidal functions. M2 has an anti-inflammatory 

phenotype, expresses non-inflammatory chemokines and produces anti-inflammatory 

cytokines such as IL-10. M2 promotes Th2 response and tumor growth, but is also 

important for tissue repair and remodelling80. 

 

A long-held view is that TAMs are recruited to the tumor microenvironment from the blood 

by signals from normal cells and tumor cells. Another theory from mouse models is that 

TAMs originate from resident precursor macropaghages81.  

 

Classically activated macrophages participate in the elimination of early tumors by killing 

tumor cells and mediate tissue destruction. When the tumor progresses, the macrophages 

are driven towards a M2 phenotype by signals from tumor cells, B cells and stromal cells. 

These TAMs have functions related to tumor progression, such as angiogenesis and 

suppression of immunity 81.   

4.4.1 Protumoral mechanisms of TAMs 
TAMs in the tumor microenvironment support tumor growth in many different ways. One 

mechanism is by inducing angiogenesis28. The induction of angiogenesis is necessary to 

provide oxygen and nutrition when the tumor growth is above a certain size, and also for 

disposal of waste. Macrophages can also promote tumor cell migration and invasion into 

the circulation82. 
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Macrophages also express MHC I molecules and can inhibit the activation of NK cells and 

certain types of activated T cells. In addition, macrophages also express ligands to PD-1 

and CTLA-4. Another way of suppressing CD4+ and CD8+ T cells is by the secretion of 

cytokines, chemokines and enzymes by TAMs82. 

4.4.2 TAMs as a prognostic marker 
A high number of TAMs has been associated with a poor prognosis in several solid 

malignancies83. In a meta-analysis by Zhang et al., high density of TAMs was associated 

with a shorter overall survival in for example breast cancer, ovarian cancer and bladder 

cancer. However, for patients with colorectal cancer high density of TAMs was associated 

with longer overall survival84.  

 

4.5 IMMUNE CHECKPOINTS 
The T cell response is initiated when an antigen is recognized by the TCR. Immune-

checkpoints are ligand-receptor pairs with stimulatory or inhibitory effects on the 

magnitude of the immune response85. Anti-tumor drugs composed of monoclonal 

antibodies that inhibit inhibitory immune checkpoints have been developed and antibodies 

working as agonists of stimulatory immune checkpoints are under development86. 

 

One group of immune-checkpoint molecules is the B7 family, which is a group of 

transmembrane proteins including for example B7-H1 (also called programmed cell death 

protein 1 ligand 1), B7-DC (programmed cell death protein 1 ligand 2), B7-H4, B7-1 

(CD80) and B7-2 (CD86)86. 

4.5.1 B7-H4 
Although B7-H4 mRNA is expressed in many different normal tissues including brain, 

heart and skin, the B7-H4 protein is not usually present on the surface of normal cells87.  

B7-H4 has been shown to be overexpressed in different types of cancer. The expression has 

been linked to different clinicopathological factors in for example ovarian cancer, gastric 

cancer, melanoma, pancreatic cancer and colorectal cancer87–92. 

 

Anti-B7-H4 monoclonal antibodies are under development87.  
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4.5.2 Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) 
In the lymphoid organs, CTLA-4 is expressed on T cells and regulates the early stages of T 

cell activation. After T cell activation CTLA-4 is upregulated, leading to downregulation of 

T cell function through different mechanisms93. Normally, TCR signaling is reinforced 

through the co-stimulatory receptor CD28. However, CD28 and CTLA-4 share the same 

ligands CD80 and CD86. Upregulation of CTLA-4 will outcompete CD28 and suppress the 

T cell activation85.  

 

 

 
 

Figure 2. In the lymph node, T cell activation is reinforced by co-stimulation of CD28 

binding to B7. When CTLA-4 is upregulated, CD28 is outcompeted and the T cell 

activation is suppressed. Created with BioRender.com. 
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4.5.3 Programmed cell death protein 1 (PD1) 
Programmed cell death protein 1 (PD1) is a inhibitory regulator of T cells in peripheral 

tissues and the tumor microenvironment where it is expressed on different cells including 

TILs, B cells, natural killer cells and Tregs94. 

 

When PD1 binds to one of its two ligands, programmed cell death protein 1 ligand 1 (PD-

L1) or programmed cell death protein 1 ligand 2 (PD-L2), it will ultimately lead to a 

decrease of the amount of active T cells through different signaling pathways85.  

 

PD-L1 is often upregulated on the surface of tumor cells, but can also be expressed in the 

tumor microenvironment. PD-L2 has been reported to be overexpressed in certain B cell 

lymphomas and is also expressed by antigen presenting cells85,94. 

 
Figure 3. Expression of PD-L1/PD-L2 in the tumor microenvironment or by dendritic cells 

will inhibit T cells by binding to PD1. Created with BioRender.com. 
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4.5.4 Indoleamine 2,3 dioxygenase 
Indoleamine 2,3 dioxygenase (IDO) is an enzyme that has an important role in 

immunoregulation by degrading the essential amino acid tryptophan and producing the 

breakdown product kynurenine. Two different enzymes are described, IDO1 and IDO2, 

with similar but not completely identical effects. Most studies do not separate them, and 

inhibitors of IDO affect both enzymes95.  

 

IDO1 has been linked to both reduced cytotoxic effect of T cells and increased activation of 

Tregs. The reduced access of tryptophan activates a pathway leading to cell cycle arrest and 

inability to normal immune response induction. The accumulation of kynurenine can also 

directly induce T cell apoptosis. IDO also has an indirect effect in the tumor 

microenvironment by increasing the amount of proinflammatory cytokines. IDO has been 

shown to be dysregulated in different malignancies96. 
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5 TUMOR IMMUNOTHERAPY 
The basic concept of tumor immunotherapy is to stimulate and use the immune system to 

attack tumor cells. The main methods for doing this are cytokines, monoclonal antibodies, 

cell-based therapies and vaccines97,98.  

 

5.1 CYTOKINES 
Cytokines are polypeptides or glycoproteins and can be released in response to stimulus. 

They are usually short-lived, and have important roles in signaling pathways related to 

differentiation, growth and inflammation/anti-inflammation. In cancer treatment, cytokines 

can either have a direct anti-proliferative or pro-apoptotic effect, or they can work 

indirectly by stimulating immune cells. However, the clinical effect of cytokines is limited. 

This is mainly due to short half-life, problems to achieve effective concentrations within the 

tumor and toxicity. Interleukin-2 and interferon-alpha have shown some effect for 

treatments of malignancies, including metastatic renal cell carcinoma and metastatic 

melanoma, and are approved by The Food and Drug Administration (FDA). Several studies 

are ongoing trying to improve the effectiveness by improving pharmacokinetics or by 

combining other treatments with cytokines99–101. 

 

5.2 ADOPTIVE CELL THERAPY 
Adoptive T cell therapy is using ex vivo manipulated T cells to eradicate tumor cells. This is 

done by first isolating lymphocytes from the patient’s peripheral blood or tumor tissue. The 

lymphocytes are then manipulated and expanded ex vivo before they are re-infused to the 

patient. The methods for manipulation can include selection and expansion of specific 

TILs. The lymphocytes can also be genetically manipulated to express a synthetic T cell 

receptor (sTCR). The sTCR is designed to recognize a target antigen on the tumor cells, and 

requires that the tumor expresses antigens through the MHC. Another method is to transfer 

a chimeric antigen receptor (CAR) to the T cells. CAR T cells target tumor antigens 

independent of the MHC98,102,103. 
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Figure 4. Different types of adoptive cell therapy. The T cells can be genetically 

manipulated to express a synthetic T cell receptor (TCR) or a chimeric antigen receptor 

(CAR). Created with BioRender.com. 

 

5.3 MONOCLONAL ANTIBODIES 
Antibodies for treatment of cancer is an important and effective therapeutic approach. They 

can either target antigens expressed by the tumor or target the tumor microenvironment. 

The targets expressed by the tumor include growth factor receptors, and by blocking the 

receptor or their signal pathway, apoptosis can be induced or growth rate decreased. Targets 

in the microenvironment include blocking vascular endothelial growth factors to inhibit 

angiogenesis. Antibodies can also be used to enhance immune response, for example 

previously described immune checkpoint blockade104. 

 

5.4 TUMOR VACCINES 
Therapeutic cancer vaccines are designed to activate and stimulate the patients T cells in 

vivo. The most common types of vaccines consist of tumor specific antigens. Dendritic cells 
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can be used as adjuvants to increase the effectiveness. However, so far the clinical effect of 

therapeutic vaccines has been limited. In 2010, Sipuleucel-T was approved by FDA for 

treatment of metastatic castrate-resistant prostate cancer105.  

 

5.5 IMMUNOTHERAPY AND SARCOMAS 
The treatment options for most sarcomas are limited to surgical resection, radiation and 

chemotherapy and new therapies are needed. Many trials have investigated the effect of 

different immunotherapies, but so far most of them have shown limited effect74.  

 

Expression of both PD-1 and PD-L1 has been reported in varying levels in different types 

of sarcomas. Torabi et al. showed overexpression of PD-1 in most cases of osteosarcoma, 

chondrosarcomas, liposarcomas and rhabdomyosarcomas106. In a study by Vanderstraeten 

et al., expression of PD-L1 was seen in 100% of primary uterine sarcomas. Expression of 

PD-L2 was seen in 32% and B7-H4 in 100% of primary uterine sarcomas. However, the 

type of uterine sarcoma was not specified107.  

 

D’Angelo et al. investigated the expression of PD-L1 in 50 cases of different types of soft 

tissue sarcomas and found that 12% expressed PD-L1 in tumor cells, 30% in lymphocytes 

and 58% in macrophages. However, there was no association with overall survival108. 

Toulmonde et al. published a clinical trial investigating the efficacy and safety of targeting 

PD-1 in combination with metronomic chemotherapy in sarcomas. Leiomyosarcomas, 

undifferentiated pleomorphic sarcomas, other sarcomas and gastrointestinal stromal 

sarcomas were included. Of 50 patients, three were progression-free at six months, one of 

those hade endometrial stromal sarcoma109. Several clinical trials using check point 

blockade are ongoing74. 

 

Tawbi et al. published a clinical trial in 2017 examining the effect of Pembrolizumab (anti-

PD-1 antibody) in advanced soft-tissue and bone sarcoma. Of 40 patients with soft-tissue 

sarcoma 18% had an objective response. The best effect had patients with undifferentiated 

pleomorphic sarcoma, four of ten patients had an objective response (partial response or 

better according to Response Evaluation Criteria In Solid Tumors (RECIST) version 

1.1)110.  
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D’Angelo et al. investigated the effect of Nivolumab (anti-PD-1 antibody) with or without 

Ipilimumab (CTLA-4 inhibitor) in 85 patients with locally advanced, metastatic or 

unresectable sarcoma. In the group with patients receiving nivolumab as monotherapy 5% 

(2/38) had a response, and in the group receiving nivolumab plus ipilimumab 16% (6/38) 

had a response111. 

 

Vaccines are a promising therapy for sarcomas. Many sarcomas have unique chromosomal 

translocations, genetic abnormalities and expression of specific antigens that could work as 

targets for vaccines74. Several vaccine trials investigating different target molecules in 

sarcomas are ongoing112.   
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6 AIMS OF THE THESIS 
The overall aim of the thesis is to analyze different clinical, histological and biological 

parameters of endometrial stromal sarcomas in relation to patient survival.  

 

Aims of paper I: To investigate the correlation of clinicopathological parameters, 

biomarkers, YWHAE-FAM22 status and prognosis in undifferentiated uterine sarcomas. 

 

Aims of paper II: To validate the result from paper I in an independent cohort of 

undifferentiated uterine sarcomas, and to investigate the relation of other 

clinicopathological parameters in relation to mitotic index group. 

 

Aims of paper III: To identify molecular subgroups of undifferentiated uterine sarcomas 

and evaluate the possible correlation to different clinicopathological parameters. 

 

Aims of paper IV: To analyze the prognostic significance of different immune markers in 

low-grade endometrial stromal sarcomas. 
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7 MATERIAL AND METHODS 

7.1 PATIENT COHORTS 
Paper I 

The cohort of paper I consisted of 26 cases of undifferentiated uterine sarcoma identified by 

searching the pathological database at the Karolinska University Hospital and the 

Stockholm region cancer registry for patients diagnosed with undifferentiated endometrial 

sarcoma and endometrial stromal sarcoma between January 1, 1987 and January 1, 2008. 

All hematoxylin and eosin stained slides were reviewed and pathological parameters were 

recorded. Clinical records were reviewed for clinical parameters, including status at last 

follow-up, age at diagnosis and stage at diagnosis. For 22 cases tissue blocks were available 

and a tissue microarray was constructed for immunohistochemical analysis of expression of 

different proteins. 

 

Paper II 

In paper II we reviewed 92 cases of uterine sarcoma from three institutions: the Norwegian 

Radium Hospital, the Mayo Clinic, and Skåne University Hospital. Of these, 40 cases of 

undifferentiated uterine sarcoma were included. Hematoxylin and eosin stained slides were 

reviewed before inclusion, and a detailed histological evaluation was done, including 

dividing the cases into our previously (from paper I) defined high and low mitotic index 

groups. All cases had clinical follow-up data and all cases were analyzed for the presence 

of YWHAE-FAM22 and JAZF1-JJAZ1 translocations. 

 

Paper III 

The cohort of paper III consisted of cases from the two previously described cohorts of 

undifferentiated uterine sarcoma in paper I and II, and was complemented by additional 

cases of undifferentiated uterine sarcoma from Vancouver General Hospital and Brigham 

and Women’s Hospital. In total 50 cases were analyzed for gene expression, copy number 

variation, cell morphometry and protein expression. Histopathological parameters and 

follow-up data for the cases not previously included were recorded. All cases had formalin-

fixed paraffin-embedded (FFPE) tumor material used for isolation of DNA and RNA at the 

Karolinska University Hospital. 

 

Paper IV 
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The cohort of paper IV consisted of 21 cases of low-grade endometrial stromal sarcomas 

diagnosed at the Karolinska University Hospital. All cases had follow-up data and FFPE 

tumor blocks. Tissue microarrays consisting of two biopsies of tumor material from each 

case were constructed. The TMAs were stained with immunofluorescence labeled 

antibodies targeting CD8, FOXP3, CD68, CD163, IDO1, B7-H4 and PD-L1. The slides 

were scanned for digital image analysis in QuPath.  

 

7.2 TUMOR TISSUE 
When a tumor is surgically removed and sent to the pathology department the tissue is 

fixated in 4% formaldehyde. After fixation the tumor is cut and pieces are selected for 

embedding in paraffin blocks. After embedding, the tumor can be cut into thin sections and 

mounted on glass slides. The slides can then be stained with for example hematoxylin and 

eosin or used for immunohistochemical stains. 

 

The tissue blocks with FFPE tumor material as well as the stained slides are saved in 

archives and can be used for research after ethical approval. 

 

7.3 TISSUE MICROARRAY 
A tissue microarray (TMA) is a paraffin block containing tumor cores from multiple 

tumors. To create the TMAs used in these projects, the hematoxylin eosin slides were used 

to find a representative tumor area, and then used as a guide when taking two cores from 

the corresponding tissue block. The cores were then inserted into a paraffin block in a 

specific pattern to create a TMA. The TMAs were then cut and stained with hematoxylin 

eosin to verify the presence of representative tumor tissue. 

 

7.4 IMMUNOHISTOCHEMISTRY AND IMMUNOFLUORESCENCE 
Immunohistochemistry and immunofluorescence are used to evaluate the expression of 

different proteins (antigens) in a tissue. Both techniques use antibodies with affinities to the 

proteins of interest, but the technique to visualize the antigen-antibody interaction differs.  

Both direct and indirect methods can be used in both techniques. In the direct method one 

labelled antibody is used to bind the antigen of interest, and can then be detected. With the 

indirect method an unlabeled, primary antibody is used for binding to the protein of 

interest. A secondary antibody is then used to bind the primary antibody. The secondary 
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antibody can be either directly bound to a reporter molecule, or conjugated to a linker 

molecule that then recruits reporter molecules.  

 

The type of reporter molecule varies depending on the detection method. A chromogenic 

reporter uses an enzyme (for example alkaline phosphatase or horseradish peroxidase) to 

create a color product that can be detected with a light microscope. In immunofluorescence 

the antibody is instead labeled with a fluorophore that can be detected with a fluorescent 

microscope. 

 
 

Figure 5. Direct and indirect method. The indirect method uses a secondary antibody for 

detection. Created with BioRender.com. 

 

7.5 POLYMERASE CHAIN REACTION  
Polymerase chain reaction (PCR) is a method to amplify a specific DNA region. The DNA 

template is mixed with a DNA polymerase, specific DNA primers for the target region and 

deoxynucleoside triphosphates (dNTPs). Cycles of temperature changes amplifies the DNA 

region of interest into millions of copies by several repeated steps, including denaturation, 
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annealing and elongation. The use of fluorescent DNA probes allows for detection of PCR 

products in real-time by measuring the fluorescent signal, which is called real-time PCR or 

quantitative PCR (qPCR)31.  

 

As PCR requires DNA, normal PCR cannot be used for detection of mRNA. For detection 

of mRNA, reverse transcription polymerase chain reaction (RT-PCR) can be used. In RT-

PCR, the RNA template is first transcribed into complementary DNA (cDNA) by a 

polymerase and primers. The cDNA can then be amplified by PCR113. The combination of 

RT-PCR and qPCR is called real-time RT-PCR or qRT-PCR. 

 

 

 
 

Figure 6. Polymerase chain reaction (PCR). Primers, nucleotides and DNA polymerase are 

used to amplify a DNA region. Created with BioRender.com. 
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7.6 DNA MICROARRAYS 
DNA microarrays are used to measure expression levels of many genes at the same time or 

for genotyping. The basic principle is to use short, specific sections of DNA (probes) 

attached to a chip. The sample to be analyzed is labeled with fluorescence and then 

hybridized to the probes on the chip. Sequences with non-specific bindings are washed off, 

and fluorescence signals from the sequences bound to the probes can be analyzed. The 

intensity of the signal will be proportional to the amount of sample that has bound31.  

 

As different genes are turned on and off in different cells and under different conditions, 

expression profiling techniques used to measure the amount of mRNA expressed will tell us 

other things about the cells than only looking at the DNA. In the third paper, RNA 

expression was evaluated with GeneChip Human Gene 2.1 ST Array Plate, which is an 

array that measures more than 30 000 coding transcripts114. 

 

For analysis of DNA copy number variation in the third paper, Affymetrix OncoScan Array 

was used. This is a microarray-based method for whole-genome copy number analysis 

including copy number gain and loss, and loss of heterozygosity. A panel of somatic 

mutations is also included, but was not analyzed in these projects115.  

 

 
 

Figure 7. Simplified picture of the principles of a DNA microarray. Created with 

BioRender.com. 
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7.7 IMAGE ANALYSIS 
Stained glass slides from tissue blocks or TMAs can be digitized by the use of digital slide 

scanners. The glass slides are thereby converted into high-resolution digital files that can be 

imported to a software for digital image analysis. In project III and IV the open source 

software QuPath116 was used to analyze the scanned images.  In our studies, we have used 

QuPath for cell quantification, calculation of nuclear area and quantification of 

immunohistochemical and immunofluorescence expression. 
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8 STATISTICAL ANALYSIS 
Descriptive statistics has been used in all papers. The characteristics of the patient cohorts 

have frequently been presented in tables with mean values and standard deviations.  

 

Different methods have been used for survival analysis. Cox proportional hazard regression 

models have been used for both analysis of each variable one at the time as a single 

explanatory variable (crude result) and also together as multiple explanatory variables 

(adjusted result). The result has been presented with hazard ratios, 95% confidence 

intervals and p-values.  

 

Survival curves for different groups has been plotted according to the Kaplan-Meier 

method. To compare survival between groups, the log-rank test has been used and 

presented with p-value.    

 

The t test was used for testing differences in nuclear area, cells per area and 

immunohistochemical expression between the RNA groups in paper III. An empirical 

Bayes moderated t test was used to test for differentially expressed genes between the RNA 

groups. To organize the genes into ontologies and summarize them, DAVID (Database for 

Annotation, Visualization and Integrated Discovery)117,118 and REVIGO (Reduce and 

Visualize Gene Ontology)119 were used.  
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9 RESULTS 
Paper I 

In the first paper, we showed that when dividing the cases of undifferentiated uterine 

sarcoma into two groups based on mitotic index (over or under 25 mitoses/10 HPF (2.24 

mm2)), there was a statistically significant difference in prognosis between the groups. The 

expression of either ER, PR or the presence of the YWHAE-FAM22 translocation was 

associated with a low mitotic index. Nuclear atypia, stage, presence of tumor necrosis or 

expression of p53, P16, Ki67, Cyclin-D1, or ANLN did not have a statistically significant 

impact on survival. 

 

Paper II 

In the second paper, we showed that in the crude Cox Proportional Hazard model, mitotic 

index group, patient age, stage, and the presence of tumor necrosis were prognostic 

variables. In the adjusted model, mitotic index group and stage had a statistically significant 

impact on overall survival. Nuclear atypia was not prognostic. None of the cases had the 

YWHAE-FAM22 or JAZF1-JJAZ1 translocation. 

 

Paper III 

In the third paper, we showed that the cases could be divided into four groups with different 

mRNA expression pattern. Gene ontology analysis showed activation of pathways related 

to genital tract development, extracellular matrix, muscle function and proliferation in the 

different groups. The result of the chromosomal copy number analysis showed a spectrum 

of variation, from cases that were diploid or near diploid to cases with extensive 

chromosomal aberrations. The adjusted Cox Proportional Hazard model showed that 

mitotic index group, hormone receptor expression and mRNA group had a statistically 

significant impact on overall survival. In the ontology analysis, the mRNA group with the 

worst prognosis showed overexpressed pathways related to the extracellular matrix (so 

called “ECM group”). When further analyzed by image analysis, the ECM group was 

characterized by reduced cell density and increased nuclear size compared to the other 

groups. The ECM group also showed higher expression of the four ECM related proteins, 

matrix metalloproteinase 14, collagen 1, collagen 6 and fibronectin, when evaluated with 

immunohistochemistry. 

 

 

 



 

 33 

Paper IV 

In the fourth paper, we showed that all included cases of LGESS had infiltration of CD8+ 

lymphocytes. Based on the mean expression of each marker as a cut-off, high and low 

expression groups were defined. We demonstrated that the group with a high number of 

CD8+ lymphocytes had a better prognosis than the group with a low number. However, the 

difference in survival was not statistically significant. We also demonstrated that high 

numbers of FOXP3+ was associated with a favorable prognosis. Calculating the ratio of 

CD8+/FOXP3+ cells showed a statistically significant (p=0.0087) better survival for the 

patients with a low ratio. No expression of PD-L1 was seen, however most cases expressed 

B7-H4. The quantity of CD68+ macrophages, CD68+CD163+ M2-type macrophages and 

IDO1 was not prognostic. 
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10 GENERAL DISCUSSION AND FUTURE PERSPECTIVES 
Undifferentiated uterine sarcomas are highly malignant, aggressive tumors with a poor 

prognosis. It is a rare tumor type, and the knowledge of prognostic markers, biology and 

optimal treatment is limited.  

 

The first three papers in this thesis focus on the biology and identifying prognostic 

subgroups within undifferentiated uterine sarcomas. Many tumor types are heterogeneous, 

and the prognosis differs between patients with the same tumor type. Different prognostic 

markers are identified in other tumors, for example tumor thickness in melanomas120.  

 

In the first paper, we demonstrated that a mitotic index cutoff can be used for prognostic 

classification of UUS. Earlier studies had been limited by the change of diagnostic criteria 

over the years as well as rareness of these tumors. We could also see that 7/12 patients in 

the low mitotic index group survived for more than five years, which was an interesting 

finding considering that UUS previously has been regarded a group of tumors with 

uniformly very poor prognosis. The expression of hormone receptors (ER or PR) correlated 

with a low mitotic index, but is also an interesting finding for a possible target therapy. 

 

In the second paper, we validated our previous finding of mitotic index as a prognostic 

marker. Mitotic counting is a quite simple method to implement in the clinical routine as it 

requires no extra equipment, and is already used in other tumors. One drawback with 

mitotic counting is the varying reproducibility. However, in our two studies most cases did 

not have a mitotic index close to the cut-off. Based on our results, we proposed that mitotic 

index could be used as prognostic marker in UUS. We also proposed that UUS tumors 

should be divided into “mitogenic” and “not otherwise specified” types based on the mitotic 

index, to reflect the difference in prognosis between the two types.  

    

In the third paper, we identified four subgroups of UUS based on gene-expression analysis. 

The four groups had different clinical and pathological characteristics, and gene ontology 

showed different activated pathways. The group with overexpression of pathways related to 

the extracellular matrix (ECM) had the worst prognosis, and also had specific 

immunohistochemical characteristics related to extracellular proteins. The overexpression 

of matrix metalloproteinases in the ECM group is a possible therapeutic target in the future. 

These findings also raise interesting questions about how these tumors interact with the 

tumor microenvironment and the importance of the interaction for the tumor 
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aggressiveness. Another interesting finding was that about 50% percent of the cases were 

diploid or near diploid, which might indicate that there are unknown translocations in these 

tumors.  

 

In the fourth paper, we characterized the immune microenvironment in low-grade 

endometrial stromal sarcomas. The immune microenvironment has been recognized in 

other tumor types to be of great importance for both tumor progression and treatment 

response. We could demonstrate a statistically significant better survival for LGESS 

patients with a low ratio of CD8+/FOXP3+ cells compared to patients with a high ratio. In 

many tumor types, high numbers of FOXP3+ cells are associated with a poor prognosis. 

However, in some tumors, high amounts of FOXP3+ cells has been associated with a better 

prognosis. The mechanism for this is unknown. No expression of PD-L1 was seen, but 

expression of another check-point inhibitor, B7-H4, was seen in most cases. This is 

interesting since blockade of check-point inhibitors is an expanding field with new 

treatments under development. 

 

The fourth paper also required a setup of new collaborations and development of methods. 

Hopefully, this will work as a fundament for new studies, including both validation of the 

results in paper four in a new independent cohort, as well as investigating the immune 

microenvironment in other types of uterine sarcomas. 

 

Uterine stromal sarcomas are a heterogenous group of tumors, ranging from low-grade 

endometrial stromal sarcomas with a general good prognosis but with risk of recurrence, to 

undifferentiated uterine sarcomas with a much poorer prognosis. The rarity of uterine 

sarcomas, especially stromal sarcomas, hampers their inclusion in large randomized clinical 

trials for evaluation of new treatments. In the developing era of personalized medicine and 

immune therapy, it becomes of increasing importance to learn more about the biology and 

tumor microenvironment of different malignancies. The findings in this thesis provide 

additional insights in the biology of uterine stromal sarcomas, and will hopefully lead to 

new, more effective and more precise therapeutic options for uterine sarcomas in the future.   
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