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ABSTRACT 

The MYC family genes (c-, N- and L-MYC) encode potent oncoproteins/transcription 

factors regulating fundamental cellular processes involved in cell proliferation, 

metabolism and survival, and they play an important role in tumor development. 

Overexpression of MYC often induce apoptosis as a failsafe mechanism to prevent tumor 

development and it is known to sensitize cells to genotoxic agents that induce DNA 

damage by triggered apoptosis. However, the MYC-regulated effectors acting upstream 

of the mitochondrial apoptotic pathway in response to DNA damage are still obscure. We 

focused on apoptosis activated by DNA damage responses in this study by comparing cell 

death induced upon ionizing radiation (IR), bacterial cytolethal distending toxin (CDT) 

and UV irradiation. We could demonstrate that phosphorylation of the ATM kinase and 

its downstream effectors, such as histone H2AX, were impaired in the MYC null cell line 

HO15.19, in comparison to the wild type parental cell line TGR-1 and MYC reconstituted 

HOMYC3 cells in response to IR or CDT. We also found that nuclear foci formation of 

the Nijmegen Breakage Syndrome (Nbs) 1 protein, which is essential for efficient ATM 

activation, was also reduced in the absence of MYC. Knocking down of endogenous MYC 

by siRNA in the HCT116 human colon cancer cell line resulted in decreased ATM and 

CHK2 phosphorylation in response to ionizing irradiation. However, the response to UV 

irradiation, which is known to activate the ATR dependent checkpoint, was functional in 

all of these cell lines, indicating MYC status did not play an important role in ATR 

signaling. In summary, we found that MYC is required for the activation of ATM-

dependent checkpoint in response to IR and CDT; it contributes to DNA damage 

response by stimulating ATM phosphorylation and promoting NBS1 expression and 

nuclear translocation, thereby enhancing the apoptotic response, but potentially also 

stimulating DNA repair. 

Deregulated MYC expression is implicated in the development of a wide variety of 

cancers and is often strongly correlated with poor prognosis, underscoring the 

importance of finding ways to counteract MYC function. To exert its oncogenic activity, 

MYC must be able to interact with a number of cofactors that are essential for MYC 

function. For instance, dimerization with the partner Max enables the MYC to bind 

target gene promoters. This requirement for cofactors may allow for control of MYC 

activity with small molecules that interfere with interactions with these factors. We used 

bimolecular fluorescence complementation (BiFC) assay to visualize interactions between 

MYC and cofactors in living cells. Using BiFC we screened a 2000 compound library for 

molecules inhibiting the interaction between MYC and MAX, and found several 

interesting compounds. MYCMI-6 emerged among the top hits, and was further 

validated by split Gaussia luciferase (Gluc), in situ proximity ligation (isPLA), microscale 

thermophoresis (MST) and surface plasmon resonance (SPR) assays and was found to be 

a strong selective inhibitor of MYC:MAX interaction in cells and in vitro at single-digit 

micromolar concentrations without affecting MYC expression. SPR showed that 



MYCMI-6 binds to the recombinant MYC bHLHZip domain with a KD of 1.6 ± 0.5 μM. 

MYCMI-6 downregulated MYC-driven transcription and inhibited tumor cell 

proliferation and viability in a MYC-dependent manner in the low micromolar range, 

but was not cytotoxic to normal cells. In vivo studies using a xenograft mouse model of 

MYCN-amplified neuroblastoma revealed that daily intraperitoneal injections of 

MYCMI-6 led to reduced tumor cell proliferation, reduced microvascular density and 

induced massive apoptosis in tumor tissue without causing severe side effects for the mice.  

MYCMI-7 is another of the top hits identified in the BiFC screening. The efficacy and 

selectivity of MYCMI-7 was further validated with respect to inhibition MYC:MAX 

interaction, binding to MYC and effects MYC-driven tumor cell growth. Using a number 

of protein interactions assays which could demonstrate that MYCMI-7 efficiently blocks 

MYC:MAX interaction both in cells and in vitro. Using MST and SPR we showed that 

MYCMI-7 binds to recombinant MYC with an affinity of approximately 4 M. In 

contrast to MYCMI-6, MYCMI-7 downregulated the steady state levels of MYC protein 

subsequent to the inhibition of MYC:MAX interaction, suggesting that it could inhibit 

MYC in both direct and indirect ways. MYCMI-7 strongly inhibited tumor cell growth 

and induced apoptosis in a MYC dependent manner in a number of different tumor cell 

lines such as neuroblastoma, glioblastoma, Burkitt’s lymphoma, AML, lung cancer and 

several other epithelial tumors as well as patient-derived AML and glioblastoma tumor 

samples, while it only causing G1 arrest with cytotoxicity in normal cells. Moreover, 

MYCMI-7 blocked transformation of primary rat embryo fibroblasts by MYC together 

with activated RAS. Importantly, treatment with MYCMI-7 in vivo inhibited tumor 

growth and prolonged survival in mouse models of MYC-driven acute leukemia, triple 

negative breast cancer and MYCN-amplified neuroblastoma.  

Besides MYCMI-6 and MYCMI-7, yet another compound MYCMI-2 was identified from 

the BiFC screening. MYCMI-2 exhibited outstanding specific inhibition of 

heterodimerization of in vitro translated or recombinant MYC and MAX in vitro as 

determined by split GLuc, SPR and FRET assays, the latter showing an IC50 of 150 nM. 

Further, MYCMI-2 bound to MYC with extraordinary high affinity (KD 1.3 nM) as 

determined by SPR. We utilized cell based Gluc and isPLA to validate MYCMI-2’s 

MYC:MAX inhibitory efficacy in cells. The latter assay demonstrated an IC50 of about 5 

μM in MCF7 cells. Further, MYCMI-2 inhibited MYC-driven tumor cell growth and 

viability in a MYC-dependent manner, in a number of tumor cell lines with an IC50 of 

1.5-6 μM, while viability of normal cells was not affected. Due to the difference between 

MYCMI-2’s extraordinary activity in vitro and limited efficacy in cell cultures, we 

attempted to identify analogues with improved efficacy in cells with maintained activity 

in vitro. The analogue molecule MYCMI-2:7 showed lower but acceptable potency and 

maintained selectively towards MYC:MAX heterodimerization in vitro compared with 

MYCMI-2, but demonstrated slightly better MYC:MAX inhibitory effect in the cell 

based Gluc and the isPLA assays with inhibition down to about 40% of DMSO treatment. 

Unlike MYCMI-2, MYCMI-2:7 downregulated the endogenous MYC protein level in 



 

 

MCF7 cells, which indicated that MYCMI-2 and MYCMI-2:7 work via different 

mechanism. In conclusion, we have demonstrated that MYCMI-2 has an extraordinary 

potency in vitro binding at a KD of 1 nM, and an activity in cells in the lower μM range, 

while the analogue MYCMI-2:7 was less active in vitro and only marginally better in 

cells. Both molecules could potentially contribute to the development of bioactive MYC 

inhibitors of therapeutic interest in cancer therapy in the future. 

We now try to improve the bioactivity of these compounds by modifications, evaluate 

their efficacies in vivo, and to further elucidate their mode of action and selectivity. Our 

protein-protein interaction platforms could potentially be used for high-throughput 

screens of larger chemical libraries for inhibitors of interactions between MYC and MAX 

as well as other cofactors of therapeutic and biological interest. We hope this project will 

lead to better understanding of the biological functions of the MYC network during 

tumorigenesis and provide new therapeutic tools to combat cancer in the future. 
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1 INTRODUCTION 

1.1 CANCER 

Cancer, by definition, quoted from the WHO, is the rapid creation of abnormal cells with the 

potential to grow beyond their usual boundaries, and which can then invade adjoining parts of 

the body and spread to other organs, the latter process is referred to as metastasis. So, in short, 

cancer is a subset of neoplasms with the potential to invade or spread to other parts of the body. 

How does cancer arise?  Research during the last decades has demonstrate that cancer is caused 

by genetic or epigenetic aberrations, leading to loss of control over cell proliferation and cell 

division. Cancer is a heterogeneous malignant disease, that the mechanisms of cancer 

development are still not fully elucidated, so as the optimal treatment strategies for different 

cancers.  

However, there are several barriers against transformation of normal cells to malignant cells, 

as was summarized in 2000 by Hanahan and Weinberg. They defined six hallmarks of cancer, 

capabilities that pre-malignant cells have to acquire step by step to evolve progressively to a 

neoplastic state. These include sustaining proliferative signaling; evading growth suppressors; 

evading apoptosis; limitless replicative potential; sustained angiogenesis and tissue invasion 

and metastasis (Hanahan and Weinberg, 2000). 

In addition to these six, two new hallmarks, genome instability and tumor promoting 

inflammation, were included in the updated in the latest version of the article in 2011, as well 

as two emerging hallmarks, reprogramming energy metabolism and evading the immune 

system (Hanahan and Weinberg, 2000, 2011).  

1.1.1 Sustaining Proliferative Signaling 

The growth and proliferation of normal cells are under control of growth factors, mitogens and 

hormones produced by other cells in the microenvironment or from distant locations in the 

body. These ligands bind receptors, such as transmembrane proteins on the cell surface or 

intracellular receptors such as the inositol trisphosphate receptor (InsP3R) and nuclear 

hormone receptors. Once bound by ligand, the receptors become activated and initiate 

downstream signaling cascades, for instance by phosphorylation. Cancer cells bypass the 

external growth stimuli as a result of genetic or epigenetic alterations the receptors or affecting 

further downstream component in the signaling pathway, such as mutant RAS, which becomes 

constitutively active.  In this way, tumor cells have self-sufficiency in growth signaling.  
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1.1.2 Evading Growth Suppressors  

Nevertheless, despite uncontrolled growth stimulation, not all cells will develop into tumor 

cells because of the existence of “gatekeepers” tumor suppressor genes. The two most 

important and well characterized tumor suppressors are pRB and p53, which are often found 

to be altered or mutated in cancers, leading to loss of function (Dick and Rubin, 2013; Hemann 

et al., 2005; Indovina et al., 2013; Vousden and Lane, 2007). Without these critical 

“gatekeepers”, cells become insensitive to negative regulators of proliferation, and anti-growth 

signals will not be able to pass on to command the cell to stop proliferation or to undergo 

programmed cell death by apoptosis.  

1.1.3 Evading apoptosis 

Apoptosis is defined as programmed cell death, which together with cell senescence, is 

considered as the most important barriers towards cancer development (Collado et al., 2007). 

Normal cells usually respond to transformation-associated stress, including irreparable DNA 

damage, uncontrolled proliferation, or matrix detachment, by apoptosis, while cancer cells 

are often able to surpass apoptotic response by various mechanisms (Koff et al., 2015; Lopez 

and Tait, 2015; Polyak et al., 1997), thereby allowing genetic aberrations to accumulate and be 

passed on to the daughter cells. 

1.1.4 Limitless replicative potential 

Unlike normal cells, which have a limited lifespan and restricted number of growth-and-

division cycles, also known as Hayflick Limit beyond which cells enter replicative senescence, 

cancer cells can overcome this limitation, keep on dividing and eventually become immortal. 

Replicative senescence, which is part of the cellular aging process, is due to telomere erosion. 

Telomeres are regions at the ends of each chromosome containing repetitive nucleotide 

sequences that protect the end of the chromosome from deterioration or from fusion with 

neighboring chromosomes (Dick and Rubin, 2013; Indovina et al., 2013). Normal cells 

progressively get shorter in telomeres the more cycles they have divided, until the critical 

shortening causes chromosomal fusion and breakage (Shay, 2016). This due to end 

replication problem that the synthesis of Okazaki fragments during DNA replication 

requires RNA primers attaching ahead on the lagging strand. After the last RNA primer is 

attached and degraded, part of the telomere is lost during each cycle of replication at the 5' end 

of the lagging daughter strands where the RNA primers attached. Telomerase is 

a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end 

of telomeres. It is a reverse transcriptase (TERT, or hTERT in humans), which is normally 
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active in normal stem cells but absent from, or at very low levels in most somatic cells. 

Telomerase maintains telomere ends by catalyzing addition of nucleotides to the ends of the 

telomere repeats (Gunes and Rudolph, 2013). In order to escape from the irreversible 

shortening of telomeres, cancer cells can stabilize telomeres length by the reactivation of 

telomerase. Telomerase allows each offspring to replace the lost bit of DNA, facilitating the 

cell to divide without ever reaching the Hayflick Limit.  

1.1.5 Sustained angiogenesis 

The uncontrolled growth of cancer cells requires blood vessels to transport oxygen and 

nutrients to the tumor, as well as removal of waste products (Carmeliet and Jain, 2000; 

Sakurai and Kudo, 2011). Angiogenesis refers to the formation of new blood vessels from 

pre-existing ones by proliferation of endothelial and other cells supporting the vessels.  

Pathological angiogenesis triggered for instance by excess vascular endothelial growth factor 

(VEGF), facilitates the aggressiveness and metastasis of cancerous tissue (Ferrara et al., 

2003).  

1.1.6 Tissue invasion and metastasis 

Cancerous invasion and metastasis are responsible for over 90% of cancer-related deaths 

(Steeg, 2006). A successful metastasizing cancer cell, much like a seed, need to survive 

extreme stress to be able to colonize into foreign soil. It first has to migrate through the 

extracellular matrix (ECM), passing through basement membrane, thereafter penetrate 

vasculature and survive in the circulation, finally invade and colonize distant organs 

(Massague and Obenauf, 2016; Valastyan and Weinberg, 2011). The invasion and metastasis 

process may involve multiple steps of cell-biological and molecular changes, which also offer 

therapeutic targets for cancer therapy. 

1.1.7 Reprogramming energy metabolism 

Another important characteristic of cancer cells is their reprogramming of metabolism, for 

instance their utilization of glucose and glutamine for energy production and biosynthesis as 

compared to normal cells (Dang, 2010). Due to uncontrolled growth, cancer cells apparently 

require more energy, but they metabolize glucose less efficiently, which is one of the 

paradoxes with cancer cells (Altman et al., 2016; Pavlova and Thompson, 2016).  One 

plausible reason behind this phenomenon might be that cancer cells not only use glucose 

purely for energy production, but the intermediate products of glucose are used for 

biosynthesis to support cell division (Cairns et al., 2011). 
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There are multiple mechanisms and signaling pathways could promote glucose uptake in 

cancer cells. Increased expression of hypoxia-inducible factor (HIF) in cancer cells, for 

instance, increases the expression of glucose transporter (GLUT) and hexokinase (trapping 

the inflowing glucose), and aberrant PI3K/AKT signaling increases expression of GLUT1 

and protein translocation to the cellular membrane, and so do oncogenic KRAS and BRAF 

signaling (Hay, 2016; Szablewski, 2013). Glutamine is the most abundant nutrition in human 

plasma, and it acts as a source of carbon and nitrogen in cancer cells as well. In 

glutaminolysis, the enzyme glutaminase converts glutamine to glutamate, which will be 

further catabolized in the tricarboxylic acid cycle (TCA cycle). The glutamine transporter 

SLC1A5 is often upregulated in cancer cells, thus affecting the metabolic pathways (Hsieh et 

al., 2015). 

1.1.8 Evading the immune system 

Long before the capability of avoiding immune detection became a cancer hallmark, the 

theory of ‘cancer immune surveillance’ was developed (Burnet, 1957; Dunn et al., 2002). 

The immune system protects the organism against foreign pathogens and diseases, but it also 

plays a very important role in clearing the body’s own unhealthy or abnormal cells. The 

immune system is also able to recognize and eliminate cancer cells, an important process 

which is utilized and enforced for immune therapy.  

Human immune system is classified into two categories: innate and adaptive system, both of 

which play a role in eliminating tumor cells.  During the process of immunoediting initial 

immunosurveillance is followed by tumor progression during different phases that can be 

divided into elimination, equilibrium and escapes phases. Interestingly immunoediting by 

cancer cells and immune cells was proposed to exhibit a dual role in both promoting host 

protection against cancer and facilitating tumor escape from immune destruction (Malmberg, 

2004; Schreiber et al., 2011). 

Normal cells evolve progressively to became cancerous, and the eight hallmarks of cancer 

describe above are acquired step by step and not necessarily in a particular order. Can those 

hallmarks be served as cancer targets?  Some aspects of the hallmarks will be explored the 

further in the following chapters. 
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1.2 ONCOGENES, TUMOR SUPPRESSOR GENES AND CELL SIGNALING 

Activation of oncogenes and inactivation of tumor suppressor genes are the main critical cause 

of cancers. Therefore, in the following chapters, oncogene and tumor suppressor genes, as well 

as cell cycle, cell signaling pathways involved in the tumorigenesis will be examined further. 

1.2.1 Proto-oncogene and oncogenes 

Oncogenes, by definition, refer to those genes that have the potential to cause cancer, and they 

are often found mutated or overexpressed in tumor cells (Adamson, 1987; Chial, 2008; 

Weinstein and Joe, 2008). A proto-oncogene is a normal gene that could become an oncogene 

due to point mutations, translocation, amplification or increased expression. In fact, many 

proto-oncogenes are necessary for survival, they only cause cancer when they acquire a “gain-

of-function” due to, for instance, point mutations, chromosomal translocation or deregulated 

of amplification. Examples of well characterized proto-oncogenes are RAS, PI3K 

(phosphatidylinositol 3-kinase) and MDM2 (mouse double minute 2). There are several 

systems for classifying oncogenes, and one of the widely accepted methods is to categorize 

oncogenes by functions, for instance, growth factors/mitogens (PDGF, VEGF); receptor 

tyrosine kinases (EGFR, PDGFR, VEGFR); cytoplasmic tyrosine kinases (SRC, BTK); 

serine/threonine kinases (RAF, AKT); regulatory  GTPases (RAS),  transcription factors (MYC 

, JUN) and anti-apoptotic genes (BCL-2, BCL-XL). 

RAS family proto-oncogenes (HRAS, KRAS and NRAS), named after Rat sarcoma, were 

discovered originally as part of oncogenic retroviruses in rats during the 1960s (Harvey, 1964). 

They encode RAS proteins, which are cellular signal transducers. RAS belongs to the GTPases 

superfamily and is associated with the plasma membrane to transduce extracellular signals 

from the plasma membrane to the cytoplasm and into the cell nucleus (Malumbres and 

Barbacid, 2003).  

Mutations in certain oncogenes is often linked to specific cancers, for example HER2 mutation 

in breast cancers (Krishnamurti and Silverman, 2014; Moasser, 2007; Petrelli et al., 2017). 

Identification of point mutations or other aberrations in oncogenes plays an important role 

cancer diagnosis, as well as in targeted treatment and prediction of prognosis of benefit for 

many cancer patients today and even more in the future.  

1.2.2 Tumor suppressor genes 

Tumor suppressor genes are, on the contrary, genes that protect cells from transforming into 

tumor cells. They function through, for instance, slowing down cell division by regulating the 

https://en.wikipedia.org/wiki/Cell_(biology)
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cell cycle, by repairing DNA damage, or by initiating apoptosis in abnormal cells, such as p53. 

Basically, tumor suppressor genes serve as antagonists to oncogenes. In many tumors, these 

genes are lost or inactivated, leading to lack of negative regulators of cell proliferation and 

survival, thereby contributing to abnormal proliferation and tumor development, much like the 

scenario of a speeding car without having a brake.  

The retinoblastoma protein (pRb) was the first tumor suppressor protein discovered in humans. 

pRb, which is a transcription factor, can prevent excessive cell growth by inhibiting cell cycle 

progression from G1 to S phase, resulting in G1 arrest (Lee et al., 1984; Murphree and 

Benedict, 1984).  

Another tumor suppressor protein, phosphatase and tensin homolog (PTEN) is a phosphatase 

that dephosphorylates PIP3 to PIP2, thereby antagonizing the PI3K/AKT-pathway, which 

regulates proliferation and survival (Manning and Dyson, 2011; Milella et al., 2015). 

p53, known as the guardian of the genome, is another classic tumor suppressor (Lane, 1992). 

p53 is a transcription factor and plays an important role in regulation of the cell cycle, apoptosis, 

and genomic stability. p53 is activated in response to diverse stress, including DNA 

damage (for instance caused by UV irradiation, ionizing irradiation or chemical 

agents), osmotic shock, oxidative stress, ribonucleotide depletion and deregulated oncogene 

expression. Mechanisms leading to p53 activation can be stimulus-dependent: DNA damage 

induces p53 phosphorylation mediated by ATM/CHK1, blocking MDM2-mediated 

degradation by preventing p53:MDM2 interaction (Kastenhuber and Lowe, 2017; Shieh et al., 

1997; Zhang et al., 1998), whereas oncogenic signaling induces the ARF tumor suppressor to 

sequester MDM2 into the nucleolus or by inhibiting the E3 ligase activity of MDM2, thus 

protecting p53 from degradation (Quelle et al., 1995; Pomerantz et al., 1998;Moll and Petrenko, 

2003). 

p53 arrests or eliminate cells following DNA damage, it is crucial for a reversible DNA 

damage-induced G1 phase checkpoint (Kastan et al., 1991) via activation of p21, which is a 

cyclin-dependent kinase inhibitor (Harper et al., 1993; Harper et al., 1995). Cell cycle arrest 

facilitates DNA repair, after which the cell cycle can restart. p53, in association with pRb, can 

alternatively induce cellular senescence following oncogenic stress and DNA damage in certain 

cell contexts. Upon severe DNA damage that cannot be repaired, p53 induction can lead to 

apoptosis by promoting of pro-apoptotic members of the BCL-2 family (BAD, BAX and BAK 

etc.), or alternatively increasing other p53 regulated modulators of apoptosis (PUMA, NOXA 

etc).  
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Inherited abnormalities sometimes contribute to the tumorigenesis, like inherited mutation in 

the BRCA1 or BRCA2 genes; acquired mutations are more common in tumor suppressor genes 

mutation like p53, which has been found in more than half of human cancers (Mei and Wu, 

2016). 

1.2.3 Cell signaling 

As it is described in the previous chapter, cells respond to external signals such as growth 

stimuli through plasma membrane surface receptors, which can be classified as tyrosine kinase 

receptors (RTK); G-protein couple receptors (GPCR); NOTCH receptors and etc. Upon 

binding, receptors transmit signals into cell interior via activation of different signaling 

pathways. There are several signaling pathways which are highly related to tumorigenesis, 

therefore will be discussed in more detail. 

As an example, the epidermal growth factor (EGF) signaling pathway plays an important role 

in cell proliferation and the prevention of apoptosis (Chang et al., 2003). Upon binding of EGF 

ligand to the EGF receptor (EGFR), which is a transmembrane receptor, EGFR will 

homodimerize and become activated leading to auto-phosphorylation of the receptor at 

multiple sites. The phosphorylated tyrosine residues at the Y992, Y1045, Y1068, Y1148 and 

Y1173 EGFR becomes a docking sites for adaptor proteins such as GRB2, which recognizes 

phosphorylated tyrosine residues and conformational changes via its SH2 domain, and 

transduces the signal further downstream into the RAS signaling pathway. GRB2 and the 

guanine nucleotide exchange factor (GEF) or “son of sevenless” (SOS), will interact with the 

GTPase RAS by exchanging binding of GDP for GTP, thereby turning RAS into the active 

state. This in turn will trigger downstream signaling through for instance the RAF/MEK/MAP 

kinase and PI3K/AKT pathways. The active state of RAS can be reversed by GTPase activating 

proteins (GAPs). In many cancers RAS is constitutively activated by mutations that prevent 

GTP hydrolysis, thus locking RAS into a permanently active state.  In addition to mutations, 

overexpression and amplification of growth factors signaling through RAS, inactivation of 

GTPase activating protein (GAPs), as well as upregulation of GRB2 adaptor proteins also lead 

to hyperactive RAS thereby promoting tumorigenesis (Malumbres and Barbacid, 2003).  

The RAF family of proteins (RAF1, ARAF, and BRAF) are serine/threonine kinases that bind 

to the effector region of RAS-GTP, thus inducing translocation of the protein to the plasma 

membrane. Following activation of GTP-bound RAS, RAF is in turn activated by interaction 

with RAS and by homodimerization and phosphorylation (Chong et al., 2001; Luo et al., 1996; 

Weber et al., 2001). The RAF kinase initiates a phosphorylation cascade by phosphorylating 

https://en.wikipedia.org/wiki/Signal_transducing_adaptor_protein
https://en.wikipedia.org/wiki/GRB2
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and activating the serine/tyrosine/threonine kinase MEK, which in turn phosphorylates and 

activates a mitogen-activated protein kinases (MAPK) including extracellular signal regulated 

kinase (ERK), which are serine/threonine-selective protein kinases. 

Finally, the ERK/MAPK component in this kinase cascade phosphorylates target proteins such 

as the transcription factor MYC and FOS and thereby regulate gene transcription (Leone et al., 

1997; Lo et al., 2006; Sears et al., 1999). In addition, SRC family kinases can promote the 

above signaling pathway by phosphorylating RAF in the presence of RAS (Weber et al., 2001; 

Williams et al., 1992), or binding to and phosphorylating RAS directly on a conserved tyrosine 

at position 32 (Bunda et al., 2014).  

Apart from the MAPK pathway, phosphatidylinositol 3-kinase (PI3K) is another main effector 

pathway of RAS, regulating cell growth, cell cycle entry, cell survival, cytoskeleton 

reorganization, and metabolism (Castellano and Downward, 2011; Tsai et al., 2012). PI3K is 

also a key component in insulin and growth factors pathways, growth factor receptors such as 

IGF1 receptor, epidermal growth factor receptor (EGFR), platelet-derived growth factor 

receptor (PEGFR) and others can activate PI3K (Vivanco and Sawyers, 2002). Similar as 

activation of GRB2 discussed above, PI3K activation triggered by binding with tyrosine kinase 

receptors (RTK), dimerization and autophosphorylation at tyrosine residues of the RTKs, 

which allows them to interact with SRC homology 2 (SH2) domain–containing molecules 

(Pawson and Nash, 2003; Schlessinger, 2002).  It was reported that PI3K activation pathways 

depend on the adaptor protein GRB2 as well through a large complex including RAS, SOS and 

GRB2-associated binder (GAB). 

The second messenger PIP3 is generated by phosphorylation of PIP2, where tumor suppressor 

PTEN can stop the process by dephosphorylating PIP3 to PIP2. PIP3 is a membrane-docking 

site for AKT and it binds to phosphoinositide dependent kinase 1 (PDK1), which further 

activates AKT by phosphorylating it at threonine 308 at the plasma membrane. Activated AKT 

subsequently inhibit pro-apoptotic BCL-2 family members BAD and BAX thereby promoting 

cell survival (Cantley, 2002; Engelman et al., 2006; Manning et al., 2002). AKT also 

downregulates transcription factor NF-κB, and phosphorylates MDM2, resulting in increased 

p53 degradation, in turn leading to decreased p53 mediated apoptosis.  

In addition, PI3K/AKT activates mTOR-signaling. mTOR (mammalian target of rapamycin) 

serves as a core component of two distinct protein complexes, mTOR complex 1 

(mTORC1) and mTOR complex 2 (mTORC2), which regulate different cellular processes. 

mTORC1 functions as a sensor of nutrition and redox, responding to growth factors, energy 

https://en.wikipedia.org/wiki/Transcription_factor
https://en.wikipedia.org/wiki/C-myc
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status, amino acid levels, and cellular stress, its activation stimulates increased translation. 

mTORC1 is regulated by tuberous sclerosis complex proteins 1 and 2 (TSC1 and 2), which 

form a protein complex. TSC2 is a heavily phosphorylated protein that senses a variety of 

growth factors and stress signals such as EGF, phorbol esters, and constitutively active mutant 

RAS. TSC2 contains a GTPase Activating Protein (GAP) domain, via which, TSC2 

subsequently releases TSC inhibition of the GTPase Ras homolog enriched in brain (RHEB), 

resulting in the activation of mTORC1 (Mendoza et al., 2011). In turn, mTORC1 

phosphorylates S6K and promotes mRNA translation and cell growth. TSC1 does not have a 

GAP domain but it acts as a stabilizer of TSC2 by protecting it from degradation (Sengupta et 

al., 2010). 

Besides the AGC (protein kinase A, G, and C) family kinase p70 ribosomal S6 kinase (S6K) 

as mentioned above, mTORC1 also phosphorylates eukaryotic initiation factor 4E-binding 

protein 1 (4E-BP1). S6K1 and 4E-BP1 are two main regulators of mRNA translation and 

ribosome biogenesis, their inactivation stimulates protein synthesis and cellular growth 

(Mamane et al., 2006; Proud, 2009).  4E-BP1 blocks translation initiation factor eIF4E 

which is considered as oncogenic and a target of MYC.  4E-BP1 undergoes caspase-

dependent cleavage in apoptotic cells. The cleaved 4E-BP1 binds strongly to eIF4E, 

fails to become sufficiently phosphorylated and thus inhibits cap-dependent translation 

(Tee and Proud, 2002). In addition, consecutively active 4E-BP1 mutant with all 

phosphorylation sites mutated to Ala delays G1 progression in cell cycle and blocks 

MYC-induced transformation by increasing apoptosis (Lynch et al., 2004), and 

suppresses tumor growth in breast carcinoma (Avdulov et al., 2004). 

mTORC2 phosphorylates AKT (also known as protein kinase B) and SGK (serum 

glucocorticoid-induced kinase), and regulates cytoskeleton organization, cell survival, as 

well as lipid metabolism (Julien et al., 2010). 

 

https://en.wikipedia.org/wiki/GTPase_Activating_Protein
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Figure 1. Cell signaling via the RAS/MAPK and PI3K/AKT pathways. The 

RAS/RAF/MEK/ERK and RAS/PI3K/mTOR pathways respond to extracellular and 

intracellular cues to control cell survival, proliferation, motility, and metabolism. Adopted 

from Mendoza & Blenis, The Ras-ERK and PI3K-mTOR Pathways: Cross-talk and 

Compensation, Trends Biochem Sci. 2011 Jun; 36(6): 320–328. 

 

1.3 CELL CYCLE 

In eukaryotic cells, the cell cycle is divided into several different phases and involves two major 

events; DNA replication to duplicate the genome, which occur in the synthesis (S) phase and 

mitosis followed by cell division, which occurs in the M phase, in order to create. The S and 

M phase are preceded by the G1 and G2 phases, respectively. The G1, S and G2 phases are 

collectively called the interphase.  

In G1 phase, cells synthesize mRNA and proteins in preparation for the S phase. The G1phase 

contains a restriction point (R) before S phase. G2 phase follows the successful completion of 

S phase, with rapid cell growth and protein synthesis which prepare cells for the M phase, 

which consists of mitosis and cytokinesis. Mitosis can be divided into prophase, prometaphase, 

metaphase, anaphase and telophase. During the telophase, replicated chromosomes are 

separated, as well as separation of other component such as membrane and cytoplasm. 

Cytokinesis is the part of the cell division process during which the cytoplasm of a 

single eukaryotic cell divides into two daughter cells. Cells can also residue in a 

quiescent/resting state called G0, from which the cell cycle can be activated. This G0 phase 

https://en.wikipedia.org/wiki/Cell_division
https://en.wikipedia.org/wiki/Biological_process
https://en.wikipedia.org/wiki/Cytoplasm
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may be a temporary resting period or more permanent if a cell has reached an end stage of 

development and will no longer divide. 

The cell cycle is tightly monitored and controlled by positive and negative regulators called 

cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors. CDKs are a family of 

serine/threonine kinases whose activity depends on association with cyclins, which are non-

catalytic positively regulatory subunits interacting with specific CDK substrates.  

In general cyclin/CDKs complexes are the positive regulators to promote cells enter the next 

phase, such as cyclin D/CDK4 (upregulated in G0/G1), cyclin E/CDK2 (upregulated in G1/S 

transition) and cyclin B/CDK1 (upregulated in M and G2). The activities of the cyclin/CDK 

complexes are counteracted by CDK inhibitors (CKIs), which are negative regulators of the 

cell cycle. These consist of the CIP/KIP (CDK interacting protein/Kinase inhibitory protein) 

family including the p21, p27 and p57, and INK4/ARF family (Inhibitor of Kinase 

4/Alternative Reading Frame) which includes p16INK4a, p15INK4b, p18INK4c, p19INK4d. p21, p27 

and p57 primarily bind and inhibit cyclin E/CDK2, cyclin A/CDK2 and cyclin B/CDK1 

complexes (Bouchard et al., 1999; Harper et al., 1995; Seviour et al., 2016), limiting G1/S 

phase and cell proliferation progression. As a major target of p53, p21 is induced following 

p53 activation during oncogenic stress and DNA damage to rapidly arrest the cell cycle in order 

to prevent tumorigenesis (Abbas and Dutta, 2009; Claassen and Hann, 2000; Passos et al., 

2010). The INK4 family proteins bind to CDK4 and CDK6 and induce an allosteric change 

that leads to the formation of CDK/INK4 complex rather than CDK/cyclin complex thereby 

preventing G1-S phase transition (Sherr and Roberts, 2004). 

Checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the 

major events of the cell cycle, such as cell size control, DNA damage control, DNA replication 

control etc.(Barnum and O'Connell, 2014).The well characterized checkpoints are G1 

checkpoint, G2/M (DNA damage) checkpoint and metaphase or spindle checkpoint.   

In the presence of mitogenic stimuli, the MAPK kinase cascade, which is activated by RAS 

signaling pathway, will in turn activate cyclin D/CDK4 and cyclin D/CDK6 complex, therefore 

promoting G1 progression. On the contrary, tumor suppressor pRb prevents G1 to S phase 

transition by binding the transcription factor E2F/DP1, which controls S phase genes (Datta et 

al., 2003). The pRB/E2F/DP complex acts as transcriptional repressor by recruiting histone 

deacetylase (HDAC) complexes to the chromatin, which successively results in the 

transcription inhibition and DNA synthesis repression, thereby executing the late G1 phase 

restriction point.  

https://en.wikipedia.org/wiki/TP53
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Cyclin E/CDK2 complex “hyperphosphorylates” pRb, which ensures complete inactivation of 

pRb. In the absence of pRb, E2F1 along with its binding partner DP1, mediates the 

transactivation of E2F1 target genes that facilitate the G1/S transition and S phase. The 

hyperphosphorylation of pRB by cyclin D/CDK4/6 and cyclin E/CDK2 thereby overrides the 

late G1 restriction point, after which the cell is committed to progress into the S phase of the 

cell cycle. On the other hand, signals activating CKIs that inhibit Cyclin D/CDK4 or cyclin 

E/CDK2, such as p15, p16, p12 and p27, will keep pRb in active state and prevent passing of 

the R point. 

The G2/M checkpoint serves to prevent the cell from entering mitosis (M phase) with genomic 

DNA damage. The cyclin B/CDK1 complex promotes the G2-phase transition wherein CDK1 

is maintained in an inactive state by the tyrosine kinases WEE1 and MYT1, while phosphatase 

CDC25 family protein activates CDK1 by dephosphorylation (Boutros et al., 2007). 

It is reported that once approaching M phase, Aurora A and the cofactor BORA activate PLK1, 

which in turn activates CDC25 and downstream CDK1 activity, hence establishing a feedback 

amplification loop that efficiently drives the cell into mitosis (Ciccia and Elledge, 2010). 

Importantly, DNA damage triggers ATM/ATR kinases, which involves phosphorylation of p53 

and allows for its dissociation from MDM2 and MDM4, which prevent p53 degradation thus 

upregulating p53 target genes p21, 14-3-3σ, and GADD4, and downregulating CDC25. p21 

inhibits the cyclin B/CDK1complex, as well as its activating kinase CAK; GADD45 promotes 

dissociation of the Cyclin B/CDK1 complex; 14-3-3σ sequesters CDC25 in the cytoplasm 

(Varmeh and Manfredi, 2009), thereby preventing G2-M phase transition. 

 

1.4 APOPTOSIS AND SENESCENCE 

Apoptosis is referred to a programmed cell death, which means that the cell death process 

follows a controlled, predictable and energy-dependent route. The initiation or activation of 

apoptosis could be categorized into intrinsic (mitochondrial) pathway and extrinsic (death 

receptor) pathway (Koff et al., 2015). Both pathways involve caspases, which are protease 

enzymes which cleave target proteins via their cysteine protease activity. They can be classified 

into three groups: initiator (caspase 2,8,9,10), executioner (caspase 3,6,7) and inflammatory 

(caspase 1,4,5,11,12,13). The first two groups play very important roles in apoptosis.   

The complex apoptosis process involves many modulators that coordinate the event. Multiple 

stress-inducible molecules, for example, c-Jun N-terminal kinase (JNK), mitogen-activated 
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protein kinase (MAPK)/extracellular signal-regulated protein kinase (ERK), nuclear factor 

kappa B (NF-κB) or ceramide, have been implied in transmitting the apoptotic signal (Davis, 

2000; Fulda and Debatin, 2016; Karin et al., 2002). 

Apoptosis normally occurs during development and aging and as a homeostatic mechanism to 

maintain cell populations in tissues (Elmore, 2007). It also occurs as a defense mechanism such 

as in immune reactions or when cells are damaged by disease or noxious agents (Norbury and 

Hickson, 2001). Therefore, apoptosis is considered as an important barrier against cancer and 

involved crucially in the regulation of tumor formation, it protects cells from uncontrolled 

proliferation and transformation. Furthermore, apoptosis critically determines the treatment 

response, to example, the failure to undergo apoptosis may result in treatment resistance. 

The intrinsic pathway is usually activated by cellular stresses, such as radiation exposure or 

growth factor deprivation. The regulation of the intrinsic pathway is balanced by the pro-

apoptotic (BAX, BAK and others) and the anti-apoptotic (BCL-2 and BCL-XL and others) 

members of the BCL-2 family (Eischen et al., 2001; Vogler et al., 2011). There are three 

functionally important BCL-2 homology domains (BH1 BH2 and BH3) which are in close 

spatial proximity. They form an elongated cleft that may provide the binding site for other 

BCL-2 family members. In more detail, intracellular stress activates the pro-apoptotic BH3-

only members, which have only one BCL-2 homology domain, including BIM, PUMA, 

NOXA, DP5, BID and others (Strasser, 2005). These proteins initiate apoptosis signaling by 

binding to the BCL-2 pro-survival proteins associated with the mitochondrial membrane 

including BCL-2, BCL-XL and others, resulting in the recruitment of BAX and/or BAK from 

cytosol to mitochondrial membrane (Jeong et al., 2004; Schellenberg et al., 2013). 

This leads to the permeabilization of mitochondrial membrane, followed by the release of 

cytochrome c from mitochondria. Cytochorme c thereby activates apoptosome (APAF-1) 

which in turn cleaves the pro-enzyme of caspase-9 into the active dimer form, by 

dephosphorylation inducing conformational changes.  They induce the activation of caspase-9, 

and downstream caspase-3, 6, and 7, eventually leading to apoptosis (Hotchkiss et al., 2009). 

It was reported that the activation of BCL-2 pro-apoptotic members is cell type specific and 

dependent on the different sources of stresses. Moreover, the pro-apoptotic members can 

downregulate pro-survival members (Youle and Strasser, 2008). 

The other major apoptosis pathway, extrinsic pathway, is initiated by activation of tumor 

necrosis factor (TNF) super-family such as FasL, followed by binding to the cell-surface death 

receptors such as FAS or TNFR that have an intracellular death domain. FAS-associated death 
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domain (FADD) binds to above death receptors on death domain (DD) at the plasma membrane 

so to recruit caspase-8 via death effector domain (DED) binding. Caspase-8 is then activated 

by FADD by formation of the death inducing signaling complex (DISC), and subsequent 

effectors downstream caspase-3, 6, and 7 for eventual proteases activation. The BH3-only 

protein BID is essential for death receptor-mediated apoptosis in beta cells, thereby providing 

cross-talk between the two apoptotic pathways (Hotchkiss et al., 2009; Thomas et al., 2009). 

Oncogenes like BCL2 are potent negative regulator of apoptosis whereas poor inducers of cell 

proliferation. Therefore, it is not sufficient to drive tumorigenesis as a single oncogenic event. 

The cooperation of oncogenes such as MYC and BCL2 lead to suppress apoptosis and drive 

proliferation at the same time, thereby resulting in cellular transformation. Oncogene BCR-

ABL, which is generated by translocation of c-ABL1 on chromosome 9 with the BCR gene on 

chromosome 22, can activate signaling pathways that simultaneously induce cell proliferation 

(PI3K, JAK/STAT, and RAS/RAF/MEK/ERK pathways) and suppress apoptosis (by 

downregulating tumor suppressors), thereby leading to transformation (Fernald and Kurokawa, 

2013).  

Cellular senescence is defined as an irreversible growth arrest, irrespective of the presence of 

growth factors. Senescence is characterized with a high metabolically activity, enlarged 

morphology and a secretory phenotype. Apart from its normal functions which facilitates 

wound healing, tissue repair, and development, senescence is considered as a potent anticancer 

mechanism. 

Senescence can be triggered telomere erosion, so called “replicative senescence”, and is 

associated with cellular aging process. Therefore, senescence is recognized as an important 

contributor to aging and age-related diseases. In addition, premature senescence can be induced 

by different types of stress, inducing oxidative stress, DNA damage, and oncogene 

deregulation. Therefore, it is also suggested as a potential anti-tumor therapy (Debacq-

Chainiaux et al., 2009). Senescence is considered as a barrier against tumorigenesis as it 

suppresses tumor formation by arresting cell cycle and eliminaing the tumor cells via the 

immune system (Kuilman et al., 2010). SASP (senescence-associated secretory phenotype) is 

a major trait of senescence cells, which include secreted proteins such as proinflammatory 

cytokines, lymphokines, growth factors, angiogenic factors, and matrix metalloproteases, 

comprising the senescent cell secretome. The SASP factors therefore promote angiogenesis, 

recruit immune cells for clearance of senescent cells and remodel the extracellular matrix 

(Coppe et al., 2010; Kim et al., 2018; Malaquin et al., 2016). Senescence could potentially be 

utilized for anti-tumor therapy (pro-senescence therapy). However, the role of the SASP is 
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controversial and may favor tumorigenesis depending on the context, such as driving chronic 

inflammation that promote cancer and degenerative diseases (de Visser et al., 2006; 

Grivennikov et al., 2010; Grivennikov and Karin, 2010; Saijo et al., 2010; Terzic et al., 2010). 

Learning how to modulate the SASP (Kuilman and Peeper, 2009) could reduce the negative 

sides of inflammation, promote tissue repair and the immune-mediated clearance of senescence 

tumor cells that otherwise may escape treatment and drive cancer progression. 

 

1.5 DNA DAMAGE 

To maintain the homeostasis of cells, multiple mechanisms are developed including DNA 

damage detection and repair, cell cycle regulation, apoptosis and senescence. One of the 

hallmarks characterizing cancer cells is genomic instability that result in the accumulation of 

chromosomal rearrangements such as deletions, amplifications, inversions, and translocations, 

resulting in extensive aneuploidy. The stability of the genome is guarded by DNA damage 

stress response (DDR) pathway. The DDR pathway is independent of ARF-MDM2-p53 tumor 

suppressive pathway, and is a mechanism that detects DNA lesions, pass through signals in the 

cell that promote DNA repair or alternatively cell cycle arrest, and - if the DNA damage cannot 

be repaired - apoptosis or senescence (Harper and Elledge, 2007; Maclean et al., 2007; Rouse 

and Jackson, 2002). 

DDR is a multi-steps pathway that initiates with recognition of damage DNA by specialized 

“sensor proteins”, followed by DNA repair after activation of DNA damage check point, which 

halts the progression of cell cycle to prevent passing genomic abnormalities to the daughter 

cells during cell division.  

The DDR pathway is tightly controlled by post-translational modifications (PTM), 

including phosphorylation, ubiquitination, sumoylation, methylation, acetylation and other 

modifications (Gorgoulis et al., 2005; Jackson and Bartek, 2009; Norbury and Hickson, 2001; 

Rouse and Jackson, 2002; te Poele et al., 2002). ATM (ataxia telangiectasia mutated) and ATR 

(adenosine triphosphate), as well as protein kinase catalytic subunit (DNA-PKcs), which all 

belong to the PIKK (phosphatidylinositol 3-kinase-related kinase) protein family, are central 

in DDR signaling. ATM and ATR are activated in response to double strand breaks (DSBs) 

and replication stress, respectively, with overlapping but nonredundant activities (Blackford 

and Jackson, 2017; Jackson, 2009; Jackson and Bartek, 2009). ATM, ATR and DNA-PKcs all 

require a specific co-factor for stable recruitment to DNA damage sites, which is the MRN 
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complex for ATM (Falck et al., 2005), ATRIP for ATR (Zou and Elledge, 2003), and Ku80 for 

DNA-PKcs (Gell and Jackson, 1999; Hanakahi and West, 2002; Singleton et al., 1999).  

The MRN complex consists of MRE11, RAD50 and NBS1. It plays an important role of 

initiating DDR signaling and DSB repair. MRE11 is involved in the detection of DSB and the 

repair pathway selection (Lavin, 2007; Lee and Paull, 2007; Williams et al., 2007), as well as 

coordinating the alignment of broken chromosomes (Williams et al., 2008). RAD50 

collaborates with MRE11, holding different DNA molecules together thereby facilitating 

ligation of DNA ends (de Jager et al., 2001). NBS1 protein was identified from Nijmegen 

breakage syndrome (NBS) which is characterized by increased sensitivity to ionizing radiation 

(IR) and a high frequency of malignancies (Rodier et al., 2009; Weemaes et al., 1981). NBS1 

forms complex with MRE11 and RAD50 (MRN complex), and it is considered as the one of 

the first proteins recruited to DBS, to form radiation-induced nuclear foci. NBS1 acts as a 

damage sensor/mediator that recruits the key transducer ATM kinase to DSB sites (Chapman 

and Jackson, 2008; Kang et al., 2002; Nakanishi et al., 2002). There have been evidence 

indicating that NBS1 could be used to measure the DNA damage initiation and it has 

multifunctional roles in response to DNA damage from a variety of genotoxic agents. 

A variety of sophisticated DNA repair machineries can be activated in response to endogenous 

and exogenous genotoxic attacks. When a single strand damage occurs, nucleotide excision 

repair (NER) removes a variety of helix-distorting lesions such as typically induced by UV 

irradiation, whereas base excision repair (BER) targets oxidative base modifications. Mismatch 

repair (MMR) scans for nucleotides that have been erroneously inserted during replication.  

DNA double strands breaks (DSBs) can be repaired either by homologous recombination (HR) 

or by non-homologous end joining (NHEJ).  HR is a genetic recombination in 

which nucleotide sequences are exchanged between two similar or identical molecules of DNA. 

In contrast to HR, NHEJ does not require homology direction, it utilizes short homologous 

DNA sequences called microhomologies to guide repair.  Inappropriate NHEJ can cause 

translocations and telomere fusion which lead to the tumorigenesis. Whether HR or NHEJ is 

used to repair DBS is mainly determined by the phase of cell cycle: HR is usually utilized 

after DNA replication, in the S and G2 phases when sister chromatids are available. NHEJ is 

predominant in the G1 phase of the cell cycle (Li and Heyer, 2008; Weterings and Chen, 2008). 

Upon induction of double strands breaks (DSBs) by agents such as ionizing radiation (IR), 

chemotherapeutic agents, as well as by-products of normal cell metabolism, notably reactive 

oxygen species (ROS), chromatin relaxation occurs rapidly. The stress-activated protein kinase, 

c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative 

https://en.wikipedia.org/wiki/MRE11A
https://en.wikipedia.org/wiki/Rad50
https://en.wikipedia.org/wiki/Nbs1
https://en.wikipedia.org/wiki/Homologous_recombination
https://en.wikipedia.org/wiki/G1_phase
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stress and it facilitates the mobilization of SIRT6 to DNA damage sites and the activation 

of poly (ADP-ribose) polymerase 1 (PARP1) by mono-ADP ribosylation of PARP1 on lysine 

521. PARP1 in turn mediates the initial recruitment and activation of the MRN/ATM complex 

at DSBs. ATM kinase is thereby activated by MRN and histone acetyltransferase TIP60, 

resulting in the phosphorylation of checkpoint kinase 2 (CHK2) on Thr68. CHK2 in turn 

phosphorylates downstream targets including CDC25, E2F1 and PML (Promyelocytic 

leukemia protein). It also phosphorylates p53 on serine 20, which interferes with MDM2 

binding thereby leading to stabilization of p53 (Hirao et al., 2000; Van Meter et al., 2016).  

ATM also phosphorylates the histone variant H2AX on serine 139 (γH2AX). The γH2AX-

dependent signaling cascade is thereafter induced, which involved the recruitment of DNA 

damage response proteins such as MDC1, RNF8, RNF168, BRCA1 and 53BP1 to DSBs for 

initiating DNA repair (Panier and Boulton, 2013; Scully and Xie, 2013; Starita and Parvin, 

2003).  

Unlike typical IR-induced DSBs, DNA lesions induced by UV light or replication stress, rather 

than ATM activation, lead to replication fork stalling and accumulation of  replication protein 

A (RPA)-coated ssDNA regions, which recruit the ATR/ATRIP (ATR-interacting protein) 

complex and phosphorylate the RAD17/RFC2-5 complexes which are bound to the DNA, thus 

activating the ATR signaling cascade and checkpoint kinase 1 (CHK1) phosphorylation (Zou 

and Elledge, 2003).  ATR phosphorylates substrates such as p53, BRCA1, CHK1, and RAD17. 

The phosphorylation of ATR substrates collectively inhibits DNA replication and mitosis and 

promotes DNA repair, recombination, or apoptosis. Many substrates of CHK1 have been 

identified such as p53, CDC25, p21 etc. (Zhang and Hunter, 2014), and CHK1 play an 

important role in transmitting the signal from ATR leading to cell cycle arrest and repair upon 

DNA damage.  

As a downstream target of ATM and ATR, p53 plays an important role in DDR. Treatment of 

cells with DNA damaging agents such as ultraviolet light (UV), ionizing radiation (IR), and 

numerous cancer therapeutic and/or DNA damage-inducing compounds, increases P53 protein 

levels, either by phosphorylation and degradation of MDM2, or by phosphorylation of p53 

which affects the association of MDM2. Moreover, by inducing p21, p53 causes cell cycle 

arrest, either in the G1 phase before DNA replication or in the G2 phase before mitosis (Fritsche 

et al., 1993; Hartwell and Kastan, 1994; Kastan et al., 1991; Maltzman and Czyzyk, 1984; Zhan 

et al., 1993). This provides a window for DNA repair or elimination of cells with severely 

damaged DNA through apoptosis by transcriptional activation of pro-apoptotic genes by p53 

or through transcription-independent mechanisms (Lakin and Jackson, 1999). 
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Figure 2. Biochemical and Physiological Consequences of the DNA Damage Response. 

Adopted from The DNA Damage Response: Ten Years After, J.W. Harper and S.J. Elledge, 

Molecular Cell,2007 

 

1.6 THE MYC FAMILY 

Over 40 years ago, MYC was discovered as a viral oncogene (v-MYC) carried by some avian 

retroviruses that cause myelocytomatosis, a type of leukemia, from which the name originates. 

After identifying the cellular homologue (MYC or c-MYC) in chicken, the homologous gene in 

humans was identified in Burkitt lymphoma and was found altered and over-expressed in 

various cancers. Later, N-MYC (MYCN) and L-MYC (MYCL) were discovered and became part 

of the MYC family of proto-oncogenes (Brodeur et al., 1984; Kohl et al., 1983; Nau et al., 1985; 

Schwab et al., 1983).  

Most of the functional studies of MYC family members have focused on MYC and MYCN, 

but all MYC family members share highly conserved functional domains. Moreover, the 

expressions of the three genes are differently regulated.  

MYC is commonly expressed in most rapidly proliferating cells/tissues throughout 

development and continues to be expressed in dividing cells of adult tissues (Alt et al., 1986; 

DePinho et al., 1987; Depinho et al., 1986; Zimmerman et al., 1986). 

Whereas MYCN is mostly expressed during embryogenesis in pre-B cells, kidney, forebrain, 

hindbrain, intestine, and particularly highly expressed in the developing brain. After embryonic 

development, MYCN is downregulated and not expressed in most adult tissues but only 
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expressed in immature cells of many lineages in regenerating tissues (Okubo et al., 2005). 

The MYCN oncogene was first identified as an amplified gene in neuroblastoma, which are the 

most common solid tumor in early childhood, and from where MYCN got its name. It is also 

found implicated in retinoblastoma, glioblastoma, medulloblastoma, astrocytoma and small 

cell lung cancer cells  (Beltran, 2014; Breit and Schwab, 1989; Fletcher et al., 1991; Gasperi-

Campani et al., 1998; Ingvarsson, 1990; Leanna Cheung, 2013; Lee et al., 2016; Siegfried and 

Delisle, 2018; Yokota et al., 1989). 

The MYCL gene is less well characterized, but it is homologous to MYC and MYCN, and is 

found amplified in lung cancers therefore named as L-MYC (Barrett et al., 1992; Nau et al., 

1985; Oster et al., 2002; Zimmerman et al., 1986). 

1.6.1 MYC AS A TRANSCRIPTION FACTOR 

MYC functions mainly as a transcription factor, it is known to both activate and repress 

transcription from target genes by binding to DNA and to different cofactors. MYC regulates 

expression of a large number of genes that involved in cell cycle progression, cell growth, 

apoptosis, senescence and metabolism, hence modulates the wide range of cellular events that 

when deregulated promote tumorigenesis. (Conacci-Sorrell et al., 2014; Fletcher and 

Prochownik, 2015).   

MYC belongs to the basic/helix-loop-helix/leucine zipper (bHLHZip) family of transcription 

factors. In order to bind DNA, bHLHZip proteins need to dimerize. MYC homodimerization 

does not occur under physiological conditions, and therefore MYC to dimerize with another 

bHLHZip protein, MAX, which results in stable heterodimer formation with specific DNA-

binding activity. The MYC:MAX complex binds to the DNA sequence 5′-CACGTG-3′ or 

similar sequences, known as an E boxes, and thereby MYC can activate transcription (Berg, 

2011; Blackwell et al., 1990; Tu et al., 2015).  

MAX was initially identified as a ubiquitous bHLHZip protein essential for MYC target gene 

expression. In addition, MAX forms homodimers, or forms heterodimers with MXD family of 

bHLHZip proteins such as MXD1 (MAD1), MXI1, as well as MNT, which act as antagonists 

to MYC function (Conacci-Sorrell et al., 2014; Luscher and Vervoorts, 2012; Conacci-Sorrell 

et al., 2014; Grandori and Eisenman, 1997; Hann, 2014). The bHLHZip family members show 

distinct preferences of dimer formation. All these above heterodimers also bind E-boxes, as do 

Max homodimers (Amati and Land, 1994; Grandori et al., 2000; Hu et al., 2005). 
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Functionally distinct classes of target genes differ in the enhancer box sequences (E-box) bound 

by MYC, suggesting that different cellular responses to physiological and oncogenic MYC 

levels are controlled by promoter affinity (Walz et al., 2014).  

MYC has been reported to regulate the expression up to about 15% of all human genes involved 

in many physiological functions (Patel et al.). This view, however, has been challenged by 

recent work that suggested that MYC works as a global amplifier of transcription, which would 

mean that MYC does not simply target specific genes but universally amplifies transcription 

of all expressed genes (Lin et al., 2012; Nie et al., 2012). There have been considerable debate 

regarding these two views on MYC’s transcriptional functions (Levens, 2013; Rahl and Young, 

2014; Sabo et al., 2014; Kress et al., 2015). One of the critical disagreements is how to explain 

transcriptional repression by MYC. MYC has been shown to interact with the zinc finger 

protein MIZ1 to represses distinct target genes (Walz et al., 2014; Wiese et al., 2013). The 

global amplification theory seems to argue that “repressed” genes, rather than being directly 

repressed by recruitment of repressor proteins by MYC, may actually also be upregulated by 

MYC, only less than the average compared with other genes.  

In contrast, the new data provided by Sabo et al and Walz et al suggest that the 

promoter/enhancer invasion and RNA amplification by MYC are two independent events. By 

either up or down regulating distinct sets of target genes, MYC overexpression modifies 

cellular status, which indirectly affects global RNA amplification according to this view (Walz 

et al., 2014; Sabo et al., 2014; Kress et al., 2015). 

 

1.6.2 MYC STRUCTURE AND INTERACTION WITH COFACTORS 

MYC harbor several conserved so called MYC homology boxes: MBI, MBII, MBIII and 

MBIV in addition to the C-terminal bHLHZip domain, which binds DNA in a heterodimeric 

complex with MAX, as described in the previous section.  

The N-terminally located transactivation domain of MYC (TAD) is essential for MYC-

mediated transformation, differentiation and apoptosis. This region serves as an interaction 

platform for proteins involved in chromatin and histone modification as well as ubiquitination 

and subsequent degradation (Barrett et al., 1992).  

MBI serves as a phosphodegron and is involved in the ubiquitylation and proteasomal 

degradation of MYC involving threonine 58 (Thr58). Point mutations at this phosphorylation 
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site block ubiquitin E3 ligase FBXW7 binding and augment MYC stability. MB1 also contains 

signals for activation linked to phosphorylation of serine 62 (Ser62). These phosphorylations 

will be discussed further in section Regulatin of MYC.   

MBII is the most well studied region within the TAD, it harbors sites for MYC cofactor 

binding. The molecular and biological functions of MYC are suggested to be regulated by 

binding to different cofactors, which potentially could yield a diverse range of outcomes in a 

cell-type- and/or context-dependent way. These different complexes of cofactors are thought 

function differently in the regulation of MYC’s transcriptional activity (Agrawal et al., 2010; 

Koch et al., 2007). 

One of the factors binding MBII is transformation/transcription domain-associated protein 

(TRRAP), which belongs to the phosphatidylinositol 3-kinase-related kinase (PI3K) protein 

family. TRRAP is found in various large chromatin complexes with histone H3 and H4 

acetyltransferase activity (HAT) involved in epigenetic regulation of transcription. By 

recruitment of TRRAP to chromatin, MYC’s stimulation of RNA polymerase II, I and III (pol 

II and pol III) transcription is enhanced (Liu et al., 2003; McMahon et al., 2000), as well as cell 

transformation (McMahon et al., 1998). It is also required for P53, E2F1, and E2F4 mediated 

transcription activation. TRRAP forms complexes with the HATs GCN5, p300/CBP-

associated factor (PCAF), and TIP60, which by relaxing the chromatin structure at gene 

promoters allow MYC to promote transcription driven by pol II, I and III (Ikura et al., 2000). 

Reptin proteins TIP48 and TIP49 also interact with MYC through MBII independent of 

TRRAP binding (Cheng et al., 1999; Wood et al., 2000), they enhance MYC transformation 

capability through their ATPase and helicase activities. 

Moreover, MBII is also involved in MYC protein turnover. S phase kinase-associated protein 

2 (SKP2), an F-box protein, is the substrate-binding subunit of SCF ubiquitin ligase complexes 

that targets MYC, E2F-1 and p27KIP1 (p27) for degradation, and suppresses p53-mediated 

apoptosis (Hydbring et al., 2017). Since SKP2 targets MYC for destruction, one could assume 

that SKP2 downregulates the transcriptional activity of MYC. However, SKP2-mediated 

ubiquitylation of MYC was shown to have a dual function, stimulating MYC transcriptional 

activity but at the same time targeting MYC for destruction by the proteasome. Further, SKP2 

stabilizes the MYC protein level indirectly by promoting ubiquitylation and degradation of the 

E3 ligase TRUSS (Jamal et al., 2015), which targets MYC for degradation (Farrell and Sears, 

2014). SKP2 binds to two regions within MYC: residues 129–147 in the amino terminus, 

containing MBII, and 379–418 in the carboxy terminus, which contains the bHLHZip region. 
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The absence of phosphorylation sites within the Skp2 binding sites of MYC suggests the 

interactions might differ from other SCF interactions. MYC can in turn upregulate SKP2 

expression by binding to E box in the promoter. 

MBIII is mostly related to transcription repression and mediating apoptosis, transformation, 

and tumorigenesis (Herbst et al., 2005; Kurland and Tansey, 2008). MBIII also involves in 

binding with WDR5, a WD40-repeat protein that is present in multiple chromatin regulatory 

complexes, including H3K4 methyltransferases (Ang et al., 2011; Chen et al., 2008; Thomas 

et al., 2015).  

MBIV overlaps with nuclear localization signal (NLS), and it is necessary for DNA binding, 

required for apoptosis and transformation via binding with p300, FBXO28 (residues 294-439) 

and p27 (residues 294-366) (Adhikary and Eilers, 2005; Bahram et al., 2016; Cepeda et al., 

2013; Cowling et al., 2006). 

The C-terminal MYC:MAX dimeric HLHZip region presents a large solvent-accessible 

surface area (∼1000 Å) forming a platform for binding by other factors, such as MIZ-1 and 

SKP2 (Cheng et al., 1999; Nair and Burley, 2003; Peukert et al., 1997; Staller et al., 2001; von 

der Lehr et al., 2003). MYC:MAX complex formation with MIZ-1 mediates repression of 

multiple target genes by MYC and the ratio of MYC and MIZ-1 bound to each promoter 

correlates with the direction of response (Staller et al., 2001). 

INI1, which is the core factor of the SWI/SNF chromatin remodeling complex, binds with 

MYC via bHLHZip region, and without interfering with MYC:MAX interaction. INI1 

functions as a tumor suppressor, and share many common target genes with MYC (Cheng et 

al., 1999; Sammak et al., 2018; Stojanova et al., 2016).  

The positive transcription elongation factor b (P-TEFb) which consists of the cyclin 

dependent kinase 9 (CKD9) and its regulatory subunit cyclin T1, is another crucial cofactor 

for MYC transactivation. MYC:MAX heterodimer recruit P-TEFb complex to its targets, 

allowing P-TEFb phosphorylates the carboxyl-terminal-domain (CTD) of the larger subunit 

of RNA polymerase II (pol II) and negative elongation factors to facilitate transcription 

elongation (Gargano et al., 2007; Peterlin and Price, 2006). 
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Figure 3. The structure of MYC and its cofactors. Proteins shown in purple boxes are MYC-

interacting factor regulating different aspects of MYC function. 

 

1.6.3 REGULATION OF MYC  

MYC is regulated tightly at every level from RNA synthesis to protein degradation, its 

transcription is particularly responsive to multiple diverse physiological and pathological 

signals.  Aberrant MYC expression is usually due to induction caused by upstream signals, but 

can also be causes by amplification or translocation of the MYC gene. 

MYC transcription can be activated by several mitogenic signaling pathways, including 

tyrosine kinases receptors such as EGFR, PDGFR and their downstream effectors 

RAS/RAF/MAPK/ERK, or WNT, Janus kinase/signal transducers and activators of 

transcription (JAK/STAT), NOTCH as well as NF-κB.  Transcription factors harnessed by 

these pathways bind to the MYC promoter to regulate transcription initiation and elongation, 

dependent on cellular context and chromatin conformation (Liu and Levens, 2006; Wierstra 

and Alves, 2008). 

MYC is rapidly turning over with a half-life of 30 minutes (Andresen et al., 2012). There are 

many modulators that regulate MYC’s stability and turnover. In MYC’s transactivation domain, 

two phosphorylation sites are controlling its degradation (Farrell and Sears, 2014): serine 62 

(Ser62) and threonine 58 (Thr58), both of which are located in the highly conserved region of 

MYC designated MYC Box I (MBI) within the second exon of MYC. The phosphorylation of 

Thr58 needs to be primed by the phosphorylation of Ser62. Phosphorylation of Thr58 is 

mediated by glycogen synthase kinase 3 (GSK3). The F-box protein FBXW7, acting as the 

substrate receptor of an SCF (SKP1/cullin1/F-box) complex, recognizes the phosphorylated 

Thr58 residue, thereby promoting ubiquitination and subsequent proteasomal degradation of 
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MYC(Welcker et al., 2004b; Yada et al., 2004;Becker, 2012).The phosphorylation of Ser62 by 

MAPK/ERK can stabilize MYC and thus promote proliferation (Dworakowska et al., 2009; 

Tsai et al., 2012). Also, CDK1 and CDK2 are involved in Ser62 phosphorylation, and the latter 

is highly correlated with MYC’s function of repressing Ras-induced senescence (Hydbring et 

al., 2010). 

Posttranslational modification players (Aurora A, SIRT1), acetyltransferases that block 

ubiquitination (CBP/p300, TIP60) are also involved in MYC’s stability regulation (Koepp et 

al., 2001; Popov et al., 2010; Welcker et al., 2004a; Yada et al., 2004). 

The regulation of MYC and its therapeutic implication will be further discussed in later 

chapters.  

1.6.4 MYC AND CANCERS 

The first implication of MYC in human cancer came from observations in Burkitt's lymphoma, 

which is highly aggressive B cell neoplasm. It is characterized by the translocation of MYC 

gene on chromosome 8 to immunoglobulin heavy locus (IGH) on chromosome 14, juxtaposing 

the IGH enhancer within the vicinity of the MYC, resulting in deregulation of MYC expression.  

Amplification of the MYC gene is another reason for MYC overexpression, and was first 

identified in the human leukemia cell line HL60 in 1982 (Collins and Groudine, 1982). In fact, 

the MYC family genes are the most frequently amplified oncogenes in human cancer 

(Beroukhim et al., 2010). According to data from The Cancer Genome Atlas (TCGA), MYC 

amplification occurs in 40% of basal-like breast cancer, 34% in ovarian cancer, 30% in lung 

adenocarcinoma and 29% in colon cancer. Likewise, amplifications of MYCN and MYCL 

were discovered in tumors of about 50% of neuroblastoma and 20% of small cell lung cancer, 

respectively (Brodeur et al., 1984; Gasperi-Campani et al., 1998; George et al., 2015; Jung et 

al., 2017b; Nau et al., 1985; Nesbit et al., 1999). MYC is rarely point mutated, with the 

exception of lymphomas. Apart from amplification and translocation, deregulation of MYC 

can be caused by deregulation of signaling upstream of MYC (Poole and van Riggelen, 2017), 

such as the constitutive activation of growth factor signaling, loss of checkpoint components 

such as p53, loss of E3 ubiquitin ligases targeting MYC etc. It is reported that over 50% of 

human cancers have increased or deregulated MYC expression. Moreover, MYC over 

expression is often highly correlating with aggressive, poorly differentiated tumors, so as poor 

prognosis of patients and low survival rate.   

https://en.wikipedia.org/wiki/Chromosome_14
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Figure 4. Biological functions of MYC and impacts of MYC dysregulation. 

 

1.6.5 CELLULAR FUCTIONS OF MYC 

1.6.5.1 MYC and apoptosis 

MYC is well known to participate in the apoptotic response. It is tipping the equilibrium 

balance of pro- and anti-apoptotic proteins, by suppressing the expression of anti-apoptotic 

proteins such as BCL-2 and BCL-XL, (Eischen et al., 2001; Fulda and Debatin, 2016). 

MYC also induces apoptosis through the ARF-MDM2-p53 pathway, which stabilizes p53 

production thereby triggers the tumor suppressive response. The high ARF levels as 

consequence of MYC activation or deregulation, inhibit MDM2 which is a ubiquitin ligase 

that in turns ubiquitylates p53, finally result in allowing a robust p53 transcriptional response 

that induce apoptosis (Grandori et al., 2000; Nesbit et al., 1999; Ponzielli et al., 2005; Zindy et 

al., 1998). 

It might sound controversy that MYC involves in both proliferation and apoptosis pathways. 

One of the explanations for how MYC determine the cell’s fate is that different levels of MYC 

expression might engage different sets of target genes, which might preferentially head toward 

adverse directions (McMahon; Prendergast, 1999). 

For instance, upon growth factors withdraw, cells with high MYC levels experience 

activation of surveillance mechanisms, such as p53 induction. However, in the situation of 

constitutively elevated MYC in tumor cells, and additionally loss of surveillance mechanisms 



 

36 

such as p14ARF or p53 mutation, MDM2 overexpression, and/or by gain of prosurvival 

signals such as BCL-2 and NF-κB pathway alterations, tumor cells are able to tolerate high 

level of MYC and avoid apoptosis. 

Alternatively, MYC might engage the same set of target genes regardless of expression levels 

but only the extent of target gene transcription is altered. In this scenario, MYC functions more 

as a universal modulator of preexisting transcriptional programs (Lin et al., 2012; Nie et al., 

2012; Wali et al., 2013). 

1.6.5.2 MYC and senescence 

MYC is a potent apoptosis inducer as a safeguard mechanism for cells, while it is not a potent 

inducer of senescence. On the contrary, MYC has been found to overcome RAS-induced 

senescence in rat embryonic fibroblasts (REFs), thereby leading to successful transformation 

via the direct upregulation of E2F genes and repression of p16 and p21. Further, MYC is 

reported to override BRAFV600E-induced senescence in vivo, leading to accelerated mouse 

lung tumor development (Hydbring and Larsson, 2010; Tabor et al., 2014).  

1.6.5.3 MYC and DNA damage 

MYC is highly involved in DDR pathways. For instance, reactive metabolic intermediates such 

as reactive oxygen species (ROS), was shown to increase upon MYC deregulation, and 

induce oxidative damage (Vafa et al., 2002).  Upon oxidative damage, in response to hypoxia, 

hypoxia inducible factor 1 (HIF-1) is stabilized by ROS, and significantly contributes to the 

induction of VEGF for angiogenesis and the conversion of glucose to lactate for tumor 

glucose metabolism (Gao et al., 2007; Kaelin and Ratcliffe, 2008; Podar et al., 2008).  

ATM/CHK2 and ATR/CHK1 are two different branches of DDR signaling pathways. ATM 

activity constitutes a barrier to malignant transformation, while, on the other hand, full 

activation of ATR and CHK1 is also essential for tumor maintenance (Campaner and Amati, 

2012). Thus MYC-induced DDR acts as a double-edged sword in tumor progression. On one 

hand, it restrains proliferation and promotes apoptosis against cancer cells. On the other hand, 

after cancer cells have evolved to overcome the anti-proliferative effects of DNA damage, 

continuing to replicate in the presence of DNA damage, the overload of DDR leads to increased 

frequency of double strand breaks (DSBs), inappropriate cell cycle progression and genomic 

instability (Gorgoulis and Kotsinas, 2019; Gorgoulis et al.; Hartwell and Kastan, 1994; Jackson, 

2009; Jackson and Bartek, 2009). 
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Figure 5. Effects of MYC on DDR signaling, G1 arrest, apoptosis, senescence and DNA repair. 

DSB (double strand breaks).  

 

1.6.5.4 MYC and cell cycle, cell proliferation 

MYC plays an important role in the regulation of the cell cycle. It pushes cell cycle progression 

and response to mitogenic signals. Forced MYC expression alone is sufficient to drive 

quiescent G0 phase cells to re-enter the cell cycle, and increase cell size. The mechanism is, at 

least in part, the direct activation of cyclin/CDKs expression and overriding cell cycle 

checkpoints. For instance, at G0/G1 checkpoint, MYC can promote cell-cycle entry and 

progression by increasing cyclin D/CDK4 and cyclin D/CDK6 complex. Further at G1/M 

checkpoint, cyclin E/CDK2 complex replace cyclin D/CDK4/6 complex to be the driven force 

for DNA replication. MYC involves in the cyclin E/CDK2 complex modulation by either 

increasing its activity or alternatively inhibiting p27. On the contrary, P53 antagonize above 

cell cycle progression by inducing p21. Similarly, pRB is present in G0/G1 phase of cell cycle 

and inhibits E2F transactivation thereby blocks downstream effectors, while cyclin/CDK 

complex can phosphorylate and inactivate pRB in late G1 to release E2F.  
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In addition, MYC induces loss of contact inhibition. As the role of MYC in sensitivity of 

growth stimulation also varies with cell types, the impact on proliferation is cell type dependent 

(Perna et al., 2012). It is speculated that cell type or other environment context determined the 

regulation of alternative subsets of target genes thereby affecting proliferation differently in 

different contexts (Ellwood-Yen et al., 2003). 

1.6.5.5 MYC and metabolism 

Tumor cells have enhanced conversion of glucose to lactate even in the presence of normal 

levels of oxygen, known as Warburg effect, was discovered by Otto Heinrich Warburg 

(Warburg et al., 1927). It demonstrated that cancer cells show an increased dependence on 

glycolysis to meet their energy needs, regardless of oxygen condition. Converting glucose to 

lactate, rather than metabolizing it through oxidative phosphorylation in the mitochondria, is 

far less efficient because less ATP is generated per unit of glucose metabolized. Therefore, a 

high rate of glucose uptake is required to meet increased energy needs to support rapid tumor 

progression. The controversies have been discussed and considered as a potential cancer target 

(Altman et al., 2016; Cairns et al., 2011; Dang, 2010; Dang and Kim, 2018).  

To sustain the high rate of proliferation of cancer cells, there is a high demand for nutrition 

and energy resource like glucose, glutamine. MYC is a key regulator of cellular metabolism 

and drive the Warburg effect in cancer cells. For example, it cooperates with HIF-1α to 

activate several genes encoding glycolytic proteins such as LDH-A and stimulates 

mitochondrial biogenesis. MYC upregulates glucose transporters as well as hexokinase to 

increase glucose import (Osthus et al., 2000). Moreover, MYC promotes glutamine import by 

directly inducing the expression of glutamine transporter ASCT2 (Wise et al., 2008). In 

addition, Myc increases the conversion of glutamine to glutamate for subsequent oxidation in 

the tricarboxylic acid cycle (TCA cycle) by upregulating glutaminase (GLS) both 

transcriptionally and post-transcriptionally (Dang et al., 2009). 

1.6.6 MYC AS A CANCER TARGET 

Although the MYC has been widely studied during several decades years, no MYC targeting 

drug is available today in clinic. The main reason for this is that MYC, like other transcription 

factors, lacks enzymatic activity and is an intrinsically disordered protein. Nevertheless, a lot 

of effort has been done to seek a promising therapeutic way of combating MYC’s tumorigenic 

function.  
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1.6.6.1 MYC is a challenging cancer target 

The concept of “oncogene addiction” has been proposed in the literature during recent years, 

meaning that certain tumor cells are dependent on a single activated oncogenic protein or 

pathway to maintain their malignant properties, despite the likely accumulation of multiple 

gain- and loss-of-function mutations that contribute to tumorigenicity (Weinstein and Joe, 

2008). MYC in particular has been suggested to cause oncogene addiction in tumor cells. This 

is based on observations that even a short inactivation of MYC could lead tumor regression or 

survival improvement (Felsher, 2008; von Eyss and Eilers, 2011). This phenomenon indicates 

that transient or prolonged MYC inactivation may be sufficient for sustained reversal of the 

tumorigenic process (Boxer et al., 2004). 

This offers a rational for targeting MYC as a cancer therapy, for instance by interfering with 

MYC synthesis, stability or transcriptional activity. Another important reason is that MYC lies 

downstream of multiple key signaling pathways, for example, RAS/PI3K/AKT AND 

Ras/RAF/MAPK/ERK pathways that show a high degree of redundancy. Targeted therapies 

against mutant oncogenic proteins within these pathways therefore rapidly results in resistance 

development due to activation of various drug escape pathways, while the MYC pathway is 

considered non-redundant and therefore cannot be bypassed (Sodir and Evan, 2011). However, 

although MYC was one of the first oncogenes identified several decades ago, MYC targeted 

therapy is not clinically available today. There are multiple reasons why MYC is such a 

challenging therapeutic target (Horiuchi et al., 2014). 

First, the most common concern is that MYC is an essential pleiotropic transcription factor that 

controls the expression of thousands of genes, therefore a complete inhibition of MYC could 

lead to severe toxicity in normal cells since MYC is generally expressed in proliferating cells. 

However, recent publications showed that systemic inactivation of endogenous MYC in a K-

Ras driven tumor lead to tumor regression, the side effects on normal cells are reversible and 

tolerated (Castell et al., 2018; Sodir and Soucek, 2013; Soucek et al., 2008; Soucek et al., 2013). 

Secondly, MYC is an intrinsically disordered protein that lacks enzymatic activity or 

recognizable pockets or clefts, making it a difficult target for structure-based drug design. 

Despite all these challenges, great effort is put into MYC targeting in the scientific community 

and in the pharmacological industry using different strategies as discussed in the next section.  
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Figure 6. Different classes of inhibitors targeting MYC and signaling pathways regulating 

MYC. 

 

1.6.6.2 Targeting MYC at the Transcriptional Level  

JQ1 was recently discovered as a small molecule bromodomain protein inhibitor. 

Bromodomain and extraterminal motif (BET) proteins, are well known to be overexpressed in 

multiple tumor types, such as melanoma (Segura et al., 2013). BET family of proteins consist 

of BRD2, BRD3, BRD4 and BRDT, they are chromatin adaptor modules which recognize 

acetylated lysine residues on histone tails and other nuclear proteins (Shi and Vakoc, 2014), 

thereby contributing to the activation of RNA polymerase II-mediated initiation and elongation 

of transcription (Denis et al., 2006; Devaiah and Singer, 2013; Jiang et al., 1998; LeRoy et al., 

2008). Research on BET inhibitors has identified them as a potential means of targeting MYC 

(Fu et al., 2015; Mertz et al., 2011; Shu and Polyak, 2016). 

It has been shown that JQ1 downregulates transcription of the MYC gene through the inhibition 

of the BET protein BRD4 (Alderton, 2011; Delmore et al., 2011; Filippakopoulos et al., 2010). 

Downregulation of the MYC-dependent transcriptional network thereby results in tumor cell 

growth inhibition and apoptosis. It also reduced tumor growth in patient derived PDX mouse 

models in vivo. The underlying mechanisms include an effect on cell cycle arrest in the G1 

phase and a decrease in the percentage of cells in the S phase as well as induction of apoptosis. 

This suggests that JQ1 has potential for cancer therapy. As the first well described and 
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characterized BET inhibitor, despite its inferior pharmacology property, JQ1 served as a useful 

tool for pre-clinical study as well as basic cancer research (Moyer, 2011). 

Currently there are a dozen of BET inhibitors in the early phase of clinical trials (Andrieu et 

al.), and preliminary results of BET inhibitors in NUT midline carcinoma (NMC) and 

hematological malignancies have been modest. Further, MYC dysregulation does not appear 

to predict response, and vice versa, good response does not seem to correlate with MYC down 

regulation. This suggests that the BET inhibitors also have other important targets than MYC 

depending on cell type and context (Dombret et al., 2014; Amorim et al., 2016; Doroshow et 

al., 2017; Lewin et al., 2018; O’Dwyer et al.; Odore et al., 2016; Postel-Vinay et al., 2019; 

Stathis et al., 2016).  

Reports have shown that a purine-rich strand in the nuclease hypersensitive element 

III1 (NHE III1) of the MYC promoter can form a G-quadruplex (G4) from duplex DNA, 

which was shown to be positively and negtively regulated by nucleolin and NM23-H2, 

respectively. The stabilization of G4s can halt transcription of downstream gene products, 

therefore offering a potential targets for MYC targeting therapeutic development  (Brooks 

and Hurley, 2010; Flusberg et al., 2019; Whitfield et al., 2017).  

1.6.6.3 Targeting MYC at the Post-Transcriptional Level 

MYC is reported to regulate many post-transcriptional mechanisms, such as promoting mRNA 

capping (Cowling and Cole, 2006), regulating the abundance of splicing factors (Nadiminty et 

al., 2015). MYC also indirectly regulates several pathways of RNA degradation, as well as 

modulating miRNAs (Psathas and Thomas-Tikhonenko, 2014) and non-coding RNAs (Deng 

et al., 2014) transcriptionally, in which way MYC is therefore able to greatly expand the 

number of its indirect targets. Based on the theory above, antisense oligonucleotides were 

designed to target MYC mRNA and they have shown efficacy in certain tumor type (Balaji et 

al., 1997) . 

Inhibition of MYC translation by targeting the translation initiation factors: cap-binding protein 

eIF4E, the RNA helicase eIF4A, and the scaffolding protein eIF4G was reported recently. It 

results in inhibition of MYC-dependent proliferation of tumor cells in vitro and in vivo (Castell 

and Larsson, 2015; Wiegering et al., 2015). mTOR kinase inhibitors could also be used to 

inhibit MYC mRNA translation by blocking phosphorylation/inactivation of 4E-BP1, which in 

turn blocks eIF4E, which promotes cap-dependent translation of MYC mRNA (Bhat et 

al., 2015; Castell and Larsson, 2015). However, due to induction of the negative feedback loop, 
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and an increased expression of several growth factor receptors and activation of the MAPK 

pathway, this does not work in all tumor cells, such as in colorectal cancer cells. Here, silvestrol, 

which is a direct inhibitor of eIF4A is an alternative (Sansom et al., 2007; Wiegering et al., 

2015). By increasing the affinity between eIF4A and RNA, silvestrol sequesters and depletes 

eIF4A from translation initiation complexes (Bhat et al., 2015; Bordeleau et al., 2008). 

1.6.6.4 Targeting MYC on protein stability and turnover 

As described above, MYC is rapidly turning over through ubiquitin/proteasome-mediated 

degradation through the phospho-Thr58/GSK3/FBXW7 pathway. Therefore, the mutations 

of Thr58 or loss of FBXW7 will result in constitutive MYC stabilization in tumors. Active Ras 

induces ERK that stabilizes Myc by phosphorylation at Ser62, moreover PI3K activation 

blocks Myc degradation by inhibiting phosphorylation at Thr58 by GSK3β. Small molecule 

inhibitors could potentially affect the MEK-ERK, CDK or PI3K-AKT pathways so to modulate 

MYC’s stability (McKeown and Bradner, 2014; Hydbring, Castell, et al., 2016). 

Phosphorylated Ser62 is also targeted by protein phosphatase 2 (PP2A), which is a family of 

heterotrimeric enzyme complexes that acts as tumor suppressors and are often lost in cancer, 

and thus modulates MYC protein stability (O'Connor et al., 2018). Cancerous inhibitor of 

protein phosphatase 2A (CIP2A) is one of the endogenous inhibitors of PP2A and prevents 

PP2A mediated dephosphorylation of MYC at Ser62, thereby resulting in stabilization of 

MYC in cancer cells (Soofiyani et al., 2017). Small molecule compounds targeting CIP2A (Wu 

et al., 2017) or PP2A activation  (Gutierrez et al., 2014) were reported, but are still far from 

pharmaceutical application (O'Connor et al., 2018; Soofiyani et al., 2017). 

It reported that GSK3-β phosphorylates and destabilizes both the MYC and MYCN protein 

(Chesler et al., 2006; Kenney et al., 2003) (Gustafson and Weiss, 2010; Kenney et al., 2004). 

Since GSK3 is inhibited by the PI3K/AKT pathway, Dual PI3K/mTOR (Chanthery et al., 

2012) show promise as means of decreasing MYC/MYCN protein levels. Upon low level of 

PI3K activity in neuronal cells, MYCN, which also contain equivalents to Ser62 and Thr58, 

undergo sequential phosphorylation by cyclin B/CDK1 and GSK3 in G2/M phase of the cell 

cycle, thereby gets degraded by the FBXW7 ubiquitin ligase complex (Otto et al., 2009; Bonelli 

et al., 2017; Tsai et al., 2012). Aurora A kinases (AURKA) can interact with both MYCN and 

FBXW7 and thereby counteract degradation of MYCN (Otto et al., 2009; Gustafson et al., 

2014). AURKA is therefore another feasible target to destabilize MYCN. Two ATP-

competitive azepine inhibitors of AURKA) were shown to disrupt AURKA binding to MYCN 
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and to promote MYCN degradation via FBXW7 and showed anti-proliferative effect in 

MYCN-driven neuroblastoma cells (Brockmann et al., 2013). 

Apart from PP2A and AURKA, the MYC-associated histone acetyltransferases CBP/P300, 

GCN5, and TIP60 were reported to regulate MYC stability. These bind MYC at the N-terminal 

TAD and induce acetylation of MYC at lysines used for ubiquitylation by E3 ligases, leading 

to MYC stabilization (Cowling et al., 2006). This offers another opportunity to destabilize 

MYC via targeting these HATs. 

The natural compound oridonin was reported to promote the FBXW7-mediated proteasomal 

degradation of MYC, and to induce cell growth inhibition and apoptosis, and should be studied 

further (Huang et al., 2014; Owona and Schluesener, 2015);Liang et al., 2018; Sechet et al., 

2018). 

1.6.6.5 Targeting interactions of MYC and its cofactors 

Activation of transcription by MYC through specific binding to E-boxes is dependent on the 

interaction with its partner MAX. Therefore, targeting the heterodimerization between MYC 

and MAX is an alternative approach to target MYC apart from trying to reduce the MYC 

level in cancer cells.    

Omomyc is a mutant version of MYC where residues of the leucine zipper that are critical 

for its dimerization specificity have been mutated (Soucek et al., 2002; Soucek et al., 2008). 

Though Omomyc preferentially forms homodimers, it can form heterodimers with both MYC 

and MAX, and was shown to retain the interaction with MIZ-1 but did not bind to MXD1 or 

other selected bHLH proteins (Jung et al., 2017a). As a result, Omomyc functions as a 

dominant negative mutant and prevent MYC from triggering DNA transcriptional activation. 

In addition, Omomyc does not seem to affect MIZ‐1‐mediated MYC binding to promoters 

and transrepression (Savino et al., 2011; Soucek et al., 2002).  

Multiple studies in mouse models of cancer demonstrated Omomyc's therapeutic impact in 

different types of cancer, independently of their driving mutation or tissue of origin, pointing 

to the key role of MYC in tumorigenesis downstream of the diverse oncogenic lesions 

(Annibali et al., 2014; Galardi et al., 2016; Sodir et al., 2011; Soucek et al., 2013). Notably, 

the systemic inhibition of MYC in vivo with Omomyc was well tolerated by normal 

regenerating tissues, and the effects of MYC inhibition could be reversed completely and 

quickly (Sodir and Evan, 2011; Soucek et al., 2008; Soucek et al., 2013). 
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Most recently, purified Omomyc mini-protein, was shown to possess intrinsic cell 

penetrating properties, possibly due to the amphipathic helical basic region of the mini-

protein, which share features with cell-penetrating peptides (CPPs) and protein transduction 

domains (PTDs). It was demonstrated that Omomyc was taken up by tumor cells in culture, 

displaced MYC from target genes, reversed MYC-driven transcription and caused apoptosis 

or growth arrest (Beaulieu et al., 2019).  Further, by intranasal administration Omomyc was 

shown to inhibit growth of lung tumors in a transgenic KRAS-driven lung tumor mouse 

model, and acted synergistically with paclitaxel in a lung cancer xenograft model after 

intravenous administration. 

During recent years, a number of small molecule inhibitors of MYC/MAX dimerization have 

also been developed. These compounds work by interfering with the association between 

MYC and MAX, thereby reducing MYC function in cells   (Follis et al., 2008; Xu et al., 2006; 

Yin et al., 2003; Castell et al.,2018), by binding to and stabilizing the monomeric form of 

MAX (Jiang et al.; Struntz et al.) or by interfering with MYC:MAX association with DNA 

such as JKY-2-169, KSI-3716 and MYRAs (Jeong et al., 2010; Jung et al., 2015; Mo and 

Henriksson, 2006; Mo et al., 2006; Kiessling et al., 2006).   

The peptide mimetic compounds IIA6B17 was first reported as a small-molecule inhibitor of 

MYC:MAX dimerization, identified through a fluorescence resonance energy transfer 

(FRET) screen (Berg et al., 2002).  Later, the compounds 10058-F4 and 10074-G5 were 

identified (Wang et al., 2007; Yin et al., 2003) to inhibit MYC:MAX association using a 

yeast two-hybrid screen. Moreover, chemical modifications were carried out upon 10058-F4 

and several analogues such as 10074-G5 was identified with improved efficacy in vitro 

(Clausen et al., 2010; Wang et al., 2013). However, when studied in vivo, although showing 

some effect in a xenograft neuroblastoma mouse model (Zirath et al., 2013), due to rapid 

metabolism none of them were potent enough to proceed into preclinical studies (Clausen et 

al., 2010; Fletcher and Prochownik, 2015; Guo et al., 2009; Raffeiner et al., 2014; Yap et al., 

2013).  

Mycro1 and Mycro2 were identified by a fluorescence polarization screening, both Mycros 

have shown MYX:MAX inhibition in vitro. Mycro3 was built upon the two predecessor 

compounds and interferes with MYC:MAX interaction over MAX:MAX and other bZip 

proteins dimers like FOS/JUN. Furthermore, Mycro3 has good pharmacokinetic properties, 

as well as improved efficacy in mouse models with pancreatic, mammary and prostatic 

adenocarcinoma by oral gavage (Kiessling et al., 2006; Kiessling et al., 2007; Stellas et al., 

2014).  
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KJ-Pyr-9, a trisubstituted pyridine compound, was identified using a fluorescence 

polarization screen, and was reported to bind MYC with a KD of 6.5 nM and to inhibit 

MYC:MAX heterodimerization at 13.4 nM (Hart et al., 2014). Further, KJ-Pyr-9 inhibited 

proliferation breast cancer and other cancer cell lines in culture with an IC50 of 5-10 µM, 

and reduced tumor volumes of MDA-MB-231 breast cancer xenografts in nude mice in vivo.  

 Most recently a novel small molecule sAJM589 was identified from a high-throughput 

Gaussia luciferase fragment complementation screen using cell lysates. sAJM589 has shown 

MYC:MAX inhibition in a dose dependent manner with an IC50 of 1.8 ± 0.03 μM, and it 

downregulates MYC protein levels as well. sAJM589 suppressed cellular proliferation in 

diverse MYC dependent cancer cell lines and anchorage independent growth of Raji cells 

(Choi et al., 2017). 

Most of the published MYC:MAX inhibitor screens were conducted in vitro or in Y2H 

screens, and though many of them showed promising results in vitro they often display 

moderate or poor efficacy and selectivity in cells, and have therefore not entered clinical 

studies. In most cases the selectivity of published compounds has not been reported 

extensively and are therefore difficult to judge. As presented below in papers II-IV, our group 

also developed a cell based BiFC screening platform for small molecule inhibitor targeting 

MYC:MAX interaction, and several interesting candidates were identified and undergone 

validation (Castell et al., 2018). 
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2 HYPOTHESIS AND AIM OF THE STUDY 

An overall aim of this study is to target MYC via identification of small molecules suppressing 

tumorigenic function of MYC or alternatively enhancing its anti-tumorigenic function by 

targeting MYC:MAX interactions. Another overall aim is to characterize MYC’s role in 

response to DNA damage and function in apoptosis. 

The specific aims of studies presented in this thesis are as follows: 

Paper I 

MYC is required for activation of the ATM-dependent checkpoints in response to DNA 

damage.  

The aim of paper I was to address MYC’s function in regulating effectors acting upstream of 

the mitochondrial apoptotic pathway, which is known to be triggered by MYC activation. 

Although it is known from previous work that MYC sensitizes cells to apoptosis induced by 

DNA damaging drugs, the mechanism behind this has not been elucidated. The specific aim in 

this paper was to determine whether MYC affects ATM and/or ATR signaling in response to 

DNA damage induced by ionizing irradiation, UV irradiation and the bacterial toxin CDT. 

 Paper II 

A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and 

MYC dependent tumor cell proliferation.  

By using a Bimolecular Fragment complementation (BiFC) screening strategy, our aim was to 

set up a reliable cell-based platform to identify low weight small molecules targeting the 

MYC:MAX interaction in living cells. The top hits from the BiFC screening were further 

characterized and validated in paper II-IV. Paper II focus on MYCMI-6, -11 and -14, and the 

aim was to clarify if these MYCMIs could selectively inhibit MYC:MAX interaction in cells 

and in vitro. Another aim was to determine is these MYCMIs bind directly to MYC or to MAX. 

A fourth aim was to verify if MYCMIs could efficiently suppress tumor cell growth in culture 

and in tumors in vivo in a MYC dependent manner and to evaluate their effect on normal cells.  

Paper III 

MYCMI-7 - a small MYC-binding compound that inhibits MYC:MAX interaction and 

tumor cell growth in culture and in vivo in a MYC-dependent manner. 



 

 47 

Paper III focuses on MYCMI-7, which was identified in paper II. Also here, the aim was to 

clarify if MYCMI-7 could selectively inhibit MYC:MAX interaction in cells and in vitro, and 

to find out of if MYCMI-7 binds directly to MYC or to MAX. Since MYCMI-7, in contrast to 

MYCMI-6, -11 and -14, downregulates MYC expression, another aim was to elucidate the 

mechanism by which MYCMI-7 accomplish this.  Like for the other MYCMIs, an aim was 

also to determine the efficacy and selectivity of MYCMI-7 in cells as well as in vivo and to 

evaluate its effect on normal cells.  

Paper IV 

Identification of a high affinity MYC-binding compound targeting the MYC:MAX 

protein interaction. 

Paper IV focuses on MYCMI-7, which was also identified in paper II. Like for the other 

MYCMIs, the aim was to validate MYCMI-2 and to determine its efficacy with respect to 

disrupting MYC:MAX interaction in cells and in vitro, and to clarify if MYCMI-2 binds 

directly to MYC or to MAX. Another task was to do a limited structure-activity relationship 

(SAR) analysis by using MYCMI-2 analogues with the aim of improving efficacy in cells and 

in vitro. Like for the other MYCMIs, another aim was to verify if MYCMI-2 could efficiently 

suppress tumor cell growth in culture in a MYC dependent manner and to evaluate its effect on 

normal cells. 
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3 METHODS TO STUDY PROTEIN-PROTEIN 

INTERACTIONS  

3.1  PROTEIN FRAGMENT COMPLEMENTATION ASSAY (PCA) 

Since protein-protein interactions are of great importance for MYC functions, they may offer 

a way of targeting MYC in cancer cells. To quantify protein-protein interactions we are 

utilizing different types of protein fragment complementation assays (PCAs). In this type of 

assay a reporter protein is split into two inactive fragments. One of the two interacting proteins 

of interest is fused to one of the reporter fragments and the other to the other fragment, 

respectively. As these proteins of interest bind to each other, the two inactive fragments of the 

reporter protein get in close proximity and can refold to its native structure. The signal, in our 

case fluorescence or luminescence, can be monitored in a fluorescence or luminometer reader, 

respectively.  

3.1.1 Biomolecular Fluorescence Complementation (BiFC) 

The bimolecular fluorescence complementation assay (BiFC) is a PCA based on split yellow 

fluorescent protein (YFP) as a reporter protein, where two YFP fragments were fused to MYC 

and MAX respectively in our case. It allows investigation in living cells and direct visualization 

of MYC:MAX interaction by fluorescence microscopy. The two fragments with protein of 

interest, MYC and MAX respectively, together with Cyan Fluorescent Protein (CFP) as an 

internal control of the assay, were co-transfected into HEK293T cells. Quantification of the 

positive YFP BiFC signals by a CCD camera allows effective cell-based high-throughput 

screenings for protein-binding partners and drugs that modulate PPIs (Kerppola, 2006; Miller 

et al., 2015). We used this assay to screen the chemical library (The NCI/DTP Open Chemical 

Repository, http://dtp.nci.nih.gov) of 1900 compounds for inhibitors of the MYC:MAX 

interaction.  

3.1.2 Gaussia luciferase (Gluc) protein fragment complementation assay 

Gaussia luciferase (GLuc) was originally identified from the marine copepod Gaussia princeps. 

GLuc as the smallest known luciferase (molecular mass of 19.9 kDa), besides its strong 

luminescence activity, it is attracting more and more attention as a reporter protein (Luker and 

Luker, 2014; Wille et al., 2012).  GLuc exhibits an activity up to 1,000-fold higher than 

to Renilla reniformis luciferase (RLuc), firefly luciferase (FLuc) (Tannous et al., 2005), or 

bacterial luciferases (LuxAB) (Wiles et al., 2005).  
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The high sensitivity, good signal-to-noise ratio, and simplicity of assays made split GLuc assay 

to the main alternative PCA for validation of MYC:MAX interactions in our study, both as 

transient and stable transfections. Stable cell lines HEK293 expressing GLuc reporter fused to 

MYC or MYCN and MAX have been established, and a well-developed GLuc based PCA 

platform showing a good z-factor has been created, allowing the assay to the used in high 

throughput screening.   

3.2 IN SITU PROXIMITY LIGATION ASSAY（ISPLA） 

in situ Proximity Ligation Assay (isPLA) is another method to measure protein-protein 

interactions in cells which that developed by Ola Söderberg and Ulf Landegren’s research 

groups in Uppsala together with our research group. The principle of isPLA is based on the 

immunodetection of two antigens with a pair of primary antibodies raised in different species. 

Then the two primary antibodies will be recognized by two species-specific secondary 

antibodies, which were specially designed antibody-oligonucleotide conjugates, also known as 

PLA probes. The PLA probes link to a unique short DNA strand. When come into close 

proximity (maximum 40 nm), the DNA strands will in turn ligate by recruiting two additional 

oligonucleotides as connector, and jointly give rise to DNA circles, which is a template 

followed by a single-stranded rolling circle PCR (rolling circle amplification). Thereafter the 

interaction is visualized by a fluorescence labelled complementary oligonucleotide probe 

concatenated complements of the DNA circle.  

One of the benefits with this assay is that interactions between endogenous proteins can be 

measured at single molecule level in fixed cells and tissues (Bagchi et al., 2015; Soderberg et 

al., 2006; Soderberg et al., 2008). The requirement for dual recognition of the target proteins 

improves selectivity by avoiding any cross-reactivity not shared by the antibodies, and it allows 

detection of both protein-protein interactions, post-translational modifications and expression 

of proteins in situ (Klaesson et al., 2018). This facilitates the study of multiple interactions and 

we have adopted this system to be able to study interactions which are important for MYC 

function. 

3.3  FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) ASSAYS 

Fluorescence resonance energy transfer (FRET) is another powerful method for studies of 

molecular interactions. Many previously published MYC:MAX inhibitors were identified 

using FRET in vitro (Berg et al., 2002; Shi et al., 2009; Xu et al., 2006). For study protein- 

protein interaction studies, two fluorophores known as donor and acceptor which have spectral 

overlap between the pair, are attached to the interacting proteins either by fusion or through 
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fluorophore-tagged antibodies. The fluorescence emission spectrum of the donor molecule 

must overlap the absorption or excitation spectrum of the acceptor. In the FRET assay, the 

donor fluorophore becomes excited by a light source within certain spectral range for 

excitation. The acceptor fluorophore absorbs the energy from the donor fluorophore and then 

produces a detectable light emission. 

Using FRET, the interaction between MYC and MAX become measurable in vitro when the 

two recombinant proteins are in close proximity as they bind each other. 

3.4  SURFACE PLASMON RESONANCE (SPR) 

Surface plasmon resonance (SPR) is an optical technique that is utilized for detecting molecular 

interactions, including protein-protein interactions, and interactions between proteins and other 

classes of molecules. The advantages of SPR are it is real-time, label-free, and noninvasive 

nature in medical or biological research. 

The principal of SPR assay is by binding of a mobile molecule (analyte) to a molecule 

immobilized on a thin metal film (ligand), which changes the refractive index of the film. The 

angle of extinction of light that is completely reflected after polarized light impinges upon the 

film, is altered and monitored as a change in detector position for a dip in reflected intensity 

(the surface plasmon resonance phenomenon). Because the method strictly detects mass, there 

is no need to label the interacting components, thus eliminating possible changes of their 

molecular properties (Douzi, 2017; Drescher et al.; Leonard et al., 2017; Tang et al., 2010). 

3.5 MICROSCALE THERMOPHORESIS (MST)  

Microscale thermophores (MST) is a technology based on the detection of a temperature 

induced change in fluorescence of a target, which is altered in temperature gradients due to a 

variety of molecular properties such as different sizes, charges and conformation. 

In the MST experiment, an infrared laser is usually used to generate the temperature gradient. 

The directed movement of molecules through the temperature gradient in the cell lysate is then 

detected and quantified using either covalently attached or intrinsic fluorophores. Especially in 

the case of study of low molecular weight compounds such as potential drug candidates and 

their target binding, which does not often significantly change the charge or size of a molecule, 

but only weak conformational alternation upon binding (Jerabek-Willemsen et al., 2014; 

Wienken et al., 2010).  
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By recording the precision of fluorescence, plus the sensitivity of thermophoresis and very 

small amount of sample consuming, MTS has been employed to study the protein-protein 

interaction/dissociation in a fast and robust way. Moreover, MST facilitates the sophisticated 

analysis of binding processes of small molecules with proteins in biological liquids.  
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4 RESULTS AND DISCUSSIONS 

4.1 PAPER I: MYC IS REQUIRED FOR ACTIVATION OF THE ATM-DEPENDENT 

CHECKPOINTS IN RESPONSE TO DNA DAMAGE.  

In paper I, we demonstrated that MYC contributes to the regulation of the ATM-dependent 

checkpoint responses to DNA damage, while cell death induced by UV irradiation, known to 

activate the ATR-dependent checkpoint, worked independently of the MYC status. 

Dysregulation of MYC can induce DNA damage both in a ROS-dependent and ROS-

independent manner, thereby inducing apoptosis. However, upon loss of surveillance 

modulators such as p14, p53 deficiency and MDM2 overexpression, and/or gain of prosurvival 

signals such as BCL-2 and NF-κB pathway alterations, MYC deregulation can also contribute 

to genome instability, chromosomal abnormalities and transformation (McMahon, 2014) 

(Gorgoulis et al., 2005; Karlsson et al., 2003; Vafa et al., 2002).  

Further, MYC activation has previously been shown to enhance the apoptotic effect of DNA 

damage induced by agents such as etoposide and camptothecin (Afanasyeva et al., 2007; 

Albihn et al., 2007), but the mechanism for this phenomenon has not been clarified.  

In paper I, engineered Rat1 cell lines were employed to measure the apoptotic effect upon DNA 

damage in cells with different MYC status. TGR-1 is the wild type parental line, expressing 

physiological level of MYC, while both MYC alleles has been deleted by homologous 

recombination in HO15.19 cells (Mateyak et al., 1997). HOmyc3 cells has been generated by 

reconstitution of the murine MYC gene into the HO15.19 cells, and these express higher level 

of MYC compared with TGR-1 cells. In paper I, we have shown that cell deaths upon ionizing 

irradiation (IR) or bacterial cytolethal distendin toxin (CDT) intoxication were delayed in 

HO15.19 cells with MYC deletion compared with the MYC expressing cells, as shown by the 

increased sub-G1 population in the former cells as assessed by PI staining and flow cytometry. 

Both IR and CDT are known to cause DNA double strand breaks (DSBs) and activate ATM-

dependent checkpoint responses.  

UV irradiation, which causes dipyrimidine photoproducts and activates mainly the ATR-

dependent DNA damage response, on the contrary, induced cell death with similar amplitude 

and kinetics in all the cell lines tested independently of the MYC status.  

We next assessed whether the delayed cell death induced by IR in the MYC null cells was 

associated with an altered ATM response. Indeed, phosphorylation of ATM and induction of 
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γH2AX were strongly reduced 2 hrs after IR exposure in MYC null cells compared to wt and 

MYC-reconstituted cells, suggesting that activation of ATM and downstream responses are 

MYC dependent. Moreover, p53 accumulated after 24 hrs of IR exposure in TGR-1 and 

HOmyc3 cells as expected, presumably as a consequence of MDM2 phosphorylation by ATM 

(Cheng and Chen, 2010; Gannon et al., 2012; Maya et al., 2001). However, this was not the 

case in MYC null cells, where p53 induction was delayed.  

We next looked at the NBS1 dependency of ATM activation. NBS1 is a sensor of DNA damage, 

as well as a MYC target gene (Chiang et al., 2003). The induction of NBS1 foci upon IR 

showed different kinetics in MYC expressing and MYC nulls cells, namely an enhanced 

expression of the NBS1 protein in HOMyc3 cells, and attenuated level of NBS1 in HO15.19 

null cells compared to the parental TGR-1. Further, after knocking down the expression of 

MYC in HCT116 human colon cancer cells by siRNA, we observed similar kinetics of ATM 

phosphorylation in wild type and MYC depleted cells, but the total level of phosphorylated 

ATM was significantly lower. 

Our results demonstrated that MYC regulates the ATM DDR/DNA repair pathway. MYC was 

shown to be required for activation of ATM, NBS1accumulation and phosphorylation of 

downstream effectors (H2AX, CHK2 and p53), in response to DNA damage inducers such as 

irradiation and CDT intoxication, thereby leading to apoptosis. Other studies have shown that 

inactivation of ATM reduces MYC-induced apoptosis thereby increases MYC-driven tumor 

development (Maclean et al., 2007; Pusapati et al., 2006; Reimann et al., 2007). This would be 

coherent with our result that MYC is necessary for ATM-mediated apoptosis.  

Also, other publications addressing the role of MYC in DDR and DNA repair are consistent 

with our findings; Chiang et al. have shown that NBS1 is a direct target gene of MYC. MYC-

mediated induction of NBS1 gene transcription was shown to occur in different tissues 

independent of cell proliferation (Chiang et al., 2003). Louto et al. showed that MYC occupies 

most DSB repair gene promoters and regulates their expression, and that MYC knockdown 

alone resulted in loss of long-term clonogenic survival, independent of apoptosis induction 

(Luoto et al., 2010). MYC therefore seems to play a dual role in apoptosis regulation upon 

DNA damage. It could promote both apoptosis and DNA repair, and the outcome of this may 

depend on the context, such as the extent of DNA damage, the MYC level, as well as the status 

other pro-apoptotic/ pro-survival cofactors. This clearly needs further investigation. Our new 

findings could contribute to a better understanding of the mechanisms of drug-induced 

cytotoxicity as well as for resistance to drug treatment in cancer therapy.  
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4.2 PAPER II： A SELECTIVE HIGH AFFINITY MYC-BINDING COMPOUND 

INHIBITS MYC:MAX INTERACTION AND MYC DEPENDENT TUMOR CELL 

PROLIFERATION.  

In paper I, a BiFC screening platform was established to screen for small molecule inhibitors 

which interfere with MYC:MAX protein interactions in cells. This was based on split YFP 

fusions with MYC and MAX proteins, respectively, and CFP as internal control. A few 

candidates, named MYCMIs, were identified from the NIC/NIH small molecule library of 

1900 compounds, according to the ratio of BiFC/CFP fluorescence intensities. Compared with 

other methods such as FRET, fluorescence polarization in vitro and yeast-two-hybrid (Y2H) 

assay, the cell-based BiFC assay has several advantages. For instance, already at the screening 

step, molecules with cell compatible features that target MYC:MAX interactions in their 

natural cellular environment will be selected for.   

Candidates from the screening, MYCMI-2, MYCMI-6, MYCMI-7 MYCMI-9, MYCMI-11 

and MYCMI-14, were thereafter evaluated and validated in other cell-based interaction assays. 

Paper II mainly focused on compounds specifically targeting MYC:MAX interaction without 

affecting MYC protein levels, including MYCMI-6, -11 and -14 in Paper II. MYCMI-7 and 

MYCMI-2 are characterized in Paper III and Paper IV, respectively.  

MYCMI-6, MYCMI-11 and MYCMI-14, and in particular MYCMI-6, were shown to be 

potent and selective inhibitors of the MYC:MAX bHLHZip interaction in cells by the split 

Gaussia luciferase (Gluc) assay, whereas no signs of inhibition of other bZip transcription 

factors interactions such as those between FOS and JUN, and GCN4 homodimerization were 

detected at the active concentrations of disrupting MYC:MAX bHLHZip. Furthermore, 

MYCMI-6, MYCMI-11 and MYCMI-14 were found to inhibit endogenous MYC:MAX 

interaction in cells as shown in in situ proximity ligation (isPLA) assay, with IC50 values of 1.5, 

6 and 6 µM, respectively, while they did not interfere with the interaction between bZip 

transcription factors FRA1:JUN or the interaction between MAX and the bHLHZip protein 

MXD1(MAD1), which is an intracellular competitor of MYC for MAX. MYCMI-6 exhibited 

its inhibitory effect already after 3 hours of treatment in the co-IP assay. 

MYCMI-6 in particular exhibited strong selective inhibition of MYC:MAX interaction in cells 

in the Gluc and isPLA assays at single-digit micromolar concentrations. Next, we addressed if 

MYCMI-6 inhibits MYC:MAX interaction also in vitro by microscale thermophoresis (MST) 

and surface plasmon resonance (SPR) assays using recombinant bHLHZip domains of MYC 

and MAX. In the MST assay, interaction between molecules is measured by detection of a 
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change in the movement of a fluorescence labeled target through a temperature gradient 

(thermophoresis) upon binding with a non-fluorescent ligand. MST were used in our study to 

measure interaction between recombinant bHLHZip domains of MYC and MAX. We used this 

MST system to measure the disturbance by MYCMIs of MYC:MAX interaction during 

thermophesis of fluorescently labeled MAXbHLHZip interacting with MYCbHLHZip, which 

was pre-incubated with MYCMIs. All three MYCMIs, in particular MYCMI-6, shifted MAX 

thermophoresis during interaction with MYCbHLHZip pre-mixed with MYCMI-6 relative to 

DMSO.  

We next characterized the efficiency of MYCMI-6 and investigated if it could discriminate 

between MYC:MAX and MAX:MAX interactions in MST assay. MYCMI-6 was titrated 

together with fluorescent labeled MAXbHLHZip together with MYCbHLHZip, or together 

with MAXbHLHZip.  The results showed that MYCMI-6 caused a thermophoresis shift with 

a Kd of 4.3 +/− 2.9 μM with respect to MYC:MAX interaction while only having minor effect 

on MAX:MAX interaction. 

To further investigate the potency of MYCMI-6 in inhibiting MYC:MAX interaction, we also 

conducted an SPR assay. In SPR, the interaction between protein and ligand is measured 

kinetically in real time. The ligand is immobilized on a gold sensor surface, followed by the 

injection of the receptor over the ligand fixed surface, and subsequent changes in the refractive 

index of the medium close to the sensor surface is then monitored. In our case, MAXbHLHZip 

was covalently attached onto the sensor chip, and MYCbHLHZip was injected over the surface, 

thereby allowing the measurement of MYC:MAX association and dissociation rates. Various 

concentrations of MYCMI-6 up to 10 µM were pre-incubated with MYCbHLHZip before 

flowing over MAXbHLHZip. The SPR results showed that MYCMI-6 inhibited the 

MYC:MAX heterodimer formation with an IC50 of 3.8+/− 1.2 µM. 10058-F4, used as a 

reference, was not as efficient as MYCMI-6 and KJ-Pyr-9, which is another MYC:MAX 

inhibitor reported previously, did not show any effect on MYC:MAX heterodimer formation 

up to a concentration of 10 µM.  

We next investigated whether MYCMI-6 selectively binds to MYC or MAX using MST and 

SPR assays. Recombinant MYC bHLHZip or MAX bHLHZip proteins were titrated, 

respectively, in a fixed concentration of MYCMI-6 in the MST assay. Changes in fluorescence 

was detected for MYC but not MAX, indicating binding of MYCMI-6 to MYC but not to MAX 

at these concentrations. In addition, the binding affinity of MYCMI-6 to MYC bHLHZip 

domain was analyzed by SPR, using a 1:1 Langmuir model to calculate the association and 
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dissociation rates of the compound. In this case, MYC bHLHZip was immobilized on the chip 

and injected MYCMI-6 was titrated. The association (on rate) and dissociation (off rate) was 

measured kinetically and showed a KD value of 1.6±0.5µM for the affinity of MYCMI-6 to 

MYC bHLHZip. This is clearly a higher affinity than reference molecules 10074-G5 and #474 

(an analogue of 10058-F4), which showed KDs of 28 and 15µM, respectively.  Binding of KJ-

Pyr-9 to MYC was not detected up to 8 µM in this assay. MYCMI-6 did not bind to the MAX 

bHLHZip in neither the MST or SPR assays, nor to the bHLHZip domain of MAD1, the p53 

core domain, BSA and YFP as shown by SPR. 

We continued to investigate whether MYCMI-6 would interfere with the biological activities 

of MYC. A panel of neuroblastoma cell lines with different status of MYCN was utilized to 

determine the effect of MYCMI-6 on MYC dependent tumor cell growth. The growth 

inhibition of 50% (GI50) values were about 2.5-6 µM for MYCN-amplified cell lines and 

around 20 µM or higher for MYCN-non-amplified cell lines, which indicate that MYCMI-6 

inhibit tumor cell growth in a MYC dependent manner. Moreover, MYCMI-6, MYCMI-11 

and MYCMI-14 also inhibited anchorage-independent growth of MYCN-amplified 

neuroblastoma cells efficiently with GI50 values of <0.4, 5 and 0.75 µM, respectively.   

To investigate if MYCMI-6 inhibited MYCN:MAX interaction and the transcriptional output 

of MYCN in MYCN-amplified neuroblastoma cells, we performed MYCN:MAX isPLA and 

measured the expression of a panel of verified MYC family target genes in neuroblastoma. It 

showed that MYCMI-6 significantly blocked MYCN:MAX interaction and the expression of 

MYC/MYCN target genes at a concentration of 2.5 µM, while maintaining the expression of 

both MYCN and MAX. 

MYCMI-6 also suppressed growth of Burkitt’s lymphoma (BL) cells, which carry MYC 

translocation, with high efficacy (GI50 about 0.5µM). To have a better understanding of the 

correlation between the levels of MYC expression in tumor cells and the growth inhibitory 

response, we extracted GI50 data from the NCI-60 diverse human tumor cell line panel available 

for MYCMI-6 by the Developmental Therapeutics Program of the U.S. National Cancer 

Institute (DTP-NCI). Statistical analysis of the data showed a strong correlation between MYC 

protein expression and growth inhibitory in response to MYCMI-6. In other words, cell lines 

with higher MYC protein level had significantly higher probability to respond to MYCMI-6 

treatment than cell lines with lower MYC protein levels.  
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We next studied the effect of MYCMI-6 on normal human cells. Importantly, while MYCMI-

6 caused apoptosis in MYCN-amplified neuroblastoma cells, it was not cytotoxic to normal 

human cells at active concentrations. 

To analyze the effects of MYCMI-6 in vivo, we next utilized a mouse xenograft tumor model 

based on human MYCN-amplified SK-N-DZ neuroblastoma cells. The SK-N-DZ cells were 

injected into the flank of athymic nude mice for tumor formation, a daily intraperitoneal 

injection of a dose of 20 mg/kg body weight of MYCMI-6 or vehicle were administered for 1–

2 weeks. MYCMI-6 reduced proliferation and induced massive apoptosis in tumor tissue 

measured by Ki67 and TUNEL staining. CD31 staining of endothelial cells in xenograft model 

indicated a significantly reduced microvascular density (MVD) upon MYCMI-6 treatment. 

Moreover, MYCMI-6 treatment did not cause severe side effects but only temporal body 

weight loss of the mice. Importantly, isPLA in the tumor tissue showed a significant reduction 

in MYCN:MAX interaction from MYCMI-6 treatment compared to vehicle-treated mice, 

showing that MYCMI-6 had active effect on the target, MYCN:MAX inhibition, in vivo.  

In conclusion, using a cell-based BiFC screen several new MYC:MAX heterodimer inhibitors 

were identified. Three of these, MYCMI-6, -11 and -14, which did not affect MYC expression, 

were studied in paper II. MYCMI-6 in particular showed strong potency and selectivity with 

respect to inhibition of MYC:MAX interaction both in cells and in vitro. Further, MYCMI-6 

selectively bound directly to MYC with low micromolar range affinity. Moreover, MYCMI-6 

it inhibited tumor cell growth in a MYC-dependent manner at low micromolar concentrations, 

while discriminating well between cancer cells and normal cells, thus showing a good 

therapeutic window.  Importantly, MYCMI-6 exhibited MYC:MAX inhibitory bioactivity in 

tumor tissue in vivo, and thus could be of interest for further pharmacological development. 
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4.3 PAPER III: MYCMI-7 - A SMALL MYC-BINDING COMPOUND THAT INHIBITS 

MYC:MAX INTERACTION AND TUMOR CELL GROWTH IN CULTURE AND 

IN VIVO IN A MYC-DEPENDENT MANNER. 

In paper III we characterized small molecule MYCMI-7, which was one of the top hits 

identified in paper II using a cell-based BiFC screen for MYC:MAX interaction inhibitors. In 

this study, we further validated the efficiency of MYCMI-7 with respect to inhibition of 

MYC:MAX interaction, binding to MYC and MYC-driven tumor cell growth and normal cell 

growth, as well as in mouse models of MYC-driven cancer models.  

The inhibitory effect of MYCMI-7 was validated using a number of other cell-based protein 

interactions assays in addition to BiFC, including the GLuc, isPLA, and 

coimmunoprecipitation (co-IP).   

Firstly, we verified that MYCMI-7 had a MYC:MAX inhibitory effect in the GLuc assay; it 

strongly reduced both MYC:MAX and NMYC:MAX interaction in cells but had only minor 

effect on homodimerization of the bZip protein GCN4, whereas previous published 

experimental inhibitor 10058-F4 and the bromodomain inhibitor JQ1 had much weaker effects 

on MYC:MAX interaction. A structural analogue of MYCMI-7 was inactive in the Gluc assay, 

therefore served as a reference compound in this and other assays. Further, MYCMI-7 inhibited 

endogenous MYC:MAX interaction in breast cancer cells as measured by isPLA, but did not 

inhibit interaction between the bZip proteins FRA1 and JUN. Kinetic experiments showed that 

MYCMI-7 started to reduce the MYC:MAX interaction already after 1 hour of treatment, and 

after 4 hours it had almost reached the minimum level, as shown by co-IP. 

Chromatin immunoprecipitation (ChIP) was also carried out in breast cancer cells to examine 

the effect of MYCMI-7 on the association of MYC with target gene promoters. In agreement 

with the rapid reduction in MYC:MAX dimerization observed in the co-IP, MYCMI-7 led to 

disassociation of MYC from the gene promoters starting already within 2 hours, and a 

maximum level of inhibition was reached after 4 hours of treatment and thereafter. In U2OS 

MYCER cells containing a 4-hydroxytamoxifen (HOT) regulatable MYC-estrogen receptor 

fusion protein, the HOT-induced expression of the MYC target gene CR2 was dramatically 

repressed by MYCMI-7 treatment. Therefore, we conclude that MYCMI-7 not only inhibited 

both exogenous and endogenous MYC:MAX protein interactions in cells, it also rapidly 

reduced MYC association with chromatin and blocked MYC target gene expression. 

Next, we looked at MYCMI-7 inhibitory effect on MYC:MAX in vitro. In the SPR assay, the 

recombinant MAXbHLHZip was immobilized on a gold chip, and titration of recombinant 
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MYCbHLHZip pre-mixed with MYCMI-7 was injected, flowing over MAXbHLHZip. The 

affinity of MYC to MAX on the chip was then measured.  SPR assay showed that MYCMI-7 

decreased the MYC:MAX interaction, which however stabilized at a level of approximately 

45% of control. Using SPR to study potential binding of MYCMY-7 to MYC, we could also 

show that MYCMI-7 bound to recombinant MYC bHLHZip domain with an affinity 

approximately of 4 M. Taken together, the results indicated that MYCMI-7 inhibited the 

interaction between recombinant bHLHZip domains of MYC and MAX by binding directly to 

MYC at low micromolar concentration. 

Looking at longer treatments (24-48 hours) with MYCMI-7 in cells, we noticed that not only 

the interaction between MYC or MYCN with MAX decreased, but also the steady state levels 

of both MYC and MYCN proteins were downregulated in Hela and Kelly cells, respectively. 

This suggested that MYCMI-7 might inhibit MYC and MYCN in both direct and indirect ways.  

We next addressed if the decrease in MYC protein levels was due to reduced MYC mRNA 

expression, therefore RT-qPCR was carried out after treatment with MYCMI-7 at different 

time points. The results demonstrated that MYCMI-7 did not decrease MYC mRNA levels in 

RT-qPCR significantly up to 24 hours. To investigate how MYCMI-7 regulates the steady level 

of the MYC protein, a cycloheximide (CHX) chase experiment, in which protein synthesis is 

blocked by CHX, was performed in HCT116 cells. A slightly increase of MYC turnover was 

detected.  

To further address how MYCMI-7 stimulates MYC degradation, we focused on FBXW7, 

which is the main E3 ligase targeting MYC for ubiquitylation and degradation (Yada et al., 

2004). Interestingly, MYCMI-7 did not affect MYC protein levels in the HCT116 FBXW7 

deficient cells, whereas both wild type and p53 null HCT116 cells showed a significant 

decrease of MYC protein level after MYCMI-7 exposure. CHX chase in FBXW7 deficient 

HCT116 cells confirmed that MYCMI-7 did not cause any change in MYC turnover rate in 

these cells. However, protein level of cyclin E, another target of FBXW7 (Cole et al., 2011; 

Koepp et al., 2001; Weber and Ryan, 2015) was not affected after MYCMI-7 treatment, 

excluding a general effect of FBXW7 on target proteins upon MYCMI-7 treatment.   

It has been reported that FBXW7 recognizes the Thr58- phosphorylated form of MYC and 

thereby target MYC for degradation. We therefore utilized Thr58A and Ser62A MYC mutants 

to validate the contribution of FBXW7 to MYCMI-7-induced downregulation of MYC protein 

level. Wild type MYC, T58A and S62A-mutant MYC were transiently transfected into U2OS 

cells, and also transduced stably in HO15.19 MYC null cells. Surprisingly, the levels of both 
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wild type and mutated MYC proteins were reduced in response to treatment in U2OS cells as 

well as in the HO15.19 cells. This argued against the hypothesis that the downregulation of 

MYC protein level upon MYCMI-7 treatment always go through the “classical” phospho-

Thr58/FBXW7 pathway. 

Intriguingly, when CHX chase experiments were performed in HeLa cells, no change MYC 

turnover rate was observed after MYCMI-7 treatment even though the MYC level was reduced, 

suggesting that the mechanism of MYC protein reduction is cell type or context dependent. To 

examine this further, we next measured MYC proteins synthesis in human U-937-MYC-6 cells, 

which contains a viral v-myc gene expressed from a retroviral promoter and lacking 5’ and 3’ 

mRNA regulatory elements, also expresses the endogenous MYC protein. MYCMI-7 only 

reduced synthesis of the endogenous MYC protein, but not the exogenous v-MYC protein. This 

suggests that regulatory sequences present in the human MYC mRNA species but absent in the 

mRNA expressed from the v-MYC construct may affect MYC mRNA translation. Therefore, 

it suggested the effect of MYCMI-7 on MYC turnover was cell type or context-dependent.   

We next investigated anti-tumor growth/viability effect of MYCMI-7, and its correlation with 

MYC level. We first utilized Rat1 fibroblasts with different MYC status to address if whether 

MYCMI-7 would affect cell growth in a MYC-dependent manner. H015.19 is a MYC null cell 

line derived from TGR-1 (parental cell line), while H0MYC3 was generated from the MYC 

null cells by reconstitution of the MYC gene (Mateyak et al., 1997). After 48 hours of MYCMI-

7 treatment, the metabolic activity of cells measured by MST-1 assay differed dramatically 

between MYC expressing cells (TGR-1 and HOMYC3 with IC50 around 2 M), and the MYC 

null cells HO15.19 which were unaffected even at MYCMI-7 concentrations of 12 M, with 

IC50 close to 20 M after 96 hours of MYCMI-7 exposure.  

An analogue of MYCMI-7, which did not affect MYC:MAX interaction, declined the viability 

of both HO15.19, TGR-1 and HOMYC3 cells and therefore did not discriminate between cells 

with different MYC status. The MYC selectivity of MYCMI-7 was further investigated in 

MCF7 breast cancer cells upon MYC knockdown, showing that cells depleted of MYC by 

siRNA-mediated knockdown were less sensitive to MYCMI-7 compared with the MYCMI-7 

analogue, while cells exposed to control-siRNA were equally sensitive to the two compounds.  

We next utilized a panel of neuroblastoma cell lines with or without MYCN-amplification.  

Our results showed that MYCMI-7 reduced tumor growth and viability in all the cell lines, but 

the effect was clearly stronger in the MYCN-amplified cell lines. MYCMI-7 also reduced 

growth of three Burkitt’s lymphoma cell lines with MYC translocation. In addition, we utilized 
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mRNA and protein expression data and GI50 data for the NCI-60 diverse human tumor cell line 

panel as described previously in Paper II. The data showed a strong correlation between MYC 

expression and growth inhibitory response to MYCMI-7 in human cancer cell lines. The results 

collectively indicated that MYCMI-7 reduced cell viability or inhibit cell growth in a MYC 

dependent manner. 

We next investigated the MYCMI-7’s anti tumorigenic capacity in a RAS + MYC 

cotransformation assay in primary rat embryonic fibroblasts (REFs). At a concentration of 0.5 

M, MYCMI-7 blocked transformation of the REFs by MYC together with activated HRAS 

in focus assays. MYCMI-7 also inhibited agarose colony formation of both MYC/HRAS 

transformed REFs and MYCN-amplified neuroblastoma cell line SK-N-DZ.   

To find out whether MYCMI-7 induced cytotoxic or cytostatic effects in tumor cells and 

normal cells, we utilized the Rat1 cells with different MYC status described above and human 

P493-6 B-cells with Tet-regulatable MYC. MYCMI-7 did not induce apoptosis in MYC null 

HO15.19 cells, but triggered apoptosis the wild type TGR-1 and MYC reconstituted HOMYC3 

cells. The P493-6 cells were synchronized in the G0 phase by shutting off MYC with the 

addition of doxycycline, then released into the G1 phase of cell cycle by doxycycline 

withdrawal in the presence or absence of MYCMI-7, after which cell cycle distribution was 

analyzed by FACS. MYCMI-7 treatment induced significant apoptosis compared with DMSO 

treatment as evident from the increased subG1 population as well as G1 arrest. However, 

MYCMI-7 did not reduce viability of either normal REFs, which arrested in the G1 phase of 

the cell cycle, nor of human normal diploid fibroblasts (HNDF) cells, but reduced viability in 

A375 melanoma cells in a dose dependent manner by induction of apoptosis. Taken together, 

our results showed that MYCMI-7 strongly inhibited tumor cell growth and induced apoptosis 

in a MYC dependent manner without affecting viability of normal cells, thus indicating a good 

therapeutic window for MYCMI-7. 

We also conducted in an ex vivo screen of MYCMI-7 efficacy on cells derived from primary 

glioblastoma tumor biopsies of 42 patients. The results showed that MYCMI-7 had potent anti-

tumor growth effect with EC50 in the submicromolar range in most of the glioblastoma cultures. 

In addition, MYCMI-7 inhibited growth of three patient-derived acute myeloblastic leukemia 

(AML) cell cultures with EC50 in a range of 0.15-1.3 M.  

Finally, MYCMI-7 was tested in several mouse tumor models, representing a MYC driven 

acute myeloid leukemia (AML) in which hematopoietic stem and myeloid progenitor cells that 

have gone through malignant transformation. In the AML model, hematopoietic stem cells 
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(HSCs) were isolated and purified from mouse bone marrow, then transduced with MYC and 

BCL-XL retroviral vectors, followed by expansion in vitro and injection into sub-lethally 

irradiated recipient syngeneic mice (Hogstrand et al., 2012). This leads to reconstitution of the 

bone marrow stem cell comnpartment to some extent but also to leads to rapid development of 

very aggressive AML-like leukemia. After the first signs of AML in the blood, treatment with 

MYCMI-7 or vehicle was initiated, and mice were sacrificed at different days post treatment 

and bone marrow and spleen samples were collected. At day 11 post treatment, very few 

leukemic cells were seen in the bone marrow under any conditions, but at day 15, there was a 

dramatic increase in leukemic cells in vehicle treated mice, which was essentially blocked in 

MYCMI-7 treated mice. At the end point, MYCMI-7 treated mice had still less leukemic cells 

in both bone marrow and spleen, and the latter retained a more normal spleen structure 

compared with the collapsed spleen structure in vehicle-treated mice.  In summary, MYCMI-

7 inhibited MYC/BCL-XL-driven tumor growth in vivo with tolerable side effects. 

We also studied the anti-tumor effect of MYCMI-7 in mouse xenograft tumor models of solid 

tumors representing breast cancer and neuroblastoma. Here we utilized the human basal-like 

breast cancer cell line MDA-MB-231 and MYCN-amplified SK-N-DZ neuroblastoma cells. 

The tumor cells were injected into the flank of mice. After tumors had become palpable, 

MYCMI-7 was administered intratumorally every fourth day until sacrifice when tumor 

volume reached the endpoint. MYCMI-7 treatment in both the breast cancer and the 

neuroblastoma xenograft model resulted in reduced tumor growth as well as prolonged 

survival. Immunohistochemical Ki67 staining of the tumor tissues showed that MYCMI-7 

treatment in triple negative breast cancer xenograft model considerably slowed down the tumor 

cell proliferation.  

In conclusion, MYCMI-7 inhibited both exogenous and endogenous MYC:MAX protein 

interaction in cells at low micromolar concentrations, as well as in vitro. It bound to 

recombinant MYC with an affinity of approximately 4 M, as well as decreased the steady 

state levels of MYC protein in cells. It also induced apoptosis in a MYC-dependent manner in 

tumor cells and immortalized cells while causing only G1 arrest with maintained viability in 

normal cells. In comparison with other reference MYC inhibitors such as 10058-F4 and JQ1, 

MYCMI-7 was more potent with respect to inhibition of cell growth and induction of cell death. 

Importantly, MYCMI-7 inhibited tumor growth in AML, breast cancer and neuroblastoma 

mouse models. The mechanism of how MYCMI-7 affects the steady state level of MYC protein 

still remains elusive, and there are indications that these effects may be cell type-specific, which 
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requires further investigation. MYCMI-7 is a potent and selective MYC inhibitor that has 

potential for further development towards anti-MYC drugs for clinical relevance in the future.  
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4.4 PAPER IV: IDENTIFICATION OF A HIGH AFFINITY MYC-BINDING 

COMPOUND TARGETING THE MYC:MAX PROTEIN INTERACTION. 

We utilized the cell-based GLuc and isPLA protein interaction assays to validate MYCMI-2’s 

MYC:MAX inhibitory efficacy in cells. MYCMI-2 inhibited both MYC:MAX and 

MYCN:MAX dimerization to about 60% and 70% of the DMSO control at 10 M after 24 

hours treatment, without interfering with homodimerization of the bZip protein GCN4. The 

isPLA assay demonstrated an IC50 of about 5-6 μM in MCF7 cells, where cells started to 

respond already after 6 hours of MYCMI-2 treatment. Taken together, MYCMI-2 inhibited 

both exogenous and endogenous MYC:MAX interaction in cells. 

We next examined whether MYCMI-2 targets the MYC:MAX interaction directly or indirectly 

and therefore performed experiments in vitro. For this we utilized an in vitro Gluc assay, based 

on split Gaussia luciferase fused to recombinant MYC and MAX, respectively. The 

recombinant proteins were translated separately in vitro using the TNT T7 coupled reticulocyte 

lysate system, mixed together in a ratio 1:1 together with compound after which Gaussia 

luciferase was measured by adding the substrate coelenterazine. The results showed that 

MYCMI-2 dramatically inhibited the MYC:MAX and MYCN:MAX interactions in vitro to 

10-15% of DMSO control, with little interference with GCN4:GCN4 homodimerization. The 

MAX:MAX interaction was only reduced slightly, suggesting that MYCMI-2 preferentially 

inhibits the MYC:MAX over the MAX:MAX interaction. Fluorescence resonance energy 

transfer (FRET) was utilized to further validate MYCMI-2’s ability to interrupt the MYC:MAX 

interaction in vitro, using recombinant proteins MYCbHLHZip fused to mTorq and 

MAXbHLHZip fused to eYFP as donor and acceptor, respectively. The compounds were 

incubated with the already heterodimerized MYC-mTorq:MAX-eYFP proteins which had a 

ratio of 1:1.1. IC50 for MYCMI-2 was estimated to approximately 240 +/-80 nM after a titration 

up to 3200 nM. The reference compounds 10058-F4 and 10074-G5, however, did not obtain 

any FRET signal in the same set up. Next, we modified the experiment setting which was to 

incubate the compounds with MYC-mTorq first before MAX-eYFP was added. In this case, 

only 10074-G5, in addition to MYCMI-2, showed and inhibitory effect, indicating that only 

MYCMI-2 had the capacaity to disrupt pre-formed MYC:MAX heterodimers. Titration of 

10074-G5 indicated an IC50 of approximately 25 µM, corresponding to previous published data. 

The other reference compound 10058-F4 was not active even up to 100 µM in the FRET assay, 

which is consist with other study that 200 µM is needed to split the MYC:MAX heterodimer 

(Choi et al., 2017). 
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The surface plasmon resonance (SPR) assay, described above, was also utilized to study the 

inhibitory effect of MYCMI-2 on MYC:MAX interaction inhibition in vitro. In the SPR assay, 

MYCbHLHZip was immobilized onto the sensor chip, while MAXbHLHZip was injected 

together with MYCMI-2, with a titration of MYCMI-2 in concentrations ranging from 1 nM 

up to 40 nM. The results showed that MYCMI-2 inhibited the MYC:MAX interaction with an 

IC50 below 1 nM.  

To address whether MYCMI-2 binds to MYC or MAX, we next conducted an MST experiment. 

In the MST assay, fluorescence labelled MYCbHLHZip was used for the thermophoresis after 

incubation with various concentrations of MYCMI-2 up to 500 nM. The MST assay 

determined a high affinity of MYCMI-2 binding to with MYC with an approximate Kd of 7 

nM. SPR assay was performed to further validate the results. For the binding study of MYCMI-

2, MYCbHLHZip was immobilized on the sensor chip, and MYCMI-2 was injected at different 

concentrations. An affinity with the extraordinary KD of approximately 1.3 +/- 0.2 nM was 

determined in this assay.  

We next investigated the biological effect of MYCMI-2 in cells. MYCMI-2 inhibited growth 

of Burkitt’s lymphoma (BL) cells Mutu and Daudi, which have MYC translocation, and 

inhibited cell growth/viability of the MYCN-amplified neuroblastoma cell line SK-N-DZ with 

an EC50 between 1.5-6 μM, while there was little effect on the MYCN-non-amplified cell line 

SK-N-F1 up to 50 M. MYCMI-2 reduced viability in the cervical cancer cell line HeLa and 

the breast cancer cell line MCF7, with EC50s about 5 M for both cell lines, while it did not 

affect growth and viability of normal melanocytes at concentrations up to 25 M. In addition, 

in Rat1 cells with different MYC status, MYCMI-2 barely affected growth HO15.19 MYC null 

cells while inhibiting growth of MYC-reconstituted HOMYC3 cells. Further, MYCMI-2 

potently inhibited anchorage independent growth of SK-N-DZ neuroblastoma cells, with EC50 

values below 1 M. Taken together, these results suggest MYCMI-2 inhibited tumor cell 

growth in a MYC dependent manner, while it was not cytotoxic to normal cells. 

To optimize the efficacy of MYCMI-2 in cells, we attempted to identify analogues with 

improved efficacy in cells while maintaining activity in vitro. A number of MYCMI-2 

analogues were obtained from NIH/NCI, and their efficacy were screened both in the cell-based 

and the in vitro Gluc assay. 

One of the analogues, compound MYCMI-2:47 had a similar activity as MYCMI-2 in vitro, 

but showed a poor GLuc activity in cells. Several other candidates were not as good as 

MYCMI-2 in the in vitro screen, such as MYCMI-2:7, MYCMI-2:16, MYCMI-2:17 and 
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MYCMI-2:18, but showed improved GLuc activity in cells compared with MYCMI-2. The 

selected analogues were tested further for selectivity in the GLuc screen but unfortunately 

many analogues did not pass this test. One analogue, MYCMI-2:7 showed lower but acceptable 

potency in the in vitro GLuc screen, demonstrated slightly better MYC:MAX inhibitory effect 

in the cell based GLuc screen compared with MYCMI-2 (p<0.05). Further, MYCMI-2:7 

maintained selectively towards MYC:MAX heterodimerization over MAX:MAX or 

GCN4:GCN4 in Gluc assay both in cells and in vitro. Moreover, in the isPLA assay, MYCMI-

2:7 inhibited MYC:MAX interaction down to about 40% of DMSO treatment, although here 

the difference towards MYCMI- 2 was not significant. 

To further investigate MYCMI-2:7 inhibitory capability in vitro, a FRET assay was performed, 

as described above. MYCMI-2:7 exposure at a concentration of 25 M showed an inhibitory 

effect below 50% on the MYC-mTorq:MAX-eYFP protein interaction. Using SPR, the affinity 

of MYCMI-2:7 to MYC and MYCN was estimated to be approximately 17-20 µM in KD.  

Unlike MYCMI-2, MYCMI-2:7 downregulated the endogenous MYC protein level in MCF7 

cells, indicating that MYCMI-2 and MYCMI-2:7 work differently mechanistically. Similar to 

MYCMI-2, MYCMI-2:7 treatment selectively reduced cell growth of MYCN-amplified SK-

N-DZ neuroblastoma cells with an IC50 of approximately 10 µM while not inhibiting growth 

of the MYCN-non-amplified SK-N-F1 neuroblastoma cells. MYCMI-2:7 inhibited cell 

proliferation in a MYC dependent manner when evaluated in Rat1 cells with different MYC 

status. The growth of HOMYC3 cells with reconstituted MYC declined down to 40% at 6.25 

M of MYCMI-2:7, while the HO15.19 MYC null cells were unaffected at the same 

concentrations. 

In summary, we have demonstrated that MYCMI-2 has an extraordinary potency in vitro 

binding to MYC with a KD of 1.3 +/- 0.2 nM as determined by SPR, and an activity in cells in 

the lower μM range, while the analogue MYCMI-2:7 was less active in vitro and only 

marginally better in cells. With help of structure-activity relationship (SAR) studies, potentially 

a more biologically active lead molecule can be designed based on the mapping of binding site 

of MYCMI-2 to MYC using MYC mutants, NMR and X-ray crystallography.  
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5 CONCLUSIONS AND PERSPECTIVES 

The MYC transcription factor family is a classic oncogene involved in cancer formation and 

progression. As a “master regulator” MYC plays a critical role in cell cycle progression, 

biomass increase, apoptosis and tumorigenesis. MYC is reported to be dysregulated in roughly 

70% of human cancers, often as a consequence of gene amplification. 

In addition, deregulation of MYC proteins is often associated with aggressive forms of tumors 

and poor prognosis in the clinic (Meyer and Penn, 2008). Evidence is emerging that MYC is 

both a prioritized and suitable target for anti-cancer therapy. Many studies demonstrated that 

MYC is required not only for formation and maintenance of typical MYC-driven tumors, but 

also in a number of different tumors as well, including KRas- or BRAF-induced lung and 

pancreatic cancer (Soucek et al., 2008) (add some more ref, including the latest from Laura, 

Tabor, Juan). These observations suggest that inhibition of MYC in a possible way of 

eradicating not only MYC-driven tumors, but also those initiated by other oncogenes.  

Considering the two opposing functions of MYC-induced DDR, it would be of interest to 

investigate the deeper mechanism so to open up new therapeutic opportunities for targeting 

MYC. As a tumor suppressor mechanism, DDR is induced upon oncogene activation, such 

as activation of RAS or MYC, and involves ATM/CHK2, ATR/CHK1, DNA-PK, TIP60, 

WIP1 and p53 to restrain tumor development, often resulting in apoptosis or senescence. 

However, the MYC-induced DDR also engages the ATR/CHK1 and DNA repair pathways, 

allowing cell proliferation and avoiding cytotoxic DNA damage accumulation (Murga et al., 

2011; Smith et al., 2010; Weber and Ryan, 2015). 

Since MYC is tightly regulated at multiple levels such as transcription level, mRNA translation 

and protein turnover, etc., inhibition of MYC through any of these mechanisms may result in 

activation of alternative routes of MYC activation and therefore resistance development 

(Prochownik and Vogt, 2010). Therefore, targeting MYC directly, or through its obligatory 

partner Max, although challenging, seems to be a more fruitful way to attack MYC in cancer. 

If specific protein-protein interactions within the MYC network can be inhibited, the inhibitors 

may not only be used as drug candidates but also in the research community for studying the 

fundamental mechanism of the many MYC actions within the cell.  

However, as one of the earliest identified cellular oncogenes, MYC was considered as 

“undruggable” for such a long time due to the fact that the intrinsic disordered structure of 

MYC and MAX, as well as the extensive interfaces via large surface lacking of virtually natural 
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“pocket” to hold firmly the small molecule drug. With science and research methods 

development, many breakthroughs have been made in MYC biology which indicate that 

“undruggable” might need to be re-define as “difficult to drug” or “yet to be drugged” (Dang 

et al., 2017). 

In this work, we identified and characterized several small molecules targeting the interaction 

between MYC and MAX. We found that MYCMI-6 selectively targets MYC:MAX interaction 

both in vitro and in cells without affecting MYC expression and binds directly to MYC with 

single digit micromolar affinity, thus was qualified as a unique molecular tool to specifically 

target MYC: MAX pharmacologically and it has good potential for drug development. 

MYCMI-7 also binds to MYC, and besides its MYC:MAX inhibitory effect also reduces MYC 

protein expression, it inhibits MYC-dependent tumor cell growth at single digit micromolar 

concentrations, thereby inducing apoptosis in tumors while sparing normal cells, and most 

importantly shows good potential in vivo. Though the mechanism of how MYCMI-7 targets 

MYC protein level remains unclear, it could be used as a tool to increase our understanding of 

pathways for MYC inhibition. MYCMI-2 possesses a very high activity with respect to 

inhibition of MYC:MAX interactions in all in vitro assays including GLuc, FRET (IC50 of 240 

+/-80 nM in a 1:1.5 ratio of MYC:MYCMI-2) and SPR (IC50 < 1 nM). Importantly, MYCMI-

2 bound to the bHLHZip region of MYC with very high affinity with a KD of 1.3 +/- 0.2 nM 

as determined by SPR, compared with MYCMI-6 has a KD of 1.6 M for MYC. The affinity 

of MYCMI-2 to MYC makes it outstanding compared to previously described MYC:MAX PPI 

inhibitors, such as 10058-F4 and 10074-G5, with an IC50 of approximately 25 M and no 

effect up to 100 M in FRET, respectively. Another well studied MYC:MAX inhibitor, KJ-

Pyr-9 was previously reported to bind directly to MYC with a KD of 6.5 nM, and with an IC50 

for MYC:MAX dissociation of 13.4 nM. However, we were not able to confirm this in our 

protein interaction and binding assays. MYCMI-2 shows mediocre effect on MYC:MAX 

interaction in cells probably due to inefficient cellular uptake or high intracellular turnover, but 

it is worthy to identify analogues with improved cellular or in vivo bioactiviy. 

Take all the evidence as described above, our study indicated that despite of MYC’s 

intrinsically disordered nature and other challenges, inhibitors of MYC/MAX interaction is a 

promising therapeutic approach to combat MYC’s tumorigenic function.  

Identification of small molecules that specifically inhibits the interaction between MYC:MAX 

will be of importance not only to increase the basic knowledge on mechanisms of tumor 
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development but will also contribute to the exploring of new therapeutic strategies to combat 

cancer in the future. 
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