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ABSTRACT 

SNARE proteins, SNAP-25, syntaxin 1A and VAMP2 constitute the functional units which join 

together to form the core SNARE complex. The SNARE complex carries out the vital function 

of membrane fusion of intracellular vesicles with plasma membranes, leading to the release 

of neurotransmitters in brain neuronal circuits and of hormones in endocrine glands. SNAP-

25 exists as two alternatively spliced isoforms, resulting in two similar but distinct proteins, 

SNAP-25a and SNAP-25b. The distribution of these two proteins in brain and periphery are 

regulated developmentally. In this thesis, the focus has been on SNAP-25 in hippocampus. 

We evaluated the roles of SNAP-25 isoforms, and SNAP-25 mutants in activity-dependent 

long-term potentiation (LTP) and depression (LTD) at hippocampal Schaffer collateral-CA1 

synapses.  

We utilized gene targeted mouse models, i) the first only expressing SNAP-25a (the SNAP-

25b-deficient mouse) and ii) the second having a mutated C-terminus of SNAP-25 (the SNAP-

25∆3 mouse), to investigate alterations in synaptic plasticity. SNAP-25b-deficient mice 

displayed a reduced magnitude of LTP at Schaffer collateral-CA1 synapses and an enhanced 

magnitude of LTD at similar synapses at similar age. These mice exhibited abnormalities in 

basal synaptic transmission, short-term synaptic plasticity (STP) and faster neurotransmitter 

release kinetics. Abnormalities in synaptic transmission were evident as deficits in learning 

and memory formation in a behavioral task of active avoidance. Mutations in the C-terminus 

of SNAP-25 reduce the ability of inhibitory Gβγ subunits to interact with SNAP-25, and we 

show here that SNAP-25∆3 mice exhibit enhanced LTP at Schaffer collateral-CA1 synapses.  

Lack of SNAP-25b causes hyperinsulinemia and, combined with Western diet, results in a 

diabetic phenotype. We investigated if a metabolic phenotype triggered by SNAP-25b-

deficiency, or Western diet alone, affected higher cognitive functions of the brain. SNAP-25b-

deficient mice and wild type mice with diet-induced metabolic syndrome performed poorly 

in brain region-specific behavioral tasks. Proteins quantification in the specific brain areas 

revealed changes in the expression levels of the SNARE proteins.  

In conclusion, SNAP-25a and SNAP-25b play specialized and different roles in synaptic 

transmission. The roles of SNAP-25b appear to be more suited to a mature brain with stronger 

synaptic connectivity, and the work in this thesis clarifies the presynaptic contributions of the 

SNAP-25 isoforms to activity-dependent synaptic plasticity.   
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1 SYNAPTIC PLASTICITY 

1.1 A synapse and its ability to undergo a plastic change 

A synapse refers to the micro space, which exists as a point of contact between two neurons 

in the brain. It was the pioneering histological work of Santiago Ramón y. Cajal in the 1890’s, 

a Spanish neuroanatomist, who utilized staining methods developed by Camillo Golgi to stain 

and make drawings of the neurons of the central (CNS) and peripheral nervous sytem. He 

showed for the first time, among other things, that the neurons are not continuous extensions 

of each other like an electrical cable but they lay adjacent and separately to each other1. An 

English neurophysiologist, Charles S. Sherrington, coined the word ‘synapse’2. Camillo Golgi 

and Santiago Ramón y. Cajal shared the Nobel Prize in Physiology and Medicine in 1906 for 

their work and up until today, Cajal is credited to have laid the foundation of modern 

neuroscience.  

Ensuing research in to the cellular architecture and organization of neurons in brain led to the 

differentiation of a synapse into a presynaptic and a postsynaptic locus with synaptic cleft 

spanning an area of approximately 20-25nm3,4. The presynaptic area contains a dense protein 

rich zone, holding vesicles filled with neurotransmitters, which are released in to the synaptic 

cleft when a neuron is sufficiently stimulated/excited. The neurotransmitters diffuse across 

the synapse and bind to the receptors on the postsynaptic neuron, leading to excitation (e.g. 

with the neurotransmitter glutamate5) or inhibition (e.g. with the neurotransmitter GABA6) 

of the postsynaptic neuron. Across the brain, neurons are arranged in a fashion to what can 

be analogous with electrical circuits, with information flowing from one neuron to the other 

through synapses.  

The notion that synapses are not merely a static point of contact between neighboring 

neurons and, instead, a dynamic entity, the strength of which can change with the activity of 

neurons, was first theoretically conceived by a Canadian neuropsychologist, Donald Hebb7. 

He proposed the ‘Hebbian Rule or theory’ of synaptic efficacy in his landmark book ‘The 

Organization of Behavior’ in 1949. According to the ‘Hebbian Rule’, if a neuron is active and 

persistently stimulates a neighboring neuron, it will lead to the strengthening of the 

connection between these two neurons, a phenomenon summarized as “neurons that fire 

together wire together”7  The change in efficacy/strength of synaptic connection refers to the 
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plastic change. Depending on the duration for which the change lasts, synaptic plasticity can 

be short-term (msec) or long-term (min to days).  

 

 

Figure 1: Schematic representation of the presynaptic and postsynaptic neuronal terminals in the 

central nervous system (CNS). The presynaptic locus contains neurotransmitter filled synaptic vesicles 

(SVs) and is rich in proteins, which help regulate the release of these neurotransmitters. The 

postsynaptic locus contains receptors for the neurotransmitters, and information is in this manner 

relayed from one neuron to the next via the synapse cleft.   

1.2 Long-term potentiation (LTP) and long-term depression (LTD), Hebbian versus 
non-Hebbian forms of plasticity 

Long-term potentiation (LTP) represents a physiological phenomenon in which the strength 

of a connection between two neurons in the brain gets stronger. The most well known reason 

for the change in synaptic strength is a high degree of neuronal activity, which makes the 

synapse stronger, and hence, the phenomenon is referred to as activity-dependent LTP. If a 

high degree of presynaptic stimulation or synchronous activity between the pre- and 

postsynaptic neuron leads to a stronger connection between neurons, it did not take the 

scientists long to figure out that a reduced or asynchronous activity will lead to a weakening 

of synaptic strength, a phenomenon referred to as long-term depression (LTD). The 
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distinction between activity- and non-activity dependent forms of synaptic plasticity is 

important. This is because after decades of research, it is now established that there are other 

forms of synaptic plasticity, which do not follow the Hebbian rule, but can be induced robustly 

in networks of neurons. Activity-dependent plasticity involving synaptic stimulation is 

classified as Hebbian plasticity, while the examples of non-Hebbian plasticity include 

homeostatic plasticity8 or synaptic scaling9,10.  Non-Hebbian forms of plasticity work in concert 

with Hebbian plasticity in neuronal networks and make the plastic changes more stable11.  

1.3 Discovery of long-term potentiation (LTP) and long-term depression (LTD) 

The first empirical evidence of LTP was discovered by Terje Lømo and Tim Bliss in 1973, who 

showed that the strength of synapses could be potentiated for as long as 10 hours following 

a brief but intense tetanic stimulation12. They utilized anaesthetized rabbits to record the 

electrical activity from perforant path-granule cell synapses in the hippocampus. To express 

LTP, they used high frequency stimulus (HFS), which is still being applied in slightly different 

versions of LTP research. The basic principle of HFS for the expression of LTP in ex vivo brain 

slices involves injecting small bursts of constant current stimuli at approximately 100Hz 

frequency. The number of bursts may vary depending on the experimental setup. This is to 

mimic the high neuronal firing rate under conditions of intense activity, and as a result, when 

the presynaptic neuron is stimulated in an ordinarily fashion, the postsynaptic response is 

significantly larger, serving as evidence of Hebbian plasticity at the synapse. Heterosynaptic 

long-term depression (LTD) was discovered soon after13, when scientists showed that 

synapses which did not receive HFS exhibited synaptic depression. It took relatively longer 

time to realize that prolonged low frequency stimuli (LFS) (1-3 Hz) can induce homosynaptic 

LTD 14,15. Initial studies after the discovery of LTD, focused on the fact that LFS can reverse 

stable LTP16, which was a correct finding. However, focus on the phenomenon of LTD was at 

the time relatively less than of LTP, until the 1990’s.  

1.4 Cellular and molecular changes associated with LTP and LTD postsynaptically 

It may appear logical and straight forward to think that a plastic change at the synapse will be 

the result of both presynaptic (changes in neurotransmitter release rate) and postsynaptic 

(response/sensitivity to the neurotransmitter) changes, but it was not the case for a long time 

after the discovery of these phenomena17,18. In hindsight, researchers tracked the origin of 

controversy whether LTP was expressed pre- or postsynaptically to the initial lack of 

appropriate tools/methods for detecting presynaptic changes associated with LTP. 
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Initial studies pursuing the underlying mechanism of LTP showed that postsynaptic 

depolarization coupled with normal synaptic stimulation were enough to induce LTP even 

without HFS19,20. But with the advancements in pharmacological tools it became evident that 

the reason for this observation was that, in fact, N-methyl-D-aspartate (NMDA)-type 

glutamate receptors expressed postsynaptically are blocked by Mg2+ under normal 

hyperpolarized conditions and that this block is relieved when the postsynaptic neuron is 

depolarized21,22.  Further studies showed that NMDA receptors conduct Ca2+ ions towards the 

inside when in the open state23,24. When postsynaptic Ca2+ was captured by EGTA, it blocked 

expression of LTP via HFS25, hence, postsynaptic Ca2+ influx emerged as a necessary 

component for the expression of LTP, not necessarily via NMDA but through another 

glutamate receptor, called  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-

type glutamate receptors26,27. Ca2+ recruits calcium/calmodulin-dependent kinase II (CamKII) 

which leads to its auto phosphorylation28-30 and a series of events after the activation of this 

enzyme. CamKII modifies the cytoarchitecture of the postsynaptic area through engaging 

cytoplasmic actin31,32. This allows room for extra AMPA-type glutamate receptors to be 

inserted in the postsynaptic plasma membrane (locality), which are synthesized and 

constitutively secreted as well as captured from extra synaptic zones33,34. AMPA receptors 

have relatively faster kinetics compared to NMDA receptors and, when activated by 

glutamate, they conduct both Na+ and K+. Unlike NMDA receptors they are not blocked by 

Mg2+ under hyperpolarizing conditions, hence are not voltage dependent. This leads to rapid 

postsynaptic depolarization in response to glutamate release and hence, even greater Ca2+ 

influx through NMDA receptors. This mechanism represents the general neural substrate for 

the postsynaptic component of LTP.  

Ca2+ signaling inside the cell is incredibly diverse35, and over the years, protein kinases other 

than CamKII have been shown to be activated via rises in intracellular [Ca2+]i. These include 

protein kinase A (PKA)36-38, p42/44 mitogen-activated protein kinase (MAPK)39, extracellularly 

regulated kinase (ERK)39 and phosphatidylinositol 3-kinase (PI3K)40. These protein kinases 

influence gene transcription, which eventually leads to structural modifications suited for the 

induction and expression of LTP. 

One would assume that the induction of LTD is associated with the opposite of what happens 

during LTP, but this is not quite the case. As it turned out, NMDA receptor activation and 

postsynaptic Ca2+ are important for induction of LTD as well14. Capturing postsynaptic Ca2+ via 
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the chelators EGTA or BAPTA blocked LTD41. As baffling as those earlier findings were, it was 

later shown that the key lies in abrupt massive increases of Ca2+ concentrations which happen 

during HFS and prolonged small increases of Ca2+ concentrations which occur during LFS. 

Persistent small rises in the intracellular Ca2+ concentration lead to reduced activation of 

CamKII because of the constraints on spatial availability of Ca2+. This in turn activates protein 

phosphatases42 (PP1, PP2B) which dephosphorylates AMPA receptors eventually leading to 

the depression of postsynaptic responses43. Blocking of those protein phosphatases abolished 

LTD44.  

NMDA and AMPA receptors are ionotropic receptors but LTD is not entirely dependent on 

NMDA receptors alone, and activation of metabotropic glutamate receptors (mGluRs) have 

also been shown to play a role in the induction of LTD45,46. mGluR receptors are G-protein 

coupled receptors (GPCRs) expressed both pre- and postsynaptically, and their stimulation 

leads to inhibition of adenylyl cyclase while activation of phospholipase C (PLC)47,48. These 

intracellular signaling cascades eventually lead to dephosphorylation of AMPA receptor 

subunits and depression of the synapse49.  

Stimulation of either NMDA or mGluR receptors alone is sufficient to induce LTD50. 

Furthermore, expression of LTD precedes LTP during brain development51,52.  

1.5 Cellular and molecular changes associated with LTP and LTD presynaptically 

The major presynaptic mechanism associated with plastic changes at the synapse is 

alterations in the release rate of neurotransmitters53. Advancements in pharmacological tools 

made it somewhat convenient to validate postsynaptic components of synaptic plasticity in 

the 1980’s. However, verifying the changes in neurotransmitter release rate associated with 

LTP had to wait until 1990’s, until the developments in genetic, molecular biology, 

biochemical, proteomics and microscopic techniques. This is where SNARE proteins came in 

to the picture as well and helped explain the complexity of presynaptic terminals at central 

brain synapses. 

Despite of the initial difficulties due to technological restraints, the classical studies of Josè 

Del Castillo and Bernard Katz in 195454 and Josèf Dudel and Stephen W. Kuffler in the 196055-

57 provided compelling evidence of short-term facilitation and depression of the 

neurotransmitter release at the neuromuscular junction lasting hundreds of milliseconds.  

Facilitation represented probability (p) of neurotransmitter release. Since facilitation and 
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depression coexisted at the presynaptic locus, the direction whether p would slide towards 

facilitation or depression depended on in the initial p, with lower initial p favoring facilitation 

and vice-versa. In the 1990’s researchers were finally able to experimentally show evidence 

of long-term changes in neurotransmitter release rate at hippocampal synapses associated 

with synaptic plasticity53,58.  

The current consensus is that synaptic plastic changes are associated with both pre- and 

postsynaptic modifications. Nevertheless, in view of the ever-increasing complexity of 

proteins being continuously implicated in, and associated with, these changes at both loci, we 

are still far from a complete understanding of synaptic plastic changes at the synapse, and 

how they account for the learning and memory encoding capability of the brain.   

1.6 Hippocampus; an essential medial temporal lobe structure for the study of 
synaptic plasticity and memory 

Bliss and Lømo chose hippocampus to record LTP in the first ever experimental recording of 

LTP. What motivated their choice at a time when no clear evidence was available of where 

the memories are stored in brain? They worked in Per Andersen’s lab at the University of 

Oslo, and Per was an expert in studying hippocampus59. What was also, however, known at 

that time was the clinical case of patient Henry Molasin (H.M.) who had undergone bilateral 

temporal lobe resection, a surgical procedure which removed a major part of his temporal 

lobe, including the hippocampus in both hemispheres60. This procedure was performed in 

hope of a cure for his uncontrolled epileptic seizures, and it was successful in controlling his 

epilepsy, but left him with anterograde amnesia (unable to form new memories). Bilateral 

hippocampal lesions associated with the loss of episodic and semantic memories formation 

ability was reported in other patients as well61. This led experts to believe that hippocampus 

is crucial for the formation of new episodic (a memory with spatial and time coordinates) and 

semantic (memory of meanings/concepts) memories, because the older long-term 

memories, and general intellectual capabilities like language/words processing of H.M. were 

intact62. Some studies reported that only episodic memories rely on hippocampus, while 

semantic memories are partly dissociable to other brain regions as well63. Follow-up studies 

with patient H.M. also described that he was able to acquire some new semantic memories 

after years long training, perhaps with the help of some cortical brain areas62. Nevertheless, 

all the studies in human patients and animal models confer a crucial role to the hippocampus 

in the formation of explicit/declarative memories. While it might not be the site of permanent 



 

7 

 

storage of those memories, as evidence suggests parahippocampal cortices to hold 

intermediate memories, and neocortex as a final repository, hippocampal presence is 

certainly required for the normal formation and organization of declarative memories64-66.  

Bliss and Lømo’s pioneering study and many other studies afterwards showed that 

hippocampus has a very organized laminar neuronal circuit, which is capable of undergoing 

plastic changes. The current view in the field of learning and memory research among 

neuroscientists is not much different from what it was more than 60 years ago, only with 

further additions and refinement of the hypothesized role of hippocampus. Human and 

animal studies with lesions of hippocampus, transgenic/gene-targeted knock-out/knock-in 

studies and pharmacological manipulations of the hippocampal circuitry affecting synaptic 

plasticity, have been shown to impair learning and formation of declarative memories65,67-71. 

Studies have also reported changes at the cellular physiology level as well, as learning via a 

behavioral task has been shown to induce LTP with AMPR delivery to the CA1 synapses in 

rodents72. The studies carried out in rodents, especially mice, are perhaps the most important 

in advancing our understanding of the cellular and molecular correlates of synaptic plasticity 

in hippocampus. Supplemented with behavioral paradigms, these studies provide a robust 

correlation between synaptic plasticity at hippocampal synapses and mechanisms underlying 

learning and declarative memory formation. In humans, however, it has not been easy to 

replicate all the animal studies due to the obvious scantiness of human brain material. 

However, some basic mechanistic aspects of synaptic plasticity induction and expression have 

been shown to be similar in rodents and in human brain tissue resected from epileptic and 

tumor patients, for example, NMDA receptor activation as a necessity for the induction of 

LTP73,74. But more importantly, clinical and post-mortem findings in human patients suffering 

from neurodegenerative diseases affecting learning and memories formation, for example, 

Alzheimer’s disease, have established that hippocampus is a region of the brain severely 

affected75. Hippocampal atrophy resulting from synaptic degeneration/loss has been 

proposed to underlie the amnesic syndrome observed in those patients76-78.  

1.7 The hippocampal neuronal circuitry 

In order to properly address the role of hippocampal synaptic plasticity in learning and 

memory formation, it is imperative to explain the hippocampal neuronal circuit organization 

with its inputs and outputs to the rest of the brain. Brain contains two hippocampi, one in 

each hemispheres in the temporal lobe, and each hippocampus resembles the shape of a 
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seahorse. Cross sectional anatomy of the hippocampus reveals a v-shaped wedge formation 

called the dentate gyrus (DG) which is composed of tightly packed layers of granule cells (GC). 

The GC receive their input via the perforant pathway, which is axons of glutamatergic neurons 

in the layer II/III of the entorhinal cortex (EC). GC extend their axons, mossy fibers (MF) and 

form synapses with pyramidal neurons in the CA3 region. The MF-CA3 synapses have been 

termed as one of the most powerful synapse in the brain and a salient feature of these 

synapses is that LTP can be induced there without the need for NMDA receptor activation. 

Axons from the pyramidal CA3 neurons transit through a relatively smaller sub-region, CA2, 

and form synapses with the pyramidal neurons in the CA1 area via the Schaffer 

collateral/associational/commissural fiber pathway. Schaffer collateral-CA1 synapses are the 

most extensively studied synapses in synaptic plasticity research. Axons of the pyramidal CA1 

neurons project to layer V of the entorhinal cortex in the subiculum79.  

 

Figure 2: Neuronal circuit organization of the hippocampus with its major inputs-outputs. 

1.8 Experimental approaches to record synaptic plasticity  

The way to go to assess synaptic plasticity is recording electrical activity in the ex vivo acutely 

prepared brain slices. Different types of synaptic plasticity (STP, STD, LTP, LTD) can be 

recorded via this method, providing the convenience of combination with pharmacological 

manipulations and imaging modalities to carry out proof of concept studies. However, with 

convenience comes cynicism, especially when explaining a highly complicated phenomenon 

such as learning and formation of memories in brain’s neuronal circuits. There are many 

questions, which cannot be answered by recording synaptic plasticity in ex vivo brain slices. 

Most prominent ones are, for example, the electrical activity recorded in brain slices when 

the brain is not in its natural native state, i.e. cannot be assumed to be exactly as electrical 

activity happening in brain in vivo during formation of memories. Critics of the LTP field also 
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argue that the HFS (100Hz) commonly used to induce LTP in brain slices in a laboratory setting 

is artificial. However, higher firing patterns of neurons have been shown in vivo as a substrate 

for activity dependent plasticity, for example place cells in the hippocampus80,81, but there is 

no direct evidence of high frequency bursts associated with learning or formation of 

memories in vivo. A question which arises from the theory that ‘higher activity of neurons 

leads to the synaptic connections becoming stronger’ as a neural substrate for learning and 

memory formation, is the underlying assumption that the higher activity is triggered by a 

certain stimulus, which the brain deems essential to learn or remember. However, in reality, 

information is continuously fed to the brain, processed by streams of neuronal activity, but it 

is entirely unknown how it is decided what to learn and remember from all that information 

and what to discard. Last but not the least, as with all animal studies comes often the question 

of whether findings from ex vivo/in vitro experiments could also be present at the behavioral 

level. In addition, to what degree can animal data be extrapolated to humans, who 

evolutionarily have the most evolved brain and the highest cognitive abilities? That is why, 

for extrapolation and correlation of LTP data from brain slices to the behavioral level, a 

number of behavioral paradigms have been developed to test different learning behaviors 

primarily in rodents, but also in other species. Different behavioral tests rely on the neuronal 

activity of a specific area of the brain and serves to validate the ex vivo/in vitro findings and 

help screen pharmacological agents and study gene expression etc. in that brain region.  

1.9 Behavioral testing in animals for assessing learning and memory formation 

Only a short description of the most important behavioral tests for assessing learning and 

memory formation in animals (monkeys, rats and mice) is presented here, as over the years 

a large number of these tests have been developed. In the following, a few important and 

much used tests are described.  

1.9.1 Delayed match to sample task  

The prototype of this behavioral paradigm was developed in the 1950’s, and pigeons were 

utilized as experimental models for assessing memory function82. The delayed match to 

sample task is a behavioral test, which can be applied to higher mammals (monkeys), rodents 

and humans as well, in different versions to assess retention of working/visual memory. For 

example, in one version of the test, a monkey will be presented an object on the screen for a 

short duration (few seconds), followed by a delay, two objects will be presented on the screen 

and the monkey is trained to make a selection for one object which will match the earlier 
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presented one. Correct matching is associated with a reward. In vivo electrical recordings in 

the brain during the course of experiment in monkeys have associated prefrontal cortex with 

working memory83, but studies have also reported involvement of other brain regions like 

perirhinal cortex in rats 84.   

1.9.2 Morris water maze   

Morris water maze test developed by Richard Morris85 and is the most commonly used 

behavioral test to assess hippocampal dependent spatial memory. Originally, it was 

developed for rats, but is commonly used now for testing mice as well, and different versions 

of the original paradigm exist.  The basic principal is that rats or mice are subjected to swim 

in a large tank of opaque water with a hidden/visible platform, where they find the platform 

by co-incidence during training. In the actual test, the latency (time to the discovery of the 

platform) to find the platform is then monitored as a measure of learning and memory. This 

test also has evolved over the years and the test can be performed with/without spatial cues. 

Richard Morris was also the founder of two famous theories in the LTP field, i) ‘synaptic 

tagging’86 which states that transcriptional and translational factors are activated 

immediately after the potentiation of a synapse leading to early protein synthesis. Those 

proteins serves as tags and paves way for the late LTP. This has been proven with the 

application of protein synthesis inhibitors after induction of LTP with relatively weak tetanic 

stimulation. ii) The ‘synaptic plasticity memory (SPM)’ theory87,88 states that activity-

dependent changes in the synaptic efficacy in a specific brain region are both necessary and 

sufficient for the formation of a memory trace (also referred to as an ‘engram’) in that area 

of the brain.  

1.9.3 Passive avoidance test 

The passive avoidance test measures the retention time of a shock memory. The apparatus 

for the test consists of a brightly illuminated and a dark box with a through door from the light 

to the dark box. A rat or a mouse is placed in the bright box, and following their natural 

preference the animal transition to the dark box but here receives an electrical shock. The 

animal is removed from the dark box and administered a drug, and tested again to assess the 

retention of the shock memory. The behavioral tests used in the scope of this thesis are 

explained in the Material and methods section.  
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2 SNARE PROTEINS AND EXOCYTOSIS 

2.1 Regulated membrane fusion 

Regulated membrane fusion usually refers to protein-catalyzed lipid rearrangement of two 

adjacent membranes, the plasma and vesicle membranes, which eventually leads to the 

release of vesicle contents in a controlled targeted manner. This is a tightly regulated process 

with checkpoints and balances at every step by multiple regulatory molecules. The process is 

highly conserved, from yeast to higher vertebrates89. Regulated membrane fusion is not to be 

confused with lysis, as the permeability of the membrane to polar molecules is always intact. 

Regulated membrane fusion leads to the expulsion of proteins or transmitters in a targeted 

fashion90-93. The phenomenon of membrane fusion can broadly be divided into either 

‘constitutive’ or ‘regulated’. Intracellular membrane fusion of vesicles from endoplasmic 

reticulum (ER) fusing with Golgi apparatus are examples of a ‘constitutive’ membrane fusion 

event. This targeted release of proteins from ER to trans Golgi network and on to the cell 

surface with the help of signaling chaperone molecules, represents a mechanism which is 

present in almost all living cells, as cells are constantly synthesizing proteins94,95. However, 

the focus of this thesis is regulated membrane fusion, which leads to exocytosis of 

neurotransmitters from synaptic vesicles in neurons into the synapse. This is a property of 

excitable cells, including cells in the endocrine, neuroendocrine and nervous system, although 

the kinetics of hormones release significantly differ from neurotransmitters. In regulated 

exocytosis, proteins, peptides or small molecule transmitters are stored and packed in 

secretory vesicles and the release is triggered by a specific external stimuli leading to a rapid 

localized discharge of the vesicular contents95,96. The strict spatial and temporal control 

dynamics of regulated exocytosis in response to a well-defined triggering stimulus are what 

differentiates it from constitutive exocytosis. Membrane fusion (constitutive and regulated) 

lies at the core of vital processes of cell growth, hormone secretion and neurotransmission. 

2.2 Regulated exocytosis, SNARE proteins and synaptic transmission 

Both regulated and constitutive exocytosis are carried out with the help of Soluble N-

ethylmaleimide sensitive factor Attachment protein REceptor (SNARE) complexes97. The 

SNARE family of proteins is made up by 35 members in Homo sapiens (human), 20 in 

Drosophila melanogaster (fly), 23 in Caenorhabditis elegans (worm) and 21 in Saccharomyces 

cerevisiae (yeast)98,99 with many members having multiple isoforms. SNARE proteins are a 

large family of proteins with different members participating to form the trimeric core 
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complex in distinct (systems) excitable cells at different developmental time points. The core 

SNARE complex for regulated exocytosis of neurotransmitters is formed by three SNARE 

proteins, namely, Synaptosomsal associated protein of 25kDa (SNAP-25), syntaxin 1A and 

synaptobrevin 2 or vesicular associated membrane protein 2 (VAMP2)97, hence, are also 

referred to as cognate neuronal SNAREs. The release of neurotransmitters at central synapses 

is a most tightly regulated process with controls exerted on a millisecond timescale. SNARE 

proteins constitute the functional machinery responsible for this highly regulated 

phenomenon at the presynaptic terminals. It is also worth noticing that different members of 

the SNARE family participate in the cell surface expression of the neurotransmitter receptors 

(constitutive release) at the postsynaptic terminals. For example, SNAP-23 has been shown 

to play a role in the exo- and endocytosis of NMDA receptors100, similarly, another study has 

shown SNAP-25, syntaxin 4 and VAMP1 containing SNARE core complex to be responsible for 

constitutive exocytosis of NMDA receptors101. SNAP-25, SNAP-23, VAMP2 and syntaxin 1 have 

been shown to be responsible for GABAA and AMPA receptors exocytosis postsynaptically as 

well102. This makes SNARE proteins vital for the induction and expression of plastic changes 

at the central synapses as their involvement is inevitable. Changes associated with the plastic 

events at the synapse, for example, increase or decrease in the release probability of 

neurotransmitters or incorporation/removal of extra receptors have to be mediated through 

SNARE proteins, hence they hold high stakes in this important phenomenon.  

2.3 NSF, αSNAPs and SNARE proteins 

The now diversified field of membrane fusion was driven forward by the pioneering work of 

James Rothman, Randy Schekman and Tomas Südhof in the late 1980’s. Schekman’s work 

explained impairments in intracellular protein trafficking pathways mediated by SEC genes in 

Saccharomyces cerevisiae (yeast)103. Rothman and colleagues isolated a 76 kDa homo-

oligomer called; N-ethylmaleimide (NEM) sensitive factor (NSF) from virus infected CHO 

cells104,105. NSF was quickly recognized as a crucial component of the Golgi transport and 

intracellular fusion system and it required additional cytoplasmic factors to function called 

soluble NSF attachment proteins (SNAPs). Inactivated Golgi transport by NEM could be 

rescued by the addition of the NSF and α-SNAPs104. Südhof’s work focused on 

neurotransmitter exocytosis and identified synaptotagmin (previously known as p65)106 and 

Munc-18 (mammalian homologue of unc-18)107 as crucial components of the regulated 

exocytosis of neurotransmitters. All three scientists shared the Nobel Prize in 2013.  
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The experiment that led to the three SNARE proteins implicated in regulated 

neurotransmitter exocytosis was sort of a fishing expedition. Researchers moved from 

intracellular constitutive exocytosis and wondered what could bind to NSF from bovine brain 

lysates. An affinity chromatography assay, which utilized the principle of natural binding of 

NSF protein to its receptors from bovine brain, demonstrated three proteins, SNAP-25, 

syntaxin B and VAMP2, to be binding targets of NSF108. These proteins were termed as soluble 

N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Following the 

discovery of SNARE proteins, a ‘SNARE hypothesis’ was put forward stating that SNARE 

proteins can interact to form a core complex which is necessary for regulated exocytosis97. 

This hypothesis was based on the findings that the three SNARE proteins could interact to 

form a complex in the absence of NSF and αSNAPs and the core complex can interact with 

synaptotagmin. The proof of concept that SNARE proteins are indeed the mediators of 

membrane fusion leading to exocytosis came from another study, in which the researchers 

incorporated purified recombinant SNAREs in to liposomes (vesicles with a 50nm 

diameter)109. The design of the assay was already published110; a donor liposome containing 

fluorescent tagged lipids, while the acceptor was non-fluorescent. Mixture of liposome 

contents up on fusion, led to dequenching of the fluorescent probe, confirming the lipid 

rearrangement and membranes mixing. This study also showed, that these three SNARE 

proteins could form the minimal machinery required for fusion and exocytosis. In parallel 

studies, researchers also showed, that SNARE proteins are substrates for the proteolytic 

activity of Clostridium (Botulinum neurotoxins, BoNT)111 and Tetanus endoproteolytic 

neurotoxins112. BoNT types A and E cleave SNAP-25, type C cleaves syntaxin and SNAP-25 and 

type B, D, G and F act on VAMP113,114. Of all these neurotoxins, the most extensively studied 

are the effects of BoNT type A and E on SNAP-25 and how they impair the evoked 

neurotransmitter release.  

2.4 Classification of SNARE proteins 

As mentioned earlier, the SNARE family of proteins is quite large with more than 30 members 

in humans, but the focus here is only on the three SNARE proteins involved in regulated 

neurotransmitter exocytosis. The initial finding that the three SNARE proteins responsible for 

neurotransmitter exocytosis are localized in the target plasma or vesicular membranes led to 

their classification accordingly. SNAP-25 and syntaxin 1A were found to be attached to the 

target plasma membrane, and were termed t-SNAREs, while VAMP2 was found to be 
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attached in the vesicular membrane and was termed v-SNARE 108. This classification could still 

be used for describing SNAREs’ role in regulated exocytosis in neurons and synaptic 

transmission. However, given the universality of SNARE proteins in other forms of exocytosis 

such as intracellular constitutive exocytosis from endoplasmic reticulum to Golgi network, 

which can be bi-directional (anterograde or retrograde) and may involve differential pairing 

of SNAREs, the ‘t’ and ‘v’ SNARE classification can at times be confusing. Knowledge of how 

SNARE proteins interact to form a highly stable core complex, along with the resolution of the 

crystal structure of the SNARE core complex, revealed a highly conserved sequence of ionic 

residues in the middle of the SNARE core complex115. This ionic residue layer consisted of 

three glutamine (Q) and one arginine (R) and was embedded deeply within the 4 parallel 

helical bundles of leucine-zipper-like layers. Based on this finding, SNARE proteins were re-

classified as Q (glutamine) and R (arginine) SNAREs116. It was postulated that for a core 

complex to be highly stable and fusion competent, it has to have 3 Q and 1 R SNARE. Again, 

in the context of SNAREs mediated neurotransmitter exocytosis at central synapses, R-

SNAREs correspond to v-SNARE while Q-SNAREs correspond to t-SNAREs, hence, VAMP2 

provides one R-residue, and syntaxin 1A provides one Q-residue while SNAP-25 provides two 

Q-residues117.  

2.5 Formation of SNARE core complexes 

A SNARE protein is characterized by the presence of eight heptad repeats of hydrophobic 

residues, an evolutionary conserved stretch of 60-70 aminoacids called the ‘SNARE motif’118. 

For syntaxin 1A and VAMP2, this motif is located next to the single transmembrane domain 

(C-terminus), serving to localize the cytoplasmically soluble protein. However, SNAP-25 does 

not possess a trans-membrane domain and possess two SNARE motifs. SNAP-25 is anchored 

via post-translational palmitoylation of the cysteine-rich region in a linker region between the 

C- and N-terminus amphipathic helices 119,120. The favored hypothesis is that post-

translational palmitoylation helps SNAP-25 localize to the fusion site but it is also worth 

noticing that SNAP-25 forms heterodimers with syntaxin 1A121. 

The SNARE core complex is formed when four SNARE motifs assemble in parallel four α-

helices coiled-coiled bundle122.  The core complex is strengthened via a process called 

‘zippering’123. Of the four SNARE motifs in the core complex, two are supplied by SNAP-25 (Qb 

and Qc motifs) and one each by syntaxin 1A (Qa motif) and VAMP2 (R motif)91,92,97,124,125. 

Formation of these helical bundles from members located on opposing membranes is 
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achieved through the process of tethering126, (in which the fusing membranes are brought 

close to each other).  Tethering requires ancillary proteins, for example, Rab proteins present 

on synaptic vesicles and active zone RIM proteins127. Once the membranes are tethered, 

VAMP2 is in a parallel proximity with heterodimers of syntaxin 1A and SNAP-25. At this stage 

of exocytosis, the core complex is considered to be loosely bound, as it is susceptible to the 

actions of clostridial neurotoxins113,114. A tight and highly stable core complex forms 

afterwards in a zipper-like fashion between VAMP2 and syntaxin 1A beginning from the N-

terminus of VAMP2 and traveling towards its C-terminus128. In this tight trans-configuration-

mode, the core complex is resistant to the action of the above mentioned neurotoxins129. 

Rises in [Ca2+]i via opening of the voltage-gated Ca2+ channels (VGCCs) is the initiator of this 

trans-complex formation130. Formation of the tight SNARE core complex generates enough 

energy, which overcomes the energy barrier for lipids rearrangements and fuse the two 

membranes. After the fusion reaction, the core complex rests in a cis-configuration. At this 

point, disassembly of the core complex is initiated by the action of ATP-dependent NSF, which 

alone cannot dismantle the core complex but requires co-factors, as mentioned before, 

soluble NSF attachment proteins (αSNAPs) (different proteins from SNAP-25). Together with 

SNAPs and the energy derived from ATP, NSF dismantles the in-active SNARE core complex 

and ensures an uninterrupted supply of the SNARE proteins and a steady state 

neurotransmitter release131. 

 

Figure 3: Sequential steps in regulated neurotransmitter exocytosis.  
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2.6 Ca2+; a trigger for neurotransmitter exocytosis 

Rises in [Ca2+]i levels is sensed by synaptotagmin I, a synaptic vesicle protein with two 

cytoplasmic Ca2+ binding domains called C2A (can bind 3 Ca2+ ions) and C2B (can bind 2 Ca2+ 

ions), see review132. Synaptotagmin functions as a clamp but when intracellular Ca2+ 

concentration increases, the break is released. The resting intracellular Ca2+ level in a neuron 

typically ranges between 50-100 nM, while extracellular concentrations are approximately 

2mM under normal conditions. An increase to 1-2 µM can initiate vesicle fusion in presynaptic 

terminals. During an action potential, levels rapidly increase to as high as 10 µM because of 

the opening of the VGCCs, causing depletion of the readily-releasable pools of 

neurotransmitter containing vesicles (RRP) 133.  Ca2+ uncaging experiments at the brainstem 

auditory giant synapse of the Calyx of Held, has provided insight on how a rise in Ca2+ level in 

the pre-synaptic terminal relates to the regulated release of neurotransmitter. Elevated Ca2+ 

levels triggers release in <400 µsec, which means that Ca2+ is sensed very rapidly by a sensor 

and a fusion pore is formed in quick succession, implying that once triggered, it is an 

energetically-favored process. The rapid phase is followed by a relatively slower phase, which 

is due to the residual Ca2+ levels when it is being buffered133-135.   

The number and size of the RRP of vesicles vary between synapses. A synaptic vesicle is a 

small organelle of approximately 40 nm diameter136, which expresses transport and 

trafficking proteins on its surface to be able to undergo exo/endocytosis of neurotransmitters. 

The number of synaptic vesicles in the RRP at the presynaptic locality ranges from 200-

400137,138. The number of vesicles in the RRP can be altered by a number of factors, for 

example, brain-derived neurotrophic factor 139, SNAP-25 isoforms140 and many more.  

2.7 Ancillary SNARE interacting proteins 

Co-immunoprecipitation and pull-down assays have shown synaptic SNARE proteins to 

interact with more than 100 proteins91. Proteins that are pivotal in regulating the entire 

process of exocytosis at presynaptic terminals can be broadly grouped as, a) the core 

exocytotic proteins, b) ancillary/auxiliary proteins which are critical for the formation of 

SNARE core complex and docking and priming of neurotransmitter containing secretory 

vesicles, their recycling as well, c) ion channels, voltage dependent Ca2+, Na+ and K+ channels, 

d) calcium sensing proteins, can be grouped under accessory proteins or separately and e) 

presynaptic inhibitory G protein-coupled receptors (GPCRs). A short description of the 

important proteins from these classes is presented here. 
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SM proteins (Sec1/Munc-18) bind to syntaxin 1A in its closed conformation and prevent its 

participation in SNARE core complex formation. There is also evidence of SM proteins binding 

to open conformation of syntaxin 1A as well, suggesting a more complicated regulatory role 

for them141-144. Interestingly, deletion of VAMP2 abolished 90% of Ca2+ triggered exocytosis145  

while knocking out Munc18-1 completely abolished it146. Munc18-1 is critical for the 

formation of trans-SNARE parallel complexes, which bring the fusing membranes close to 

each other. There is evidence that Munc-18 selectively activates/mobilizes cognate neuronal 

SNAREs for initiating exocytosis, and at the same time, suppressing/preventing other 

ubiquitous SNAREs from participation in this process147. There is also evidence of Munc-18 

promoting nucleation and zippering of the SNARE core complex148. 

Synaptotagmins: Ca2+ is sensed by a synaptic vesicle proteins called synaptotagmins, 

synaptotagmin I is the most abundant isoform 132,149. Synaptotagmin is essential for the fast 

Ca2+ triggered synchronous phase of exocytosis but not for the slow phase150,151. Deletion of 

synaptotagmin in mice produced a lethal phenotype152. After binding Ca2+, synaptotagmin I 

interacts with syntaxin 1A and SNAP-25 to promote rapid exocytosis of neurotransmitters.  

Complexins: They are small helical cytoplasmic proteins, which bind to the surface of both 

partially and completely assembled SNARE complexes153. They are dislodged from SNARE 

complex by synaptotagmin as Ca2+ bound synaptotagmin 1 competes with complexins for 

binding to SNARE complexes. Complexins are hypothesized to have a role in stabilizing SNARE 

core complexes before Ca2+ triggered fast exocytosis and regulating SNARE functions154. 

Complexins have also been termed ‘fusion clamps’ since they prevent the SNARE core 

complex from initiating fusion before being disrupted by Ca2+-bound synaptotagmin155.  

Rab Proteins: During the process of fusion, GTP bound Rab proteins acts as anchors on 

membrane surfaces for the target effector proteins. Rab proteins cause tethering (process of 

bringing membranes closer to each other) with the help of their effector proteins and are 

critical for the induction of plastic changes at central synapses156-159. Rab-effector complexes 

also enrich the environment of the tethered membranes with SNARE proteins91,160. There are 

multiple isoforms of Rab proteins and there is evidence of functional redundancy between 

these isoforms as KO mice models of individual isoforms of Rab proteins did not affect survival 

but knocking out multiple Rab proteins proved lethal161.  
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2.8 Presynaptic G protein-coupled receptors (GPCRs) 

Activation of cell surface G protein-coupled receptors (GPCRs) by a ligand leads to the 

dissociation of intracellularly coupled heavy heterotrimeric G protein in to Gα monomer and 

Gβϒ dimer, see review162. Both these subunits are activated after dissociation and are known 

to perform a vast array of functions within the cell in the capacity of secondary messengers. 

Initial research after the discovery of heterotrimeric G proteins mostly reported the roles of 

Gα subunit but now, more roles for the Gβϒ subunit are emerging163-165. The Gβϒ subunit, is 

a dimer but, can be considered as a monomer because of the strong association between the 

β and ϒ subunits, and naturally Gβϒ together is physiologically relevant rather than the units 

alone166,167. Gβϒ subunits have been shown to negatively modulate neuronal excitability by i) 

interacting directly with presynaptic voltage-gated Ca2+ channels and prevent Ca2+ entry in to 

the cell168,169,  ii) postsynaptic GIRK channels170,171and iii) the inhibitory role of Gβϒ subunits is 

also exerted downstream of ion channels and directly on to the exocytotic SNARE fusogenic 

machinery172. Direct evidence of Gβϒ mediated reduction in glutamate release comes from 

the study of 5HT mediated blockade of glutamate release173. Gβϒ interacts with the C-

terminal region of SNAP-25174, and this interaction has been shown to negatively affect the 

Ca2+ dependent exocytosis of hormones and neurotransmitters, presynaptic inhibition172,175. 

BoNT/A and alanine mutagenesis studies have shown that Gβϒ dimers binds to a region on 

the C-terminus of SNAP-25 (residues 193-206)176. The physiological relevance of the role of 

Gβϒ comes from the finding that it competes with synaptotagmin I for binding to ternary 

SNARE complexes and is negatively associated to exocytosis. In conditions of high Ca2+ 

concentrations, synaptotagmin I wins this competition and promotes exocytosis177,178. Prof. 

Heidi Hamm and colleagues have developed a mouse model (SNAP-25Δ3) in which they have 

mutated residues on the extreme of the C-terminus of SNAP-25. This mutation reduces the 

ability of Gβϒ to bind to SNAP-25 by two-folds, hence reducing the inhibitory actions of Gi/o-

coupled GPCRs on exocytosis, while the ability of SNAP-25 to bind to synaptotagmin I is still 

intact 179. Our group has shown that SNAP-25a and SNAP-25b interact differently with Gβϒ 

subunits180. Prof. Patric Stanton and colleagues have shown that the interaction of Gβϒ with 

the C-terminus of SNAP-25 is necessary for the induction of presynaptic long term depression 

(LTD) of vesicular release, but not long term potentiation181.  
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Figure 4: Schematic representation of inhibitory presynaptic GPCRs interaction with SNAP-25. 

2.9 Alternative splicing of the Snap25 gene 

The gene encoding for SNAP-25 is a single copy gene comprised of 9 exons spaced by large 

introns182. Characterization of the Snap25 gene revealed two closely related exon 5 sequences 

spaced with a small intron. This led to the buildup of knowledge about obligate alternative 

splicing and the existence of two closely related isoforms in SNAP-25 (‘a’ and ‘b’). The two 

isoforms of SNAP-25 differ by 9 out of 39 residues encoded by two different exon 5182,183. 

These differences are localized at the end of the N-terminal amphipathic helix, which 

continues into a linker region between the N- and C-terminal amphipathic helices. Here, four 

cysteine residues are clustered and are target sites for post-translational palmitoylation119. 

SNAP-25a and SNAP-25b are developmentally and neuroanatomically regulated184, SNAP-25a 

is expressed at embryonic earlier stages than SNAP-25b and throughout life in selected 

cellular structures. In mouse brain, a developmental switch from SNAP-25a to SNAP-25b 

occurs, and after the second postnatal week, levels of SNAP-25b mRNA increase, ultimately 

leading to the ‘b’ isoform being the abundant (>90%) isoform in adult mouse brain185,186. 
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SNARE complexes containing SNAP-25b have been shown to be more stable than those 

containing SNAP-25a186. Expression of exogenous SNAP-25b in SNAP-25 null mutant fetal 

chromaffin cells has been shown to prime a larger group of pooled vesicles than SNAP-25a, 

supporting the notion of functional differences between both the isoforms and that the ‘b’ 

isoform is possibly capable of mediating fusion from a larger group of primed vesicles140,187.  

Dr. Christina Bark has engineered a gene targeted mouse mutant utilizing a minimally 

disruptive approach to the organization of the Snap25 gene, allowing the dissection of the 

functional differences between the two isoforms. The downstream sequence of exon 5 

encoding for the ‘b’ isoform has been replaced with an additional ‘a’ isoform encoding 

sequence, hence allowing the alternative splicing switch to function, but results in a global 

production of only SNAP-25a188.  

2.10 Significance of SNAP-25 and its isoforms in diseases 

Polymorphisms in the Snap25 gene have been associated with neurodegenerative and 

psychiatric disorders including ADHD, autism, bipolar disorders, epilepsy and 

schizophrenia189-191. The coloboma mouse model with deletion of Snap25 gene sequences, 

exhibited hyperactivity (ADHD like behavior)192. Increased interaction between SNAP-25 and 

other SNARE/ancillary proteins have been proposed as an underlying mechanism for synaptic 

dysfunction in schizophrenic patients193-195.  

SNAP-25 is not only relevant for synaptic transmission, plasticity and neurological diseases 

but also important for peripheral metabolic functions. For example, neuroendocrine and 

endocrine hormones secretion is carried out through SNARE mediated membrane fusion as 

well196. Our group has shown that replacing SNAP-25b with SNAP-25a in mouse results in 

metabolic abnormalities like hyperglycemia, liver steatosis, adipocyte hypertrophy, abnormal 

weight gain/obesity and hyperinsulinimeia197,198. 
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3 AIMS OF THIS THESIS 

The general aim of this thesis was to evaluate if the two isoforms of SNAP-25 differ in their 

ability to confer plastic changes to the hippocampal Schaffer collateral-CA1 synapses. The 

specific aims of this thesis were the following. 

1. Differentiate the role of SNAP-25a from SNAP-25b in synaptic tranmission, induction 

of LTP and determine the possible consequences for learning and memory formation, 

utilizing a gene-targeted mouse model expressing only SNAP-25a.  

 

2. Study the developmental time course of SNAP-25 isoforms regulation of both LTP and 

LTD at hippocampal synapses, and assess the possible consequnces for learning and 

memory formation.  

 

3. How do mutations in the extreme C-terminus of SNAP-25 affect induction and 

expression of LTP?  

 

4. Evaluate if the metabolic phenotype conferred by the lack of SNAP-25b and Western 

diet affects cognitive function as assessed by various behavioral paradigms, and 

correlate those changes with SNARE proteins expresssion levels in different brain 

regions.  
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4 MATERIAL AND METHODS 

4.1 Animals 

The complete protocol for generating genetargeted SNAP-25b-deficient mice is described in 

Johansson. et al. (2008)186. An animal colony was established and the breeding and 

experimental protocols were approved by Stockholm Northern Animal Experiments Ethics 

Board (Ethical Permit # N33/14), and performed according to the standards and guidelines in 

accordance with the Directive 2010/63/EU of the European Parliament and of the Council on 

the Protection of Animals Used for Scientific Purposes. An animal colony of SNAP-25b-

deficient mice (breeding pairs supplied by Dr. Christina Bark), and SNAP-25∆3 mice (breeding 

pairs supplied by Dr. Heidi Hamm, Vanderbilt University) was also established at New York 

Medical College, Valhalla, New York, U.S.A. Breeding and experimental protocols in US were 

also approved by the Institutional Animal Care and Use Committee (IACUC Ethical Permit # 

11-12-0315) of New York Medical College Valhalla, New York, U.S.A. Experiments at New York 

Medical College were performed in accordance with Association for Assessment and 

Accreditation of Laboratory Animal Care, Intl.,  (AAALAC) standards and guidelines. Animals 

were provided access to food and water ad libitum, and euthanized under deep isoflurane 

anesthesia, unless otherwise stated.   

4.2 Diet 

In paper I, II and manuscript I, mice were fed standard chow, control diet (CD) ad libitum. In 

manuscript II, mice were divided in to four different experimental groups depending on the 

genotype and diet. These groups were, wild type (WT) on CD, SNAP-25b-deficient (MT) fed 

CD, WT on Western diet (WD) and MT on WD, (males and females in separate cohorts). WD 

(high-fat/high-sucrose) was purchased from Research Diets Inc®(New Brunswick, NJ, USA). 

WD intervention was started at the age of 5 weeks, and continued for 7 weeks and mice were 

euthanized for experiments when they turned 12 weeks of age.  

4.3 Brain slice electrophysiology experiments 

For electrophysiological recordings in brain slices, mice were deeply anesthetized with the 

help of isoflurane, decapitated and the brains were quickly dissected out. The cerebellar part 

of the hindbrain and prefrontal cortex were removed, the brain was hemisected through the 

mid-sagittal plane and immersed in a chilled high Mg2+, sucrose-based cutting solution 

containing 87mM NaCl, 25mM NaHCO3, 25mM glucose, 75mM sucrose, 2.5mM KCl, 1.25mM 
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NaH2PO4, 0.5mM CaCl2 and 7mM MgCl2 (continuously equilibrated with 95% O2-5% CO2 gas 

mixture). High Mg2+ prevents excitotoxicity. Individual brain lobes were fixed to a stage, with 

the frontal part of the brain touching the stage, with cyanoacrylate adhesive, and 350-400 µm 

thick coronal sections were cut with a Leica model VT 1200S vibratome®(Leica biosystems®). 

Slices were incubated in an interface holding chamber containing the same cutting solution 

for approximately 20 min at 32°C, and then transferred to normal artificial cerebrospinal 

(aCSF) fluid containing: 126mM NaCl, 3mM KCl, 1.25mM NaH2PO4, 1.5mM MgCl2, 2.5mM 

CaCl2, 26mM NaHCO3, 10mM glucose and continuously bubbled with 95%O2-5%CO2. Slices 

were allowed to recover for 1h at room temperature in aCSF before transfer to an interface 

recording chamber perfused continuously with aCSF at 3ml/min. 

4.4 Inducing long-term potentiation of synaptic strengh (LTP) 
For recording of activity-dependent LTP, slices were transferred to an interface recording 

chamber and continuously perfused by oxygenated aCSF at 3ml/min, and the chamber 

temperature maintained at 32 ±0.5oC.  Field excitatory postsynaptic potentials (fEPSPs) were 

recorded at Schafer collateral–CA1 synapses in the hippocampus. A borosilicate thin walled 

glass recording electrode filled with aCSF (1–2MΩ) was placed in field CA1 stratum radiatum. 

Half-maximal fEPSPs were evoked using a bipolar tungsten stimulating electrode (FHC Co. 

Bowdoin, ME, USA.) placed near the recording electrode. fEPSP slopes were confirmed to be 

stable to within ±10% for at least 10 min before commencing an experiment. Single shock 

evoked fEPSPs were acquired every 30 seconds. LTP was induced by application of high 

frequency theta burst stimulation (HFS or TBS), and LTP measured as the ratio of mean slope 

at indicated time intervals post-TBS normalized to the pre-TBS baseline slope. TBS stimulation 

consisted of 2 stimulus trains 3 min apart and each train consisting of 10 stimulus epochs 

delivered at 5 Hz (200 ms apart), and each epoch consisting of 5 pulses at 100 Hz. Constant 

current was injected through an ISO-flex isolator, AMPI® triggered by Master-8® pulse 

generator. Signals were amplified with an A-M 1700 differential AC Amplifier (A-M Systems®), 

and digitized by an A/D board (National Instruments®) controlled by Sciworks software 

(Datawave Technologies®). 

4.5 Inducing long-term depression of synaptic strength (LTD) 

The experimental setup for recording of LTD in brain slices was the same as for recording LTP, 

except instead of HFS, prolonged low frequency stimulation (LFS) was used. LFS for the 

induction of LTD consisted of a single train of 2Hz stimulation for a period of 10 min (1200 × 
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150 µs duration dc square pulses). mGluRII LTD was induced by 5 min bath application of 

25µM DCG-IV (Tocris, Bio-Techne corporation, MN). NMDA LTD was induced by 3 min bath 

application of 20µM NMDA (Sigma-Aldrich). 

4.6 FM1-43 imaging  

Fluorescence was visualized using a customized two-photon laser-scanning Olympus BX61WI 

microscope with a 60x/0.90W water immersion infrared objective lens and an Olympus 

multispectral confocal laser scan unit. The light source was a Mai-TaiÓ laser (Solid-State Laser 

Co., Mountain View, CA), tuned to 820 nm for exciting FM1-43. Epifluorescence was detected 

with photomultiplier tubes of the confocal laser scan head with pinhole maximally opened 

and emission spectral window optimized for signal over background. In the transfluorescent 

pathway, a 565 nm dichroic mirror was used to separate green and red fluorescence to 

eliminate transmitted or reflected excitation light (Chroma Technology, Rockingham, VT). 

After confirming the presence of Schaffer collateral-evoked fEPSPs >1 mV in amplitude in CA1 

stratum radiatum, 10 µM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) was bath-applied 

throughout the rest of the experiment to prevent synaptically-driven action potentials in the 

pyramidal neurons and prevent the accelerated dye release. Presynaptic boutons were 

loaded by bath-applying 5 µM FM1-43 (Molecular Probes) in hypertonic ACSF supplemented 

with sucrose to 800 mOsm for 25 sec to selectively load the RRP, then returned to normal 

ACSF. Stimulus-induced destaining was measured after 30 min perfusion with dye-free ACSF, 

by 0.1 Hz bipolar stimuli (150 µs DC square pulses). 

4.7 Western blotting 

For Western blotting, animals were euthanized through decapitation; brains quickly removed 

and cooled down with ice cold 1×PBS. Cerebellum and prefrontal cortex were removed, then 

the brains were hemisected, both hippocampi extracted and the individual brain regions were 

flash frozen immediately at -80 °C in liquid nitrogen. Tissues were stored at -80oC until further 

processing. For making lysates, tissues were homogenized in ice-cold buffer containing 100 

mM NaCl, 20mM Hepes, 1mM Na4P2O7, 1mM EDTA, 1mM EGTA, 5mM DTT, 20% (vol/vol) 

glycerol, 1 tablet/10ml (complete mini® protease inhibitor; Roche Diagnostics GmbH) and 1 

tablet/10ml (complete mini® phosphatase inhibitor; Roche Diagnostics GmbH). Tubes 

containing homogenates were exposed to a thermal shock at -80 °C in liquid nitrogen and 

thawed to 37 °C. This freezing-thawing cycle was repeated three consecutive times and 

afterwards samples were centrifuged at 10,000×g for 20 min and the supernatant was 
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collected. Protein levels in the supernatant of individual sample homogenates were measured 

through the Bradford standard curve method, and volumes were adjusted in Laemmli buffer 

[50mM Tris (pH 6.8), 10% (vol/vol) SDS, 10% (vol/vol) glycerol, 5% (vol/vol) beta-

mercaptoethanol, and 2mg/mL bromophenol blue] to 2μg/μL of protein concentration. 

Equivalent amounts of proteins (20 μg) were loaded and ran on 4–12% Bis-Tris mini gels 

(NuPAGE®, Life Technologies) in MES buffer (Novex®, Life Technologies) at constant voltage 

(200 V) for 35 min and transferred to Nitrocellulose membranes using iBlot®(Thermo-Fisher 

scientific) 7 min dry transfer apparatus. Membranes were blocked with 5% (wt/vol) skim milk 

powder (Sigma-Aldrich) in 1X PBS solution, washed with washing solution (0.1% skim milk 

powder, 0.05% vol/vol Tween-20® in 0.5X PBS solution) and the membranes were carefully 

cut at the respective molecular weight of the protein of interest. Strips of the membrane were 

incubated overnight at 4 °C with primary antibodies directed against SNAP-25A (Rabbit 

Polyclonal: dilution 1:1000; Synaptic Systems), SNAP-25B (Rabbit Polyclonal: dilution 1:1000; 

Synaptic Systems) total SNAP-25 (Rabbit Polyclonal: dilution 1:20,000; Synaptic Systems), 

Syntaxin 1A (Mouse monoclonal HPC-1: dilution 1:20,000; Sigma-Aldrich), VAMP2 (Mouse 

monoclonal: dilution 1:20,000; Synaptic Systems), SNAP-47 (Rabbit Polyclonal: dilution 

1:5000; Synaptic Systems) and Beta-actin (Mouse monoclonal: dilution 1:8000; Sigma-

Aldrich). After incubation with secondary antibodies for one hour at RT, (anti-mouse or anti-

rabbit IgG-peroxidase complexes; GE Healthcare), blots were incubated in commercial 

enhanced chemiluminescence reagents (ECL-Prime, GE Healthcare) and membranes exposed 

to a chemiluminescent CCD camera (Las-1000 Plus; Fujifilm, Tokyo, Japan). Densitometry 

quantification on the 16bit.tiff images were performed using ImageJ software (National 

Institutes of Health, Bethesda, MD).  

4.8 Behavioral tests 

4.8.1 Active place avoidance learning task 

The active place avoidance task used was described previously by Burghardt et al.199. In this 

paradigm, mice are placed on a circular rotating platform that continuously turns clockwise 

at a speed of 1 rpm. Over several days and multiple trials (Fig. 3a), mice learn to identify the 

60  ̄shock zone guided by spatial markers on the walls surrounding the apparatus. Entrance 

into the shock zone triggered a brief constant foot-shock (500ms, 60Hz, 0.2mA) with an inter-

shock interval of 1.5s that would cease upon leaving the shock zone. The middle point of the 

animal was used as the reference point to determine the position of a mouse and recorded 
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using behavioral analysis software (AnyMaze, Stoelting Co., Inc). Using the same software, the 

number of shock-zone entries was measured, where a decrease in shock-zone entries 

indicates learning. During the initial pre-training trial (10 min) when the shock was turned off, 

mice were allowed to habituate to the apparatus and showed no preference for any area of 

the platform. Subsequently, the shock was turned on and the mice completed 3 training 

sessions (10 min each) per day for 3 days, followed by an extinction trial (10 min) on the next 

day. Then the shock was turned off and the animals were allowed to ambulate freely into the 

zone previously associated with the shock. After extinction, a conflict variant task was 

performed in order to test cognitive flexibility. The shock zone was moved 180° from where 

the original shock zone was placed, and 3 conflict-training sessions (10 min each) were 

conducted per day for 2 days. Mice had to avoid the new shock zone which requires cognitive 

flexibility. This is represented in the task by the simultaneous suppression of the learned 

condition response of avoiding the original shock zone and learning the new association of a 

foot-shock with a different zone. 

4.8.2 Elevated plus maze test 

The elevated plus maze (EPM) is used as a general indicator of anxiety. The apparatus consists 

of two open arms (50 x 10 cm) and two closed arms (50 x 10 x 40 cm), connected by a center 

platform (10 x 10 cm) made of opaque dark grey plexiglass (Stoelting Inc., USA). The arms of 

the EPM are elevated 50 cm above the floor. Animals (n = 12-17) were placed in the center 

platform of the EPM, facing an open arm and allowed to explore the maze for 5 min. The 

middle point of the animal was used as the reference point to determine the position of a 

mouse and recorded using behavioral analysis software (AnyMaze, Stoelting Co., Inc). Percent 

of time spent in the open arms was calculated, where a decrease in percent of time spent in 

the open arms indicates an anxiety phenotype. 

4.8.3 Novel object location test 

 The novel object location test is a hippocampal dependent behavioral task200,201 designed for 

rodents. This task utilizes the rodent’s innate curiosity to explore an object more when its 

relative position is changed versus the previous position, as the rodent initially learnt it. We 

employed this test for evaluating hippocampal dependent learning in WT and SNAP-25b-

deficient mice both on control diet and after 7 weeks of Western diet intervention. Testing 

platform consisted of an open-field box made of wood (25 cm long x 25 cm wide x 25 cm 
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high). Objects utilized during the test as stimuli for the mice to explore and learn were 

identical Lego pieces (Lego, Slough, UK). There were no external cues for the mice.  

The test consisted of three sessions/phases: (i) Exploration session: During this phase, animals 

were allowed to explore the arena freely for 10 min and got acquainted with the objects. Both 

the objects were placed 5 cm from top left and right corners. The position of one object was 

fixed, which would serve as the ‘familiar’ object, while the position of the other object was 

changed during the test ‘novel’ object. Mice were always introduced in the box with their 

backs towards the objects and were returned to their cage at the end of each session. (ii) Two 

‘retention sessions’ were performed 1- and 24-hours after the exploration session. In this 

case, mice were allowed to re-explore the arena for 5 min. During the first retention session 

(1 h after exploration session), the familiar object remained in its same position as during the 

‘exploration session’, but the novel object was presented 5 cm from the bottom right corner. 

(iii) During the second retention session (24h after the first retention session), animals were 

allowed to explore the arena for a 5 min period, but the novel object was now presented 5 

cm from the bottom left corner. Activity of the mice was recorded with a cell phone video 

camera, and a discrimination ratio was obtained by dividing the time spent with the novel 

object divided by the total time spent with the novel and familiar objects. 

4.8.4 Forced swim test 

The forced swim test is a commonly used behavioral test to evaluate the anti-depressive 

effects of anti-depressant medications. We employed this test to assess, if lack of SNAP-25b 

with or without Western diet produces depressive like symptoms in mice. During this 

behavioral test, each mouse was briefly placed in an open glass cylinder (25 cm high, 14 cm 

wide) containing water (20 cm depth) maintained at 25 ±2oC. Mice were forced to swim for 6 

min and video recorded with cell phone camera. Latency (time to the first bout of immobility) 

and the total immobility times were recorded and analyzed. 

4.8.5 Rotarod test 

The rotarod test is a frequently used behavioral test for assessing motor 

coordination/learning and balance. We employed this test to assess the motor coordination 

in WT and SNAP-25b-deficient mice fed control and Western diet. The rotarod apparatus (Ugo 

Basile, Varese, Italy) consisted of a rotating rod (3 cm in diameter) divided into 5 running lanes 

allowing up to 5 mice to be tested simultaneously. The test was conducted in two phases, pre-
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test and actual test. In the pre-test phase, mice were placed on the cylinder rotating at a fixed 

speed of 4 rotations per minute (rpm) for a total of 3 min time. In the actual test, mice were 

placed on the rotating cylinder, and the amount of time that each animal was able to maintain 

its balance was recorded. The rotarod was set to accelerate in a linear manner from 4 to 40 

rpm over a 5 min time period. Time spent on the rotating rod was taken as a measure of 

motor coordination and balance and averaged over two trials/test day.  
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5 RESULTS AND DISCUSSION 

5.1 Paper I and Manuscript I 

SNAP-25 is critical for stimulus-evoked synaptic transmission, as neurons lacking this molecule 

exhibit abolished evoked neurotransmission at both neuromuscular junction and central 

synapses202. Reductions in expression levels of SNAP-25 have been associated with 

impairments in short-term synaptic plasticity in neuronal cultures from SNAP-25 

heterozygous mice203. SNAP-25 is expressed both pre- and postsynaptically204, and, while 

these studies help explain the presynaptic contribution of SNAP-25 in synaptic transmission, 

other studies have reported involvement of SNAP-25 in the surface expression of NMDA 

receptors postsynaptically as well205,206. Knocking down SNAP-25 through shRNAs impairs LTP 

in CA1 hippocampal synapses206. SNAP-25 is also associated with spine morphogenesis and 

structural changes, which are necessary for LTP induction and maintenance207,208. The 

opposing forms of synaptic plasticity, LTD and LTP, also undergo developmental regulation 

themselves, with LTD dominant early in life, slowly being taken over by LTP during 

development52. Similarly, there is evidence of developmental up-regulation of different 

NMDA receptors subunits expression at central synapses209-211. The timing of the switches in 

developmental regulation of synaptic LTD and LTP and NMDA receptor expression coincides 

with the developmental switch from SNAP-25a to SNAP-25b, suggesting that these processes 

might be mediated or influenced by different isoforms of SNAP-25. Our group has previously 

shown that short-term plasticity is impaired in young SNAP-25b-deficient mice186, but nothing 

was known about how SNAP-25a and SNAP-25b contribute to the induction and expression 

of long-term activity-dependent plastic changes at central synapses. Utilizing a unique mouse 

model expressing only SNAP-25a (MT or SNAP-25b-deficient mice), and electrophysiological 

field recordings in brain slices from this mouse and WT littermates, we evaluated the roles of 

individual isoforms of SNAP-25 in different forms activity-dependent synaptic plasticity at 

Schaffer collateral-CA1 synapses in the hippocampus.  

5.2 Alternative splicing switch from SNAP-25a to SNAP-25b is delayed in females 

In Paper I, we show that the alternative splicing switch from SNAP-25a to SNAP-25b is delayed 

in WT females as compared to WT males in the hippocampus. At 4 weeks of age, WT females 

had approximately 50% SNAP-25a expression levels compared to less than 20% in WT males.  

Both SNAP-25b-deficient males and female mice had significantly higher SNAP-25a expression 

levels and no SNAP-25b, which serves to validate the mouse model, as SNAP-25b should be 
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completely replaced by SNAP-25a. SNAP-25b-deficient females also had significantly reduced 

expression levels of VAMP2. No differences were observed in the expression levels of syntaxin 

1A and the postsynaptic SNARE, SNAP-47 in either SNAP-25b-deficient males or females in 

the hippocampus.  

5.3 Reduced magnitude of LTP and enhanced LTD in the SNAP-25b-deficient mice 

SNAP-25b-deficient mice exhibited significantly reduced magnitude of activity-dependent LTP 

at Schaffer collateral-CA1 hippocampal synapses at 4 and 8 weeks of age. By 16 weeks of age, 

however, the SNAP-25b-deficient mice appeared to have over-compensated for the deficit 

and exhibited enhanced LTP compared to WT littermates. SNAP-25b-deficient mice exhibited 

enhanced LTD at 4 weeks of age, but no differences in LTD at 16 weeks of age. 

To probe the underlying mechanisms of these changes, we induced LTD in SNAP-25b-deficient 

brain slices via bath application of NMDA and a mGluRII agonist, DCG-IV. No differences were 

detected in either NMDA or mGluRII induced LTD between SNAP-25b-deficient and WT brain 

slices. It was also interesting to observe that the magnitude of LTP varied between WT males 

and WT females at 4 and 8 weeks of age as well. At 4 weeks of age, WT males had significantly 

higher magnitude of LTP compared to females but this effect was reversed at 8 weeks of age, 

with females having a significantly higher magnitude of LTP.   

Interestingly, hippocampal-dependent learning and memory assessment in an active 

avoidance task altered the effects of SNAP-25b-deficiency on LTP, compared to WT 

littermates. LTP was enhanced at 4 weeks of age in SNAP-25b-deficient mice, while no 

difference in LTP was observed at 16 weeks of age, following training in the active avoidance 

task. Similarly, LTD was enhanced both at 4- and 16 weeks of age in SNAP-25b-deficient mice 

after the active avoidance training. This suggests both that learning acquisition can shift the 

thresholds for the induction of both LTP and LTD at Schaffer collateral-CA1 synapses, and that 

this dynamic regulation of the thresholds for long-term plasticity is affected by the presence 

of SNAP-25b. 

These results indicate a clear role for the SNAP-25 isoforms in regulating long-term activity-

dependent plastic changes at central synapses. In the absence of SNAP-25b, LTD dominates 

early in development, but after neurons have formed connections and the need for the 

stronger synaptic connections (synaptic maturation) arises with growth, the developmental 

switch to SNAP-25b serves that function. SNAP-25 is present both pre- and postsynaptically, 
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so these changes are likely mediated from both the loci; however, the current studies did not 

investigated the possible postsynaptic contributions of SNAP-25a and SNAP-25b to synaptic 

plasticity. 

5.4 Presynaptic contributions of SNAP-25 isoforms in synaptic plasticity 

Short-term plasticity (STP) assessed through paired-pulse facilitation (PPF) at various intervals 

is a reliable measure of presynaptic components of synaptic plasticity. We measured PPF 

under basal conditions and after the induction of LTP. There were no differences observed in 

PPF between WT and SNAP-25b-deficient mice before and after LTP; however, it was 

interesting to observe that in WT male mice, PPF was significantly smaller after the induction 

of LTP, whereas in WT females it was not, suggesting an increase in release probability in male 

WT mice. WT females exhibited significantly more SNAP-25a and a reduced magnitude of LTP 

compared to WT males, and PPF shifts coincided with those findings. However, surprisingly, 

in both SNAP-25b-deficient males and females, PPF became significantly smaller after the 

induction of LTP, also consistent with an increase in release probability. We measured the 

direct release kinetics of neurotransmitter release through destaining of FM1-43 (a vesicle 

specific dye), and found that, in SNAP-25b-deficient synapses, FM1-43 release kinetics were 

significantly faster than in WT mice. Faster presynaptic release kinetics reflects a higher 

probability of release (Pr) which is associated with LTP, and SNAP-25b-deficent mice exhibited 

deficits in LTP at similar ages. Sørenson and colleagues have shown that SNAP-25b is capable 

of priming a larger pool of neurotransmitter containing vesicles compared to SNAP-25a140. 

Hence, the faster release kinetics observed in FM1-43 destaining experiment might be a result 

of a smaller pool of vesicles in SNAP-25b-deficient mice. We conclude that SNAP-25b primes 

a large pool of readily releasable vesicles and, therefore, supports enhanced LTP, and the lack 

of SNAP-25b favors larger LTD. 

Input-output relations are a measure of how effectively a synapse can translate a presynaptic 

stimulus into a postsynaptic response. This reflects the basal strength of a synapse and can 

affect, among other things, the induction threshold for synaptic plasticity. Input-output 

curves were significantly steeper in WT mice after the induction of LTP, compared to pre-

tetanus baselines. However, in SNAP-25b-deficient mice, these curves did not differ for the 

initial current increments after the induction of LTP, but did become significantly steeper 

afterwards and did not reach saturation, like in WT mice. There was no difference in SNAP-

25b-deficient and WT mice input-output curve under basal conditions. However, after the 
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induction of LTP, SNAP-25b-deficient mice showed significantly larger increases in the ceiling 

response amplitude.  

Taken together, these results demonstrate that SNAP-25a and SNAP-25b perform 

independent functions at the presynaptic terminal at different stages of development by 

directly regulating the readily releasable pool of neurotransmitter containing vesicles, which 

eventually affects the induction of synaptic plasticity at Schaffer collateral-CA1 synapses in 

the hippocampus.  

5.5 Abnormalities of synaptic transmission associated with deficits in learning and 
memory formation   

To assess if the abnormalities in synaptic transmission (STP, LTP and LTD) in SNAP-25b-

deficient mice were associated with deficits in learning acquisition and memory formation, 

we employed an active avoidance learning task. In this test, mice had to learn the location of 

a shock zone on a rotating grid using external visual cues, and remember it in order to avoid 

being shocked as the grid moved the animal into the shock quadrant.  Then the shock zone 

was turned off (extinction of memory) and, in the following testing session, a new shock zone 

was assigned, so the mice had exhibit behavioral flexibility to learn the new shock zone 

position. At 4 weeks of age, SNAP-25b-deficient mice were slow to learn the initial shock zone 

but, after extinction, they learned the new shock zone faster than their WT littermates. This 

suggests that SNAP-25b-deficient mice formed a weaker memory of the initial shock zone, 

which made the extinction and re-learning of the new shock zone relatively easier.   

These results are consistent with the observed deficits in LTP/enhanced LTD at 4 weeks of 

age. At 16 weeks of age, there were no differences observed between SNAP-25b-deficient 

and WT mice in the initial learning of the shock zone, but relearning after extinction was faster 

in SNAP-25b-deficient mice compared to WT littermates, consistent with the compensatory 

changes in LTP observed at 16 weeks of age.  

We also tested SNAP-25b-deficient mice for anxiety-like behavior, using an elevated plus 

maze at 4 and 16 weeks of age. At 4 weeks of age, SNAP-25b-deficient mice exhibited a 

greater tendency to remain in the closed arm of the maze, suggesting higher levels of anxiety 

than WT mice, but no differences were observed at 16 weeks of age compared to WT 

littermates.  
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These behavioral assessments are consistent with our ex vivo LTP and LTD findings, 

associating stronger LTP in the presence of SNAP-25b with stronger learning and memory 

formation.   

5.6 Paper II 

Gβγ subunits from the activated GPCRs are known to inhibit exocytosis via interacting with 

the C-terminus of SNAP-25 presynaptically by competing with synaptotagmin 1 in a Ca2+ 

dependent manner. Gβγ subunits are released intracellularly when GPCRs are activated on 

the cell surface, and these subunits can interact directly with the trimeric SNARE core 

complexes, as well as with the individual SNARE proteins inhibiting exocytosis. The nature of 

the negative interaction between Gβγ subunits and the C-terminus of SNAP-25 have been 

validated in a number of in vitro studies, but how this interaction can affect the induction and 

expression of long-term activity dependent plastic changes at central synapses, was not 

known. Therefore, we utilized another mouse model to investigate this question. This gene 

targeted mouse was developed by Prof. Heidi Hamm and colleagues at Vanderbilt University. 

In these mice, the interaction between Gβγ subunits and the C-terminus of SNAP-25 was 

genetically reduced by two-folds without affecting the SNAP-25-synaptotagmin 1 interaction. 

Introduction of the G204* mutation in the extreme C-terminus of SNAP-25 and mutating the 

three amino acids (glycine, serine, glycine) via CRISPR-Cas9 strategy resulted in the SNAP-

25∆3 mouse model179.  

5.7 A SNAP-25 Δ3 mouse model with disrupted binding to Gβγ exhibited enhanced 
LTP at Schaffer collateral-CA1 synapses in hippocampal slices 

Electrophysiological field recordings in brain slices from SNAP-25∆3 mice revealed enhanced 

activity-dependent LTP at Schaffer collateral-CA1 synapses compared to WT mice. This finding 

suggests that Gβγ-SNAP-25 interaction is an important negative regulatory mechanism 

controlling the magnitude of LTP induction and expression. Further investigations are, 

required to assess the role of Gβγ-SNAP-25 interaction in STP and LTD as well. It will also be 

interesting to evaluate these SNAP-25∆3 mice in the behavioral assay of active avoidance, as 

they have been recently reported to exhibit defective spatial learning in the Morris water 

maze task, along with increased stress-induced hyperthermia, impaired gait, and supraspinal 

nociception179.  
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5.8 Manuscript II 

The final study included in this thesis pursued the possible common underlying 

pathophysiological mechanisms between metabolic syndrome and cognitive impairment.   

Cognitive impairment is a common symptom observed in the progression of 

neurodegenerative diseases, for example, Alzheimer disease (AD) and related dementias212.  

The linking feature between cognitive impairment and metabolic syndrome is often 

considered to be insulin resistance in the brain213-215. In support of this claim, administration 

of intranasal insulin has been shown to markedly improve cognition in AD patients216. In 

addition, the metabolic syndrome induced by high-fat/high-sugar diet (WD) has been shown 

to affect brain signaling pathways in different brain regions217,218, affecting cognition and 

causing anxiety and depressive like behaviors219. Our group has previously shown that 

replacing SNAP-25b with SNAP-25a in a mouse model results in a diabetic phenotype 

characterized by obesity, impairments in lipid and glucose homeostasis, liver steatosis and 

hypothalamic dysfunction, conditions exacerbated dramatically when combined with 

Western diet197. SNAP-25 is a key SNARE protein involved in the release of neurotransmitters 

and hormones and therefore, in this study, we investigated if SNAP-25b-deficient mice with 

metabolic syndrome showed signs of cognitive impairment, and what might be the underlying 

causes for those impairments.  

5.9 SNAP-25b-deficient mice with metabolic syndrome exhibited cognitive 
impairments on various behavioral paradigms 

We tested SNAP-25b-deficient mice with metabolic syndrome after going through a 7-week 

WD intervention in hippocampal dependent ‘spatial object location task’, prefrontal cortex 

dependent ‘forced swim test’ and cerebellum dependent ‘rotarod test’. The experimental 

design consisted of similar SNAP-25b-deficient mice on control diet (CD) and WT mice on CD 

and WD for comparison as well. Both male and female SNAP-25b-deficient mice both on CD 

and WD exhibited impaired performance on spatial object location task compared to WT mice 

on CD. Similarly, SNAP-25b-deficient mice on CD and WD exhibited depressive-like behavior 

in the forced swim test, except SNAP-25b-deficient female mice on WD compared to WT mice 

on CD. In the rotarod test, both WD and SNAP-25b deficiency appeared to have affected the 

performance, as all the experimental groups exhibited impaired performance compared to 

WT CD mice. These findings strengthen the notion that metabolic syndrome affects higher 

cognitive functions of the brain and SNAP-25 mediated altered hormonal and 
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neurotransmitter release could possibly be a contributing, common pathophysiological 

mechanism.  

5.10 Brain regions specific SNARE proteins expression  

Next, we quantified the SNARE proteins SNAP-25, syntaxin 1A, VAMP2 and SNAP-47 in the 

hippocampus, prefrontal cortex and cerebellum of the mice, which underwent behavioral 

testing. Unlike the behavioral tests results, in which males and females did not differ much, 

we observed differences in the expression profiles of these proteins between male and 

female mice. SNAP-25 expression levels were found to be significantly upregulated in the 

hippocampi of female SNAP-25b-deficient mice on CD and WD but not in males. Syntaxin 1A 

and VAMP2 levels were found to be significantly upregulated in the hippocampi of SNAP-25b-

deficient male and female mice on WD, but syntaxin 1A and VAMP2 levels were also 

significantly up-regulated in SNAP-25b-deficient female mice on CD but not in males. In the 

prefrontal cortex, SNAP-25 expression levels were significantly upregulated in the SNAP-25b-

deficient male mice on WD, but only in SNAP-25b-deficient female mice on CD. Syntaxin 1A 

expression levels were significantly upregulated in SNAP-25b-deficient male mice both on CD 

and WD, but only in female SNAP-25b-deficient mice on CD. VAMP2 expression levels were 

significantly upregulated in the SNAP-25b-deficient male mice both on CD and WD but not in 

female SNAP-25b-deficient mice. SNAP-47 levels were significantly upregulated in the 

prefrontal cortex primarily in response to WD, as both WT and SNAP-25b-deficient mice on 

WD exhibited elevated levels of SNAP-47 in both male and female mice. In cerebellum, SNAP-

25 and syntaxin 1A levels were found to be significantly upregulated only in the SNAP-25b-

deficient male mice on WD. VAMP 2 levels were significantly up-regulated only in SNAP-25b-

deficient female mice on CD. SNAP-47 levels in the cerebellum followed a similar trend as in 

prefrontal cortex and were found to be elevated primarily in response to WD in both male 

and female, WT and SNAP-25b-deficient mice. These results indicate that metabolic 

syndrome caused by the lack of SNAP-25b and/or WD affects SNARE proteins expression 

levels in a sex dependent manner and also impairs cognition, motor coordination and induce 

depressive like behavior. 

5.11 Conclusion 

SNAP-25 plays a central role in synaptic transmission at synapses in the central nervous 

system. It regulates neurotransmitters release presynaptically, and interacts with ancillary 

proteins, which altogether control important aspects of activity-dependent long-term 
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synaptic plasticity. The two developmentally regulated isoforms of SNAP-25, SNAP-25a and 

SNAP-25b, differ in their abilities to perform these functions and, depending on which isoform 

is present, physiology of synaptic transmission can differ significantly. LTD is pre-dominant 

early in development, but is compensated as development proceeds by enhanced expression 

of LTP. This apparent switch from LTD to LTP coincides temporally with the switch from SNAP-

25a to SNAP-25b in the hippocampus. We show here that, in the absence of SNAP-25b, when 

only SNAP-25a supports presynaptic glutamatergic function, LTP is weaker and LTD is 

stronger. These changes in synaptic plasticity also correlate with up-regulation of the capacity 

for learning acquisition and memory formation with growth. We also show here that weaker 

LTP and stronger LTD were observed in parallel with deficiencies in learning acquisition and 

memory formation in a behavioral spatial learning assay in the mutant mouse lacking SNAP-

25b.  

While our data suggest a key role for SNAP-25 isoform switching in regulating presynaptic 

function and synaptic plasticity, the roles of SNAP-25 isoforms in postsynaptic receptor 

trafficking still need further investigation. Furthermore, we also have evidence of sex 

differences, in that males and females do not follow the same timeline for the alternative 

splicing switch from SNAP-25a to SNAP-25b in the hippocampus, with the switch delayed in 

females. Interaction between the C-terminus of SNAP-25 and Gβγ is an important 

determinant of presynaptic inhibition, and the induction of LTD at central synapses181, and 

reducing this interaction in gene targeted mice expressing SNAP-25 that lacks the 3 c-terminus 

amino acids, resulted in enhanced LTP. Finally, we have shown that common 

pathophysiological mechanisms likely are mediated via SNARE-related mechanisms, 

suggesting the importance of studying comorbidities, such as metabolic diseases like type 2 

diabetes mellitus, which involves abnormal insulin secretion and insulin resistance, along with 

neurological diseases associated with cognitive impairment. 
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