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ABSTRACT 

   Skin is an essential biological barrier of the human body, and wound healing is the 

fundamental physiological process to keep its integrity. Chronic non-healing wounds are 

growing socioeconomic and health concerns, which longs for more understanding of their 

pathophysiology to discover effective treatments. In this thesis, we focused on how 

microRNAs (miR) work together with their target protein-coding genes to regulate the complex 

wound healing process, and by exploring the roles they play in chronic wounds we aimed to 

discover potential therapeutic targets.  

   In paper I, a distinct up-regulation of miR-31 in human acute wounds was identified from 

profiling analysis. We discovered miR-31 as a pivotal regulator in promoting keratinocyte 

proliferation and migration by targeting EMP1 during wound healing, emphasizing its 

importance in re-epithelialization. 

   In paper II, miR-34 family, as a famous tumour suppressor, popped out amidst the top 

upregulated microRNAs in venous ulcer. In vitro, miR-34a and miR-34c enhanced 

inflammatory response of epidermal keratinocytes via targeting LGR4 and positively regulating 

NF-κB signalling pathway. In vivo, mouse model of either miR-34 local overexpression or Lgr4 

knockout displayed impaired wound healing with excessive inflammation and suppressed cell 

growth. These suggest that miR-34 play a pathological role in chronic wounds by contributing 

to the excessive inflammation.  

   In paper III, in continuity with our previous report that miR-132 displays anti-inflammatory 

and pro-proliferative roles in keratinocytes, we studied the function of miR-132 in another 

major skin resident cell type fibroblasts. By both overexpression and inhibition, miR-132 was 

proved to facilitate migration of primary human dermal fibroblasts, through targeting RASA1 

and regulating Ras signalling. Since fibroblasts derived from chronic wounds are non-

migratory, our study suggests the miR-132-RASA1-Ras axis with potential therapeutic impact.  

   In paper IV, we tested the therapeutic potential of microRNAs, taken miR-132 as an 

example. A significant downregulation of miR-132 was revealed in diabetic foot ulcer. 

Intradermal injection of liposome-encapsulated miR-132 mimics effectively accelerated wound 

healing. Moreover, ex vivo human model exhibited ameliorated re-epithelialization upon miR-

132 topical application, denoting that local treatment of miR-132 deserves further evaluation 

in a clinical trial as a potential target for treating chronic wounds. 

   Conclusively, this thesis investigated the crucial functions of miR-31, miR-34 and miR-132 

in different phases of normal skin wound healing process and in chronic wounds, and pointed 

out a promising potential of microRNA-based therapy in treating chronic wounds. 
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1 BACKGROUND 

 

1.1 THE SKIN 

   Skin is the largest organ of the human body, serving as the first line of defense against the 

external environment. The skin not only serves as a physical and biochemical barrier against 

mechanical, chemical, radical injury and microorganisms, but also perform other functions such 

as sensory recognition, water protection and thermoregulation. 

   From the outside in, human skin is composed of three distinct anatomical compartments: 

epidermis, dermis, and hypodermis (Fig 1). In addition, skin contains cutaneous appendages 

including hair follicles, eccrine, apocrine and sebaceous glands and nails. 

 

Fig 1. Skin anatomy.  

 

1.1.1 Epidermis 

The epidermis of human skin is typically 0.05 - 0.1mm in thickness, consisting of stratified 

squamous epithelium that is devoid of blood supply. It continuously renews itself and constitutes 

different layers of cell (Fig 1). Stratum basale is the lowermost layer of epidermis formed by one 
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single layer of keratinocytes that majorly express keratin proteins 5 and 14. These cells remain 

attached to the basement membrane via hemidesmosomes at the interface of dermis and 

epidermis. Basal keratinocytes actively proliferate and differentiate while moving outwards to 

build spinous layer (stratum spinosum). Spinous keratinocytes primarily express keratin 1 and 

10, and remain connected by tight intercellular junctions called desmosomes. Further 

differentiation of suprabasal cells leads to formation of the next superficial layer of epidermis 

known as granular layer (stratum granulosum). In this layer, the cells become more flattened and 

elongated in appearance, have increased protein synthesis and lipogenesis, and express protein 

markers such as filaggrin, loricrin and involucrin. In the epidermis of the palms of the hands and 

soles of the feet, there is an additional layer called stratum lucidium located between the stratum 

granulosum and next outermost layer of stratum corneum. In stratum corneum, keratinocytes 

undergo terminal differentiation to form corneocytes or dead cells. These cells gradually loose 

their nuclei and organelles, secrete lamellar bodies, form cornified cell envelope, and eventually 

shed from the skin surface by process of desquamation (Blanpain and Fuchs, 2009, Fuchs, 

2016, J.A. McGrath, 2010, Menon, 2002). 

The cellular composition of epidermis mainly consists of > 90% keratinocytes. Additionally, it 

also contains other cell types (Fig 1) such as melanocytes, Merkel cells and immune cells 

including Langerhans’ cells and T cells. Melanocytes reside in the basal layer, and produce 

melanin which is transported to nearby keratinocytes to induce pigmentation and protect skin 

against UV radiation. Langerhans’ cells are antigen-presenting immune cells of the skin, with 

dendrites piercing through keratinocytes’ intercellular junctions to scout any penetrating 

antigens. The epidermis also hosts nerve-ending Merkel cells, which are essential for light-touch 

sensation and discrimination of shapes and texture (Di Meglio et al., 2011, J.A. McGrath, 2010). 

 

1.1.2 Dermis 

The dermis is separated from the epidermis by the basement membrane, which is majorly 

composed of collagen IV, VII and laminins. The dermis contains mainly extracellular matrix 

(ECM), e.g. collagens, elastic fibers and proteoglycans, providing essential structure, strength 

and elasticity to the skin. The dermis could be anatomically divided into the upper papillary 

dermis (stratum papillare) and the deeper reticular dermis (stratum reticulare), which are different 

in ECM composition: the papillary dermis is characterized by thin, poorly organized collagen fiber 

bundles which are primarily collagen I and III, in contrast to the thick, directionally oriented matrix 

networks in the reticular dermis (J.A. McGrath, 2010, Sorrell and Caplan, 2004). Dermal papillae 
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are the superficial ridge-like structures of the papillary dermis, which form the interactive surface 

between the epithelium and mesenchyme.  

Fibroblast is the major cell type synthesizing connective tissues in the dermis. Interestingly, 

fibroblasts present in papillary and reticular dermis have distinct gene expression profiles, such 

as for the genes related to the Wnt pathway, ECM components and immunoregulation, indicating 

they are a heterogeneous group of cells with different biological functions. For example, it has 

been known that papillary fibroblasts exhibit an anti-inflammatory phenotype, yet reticular 

fibroblasts are primed to respond to injury and infection. In the lower dermis, there are also 

preadipocytes, which are a subpopulation of fibroblasts with the capacity to differentiate into 

adipocytes (Lynch and Watt, 2018, Philippeos et al., 2018). 

In addition, the dermis comprises of a wide range of other cell types and structures such as 

sebaceous glands (e.g., sebocytes), blood vessels (e.g., endothelial cells, smooth muscle cells), 

eccrine and apocrine sweat glands, lymphatic vessels, as well as tissue-resident immune cells. 

As there are no blood and lymphoid vessels in the epidermis, those in the dermis are important 

in providing nourishment and clearing waste. The dermis also harbors neurons and nerve 

endings that mediate touch and heat (J.A. McGrath, 2010, Lynch and Watt, 2018). 

 

1.1.3 Hypodermis 

Hypodermis lies below dermis and is also called subcutaneous tissue. It is mainly composed 

of loose connective tissue and lobules of fat, accounting for approximately 80% of fat in human 

body (Lee et al., 2013). Subcutaneous fat tissue acts as padding cushion, energy reservoir and 

as thermo-regulator. The major cell types in hypodermis include adipocytes, pre-adipocytes, 

fibroblasts, macrophages and monocytes. In addition, adipose-derived stem cells stand for an 

abundant and accessible type of adult stem cells that can differentiate into multiple cell lineages 

and then further exert diverse influences (Mizuno, 2009). 
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1.2 SKIN WOUND HEALING  

Wound healing is a fundamental and complex physiological process to keep the skin barrier 

intact. Wound healing is usually characterized as four sequential, albeit overlapping phases (Fig 

2), i.e.  hemostasis (0 – few hours after injury), inflammation phase (1 – 3 days), proliferation 

phase (4 – 21 days) and remodelling phase (21 days – 1 year).  

 

Fig 2. Simplified schematic representation of acute wound healing process: (A) Hemostasis and early 

inflammation phase. (B) Late inflammation phase and proliferation phase. (C) Remodelling phase. 

Reproduced and modified with permission from Foster et al., 2018. Copyright American Society for 

Clinical Investigation.  

 

1.2.1 Hemostasis phase 

Immediately following injury, the wound healing process initiates when platelets get exposed 

to ECM which triggers the coagulation cascade. A provisional clot (eschar), containing blood, 

fibrin, fibronectin and vitronectin, is formed within minutes to hours to rapidly stop bleeding and 

rapidly plug the defect (Reinke and Sorg, 2012). Simultaneously, the disrupted keratinocytes 

initiate release of pre-stored interleukin-1 (IL-1) as an early damage alert signal (Barrientos et 

al., 2008, Di Meglio et al., 2011). Activated platelets also produce a wide range of cytokines and 

growth factors, such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) 

and transforming growth factor β (TGF-β) (Diegelmann and Evans, 2004). Together, cytokines 
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and chemokines play critical roles in the following healing process, for example CXCL1 (GRO-

α), CXCL5, CXCL8 (IL-8) are important chemoattractant for neutrophils; and CCL2, CCL3, 

CXCL10 attract monocytes/ macrophages. Therefore, the formation of provisional clot serves as 

a scaffold for the migration of these cells and keratinocytes (Reinke and Sorg, 2012). 

 

1.2.2 Inflammation phase 

In the early inflammatory phase, neutrophils are the primary cell type recruited to the wound 

site from the circulation. Stimulated by the chemokines released from the injured skin, blood 

vessel endothelial cells (EC) start to express adhesion molecules, e.g. vascular cell adhesion 

molecule (VCAM1), intercellular adhesion molecule 1 (ICAM1) and e-selectin (SELE), enhancing 

adhesion of neutrophils to the blood vessel wall and their extravasation. Once outside the 

circulation, neutrophils follow the gradient of chemokines and migrate to the injured area (Landen 

et al., 2016, Vestweber, 2015). Upon entering the wound, neutrophils exert phagocytosis to 

remove bacteria, foreign material and damaged tissue debris; secrete antimicrobial substances, 

protease and inflammatory cytokines, e.g. TNF-α, IL-1β, IL-6 (Eming et al., 2007, Reinke and 

Sorg, 2012). Neutrophils constitute nearly 50% of cells in the early stages of the wound 

(Ridiandries et al., 2018), and are normally present in the wound for 2-5 days unless infection 

occurs (Wilgus et al., 2013). 

In the late inflammatory phase, monocytes are recruited to the wound site from the circulation 

in response to CCL2, CCL3, and CCL5 secreted by neutrophils and later by themselves. 

Together with the skin-resident macrophages, they become the dominant inflammatory cell types 

in the wound for approximately two weeks post-injury (Ridiandries et al., 2018), and play an 

important role in shifting the inflammatory phase to the following proliferative phase, which is 

largely due to their impressive phenotype plasticity. Upon recognition of pathogen-associated 

molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) and inflammatory 

signals (e.g. IFN-γ, TNF-α), macrophages polarize to a pro-inflammatory M1 phenotype (the 

classically activated macrophages), which produce cytokines and chemokines to attract more 

leukocytes, exert phagocytosis, promote Th1-Th17-type response and play host defense role 

(Snyder et al., 2016). Later on, M1 macrophages transit to the M2 phenotype (alternatively 

activated macrophages) with anti-inflammatory functions, which is key for inflammation 

resolution (Landen et al., 2016). M2 macrophages induce neutrophil apoptosis and ingest them 

(Meszaros et al., 1999, 2000), produce growth factors, e.g. vascular endothelial growth factor 

(VEGF) and TGF-β, to promote angiogenesis, re-epithelialization, fibroblast migration and matrix 

deposition (Landen et al., 2016, Snyder et al., 2016). 
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Other cell types that assist the process of inflammation include the resident mast cells, which 

release granules containing histamine, enzymes and other active amines, that can promote 

mononuclear cell leakage from surrounding blood vessels, wound fluid accumulation and 

inflammation signs, i.e., redness, heat, swelling and pain (Diegelmann and Evans, 2004). The 

adaptive immune system, including B and T cells, also involves in a later but more specific role, 

not only in the inflammation phase but subsequently in remodelling as well, which still needs 

more exploration (Landen et al., 2016). Moreover, dermal fibroblasts can also interact with these 

immune cells and regulate their infiltration, behavior and apoptosis by changing survival factors 

and chemokines gradient, to adjust inflammation levels (Landen et al., 2016, Smith et al., 1997). 

 

1.2.3 Proliferation phase 

Re-epithelialization initiates already in a few hours to one day post skin injury. The process 

is stimulated by nitric oxide (NO) and growth factors, such as EGF family (including EGF, TGF-

α, HB-EGF), keratinocyte growth factor (KGF), FGF, IGF-1 and nerve growth factor (NGF), 

produced by multiple cell types in the wound (Diegelmann and Evans, 2004, Martin, 1997). 

Wound-edge keratinocytes alter their gene expression profiles in order to invade through fibrin 

clot and migrate on granulation tissue towards the wound center, which forms a non-proliferative 

migrating leading edge (LE) (Aragona et al., 2017). In the proliferative hub surrounding the 

wound-edge, epidermal progenitors rapidly divide asymmetrically, while activated stem cells 

from interfollicular epidermis, hair follicle and infundibulum give rise to new progenitors that 

expand along LE to rebuild normal multi-cell-layered epidermis (Aragona et al., 2017, Lau et al., 

2009). 

During this phase, the provisional clot inserted in the wound bed is replaced by a newly-

formed granulation tissue. Activated by PDGF, bFGF and TGF-β, dermal fibroblasts in the wound 

neighbourhood and circulating fibrocytes (a group of bone marrow-derived mesenchymal 

progenitors) start to proliferate and migrate along the connective tissue matrix into the provisional 

clot (Martin, 1997, Mori et al., 2005). Around a week after wounding, fibroblasts fully invade into 

the fibrin clot, produce proteases, such as matrix metalloproteinases (MMPs), to degrade the 

provisional matrix while synthesizing new ECM. A portion of fibroblasts differentiate into 

myofibroblasts, expressing α smooth muscle actin (α-SMA) to establish a contractile force pulling 

the wound margins together (Martin, 1997).  

To supply the healing wound with oxygen and nutrients, it is important to form new blood 

vessels, i.e., neovascularization/ angiogenesis, which is induced by local hypoxia, low pH due to 
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high metabolic activity, growth factors (e.g. PDGF, bFGF, VEGF), hypoxia-inducible factor (HIF) 

and TGF-β in the wounds (Diegelmann and Evans, 2004, Martin, 1997). The activated ECs 

sprouted from the existing blood vessels (angiogenesis), and endothelial progenitors migrate 

towards the required site (vasculogenesis), proliferate and differentiate to form new capillaries, 

arteries and venules (Li et al., 2003, Reinke and Sorg, 2012). 

    

1.2.4 Remodelling phase 

The final stage of wound healing is the remodelling phase, also called the maturation phase, 

which lasts for months to years depending on the size and type of the wound. At the end of the 

proliferation phase, angiogenesis and proliferation cease. The provisional matrix (mainly fibrin, 

fibronectin, proteoglycans and collagen III) are gradually degraded by MMPs; meanwhile more 

collagen I is being produced by the residual fibroblasts to reconstruct a tough scar tissue with 

tensile strength comparable (maximum 80%) to the unwounded skin (Demidova-Rice et al., 

2012). Excessive cells either leave the wound or are subjected to apoptosis, such as recruited 

immune cells and myofibroblasts. Nerve regeneration progresses. The number and flow of new 

blood vessels diminish and regress when healing is complete (Reinke and Sorg, 2012). In most 

cases, although wounds get repaired, appendages fail to regenerate once lost.  
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1.3 CHRONIC WOUNDS 

Chronic wounds, or hard-to-heal wounds, are defined as cutaneous wounds failing to heal 

within 6 weeks (Tricco et al., 2015). They are cutaneous defects which fail to proceed through 

an orderly and timely tissue repair to retrieve complete structure and integral function (Eming et 

al., 2014). The major causes underlying chronic wounds are vascular insufficiency 

(venous/arterial ulcer, VU/AU), diabetes mellitus (diabetic ulcer, DU) and local mechanical 

pressure (pressure ulcer, PU). More than 90% of chronic wounds are categorized as VU, DU or 

PU (Mustoe et al., 2006). Systemic factors, e.g. advanced age, malnutrition and compromised 

immune status, also sow the seeds for impaired healing (Eming et al., 2014). Chronic wounds 

result in a heavy health care burden, growing socioeconomic loss, and decreased patients’ 

quality of life, high amputation rate and even mortality. It has been estimated in developed 

countries, approximately 1-2% of populations will experience hard-to-heal wound (Gottrup, 

2004), which already consumes 2-4% of their health care budget in developed countries 

(Frykberg and Banks, 2015, Gottrup et al., 2001, Richmond et al., 2013). 

 

Fig 3. Illustrations of molecular and cellular mechanisms that are impaired in chronic wounds. 

Reproduced with permission from Eming et al., 2014. Copy Right American Association for the 

Advancement of Science 
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1.3.1 Venous ulcer and diabetic ulcer 

VU constitutes ~80% of all non-healing leg ulcers (Medina et al., 2005), with a rising incidence 

up to 3 to 4% among the elderly (Eming et al., 2014), due to various reasons that lead to venous 

hypertension and chronic venous insufficiency. VUs are clinically characterized as superficial 

painless cutaneous defects with fibrous granulation tissue and cloudy proteolytic exudates 

mostly on lower extremities, where the whole limb may exhibits edema, surrounding varicose 

veins, eczema and hemosiderin hyperpigmentation (Medina et al., 2005, Valencia et al., 2001).  

Edema plays a major role in VU, which causes lower tissue oxygen level (Mustoe et al., 2006). 

Fibrotic cuffs wrapping capillaries also contribute to the pathogenesis by interfering with oxygen 

and nutrition exchange, inducing endothelial damage, lipodermatosclerosis, and entrapping 

leukocytes (Browse and Burnand, 1982, Valencia et al., 2001).  

Diabetes is an escalating global burden, with 422 million diabetic patients worldwide 

(Organization, 2016). Up to 20% of them suffer from impaired wound healing, and the most 

common form is diabetic foot ulcer (DFU) (Guo and Dipietro, 2010). Among all kinds of chronic 

wounds, DFU is the most notorious one – most difficult to heal even after multiple treatments 

(Amin and Doupis, 2016), which accounts for >80% lower leg amputations (Frykberg and Banks, 

2015). DFUs are often located on more distal extremities like calf and feet, with necrotic base 

and irregular margins (Medina et al., 2005). Under diabetes milieu, prolonged exposure to 

hyperglycemia leads to increased glycation of proteins and accumulated glycation end products 

(AGEs), which disturb numerous cellular responses, such as suppressing bFGF, EGFR 

signalling (Medina et al., 2005). Upon injuries, diabetic patients exhibit reduced capacity of 

recruiting immune cells, which leads to delayed inflammatory response, increasing the risk of 

infection (Medina et al., 2005). Pathological macrovascular and microvascular changes and 

peripheral neuropathy in diabetic patients are important pathogenetic risk factors for 

development of DFU (Amin and Doupis, 2016, Cavanagh et al., 2005).  

 

1.3.2 Pathophysiology of chronic wounds 

Chronic wound abnormalities are commonly featured as persistent inflammation, presence 

of infection and biofilm, hyper-proliferative but non-migratory keratinocytes, senescent 

fibroblasts, impaired angiogenesis, excessive proteolytic enzymes and reactive oxygen species 

(ROS) (Fig 3) (Diegelmann and Evans, 2004, Eming et al., 2014, Martin and Nunan, 2015).  

Nevertheless, the molecular mechanisms behind the impairment of wound healing are still poorly 

understood. This may be partially due to the complexity of the normal wound healing process, 
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difficulty capture early pathophysiological events and lack of animal models recapitulating non-

healing wounds. Future investigations are required to reveal the complicated and dynamically 

changing microenvironment of chronic wounds, and there might be sharing pathological 

mechanisms between different etiologies and as well unique factors/ pathways influencing 

individual subtypes of chronic wounds. 

 

1.3.2.1 Hypoxia, ischemia and reperfusion 

Most chronic wounds (VU, AU, DU) are associated with peripheral vascular diseases (PVD) 

with insufficient delivery of oxygen and nutrients. Local pressure-induced ischemia is also 

implicated in development of PU (Sen, 2009). Additionally, hypoxia is intensified by increased 

energy consumption during healing, ROS, infection, pain and anxiety etc (Sen, 2009). Ischemia-

reperfusion occurs repetitively, leading to cytotoxic tissue damage, for instance, damage of 

mitochondria oxidative function, cell swelling, leukocytes trapping, overproduced ROS, and 

microvascular dysfunction (Mustoe et al., 2006). Insufficient capillary growth has been observed 

in both DU and VU (Eming et al., 2014), which further exacerbates the hypoxic situation in 

chronic wounds.  

 

1.3.2.2 Microbiome and infection 

Bacteria exist in all open wounds, but are normally limited to contamination or colonization, 

sometimes local infection, but rarely develop into spreading infection (cellulitis or even 

septicemia) (Edwards and Harding, 2004). Polymicrobial presence has been studied in chronic 

wounds and the bioburden, including the microbial diversity, microbial load, and the presence of 

pathogenic microorganisms, has been reported to play a pivotal role in impaired wound healing 

even without clinical infection (Misic et al., 2014). The most prevalent bacteria present in chronic 

wound are Staphylococcus, Pseudomonas, and Corynebacterium. In chronic wounds, bacteria 

often aggregate in a self-secreted extracellular polysaccharide biofilm, which protects them from 

host immune response or treatment with antibiotics (Zhao et al., 2013). Bacterial products and 

antibacterial immune reactions damage tissue and even lead to necrosis (Landen et al., 2016). 

Failure to clear these foreign bodies and the sustained presence of high bacterial load result in 

a sustained influx of pro-inflammatory cells and increased inflammation (Eming et al., 2014).  
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1.3.2.3 Persistent inflammation 

In chronic wounds, the orderly efficient healing process is disturbed, and wounds are stuck 

in a chronic inflammatory state (Eming et al., 2009). Comparing the exudate from chronic wounds 

with healthy wounds, the level of mediators characterizes for persistent inflammation, such as 

cytokines and S100 family members, were found to be elevated (Beidler et al., 2009, Eming et 

al., 2010). The excessive cellular infiltration involving neutrophils, pro-inflammatory M1 

macrophages and prolonged presence of T cells with low CD4+/CD8+ ratio further strengthens 

this observation (Loots et al., 1998). These cells produce proteases degrading ECM, growth 

factors, clotting factors, complements and immunoglobulin, and also release free oxygen 

radicals further damaging tissue (Dovi et al., 2004). Impairment of neutrophils phagocytosis by 

macrophages has been observed in DFU, which prolongs inflammation and delays healing 

(Khanna et al., 2010). Moreover, defection of M1 to M2 macrophage phenotype transition has 

been implied in the pathogenesis of chronic wounds, as M2 macrophages are important to 

remove neutrophils, resolve inflammation and initiate the following proliferative phase (Landen 

et al., 2016).  

 

1.3.2.4 Ageing and senescence 

Advanced age is an obvious common feature that most chronic wounds patients share, 

regardless of their diverse etiologies. Changes of hormones with ageing, particularly estrogens 

and androgens, are principle contributing factors in compromised wound healing despite of 

chronological ageing (Eming et al., 2014, Wilkinson and Hardman, 2017). Reduced number and 

function of stem cells/ progenitors, as well as irreversible cell aging with limited proliferative 

potential and altered response to stress also make the elderly prone to the development of 

chronic wounds(Makrantonaki et al., 2017). Moreover, cells at wound site enter into a replicative 

premature senescence due to constant exposure to inflammation and stress (Mustoe et al., 

2006). This leads to a senesce-associated secretory phenotype which alter the 

microenvironment and impact neighbouring cells (Makrantonaki et al., 2017). For example, 

prematurely aged fibroblasts have diminished migratory capacity and are unresponsive to growth 

factors. They secret proteolytic MMPs, which inhibit proliferation, angiogenesis, and induce 

uncontrolled tissue degradation (Jun and Lau, 2010, Martin and Nunan, 2015, Medina et al., 

2005). Senescent keratinocytes also produce anti-angiogenic factor maspin, impairing wound 

healing (Nickoloff et al., 2004).  
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1.3.2.5 Other pathological factors 

   In the wound-edge of skin ulcers, hyper-proliferative keratinocytes demand frequent cycling of 

epidermal progenitor/ stem cells, which could cause fast reduction or even depletion of local 

stem cell populations (Eming et al., 2014). A variety of other risk factors were also reported to 

linked to impaired wound healing, for instance, obesity, stress, alcoholism, smoking, disease 

such as jaundice and uremia, and medications such as glucocorticoid steroids and 

chemotherapy (Guo and Dipietro, 2010, Jozic et al., 2017).  

 

1.3.3 Current treatments for chronic wounds 

Conventional treatments for chronic wounds include non-specific and specific interventions. 

Thorough assessment of vascular state, drug usage, patients’ general health and nutrition status 

is fundamental for design of suitable treatment strategies. Wound bed preparation and extensive 

surgical debridement are used to remove exudate debris and devitalized wound-edge tissues to 

achieve a well-vascularized bed (Pang et al., 2017) in order to initiate secondary healing (Tsourdi 

et al., 2013). It is critical to eliminate infection with antiseptics and antibiotics, based on the results 

of pathogen identification (Cavanagh et al., 2005, O’Toole, 2010, Valencia et al., 2001). It is 

imperative to minimize skin irritation or friction and protect wounds from further contaminations 

and maintain proper moisture and temperature conditions. To implement this, different types of 

wound dressings have been developed, such as semipermeable films, hydrogels, cellulose and 

collagens etc.  (Jones et al., 2018, O’Toole, 2010, Pang et al., 2017). Moreover, various kinds of 

skin grafting, e.g. allogenic or autologous skin flap, tissue-engineered skin equivalents, are 

commonly used to ease the pain and assist in healing process. However, their associated 

limitations in form of reduced vascularization, poor mechanical integrity and immune rejection 

impedes their extensive clinical utility (O’Toole, 2010, Stone et al., 2017, Tsourdi et al., 2013). 

Specific assessments and treatments are crucial in targeting primary etiology. For example, 

compression therapy is routinely used for VU to reverse edema. This is a cornerstone and 

demonstrates the largest effect on successful healing rate in most VU treatment (Valencia et al., 

2001). VU and AU benefit from laser treatment and blood vessel surgery, which addresses 

circulation problem with less recurrence. For DU, metabolic and glycemic control as well as 

offloading are helpful, and surgical interventions in use include tenotomy, tendon lengthening, 

reconstruction, or removal of bony prominences, which may cause secondary ulceration 

(Cavanagh et al., 2005). 
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1.3.4 Progress of chronic wound research 

   The efforts aiming to cure chronic wounds are on-going. Local delivery of growth factors, 

including bFGF, GM-CSF, EGF, and KGF-1, has not achieved satisfying outcomes in clinical 

trials; only rhPDGF-BB entered clinical use but with limited effects (Barrientos et al., 2014, 

Barrientos et al., 2008, Makrantonaki et al., 2017, Pang et al., 2017). This may be due to the 

reduced expression or responsiveness of growth factor receptors on the wound-edge cells and 

rapid degradation of these growth factors in the proteolytic wound environment (Barrientos et al., 

2008, Pang et al., 2017).  

In recent years, a myriad of advanced nanotechnologies have been developed for targeting 

specific problems of non-healing wounds. Various nanoparticle, polymer, lipid and peptide based 

therapeutic intervention strategies are being designed to address the problems associated with 

chronic wounds, such as nanomaterials with intrinsic beneficial properties for wound healing, or 

delivery vehicles/ scaffolds for other therapeutic agents. However, a series of challenges 

surround nanoparticle-based therapeutics due to their elusive physicochemical properties, 

biological behaviours, immune toxicity and difficulty in purification (Hamdan et al., 2017). 

Therapies with live cells, e.g., keratinocytes, fibroblasts, platelets and bioengineered skin 

equivalent, have been used in clinical practice, which exhibit promising effects in some VU and 

DU cases (Brem et al., 2003, Falanga et al., 1998, Stone et al., 2017, You and Han, 2014), which 

still needs to be tested and validated. Continuous  efforts have been made for the development 

of stem cell-based treatments by using, e.g., mesenchymal stem cells (MSC) (Cao et al., 2017), 

bone marrow-derived stem cells (BMSC), adipose-derived stem cells (ADSC), epidermal stem 

cells (ESC) and induced pluripotent stem cells (iPSC), which have shown promising results in 

animal wound models but with limited success in clinical trials (Duscher et al., 2016, Pang et al., 

2017). Stem cell-based treatments face problems, such as low stem cell yield, high cost, poor 

cell delivery and survival, and impaired in vivo cellular function (Duscher et al., 2016).  

Recently, use of commensals or engineered microorganisms provides an alternative 

therapeutic approach towards non-healing wounds. Commensal bacteria could compete with 

pathogenic bacteria, produce antimicrobial substances, inactivate toxins/ metabolites, and 

modulate host immune response. In vivo and in vitro studies have demonstrated that topical 

application of specific strains or certain bacteria extracts, such as S. epidermis, lactobacilli and 

bifidobacteria, may improve wound healing. However, further research is required to learn more 

about the underlying mechanisms involving gut–brain–skin axis and probiotic–host interactions, 

and to explore their effects in patients with complicated background (Lukic et al., 2017).  
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The complicated landscape of chronic wounds represents a major obstacle in finding new 

efficient therapies.  Overall, these current capabilities are economically demanding and require 

special expertise to implement and achieve benefits in chronic wound treatment modalities. 

Moreover, efficient knowledge of molecular pathology of chronic wounds can help us in better 

designing of advanced technologies with the potential to get clinically translated.  
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1.4 MICRORNAS 

As stated in the central dogma of molecular biology, genomic DNA is transcribed to RNA, 

and RNA is translated into protein. However, the Encyclopedia of DNA Elements (ENCODE) 

and Functional ANnoTation Of the Mammalian genome (FANTOM) projects have revealed that 

only ~2% of our DNA encode protein, ~97 – 98% of transcription results in non-protein-coding 

RNAs (Esteller, 2011). Many of these non-protein-coding RNAs have been shown to play 

important regulatory roles in the cells. This thesis focuses on one group of short non-coding 

RNAs, i.e. microRNAs.  

 

1.4.1 MicroRNA biogenesis 

MiRNAs are single-stranded non-protein coding RNA with around 22 nucleotides on average 

(19 – 25 nt), which are highly conserved post-transcriptional gene regulators (Bartel, 2004). Most 

miRNA genes are transcribed by RNA polymerase II to form primary precursors (pri-miRNAs), 

which are subjected to the cleavage by nuclear RNase III Drosha-DGCR8 to shorter hairpin-

shaped precursors (pre-miRNAs, approximately 60 nt) and exported from the nucleus to the 

cytoplasm (Ameres and Zamore, 2013). An alternative pathway was reported that some intronic 

microRNA precursors can be processed by RNA splicing bypassing the cleavage of Drosha 

(Ruby et al., 2007). In the cytoplasm, pre-miRNAs are further processed into short RNA duplexes 

(miRNA:miRNA*) by another RNase III enzyme DICER, and then separated into single strands 

to form mature miRNAs (Bartel, 2004, Ha and Kim, 2014) (Fig 4). Some miRNAs are transcribed 

from their own transcription unit with independent promoters. About 40% miRNAs are derived 

from the introns and 10% from the exons of other coding or non-coding transcripts, sharing 

transcriptional regulation with the host genes (Monteys et al., 2010, Ozsolak et al., 2008). MiRNA 

genes are often clustered together in the genome, which are transcribed as a multi-cistronic 

primary transcript and then further processed; even though, the expression pattern of these 

miRNAs may differ within the cluster due to complicated post-transcriptional regulation (Bartel, 

2004, Ha and Kim, 2014, Zhao and Srivastava, 2007).  
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Fig 4. Illustration of microRNA biogenesis. Reproduced with permission from Ameres et al., 2013. 

Copyright Springer Nature. 

 

1.4.2 The action modes of microRNAs 

To mediate their biological function, mature miRNAs are loaded to the argonaute (AGO) 

protein to form the RNA-induced silencing complex (RISC), and bring this enzyme complex to 

the target messenger RNA (mRNA) (Ameres and Zamore, 2013). The targeting process is 

mainly mediated by the pairing between the miRNA seed region (the 2nd-7th nucleotides from the 

5’ end of a miRNA) and the miRNA binding sites (MBS) at the 3’ untranslated region (UTR) of 

target mRNAs. Additionally, the supplementary/compensatory base-pairing between the rest 

part of a miRNA and the MBS is responsible for defining the specificity and efficiency of miRNA-

mediated regulation (Bartel, 2009, Jonas and Izaurralde, 2015). As a result, miRNAs down-
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regulate the expression of target genes by repressing translation, reducing stability or degrading 

their mRNAs. Moreover, the RISC can also silence target gene at the genomic level by formation 

of heterochromatin or via DNA elimination (Pratt and MacRae, 2009). A single miRNA usually 

has dozens and even hundreds of targets, which often form a signalling network, exerting the 

biological functions of this miRNA by fine-tuning the protein-coding genes (Bartel, 2009). 

MiRNAs have been demonstrated to play important roles in almost all the biological and 

physiological processes investigated to date. In line with this, aberrant miRNA expression and 

function have been identified in many diseases. Therefore, modulation of these disease-related 

miRNAs has been shown to be beneficial in several clinical trials, thus making microRNA a 

favourable candidate to be explored for novel therapy (van Rooij and Kauppinen, 2014).  

 

1.4.3 MicroRNAs in the skin 

MiRNAs have been identified as important regulators in the skin (Mancini et al., 2014, 

Mannucci et al., 2017, Schneider, 2012). Using mice models with skin-specific knock-out of Dicer 

or Dgcr8, miRNAs have been shown to be essential for epidermal and hair-follicle development, 

maintenance and function (Andl et al., 2006, Yi et al., 2006, Yi et al., 2009). Several miRNAs are 

highly expressed in the skin, suggesting their potential functional roles in skin morphogenesis 

(Yi et al., 2006). For example, miR-203 as a skin-specific miRNA promotes keratinocyte 

differentiation and restricts cell proliferation, and it defines a molecular boundary between 

proliferative basal progenitors and differentiating suprabasal cells (Sonkoly et al., 2007, Sonkoly 

et al., 2010b, Yi et al., 2008). Inhibition of miR-34a and miR-34c restores keratinocyte cell cycle 

progression (Antonini et al., 2010). Among the highest expressed miRNA in skin stem cells, miR-

125b serves as a repressor of stem cell differentiation (Zhang, 2011), and miR-205 controls 

neonatal expansion of stem cells and is indispensable for postnatal epidermal homeostasis (Teta 

et al., 2012, Wang et al., 2013). In terms of dermal homoeostasis, miR-145 is highly expressed 

in fibroblasts, and its inhibition enhances reprogramming of dermal fibroblasts to induced 

pluripotent stem cells (Barta et al., 2016).  

The roles of microRNAs have also been studied in different skin disorders. Our colleagues 

were the first to demonstrate differentially expressed miRNAs in psoriasis (Sonkoly et al., 2007), 

and further studied the functions of the top regulated ones. For instance, higher expression of 

miR-21 in psoriasis may contribute to skin inflammation by inhibiting T cell apoptosis (Meisgen 

et al., 2012). Up-regulation of miR-31 in psoriasis contributes to skin inflammation by regulating 

communication between immune cells and keratinocytes (Xu et al., 2013). Also up-regulated in 

psoriasis, miR-146a suppresses TLR2-induced as well as IL-17-mediated inflammatory 
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responses in keratinocytes (Meisgen et al., 2014, Srivastava et al., 2017). In atopic dermatitis, 

miR-155 is overexpressed and increases T-cell proliferative responses (Sonkoly et al., 2010a). 

In skin cancer, miR-125b is top down-regulated in cutaneous squamous cell carcinoma (cSCC) 

and functions as a tumour suppressor (Xu et al., 2012). Whereas miR-31 is overexpressed in 

cSCC and enhances tumour cell motility and colony formation ability. (Wang A. et al., 2014). 

MiR-203 acts as a tumour suppressor in both cSCC and melanoma (Lohcharoenkal et al., 2018, 

Lohcharoenkal et al., 2016). 
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1.5 MICRORNAS IN SKIN WOUND HEALING 

Emerging studies have shown that miRNAs play key roles in all phases of normal skin wound 

healing and also involved in the pathogenesis of chronic wounds (Herter and Landen, 2017, Li 

and Landen, 2017).  

 

1.5.1 MiRNAs in normal skin wound healing 

1.5.1.1 Inflammation phase 

Several miRNAs have been found to regulate wound inflammation. For instance, miR-146a 

functions as a negative regulator of inflammatory response in keratinocytes and macrophages 

(Hou et al., 2009, Srivastava et al., 2017, Taganov et al., 2006, Xu, 2012). Its expression is 

upregulated by activation of Toll-like receptors (TLR2-5) (Taganov et al., 2006). As a negative 

feedback loop, miR-146a inhibits TLR-2-induced inflammation by targeting several key factors 

within the NF-κB signalling pathway such as IL-1 receptor-associated kinases 1 (IRAK1), IRAK2, 

and tumour necrosis factor receptor-associated factor 6 (TRAF6) (Meisgen et al., 2014). The 

level of miR-146a was found decreased in the inflammation phase of human skin wound healing 

(Li et al., 2015) and also in the wound of diabetic mice with increased NF-κB signalling (Xu, 

2012).  

A mouse model lacking miR-155 expression exhibits reduced inflammatory cells recruitment 

and faster healing with improved regenerated architecture (van Solingen et al., 2014, Yang et 

al., 2014). In a rat model, miR-155 inhibition shows faster healing of acute wounds, with reduced 

inflammation (Ye et al., 2017). MiR-23b has recently been shown to promote cutaneous wound 

healing in vivo via inhibition of the inflammatory responses (Li, 2018). MiR-21 has been studied 

in multiple aspects regarding inflammation in wounds. MiR-21 has been identified as an 

important regulator for resolving inflammation in wounds, which inhibits LPS-induced 

inflammatory response and increases IL-10 production in macrophages (Das et al., 2014, 

Recchiuti et al., 2011). In another study, it has been shown that overexpression of miR-21 in 

wounded rat model significantly improves the healing rate owing to activation of AKT/PI3K 

signalling pathway by targeting PTEN. (Han et al., 2017).  
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1.5.1.2 Proliferation phase 

Besides its anti-inflammatory role, miR-21 also facilitates migration of keratinocytes and 

fibroblasts (Madhyastha et al., 2012, Yang et al., 2011), and promotes proliferation and 

fibrogenesis of fibroblasts from hypertrophic scars or keloid (Li et al., 2016, Liu et al., 2014, Zhu 

et al., 2014). Interestingly, both inhibition (Wang et al., 2012, Yang et al., 2011) and 

overexpression (Pastar et al., 2012) of miR-21 delayed wound healing in vivo by impairing re-

epithelialization and granulation tissue formation. A parallel study have shown that miR-21 KO 

mice exhibits decreased healing rate possibly due to the targeting of Smad7-Smad2/3-Elastin 

pathway (Li et al., 2018). Additionally, knock-in or intradermal injection of miR-21 in aged mice 

significantly benefits wound healing by improving age-associated skin wound defects (Long et 

al., 2018).  

There’re several microRNAs reported as multiple players involved in diverse cellular functions. 

MiR-130a delays re-epithelialization in human ex vivo skin wound model by targeting early 

growth response factor 3 (EGR3) and leptin receptor (LepR) in primary human keratinocytes 

(Pastar et al., 2012). It also promotes angiogenesis by targeting mesenchyme homeobox 2 

(MEOX2) and homeobox A5 (HOXA5) in endothelial cells (Chen and Gorski, 2008). MiR-210 

expression is induced by hypoxia through stabilizing HIF-1α, which results in downregulation of 

the cell-cycle regulatory protein E2F3 in keratinocytes and impairs re-epithelialization (Biswas et 

al., 2010). Hypoxia-induced miR-210 also promotes angiogenesis by inhibiting the receptor 

tyrosine kinase ligand Ephrin-A3 (Fasanaro et al., 2008). Moreover, as an “ischemic memory”, 

increased miR-210 expression attenuates keratinocytes proliferation. Accordingly, local 

inhibition of miR-210 improved ischemic wound closure (Ghatak et al., 2016). In another 

independent study, miR-219-5p is also induced by hypoxia in keratinocytes, and its target 

TMEM98 could inhibit inflammatory response while enhance cell proliferation and migration 

(Tang and Ran, 2018). In addition to its anti-inflammatory role, local overexpression of miR-155 

accelerates in vivo wound healing by targeting MMP2 to promote keratinocytes migration (Yang 

et al., 2017). 

For re-epithelialization specifically, miR-17-3p promotes keratinocyte proliferation and 

migration (Yan et al., 2017). An acute upregulation of miR-200c were reported at the early phase 

of wound healing in aged skin, and miR-200c inhibits keratinocyte migration and delays re-

epithelialization of human ex vivo wounds (Aunin et al., 2017). MiR-203 shows a strong 

expression in the hyperplastic suprabasal epidermis surrounding the wound but is almost 

completely absent in the migratory front, and in terms of function miR-203 inhibits keratinocytes 

proliferation and migration, contributing to re-epithelialization (Deppe et al., 2016, Viticchie et al., 

2012).  
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As for angiogenesis, overexpression of miR-148b promotes endothelial cell migration, 

proliferation and angiogenesis by targeting TGFB2 and SMAD2 (Miscianinov et al., 2018). Down-

regulation of miR-200b by hypoxia was reported in endothelial cells, which induces angiogenesis 

to accelerate wound healing by targeting ETS-1, GATA2 and VEGFR2 (Chan et al., 2011, Chan 

et al., 2012). A synthetic inhibitor of microRNA-92a positively regulates angiogenesis and wound 

healing in both db/db mice and normal pigs (Gallant-Behm et al., 2018). Furthermore, inhibition 

of miR-92a improves wound healing in diabetic mice by targeting Itga5 and Sirt1 to enhance cell 

growth and angiogenesis (Lucas et al., 2017). 

 

1.5.1.3 Remodelling phase 

MiR-29 family is important regulator in fibroblasts of multiple organs associated with TGF-β1-

directed fibrogenesis (Cushing et al., 2011, Jafarinejad-Farsangi et al., 2015, Maurer et al., 2010, 

van Rooij et al., 2008, Yang et al., 2013). In a previous report, in vivo local delivery of miR-29b 

improves wound remodelling as depicted by reduced contraction, increased collagen III/I 

ratios(Guo et al., 2018, Monaghan et al., 2014), and reduces excessive scar formation owing to 

suppression of TGF-β1-Smad-CTGF signalling pathway (Guo et al., 2017). MiR-98 has been 

proved to directly target Col1α1 gene, leading to declined viability and increased apoptosis of 

fibroblasts (Bi et al., 2017). MiR-185 also play as an inhibitor of fibroblast growth, through directly 

targeting TGF-β1 and Col-1 genes (Xiao et al., 2017). In a rat wound healing model, miR‑149 

ameliorates arrangement of collagen bundles and attenuates inflammatory cell infiltration (Lang 

et al., 2017). MiR-203 increases epidermal stem cell differentiation to myofibroblasts by targeting 

Hes1, and inhibition of miR-203 accelerates wound closure and reduces scar formation 

accompanied with increased collagen reassignment (Zhou et al., 2018). In addition, miR-1908 

has been found to increase fibroblast proliferation and production of TGF-β1, IL-1α, TNF-α and 

type I collagen, and miR-1908 inhibitor reduces scar formation in burn wounds(Xie et al., 2016).  
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Fig 5. Schematic illustration to demonstrate our research outline. 

 

1.5.2 MiRNAs in chronic wounds 

Aberrant expression and function of several miRNAs have been reported in chronic wounds. 

In mouse diabetic model, miR-26a is found upregulated in the wounds compared with wild-type 

mice, and inhibition of miR-26a accelerated wound closure by inducing angiogenesis and 

increasing granulation tissue formation (Icli et al., 2016). Increased expression of miR-15b in 

diabetic mouse wounds is associated with impaired angiogenic response (Xu et al., 2014). MiR-

27b rescues impaired the functions of bone marrow-derived angiogenic cells and improves 

wound healing (Wang J. M. et al., 2014). TNF-α neutralization leads to miR-200b 

downregulation, which supports wound closure by improving angiogenesis in diabetic mice 

(Chan et al., 2012).  
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A study comparing the plasma miRNA profile in type 2 diabetic (T2DM) patients with and 

without chronic wounds identified 41 deregulated miRNAs, among which decreased miR-191 

and miR-200b levels were validated. Furthermore, the authors showed that miR-191 secreted 

by endothelial cells or platelets was either taken up by dermal endothelial cells to reduce 

angiogenesis, or taken by fibroblasts to inhibit migration, thereby causing delay in wound repair 

(Dangwal et al., 2015).  In another study it was shown that hematopoietic stem cells of diabetic 

mice differentiate less into macrophages, where decreased let-7d-3p directly upregulates 

Dnmt1, leading to impaired wound healing (Yan et al., 2018). A recent study reported miR-129 

and miR-335, which are significantly downregulated in the serum and skin tissues of diabetic 

patients, and are known to improve diabetic wound healing by targeting Sp1 to repress MMP9 

expression (Wang et al., 2018).  

MiR-146a has been found decreased in diabetic mouse wounds (Xu, 2012), and application 

of miR-146a conjugated with cerium oxide nanoparticles improved wound healing of diabetic 

mice without impairing biomechanical properties of the healed skin (Zgheib et al., 2018).  

Additionally, miR-296-5p is also found significantly decreased in amputated lower limb tissues 

of diabetic patients compared with the adjacent normal tissue, and overexpression of miR-296-

5p inhibits β-cells proliferation by targeting sodium-glucose transporter 2 and increases the 

healing rate of diabetic wounds both in vivo and in vitro (Liu X. et al., 2018). In primary fibroblast 

derived from diabetic foot ulcers in comparison to nondiabetic foot fibroblasts, integrative 

analysis of miRNA and mRNA paired expression profiling reveals inhibition of cell growth and 

motility, as well as enhancement of cell differentiation and senescence, where induced miR-21-

5p, miR-34a-5p and miR-145-5p play important roles (Liang et al., 2016).  

In a porcine biofilm-infected wound model, miR-146a and miR-106b are induced by biofilm at 

wound-edge, which impairs epidermal barrier function (Roy et al., 2014). Experiments with miR-

142-/- mice indicates that miR-142 family is indispensable for the clearance of S. aureus from 

wound sites to prevent infection (Tanaka et al., 2017). In S. aureus-infected wild-type mice 

wounds, treatment with miR-223 KO neutrophils or anti-miR-223 markedly rescues the healing 

process from the  chronic, slow healing wounds, with prolonged neutrophil activation and 

enhanced clearance of bacteria (de Kerckhove et al., 2018). S. aureus, the prevalent pathogen 

in DFUs, were found to induce miR-15b-5p expression in both acute wounds and DFUs, and 

miR-15b-5p represses DNA repair and inflammatory response (Ramirez et al., 2018).  

Negative-pressure wound therapy (NPWT) is one of the mostly used and effective methods in 

treating chronic wounds, where miR-195 is revealed markedly upregulated 7 days after NPWT 

together with increased microvessel density in granulation tissue (Liu Y. et al., 2018).  
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MiR-29a expression is suppressed in DFU, but treatment of mesenchymal stem cells (MSCs) 

has been shown to improve diabetic wound healing via increasing miR-29b expression which in 

turn leads to decreased expression of MMP9, thereby improving collagen I content in diabetic 

wounds (Xu et al., 2017). Bone marrow-derived mesenchymal stem cells (BM-MSC) treated 

diabetic mice wounds exhibit lower miR-155 expression and faster wound healing (Jiang L., 

2016). Another report suggested that molecular modification of MSCs by inhibiting miR-205 

improves their therapeutic effects on diabetic wounds by relieving its target VEGF expression 

(Zhu et al., 2017). 

Together, these studies indicate that miRNAs play important roles in the pathophysiology of 

chronic wounds, which makes them promising therapeutic and diagnostic entities. 
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2 AIMS 

 

   In this thesis, we aimed to explore the roles of several important microRNAs and the gene 

networks regulated by them in the human skin wound healing process and in chronic non-healing 

wounds.  

   The objectives of this research were 

 To understand the expression and function of miR-31 in epidermal keratinocytes during 

normal skin wound healing (paper I);  

 To determine the functional role of miR-34 family in keratinocytes of normal wounds and 

in venous ulcers (paper II); 

 To identify the function of miR-132 in dermal fibroblasts during skin wound healing (paper 

III); 

 To explore the therapeutic potential of miR-132 in diabetic ulcers (paper IV). 
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3 MATERIALS AND METHODS 

 

Patients and healthy donors 

   In this study, patients with non-healing ulcers, including venous ulcer patients (VU) and 

diabetic foot ulcer patients (DFU), that persisted for more than 6 weeks were enrolled. Exclusion 

criteria were apparent soft tissue infection in need of systemic antibiotics, under systemic 

antibiotics 24 hours prior to biopsy, as well as immune-compromised patients. Tissue samples 

were taken using a 4-mm biopsy punch at the non-healing edges of chronic wounds (Fig 6A). In 

addition, we recruited healthy donors who have no diabetes, skin disease, unstable heart 

disease, infections, bleeding disorder, immune suppression, and any on-going medical 

treatments. We created full-thickness excisional wounds using a 4-mm biopsy punch on the skin 

of each healthy donor, and the excised skin was saved as an intact skin control. The wound-

edge tissue was collected using a 6-mm biopsy punch one and / or seven days later (Fig 6B). 

Local lidocaine injection was used for anaesthesia while sampling. All donors have signed a 

written informed consent for the collection and use of clinical samples. The study was approved 

by the Stockholm Regional Ethics Committee and conducted according to the Declaration of 

Helsinki Principles. 

 

 

Fig 6. Schematic diagram of biopsy collection from chronic non-healing wound-edges (A) and from 

healthy volunteers (B). 
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Human ex vivo wound model 

   We collected human skin that was discarded from abdominal reduction surgeries. All the skin 

donors were provided informed consent for the study. The study was approved by the Stockholm 

Regional Ethics Committee and conducted according to the Declaration of Helsinki Principles. A 

superficial wound was created using a 2-mm biopsy punch on the skin, then the wound was 

excised using a 6-mm biopsy punch, and subsequently transferred to a 12-well cell culture plate 

to let the tissue attach to the plate. Next, Dulbecco’s Modified Eagle’s Medium (DMEM) plus 10% 

fetal bovine serum (FBS) and antibiotics (penicillin 100 units/L and streptomycin 100 µg/ml; 

ThermoFisher Scientific, Carlsbad, CA) were added around the skin tissue, and let its epidermal 

surface exposed in the air to create a liquid-air interface (Fig 7). We topically treated the wounds 

with 0.1 nmol mirVana hsa-miR-132-3p mimic or miRNA negative control (ThermoFisher 

Scientific) packed in transfection reagent MaxSuppressorTM In Vivo RNA-LANCEr II (Bioo 

Scientific, Austin, TX) and then dissolved in 30% pluronic F- 127 gel (Sigma-Aldrich, St Louis, 

MO). Wound samples were collected 3 and 5 days after injury for gene expression and 

histological analysis.  

 

Fig 7. Schematic diagram of human ex vivo wound model. 

 

Mouse in vivo wound model 

   Male wildtype C57BL/6N mice (WT mice) and diabetic BKS(D)-Leprdb/JOrlRj mice (db/db mice) 

on the C57Bl/6J background were obtained from Janvier Labs (Le Genest-Saint-Isle, France). 

Mice were caged individually for one week, handled daily, before experiments. The hair on the 

back was shaved with an electric clipper followed by a depilatory cream and then washed with 

phosphate-buffered saline (PBS, 1X) one day before wounding. General anaesthesia was 
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performed with 3% isoflurane (Abbott, Chicago, IL, USA) and two full-thickness wounds were 

made on the dorsum using a 4-mm biopsy punch. Indicated dose of miRNA mimics or negative 

control (ThermoFisher Scientific) were mixed with MaxSuppressor™ In Vivo RNA-LANCEr II 

(Bioo Scientific) according to manufacturer's instruction in a total volume of 100μl for each 

wound. The mixtures were injected intradermally into the wound-edges of mice immediately after 

wounding. After the surgical procedure, mice received intraperitoneal buprenorphine (0.03 

mg/kg) for relief of possible pain and distress. The size of wound area was photographed every 

other day until euthanized. The wound area was measured using ImageJ 1.32 software (National 

Institutes of Health) and expressed as percentage of the original wound size. The mice were 

sacrificed at the specified time points after injury, and wound-edge tissues, intact skin and 

internal organs were collected for histology, gene expression and protein analysis. 

 

Laser capture microdissection (LCM) 

   Human skin or wound tissues were embedded in Tissue-Tek (Thermo Scientific) and snap-

frozen; mice tissues were fixed with formalin and then embedded in paraffin. Tissues were 

sectioned in 10-μm thickness and stained with hematoxylin. Laser capture microdissection was 

performed with Leica LMD7000 (Leica, Bernried, Germany). RNA from microdissected tissue 

was purified using miRNAeasy mini kit or miRNAeasy FFPE kit (Qiagen, Hilde, Germany). 

 

Magnetic-activated cell sorting (MACS) 

   Fresh human skin or wound samples were washed with cold PBS (1X) for 2–3 times and then 

incubated in 5 U/mL dispase (ThermoFisher Scientific) overnight at 4°C. Epidermis was 

separated from dermis using forceps. Epidermis was diced using scissors and then digested in 

Trypsin/EDTA Solution (ThermoFisher Scientific) for 15 minutes at 37°C. From the epidermal 

cell suspension, CD45- and CD45+ cells were separated using CD45 microbeads with MACS 

MS magnetic columns (Miltenyi Biotec, Bergisch Gladbach, Germany). Dermis was incubated in 

the enzyme mix from the whole skin dissociation kit (Miltenyi Biotec) for 3 hours and further 

processed by Medicon tissue disruptor (BD Biosciences, San Diego, CA). Dermal cell 

suspension was sorted sequentially through CD90, CD14 and CD3 microbeads with MACS MS 

magnetic columns according to manufacturer’s instructions (Miltenyi Biotec).  
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Cell culture, transfections and treatments 

   Human dermal fibroblasts (HDFs) were isolated from adult human skin obtained from 

abdominal reduction plastic surgery. Briefly, after dispase digestion, dermis was cut into small 

pieces and washed with PBS (1X). After dermal tissue attached to cell culture plate of 12-well 

plate, DMEM medium supplemented with 10% FBS and 1% penicillin streptomycin (100 units/mL 

Penicillin and 100 µg/mL Streptomycin, ThermoFisher Scientific) was added into the plate. After 

sufficient fibroblasts grew out from the dermal tissue which usually takes a week, the dermis 

pieces were removed and the cells were cultured to be confluent. The third to tenth passages of 

HDFs were used in this study. 

   Human adult epidermal keratinocytes (HEKa) were purchased from Cascade Biologics and 

cultured in EpiLife serum-free keratinocyte growth medium supplemented with Human 

Keratinocyte Growth Supplement at a final Ca2+ concentration of 0.06 mM and with penicillin 

streptomycin (ThermoFisher Scientific) at 37°C in 5% CO2. The fourth-passage of keratinocytes 

were used in this study.  

   HDFs or HEKa at 60% confluence were transfected with 20 nM mimics of a specific miRNA or 

miRNA negative control (ThermoFisher Scientific); 20 or 40 nM miRNA miRCURY LNA Power 

inhibitor or negative control A (Exiqon, Hilde, Germany); 20 or 30 nM Silencer select predesigned 

siRNA for specific gene or siRNA negative control (ThermoFisher Scientific) for 24 or 48 hours 

using LipofectamineTM 2000 (Invitrogen, Carlsbad, CA).  

   In some experiments, cells were treated with TGF-β1, TGF-β2 (10 ng/mL, Immuno tools), 

SB431542 (15 μM, Tocris), rh-TNF-α (50 ng/mL, R&D Systems, Minneapolis, MN), or Calycuin 

A (50 nM, Cell signalling).  

 

RNA extraction 

   Skin and wound biopsies from human or mice were homogenized in liquid nitrogen using a 

Mikro-Dismembrator U (B. Braun Biotech Inc.) or using Tissue Lyser LT (Qiagen) prior to RNA 

extraction. Total RNA was extracted from tissues using the miRNeasy Mini kit (Qiagen) and from 

cells using Trizol Reagent (ThermoFisher Scientific). RNA quantity and quality were determined 

using Nanodrop 2000 or Nanodrop one (ThermoFisher Scientific) and Agilent2200 Bioanalyzer 

chip (Agilent Technologies, Stockholm Sweden). 
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Transcriptomic profiling and analysis  

   Gene expression profiling of human or mice samples were performed using Affymetrix human 

HuGene-2_1-st, Clariom™ S or mouse Clariom™ D assays (ThermoFisher Scientific) at the 

microarray core facility of Karolinska Institute. Gene ontology analysis was performed according 

to the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.8) (Huang da 

et al., 2009a, 2009b). Gene set enrichment analysis (GSEA) was performed using public 

software from Broad Institute (Mootha et al., 2003, Subramanian et al., 2005). The data have 

been deposited in the National Center for Biotechnology Information’s Gene Expression 

Omnibus and are accessible through GEO Series accession number (Edgar et al., 2002). 

 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

   Total RNA was reverse transcribed using specific miRNA reverse transcription (RT) primers or 

miRNA RT primer pool with MicroRNA Reverse Transcription Kit (ThermoFisher Scientific) for 

miRNA detection, or using RevertAid First Strand cDNA Sythesis Kit (ThermoFisher Scientific) 

for mRNA detection. Expression of miR-132, miR-31, miR-34a-5p and miR-34c-5p was 

determined by Taqman miRNA assays and normalized to RNU48 in human and U6 in mice. 

Expression of primary precursors of miR-132 or miR-31, RASA1, MKI67, EMP1, TNF, IL1B, IL8, 

CXCL1, CXCL5, CCL2, CCL20, LGR4, Tnf, Il1a, Il1b, Il6, Cxcl1, Cxcl5, Cxcl10, Ccl2 and Lgr4 

was detected by TaqMan based pre-designed qPCR assays (ThermoFisher Scientific or 

Integrated DNA Technologies, Coralville, IA). Gene expression was normalized based on the 

values of 18S rRNA or GAPDH in humans, and Gapdh or Actb in mice. Gene expression was 

detected by QuantStudioTM 7 Flex Real-Time PCR System (ThermoFisher Scientific), and 

relative expression was calculated using ΔΔCt. 

 

Histology, immunohistochemistry (IHC), and immunofluorescence (IF) staining 

   Tissues were paraffin-embedded and sectioned in 6μm thickness by microtome. After 

deparaffinization and rehydration, hematoxylin and eosin (H&E) staining were performed. The 

length and area of newly-formed epithelial tongue in wounds were quantified using Image J 

(National Institutes of Health).  

   IHC were performed to detect Gr-1 (1:100, BD Biosciences), Krt5 (1:2000, BioLegend, San 

Diego, CA), LGR4 (1:200, Sigma), CD45 (1:200, Abcam) and PCNA (1:20000, Abcam), which 
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were detected using specific first antibodies and the horseradish peroxidase (HRP)-conjugated 

secondary antibodies (DakoCytomation, Glostrup, Denmark). Second antibodies were 

visualized using VectaStain ABC Kit and AEC or DAB Peroxidase Substrate Kit (Vector 

Laboratories, Burlingame, CA).  

   IF were performed to detect Ki-67 (1:400, Cell Signaling Technology), α-SMA (1:200, Abcam, 

Cambridge, UK) and EMP1 (1:400, Abcam). Primary antibodies were detected with Alexa Fluor 

564-conjugated goat anti-rabbit IgG (H+L) (ThermoFisher Scientific) and visualized with a 

fluorescence microscope (Zeiss, Goettingen, Germany). DAPI (4’,6-diamidino-2-phenylindole, 

ThermoFisher Scientific) was used for nuclear staining. 

   Matched IgG isotype controls were included as negative control for each staining. All slides 

were evaluated by at least two independent observers unaware of the identity of the samples, 

and multiple sections were evaluated for each sample. 

 

In situ hybridization (ISH) 

   ISH was performed on formalin-fixed paraffin-embedded sections. Briefly, after 

deparaffinization, sections were treated with proteinase K (2 µg/mL) for 5 minutes at 37 °C and 

prehybridized for 30 minutes at 50/ 49°C for miR-132/ miR-31 respectively. Hybridization was 

performed for 2 hours at 50/ 49°C with a miR-specific or scramble digoxigenin (DIG)-labeled 

miRCURY locked nucleic acid probe (25nM) (Exiqon, Vedbaek, Denmark). Next, the slides were 

washed with 2X Saline-Sodium Citrate buffer (SSC) followed by incubation at 55/ 67°C (for miR-

132/miR-31 respectively) with 0.1X SCC buffer. The sections were incubated with alkaline 

phosphatase (AP) - conjugated sheep anti-DIG Fab fragments (1:1000, Roche, Mannheim, 

Germany) for one hour at room temperature. The probe was visualized by adding BM purple AP 

substrate according to the manufacturer’s instructions (Roche).  

 

Protein detection 

   Cell lysates prepared with radioimmunoprecipitation assay (RIPA) buffer (ThermoFisher 

Scientific) were resolved on 4-20% gradient gels and transferred onto nitrocellulose membrane 

(Bio-Rad). Western blotting was performed for EMP1 (1:1000, Abcam), LGR4 (1:500, Santa 

Cruz Biotechnology, Dallas, Texas), p-p65 Ser468 (1:1000, Cell Signaling Technology, Danvers, 

MA), p-p65 Ser536 (1:1000, Cell Signaling Technology), p65 (1:1000, Cell Signaling 
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Technology), p-GSK-3β (1:1000, Cell Signaling Technology), GSK-3 (1:5000, BD Transduction 

Laboratories) and β-actin (1:20000, Sigma). Immune complexes were detected by AmershamTM 

ECLTM Prime Western Blotting Detection Reagent according to the manufacturer’s protocol (GE 

Healthcare, Buckinghamshire, UK). 

   Conditioned medium from cultured keratinocytes was collected, and protein levels of IL-8 and 

CXCL5 were measured by enzyme-linked immunosorbent assay (ELISA) (BioLegend, San 

Diego, CA) according to the manufacturer’s instructions. 

 

Neutrophil chemotaxis assay 

   Whole blood was collected by venipuncture from healthy volunteers in 0.2% EDTA-

anticoagulated tubes. Erythrocytes were removed using dextran sedimentation (1:1 mixture of 

blood with 6% dextran/0.9% NaCl) followed by hypotonic lysis using ddH2O. Neutrophils were 

isolated from the resulting cell suspension using Ficoll-Histopaque (Sigma, St. Louis, MO) 

density centrifugation. Purified neutrophils were suspended in EpiLife medium. Using a 3μm 

polyethylene terephthalate membrane cell culture insert (BD Biosciences), 3x105 neutrophils 

were added to the inner chamber, while the outer chamber contained conditioned medium from 

treated or control keratinocytes. After incubation for 1.5 hours at 37 °C in 5% CO2, the migrated 

neutrophils in the outer chamber were counted using CountBrightTM absolute counting beads 

(ThermoFisher Scientific) in a FACScan flow cytometer (Beckman Coulter CyAn ADP). 

 

Analysis of cell growth 

   CyQUANT® Cell Proliferation Assay was performed according to the manufacturer’s 

instructions (Invitrogen, Karlsruhe, Germany).  

   EdU (5-ethynyl-2'-deoxyuridine) cell cycle assay was performed using Click-ItTM EdU Imaging 

Kit (ThermoFisher Scientific) performed according to the manufacturer’s instructions and 

analyzed on a FACScan flow cytometer (Beckman Coulter CyAn ADP). 

   For colony formation assays, HEKa were seeded into 12-well plate (8000 cells/well) 24 hours 

after transfection. After 7-10 days, the cells were stained with 0.1% crystal violet (Sigma-Aldrich, 

Saint Louis, MO) and photographed. Methanol was used to dissolve crystal violet and 

absorbance value was measured at 540 nm. 
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Analysis of cell migration 

   For scratch assay, when transfected HDFs were grown to full confluence in collagen-coated 

6-well plate, a scratch was made manually with a 10 μL pipette tip. The cells were incubated with 

DMEM medium supplemented with mitomycin C (10 μg/mL, Sigma-Aldrich) and photographed 

under microscope at the indicated time points. The wound areas were measured using Image J 

(National Institutes of Health). Healing rate = 100% - percentage of the initial wound area size. 

We also evaluate cell migration using IncuCyte® live cell analysis system. Transfected HEKa 

were grown to full confluence in ImageLock 96-well plate (Essen BioScience, Ann Arbor, MI) and 

scratch wound was made using an Essen® 96-pin WoundMaker™ (Essen BioScience). The 

assay plates were incubated in the IncuCyte® live cell analysis system (Essen BioScience), and 

the IncuCyte® ZOOM software was set to scan the plates every 2 hours and analyze cell 

migration. 

   Transwell migration assay was performed using the Corning® Matrigel® Chamber 8 µm (BD 

Falcon). 1x105 transfected cells in growth-factor-free medium were placed into the inner chamber 

of the insert. Medium containing growth factor was added into the outer chamber. 24 hours later, 

the cells migrated through the membrane were stained with 0.1% crystal violet and counted 

under microscope. 

 

Luciferase reporter assay 

   Luciferase reporter plasmids (SwitchGear Genomics, Menlo Park, CA.) were designed to 

contain either wildtype 3’-UTR of predicted miRNA target gene or mutation of the predicted target 

sites. HEKa were co-transfected with 0.1 µg of the luciferase reporter plasmids with 2 pmol 

miRNA or control mimics using LipofectamineTM 2000 in a 96-well plate. Luciferase assays were 

performed 48 hours after transfection using the dual-luciferase reporter assay system (Promega, 

Madison, WI, USA). 

 

Statistics 

   Statistical significance was determined by two tailed Student’s t-test or Wilcoxon Matched Pairs 

Signed Rank Test or Mann-Whitney U Test. Differences between groups were computed using 

two-way repeated-measures ANOVA. The correlation between the expressions of different 
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genes in the same sample was made using Pearson’s correlation test. For all statistical tests, P 

values < 0.05 were considered to be statistically significant. 
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4 RESULTS AND DISCUSSION 

 

4.1 MICRORNA-31 PROMOTES RE-EPITHELIALIZATION BY 

TARGETING EMP1 

We have performed a miRNA profiling and identified miR-31 as one of the top upregulated 

miRNAs in the human wounds at the inflammatory phase compared to the intact skin (Li et al., 

2015). Interestingly, increased miR-31 expression has also been found in psoriasis (Morhenn et 

al., 2013, Xu et al., 2013) and in cutaneous squamous cell carcinoma (Bruegger et al., 2013b, 

Wang A. et al., 2014), both of which are skin diseases with keratinocyte hyper-proliferation. 

Moreover, miR-31 has been reported to regulate keratinocyte differentiation (Peng et al., 2012) 

and hair growth (Mardaryev et al., 2010). In this study, we aimed to understand the role of miR-

31 in human skin wound healing. 

 

4.1.1 MiR-31 expression is up-regulated in wound-edge keratinocytes 

In human in vivo skin wound model (Fig 6B), we found that the levels of both primary 

transcript and mature form of miR-31 were gradually increased with wound healing, which was 

shown by qRT-PCR analysis (Fig 8 A-B; Paper I, Fig 1a-c). Moreover, we separated epidermal 

and dermal compartments of the skin and wound-edges using LCM, and we found that miR-31 

was majorly up-regulated in the epidermal keratinocytes during wound repair (Fig 8C), which 

was further confirmed by miR-31 in situ hybridization assay (Fig 8D; Paper I, Fig 1d-e). 

Therefore, in the following study, we focused on the role of miR-31 in keratinocytes. 
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Fig 8. The expression of mature (A) and primary transcript of miR-31 (B) in human wound biopsies 

detected by qRT-PCR. (C) MiR-31 expression in the epidermis and dermis of human wounds 

separated by LCM. (D) In situ hybridization of miR-31 in human skin (Day 0) and wounds (Day 1 and 

Day 7 after injury). Reproduced with permission from Li et al., 2015. Copyright The Society of 

Investigative Dermatology and Elsevier. 

 

4.1.2 MiR-31 promotes keratinocyte proliferation and migration 

Either double-stranded miR-31 mimics (pre-miR-31) or miR-31 specific inhibitors (anti-miR-

31) were transfected to human primary keratinocytes to overexpress or knock-down miR-31 

respectively. To study the impact of miR-31 on keratinocyte growth, we analysed the transfected 

keratinocytes with CyQUANT cell proliferation assay (Fig 9A; Paper I, Fig 2a), detection of 

proliferation marker Ki-67 expression (Fig 9B; Paper I, Fig 2b), colony formation assay (Fig 9C; 

Paper I, Fig 2d-e) and EdU cell cycle assay (Fig 9D; Paper I, Fig 2c). And we found that miR-31 

promoted proliferation and long-term growth of keratinocytes. Moreover, we performed scratch 

wound healing assay (Fig 9E-F; Paper I, Fig 3a-b) and transwell migration assay (Fig 9G-H; 

Paper I, Fig 3c-d), both showing that miR-31 enhanced keratinocyte motility.  
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Fig 9. In HEKa transfected with miR-31mimics (pre-miR-31) or inhibitors (anti-miR-31), the following 

assays were performed: (A) CyQUANT cell proliferation assay. (B) Expression of proliferation marker 

Ki-67 detected by qRT-PCR. (C) Quantification of colony formation assay. (D) EdU cell cycle assay. 

(E-F) Scratch assay. (G-H) Transwell migration assay. Reproduced with permission from Li et al., 

2015. Copyright The Society of Investigative Dermatology and Elsevier. 

 

4.1.3 EMP1 is an important target of miR-31  

Epithelial membrane protein 1 (EMP1) was previously identified as a direct target of miR-31 

in oesophageal squamous cell carcinoma (Zhang et al., 2011), and here we confirmed this 

finding in HEKa using 3’UTR luciferase reporter assay (Fig 10A; Paper I, Fig 4a-c). Moreover, 

we showed that the expression of EMP1 was negatively correlated with the level of miR-31 in 

human keratinocytes (Fig 10B; Paper I, Fig 4d-e) and also during skin wound healing (Fig 10C-

D; Paper I, Fig 4f-h). Furthermore, we found that silencing of EMP1 mimicked the effects of miR-

31 overexpression in keratinocytes, i.e. enhancement of cell proliferation and migration (Fig 10E-

G; Paper I, Fig 5), implying that EMP1 is a critical target mediating the functions of miR-31 in 
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keratinocytes. TGF-β1 was previously identified as an inducer of miR-31 expression in 

keratinocytes by our group (Xu et al., 2013), and here we discovered that TGF-β2 also induced 

miR-31 expression, repressing EMP1 expression (Paper I, Fig 6a-g). 

 

Fig 10. (A)  Luciferase reporter plasmids containing wild-type (WT) or mutant (Mut) 3’-UTR of EMP1 

were transfected into HEKa together with pre-miR-31 or control, and luciferase activity was 

measured. (B) Expression of EMP1 mRNA in keratinocytes overexpressing or lacking miR-31. (C) 

Expression of EMP1 mRNA in human wounds detected by qRT-PCR. (D) Spearman-correlation of 

EMP1 with miR-31 expression in human wounds. QRT-PCR of proliferation marker Ki-67 (E), colony 

formation assay (F), and scratch migration assay (G) were performed in HEKa with EMP1 expression 

silencing. (H) Schematic summary of the results in section 4.1. Reproduced with permission from Li 

et al., 2015. Copyright The Society of Investigative Dermatology and Elsevier. 

 

4.1.4 Discussion 

   In this study, we characterized the dynamic expression pattern of miR-31 during normal human 

skin wound healing process. The basal level of miR-31 is low in the intact skin, while upon injury 

its expression gradually increases from day 1 (inflammatory phase) through day 7 (proliferative 

phase). Comparing this with its primary transcript (pri-miR-31), which is only upregulated in day-

7 wounds, we assume that the change of miR-31 level during wound healing results from 

different regulatory mechanisms: the early increase of mature miR-31 is likely due to faster 

processing of the existing pri-miR-31, yet its later and stronger upregulation requires enhanced 

transcription of miR-31 gene.  
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   To understand how the increased miR-31 expression affects skin wound healing, we 

performed different functional assays in human primary keratinocytes with miR-31 

overexpression or inhibition. Our results reveal that miR-31 promotes both the proliferation and 

migration of keratinocytes, which are fundamental cellular events during the proliferative phase. 

Thereby, the high expression of miR-31 in keratinocytes in the proliferative phase may be 

important for the re-epithelialization process. 

   In addition to our findings, miR-31 has been known as an important regulator in other 

physiological processes of the skin, i.e., miR-31 regulates epidermal keratinocyte differentiation 

by enhancing Notch signalling (Peng et al., 2012); and miR-31 is upregulated in the anagen 

phase of hair cycle, while inhibition of miR-31 accelerates anagen development (Mardaryev et 

al., 2010). Moreover, miR-31 expression has also been found upregulated in several skin 

diseases, such as in psoriasis miR-31 promotes cytokine and chemokine production of 

keratinocytes (Morhenn et al., 2013, Xu et al., 2013); while in cutaneous squamous cell 

carcinoma miR-31 facilitates the motility and colony-forming ability of cancer cells (Bruegger et 

al., 2013a, Wang A. et al., 2014). Taken together, miR-31 is an important regulator in epidermal 

keratinocytes under both physiological and pathological conditions.  

   To understand the underlying molecular mechanism of miR-31-mediated regulation, we aimed 

to identify its direct targets. By combining bioinformatic and experimental strategies, here we 

demonstrate that EMP1 is targeted by miR-31 in keratinocytes. EMP1 has been mainly 

recognized as a tumour suppressor previously, as it inhibits growth and motility of different types 

of cancer cells (Sun G. et al., 2014, Sun G. G. et al., 2014a, Sun G. G. et al., 2014b, Sun G. G. 

et al., 2014c, Zhang et al., 2011). Here we show that EMP1 also suppresses growth and 

migration of normal human keratinocytes. In the wound-edge tissues from the inflammatory to 

the proliferative phases, we observed a negative-correlated expression pattern between miR-31 

and EMP1, implying that miR-31 may down-regulate EMP1 expression in human wounds in vivo. 

However, the expression of both miR-31 and EMP1 is activated in day-1 wound compared to the 

intact skin, indicating that EMP1 expression is induced by other unknown factors at the early 

phase of skin wound healing, which warrants further investigation.  

In conclusion, our study proposes that during normal skin wound healing, the increase of 

miR-31 level by TGF-β1 and TGF-β2 enhances proliferation and migration of keratinocytes, and 

miR-31 exerts these functions partially by targeting EMP1, which collectively facilitate re-

epithelialization (Fig H; Paper I, Fig 6h). Our result is confirmed by a recent report using miR-31 

loss-of-function mouse models (Shi et al., 2018), demonstrating miR-31 as an important 

molecule regulating keratinocyte function to improve wound healing.  
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4.2 MICRORNA-34 FAMILY ENHANCES WOUND INFLAMMATION BY 

TARGETING LGR4 

As a major cell type in epidermis, keratinocyte is not only indispensable for re-

epithelialization, but also important in the immune response of the skin.  When skin gets hurt, 

keratinocytes are the first to capture signals of physical trauma or other external stimuli, and start 

innate immune response by producing cytokines and chemokines (Chen and DiPietro, 2017, 

Strbo et al., 2014). The chronic non-healing wound has been characterized by excessive and 

prolonged inflammation, which impedes wound healing and causes additional tissue damage. 

However, largely still awaits to be explored about the role of keratinocytes in the chronic 

inflammation.  

   MicroRNA-34 family has been well known for their tumour suppressive functions, especially 

inhibition of cancer cell mitosis and migration. Moreover, miR-34a is the first microRNA entering 

clinical trial (ClinicalTrials.gov Identifier: NCT01829971 and NCT02862145) (Beg et al., 2017). 

Tumour and wound healing share various similar mechanisms (Sundaram et al., 2018), thus 

miR-34 raised our interest.  

 

4.2.1 Increased miR-34a and miR-34c expression in the wound-edge 

keratinocytes of human venous ulcers 

Our recent RNA-sequencing study identified miR-34a and miR-34c among the top up-

regulated miRNAs in VUs compared with normal wounds (NW) or intact skin from healthy donors 

(unpublished data). MiRNA-34 family comprises three homologues, miR-34a, b and c, but only 

miR-34a-5p and miR-34c-5p, but not miR-34b, are detected in human skin and wound tissues 

by RNA-sequencing analysis (Paper II, Fig. S1). For validation, 19 VU samples were collected 

and compared with normal wounds or skin tissues from 7 healthy volunteers (Fig 11A; Paper II, 

Table 1). Both miR-34a and miR-34c were validated higher expressed in VU compared with 

either normal wounds or intact skin by qRT-PCR (Fig 11B-C; Paper II, Fig 1A-B). Besides, in the 

LCM isolated wound-edge epidermis, which are mainly composed of keratinocytes, more miR-

34 expression was detected in the VUs than the skin or normal wounds (Fig 11D-F; Paper II, Fig 

1C-E).  
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Fig 11. (A) Characteristics of healthy donors and VU patients. QRT-PCR analysis of miR-34a (B) and 

miR-34c (C) in the skin and wound biopsies. (D-F) QRT-PCR analysis of miR-34 expression in LCM 

separated epidermis. 

 

4.2.2 MiR-34 enhances keratinocyte inflammatory response and impedes 

wound healing  

Transcriptomic analysis of HEKa overexpressing miR-34a or miR-34c suggests that these 

miRNAs not only play a role in cell proliferation, but also in innate immune response and 

inflammation (Paper II, Fig 2). We show that in human primary keratinocytes, miR-34a and miR-

34c promoted the production of several cytokines and chemokines, for instance TNF and CXCL5 

(Fig 12A; Paper II, Fig 3A-B). 

   In wild-type mice (Fig 12B; Paper II, Fig 4A), liposome-encapsulated miR-34a mimics were 

intradermally injected around the wounds once after injury, which led to a transient 

overexpression of miR-34a (Fig 12C; Paper II, Fig 4B). Interestingly, local overexpression of 

miR-34a delayed wound closure macroscopically (Fig 12D, F; Paper II, Fig 4C-D) and impaired 

formation of new epidermal tongue microscopically (Fig 12E, G; Paper II, Fig 4E-F). Elevated 

cytokine and chemokine expression was observed in miR-34-treated wounds, indicating 

enhanced local inflammation (Fig 12I; Paper II, Fig 4G).   
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Fig 12. (A) QRT-PCR analysis of TNF and in HEKa overexpressing miR-34. (B) Experimental setup 

of mouse in vivo wound model. (C) QRT-PCR of miR-34a in treated mice wounds. (D) Quantification 

of wound closure. (E) Measurement of the length of the newly-formed epithelial tongue. (F) 

Representative pictures of mice wounds. (G) Representative pictures of H&E stained wound tissues. 

(H) QRT-PCR analysis of Tnf and Cxcl5 in mice wounds.  

 

4.2.3 LGR4 is a target mediating the biological function of miR-34 in 

keratinocytes  

Combining eleven different miRNA target algorithms and microarray of HEKa overexpressing 

miR-34a or miR-34c, five genes were commonly predicted as targets of miR-34. After checking 

the expression of these five genes in human skin and wound samples, we found that the level 

of LGR4 was negatively correlated with miR-34 expression in vivo (Fig 13A; Paper II, Fig 5A-C, 

Fig S5), suggesting that LGR4 may be a miR-34 target in human skin wounds. This was 

experimentally verified by 3’UTR luciferase reporter assay in human primary keratinocytes (Fig 

13B; Paper II, Fig 5D-E, I). Accordingly, we showed that overexpression of miR-34 supressed 

LGR4 expression (Fig 13C; Paper II, Fig 5F-H).  
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Silencing of LGR4 in human keratinocytes results in increased IL-8 and CXCL5 production, 

which phenocopied the pro-inflammatory function of miR-34a and miR-34c (Fig 13D; Paper II, 

Fig 6A-E). Furthermore, while miR-34 inhibitor reduces cytokine and chemokines production, 

additional silencing of LGR4 could rescue this anti-inflammatory effect (Paper II, Fig 6F), 

indicating that miR-34a/c exert their pro-inflammatory function through targeting LGR4. 

Interestingly, we found that wound closure is slower in Lgr4 knock-out mice compared with wild-

type mice (Fig 13E-F; Paper II, Fig 7A-C). Inflammatory molecular signature (such as increased 

tnf and Cxcl5 expression) and more infiltrated immune cells (Fig 13G-H; Paper II, Fig 7E-F) were 

detected in the wounds of Lgr4 KO mice compared with WT mice, which is similar as the mice 

wounds with miR-34a overexpression (Paper II, Fig 4). 

Mechanistically, previous studies have reported that LGR4 inhibits GSK-3β serine 9 (Ser9) 

phosphorylation, thus increasing the proportion of the unphosphorylated active GSK-3β (Luo et 

al., 2016, Zhang et al., 2003); and GSK-3β phosphorylats p65 at Ser468, which negatively 

regulates NF-κB activity (Buss et al., 2004). And our findings link these two pieces of evidences, 

showing that miR-34-LGR4 axis regulates GSK-3β-induced p65 Ser468 phosphorylation, thus 

impacting the activity of NF-κB signal that is a central signalling pathway controlling cellular 

inflammatory response (Fig 13I; Paper II, Fig 8). 
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Fig 13. (A) The expression of LGR4 in VUs was detected by qRT-PCR. (B) Luciferase assay in human 

keratinocytes co-transfected wild-type or mutant LGR4 3’UTR luciferase reporters with miR-34 

mimics. (C) Western blotting analysis of LGR4 in keratinocytes overexpressing miR-34. (D) QRT-

PCR of IL8 and CXCL5 in HEKa with LGR4 silencing. (E) Representative pictures of WT and Lgr4 

KO mice wounds. (F) Wound healing rate of WT or Lgr4 KO mice. (G) MRNA expression of Tnf and 

Cxcl5 in WT and Lgr4 KO mice wounds. (H) Quantification of immunohistochemistry staining of 

CD45+ immune cells in mice wounds. (I) Schematic summary of the results in section 4.2. 
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4.2.4 Discussion 

   MiR-34 family members are well-known tumour suppressor in a wide range of cancer types 

(Wang et al., 2015, Wong et al., 2011). Several in vitro studies have shown that overexpression 

of miR-34a reduces cell proliferation, migration, invasion, stemness while increasing apoptosis 

and senescence in various cancer cell lines (Bader, 2012, Maroof et al., 2014). In various animal 

models, treatment with miR-34a mimics have been shown to inhibit the growth of primary 

tumours, block metastasis, and improve survival (Adams et al., 2016, Bader, 2012, Moles, 2017). 

Nonetheless, a clinical trial of miR-34 treatment in cancer patients has been terminated recently, 

because of severe immune-related adverse events (Beg et al., 2017), which exposes an urgent 

need to understand the role of miR-34 in immune response. To this end, miR-34a has been 

shown to inhibit B cell development (Rao et al., 2010), facilitate dendritic cell differentiation 

(Hashimi et al., 2009), inhibit macrophages efferocytosis (McCubbrey et al., 2016), impair 

neutrophils migration but enhance their production of TNF (Cao et al., 2015, Shikama et al., 

2016).  Our study reveals that miR-34a and miR34c also increase the production of pro-

inflammatory cytokines and chemokines from epidermal keratinocytes, enhancing the capacity 

of keratinocytes to recruit and activate immune cells in skin wounds, which conforms to the 

excessive inflammation of VUs where miR-34 is overexpressed.   

   We identified LGR4 as a direct target of both miR-34a and miR-34c, which is a leucine-rich 

repeat-containing G-protein coupled receptor. It has been reported that LGR4 induces 

keratinocyte proliferation (Jin et al., 2008, Kato et al., 2007, Wang et al., 2010), and loss of LGR4 

results in partially impaired hair follicle development (Mohri et al., 2008). In addition, in 

macrophages LGR4 was reported to play an anti-inflammatory role (Du et al., 2013), and to 

enhance anti-inflammatory M2 polarization (Tan et al., 2018). Here we show that loss of LGR4 

enhances inflammatory response and impairs wound re-epithelization.  

    Our study identified miR-34a and miR-34c among the top up-regulated miRNAs in VU 

compared to intact skin or acute wounds from healthy donors, which function to exacerbate 

keratinocyte inflammatory response and delayed wound closure by targeting LGR4, implying 

their pathological role in chronic wounds. 
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4.3 MICRORNA-132 FACILITATES FIBROBLAST MIGRATION BY 

TARGETING RASA1 

In addition to epidermal keratinocytes, dermal fibroblasts also play an essential role in skin 

wound healing, such as to form granulation tissue, contract wound, regulate angiogenesis, assist 

re-epithelialization, produce extracellular matrix and reconstruct new dermis. Primary fibroblasts 

derived from the non-healing edges of chronic wounds display impaired cellular functions, 

including reduced proliferative and migratory capacities, decreased secretion and response to 

various growth factors, and excessive production of proteinases.  

In our previous study (Li et al., 2015), microRNA-132 (miR-132) was identified as a top up-

regulated miRNA in the inflammatory phase of human acute wounds compared with the intact 

skin from the same donor. We show that miR-132 impedes inflammatory response but boosts 

cell proliferation in primary epidermal keratinocytes by directly targeting HB-EGF. Local inhibition 

of miR-132 delays wound closure in mouse in vivo and human ex vivo wound models (Li et al., 

2015). Following this research line, we further investigated the function of miR-132 in human 

dermal fibroblasts (HDFs). 

  

4.3.1 The expression pattern of miR-132 during human normal skin wound 

healing 

To reveal the expression pattern of miR-132 during human skin wound healing, we collected 

intact skin and acute wounds at the inflammatory phase (1 day after injury) and at the proliferative 

phase (7 days after wounding) from healthy volunteers (Fig 6; Paper III, Fig 1A). Using laser 

capture microdissection, we found that miR-132 expression was increased in both epidermal 

and dermal compartments of wound-edges compared to the intact skin (Fig 14A; Paper III, Fig 

1B). Next, using MACS magnetic cell separation, we isolated several cell types from the skin 

and wounds, i.e. epidermal CD45- cells (mainly keratinocytes) and CD45+ cells (leukocytes), 

dermal CD90+ cells (fibroblasts), CD14+ cells (macrophages), and CD3+ cells (T cells). 

Interestingly, miR-132 was found highly expressed in human dermal CD90+ HDFs (Fig 14B; 

Paper III, Fig 1C) and its level was upregulated by skin injury (Fig 14C; Paper III, Fig 1D). In 

addition, we found TGF-β1 increased miR-132 transcription in HDFs, which effect could be 

specifically blocked by TGF-β receptor inhibitor (Paper III, Fig 1E-G). 
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Fig 14. QRT-PCR of miR-132 in LCM separated human epidermis and dermis from human skin and 

wounds (A), in different cell populations isolated from human skin (B), in CD90+ cells isolated from 

the skin and acute wounds (C). Reproduced with permission from Li et al., 2017. Copyright Springer 

Nature Publishing AG. 

 

4.3.2 MiR-132 promotes HDF migration by targeting RASA1 

To reveal the role of miR-132 in dermal fibroblasts, microarray analysis was performed in 

HDFs transfected with miR-132 mimics. Gene ontology (GO) and gene set enrichment analysis 

(GSEA) analysis of microarray data suggested that miR-132 may have an impact on cell motility 

(Fig 15A-C; Paper III, Fig 2). Using both scratch wound healing assay (Fig 15D; Paper III, Fig 

3A) and transwell migration assay in HDF transfected miR-132 mimics or inhibitors, we 

demonstrated that miR-132 promoted fibroblast migration (Fig 15E; Paper III, Fig 3C). (Paper III, 

Fig 3 B, D),  
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Fig. 15. (A) The top10 gene ontology of cell component terms for the genes down-regulated by miR-

132 in fibroblasts. GSEA evaluated enrichment within the microarray data for the genes reported to 

accelerate (B) or impair (C) cell migration. Scratch assays (D) and transwell migration assays (E) for 

HDFs transfected with miR-132 mimics. Reproduced with permission from Li et al., 2017. Copyright 

Springer Nature Publishing AG. 

 

In the transcriptomic analysis, we found that RAS signalling pathway was regulated by miR-

132 (Fig 16A; Paper III, Fig 4A-B). Among the RAS related genes, we noticed that RASA1 (RAS 

p21 protein activator 1) was one of the top down-regulated genes upon miR-132 overexpression 

(Paper III, Fig 4C). RASA1 has been previously reported as a direct target of miR-132 in 293T 

cells and mouse dorsal root ganglion neurons (Anand et al., 2010, Hancock et al., 2014), and 

here we found miR-132 also supressed RASA1 expression in HDFs (Fig 16B; Paper III, Fig 4C-

D), Moreover, silencing of RASA1 promotes HDF migration (Fig 16C-D; Paper III, Fig 5A-C), 

phenocopying miR-132 overexpression.  
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Fig 16. (A) GSEA for RAS-related genes within the microarray data. (B) Expression of RASA1 in 

HDFs overexpressing miR-132. Transwell migration assay (C) and scratch assay (D) for HDFs with 

RASA1 silencing. (E) Schematic summary of the results in section 4.3. Reproduced with permission 

from Li et al., 2017. Copyright Springer Nature Publishing AG. 

 

4.3.3 Discussion 

   Together with our previous study (Li et al., 2015), we show that miR-132 expression is up-

regulated in both wound-edge keratinocytes and dermal fibroblasts during normal skin wound 

healing (Fig 14; Paper III Fig 1A-D). During this study, we established MACS magnetic cell 

isolation protocol with limited quantity of human samples. Using this methodology, more detailed 

gene expression profiles could be studied in different cell populations from normal wound and 

chronic wound samples, which might be beneficial to identify key etiological factors and further 

to design treatment by correcting them.  

   Transcriptomic analysis of fibroblasts overexpressing miR-132 leads us to focus on the effect 

of miR-132 on cell migration. Using several functional assays, we demonstrate that miR-132 

enhances the motility of HDFs. Moreover, we find that RAS signalling is regulated by miR-132 
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in HDFs and among the genes involved in this signalling pathway RASA1 is a direct target of 

miR-132. RAS is a small GTPase switching between an active GTP-bound and an inactive GDP-

bound state, and RASA1 is one of the critical RAS GTPase activating proteins (RasGAP) which 

negatively regulates RAS activity by increasing the rate of GTP hydrolysis (Pamonsinlapatham 

et al., 2009, Rajalingam et al., 2007). Stimulated by tyrosine kinase or growth factor receptors, 

RAS gets activated and acts through its effectors, for instance RAF, PI3K, MEKK signalling 

cascades, thus controlling various basic cellular functions (Rajalingam et al., 2007). To our 

interest, RAS signalling has been shown to regulate the motility of fibroblasts and keratinocytes 

during skin wound healing (Ehrenreiter et al., 2005). Moreover, RASA1 interacts with p190 

RhoGAP to regulate directed movement of fibroblasts (Kulkarni et al., 2000). It also inhibits cell 

migration by competing with Rab21 to bind integrins and regulating receptor trafficking (Mai et 

al., 2011). In accordance with this, we show that silencing of RASA1 increases fibroblast 

migration, which phenocopies the effects of miR-132, suggesting that the RASA1-RAS signal 

axis is critical in mediating the pro-migratory effect of miR-132 in fibroblasts. 

   In addition, miR-132 has been found highly expressed and play functional roles in some other 

cell types involved in skin wound healing (Fig 14B-C; Paper III, Fig 1B-C). Besides keratinocytes, 

the anti-inflammatory effects of miR-132 has also been reported in monocytes and macrophages 

(Essandoh et al., 2016, Li et al., 2015, Liu et al., 2015, Nahid et al., 2013). Moreover, miR-132 

is up-regulated in neutrophils after their extravasation and infiltration into the skin (Larsen et al., 

2013). MiR-132 has also been shown to enhance endothelial cell proliferation and improve 

vascularization (Anand et al., 2010, Devalliere et al., 2014, Lei et al., 2015, Mulik et al., 2012, 

Westenskow et al., 2013).  Together with our findings showing that  miR-132 promotes HDF 

migration, we propose that miR-132 may be a promising candidate to be used in wound 

treatment, which idea was tested in the paper IV.   
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4.4 MICRORNA-132 IMPROVES WOUND HEALING OF DIABETIC 

MOUSE MODEL AND HUMAN EX VIVO MODEL 

Chronic wound is a growing health and economic problem worldwide. Diabetic foot ulcer 

(DFU) is the most difficult type of chronic wounds to treat, and it is associated with high 

amputation rate and mortality. Our previous studies revealed that in epidermal keratinocytes 

miR-132 has pro-proliferative and anti-inflammatory function (Li et al., 2015), and in dermal 

fibroblasts miR-132 plays a pro-migratory role (Paper III). Based on these findings, we further 

explored the therapeutic potential of miR-132 in chronic wounds, in particular DFU.  

 

4.4.1 The expression of miR-132 is decreased in human diabetic foot ulcers and 

in diabetic mouse wounds 

To study DFU, we have been collecting wound-edge biopsies of DFU from patients with type 

2 diabetes mellitus and also acute wounds and intact skin from healthy volunteers (Fig 17A-B; 

Paper IV, Fig 1a, Table 1). MiR-132 expression is found significantly reduced in the DFU, 

especially in the epidermal compartment, compared to the normal skin wounds, shown by qRT-

PCR (Fig 17C; Paper IV, Fig 1b) and in situ hybridization (Fig 17D; Paper IV, Fig 1c). Similarly, 

lower miR-132 expression was observed in wounds of leptin receptor-deficient (db/db) mice, 

which is a commonly used diabetic model, compared to the wild-type mice (Fig 17E; Paper IV, 

Fig 1d). 
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Fig 17. (A) Sample collection. (B) Characteristics of DFU patients. Analysis of miR-132 expression in 

human skin and wounds of healthy donors and DFUs by qRT-PCR (C) and in situ hybridization (D). 

(E) QRT-PCR of miR-132 in skin and wound of WT or db/db mice. Reproduced with permission from 

Li et al., 2017. Copyright The Society of Investigative Dermatology and Elsevier. 

 

4.4.2 MiR-132 promotes wound healing of diabetic mice 

Full-thickness wounds were made on the dorsum of db/db mice using a 4 mm biopsy punch 

(Fig 18A; Paper IV, Fig 2c), and then intradermal injection of miR-132 mimics around the wounds 

overexpressed miR-132 successfully (Fig 18B; Paper IV, Fig 2d-e). Local injection of miR-132 

mimics accelerated wound healing of db/db diabetic mice, which was assessed by both 

macroscopic (Fig 18C-D; Paper IV, Fig 3a-b) and histomorphometry analysis (Fig 18E-G; Paper 

IV, Fig 3c-e). MiR-132 overexpression increased wound-edge keratinocyte proliferation (Fig 

18H-I; Paper IV, Fig 3f-g) and reduced local Cxcl1 expression and neutrophil infiltration (Fig 18J-

L; Paper IV, Fig 3h-j).  

Transcriptomic analysis was performed in the mice wounds treated by either control or miR-

132 mimics, showing that the miR-132 may negatively regulates several central inflammatory 
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signalling pathways, for example NF-κB signalling, TNF signalling, NOD-like receptor signalling 

and Toll-like receptor signalling pathways (Paper IV, Fig 4).  

 

Fig 18. (A) Experimental setup. (B) Expression analysis of miR-132 in mouse wound and internal 

organs. (C) Representative pictures of wounds. (D) Wound closure is characterized as healing rate 

= 100% - the percentage of the initial wound area size (n = 12 wounds/ group). Quantification of the 

length (E) and area (F) of newly-formed epithelial tongue. Count of Ki-67 (G) and Gr-1 positive cells 

(H), detected by immunohistochemistry, in wound-edge epidermis. Reproduced with permission from 

Li et al., 2017. Copyright The Society of Investigative Dermatology and Elsevier. 

 

4.4.3 MiR-132 accelerates re-epithelialization of human ex vivo wounds 

We further tested the effect of topical application of miR-132 on re-epithelization of human 

ex vivo wound. Liposome-formulated miR-132 mimics were mixed with pluronic F-127 gel, which 

is a commonly used thermos-reversible vehicle gel, and then the mixture was topically applied 

on human ex vivo wounds right after wounding (Fig 19A; Paper IV, Fig 5a). Three days later, ex 

vivo wounds were confirmed for miR-132 overexpression (Fig 19B; Paper IV, Fig 5b). Five days 

after wounding, we found that the miR-132-treated wounds were completely re-epithelialized, 

but not the control-treated group (Fig 19C-D; Paper IV, Fig 5c-d). Increased number of Ki-67+ 

keratinocytes was observed in the wound-edge epidermis of the miR-132 treated wounds 

compared with the control group (Fig 19E; Paper IV, Fig 5e-f). 
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Fig 19. (A) Experimental setup. (B) QRT-PCR analysis of miR-132 in the treated ex vivo wounds. (C) 

Representative pictures of H&E stained wounds. (D) Re-epithelization is characterized as healing 

rate. (E) Count of Ki-67 positive cells, detected by immunohistochemistry, in wound-edge epidermis. 

Reproduced with permission from Li et al., 2017. Copyright The Society of Investigative Dermatology 

and Elsevier. 

 

4.4.4 Discussion 

   In this study, we found a lower miR-132 expression in wound-edges of DFU. As TGF-β 

positively regulates miR-132 expression (Li et al., 2015), we hypothesize that the reduced level 

of miR-132 in DFU may result from lack of TGF-β signalling there (Jude et al., 2002).  

   We have previously shown that lack of miR-132 delays wound closure in WT mice with 

increased local inflammation and decreased cell growth (Li et al., 2015). Here we show that local 

administration of miR-132 accelerates wound healing in diabetic mice with suppressed 

inflammatory response and improved re-epithelialization. Transcriptomic analysis of miR-132-

treated mice wounds (Paper IV Fig 4) reveals an anti-inflammatory molecular signature, 

confirming our previous results showing that miR-132 represses the activity of the NF-kB 

signalling (Li et al., 2015). As DFU is featured with prolonged and excessive inflammation, our 

findings suggest that miR-132 may be used to treat chronic wounds by repressing inflammation. 
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Contraction mainly contributes to the wound closure in rodents, but not in humans (Volk and 

Bohling, 2013). We have previously shown that miR-132 does not affect mouse dermal fibroblast 

contraction (Li et al., 2015). And here we found that there was no obvious difference of 

myofibroblast presence in the dermis between the miR-132 mimics-treated group and the control 

group (Paper IV Figure S6). In addition, we did not observe any obvious difference in hair cycle 

between the miR-132 and the control-treated groups (Paper IV Fig 3k). These data demonstrate 

that the accelerated wound healing in the miR-132-treated group is not due to the impacts of 

miR-132 on contraction or hair follicle cycling. 

   Dysregulation of microRNA exists in most human diseases, therefore modulation of their 

expression opens new gates to invent treatments. A few miRNAs have marched into clinical 

trials, e.g. miR-34 for solid tumours, miR-103/107 for diabetes, and miR-122 for Hepatitis C virus 

infection. Nevertheless, shortages and challenges remain, such as the instability of designed 

molecules, difficulty of localized delivery, lack of biocompatible vehicles and hard-to-predict 

adverse effects (Chakraborty et al., 2017, Rupaimoole and Slack, 2017). Wound healing is a 

good niche to test miRNA-based therapy owing to the obvious advantages of easy access of the 

application site for topical administration and possibility for phenotypic evaluation. After 

intradermal injection of miR-132, its increased expression was not observed in the inner organs 

(Fig 18B; Paper IV Fig 2d, S4), suggesting the local administration is specific. Besides, no 

changes were discovered in body weight, blood glucose, or morphology and histology of internal 

organs between the miR-132-treated group versus the control group (Paper IV Fig S3, S5), 

indicating low systemic toxicity. LCM of the injected mouse wounds reveals efficient 

overexpression of miR-132 in both epidermis and dermis (Paper IV Fig 2e), implying its effects 

in multiple cellular types within the wounds.  

   Together, we identify miR-132 as a downregulated miRNA in DFU and local treatment with 

miR-132 mimics promotes wound closure in diabetic mice and re-epithelization of human ex vivo 

wounds by regulating multiple inflammation-related signalling pathways.  
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5 CONCLUSION 

   Skin is an imperative physical and immunological barrier of our body. Any disruption in skin 

integrity needs to be amended properly and efficiently in order to avoid manifestation of 

secondary complications. Wound healing is a complicated biological process involving 

interaction between different cell types and biomolecules, in order to restore barrier properties of 

the skin. Often this cascade of well-coordinated healing events gets delayed leading to formation 

of chronic non-healing wounds. Hence, we found it interesting to explore the contribution of 

different epidermal, dermal and immune cells in the skin, towards its healing ability, and how it 

gets altered in chronic wounds, with the major focus on microRNA mediated interactions. We 

believe the knowledge in this direction still has many caveats that require better understanding 

of the pathophysiology in order to design effective treatments. 

   In this direction, we first studied the expression of miRNA in normal human skin wound healing 

process and in chronic non-healing wounds. Using miRNA profiling (Li et al., 2015), miR-31 and 

miR-132 were identified as top up-regulated miRNAs in the inflammatory phase of wound 

healing. The expression of miR-31 was mainly confined to epidermal keratinocytes and was 

found to reach maximum during the proliferation phase (Paper I). Whereas miR-132 was 

gradually up-regulated in the inflammatory and proliferative phases, especially in epidermal 

keratinocytes and dermal fibroblasts of wounds. Additionally, miR-132 was also widely 

expressed in other immune cells in both epidermis and dermis (Paper III). Furthermore, we found 

an obvious down-regulation of miR-132 expression in diabetic ulcers, the most difficult type of 

chronic wound to treat, compared with normal wounds from healthy donors (Paper IV). On the 

other hand, miR-34 family exhibited increased expression in the epidermis of venous ulcer, the 

most common type of chronic wound, compared with either acute wounds or the intact skin 

(Paper II).  

Secondly, we explored the functions of miRNAs during different phases and in different cell 

types of skin wound healing. In the inflammatory phase, miR-132 was previously shown to be 

anti-inflammatory but pro-proliferative regulator of keratinocytes by targeting HB-EGF and 

activating EGFR, ERK, and STAT3 signalling (Li et al., 2015). In the proliferation phase, miR-31 

was found to promote keratinocyte proliferation and migration by targeting EMP1, thereby to 

facilitate re-epithelialization (Paper I). And miR-132 improved the migratory ability of dermal 

fibroblasts via targeting RASA1 and regulating Ras signalling, which benefits granulation tissue 

formation (Paper III). Since chronic wounds are non-epithelialized, excessively inflamed and 

fibroblasts derived from chronic wounds are non-migratory, our study suggests that miR-31 and 

miR-132 have potential therapeutic importance for chronic wounds (Paper I, III). 
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Third, we aimed to understand how the dysregulation of microRNAs contributes to chronic 

wounds. MiR-34 family was identified among the top up-regulated non-coding RNAs in VU, 

which enhanced inflammatory response of epidermal keratinocytes via targeting LGR4 and 

raising the activity of NF-κB signalling (Paper IV), suggesting the dysregulation of miR-34 plays 

a pathological role in excessive inflammation of VU (Paper II). Similarly, we found the level of 

miR-132 was decreased in DFU (Paper IV), and lack of miR-132 impeded wound healing (Li et 

al., 2015). 

Lastly, we examined the therapeutic potential of miRNA in chronic wounds. Based on 

previous findings and availability of animal models, we chose to test miR-132 in diabetic wounds. 

Interestingly, local overexpression of miR-132 accelerated wound closure in diabetic mice, 

where inflammatory cells and molecular signatures were remarkably reduced (Paper IV). 

Moreover, ex vivo human model also demonstrated accelerated re-epithelialization upon miR-

132 topical application, indicating that local treatment of miR-132 may be further evaluated in a 

clinical trial as a potential treatment for chronic wounds (Paper IV). 

   Altogether, we have selected three top regulated genes from microRNA profiling of normal 

wounds from healthy volunteers and of chronic wounds from patients (data not shown in this 

thesis). Their functional significance and mechanistic insights have been explored in normal 

wound healing and chronic wounds: miR-31 has been studied in keratinocytes where we 

accented its importance for re-epithelialization of normal wound healing, miR-34 is one of the top 

upregulated microRNAs in venous ulcer with pro-inflammatory roles in keratinocytes and 

impaired mouse wound healing, and miR-132 has been explored in dermal fibroblasts with 

promising therapeutic potential in diabetic ulcers. In conclusion, this thesis highlights the crucial 

roles of miRNAs in keratinocytes and fibroblasts during skin wound healing, and demonstrates 

their dysregulation contributes to the pathogenesis of chronic wounds. Correction of these 

dysregulated miRNAs indicates a novel strategy to treat the chronic wounds such as diabetic 

ulcer and venous ulcer.  
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