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SUMMARY OF THE THESIS 
Chronic kidney diseases (CKDs) affects about 11-15% of adults worldwide. When it 
progresses to the end-stage renal disease (ESRD), there is no effective medication for cure, 
the only treatment being chronic dialysis or kidney transplantation. The 5-year survival rate 
for patients in dialysis is less than 40%, and generates a huge economic burden to the 
healthcare system. A major proble is that we still have very limited knowledge on the 
pathogenesis and pathomechanism of CKD.  

In this thesis, we studied CKDs by utilizing the large-scale omics approaches.  

Paper I describes a study on the potential genetic causes of diabetic nephropathy (DN). DN 
is the major cause of ESRD among all CKDs worldwide. Here we studied a Finnish sibling 
cohort, in which sibling pairs are both affected by type 1 diabetes (T1D), but they are 
discordant for development of DN. Studying the genetics of DN is challenging as one is 
searching for genes and genomic variants that only  cause disease if the patient has diabetes 
and hyperglycemia. The study was carried out by sequencing the whole genome of the 
discordant sibling pairs, and performing multiple bioinformatic analyses on the data. We 
studied protein altering variants and enrichment of variants in regions associated with 
presence or absence of DN. We replicated our findings in a larger T1D cohort of unrelated 
Finns with T1D, referred to as the FinnDiane cohort. We identified  several top candidate 
genes some of which were studied in a zebrafish model. Some of the top candidate genes and 
genomic variants, showing highest association with the presence or absence of DN were 
characterized. One of them was protein kinase C epsilon that has been found to be associated 
with development of DN.  

Paper II reports on a meta-analysis of the expression profiles of glomerular diseases. We 
summarized all microarray and proteomics data sets on glomerular diseases, including studies 
on patient biopsy and animal models. We developed a pipeline for meta-analysis on 
microarray data, and compared two DN human patient studies together with DN animal 
model studies. We have not found any consensus pathways that are significant across all 
glomerular diseases or disease models.  

Paper III uses state-of-the-art single cell RNA sequencing technology (scRNAseq) to 
elucidate the expression profiles of kidney organoids. The organoids were derived from 
induced pluripotent human stem cells and were engineered with CRISP(e)R technology to 
induce fluorescent reporters facilitating the monitoring of different stages of organoid 
development. We observed cell clusters expressing mature podocyte and tubular markers. We 
also compared the transcriptomic profile of these two clusters with previous reported healthy 
human glomerular and tubular biopsies, and observed a similarity of organoid to adult 
kidney.    
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1 BACKGROUND 

1.1 CHRONIC KIDNEY DISEASE 

1.1.1 Kidney and glomeruli   

The primary function of the kidney is to filter out the small molecular waste products, excess 
water and electrolytes from blood in order to maintain homeostasis in the body. Besides 
generation of urine, kidneys have also an important role in production of hormones, such as 
erythropoietin and renin. 

 

Figure 1: A: Principal structure of the human kidney. The nephron is the basic functional unit. B: The 
structure of a nephron. Blood enters glomeruli where water and small molecules are filtered out as the 
primary urine. The majority of in primary urine is reabsorbed in the tubules and returned to blood 
circulation.  Figure modified from (Mäkinen 2010). 

Nephron is the basic functional unit of the kidney (Figure 1). There are around 0.8-1.5 
million nephrons in an adult human kidney. Each nephron consists of a proximal end, the 
glomerular tuft, located in the Bowman’s capsule, and a long renal tubule that extends 
through different segments of the kidney ending with the collecting duct that opens into the 
medulla. The kidney receives about 25 % of the cardiac output and the glomerulus is 
responsible for the ultrafiltration of blood, generating about 180 liters of primary urine a day.   

About 99% of the primary urine is reabsorbed in the tubuli so that and eventually only about 
a total of 1-1.5 litres of concentrated urine is excreted from the body daily. The ultrafiltration 
of blood occurs in the capillary wall of the glomerulus which contains of three layers: 
fenestrated glomerular endothelial cells, the glomerular basement membrane (GBM), and 
podocyte foot processes located on the outer surface of the glomerular capillary (Figure 2). 
This glomerular filtration barrier (GFB) prevents large molecules such as proteins like 
albumin and blood cells from entering the urine, while allowing water, electrolytes and other 
small molecules to be retained. Mesangial cell is the third cell type of the glomerulus. They 
are thought to act as pericytes of the glomerulus.  
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Figure 2. A. Electron microscopy scanning of a mouse glomerulus. The outer surfaced of the capillary is 
covered by food processes of podocytes, such that foot processes of two neighboring podocytes for 
interdigitating processes. Magnification x5,000. Image source: wikidoc.org. B. Cross section of the 
glomerular filtration barrier. The endothelial cells form a single layer on the inside of the capillary with 
numerous fenestrae that are devoid of a physical membrane. The glomerular basement membrane 
(GBM) is located between the endothelial cells and the podocyte food processes and has uniform 
thickness of about 300-350 nm in humans. The outside of the capillary is covered by podocyte foot 
processes that are partially embedded in the GBM. The food processes are separated by an uniformly 
wide slit diaphragm that forms a physical hinder for proteins larger than albumin (69 kDa). Image 
adapted from educational slide from New York Uni. Langone Medical Center. 

 

1.1.2 Glomerular disorders are a major medical challenge 

Glomerular disease processes are responsible for >70% of end-stage renal disease cases 
(ESRD). These include complications of systemic disorders, such as diabetes and 
hypertension, but also many primary glomerular diseases, such as IgA nephropathy and 
membranous nephropathy. In most glomerular disease processes, the ultrafiltration barrier 
fails which results in leakage of albumin to urine, albuminuria. Albuminuria is the hallmark 
sign of most renal diseases.  

Glomerular diseases often show similar histopathological features, which include mesangial 
matrix expansion, mesangial cell proliferation, podocyte foot process effacement and 
eventually podocyte loss. The molecular mechanisms driving the progression of these 
changes are still poorly understood. This is mainly due to the fact that there is a very limited 
access to diseased human glomerular samples. Also, poor translation in kidney diseases from 
animal models to man contributes to our poor understanding of pathobiology in human 
glomerulopathies. 

1.1.3 Diabetic nephropathy 

Diabetic nephropathy (DN) is the single leading cause of ESRD worldwide (Jha et al. 2013), 
takes up to 50% cases in developed world.  It is the main cause of morbidity and mortality in 

A B
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diabetes patients (Orchard et al. 2010, Collins et al. 2012, Tuttle et al. 2014). The number of 
patients with type 2 diabetes (T2D) was estimated to be 415 million worldwide in 2015 and is 
predicted to affect 642 million people by 2040 (IDF 2015), and approximately 30% will 
eventually develop DN (Afkarian et al. 2016). This morbidity of DN is even higher among 
type 1 diabetic (T1D) patients, which is estimated to be up to 40% (Gubitosi-Klug et al. 2008, 
Gheith et al. 2016).  

The major histological changes of DN are detected in the glomeruli, i.e. mesangial expansion, 
thickening of the GBM, foot process effacement and at later stages glomerular sclerosis 
(Figure 3). Clinically, the cardinal sign of DN, i.e. leakage of albumin to the urine is 
measured by albuminuria excretion rate (µg/min). If albumin leakage is minimal (30-299 
µg/min), it is referred to as microalbuminuria and when in more substantial amount (>300 
µg/min), it is referred to as macroalbuminuria. In many cases of macroalbuminuria, DN leads 
to ESRD, a condition treatable only with chronic dialysis or kidney transplantation. Sadly, 
70% of ESRD patients die within 5 years on dialysis (O'Shaughnessy et al. 2015). 

 

Figure 3. Structural changes of glomerulus in diabetic nephropathy (DN) by electron microscope, 
magnification x3500. Comparing to normal glomeruli, the typical features in DN glomeruli are: A. 
mesangial expansion; B. glomerular basement membrane thickening; C. food process enfacement. 
Images from (Alicic et al. 2017).   

Multiple risk factors contribute to DN. A key factor is persistent hyperglycemia. It has been 
shown that strict glycemic control can significantly reduce the occurrence of DN (Reichard et 
al. 1993). However, despite the significant improvement of treatment for diabetes mellitus 
over 30 years, the occurrence of DN is not substantially decreased (Gregg et al. 2014). It is 
reported that even under the strictest control of blood glucose the cumulative incidence of DN 
remains 9% after 30 years of T1D (Nathan et al. 2009). How does hyperglycemia lead to 
DN? This is a very complex question, which is still a major challenge to answer. There are 
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many potential mechanisms, which involves several pathways. One basic mechanism is that 
cells fail to down-regulate their glucose transporters, which results in hyperglycemic 
conditions intracellularly. This, in turn, results in a metabolic dysregulation that causes for 
instance dysfunction of mitochondria leading to increased production of reactive oxygen 
species and superoxide that drive the development of cellular damage. Extracellularly, 
hyperglycemia can cause for instance non-enzymatic glycosylation of target molecules, 
which can contribute to the development of tissue damage.  

Other modifiable factors are hypertension, dyslipidemia and smoking, age, race, and genetic 
profiles (Lim 2014). It has also been reported that male gender is a risk factor for ESRD in 
T1D patients (Harjutsalo et al. 2011), while female gender is protective from ESRD (Iseki et 
al. 1996). However, The gender effect on DN remains controversial as gender effects can 
also be confounded by age, ethnic group, or other factors (Iseki 2008), and gender variation is 
often absent in a large cohort of chronic kidney disease (CKD) (Silbiger et al. 2008). Genetic 
factor in DN is discussed in another section below.  

Treatment to prevent the progression of DN is very limited. The most effective ones are 
angiotensin converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers 
(ARB), which are functional by reducing the intra-glomerular pressure (Tuttle et al. 2014). 
They can significantly alleviate the deterioration together with hypertension treatment in 
clinic (Lim 2014). Recent studies have also shown that sodium glucose linked transporter 2 
(SGLT2) inhibitors can slow down the progression and lower the rate of clinical relevant 
renal events (Wanner et al. 2016, Neal et al. 2017). The mechanism is to prevent the glucose 
reabsorption in proximal tubuli thus change the hemodynamics in kidney (Vallon et al. 
2017). However, those drugs cannot reverse the progression, and cannot address the primary 
disease mechanisms that are still largely unknown. 

1.2 GENETICS 

1.2.1 Human genetics 

The genetic information carried in genomic DNA (Deoxyribonucleic acid) is the blueprint for 
most living organisms. DNA is essentially the sequence of four types of nucleotides: Adenine 
(A), thymine (T), cytosine (C) and guanine (G). It forms a double helix structure that is 
composed of two complementary strands, i.e. A is complementary to T and C to G. Each of 
the complementary pairs is called base pairs.  

Homo Sapiens, i.e. we human, are diploid organisms. Our genome is packed within 22 pairs 
of autosomal chromosomes and one pair of sex chromosomes (XX for female and XY for 
male). The homologous pair of chromosomes contains hereditary information from mother 
and father. Nucleotides at a locus of a chromosome can be identical (homozygous) or 
different (heterozygous).  

The Human Genome Project and a parallel project taken by Celera Corporation published the 
first complete sequence of human genome in 2001 (Lander et al. 2001, Venter et al. 2001). It 
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provides the first draft of human genome and has greatly benefited the genetic study in 
human diseases.  

The current human reference genome contains 20,418 coding genes, 22,107 non-coding and 
15,195 pseudo-genes [Ensembl (Zerbino et al. 2018), gene build GRCh38.p12]. Only 1.2% 
of the genome is protein coding, and 24% is introns or segments upstream/downstream of the 
coding regions. The remaining genome is intergenic and its role and functions are still poorly 
known. Around 99.5% of the human genome is identical between two individuals, regardless 
of ethnical or phenotypical appearance of the individual.  

1.2.2 Genotyping methods - a brief introduction 

The DNA sequencing was first developed by Sanger Frederick (Sanger et al. 1975). It was 
based on DNA replication using specific chain-terminating dideoxynucleotides. Read length 
from Sanger sequencing can reach 800 base pairs of nucleotides.  The method was the 
predominant technology for DNA sequencing until late 2000s. It has greatly benefit the 
progress of genetic studies.  

Next generation sequencing (NGS), “next generation” to the Sanger sequencing technology, 
is a massive parallel DNA sequencing technology. DNA sequences are fragmented into short 
reads, and amplified by polymerase chain reaction (PCR). Adapters that could bind on the 
sequencing chip are added to the end of DNA sequences. The reads are sequenced by 
commercially available sequencing machines, such as Illumina HiSeq and Complete 
Genomics (the later BGISEQ). The fragmented reads, typically 30-300 bp long, can then be 
assembled de novo or by reference genome. With intensive and collaborative work, it took a 
decade to complete sequencing of the first human genome. Nowadays it only takes one day to 
sequence a complete human genome by NGS, which is referred as whole genome sequencing 
(WGS). 

Besides sequencing methods, SNP arrays using hybridization principal are widely used for 
large-scale SNP detection. Hybridization of DNA and probe sequences is more favorable 
when they are fully complementary to each other, and less favorable for mismatching SNP 
sites. Thus the intensity signal of hybridization can be used to detect the genotyping of the 
SNP. This method has been widely used for genome-wide association study because of it’s 
high-throughput of SNP detection, and efficiency both economic-wise and labour-wise. 
However, with the declining cost of NGS, it is slowly overtaken by WGS. 

1.2.3 Genetic studies in DN 

A genetic risk factor of DN was first reported in a study of Finnish families in 1989 (Seaquist 
et al. 1989). In families where a proband had ESRD, 24 out of 26 diabetic siblings (83%) was 
detected to have DN, whereas in families where the proband did not have DN; only 2 out of 
11 (17%) diabetic siblings had DN. A similar conclusion has been observed in a study on 
Danish T1D families (Borch-Johnsen et al. 1992). A later epidemiological study in Finnish 



 

6 

T1D patients suggested that with one sibling affected by DN, the risk of other T1D siblings 
being affected by kidney disease was increased over two-fold (Harjutsalo et al. 2004).  

To study the genetic factors of a disease or trait, there are two main approaches. The 
traditional linkage study uses the family pedigree data to identify linkage of alleles at a 
genetic susceptible locus and know genetic marker locus through generations of families. 
Genome-wide markers are tested in pedigrees segregating a trait. The second approach is 
genome-wide association study  (GWAS) to identify associations between a locus and 
phenotypical trait. It involves collection of genetic information of unrelated, affected (cases) 
and unaffected (controls) individuals, mostly by SNP arrays, which allow genotyping of 
millions of SNPs on one single chip. This approach has gained extensive popularity with the 
declined cost of genotyping chips, and larger international cooperation.  

Linkage studies based on sibling pairs – either with discordant sib-pairs (DSP) where both are 
affected by diabetes but discordant for DN, or with “affected” sib-pairs where both are 
affected by DN – suggests a lineage peak on chromosome (Imperatore et al. 1998, Moczulski 
et al. 1998, Österholm et al. 2007, He et al. 2009). The limitation of the traditional linkage 
approach is that the tested significant region is usually mega base pair long, and may need 
further fine-mapping and functional annotation. Furthermore, as the study object is familial 
data, the results shall always be tested and replicated in other families and populations. 

 

Figure 4. Progress of identification of diabetic nephropathy (DN) associated genes by genome-wide 
association study (GWAS). Plot derived from (Ma et al. 2017) and gene list derived from (Ma 2016). 
*Discovered/replicated in studies in subjects with T1D. #Discovered/replicated in studies in subjects 
with T2D. ^Evidence of sex difference in the association signal, with significant association detected 
only for women. Most variants listed in the plot does not reach genome-wide significance threshold.  
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GWAS, benefiting from a large-scale test of SNPs, and large sample size, commonly leads to 
very high significant statistics. Although it has lead to fruitful discovery for other diseases 
(Visscher et al. 2017), there are only a few genes been associated to DN as summarized in 
Figure 4.  

One limitation of applying GWAS on DN is the insufficient sample size. Although diabetes 
almost has epidemic proportions in the modern society, the majority of patients with T2D has 
late onset of diabetes in their life course, and it usually takes another 10-20 years to develop 
kidney complication (Gheith et al. 2016). The samples size of DN affected individual can 
hardly reach level of ten thousands of samples, and significance of variants identified can 
barely reach 10-8. Additionally, clinical diagnoses can be complicated for DN (Roshan et al. 
2013), diabetic patients with nephropathy have different histopathological features, and may 
caused by other reasons (Alsaad et al. 2007). While the relationship of statistical significance 
and actual biological function is another debate, the power of GWAS approach in case of DN 
is limited.  

A more recent study by FinnDiane performed GWAS and replication in 12,540 Finnish T1D 
patients and sequenced the whole exome of 997 patients (Sandholm et al. 2017). There were 
no single variants reached genome significant level in the study, despite the enlarged sample 
size. However, with joint meta-analysis of two stages of clinical diagnoses, three variants 
showed suggestive association with DN. And association of genes with specific DN related 
pathways are reported, suggesting a careful phenotypic classification for GWAS trait is 
necessary for detection of meaning biological signals.  

With easy access to WGS technology, it is possible now to detect more low-frequency 
variants with intermediate impact (Cirulli et al. 2010). The decline of expenses for WGS 
allows the application on larger sample size, though it is still not possible to reach as much as 
for GWAS. While GWAS is detecting signals spreading across the genome (depending on 
the array), suggesting possible associations for certain area, WGS is more likely to give a true 
signal.  

1.3 TRANSCRIPTOMICS STUDY: HISTORY, PRESENT AND FUTURE 

1.3.1 Introduction to transcriptome 

Transcriptome represents the whole RNA (Ribonucleic Acid) transcripts in an organism. 
RNA is synthesized using genomic DNA as template, and then directs the expression of 
protein. This process is referred as central dogma (Crick 1958, Crick 1970) in cell biology. 
Besides the role in the classic DNA-RNA-protein, recent studies also show other important 
roles of RNA (Cech et al. 2014).  

A transcriptomics study examines the expression levels of RNA in a cell, tissue or organism. 
It captures a snapshot of RNA molecules in a designed condition. It can be used to examine 
particular types of RNA, or the total RNA. The messenger RNA (mRNA) is most widely 
studied in transcriptomics as it directly reflects the gene expression. mRNA carries the 
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information from DNA and its sequence is translated to amino acid sequence, which is then 
assembled into protein. Other types, so called non-coding RNA, are important in translation 
and regulation of cell functions. For instance, ribosomal RNAs (nRNA) and transfer RNAs  
(tRNA) are important in mRNA translation. Another class, long non-coding RNA (lncRNA), 
which is an artificially defined (>200 nucleotides) to distinguish from other small RNA types, 
has been associated to several diseases (Wilusz et al. 2009, Wapinski et al. 2011). Projects 
like FANTOM (Functional ANnoTation Of the Mammalian genome) (Lizio et al. 2015) and 
GENCODE (Harrow et al. 2012) are taking large collaborative efforts to study the function 
of lncRNA (Derrien et al. 2012, Hon et al. 2017).  

1.3.2 Evolution of methods for transcriptomics study 

The study of transcriptome is greatly benefited by the rapid development of biotechnology. 
For individual or small sets of transcripts, the quantification can be measured using northern 
blotting, and quantitative reverse transcription polymerase chain reaction (RT-qPCR). The 
later is still widely in us, and is a tool for validation for large-scale transcriptomics study. For 
a larger set of transcripts, libraries of mRNA can be collected and preserved by converting 
instable mRNA into its complementary DNA (cDNA) back in the 1970s (Sim et al. 1979). 
The short sub-sequences of cDNA are called expressed sequence tags (ESTs) (Adams et al. 
1991). The quantity of cDNA has a representation of the amount of its complementary 
transcripts. These libraries of individual transcripts can be sequenced by methods like Sanger 
sequencing (Sanger et al. 1975). It greatly benefits the discovery of transcripts in an organism 
before we could capture the whole picture of its transcriptome.  

Based on EST, a higher throughput method, serial analysis of gene expression (SAGE) 
(Velculescu et al. 1995), was developed in 1990s to identify and quantify thousands of 
transcripts at one time. EST libraries are digested into 11bp “tags” by restriction enzymes, 
and then concatenated into >500 bp long strands. The long strands of concatenated cDNA are 
then sequenced by Sanger sequencing. Cap analysis of gene expression (CAGE) method 
(Shiraki et al. 2003) applies the same methods but sequences only the transcriptional start site 
of genes. CAGE is still used to the promoter analysis by projects like FANTOM to date. 
SAGE and CAGE have limitations of intensive labour work and high cost, and were largely 
overtook by microarray and deep sequencing or so called RNA sequencing (RNA-seq) 
methods in the early 2000s.  

1.3.3 Microarray and RNA-seq 

The most widely used technologies in transcriptomics are microarray and RNA-seq. 
Microarray technology was first introduced in 1995 (Schena et al. 1995, Pozhitkov et al. 
2007) and remained its popularity until the early 2010s. Microarray requires prior transcript 
information on the organism to be studied.  Short nucleotide oligomers called “probes” with 
complementary sequences of organism transcripts are pre-installed on a physical slide made 
by glass or silicon. cDNAs that have been labeled with fluorescence are hybridized to the 
probes. The transcript abundance can then be determined by the intensity of the fluorescence 
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at each probe sets (Barbulovic-Nad et al. 2006). Commercial high-density arrays like 
Affymetrix GeneChip array (Santa Clara, California) and Illumina BeadChip array are 
available for popularly studied organisms. These microarray slides allow hybridization of ten 
thousands probe sets on one single slide, and lower down the cost and labour work 
dramatically. Choices of microarrays are available to detect different types of RNA 
molecules. Microarray was the predominant tool for transcriptomics study from early 2000s 
to mid 2010s. Therefore the transcriptomics analyses in Paper II (published in 2013) are 
largely based on this technology.  

Commercial microarray platform provide standardized software and algorithm to normalize 
the image intensity produced from microarray chips. The raw data needs to be normalized to 
adjust for the background noise of the image, labeling efficiency and laser detection, etc. The 
most used normalization methods are robust multi-array average method (RMA) (Irizarry et 
al. 2003) and GC-RMA (Wu et al. 2004) for Affymetrix platform. The normalization corrects 
the raw intensity data by background correction, quantile normalization, gene-wise 
correction, and a logarithm transformation of expression value. Then cross sample quality 
control (QC) like MA plots, RNA degradation plot can be applied on a data set to estimate 
the quality of microarray data. Data after QC can then be used for further analysis, like 
differential expression analysis, Gene Set Enrichment Analysis (GSEA), Over-Representation 
Analysis (ORA), etc.   

RNA-Seq sequences the transcript cDNA in depth using NGS technology (Morozova et al. 
2009, Wang et al. 2009, Ozsolak et al. 2011). Figure 5 shows the principal procedure for a 
RNA-seq experiment. RNA extracted from tissue or cells can be selected by different 
protocol to isolate a specific type of RNA. For example, mRNA is enriched by poly-A 
selection in this step. Long transcripts are fragmented into 200-300 bp, and reverse 
transcribed into cDNA. Adapters designed for sequencing platforms are added to single or 
both ends of the cDNA fragments. After PCR amplification, library is constructed and ready 
to be sequenced. In the sequencing procedure, the sequencer detects the nucleotides in cDNA 
fragments, and generates short reads (30-400bp depending on platforms) of single-end or 
pair-end.  

A standard bioinformatics analysis for RNA-seq has following steps: First, the sequencing 
reads are aligned to reference genome by tools such as STAR (Dobin et al. 2013), Tophat2  
(Kim et al. 2013). The aligned sequences are outputted in Binary Alignment/Map (BAM) 
format. Secondly, assemble transcripts transcripts using a reference transcript annotation, de 
novo, or combined approach (Martin et al. 2011). Thirdly, Number of reads within exons of a 
gene or transcript is counted by tools like HTSeq (Anders et al. 2015) or featureCounts (Liao 
et al. 2014). Counts are normalized upon the factors like sequencing library size, gene length, 
CG content, etc. Reads/Fragments per kilobase per million mapped reads (RPKM/FPKM) 
was used at the first studies of RNA-seq. The method normalizes counts based on library size 
and gene length. The later introduced transcripts per kilobase per million mapped reads 
(TPM) is similar to RPKM, but becoming more popular as it results a equal number of TPMs 
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within each sample, thus more suitable for comparison between samples. Then the 
normalized counts can be used for downstream analysis similarly to microarray. 

 

 

Figure 5. RNA sequencing (RNA-seq) workflow. A. Sequencing library construction: first extract the 
total RNA from biological material of choice. Subtract type(s) of RNA can be isolated using specific 
protocols. For example, poly-A selection can enrich polyadenylated mRNA, ribo-depletion protocol 
removes ribosomal RNAs, or size selection process to keep only small RNAs. RNA is then reverse-
transcribed to complementary DNA (cDNA) and sequencing adapters are added to the end of cDNA 
fragments. After amplification by PCR, the library is by ready to be sequenced. B. Principal 
bioinformatic analyses for RNA-seq. Sequencing reads are aligned to reference genome. Transcripts 
can be assembled using reference transcript annotation, or de novo approach to identify novel 
transcripts. The expression level of each gene is estimated by normalizing counts that aligned to the 
transcript region. Then downstream analyses like differential expression can be applied. Figure 
adapted from (Kukurba et al. 2015). 

As shown in Figure 6, RNA-seq has overtook microarray as the first choice for 
transcriptomics study (Su et al. 2014). RNA-seq has desired advantages: it does not require 
previous knowledge of the organism for probe design, and it is not affected by SNVs in the 
probe sequence. The detection of transcripts in RNA-seq is not limited by probe sets, thus 
could include splicing variants, allele specific expression and small RNAs (Nookaew et al. 
2012). Studies have shown a high consistency between microarray and RNA-seq experiment 
(Nookaew et al. 2012, Zhao et al. 2014). However, RNA-seq has better dynamic range for 
highly and lowly expressed genes, lower technical variant and higher accuracy for expression 
level (Hoen et al. 2008, Wang et al. 2009, Nookaew et al. 2012). Moreover, recent 
technology has made it possible to sequence the whole transcriptome from as little material as 
of single cell.  
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Figure 6. Number of publication of transcriptomics study using expressed sequence tag (EST, blue), 
RNA microarray (red), RNA sequencing (RNA-seq, black), and serial/cap analysis of gene expression 
(SAGE/CAGE, yellow). RNA-seq technology has become the predominant tool for transcriptomics 
study. Plot derived from (Lowe et al. 2017).  

 

1.3.4 New promising approach: single cell sequencing 

Transcriptomics studies in kidney field has yielded to discovery of new biomarkers of CKD 
(Mishra et al. 2003, Ju et al. 2015) and potentially beneficial for novel therapies (Kretzler et 
al. 2018). However, there is still limited knowledge about expression patterns and their 
changes at the level of individual cells and cell types. Kidney has a complex structure with at 
least 18 distinct cell types (Kretzler et al. 2018). The resolution of transcriptome on single 
cell level is expected to benefit greatly the researches in kidney.  

1.3.4.1 scRNA-seq methods 

The first mRNA sequencing at the single cell level was reported by (Tang et al. 2009). 
Subsequently, protocols were developed and improved by various groups and applied for 
detailed analyses of whole tissues or specific cell types. A typical protocol for scRNA-seq 
library construction includes organ or tissue dissociation, single cell capture, cell lysis, revers 
transcription, and amplification. Then the library can be sequenced as bulk RNA-seq. The 
major differences between protocols are the methods for single cell capture (Figure 7), 
reverse transcription and amplification. 
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Figure 7. Different methods used for single cell capture and their features. Adapted from 
(Kolodziejczyk et al. 2015). 

For the requirement of higher throughput per experiment, the method based on micro droplet 
(Macosko et al. 2015) is gaining more popularity. The commercially available platform 10x 
Genomics is based on this method. The first publications use reverse transcription method by 
polyA tailing plus second strand synthesis (Tang et al. 2009, Tang et al. 2010). However, the 
other single-cell tagged reverse transcription (STRT) (Islam et al. 2011) is later more widely 
in use as it has higher efficiency for transcript capture. PCR amplification is widely used to 
enrich cDNA library, however, other method like IVT (in vivo transcription) (Luo et al. 1999) 
using a linear amplification is also applied on methods such as CEL-seq (Macosko et al. 
2015) and MARS-seq (Jaitin et al. 2014). Both amplification methods may introduce bias, 
e.g. CG bias for PCR, and 3’bias for IVT.  

Method used by Paper III is based on SMART-seq2 protocol (Picelli et al. 2014). The 
library construction procedure includes: cell dissociation, fluorescence activated cell sorting 
(FACS) into 384 plate, cell lysis, STRT reverse transcription, adapter ligation, PCR 
amplification and sequencing. SMART-seq2 has the advantage of high RNA capture 
efficiency(Ziegenhain et al. 2017), which allows a deeper sequencing of transcriptome. The 



 

 13 

sequencing reads can cover whole transcript, instead of only the 3’ end of polyA RNA, thus it 
provides opportunity to detect splicing events.  

1.3.4.2 Bioinformatics for scRNA-seq analysis 

The design of a single cell transcriptome analysis shall be based on a careful examination of 
methods and research questions. It is crucial to have a good balance of cell number and 
biological complexity (Grun et al. 2015). Other techniques can also be considered in the 
experimental design. For example, the usage of Unique Molecular Identifiers (UMI) can 
significantly reduce amplification bias (Kivioja et al. 2011), and external RNA control spike-
ins (Baker et al. 2005) such as ERCC (External RNA Controls Consortium) be used for 
quality control and count normalization.  

Analysis of single cell transcriptomics is generally guided by bulk transcriptomic analysis. A 
standard tool like fastQC can be used for quality control, and mapping tools like Tophat2 and 
STAR are used in practice. Quantification based on isoform, i.e. Cufflinks (Trapnell et al. 
2012) is not ideal due to the low coverage of the transcriptome. Alternatively mapping 
merged to genes can maximize the usage of reads and reduce ambiguity.  

Ideally, different cell types in a heterogeneous tissue can be separated by unbiased cluster 
based on the expression profiling of each cell. It is reported that clear visual separation of cell 
subgroups can be obtained by using only first two principle components in a PCA scatterplot 
(Pollen et al. 2014, Zeisel et al. 2015). More sophisticated models (Jaitin et al. 2014) can be 
used to minimize the technical variability. T-distributed Stochastic Neighbor Embedding 
(tSNE) (Maaten et al. 2008) is commonly used to visualize the cell clustering in 2 dimension 
plot. Methods like SC3 (Kiselev et al. 2017), Seurat (Satija et al. 2015) are popular for cell 
classification.  

1.3.4.3 Current scRNA-seq study in kidney  

Applications of scRNA-seq in kidney field started to boom from 2017. Several recent studies 
with large cell number have shed new light on kidney research. Susztak’s lab ((Park et al. 
2018) sequenced 57,979 cells from adult mouse kidney, and reported a comprehensive single 
cell atlas of mouse kidney. (Menon et al. 2018) sequenced 6,414 cells from five speciments 
of human fetal kidney and reportd 11 clusters of specifc renal cell types. They further 
revealed the subclustering of progenitor, intermediate and mature stage of renal cell lineage 
during development. (Young et al. 2018) sequenced 72,501 cells from human renal tumor 
cells and healthy fetal, pediatric, adult cells, and marks the first scRNA-seq study on renal 
carcinoma. (Wu et al. 2018) reported a scRNA-seq study comparing human allograft kidney 
specimen to healthy kidney, and identified immune responses in different cell types. (Adam 
et al. 2017) presented a method to improve the dissociaiton of single cells using a protease 
which have high activity in the cold. The method could protentially help with the efficiency 
of single cell dissociation by minimizing the RNA degradation. Most of the studies made the 
raw data and resources publicly available, which will faciliate the further validation and meta-
analysis.  
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2 AIMS OF THE THESIS 
The overall aim of the thesis project is to generate new knowledge on the kidney and how 
gene expression, genomic variants can vary in diseases, particularly DN, using the latest 
methodologies of genomics and expression analyses, WGS and scRNA-seq. 

The specific aims are: 

• to identify genetic varianats  in diabetic nephropathy in a Finnish T1D sib pairs cohort 
and attempt to identify specific mutations and variants that may predispose to DN 
(Paper I) 

• to find common markers or pathways for glomerulus damage in a meta-analysis study 
(Paper II) 

• to study features of a kidney organoid model derived from induced human pluripotent 
stem cells using scRNA-seq technology (Paper III) 
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3 PRESENT INVESTIGATION AND DISCUSSION 

3.1 PAPER I: GENETIC ARCHITECHTURE OF DIABETIC NEPHROPATHY IN A 
FINNISH T1D COHORT 

3.1.1 Specificity of study cohort 

Genetic predisposition plays a crucial role in DN. We designed our study using a highly 
defined case-control cohort of discordant sibling pairs (DSP), and collected genomic 
information from whole genome sequencing technology. The DSPs are siblings who are both 
affected by type I diabetes, and cases are the sibs with kidney complications and controls 
have not developed DN during over 17-35 years of T1D. In this way, we get the benefit of 
familial study, and scan through the whole genome including rare variants. We sequenced 76 
DSPs plus 3 families with 3 discordant siblings (Figure 8a). Moreover, we verified the 
results from a T1D cohort with over 4000 unrelated cases and controls in the Finnish T1D 
cohort FinnDiane (Sandholm et al. 2017).   

Figure 8.  Discovery and replication cohorts and study design. (a) The discovery cohorts used in the 
search for DN susceptibility genes in Finnish type 1 diabetes (T1D) patients: the genomes of a total of 76 
sib pairs concordant for T1D but discordant for diabetic nephropathy (DSPs) were subjected to whole 
genome sequencing (WGS). Additionally, T1D siblings from three families with 3 siblings (Multiple 
Siblings, MS) with or without diabetic nephropathy (DN) were included in the sequencing analyses. The 
control siblings (81) have had diabetes for at least 15 years [range 15-37] without developing DN, and 
have never been on ACE-I or ARB medication for kidney disease. The case siblings (80) have had overt 
proteinuria, been on dialysis, received a kidney transplant or have died from kidney complication. (b) 
Multi-level strategy used to analyse the WGS data from Finnish T1D individuals with or without 
diabetes complications. Figure derived from Paper I.  

3.1.2 Genetic tests on DSPs 

As a result of WGS, we detected >12 millions SNVs. To identify the potential causal and 
protective variants, we performed three levels of analysis (Figure 8b): 
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1. Single variant level: Direct comparison of cases and controls to identify those 
variants that are only detected in cases and only in controls in the sibling cohort. The 
variants are then further validated in the 4000 case-control cohort. Particularly, we 
listed the variants that are protein altering, i.e. changing the amino acid sequences of 
the encoded protein, changing single amino acids in the protein, or affecting the 
splicing of the protein-coding transcript. These variants are prioritized as they 
potentially change the protein structure and function. SNVs in the enhancer and 
promoter regions of a protein-coding gene are also detected. The annotation of these 
variants is more complicated as the exact location of enhancer, promoter and 
transcriptional factor binding sites (TFBS) and their functions are not as clear as 
protein-coding genes. To best annotate these variants, we incorporated information 
from FANTOM5 (Lizio et al. 2015) and ENCODE (Consortium 2012). Other 
variants in the exonic region of ncRNA, and highly significant variants in intronic and 
intergenic regions are also presented. However, the annotation of those variants is 
more difficult and requires further studies. 
 

2. Gene level: Calculate the combined effects of a group of variants within a region, 
instead of each individual variants. Sequence Kernel Association Test (SKAT) (Wu et 
al. 2010) is commonly used to empower the test on rare variants. Althrough it was 
orginally designed for unrelated case-control study, it has been extended to familial 
models. We used a generalized linear mixed model F-SKAT (Yan et al. 2015) that is 
suitable for studying dichotomous traits in familial cohorts. We first tested in a 
traditional approach, using all rare variants within a gene region, and reported the 
genes that might have been most significantly affected by the rare variants. However, 
the genes that were tested are highly related to the number of rare variants found 
within its region, and the statistical significance was moderate. However, after 
annotation of those genes, very limited evidence of their effect on DN were found. 

Alternatively, we applied F-SKAT test on all associated SNVs that are tested as 
nominally significant in case-control test. That is, we first did association test on all 
variants within a gene region (excluding “synonymous variants” which are the 
variants in exonic region but do not change amino acid sequence), those with nominal 
significance (Odds Ration >1.5, P <0.05) were clustered together for F-SKAT test. 
Using this setting, we detected a group of 206 genes that are F-SKAT significant (P 
<0.05). Intriguingly, when we performed functional enrichment test on this group of 
genes, we found that the top and only significant pathway/network was the XPodNet 
(Warsow et al. 2013), which is a protein-protein interactions in the podocyte network 
expanded by STRING. Knowing the importance of podocyte function in the kidney, 
we were surprised and excited by the very specific results from an absolute unbiased 
approach. Even if we performed tests taking linkage disequilibrium (LD) into 
consideration, we observed the change of the rank of significance. However, the 
significance of XPodNet and the core genes within the network remained the same. 
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We were particular interested in several protein kinase genes PRKCE, PTK2 (F-
SKAT P=0.0037) and PRKCI (F-SKAT P=0.0085) detected by this approach. The 
protein kinases have been previously studied in DN (Geraldes et al. 2010), and a lot 
of evidence has shown their functions in DN or other diabetic complications (Ishii et 
al. 1998, Das Evcimen et al. 2007). We believe that our findings increase the 
credibility of the role of PRKC family in DN, and warrants more studies on these 
molecules in DN.  

3. Genome level: Identify the hot-spots of variants in genome. In genome, there are 
regions that are more enriched in SNVs than others. We identified these regions by 
adapting a method that has been used in cancer research (Weinhold et al. 2014) and 
name them as recurrently mutated region (RMR). We then tested if these RMRs are 
over-represented in cases or controls. Among 850,137 RMRs detected in the DSPs, 
there were only 732 RMRs that are significantly (FDR<0.05) over-represented in 
cases or controls, named as DN-RMR. Most RMRs are in intergenic region. 
However, we observed that DN-RMRs are more commonly overlapped with 
functional regions of genome including 3’ and 5’ UTRs, enhancers and promoter 
regions. This suggest that associated RMRs are more likely to affect gene functions. 
Functional enrichment test of the genes also links the RMR overlapping genes with 
pathobiologically relevent pathways like ECM-receptor interactions, focal adhesions 
and type I diabetes.  

3.1.3 Functional validation in animal models 

After the comprehensive genetic tests on the DSP cohort, and possible validation on a larger 
unrelated case-control cohort, we did further functional tests on our top candidate genes. 
Zebrafish (Danio rerio) is a well-established animal model for functional study in kidney 
field. To silence genes is relatively quick and kidney phenotypes often develop fast, usually 
within 5-6 days post fertilization, and the transparency of embryos makes it easy to observe 
the gross changes in internal structures.  

As a start, we tested the gene function of abtb1 in zebrafish. Among all protein-altering 
variants, there was only one that was found in cases and this creates a stop codon in the 
transcript of the abtb1 gene. The knockdown of abtb1 in the Podocin-GFP zebrafish (He et 
al. 2011, Warsow et al. 2013) showed typical phenotypical features that associate with 
podocyte damage, including pericardial edema and declined expression of glomerular GFP. 
Furthermore, injection of human normal abtb1 mRNA significantly rescued the edema, while 
mutant mRNA did not. The results suggest a functional change of mRNA due to this 
particular mutation.  

We also generated a mouse line with the specific Arg164Ter mutation using CRISPR/Cas9 
technology, and introduced diabetic traits by breeding the line with Akita mice or by 
streptozotocin injection. The outcome of nephropathy was not affected by the mutation in 
these models of diabetes. However, it is well known that many mouse models of DN 



 

20 

phenocopy poorly the situation in man (Azushima et al. 2018). Therefore, we cannot 
eliminate ABTB1 as a functional relevant gene to DN. Tests using other mouse models, for 
example that presented by (Gurley et al. 2018), are needed to explore further the role of the 
abtb1 mutation in DN.  

3.2 PAPER II: A META ANALYSIS OF TRANSCRIPTOMIC SIGNATURE OF 
GLOMERULAR DISEASE 

The study constitutes a meta-analysis of available transcriptomic (microarray) data and 
proteomics data on isolated mouse, rat and human glomeruli in normal and disease states 
back in 2013. This was my first study in the kidney field, providing a good introduction of the 
back-then-current summary of studies on glomerular diseases using omics approach.  

Although the project was a continuation of a previous study in the lab, I did a full literature 
mining of available glomerulus specific expression data, and included 3 human data sets, 12 
mouse data sets, and 1 rat data set from both published and unpublished internal studies into a 
meta-analysis.   

I established a new pipeline to analyses microarray data if raw data was available. In this 
way, we could minimize batch effects. However, the signal of microarray is quantified based 
on the image intensity of array chips. The quantification of each array is relatively 
independent, despite the use of control channels. Technically, it is challenging to normalize 
background signal among different experiments. Additionally, the datasets included in the 
meta-analysis were obtained by different types of microarray chips, making the baseline 
normalization impossible without introducing forced correlation. Therefore, we decided to 
normalize each data sets independently using GCRMA methods, and performed differential 
expression tests on each individual set of data, followed by functional enrichment tests using 
KEGG database (Kanehisa et al. 2000). The meta-analysis was then performed on the 
detected differentially expressed genes (DEGs) and significant pathways.  

Differential expressed genes and functional relevant pathways are reported and summarized 
across different data sets. Although they are meaning for each individual condition, there 
were no direct consensus genes or pathways concluded from the meta-analysis. This suggests 
that different pathophysiological mechanisms are involved in different diseases and models. 
On the other hand, some microarray data sets have high level of background noise thus are 
difficult to detect biological meaning results. Also, it is not very surprising to observe no 
direct agreements in this type of study design. We ambitiously and ambiguously included all 
available transcriptomics and proteomics data without any filtration based on biological 
question. The hypothesis is that if there are genes or pathways that are concordantly 
significantly up/down regulated among multiple conditions, that gene or pathway must play a 
key role in the development of glomerular damages. Back then no similar study has been 
done in field of glomerular disease. However, with more knowledge accumulated along my 
study, I would adjust the experiments in following perspectives: select meta-analysis group 
based on their pathophysiological relevance; instead of using ORA on KEGG alone, include 



 

 21 

more functional enrichment tests, such as GSEA (Gene Set Enrichment Analysis) 
(Subramanian et al. 2005) and other pathway databases Gene Ontology cluster (Consortium 
2015), wikipathways, etc.; examine the co-expression network between different data set; 
instead of using a rigid threshold for significance, use a training model to include more 
relevant genes in each data sets to make best biological sense of the data.  

With the increasing availability and decreasing price of sequencing technology, 
transcriptomics data produced is growing exponentially, especially for RNA-seq. The science 
community has made great effort for public data depository and data availability. The 
transcriptomics experiments are usually served for single purposes such as comparison 
between conditions. However, as microarray and RNA-seq data contain comprehensive 
panorama of the transcriptome of the particular tissue/cell/organism, mining of the available 
data will be a convenient and efficient way for investigation on new research questions. And 
meta-analysis will be one of the data mining approaches to bring new knowledge.  

3.3 PAPER III: STUDY OF KIDNEY ORGANOID FROM SINGLE CELL 
TRANSCRIPTOMIC POINT OF VIEW 

Three-dimensional (3D) organoids generated from human induced pluripotent stem cells 
(hiPSC) have appealing features to be used as drug discovery models. Recent studies 
(Freedman et al. 2015, Morizane et al. 2015, Takasato et al. 2015, Ciampi et al. 2016, 
Sharmin et al. 2016) have generated 3D kidney organoids. Based on these studies, and with 
advantage of CRISPR/Cas9 technology (Cong et al. 2013), our collaborators generated a 
high-throughput protocol to produce kidney organoids that carry fluorescent tags on SIX2 
and NPHS1. SIX2 is a nephron progenitor marker, and NPHS1 is a mature podocyte marker. 
In this way, the maturation of nephron progenitors can be monitored under microscope, 
which facilitates research performed on this model.  

Expression of podocytes, proximal tubule, endothelial and extracellular matrix markers were 
detected after 15-20 days of differentiation. Confocal fluorescence images of developed 3D 
culture showed glomerular-like structures and mature kidney markers. Moreover, electron 
microscopic analysis showed characteristics of mature renal podocyte.  

To characterize the molecular nature of the organoid in more detail, we performed single cell 
transcriptomic study. The advantage of scRNA-seq is that we capture transcripts from each 
individual cell, so we can determine: 

1) How much differentiated is an individual cell? Is it expressing progenitor markers or 
mature cell markers? 

2) How similar is one cell to other cells? Is a group of cells developing towards the same trait 
of a mature cell type? 

3) How similar are hiPS-derived cells to those of human adult kidney in transcriptomic level?  
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For question 1 and 2, we performed two independent cell-clustering methods on the scRNA-
seq data. We used SC3 algorithm to cluster the cells, and visualized them using tSNE 
algorithm. Both algorithms consent on cluster number of 3 and the cells were assigned 
similarly. Using progenitor and mature cell markers, we were also able to identify the 
approximate cell types.  There are at least two mature cell types, podocytes (expressing 
NPHS1) and proximal tubular cells (expressing SPP1).  

Question 3 is particularly interesting since it shows the value of organoid as an experimental 
model to study kidney diseases. We compared the transcriptomics of podocyte and proximal 
tubular clusters, with the microarray data gained from micro-dissected healthy human 
glomerular and tubular tissue (Woroniecka et al. 2011).  We observed high similarity 
between glomerular microarray data and organoid podocyte cluster, as well as tubular 
microarray data and organoid proximal tubular cluster, suggesting that the generated organoid 
model photocopies at least some features of an adult human kidney.  

The limitation of single cell transcriptome approach is that due to the different nature of data, 
we can only approximate, but not precisely compare the similarity between human tissue and 
organoid. Also, to date scRNA-seq technology can only capture 10-40% of whole 
transcriptome (Haque et al. 2017), which results in significant dropout of lowly expressed 
genes, and inflation of randomly captured genes. The bioinformatics approach can only 
diminish the noise of inflation, but the dropout of certain crucial but not abundant genes 
cannot be rescued.  

As for this study, we observed roughly 3 clusters of cells. Other cell types like endothelial 
cells were observed using confocal immunofluorescence microscopy, but not detected as a 
cell cluster in scRNA-seq. This might be due to the limited cell number sequenced, or it can 
be caused by the loss of sensitivity (due to noise of data) or because of selection-bias 
generated during the cell sorting protocol. Further experiments are needed, but my 
speculation is that this is likely because of the limited cell number, as endothelium cells 
usually have distinct transcriptomic features, and if captured, shall be identified as a separate 
cell type. 
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4 CONCLUSIONS AND FUTURE PERSPECTIVES 
This thesis presents studies of kidney diseases and models, using different approaches of 
omics analysis, with a focus from bioinformatics perspective. 

Paper I presents a genetic study using WGS on Finnish diabetic sibling cohort that is 
discordant for DN, and reported the novel discovery and insights into the genetics of DN. The 
study approach can also be an example for future genetic studies on familial materials using 
WGS approaches. 

One straightforward approach for future study is to perform functional validation on the top 
candidate genes we report in the study. For example, the top genes carrying protein-altering 
variants or enriched for DN associated variants could be replicated in a larger cohort and by 
animal experiments. Another approach from bioinformatics point of view is to design studies 
providing information from different perspective. For example, eQTL (expression 
Quantitative Trait Loci) study is available for nephrotic syndrome (Gillies et al. 2018) but no 
eQTL data for DN has been reported yet. This will facilitate the annotation and validation of 
many variants that has been previously identified. Moreover, new studies are continuously 
providing new knowledge on functional annotation of gene regions, or molecular functions 
involved in certain pathways, etc. Mapping of the updated information into our cohort of 
variants could thus be one easy but effective way to gain new insights. 

A summary of transcriptomics and proteomics studies in glomeruli diseases is reported in 
Paper II. Although there are no direct consensus genes or pathways concluded from the 
meta-analysis, the reported most affected genes and pathways may provide reference for 
glomerular studies. The report also shows an example for meta-analysis on publicly available 
omics data sets. 

In Paper III, a high-throughput protocol of 3D kidney organoid model derived from hiPSC is 
generated. Utilization of scRNA-seq technology provides an unbiased approach to detect cell 
types, and can be a powerful tool to interpret biological meanings of the study subject.  

Apart from bioinformatics challenge of high noise, the most challenging problem remains in 
the sample preparation step – it is a major task to capture single cells from a fresh tissue 
sample while keeping the minimal changes of RNA. However, I do hope and believe with the 
improvement of technology, investigation of molecular activities on single cell level will 
greatly facilitate the study in kidney field, and shed light on new understanding of the 
pathogenesis of kidney diseases.   
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