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ABSTRACT 

Trauma or surgery elicit a physiological stress response, which among others induces insulin 

resistance. It could be described as a state where the biological response to a given dose of 

insulin is reduced, and is associated with an altered glucose metabolism, as well as a disturbed 

lipid and protein metabolism and dysfunctional immune, inflammatory and coagulation 

systems. The endogenous glucose production (EGP) is enhanced, whereas the whole-body 

glucose disposal (WGD) is reduced with the result of hyperglycemia. 

Hyperglycemia, > 11.1 mmol/l glucose, in surgical patients is associated with increased rates 

of infection and mortality. On the other hand, hypoglycemia, <3.9 mmol/l glucose, is associated 

with adverse events and increased mortality. Still, attempts to improve clinical outcome in 

critically ill patients, by maintaining normoglycemia, have resulted in diverging results for 

morbidity and mortality. The latter could be the result of increasing glucose variability with the 

treatment. Reduced glucose variability, independent the glucose range, seems beneficial and 

could possibly be accomplished by continuous glucose measurement. One suggested method 

for monitoring mainly tissue metabolism, such as glucose, is microdialysis (MD). The overall 

aims of this thesis are to better understand the metabolic consequences of insulin treatment on 

glucose metabolism in relation to major stress and to test a new approach for continuous 

glucose monitoring. 

The first half of this thesis investigated the accuracy of intravenous glucose MD measurements 

using various perfusion rates and length of peripheral catheters in volunteers (paper I), and 

continuous on-line MD measurements via a central venous catheter performed in surgical 

patients (paper II). In the second half of the thesis, the effect of glucose control on postoperative 

insulin resistance and glucose kinetics in liver surgery was investigated by the 

hyperinsulinemic normoglycemic clamp technique (HNC) (paper III-IV) and the isotopic tracer 

dilution method (paper IV). 

In paper I, reduced rate of perfusion fluid and increased length of semipermeable membrane 

improved the accuracy of microdialysis readings and plasma reference values. In paper II, the 

use of a continuous on-line real time MD systems proceeded over 20 hours, with measurements 

every minute, demonstrated good correlation to plasma reference values. All values were found 

in zone A and B in a Clark Error Grid, indicating safe usage. In paper III and IV, insulin 

resistance was assessed pre- and postoperatively in patients subjected to liver surgery. During 

surgery, intravenous insulin was administered to maintain glucose at 6-8 mmol/l in the 

treatment group, whereas the control group was allowed glucose > 11 mmol/l before 

intervention. Intraoperative mean glucose was significantly different between groups. 

Postoperative insulin resistance was significantly higher in the control group (paper III-IV) and 

glucose kinetics (paper IV) were altered after the surgical trauma, with increased EGP and 

substantially reduced WGD, without any statistical difference between the groups. 

Intraoperative kinetic alterations revealed a reduced EGP and an unaltered WGD, despite 



evolving hyperglycemia, possibly due to undetected rapid changes in glucose kinetics earlier 

during the surgical procedure. 

In conclusion, microdialysis is a feasible technique for intravenous continuous on-line glucose 

measurements monitoring. Intraoperative glucose control during liver surgery maintains 

insulin sensitivity assessed by HNC. In all patients, reduced WGD is a major contributor to 

early postoperative insulin resistance. Intraoperative glucose kinetics indicate reduced EGP and 

stable WGD despite evolving hyperglycemia. 
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 INTRODUCTION 

In Sweden, about 900 patients are subjected to liver surgery every year1. A physiological 

response to surgical injury, trauma or critical illness is the transient insulin resistance and 

subsequent metabolic disturbances, similar to the alterations observed in diabetes type 2. 

In 1942 Cuthbertson described the systemic metabolic changes as a response to surgery in the 

lower extremities. The terms of ebb and flow in metabolism were introduced to explain the 

initial period of depressed metabolism that precedes the later hypermetabolism2. This stress 

response has been regarded as a beneficial adaptation to trauma, to increase the chance of 

survival of an injured animal. The net effect is an increased tissue catabolism of carbohydrates, 

fat and protein, which results in hyperglycemia, thereby securing the cellular energy supply to 

vital organs3. Insulin resistance swiftly alters glucose kinetics by increasing the hepatic 

endogenous glucose production and by reducing the glucose disposal in peripheral tissues, 

resulting in elevated glucose levels. 

The belief of hyperglycemia as a possible survival benefit has later been revised, since several 

studies have shown potential positive effects on surgical outcome by modulating the 

subsequent hyperglycemia4-6. The development of insulin resistance can be attenuated by 

minimizing the size of surgery, an adequate pain control and by maintaining perioperative 

normoglycemia, either accomplished by reducing the preoperative fasting time, with 

preoperative beverage or glucose infusion, or by insulin treatment. 

Though hyperglycemia has repeatedly been proven to aggravate postoperative adverse events, 

the attempts to improve outcome by introducing tight glucose control in severely ill patients, 

have dramatically increased the risk for hypoglycemic events7,8. The downside effect of tight 

glucose control has been demonstrated in several multicenter studies9-11, which has bred the 

important question of the necessity of the concept. A less rigid glucose target and avoidance of 

high variability, regardless of dysglycemia, may have the same positive impact on the stress 

response. Hence, this notion has put the light on how, where and when to monitor glucose 

levels, and has introduced the need for a feasible, accurate and continuous measurement 

technique to detect swift alterations in glucose levels. Several different technologies, applying 

intravascular or subcutaneous sampling, have been suggested in the field of continuous glucose 

monitoring, microdialysis being one promising alternative. This technique, by using passive 

diffusion over a semipermeable membrane, creates a dialysate containing the extracellular 

concentration of a certain compound, which can be immediately analyzed. Microdialysis can 

be applicable in most tissues, and the intravascular approach is of special interest for continuous 

glucose measurement systems in critically ill patients, which are at risk of having compromised 

tissue perfusion. 

In summary, the optimal glucose range for tight glucose control during major surgery and 

critical illness is not settled. The use of accurate continuous glucose measurement devices has 

been suggested beneficial to reduce hypoglycemic events and the intravascular microdialysis 
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technique is one suggested method. The postoperative insulin resistance and hyperglycemia 

may be attenuated by glucose control, which effects the endogenous glucose production and 

the whole-body glucose disposal, though the intraoperative alterations are less investigated. 
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 GLUCOSE HOMEOSTASIS AT NORMAL CONDITIONS 

Glucose concentration is normally kept at a stable level, regulated by several complex 

interactions. The principal organs involved in glucose homeostasis include the central nervous 

system, pancreas, muscles, adipose tissue, liver and kidney12. 

2.1 CELLULAR TRANSPORT AND REGULATION 

Glucose enters the cell by two ways; either by sodium dependent active transport or by 

facilitated diffusion, the first requires glucose transporters (GLUTs). The different types of 

GLUTs have various affinities for their substrates, and tissue-specific expression and regulation 
12. As insulin binds to the insulin receptor (IR) in the cell membrane, a cellular cascade is 

initiated, which results in the GLUTs being released and fusing with the plasma membrane, 

thereby permitting an increased glucose uptake. Several types of GLUTs have been identified; 

having different features, allowing for glucose transport under a wide glucose range. GLUT-1 

is expressed in erythrocytes and neurons, transporting glucose under normoglycemic 

conditions. GLUT-4 is predominantly expressed in skeletal muscle, cardiac muscle, and 

adipose tissue, being the main contributor of insulin-dependent peripheral glucose disposal. 

The hepatocytes, renal cells and pancreatic β-cells have predominantly GLUT-2 on the cell 

surface, a transporter with high capacity and low sensitivity to insulin, which enables the cells 

to absorb large quantities of glucose after ingestion of food3. 

In adipose and muscular tissues, insulin mediates the cellular glucose uptake. However, in most 

other tissues, the major part of glucose disposal is non-insulin mediated, driven by a facilitated 

diffusion. In the post-absorptive state, uptake in these tissues represents >70% of whole body 

glucose disposal13. Pancreatic cells, erythrocytes, neurons, immune and endothelial cells have 

all insulin-independent glucose uptake. In a hyperglycemic state, glucose uptake in the central 

nervous system is saturated14, resulting in glucose overload in other tissues15. 

2.2 INSULIN SECRETION AND REGULATION 

Insulin is the main anabolic hormone, a polypeptide produced and pulsatile secreted by the β-

cells in the pancreas. The secretion is  mainly regulated by the blood glucose concentration, but 

also by amino acids and ketone bodies3. The basal insulin concentration is 10-15mU/l, which 

can be rapidly increased by 4-5 times as a response to elevated blood glucose level after 

ingesting a meal16. 

The hormone reduces the glucose concentration by promoting glucose uptake in peripheral 

tissue, such as muscle and adipose cells, and by inhibiting glucose production within 

hepatocytes. Insulin is the most important hormone involved in glucose homeostasis, yet not 

the only one. Its actions are counter-regulated by other hormones. Glucagon, produced and 

secreted from the pancreatic α-cells, has the opposite effect of insulin. Hormones secreted by 

the adrenal gland, such as catecholamines (adrenaline and noradrenaline) and cortisol, also 

increase glucose concentration17. Incretins are a collective name for hormones released by the 
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intestines and that also modulate insulin secretion, hence influence glucose homeostasis18 when 

nutrients are absorbed by the intestines. 

2.3 METABOLIC AND NON-METABOLIC EFFECTS OF INSULIN 

Apart from its action on carbohydrate metabolism, insulin also affects lipid and protein 

metabolism by decreasing lipolysis and stimulating protein anabolism. 

In addition, the hormone has effects in other areas beyond regulating the energy supply for the 

cell. It has anti-inflammatory effects, by regulating the accumulation of macrophages and 

neutrophils in areas of inflammation. Supressed expression of pro-inflammatory transcription 

factors (NF-KB)19 and the concentration of inflammatory mediators, IL-1β, IL-6 and TNF-α as 

well as CRP, adds to the anti-inflammatory qualities of insulin. Furthermore, it augments the 

production of nitric oxide20, which results in depressed platelet aggregation and vasodilation, 

thereby demonstrating a combined anti-inflammatory and anti-thrombotic action21,22. 

Insulin suppress the generation of tissue factor (TF) and plasminogen activator inhibitor-1 

(PAI-1), and reduces the levels of reactive oxygen species21, which together yields anti-

thrombotic, pro-fibrinolytic as well as anti-oxidant effects. 

2.4 GLUCOSE TURNOVER 

Glucose molecules are always present in the blood, and the blood glucose level is kept constant 

with a continuous turn-over rate. The inflow derives from either intestinal absorption after a 

meal or endogenous glucose production. The hepatocytes are the main producer of glucose, 

with an additional contribution of roughly 25% from the kidney23. The hepatocyte creates 

glucose either by glycogenolysis or gluconeogenesis. 

Glucose is the main cellular energy source for various tissues. The muscles dominates the body 

glucose disposal after a meal, accounting for 70-90% of the total glucose uptake, together with 

adipose tissue24. However, even if many cells can utilise other energy sources, for example 

lactate and ketone bodies, some cells like neurons, erythrocytes and the renal medulla, are 

totally dependent on glucose as an energy source and a stable glucose level. 

2.5 GLUCOSE METABOLISM IN THE POSTABSORPTIVE STATE 

The normal human glucose level in a fasted state is <7 mmol/l25. The turn-over rate of glucose 

in the post-absorptive state is about 2 mg/kg/min, or 200 g per day for a 70 kg person26. In this 

state, glucose level is kept steady by a mixture of breakdown of glycogen and new production 

of glucose, to counter-act declining levels resulting from glucose disposal. 

Glycogen is stored in the liver after a meal, as a long-term glucose supply. Liver glycogen 

stores can keep the blood glucose level constant for 24 hours, if no food is ingested. As a 

comparison, the amounts of free glucose molecules in the body can only supply energy for 

about 30 min3. Glycogen is also produced and stored in muscular tissue. However, here it is 
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used for internal cellular energy requirement only, as the muscle is unable to convert the 

molecule back into glucose. Instead, by further metabolizing the glucose-phosphate to 

pyruvate and lactate, the molecule can re-enter the gluconeogenesis in the liver in the form 

of lactate, better known as the Cori cycle. 

The predominant precursor for gluconeogenesis is lactate, recycled from various tissues 

using anaerobic glycolysis, as described above. However, also the substrates can be used, 

such as amino acids, mostly alanine27, from muscle protein breakdown as well as glycerol 

from lipocytes in adipose tissue. These are all transported via the blood to the liver, the main 

place for gluconeogenesis. 

2.6 GLUCOSE METABOLISM AFTER A MEAL 

Ingested glucose is absorbed by the intestines and transported via the portal vein to the liver. 

The molecules are taken up by the hepatocytes, via GLUT-2, and transformed to glucose-6-

phosphate. Inside the cell, the phosphorylated glucose can then be stored as glycogen or 

degraded for energy supply, depending on the insulin/glucagon ratio. In a healthy person, 

ingestion of food will make the blood glucose level rise and this increase will induce the liver 

to shift metabolism from catabolism to anabolism. 

Insulin is secreted from the pancreas in response to a raised glucose level, and delivered to the 

liver via the portal vein to coordinate glucose metabolism28. A combined high glucose and 

insulin level activate glycogen storage and glycolysis, in addition to inhibition of glycogen 

breakdown and gluconeogenesis. This effect is counter-regulated, mostly by glucagon but also 

by catecholamines and cortisol3. However, catechoamines and cortisol have been demonstrated 

to depress only insulin-mediated uptake, with no reduction of non-insulin mediated uptake29,30. 

The effect of eating on glucose turnover is well established. The blood glucose level, as well 

as the insulin concentration, are clearly elevated, while the hepatic endogenous glucose 

production rate is almost totally suppressed in response to the supply of exogenous glucose3. 

In addition, the glucose clearance from plasma is faster since the insulin stimulates peripheral 

glucose uptake. 

This describes the normal pattern in a healthy individual, whilst metabolism dramatically alters 

in conditions of stress. 
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 STRESS RESPONSE TO TRAUMA 

Transient insulin resistance is a common physiological phenomenon developing in response to 

stress, trauma or critical illness. The modifications observed in the endocrine and metabolic 

responses to a potentially fatal trauma, may have been adapted to improve chances for survival, 

ensuring an energy supply and a hemodynamic balance. The metabolic alterations resemble 

the changes observed in type 2 diabetes, presenting a stress induced hyperglycemia in addition 

to increased lipolysis and proteolysis31. 

3.1 ENDOCRINE RESPONSE 

Immediately following trauma there is a local tissue reaction, where afferent neural impulses 

and inflammatory mediators, cytokines, from the damaged area activate the neuroendocrine 

system32. The hypothalamus acts on the sympathetic autonomous system by affecting nerve 

terminals to release noradrenaline17. In addition, the hypothalamus stimulates the pituitary-

adrenal axis, via increased pituitary secretion of ACTH and GH, to increase the release of 

adrenal hormones, catecholamines and cortisol17. The net result is a patient presenting with 

clinical signs of tachycardia and hypertension. In addition, increased secretion of vasopressin 

from the pituitary gland retains salt and water, which enables the body to maintain 

hemodynamic stability. 

3.2 INSULIN RESISTANCE AND PERIOPERATIVE GLUCOSE TURNOVER 

Insulin resistance can be defined as a state where a normal concentration of insulin has a 

reduced biologic effect. It is rapidly developed in response to surgical trauma or critical illness, 

and is mainly characterized by a decreased peripheral glucose uptake and an increased 

endogenous hepatic glucose production33, see Figure 1. However, in addition insulin resistance 

renders several non-metabolic effects in other tissues, resulting in a pro-inflammatory, pro-

thrombotic and high oxidative stress state. 

The complex teamwork between released cytokines and stress hormones adds up to a reduced 

action of insulin and stress hyperglycemia. An increased cytokine level resulting from tissue 

damage has been suggested to be one potential mechanism for inducing hepatic and peripheral 

insulin resistance34,35. TNF-α, in addition to IL-1 and IL-6, has been shown to interfere with 

the insulin signal transduction36. In addition, hyperglycemia per se exacerbates a flood of 

proinflammatory cytokines in combination with markers for oxidative stress37, thus having the 

potential to set up a vicious circle, where the mounting hyperglycemia could contribute to 

further hyperglycemia. 
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Figure 1: Schematic overview of insulin resistance. After an acute insult, critical illness or 

trauma, stress hormones and cytokines are released, thereby affecting the endogenous glucose 

production, which leads to an increased gluconeogenesis and glycogenolysis, and reducing the 

insulin-mediated glucose uptake via GLUT-4. The net hyperglycemia and glucose overload in 

insulin-independent tissues increases the oxidative metabolism and results in an oxidative 

stress, which is suggested to cause tissue pathology and clinical complications. 

 

 

3.2.1 Glucose kinetics during stress hyperglycemia 

Stress hyperglycemia is characterized by a disturbed glucose turn-over, indicated by a 

markedly elevated endogenous glucose production, since the net effect of stress hormones on 

the liver renders the hepatocytes unresponsive to the action of insulin. Moreover, in the 

periphery insulin dependent glucose uptake is reduced because of down-regulation of GLUT-

4, an impaired insulin receptor signaling and a decreased muscle glycogen storage38. Even 

though glucose uptake may be impaired in these cells; glucose oxidation within the cell seems 

to be unaffected39. In contrast, the non-insulin mediated glucose uptake via GLUT-1 is 

enhanced, resulting in an increased whole-body glucose uptake36. 

3.3 ALTERATIONS IN TISSUE METABOLISM IN RESPONSE TO 
HYPERGLYCEMIA 

An elevated blood glucose level is associated with a dysfunctional immune system34 and 

endothelium40, in addition to an increased inflammatory and procoagulant state. This disturbed 
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balance generates delayed wound healing, increased infection rates and injuries to myocardial, 

renal and cerebral tissues32. 

In tissues with non-insulin dependent glucose uptake, cells are exposed to excessive levels of 

glucose. Certain cell types, such as renal glomeruli, endothelial and neural cells, which are 

unable to reduce this glucose- uptake, are vulnerable to hyperglycemia41. This burst of energy 

supply induces an intracellular oxidative stress, where mitochondria produce reactive oxygen 

species instead of oxidizing glucose. Brownlee suggested that this superoxide production 

damages pathways, leading to disrupted immune and inflammatory systems, thereby creating 

a possible explanation for the damages noted in different organs and tissues in response to acute 

stress hyperglycemia42, see Figure 1. 

This tissue damage has been observed in kidney and liver, where changes in mitochondrial 

enzymes, or increased transaminases postoperatively have been demonstrated 43-45. Moreover, 

after short-term exposure to hyperglycemia, in vivo and in vitro studies have shown increased 

platelet activation46, and significantly impaired endothelial vasodilation40. The detrimental 

organ failure due to hyperglycemia and critical illness may be a result of cellular toxicity and 

impaired cellular autophagy, as suggested by Vanhorebeek et al47. 

However, it has also been argued that hyperglycemia should be left untreated, as human 

metabolism is adapted for survival during long term starvation in critical illness48,49. As 

previously discussed, during shock, hyperglycemia initially promotes circulatory stability and 

the non-insulin mediated glucose uptake is enhanced. As insulin resistance develops, energy is 

provided from oxidation of fat and ketone bodies, instead of glucose, which spares protein. In 

addition, intracellular glucose metabolism is turned into production of NADPH, an energy form 

needed by macrophages and neutrophils in host defense, and a substance needed in cell 

proliferation.  
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 HYPERGLYCEMIA AND OUTCOME IN ICU AND SURGERY 

Diabetes mellitus is a well-known cause to renal, cardiac and neurological complications. 

Though these patients per se have a significantly raised risk for developing postoperative 

complications50 and death51, it has been demonstrated in numerous studies that acute 

hyperglycemia and insulin resistance induce the risk for postoperative complications 

irrespective the diabetic status, in surgical52-54 as well as medical/ICU settings55-58. Pathological 

alterations on a cellular level may account for the unfavorable findings in multiple patient 

populations. However, it can be discussed whether the glycemic alterations per se causes harm, 

or is mere a marker of severe illness. 

Non-DM patients do not seem to be protected from adverse events, rather the opposite59. As 

Egi et al. demonstrated in a ICU setting, non-DM patients with a glucose range of 8-10 mmol/l 

or 10-11 mmol/l had an increased mortality risk by 1.7 and 3.3 times respectively, compared 

to DM patients in the same glucose range60. Moreover, non-DM patients displaying 

hyperglycemia at admittance to the hospital, demonstrated a raised risk for ICU-need and an 

even higher in-hospital mortality - 16% vs. 3% in diagnosed DM patients61. Hence, the 

premorbid glycemic status seems to matters for the clinical outcome, as demonstrated by that 

an elevated glycosylated hemoglobin (HbA1c) correlates to postoperative adverse events53,62. 

This was also reported for prior non-DM patients in non-cardiac surgery presenting with 

glucose values > 12 mmol/l, thereby indicating an acute disturbed glucose status, which had a 

higher one-year mortality compared to hyperglycemic DM patients63. These results are 

confirmed in different patient groups; in non-DM patients admitted with myocardial infarction 

and simultaneous hyperglycemia, in-hospital mortality is four times higher compared to 

normoglycemic patients55, an additional poor clinical outcome has also been shown in 

hyperglycemic non-DM patients suffering from stroke56. 

Over the past years, the negative impact of intraoperative hyperglycemia during cardiovascular 

surgery has been repeatedly correlated to higher mortality and total postoperative 

complications, irrespective diabetic status4,64-67. Duncan et al found that a perioperative glucose 

level > 11 mmol/l, regardless diabetic status, augments total postoperative morbidity, showing 

an increased risk for adverse respiratory and renal events as well as infections after cardiac 

surgery64. Though in this study, correcting intraoperative glucose levels were beneficial on 

outcome only up to a point, as the risk for adverse events increased at normoglycemic levels. 

The unfavorable outcome of perioperative hyperglycemia was also found in patients subjected 

to noncardiac surgery. Outtara et al correlated intraoperative glucose level > 8.2 mmol/l in 

diabetics to high total in-hospital morbidity, with significantly increased cardiac, renal, 

neurological and respiratory morbidity65. In a large study on general surgical patients by 

Kotagal et al., DM patients had higher risk for postoperative complications, independent of the 

glucose level68. However, non-DM with perioperative hyperglycemia showed a dose-response 

relationship between adverse events and glucose level, with an OR of 1.6 if blood glucose > 10 

mmol/l. The results were repeated in a retrospective study on over 3000 non-cardiac surgical 
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patients, though DM patients displayed higher morbidity and mortality, the strongest 

association between the degree of perioperative hyperglycemia and the risk of mortality was 

found in non-DM patients69. 

Similar results were found in transplant surgery, where perioperative hyperglycemia is 

associated with delayed renal70 or liver graft71 function. Perioperative hyperglycemia has been 

repeatedly associated with increased risk for surgical site infections, not only in cardiac 

surgery72, but also in liver73, colorectal74, transplant75 and orthopedic76 procedures. 

4.1 LIVER SURGERY  

The liver is pivotal in the regulation of glucose metabolism, being the major contributor of 

glucose production23. Theoretically, major liver resection would raise the risk for 

hypoglycemia due to a reduced remnant parenchyma. Fortunately, a functioning liver has a 

substantial residual capacity, and even major resections may not result in hypoglycemia77. 

However, the extent of resection matters, a large resection volume predisposes for 

postoperative morbidity78, and is possibly associated with a suboptimal remnant hepatic 

immune system79. 

Preoperative liver dysfunction may correlate with perioperative hyperglycemia80. However, 

liver surgery per se induces insulin resistance, even in non-DM patients without liver failure, 

as reported by Durzynski et al81. In response to the surgical stress during hepatic resection, 

cytokine levels are increased82. The level of cytokines correlated to the incidence of liver 

dysfunction after hepatic resections, defined as hyperbilirubinemia, and postoperative 

infections. In addition, the degree of liver necrosis after injury has been associated to the 

increase in liver transaminases83. 

Perioperative hyperglycemia during liver surgery for colorectal metastases, was associated 

with postoperative complications84. In major resections, DM patients have a raised risk for fatal 

early postoperative liver failure, whereas non-DM patients are not spared from adverse 

events85. Postoperative complications per se have a major impact on long term survival after 

hepatic resection86. Han et al. concluded that the development of perioperative hyperglycemia 

is associated to the extent of hepatocyte injury, as demonstrated in a trial, including patients 

with liver cirrhosis45. The study recommended moderate perioperative glucose control, since 

increased levels of liver transaminases were associated with hyperglycemia >10 mmol/l, 

whereas lower glucose levels failed to show the same effect. 

4.1.1 Ischemia and Reperfusions injury - Pringle maneuver 

Occasionally in liver surgery, the Pringle maneuver (which implies temporary vascular 

occlusion of the hepatic artery and portal vein in the hepatoduodenal ligament) is used to reduce 

hemorrhage during complicated partial liver resections. This maneuver may cause ischemic 

reperfusion injury to the hepatocytes. Repeated Pringle maneuvers have been shown to induce 

rapidly increasing hyperglycemia when the ligament is unclamped, a phenomenon that may be 
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associated to glycogen breakdown87 and studies have suggested that the cells are more 

vulnerable to damage if liver glycogen storage is depleted88. 

Experimental data demonstrated overt hyperglycemia during ischemia/reperfusion in surgery 

aggravate the injury in a liver89, as well as a renal90 animal model. Furthermore, other trials 

indicated that intraoperative hyperglycemia per se aggravate the ischemic reperfusion damage, 

rendering a vicious circle with negative impact on postoperative outcome91,92. The same 

phenomenon was demonstrated in liver and renal transplantation, where perioperative 

hyperglycemia was associated with postoperative infections75, delayed graft function or 

rejection70,71,93 as well as with a raised risk for mortality94. 

However, contradictive data was presented in a trial on renal transplant patients, where in-

hospital hyperglycemia had no adverse effect on outcome one year later95. The discrepancy 

may depend on the timing of acute hyperglycemia, as demonstrated in experiments by Hirose 

et al90. By targeting intraoperative glucose levels <9 mmol/l, Parekh et al. showed improved 

renal function 30 days after renal transplantation96. 

Even though hyperglycemia has been acknowledged to contribute to substantial morbidity and 

mortality, in surgical as well as ICU-patients, the question is whether a reduction of the glucose 

level accomplish clinical benefits? Accordingly, the optimal glucose target and intervention 

period remain frequently and vividly debated97,98. 

 



 

12 

 MODULATION OF INSULIN RESISTANCE 

As previously mentioned, stress induced hyperglycemia is linked to the development of insulin 

resistance. The stress response is also associated to clinical outcome, as the degree of 

postoperative resistance is significantly correlated to length of stay99. Indeed, in cardiac 

surgery, Sato et al. made a clear association between postoperative adverse events and the 

degree of insulin resistance53. For each 1mg/ml of reduced insulin sensitivity, the risk for major 

complications was doubled and for severe infections was five-fold higher. 

The degree of whole-body insulin resistance was most pronounced on the day after surgery, 

where over 50% of preoperative values may be lost, and may persist for weeks100. In addition, 

on a cellular level, glycogen synthase was impaired up till a month after surgery101, and protein 

catabolism may cause considerable nitrogen loss. These findings may partly explain the 

delayed recovery in postoperative as well as ICU patients. Consequently, several strategies 

have been developed to prevent or modulate the stress response, in an attempt to improve 

clinical outcome. Some of the major factors will be discussed below. 

5.1 MAGNITUDE OF TRAUMA 

The extent of surgery is one factor influencing the degree of insulin resistance and 

hyperglycemia102, where abdominal surgery seems to provoke the largest response103. Thorell 

et al. demonstrated the relative reduction of insulin sensitivity correlated to the size of 

surgery102. Other investigators have made the same associations between the magnitude of 

surgery and the degree of insulin resistance104, or the degree of increased endogenous glucose 

production105. By reducing the perioperative trauma, for example by performing minimal 

invasive surgery, the development of postoperative insulin resistance can be moderated and has 

been associated to increased glucose disposal after abdominal surgery compared to open 

surgery106-109. 

An important aspect of trauma and surgery, is perioperative hemorrhage, which is suggested to 

correlate with the perioperative glucose level110. Moreover, blood transfusion may affect 

perioperative glycemic levels, since RBCs are stored in SAG-MAN solutions (Saline-

Adenosine-Glucose-Mannitol), which contains about 15-25 mmol glucose/unit111. 

5.2 FASTING AND NUTRITION 

Normoglycemia 

Patients presenting for surgery, may unexpectedly have abnormal glucose homeostasis. In one 

prospective study 26% of the patients had prior undiagnosed impaired fasting glucose112. As 

high preoperative glucose levels are suggested a predictor of perioperative adverse events and 

mortality63, patients with preoperative dysglycemia may be regarded as having the same risks 

for complications as a previously diagnosed DM patient. 
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Insulin treatment 

By maintaining normoglycemia with concurrent insulin and glucose infusion during surgery, 

the early development of insulin resistance can be reduced, and the decreased peripheral 

glucose disposal attenuated113. In the later phase of trauma, insulin treatment may have its 

major action on reducing the endogenous glucose production114. 

As described, insulin per se possesses non-metabolic properties, with potential benefits for 

surgical patients. Levels of IL-6, IL-8 and TNF-α, as well as troponin, decrease with insulin 

dosage115,116. Moreover, insulin exhibits a positive effect on the inflammatory response to 

trauma, in addition to suppressing platelet activation15,36. As demonstrated, patients subjected 

to an hyperinsulinemic normoglycemic clamp during cardiac surgery displayed an attenuated 

inflammatory response117 and a decreased and delayed stress response, indicated by a reduced 

ACTH and cortisol release118. Nygren et al. could present similar reduction in cortisol response 

during insulin infusion113. The insulin effect on the stress response is the rationale for glucose 

control protocols, where revealed cardioprotective properties, augmented myocardial perfusion 

as well as inotropic effects, indicate positive clinical implications6,116,119. Studies have used 

administration of a fixed rate of insulin, often in context of a hyperinsulinemic clamp 

technique120 or a strict protocol, sometimes administered as a GIK-infusion, glucose-insulin-

potassium (KCl)6. The use of variable insulin dosage in trial protocols, is less common. 

Fasting, pre- and intraoperative nutrition 

Historically, elective surgery has been performed after an overnight fast. The rationale has been 

to avoid pulmonary aspiration of gastric content. A prolonged preoperative fasting time 

depletes liver glycogen content, and has been proven to negatively influence insulin 

sensitivity121. 

Glucose administration decreases the endogenous glucose production, though intraoperatively 

the suppression is less due to the emerging insulin resistance122. However, as demonstrated in 

several studies, preoperative carbohydrate load, given as a glucose infusion or an oral beverage, 

preserves postoperative insulin sensitivity113,123-125. Preoperative beverage seems to primarily 

attenuate whole body glucose uptake in the immediate postoperative phase123, while a later 

attenuating effect on glucose production has been demonstrated up till three days after 

surgery126. In an animal study, Gjessing et al. suggested the beneficial effect on postoperative 

glucose uptake, is due to an improved insulin signaling in the muscle tissues127. 

In addition, the insulin resistant state negatively affects protein and lipid metabolism, turning 

the patient into a catabolic state. Even though exogenous nutrients may be available, the patient 

is unable to use substrates for anabolism128. By maintaining normoglycemia during 

surgery129,130 while providing nutrients, or after surgery131, postoperative protein catabolism 

has been blunted. Similar results were reported by Svanfeldt et al., where administration of 

preoperative carbohydrates reduced postoperative endogenous glucose production and 

maintained postoperative protein balance132. Whether fat metabolism is affected by concurrent 
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glucose infusion is unclear. Glucose infused postoperatively had no effect on lipolysis in 

colorectal surgery133. Though, in another trial by Kambe et al., intraoperative administration of 

glucose, lowered the concentration of stress hormones and free fatty acids in blood, without 

causing hyperglycemia134. 

5.3 THE EFFECT OF ANESTHESIA 

Notably, the choice of anesthetic technique during surgery matters for the development of 

insulin resistance. In addition, mere bedrest and immobilization have been shown to induce a 

reduction in peripheral glucose uptake135. 

Local anesthesia 

The addition of epidural anesthesia has been repeatedly shown to mitigate the early 

neuroendocrine stress response and insulin resistance after major surgery, by reducing levels 

of stress hormones136, the inflammatory response137, endogenous glucose production138 and 

protein breakdown139,140. As Lattermann et al. demonstrated, by applying an epidural 

anesthesia, a better suppression of the endogenous glucose production was observed during 

exogenous glucose administration138. However, later in the postoperative phase, it is suggested 

that an epidural has no further beneficial effect on glucose kinetics141. 

Agents used in general anesthesia 

Opioids used during general anesthesia may blunt the metabolic response during surgery142. A 

similar effect was demonstrated for Propofol at single use. Moreover, the combination of 

Propofol and opioids, commonly used in general anesthesia, reduces the stress response during 

surgery, compared to inhaled anesthesia143. However, the effect seems to be limited to the 

intraoperative period only. In contrast to both neuraxial block and intravenous anesthesia, some 

inhaled anesthetics (isoflurane and sevoflurane) seem to cause intraoperative hyperglycemia, 

by decreasing the peripheral glucose uptake and increasing the endogenous glucose 

production144, where an impaired insulin secretion has been suggested as the explanation for 

the glycemic effects145. 

The α2-agonist clonidine seems to suppress the neuroendocrine stress response in a dose-

dependent way. Glucose metabolism is also affected, possibly caused by a direct inhibitory 

effect on the pancreatic β-cells146. Regarding glucocorticoids, which is often used 

intraoperatively for prophylaxis of postoperative nausea, it is known to exacerbate short-term 

hyperglycemia147. 

5.4 CORRELATION TO BMI, GENDER AND AGE 

Increasing body weight and expanding adipose tissue have been suggested to be closely linked 

to the development of insulin resistance148. Insulin resistance has also been demonstrated to 

increase with age, possibly associated to decreased insulin secretion and action. Premenopausal 

woman are suggested to have a better insulin sensitivity149. However, when considering BMI, 
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age or gender, there was no correlation to insulin resistance for either, when insulin sensitivity 

was assessed by HNC in over 70 subjects113. 
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 GLUCOSE CONTROL IN ICU AND SURGERY 

6.1 GLUCOSE CONTROL IN ICU 

Hyperglycemia was previously regarded as a normal adaptive reaction to stress, not being a 

cause for medical intervention. In response to accumulating evidence from several trials that 

the condition might be harmful55-57,150,151, the attitude to glucose control in postoperative or in 

critically ill patients changed. 

The landmark Leuven study, presented in 2001 by van den Berghe et al., had a pronounced 

impact on the medical society. This prospective randomized non-blinded trial on 1548 adult 

ICU patients, investigated the effects of tight glucose control, i.e. blood glucose of 4.4-6.1 

mmol/l, compared to blood glucose in the range of 10-11.1 mmol/l152. By accomplishing 

normoglycemia, during concurrent parenteral nutrition, in-hospital mortality was reduced by 

34%. In addition, the observed survival benefit was reflected by a decreased morbidity. The 

ICU patients receiving insulin therapy demonstrated a reduced risk for renal failure, blood 

stream infections, liver dysfunction, peripheral neuropathy and muscle weakness, as well as 

less need for mechanical ventilation. 

The remarkable results from this and subsequent trials4,153 had a tremendous effect on the 

glycemic management in ICU-settings. Nevertheless, the debate on whether these results could 

be applied to other ICU populations, not only a subset of surgical patients, or on patients 

subjected to other nutritional, i.e. enteral, regimens, not only high doses of intravenous glucose, 

continued. 

Subsequently, a new major prospective study was published by the same Leuven-group in 

2006, though this time with the focus on medical-ICU patients. 1200 patients were included, 

and the identical protocol as in the previous trial was applied. In contrast, this subsequent trial 

could not reproduce the overall beneficial outcome for mortality. Though, the investigators 

could demonstrate positive effects of glucose control in a subgroup analysis of patients 

requiring 3 days of ICU-care, or more. Among this subset of patients, in-hospital mortality was 

reduced by 18%. Furthermore, a decreased rate of acute kidney injury, requirement of 

mechanical ventilation and a reduced ICU- and hospital-length of stay were observed. 

However, the trial reported a concerning backside in that over 18% of the patients had, at some 

point, a glucose value <2.2 mmol/l. 

The investigators presented pooled data from the two studies, confirming the positive effects 

of intensive glucose control. By maintaining glucose level < 8 mmol/l mortality was reduced 

and additional benefits on morbidity were demonstrated at levels <6 mmol/l154. 

Consequently, several studies were launched to confirm the positive outcome results in mixed 

ICU-populations. However, two major multicenter-trials were prematurely interrupted partly 

due to high incidence of hypoglycemic events9,11, a concerning finding which was repeatedly 

reported from other investigators7,8,155. The largest multicenter trial to this date, could not 
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disclose any beneficial effect of intensive insulin treatment. In contrast, it demonstrated a 

substantially raised risk for hypoglycemia10, which dampened the enthusiasm for tight glucose 

control in the ICU. 

6.2 GLUCOSE CONTROL IN SURGERY 

6.2.1 Cardiovascular and general surgery 

The proposed tight regimen for glucose control was subsequently adapted in the perioperative 

period with cardiac surgery, especially in DM patients, since these are per se at risk for 

developing postoperative complications156. Gandhi et al. demonstrated a linear relationship 

between intraoperative glucose level and the risk for adverse events157. Notably, in a population 

of prior non-DM patients subjected to cardiac surgery, about 70% was found to be pre-

diabetics158, thus implying that a majority of these patients have a disturb glycemic control and 

are at risk for complications. In this type of surgery, acute hyperglycemia has repeatedly been 

associated with unfavorable outcome. Accordingly, a substantial body of literature has focused 

on perioperative glucose control in patients subjected to cardiovascular intervention, 

suggesting beneficial effects on wound infections159,160, renal function161 and reduced incidence 

and degree of postoperative myocardial infarction162. Tight glucose control in cardiac surgery 

has been suggested cardioprotective, indicated by an improved myocardial function and 

reduced postoperative troponin levels116,120. 

Results are difficult to compare, as many studies do not have the same timing of intraoperative 

hyperglycemia. Some investigators have initiated glucose control during65 and others after 

surgery4. Some trials mix DM-patients and non-DM patients, others do not. Some trials were 

retrospective54,157,161, others observational69 or sometimes randomized163. Studies have 

prospectively investigated glucose control in the intraoperative period, though had different 

glucose target ranges in the treatment group6,163. Hence, the possible optimal glucose range is 

not yet established, and different targets have been suggested over the years164. In addition, the 

certain positive effect of glucose control during the surgical intervention is not quite clear165. 

6.2.2 Liver surgery 

As previously mentioned, the liver plays a key role in glucose metabolism and maintaining its 

metabolic properties during critical illness or surgery could be essential. In animal studies, 

insulin treatment has been associated to improved hepatocyte morphology and suggested to 

play an anti-apoptopic role. Accordingly, keeping a tight glucose control in ICU patients, has 

been suggested by Vanhorebeek et al, to improve hepatocyte mitochondrial structure and 

function44. 

Several studies have reported beneficial effects of glucose control in liver surgery. Okabayashi 

et al. reported favorable outcomes in a mixed population (DM and non-DM), by using an 

artificial pancreas to maintain blood glucose level between 4.1-6 mmol/l postoperatively, 

which exhibited a reduced number of surgical site infections, and shortened total hospital length 
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of stay166. A subsequent study, using the same protocol, suggested a beneficial effect of insulin 

treatment on liver regeneration, assessed by higher levels of liver transaminases in the control 

group167. More resent, Mita et al. reproduced this protective effect, in this case on postoperative 

kidney failure, which was presented by lower creatinine values168. 

Moreover, Fisette et al. performed a HNC to maintain normoglycemic glucose levels in the 

perioperative period, in combination with preoperative carbohydrate loading169. They indicated 

that insulin treatment improved energy storage and reduced liver cell apoptosis and necrosis, 

as presented by reduced markers associated with liver cell damage and dysfunction (liver 

transaminases, IL-6 and TNFα). In addition, the trial suggested an association to improved 

postoperative outcome, since data correlated to reduced postoperative liver dysfunction 

scoring. These results are in line with the findings presented by Hassanain et al., using a similar 

protocol, where improved liver glycogen content and postoperative dysfunction scores in 

hepatic surgery were demonstrated170. 

In conclusion, glucose control has been suggested to have positive effects on perioperative 

outcome in liver surgery. To our knowledge, no prior trial has studied the effect of 

intraoperative glucose control in liver surgery, by using a target range of 6-8 mmol/l, without 

a fixed insulin rate. Two of the major aims in this thesis are to investigate the effect of this 

insulin regimen on the development of postoperative insulin resistance, and on the alterations 

of glucose turnover. 
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 GLUCOSE CONTROL - A RISKY BUSINESS? 

7.1 HYPOGLYCEMIA IN ICU AND SURGERY 

As previously discussed, the impressive favorable results presented in the Leuven study have 

been debated since they were published171,172. Apart from the limitations that it is single center 

design, with a population of patients predominantly admitted to ICU after cardiac procedures, 

the high amount of administered intravenous glucose in the study has been an item for 

discussion173, since the amount may cause a relative hyperglycemia in need of insulin 

treatment. The questions are how to predict which patients would extend their stay in the ICU, 

and if the results are generalizable to other patient populations? However, the randomized 

clinical trials consequently launched in attempt to reproduce the brilliant results from Leuven, 

were unable to confirm the beneficial effects of glucose control7,8. Instead an emerging concern 

for hypoglycemic events became evident. A normal physiological response to hypoglycemia 

is first a reduced insulin secretion and secondly an increased glucagon secretion, which induce 

hepatic glucose production, all reactions in attempt to restore glucose levels174. Symptomatic 

hypoglycemia may produce behavioral changes, progressive focal neurological deficits, 

seizures and ultimately death175. However, in certain patient populations, such as critically ill 

or sedated patients subjected to surgery, warning signs of hypoglycemia may go undetected. 

Hypoglycemic events were indeed noted in the Leuven trials as well. In the first trial, these 

were only briefly mentioned by the investigators152, whereas in the second study somewhat 

more analyzed176. In the medical ICU, the treatment group experienced over five times more 

hypoglycemic events. The adverse events were found more commonly in this medical 

population, indicating that patients in prolonged need for ICU-care and/or vasoactive drugs or 

on dialysis, having liver failure or sepsis, had an especially raised risk for hypoglycemia155,177. 

However, subsequent trials, using different nutrition algorithms with predominantly enteral 

administration, could not easily establish and preserve normoglycemia7,8,155. In contrast, two 

major multicenter trials were prematurely stopped, partly due to high incidence of 

hypoglycemic events, i.e. the VISEP-study and the Glucontrol-trial. In the first study from 

2008, the investigators compared tight glucose control, as well as the effects of circulatory 

resuscitation using different fluid regiments, in ICU-patients admitted for sepsis9. The second, 

Glucontrol, applied a lower glucose range in the control group than in the Leuven protocol (8-

10 mmol/l), on a mixed-ICU population11. The VISEP-study reported an increased rate of 

severe hypoglycemia in the treatment group, 17% vs 4.1% in the control group. In the latter 

trial, researchers demonstrated a rate of hypoglycemic events of 8.7% in the treatment group 

vs. 2.7% in the control group, as well as a high number of protocol violations. In addition, none 

of the studies could demonstrated any mortality benefit. 

In a meta-analysis, Wiener et al. concluded that tight glucose control in ICU patients was 

associated with a decreased risk for septicemia without showing any significant difference in 

mortality, however increasing the incidence of hypoglycemic events five-folded178. 



 

20 

Finally, the largest multi-center study to this date, the NICE-SUGAR-study, was presented in 

200910. The investigators compared the effects on ICU mortality of intensive insulin treatment 

(4.5-6 mmol/l) to conventional treatment (8-10 mmol/l) in 6104 ICU-patients. The glucose 

range in the control group was similar the one in the Glucontrol trial. NICE-SUGAR reported 

episodes of severe hypoglycemia in 6.8 % of the patients in the treatment group compared to 

0.5% in the control group. The overall conclusion was that tight glucose control increased the 

risk for hypoglycemia, which in turn was associated with a significantly increased mortality, 

27.5% compared to 24.9% (p=0,02). In addition, no beneficial effect on outcome could be 

demonstrated. 

Griesdale et al. concluded in a meta-analysis, that tight glucose control increased the risk for 

hypoglycemia without any improved clinical outcome, apart from surgical ICU-patients which 

could benefit from the treatment179. In another later meta-analysis, Marik et al. compared data 

from seven studies, unable to find any support for intensive insulin treatment reducing the 

mortality, the incidence of infections or the need for dialysis173. Instead a 7-fold raised risk for 

hypoglycemic events was demonstrated, which was influenced by the administration of 

parenteral nutrition. 

These larger randomized trials reported an incidence of severe hypoglycemic events in the 

treatment groups, ranging from 5.1-28.6%7,8,10,152,176. Notably, the trials reporting the highest 

incidence of hypoglycemia do not always employ the tightest glucose range, indicating glucose 

control may not be sole causality to hypoglycemia.180. However, this is concerning data, since 

several studies have demonstrated an association between the degree of hypoglycemia and 

mortality. Even milder degrees of hypoglycemia have been indicated to increase the risk of 

death in the ICU181,182, independent of the diabetic status183,184, though contradictive findings 

have been presented185. Although, the causality of death is difficult to demonstrate, except in a 

trial by Hermanides et al., where severe hypoglycemia (<2.2 mmol/l) was suggested a marker 

for the severity of illness186. 

Nevertheless, the impact of hypoglycemia on ICU patients is difficult to settle, due to 

concurrent severe illness and neurological dysfunctions, which may mask the hypoglycemic 

signs. Moreover, the patient´s glycemic control prior hospitalization, HbA1c, may significantly 

influence the risk for hypoglycemic events in the ICU, thereby also being associated with 

mortality187. Perhaps, this may explain why spontaneous hypoglycemic events are associated 

more with poorer outcome than hypoglycemia caused by insulin treatment188. 

After all, there is still an interest in the subject, recently, a study in a pediatric ICU was 

prematurely stopped due to hypoglycemic events, while showing no beneficial effect on 

clinical outcome189. Though, to our knowledge no RCTs are presently being performed. 

However, changing the focus to the perioperative period, subsequent studies on tight glucose 

control, predominantly in cardiac surgery patients, have had various conclusions190-192. 

Subramaniam et al., could demonstrate that glucose control (5.6-8.3 mmol/l) in cardiovascular 

surgery patients, was superior to minimize major adverse events, possibly due to reduced 
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glycemic variability162. However, this trial reported increased hypoglycemic events in the 

treatment group, 8.8% vs 4.1% in the control group, an adverse risk, which was also noted in 

a study by Lazar et al191. Similarly, another randomized trial on cardiac surgery patients, which 

compared intraoperative glucose control (4.4-5.6 mmol/l) to standard treatment (<11.1 

mmol/l), could not present positive clinical effects, in contrary reported an increased incidence 

of stroke and mortality193. A later meta-analysis, including 6 RCTs, suggested some benefits 

of tight glucose control on cardiac events and mortality, though with the allowance that the 

included studies displayed various glucose levels, different periods of glucose control and 

reported different outcomes190. Moreover, in a meta-analysis, Hua et al. concluded that 

intraoperative glucose control only decreased the rate of infection, whilst having no beneficial 

effect on hypoglycemia or mortality159. 

7.2 GLUCOSE VARIABILITY 

Marked fluctuation in blood glucose levels, i.e. high glycemic variability, may be harmful, 

independent of the absolute mean glucose level194. Avoiding large variations may be 

metabolically important, since acute changes in glucose concentration are associated to higher 

oxidative stress on the cellular level195, which has been a suggested explanation for 

development of diabetic complications42. A larger retrospective study of >7000 patients could 

demonstrate a strong association between glucose variation (SD) and in-hospital mortality196. 

These findings were confirmed by Ali et al, where ICU patients had a five-folded increase of 

hospital mortality, despite normoglycemia197. In addition, Hermanides et al. demonstrated  

decreased mortality in patients with low variability, though presented with higher mean glucose 

level186. Glucose variability may also be considered a warning sign, since it seemed to increase 

prior to a hypoglycemic event198. A recent retrospective trial confirmed the findings that ICU 

and all-hospital mortality are strongly associated to the degree of dysfunctional glycemic 

control (dysglycemia), hyper- and hypoglycemia in combination with glucose variability, 

predominantly in non-DM patients199. In addition, the investigators suggested lowering the 

target in non-DM patients and pointed to the importance of maintaining glucose control during 

the entire hospital stay. Prevailing in a stable glucose range is associated with improved 

outcome for ICU-200, as well as non-critical ill patients201. However, to our knowledge, 

prospective randomized studies are lacking. 

The definition of glucose variability is somewhat unclear. It has been reported as the standard 

deviation, the variation coefficient, mean absolute change over time or glucose variability index 

for example. In addition, there are different definitions of hyper- and hypoglycemia. In a meta-

analysis, the association between glucose variability and mortality was difficult to settle, due 

to different glucose metrics and definitions202. 

Another important variable of glucose control is the variable time in range/band, meaning the 

amount of time during which glucose values are within a preset range. The variable combine 

the variability and the average value of glycemia, and has been associated with improved 

outcome in both the ICU200,203 and the surgical settings204. Since time in range was higher in 
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the Leuven trial, compared to the more recent major studies, this has also been proposed as an 

explanation for the diverging results. 

7.3 WHY THE EFFECT? GLUCOSE CONTROL OR INSULIN TREATMENT VS 
DIABETIC STATUS? 

It has been discussed whether glucose control or the administration of insulin itself improves 

clinical outcome. Insulin has, as previous mentioned, metabolic and non-metabolic effects, 

which possibly are beneficial to different patient groups. In studies performing high dose HNC 

(5 mU/kg/min) during cardiac surgery, beneficial effects have been demonstrated on 

myocardial injury markers, troponin120, and postoperative myocardial function205. However, a 

post-hoc analysis by the Leuven group demonstrated that normoglycemia, rather than the 

insulin dosage, correlated with improved outcome206. This conclusion was later confirmed in a 

randomized animal trial, where mortality was significantly reduced in the normoglycemic 

groups, independent of insulin dosage207. 

Another possible explanation for the diverging outcomes in several large trials on glucose 

control could be the diagnosis, or not, of diabetes60,163,184,199,208. Interestingly, DM patients have 

an altered, higher, threshold for counter-acting hormone secretion209, indicating an adapted 

reaction to rapidly normalized glucose value. Moreover, as previously discussed, the 

preoperative glycemic control, measured as HbA1c, matters, irrespective of  diabetes diagnosis, 

as an elevated HbA1c has been found to predict postoperative hyperglycemia, glucose 

variability and adverse outcome in abdominal62, as well as cardiac surgery204,210,211.In addition, 

specific patient populations, surgical or medical, seem to have various risk for hypoglycemia, 

thereby influencing the result212. However, patients undergoing cardiac surgery, are considered 

to benefit from perioperative glucose control190,213. Thus, it seems important to critically 

evaluate the patient population, since diabetics may not benefit from tight glucose control199, 

whereas the regimen in certain surgical patient populations, even for DM-patients, is suggested 

to improve outcome214. 

Altogether, hyperglycemia and hypoglycemia are both negatively associated to adverse events 
215, as patients admitted for acute myocardial infarction which presented a glucose level >6.7 

or <3.9 mmol/l, had an increased the risk for mortality. Patients presenting with high variability 

have an additional poor clinical outcome194. MacKenzie et al. demonstrated in a single center 

study that glucose control was associated with outcome in the ICU, in which three different 

independent glucose metrics of importance were identified, central tendency (mean values of 

different ways of presentation), dispersion (variability) and hypoglycemia216.  

In conclusion, the ideal glucose range remains to be settled, it is still uncertain and could vary 

according to specific patient populations. 
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 ASSESSMENT OF GLUCOSE AND INSULIN RESISTANCE 

Glucose target recommendations have altered over time, depending on the results from various 

studies, as discussed above. One suggested explanation for diverging results between the first 

Leuven study and later trials, have been the use of different devices for blood glucose 

measurement. Glucose control, as previous discussed, has been suggested more beneficial in a 

surgical setting and in non-DM patients, by mainly decreasing the rate of postoperative 

complications, though having less effect on mortality208. Recently, some recommended to initiate 

insulin treatment in intraoperative settings, at glucose level <10 mmol/l97. In severely ill patients, 

a more aggressive approach has been suggested, by starting treatment at glucose level >7.7-8.3 

mmol/l. Moreover, several different insulin protocols have been suggested to minimize the risk 

for hypoglycemia4,217. Since critically ill patients, or patients subjected to longer surgical 

procedures, may have a disturbed tissue perfusion, intravenous insulin administration is preferred. 

Aside from a suitable insulin treatment, a proper assessment of glucose concentration is of the 

greatest importance to reduce the risk for dysglycemia, which is strongly associated with poor 

clinical outcome. 

A more frequent measurement may improve glucose control by reducing hyper- or hypoglycemia 

and glucose variability, and is suggested to increase the time in glucose range218. In hope of 

improved clinical outcome and to avoid intense labor for ICU personnel, there is a call for reliable 

continuous glucose measurement (CGM) devices219. Central laboratory testing is considered the 

reference standard method for glucose measurement, whilst blood gas analysis is almost as 

good220. In contrast, point-of care analyzers (POC) are considered less accurate221. Though having 

several limitations, they provide swift bedside testing, thereby enabling important and quick 

decisions to treat hypo- or hyperglycemic events. Nevertheless, all methods mentioned are time- 

and labor consuming222, therefore different continuous measurements systems have been 

developed and tested in the ICU settings. Some various methods for blood glucose assessment 

will be mentioned in this chapter. 

8.1 BLOOD GLUCOSE 

Glucose can be measured in whole blood, serum or plasma. Glucose concentration is higher in 

arterial blood, than in the capillary, which in turn is higher than in venous whole blood223. Since 

glucose is dissolved only in the aqueous part of the sample and not in the solid part, for example 

blood cells or proteins, glucose concentration is also about 11% higher in plasma than in whole 

blood. For that reason, abnormal hematocrit levels can produce inaccurate glucose values. In 

addition, glucose can be assessed from arterial, venous or capillary samples. Capillary sampling 

is advised against in the ICU, since hypoperfusion is suggested to interference with readings. The 

glucose measurements are performed by using different enzymatic reactions, glucose-1-

dehydrogenase (GDH), hexokinase or glucose oxidase (GOD). The two latter are most frequently 

used in laboratory glucose meters. 
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GOD is an enzymatic reaction oxidizing glucose in presence of water and oxygen, with the net 

production of gluconic acid and hydrogen peroxide224. The reaction is detected amperometrically 

or colorimetrically. In the first variant, peroxide reacts with the subsequent loss of electrons, 

sensed by a platinum electrode, thereby evoking an electric signal. In colorimetric detection, 

peroxide reacts with hydrogen together with a chromogene, producing a color change measured 

by a photometer. The stronger signal produced, the higher glucose concentration. These reactions 

can be used on arterial, venous and interstitial fluid samples, and is the predominant method in 

POC glucose meters. 

GDH resembles GOD, being specific for D-glucose, but has less risk of interference than the 

GOD reaction. This enzymatic reaction, in combination with a colorimetrical detection on lysed 

whole blood, is used by the POC meter HemoCue225. Hexokinase converts glucose to glucose-6-

phosphate, where under reduction NADH is produced and detected. 

Certain patient conditions, or compounds, may interact with the GOD-reaction. This applies to 

critically ill patients with abnormal pH or hyperoxia, which provide inaccurate values or anemia, 

which overestimate the glucose level. In addition, different drugs (paracetamol) or metabolic 

disorders (hyperlipidemia or hyperbilirubinemia) may interfere with readings226. 

8.1.1 Blood gas analyzers and point of care glucose meters 

Blood gas analyzers used in the ICU or operation settings, provide data with close accuracy to 

central laboratory values, and is regarded a reliable substitute to laboratory measurements. The 

device uses the glucose oxidase method. An alternative to blood gas analyzers are POC-meters, 

which could be considered more user-friendly and are used for in- as well as out-of-hospital 

settings. POC glucose meters often analyze whole blood by a GOD-reaction, and an internal 

correction factor eliminates the difference in glucose concentration between plasma and whole 

blood. However, there are diverging results concerning the agreement between samples analyzed 

by a POC-device and reference samples measured by blood gas analyzers or the laboratory. One 

trial demonstrated acceptable results in stable patients, except in conditions of hypoperfusion227, 

whereas other investigators report substantially lower accuracy, where the glucometers often 

provide falsely higher readings 228,229. Moreover, one should bear in mind that not only tissue 

perfusion may have an impact on the measurements, but additional confounders are the source of 

blood and the amount of blood on the glucometer strip. Though, Kanji et al. reported POC-results 

being 20% off reference value regardless of venous, arterial or capillary site of sampling230.In 

contrast, Cortjens et al. presented reliable accuracy by using arterial sampling only231. One 

explanation for this discrepancy could be that different devices have been evaluated, and newer 

POCs may have altered the analyzing techniques, as Karon et al. indicated improved accuracy 

even by capillary sampling232. 
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8.1.2 Continuous glucose measurement 

CGM systems have been proven efficient in out-of-hospital monitoring of DM patients, by 

reducing the risk for hypoglycemic events and improving glycemic control233. The hope is that 

they could provide the same benefits for the ICU population, since the systems have the ability 

of reporting not only mean glucose values, but also the direction and rate of glucose changes219. 

In addition, the systems can be integrated with a closed-loop insulin administration, potentially 

thereby reducing hypoglycemic events. However, many studies have focused on accuracy and 

feasibility, few on clinical outcome in critical ill patients. The conclusions have been diverging, 

some stated that the rate of severe hypoglycemic events could be reduced234-236, whereas others 

demonstrated no positive effects on hypoglycemic events or glycemic variability by using 

subcutaneous CGMS compared to regular POC235,237. Since glucose metrics have not been 

standardized, investigators report different parameters, thus making comparison of trials difficult. 

8.1.2.1 Principles: 

Most of the available CGM systems sample glucose from interstitial fluid in subcutaneous tissues. 

Newer devices also use intravascular sampling. The CGMS sensors and catheters are placed, 

either together inside the tissue space or the catheter draw intermittent samples to a sensor placed 

outside the tissue. Glucose is frequently sampled, commonly at an interval of 5 minutes or less, 

and measured by glucose oxidase or fluorescence method, mid-infrared spectroscopy or hydrogel 

methods. However, there are limitations, apart from the analysis method, where intravenous 

sampling can be affected by thrombosis, catheter occlusion or infections, and the interfering 

factors associated with subcutaneous devises; sensor drifting and the need for (repeated) 

calibrations. In addition, an invasive device may initially cause tissue damage and an 

inflammatory reaction, in need of a stabilizing period. 

The CGM technique has been evaluated with various accuracy in ICU patients, possibly due to 

differences in interstitial and intravenous glucose concentrations. The impact of tissue 

hypoperfusion in critically ill patients, has been a concern for inaccurate readings in subcutaneous 

CGMS. There is a reduced agreement between the intravascular glucose readings and the 

interstitial concentration in critically ill patients238. Normally, glucose is transported by passive 

diffusion over the capillary membrane, along a concentration gradient. The interstitial glucose 

level is determined by the rate of diffusion and the uptake in dermal or subcutaneous tissue cells. 

Hence, factors influencing the interstitial glucose level are, aside from the metabolic rate in 

adjacent cells, the blood flow and the capillary permeability. Basu et al. observed, by using 

microdialysis and tracer technique, a physiological time lag of 5- 10 minutes, between glucose in 

plasma and in the interstitial fluid239,240, which agrees with the calculated lag time reported by 

Schiavon et al., using a mathematical model incorporating tracer and microdialysis data241. Kulku 

et al., demonstrated a 5-minute time lag in DM patients using a subcutaneous MD device, though 

the investigators reported longer delays in interstitial glucose levels during rapid changes in blood 

glucose242. 
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8.1.2.2 Accuracy of measurements 

Critically ill patients often have altered microcirculation243, though there is a disagreement 

whether the tissue perfusion influences measurement accuracy or not. Siegelaar et al. presented 

no effect on accuracy by reduced microcirculation, but instead stated that the peripheral 

temperature could interfere244, nor could Holzinger et al. report a reduced accuracy in 

subcutaneous readings during administration of noradrenaline245. In contrast, others reported a 

reduced accuracy and increased glucose variability with the use of vasopressors246, and Rabiee et 

al. concluded that the subcutaneous CGMS is unsafe and underestimates hypoglycemia247. Thus, 

the idea of intravascular sampling was introduced and several papers have been published on the 

subject. 

The intravenous devices for continuous measurements, with rapid development over the recent 

years, use various approaches for glucose sampling and analysis. Some have the sensor inserted 

inside an intravenous catheter, using mid-infrared spectroscopy248,249, or a central venous catheter 

(CVC) with the use of the fluorescence technique250, whereas others have used an external 

analyzer in combination with a CVC with an integrated microdialysis (MD) membrane251-254. 

Direct comparisons between intravenous and subcutaneous CGMS show diverging results. One 

study demonstrated superior accuracy for the intravascular devise255, and the other reported no 

difference in accuracy256, though increased frequency of calibration was suggested to produce 

higher accuracy in subcutaneous CGMS readings257. Recently, Bocchichio et al. demonstrated 

high accuracy for an intravenous CGM system compared to reference values, in addition 

presented data in both the hyper- and hypoglycemic range248, the latter is often lacking in trials. 

Over time, the microdialysis technique has been refined, thereby becoming a useful tool for 

continuous glucose monitoring. In 2010, being one of the first trials on the subject, Rooyackers 

et al. presented data for the feasibility of a intravascular microdialysis catheter in ICU patients 

over 5 days and in healthy volunteers258. Therefore, our aim in paper I and II, was to further 

investigate the factors influencing the accuracy of glucose measurements via intravenous 

microdialysis. 

8.2 MICRODIALYSIS 

This technique, first described in research in the 60 and 70´s and further developed over the past 

decades, makes it possible to achieve continuous in vivo measurements in virtually every tissue 

(including blood) or organs in the body, without any biopsies259. The method has mostly been 

used in research settings, both in vivo and in vitro. Almost every tissue is the body, even those 

normally not possible to access, have been studied in microdialysis experiments. This often in 

search of substances related to energy metabolism or in study of drug delivery, since the technique 

allows monitoring of both endogenous and exogenous compounds260. However, one must 

consider, that the analysis mirrors only the tissue metabolism in close proximity of the catheter. 
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The technique has been evaluated in patients after neurological insults, liver transplantation261 

and major abdominal surgery262, as a tool to detect acute ischemic events. 

The technique, by mimicking the characteristics of a capillary, analyses the extracellular 

concentration of the molecules derived by passive diffusion from the interstitial fluid in the tissue 

of interest, whilst no fluid is removed. However, some conditions must be fulfilled. The substance 

must be dialyzable, i.e., it must be small enough to pass the membrane pores. In addition, the 

analyzing method must be simple and fast and achievable for the small volumes derived, and the 

recovery ratio easily determinable. In summary, the microdialysis technique implies no impact 

on the physiological systems and thereby makes long term monitoring feasible. 

8.2.1 Principles 

The microdialysis catheter consists of an outer and an inner tube, with a semi-permeable 

membrane at the tip, over which an exchange of substances takes place based on passive diffusion. 

The ingoing fluid, the perfusate, is pumped slowly through the outer tube, see figure 2. The 

perfusate is similarly composed as the surrounding tissue fluid, but free of the substance of 

interest. Small molecules from the interstitial fluid freely diffuse over the membrane following 

the concentration gradient. After exchange over the semipermeable membrane, the fluid, now 

called dialysate, flows through the inner tube. The dialysate contains a sample separated from 

proteins, not further degraded by enzymes, and is collected in small, 10-50 µL samples volumes, 

microvials224. 

8.2.2 Recovery 

If there is a difference between the concentration of the analyzed substance in the dialysate and 

the concentration in the tissue, it implies that complete equilibrium has not been reached. The 

ratio between the two is referred to as recovery, and can be described as absolute or relative224. 

Absolute recovery is the total amount of substance recovered over a defined period. 100% 

recovery can be impractical and time-consuming, as it often demands low velocity of the 

perfusate. Mostly, the relative recovery is used during higher fluid velocity, which is the 

proportion of the substance in the dialysate compared to the content in the surrounding tissue. 

The relative recovery is influenced by the membrane area, the membrane pore size, the rate and 

composition of the perfusion fluid, as well as the polarization of the compound263. In addition, 

the physiological properties of the surrounding tissues, for example changes in blood flow may 

impact recovery258. Therefore, before interpreting any in vivo microdialysis data, the system 

should be calibrated to establish the relative recovery of the substance of interest, given that the 

incomplete equilibrium remains constant. Various methods can be applied; some will be 

mentioned. 
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Figure 2: Principles of microdialysis: A microdialysis catheter, inserted in the tissue of interest 

(inclusive blood), consists of two tubes of which the outer distal part is made of a semi-permeable 

membrane (A). A perfusion fluid (perfusate) is run through the inner tube (C)and the liquid is 

equilibrated over time with the metabolites passing over the semipermeable membrane. The fluid 

then returns through the outer tube (B), now containing a dialysate of the metabolites from the 

surrounding tissues and can be sampled for analyses or analysed on-line. 

 

 

In the no-net-flux method, the catheter is perfused with fluids of different concentrations. At the 

point of no difference between the perfusate and dialysate concentrations, it is assumed that this 

equals the concentration in the surrounding tissue and that no-net exchange is occurring263. 

The low-flow-rate method involves perfusion with different fluid rates, under the assumption that 

at no velocity the recovery in the dialysate is total, and equals the concentration of the surrounding 

tissues. This point can be found by plotting and comparing the concentration at different rates. 

Another reliable technique uses a labelled compound added to the perfusion fluid, with similar 

biochemical qualities as the substance of interest260. It is assumed that the net loss into the 

surrounding tissues of this compound, is equal to the relative recovery. 
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8.2.3 Fluid rate and membrane properties 

The recovery, as previously mentioned, is positively correlated with the area and the pore-size of 

the semipermeable membrane224. In addition, the composition and the velocity of the perfusate, 

impacts the recovery ratio. 

The perfusion velocity can differ from 0.3-10 µL/min224, but often range within 1-5 µL/min. A 

lower velocity permits longer diffusion time over the membrane, resulting in a higher recovery. 

The perfusate can be pumped through the system in different modes, the push-mode, the pull-

mode or combined push-pull-mode. The push-mode may result in a net loss of fluid due to 

elevated hydrostatic and osmotic pressure across the membrane. The pull-mode results in a 

negative pressure and hence fluid might be sucked over the membrane. The last mode with 

combined push and pull, allows a low pressure over the membrane, though it entails a more 

expensive and complicated system224. 

The semi-permeable membranes have different pore sizes, allowing for collection or exclusion of 

different molecules, defined as the molecular weight cut-off size. Glucose is a small compound 

with a molecular weight of 180 Da, and a common pore size used in analyses is 20 kDa. A larger 

size may be used, but then often in combination with osmotic perfusion solution, to avoid sample 

dilution260. 

8.2.4 Tissue factors 

Recovery is affected by conditions in the surrounding tissue. For example, substances may 

undergo metabolism prior to reaching the membrane and the tissues may react to the insertion of 

the catheter. Hence, a run-in-time of 1-2 h is recommended for avoiding disturbances for cell 

damage in rate of recovery after insertion224. In addition, it is suggested that the core temperature 

and changes in blood flow influence the recovery. The temperature positively affects the recovery 

with an increase of 1-2% for every raise in ºC224, and the recovery in blood is higher than in 

interstitial fluid. 

8.2.5 Sample analysis 

By using microdialysis technique, only the substances of interest are collected from the 

surrounding tissue, and it needs no further separation before analysis. The technique is especially 

useful for sampling small water-soluble molecules such as glucose, lactate, pyruvate and glycerol. 

The time elapsing between sampling and on-line sensor analysis is linked to the fluid rate, often 

referred to as physical lag-time. A condition for reliable continuous on-line measurement in real 

time is a swift analyzing method, and the relationship between fluid rate and recovery is important 

and must be considered when developing CGM systems. 

Several types of analyzing methods have been developed. There are biosensors that react in 

response to biological changes by an electrical signal; an enzyme-based or electrochemical with 

optical detection264. For glucose measurement, an enzyme-based method is used in all current 
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systems, i.e. the GOD analyzer, where glucose oxidase initiates the reaction with a subsequent 

electrochemical detection of H2O2.For later off-line analyses, there are immuno-assay methods, 

preferably used for measuring peptides or drugs, and mass spectrometry that identify low-

concentrated samples with low molecular weight264. If separation of substances in the dialysate is 

needed, other methods may be used, for example liquid chromatography or electrophoresis264. 

8.3 INSULIN RESISTANCE 

Insulin resistance and glucose metabolism may be assessed by a variety of methods. Depending 

on the purpose, ranging from large epidemiological studies to limited trials on physiological 

events, the available methods can be divided into quantitative or qualitative/dynamic function 

assessments, of which some will be mentioned. 

Indirect assessment: 

• Fasting plasma insulin 

• Homeostasis model assessment, Insulin Resistance test (HOMA-IR) 

• Quantitative insulin sensitivity check index (QUICKI) 

Dynamic assessment: 

• Short insulin tolerance test 

• Continuous infusion of glucose with model assessment (CIGMA) 

• Oral glucose tolerance test (OGTT) 

• The frequently sampled intravenous glucose tolerance test (FSIVGTT) 

• Hyperinsulinemic normoglycemic clamp (HNC) – gold standard, and hyperglycemic 

clamp  

8.3.1 Fasting plasma insulin 

Sampling of fasting insulin value, is performed in the morning, after an overnight fast. A high 

value derives from increased β-cell secretion and reflects the presence of insulin resistance. 

8.3.2 Homeostatic model assessment - insulin resistance (HOMA-IR) 

This method, first described in 1985, uses fasting insulin and fasting glucose values in a 

mathematical model to estimate insulin resistance265. By the using the formula, the product of 

the insulin value, which represent the pancreatic β-cell function, and the glucose value, which 

is dependent on the endogenous glucose production, give an approximative value of the basal 

insulin sensitivity. In this model, insulin sensitivity is assumed to be equivalent in the liver and 

in peripheral tissues, which is not always correct. HOMA-IR reflects insulin sensitivity best in 

normoglycemic or mild hyperglycemic persons. However, in severe hyperglycemia, it may be 

inaccurate266. It correlates well with the HNC, is simple to use, and is therefore mostly used in 

larger population studies. 
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8.3.3 Quantitative insulin sensitivity check index (QUICKI) 

QUICKI is another mathematical model for estimating insulin sensitivity. It corresponds well to 

HOMA, by using log-transformed basal insulin and glucose values266. The log-transformation of 

values accounts for non-normally distributed insulin concentrations. The advantage is it gives a 

more correct value of insulin sensitivity in hyperglycemic patients, it is simple, inexpensive and 

it correlates well with the HNC values267. However, in individuals with low insulin concentration 

and β-cell dysfunction, the correlation is weaker268. The use for QUICKI is mainly in large 

population trials. 

8.3.4 Short insulin tolerance test 

In this method, a single intravenous bolus of insulin is injected and by the rate of decline in 

glucose concentration, an estimate of insulin sensitivity is obtained265. Glucose samples are 

collected during 15 minutes, and the test is then terminated. The test can also be performed over 

a 60-minute period, with the disadvantage of an increased risk for hypoglycemia and the release 

of counter-acting hormones, which may interfere with the interpretation of the results. The data 

can give an estimate of the glucose clearance, but it cannot discriminate the site of insulin 

resistance266. The test correlates acceptably well with HNC, and can be used in large trials. 

8.3.5 Continuous infusion of glucose with model assessment (CIGMA) 

This method was developed for assessing insulin sensitivity and β-cell function. A continuous 

glucose infusion is administered over 60 minutes. Samples for insulin and glucose are collected 

the last 10 min, and values are compared to reference values in a mathematical model268. The 

CIGMA reflects insulin sensitivity better than HOMA, since the glucose infusion stimulates an 

insulin response266. The insulin enhances the peripheral glucose uptake, thereby producing a 

glucose steady-state. CIGMA correlates well with the HNC, but is also limited by the need for a 

mathematical model like HOMA and QUICKI. 

8.3.6 Oral glucose tolerance test (OGTT) 

By administering 75 g glucose orally and collecting blood glucose samples over the following 

two hours, a value representing the insulin sensitivity is obtained. By giving glucose orally, 

OGGT reflects the physiological response to carbohydrate loading well, which is not the case 

with HNC and FSIVGTT267. The data in combination with the fasting glucose value represent 

the individual diabetic status. Data derived from OGTT can also be converted into an insulin 

sensitivity index (ISI), reflecting peripheral insulin sensitivity, and correlates well with the 

HNC268. The estimate is more accurate than HOMA-IR and QUICKI, since not only fasting 

values are considered. Though, it is limited by the fact that gastrointestinal function and 

incretins influence the results. OGTT represents a more clinically applicable alternative to HNC 

and FSIVGTT in large population studies, and in the diagnose of diabetes mellitus266. 
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8.3.7 Frequently sampled intravenous glucose tolerance test (FSIVGTT) 

This technique is a less labor intense alternative to the HNC, thereby advantageous in larger 

studies. By injecting a single bolus of glucose and subsequent sampling of plasma insulin and 

glucose over the next 180 minutes, the dynamic test assesses both the insulin sensitivity and the 

β-cell function. The dynamic data for insulin and glucose are fitted in two separate 

mathematical models, where insulin sensitivity and the ability of glucose to mediate its own 

uptake are estimated268. FSIVGTT can be modified by administering concurrent insulin 

infusion to account for a decreased insulin response in patients with reduced β-cell function, 

which improves the correlation to HNC. However, since this method obtains data in a non-steady 

state, and insulin and glucose kinetics used in calculations are based on various assumptions, the 

correlation to the HNC may differ considerably266. Still, the FSIVGTT method is considered the 

“second” gold standard for insulin sensitivity assessment, and can be used in population trials266. 

8.3.8 Hyperinsulinemic normoglycemic clamp (HNC) and hyperglycemic clamp: 

The hyperinsulinemic normoglycemic clamp technique, first described in 1979, is considered 

the gold-standard in research setting for quantification of insulin sensitivity, and is regarded 

highly reproducible269. Together with the minimal model method of FSIVGTT, HNC represents 

the only technique to adequately assess peripheral insulin resistance. However, the procedure 

is time- and labor consuming, and is mainly applicable in research settings for a limited number 

of patients. 

The technique is based on a constant insulin infusion combined with a variable glucose infusion 

to maintain normoglycemia. Plasma glucose is frequently assessed, every 5 minutes, to avoid 

hypoglycemia. Due to the arterio-venous difference of glucose in plasma, glucose sampling is 

preferred in an arterial, or an arterialized venous access. At steady state, the rate of exogenous 

glucose infusion, is equal to the amount of overall glucose disposal, the metabolic clearance 

rate (M-value, mg/kg/min), with the assumption that exogenous insulin infusion accomplishes 

total suppression of the endogenous glucose production (EGP). The higher M-value, the more 

insulin sensitive the patient is, see figure 3. 

Some suggest M- values > 7.5 as a normal value, whereas an insulin resistant person has values 

< 4 mg/kg/min268. However, the absolute M-value is dependent on the dosage of insulin 

given270. Different insulin infusion rates can be used, in research settings common rates are 40-

120 mU/m2/min266. In obese subjects a higher rate is necessary to suppress the hepatic glucose 

production, whereas a lower rate is sufficient in normal-weight persons. If the clamp is 

prolonged, the non-oxidative disposal has been demonstrated to increase, which was most 

pronounced in low-sensitive persons271. 
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Figure 3: Examples of a preoperative HNC (to the left) and a postoperative HNC (to the right), 

in the same patient. M-values, the variable glucose infusion rate (the dotted line) are given as 

mg/kg/min and the blood glucose values (the bold line) are given as mmol/l. 

 

 

The HNC is limited by the fact that the method fail to reflect physiological dynamics, since 

glucose is administered intravenously, without passing the effect of the gastrointestinal tract. 

To further elucidate and discriminate glucose metabolism, the HNC can be combined with other 

techniques; isotope dilution, local tissue sampling, indirect calorimetry, or nuclear magnetic 

resonance scans. Though, the HNC is still unable to distinguish insulin- and non-insulin 

dependent glucose disposal. 

Hyperglycemic clamp: 

In this method, used for assessing the β-cell function, glucose is intermittently infused at a 

variable rate to achieve a predetermined hyperglycemic value, often about 12 mmol/l, and is 

maintained for 2 hours268. The mean glucose infusion rate over the last 30 minutes represents 

the glucose metabolism and gives an estimate of the endogenous insulin secretion. The hyper- 

and normoglycemic clamps share the same limitations. 

8.4 ISOTOPIC TRACER DILUTION METHODOLOGY 

The estimation of insulin sensitivity by HNC, assumes a fully suppressed endogenous glucose 

production. Otherwise, the clearance rate reflects the disposal of both exogenous and 

endogenous glucose. To discriminate the endogenous contribution, the arteriovenous difference 

technique, labelled nuclear magnetic resonance spectroscopy or isotope dilution technique can 

be used272. The latter methodology, intravenous or oral, can be used in combination with 

FSIVGTT, OGTT or HNC to assess the endogenous glucose production267. 

By adding a labelled isotope, it enables assessment of different parts of the human metabolism. 

The technique determines differences in the metabolic substrates kinetics, on a whole-body 
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level, as well as on a tissue level. In this case, the method is recommended for distinguishing 

glucose production from peripheral glucose disposal. 

8.4.1 Tracer and tracee 

The isotope dilution method uses a labelled form of a molecule, tracer, where one or several 

given atoms are replaced by its isotopic form. Ideally, the tracer molecule is metabolically and 

structurally identical with the molecule that is being studied, the tracee. The isotope form 

merely makes it distinguishable from its natural form, thereby being possible to detect and 

measure. The glucose molecule used for this method may have either a radioactive or a stable 

isotope of a hydrogen or a carbon atom. For labelled glucose, the position of the isotope is 

important, being a determinant of the degree of recycling. If glucose is metabolized, and the 

isotope label is lost in degradation, the molecule may be regarded as a new molecule, thereby 

leading to overestimating the glucose turn-over. The isotope variant 6,6-2H2-glucose, is 

considered the best, since the two labelled carbon atoms from the sixth carbon are lost late in 

the glycolysis, thereby giving the best estimate of de novo glucose production272. Stable isotope 

tracers are measured by mass spectrometry technique and the main disadvantage is the cost for 

the tracers and the analyses. 

 

 

Figure 4: Principles for the isotope dilution technique. The endogenous glucose production, 

expressed as the rate of appearance (Ra), which at steady-state is equal to the whole-body 

glucose uptake, the rate of disappearance (Rd). Under equilibrium, these rates are equal to the 

infusion rate of the tracer divided by the ratio of plasma tracer/tracee (enrichment). 

 

8.4.2 Calculation 

For calculation, the terminology “pool” is used to represent the volume in which the 

tracer/tracee is evenly distributed. In steady-state, the concentration of the substance in the pool 
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is stable, therefore the rate of appearance of the substance is assumed to be equal to the rate of 

disappearance. In a non-steady-state, in which an exogenous infusion is administered, a 

modified Steele´s equation is used to account for the disturbance273. A prime constant infusion 

allowed for 60 min is commonly used to accomplish a steady state- condition272. 

When a stable isotope is used, tracer and tracee are sampled and analyzed using a mass 

spectrometer. Under steady-state condition and a constant volume, tracer enrichment in plasma 

(ratio of tracer/tracee) is assumed to be equal to the rate of appearance (Ra), to the rate of 

disappearance (Rd) and to the ratio of tracer infusion rate/Ra, see figure 4. The rate of appearance 

corresponds to the endogenous glucose production in the post-absorptive state, and a high rate 

in the presence of insulin is indices of hepatic insulin resistance. However, Ra reflects not only 

the hepatic glucose production since glucose is also synthesized in the kidney. 
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 AIMS 

The overall aims of the thesis were: 

 

• To investigate factors influencing the accuracy of glucose measurements by 

intravenous microdialysis. 

 

I. To identify the optimal rate of perfusion fluid and membrane length, which present the 

best agreement to plasma glucose reference values, in a catheter for intravenous 

microdialysis measurement. 

 

II. To investigate the agreement of an on-line intravenous continuous glucose 

measurement system via microdialysis, to plasma reference values. 

 

 

• To investigate the effect of intraoperative glucose control in liver surgery. 

 

III. To determine the effect of glucose control on postoperative insulin resistance, assessed 

by a hyperinsulinemic normoglycemic clamp technique. 

 

IV. To characterize the effect of glucose control on intra- and postoperative glucose 

kinetics, by discriminating alterations in endogenous glucose production and whole-

body glucose disposal, assessed by stable isotopic tracers and a hyperinsulinemic 

normoglycemic clamp technique. 
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 METHODOLOGICAL CONSIDERATIONS 

The study designs for paper I-IV were all reviewed and approved by the regional ethics 

committee in Stockholm. The patients and volunteers were informed about the purpose and the 

nature of the study and the risks involved, before written informed consent was obtained. 

10.1 PAPER I 

The aim for paper I was to investigate the effects of various semi-permeable membrane lengths 

and perfusion fluid velocities, on the accuracy of intravenous microdialysis glucose 

measurements. 

Study I was divided in two parts. In the first part, the effect of the membrane length and in the 

second part the effect of, the perfusion fluid rate, on the agreement of microdialysis (MD) 

glucose reading to plasma reference value were evaluated. 

Method: The volunteers were allowed a light breakfast before arrival to the research facility. 

All veins were measured with an ultrasound devise (Site Rite® 5, Bard, Salt Lake City, UT, 

USA), and only veins with a diameter of 3 mm or more in a non-stasis state, were used. This 

was 5 times the diameter of the catheter, thereby assumed sufficient to ensure enough blood 

flow around the catheter. The diameter was assessed before and after catheter insertion, and 

before and after the sampling period. A period of 60 minutes was allowed after insertion, for 

stabilization of the microdialysis readings. The MD-catheters were perfused with a solution of 

Ringer-Acetate and 25 U/ml of low molecular heparin (Fragmin®, Pfizer, New York, NY, 

USA), driven by a low-voltage pump (CMA107). Samples for MD-glucose were collected in 

microvials over 10 minutes, during a 70-min period. Blood samples for reference glucose were 

collected in the middle of each 10-min period. 

Protocol I: 30 volunteers were included and randomized to one of three groups. In group 1 (the 

control group), the subjects received a peripheral venous catheter (PVC) in an antecubital vein 

in both arms for blood sampling. In group 2, a PVC was inserted in one arm and a MD catheter 

(CMA, Microdialysis AB, Solna Sweden) with a membrane length of 10 mm was inserted in 

the other. Group 3 was handled as group 2, with the difference that a membrane length of 20 

mm was used. 

Protocol II: 15 volunteers were included. All subjects received a MD catheter, with membrane 

length of 30 mm, in an antecubital vein one arm, and a PVC in the other. Three measurement 

periods with different perfusion rates, 0.5, 1 and 2 µl/min, were performed in all subjects. The 

subjects were randomized to one of three groups. In group one; subsequent fluid rates of 0.5, 1 

and 2 µl/min, in group two; 1, 2 and 0.5 µl/min, in group three; 2, 0.5 and 1 µl/min, were 

infused. Between every change of fluid rate, a 60-min period was allowed for stabilization of 

MD-readings. 
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10.2 PAPER II 

The aim for paper II was to evaluate the feasibility and accuracy of an intravenous on-line 

continuous glucose measurement system inserted in a central vein, applying the microdialysis 

technique. 

10 patients scheduled for major upper abdominal surgery were included in this prospective 

observational study. Exclusion criteria were; any coagulopathy, CVC planned in other vein 

than in the right internal jugular vein, a deviating CVC or under 18 years of age. 

Method: The patients were studied during and after surgery, in the postoperative ward, for a 

total of 20 hours. After induction of anesthesia and before surgery, two CVCs were inserted in 

the right internal jugular vein, one standard 2- or 3-lumen catheter (5F, BD CareFlow™, 

Becton Dickinson Medical Surgical Systems, Franklin Lakes, NJ, USA, or 12F Mahurkar™, 

Covidien, Mansfield, MA, USA) and one additional one-lumen catheter with a MD-membrane 

(4 Fr Eirus SLC, Dipylon Medical AB, Solna Sweden). As a standard clinical routine, 25 mg/ml 

intravenous glucose infusion was administered during surgery. The MD-catheter was placed 

proximal to the CVC tip, to minimize the risk for falsely high glucose levels due to this local 

glucose infusion in comparison with arterial reference measurements. The catheters had a 

minimal distance between the tips of 3.9 cm, see figure 5. The placement of the CVCs was 

documented postoperatively by a chest X-ray. The MD-catheter had a membrane length of 40 

mm, and was perfused with saline. 

 

 

Figure 5: (Paper II) Schematic overview of the central vein microdialysis(MD) system. Picture 

A: 1. The MD-system with the sensor holder and display. 2. The perfusate line (NaCl). 3. The 

dialysate line. 4. The MD sensor with integrated vials. 5. MD catheter 6. The adjacent 2-lumen 

CVC. Picture B. Zoomed view of the insertion area: 5. Proximally inserted MD-catheter, 6. 

Distally inserted CVC. Picture C. MD-catheter with a semi-permeable membrane (arrow). 

Reproduced with permission from Critical Care (Blixt et al., 2013). 
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Microdialysis started after insertion, but monitoring started after a run-in time of at least 30 

minutes. Continuous glucose measurements proceeded for 20 hours, online values were 

recorded every minute. The device analyzed glucose levels every second, while presenting a 

rolling minute average. Two reference arterial samples were collected every hour, two minutes 

apart, during the whole study period. 

 

10.3 PAPER III+IV 

The aim for paper III and IV was to investigate the effects of glucose control on postoperative 

insulin resistance and glucose kinetics in liver surgery (paper IV). 

Patients scheduled for elective open hepatectomy were enrolled in these randomized 

prospective studies. Twenty patients per protocol and study were planned. Patients scheduled 

for open laparotomy, over 18 years of age, with no contraindications for EDA were included. 

Patients with BMI>30, known history of diabetes mellitus or medication with systemic 

corticosteroids were excluded. Paper IV was registered at ANZCTR (Trial id number 

12614000278639). 

Method: Insulin sensitivity was assessed by a hyperinsulinemic normoglycemic clamp, HNC, 

as described below, on the day before surgery and immediately after surgery. In paper IV, a 

stable isotope tracer infusion with 6,6-2H2-D-glucose was added, during the HNC and 

intraoperatively. Patients were randomized by using a sealed opaque envelop, on the day of 

surgery before induction, to intraoperative insulin treatment (glucose target of 6-8 mmol/l) or 

to a control group. The control group was treated accordingly to current clinical practice, 

receiving intermittent intravenous insulin if blood glucose exceeded 11 mmol/l. 

At the day of surgery, the patient arrived to the operating theatre at 7.30 am, fasting since 

midnight. A 6,6-2H2-D-glucose-infusion was started after arterial baseline sampling. The 

patients received oxycodone (Oxycontin®, Mundipharma, Sweden) as premedication, intra- 

and postoperative analgesia was managed with a thoracic epidural catheter, inserted at level Th 

7-10. After a test dose with Bupivacaine adrenaline 5 mg/ml (3-5 ml, Marcain adrenalin®, Astra 

Zeneca, Sweden) and an epidural bolus dose of fentanyl (50 µg) (Fentanyl, B Braun, 

Melsungen AG, Germany), an epidural infusion, containing Bupivacaine (1 mg/ml), adrenaline 

(2 µg/ml), and fentanyl (2 µg/ml) (15ml/h), was started. General anaesthesia was induced with 

Propofol-Lipuro® (B. Braun, Melsungen AG, Germany) and fentanyl and maintained with 

Sevoflurane (Sevorane®, Abbott, Solna, Sweden). Atracurium-Hameln (Biocodex, Kista, 

Sweden) was used for muscle relaxation. A central venous catheter(CVC) was inserted after 

induction of anaesthesia in all patients. Continuous infusion of glucose 25 mg/ml, 1 ml/kg/h, 

was routinely started as soon as the CVC was inserted. Arterial plasma glucose was measured 

every 10 minutes using a POC glucose monitor (Hemocue Glucose 201+®, Hemocue AB, 

Ängelholm, Sweden). In addition, hourly reference plasma samples were obtained. 



 

40 

Plasma samples for insulin and C-peptide were obtained at the start and the end of the HNC, 

as well as at three times during surgery; at the start of anaesthesia, at the start and at the end of 

the liver resection phase. In paper IV, plasma samples for tracer enrichment were obtained at 

identical surgery phases as for the hormones, apart from an additional sampling at the start of 

operation, see the study protocol, figure 6. Data for baseline characteristics; hemodynamic 

parameters, saturation, the amount of haemorrhage and blood transfusion, the size of resection 

and times of the anaesthetic, surgical and resection phases were collected. In addition, the rates 

of the glucose-, noradrenaline- and insulin-infusions were recorded. Crystalloid infusion 

(Ringer-Acetate®, Baxter International Inc., Ill, USA) 0-4ml/kg was given as intraoperative 

fluid replacement. Intraoperative haemorrhage was replaced with crystalloids, colloids and/or 

blood products, depending on the staff in charge. 

 

 

Figure 6: Study protocol for paper III and IV. Insulin sensitivity was assessed by a pre- and 

postoperative hyperinsulinemic normoglycemic clamp, HNC. In paper IV, a stable isotope 

tracer infusion with 6,6-2H2-D-glucose was added, during the HNC and intraoperatively. 

 

 

10.3.1 Hyperinsulinemic normoglycemic clamp (HNC) 

The patients arrived at the hospital at the day before surgery and measurements were performed 

after an overnight fast, or after a minimum of 6 hours. A peripheral vein catheter and an arterial 

catheter, though for the preoperative HNC in paper III two peripheral vein catheters, were 

inserted in separate arms, for infusions and blood sampling. 

Two separate plasma glucose values, 10 and 5 minutes before the start of the HNC, analysed 

on a blood-gas analyser (ABL 800 Flex, Radiometer, Denmark), were used as a baseline mean 
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value. The HNC was initiated with a bolus of insulin (1.1U/m2, Humulin® Regular, Lilly Ltd, 

Indianapolis, USA) followed by a constant insulin infusion (80 mU/m2/min) with added 

albumin (400 mg, CSL Bering, PA, USA) and potassium (32 mmol, Addex®-Kaliumklorid, 

Fresenius-Kabi, Fresenius AG Bad Homburg, Germany). Normoglycemia was maintained by 

a variable infusion of glucose (Glucose 200mg/ml, B. Braun, Melsungen AG, Germany). 

During HNC, plasma glucose was analysed every 5 minutes on the POC device. For safety 

reason, plasma potassium was measured before and after the HNC, analysed on a blood-gas 

analyser. The target level for glucose steady-state was set to ±0.5 mmol/l of the baseline mean 

value. The HNC was continued for 120 minutes, and steady-state condition was assumed to be 

obtained after 60 minutes. 

The HNC was repeated at the postoperative ward, approximately one hour after arrival, and 

after assessment of the EDA. The preoperative glucose target level was also used for the 

postoperative HNC. Arterial sampling was used in the postoperative HNC in paper III and IV. 

After 120 min, the insulin infusion was interrupted, whereas the glucose infusion continued as 

a security measure for an additional 30 minutes, and was terminated when a control sample 

showed normoglycemia. To avoid hypoglycemia after the preoperative HNC, patients were 

requested to eat before returning to the surgical ward. 

Steady states for the glucose infusion and the glucose concentrations during the final 60 

minutes of the HNC were later evaluated blinded, by a person not involved in performing the 

HNC, and unaware of the randomization. A steady state period, coinciding for glucose infusion 

and glucose levels, of minimum 30 minutes was identified and used for calculations. HNCs 

with no steady state for at least 30 minutes were excluded. The HNC validation was performed 

prior to any calculation. The amount of glucose given during the steady state period was used 

for calculation of the M-value (mg/kg/min). 

In paper IV, after baseline isotopic enrichment sampling, a primed continuous (3 mg/kg + 2.4 

mg/kg/min) infusion of 6,6-2H2-D-glucose was started, 60 minutes before start of the HNC. 

The steady-state conditions of 6,6-2H2-D-glucose and the HNC was considered to coincide. 

6,6-2H2-D-glucose was added to the variable glucose infusion, to compensate for changes in 

plasma enrichment during HNC, due to changes in the glucose infusion rate. The mean glucose 

isotope enrichment (MPE) was estimated to be 1.2% and 0.7%, in the pre- and the postoperative 

HNC respectively. 

At the day of operation, sampling for baseline enrichment was performed via an arterial 

catheter. A primed continuous infusion (3 mg/kg + 2.8 mg/kg/h) was started 60 min before 

tracer sampling, and continued uninterrupted during surgery and the postoperative HNC. 

Sampling for 6,6-2H2-D-glucose enrichment in plasma was made every 10 minutes during the 

last 30 minutes of the HNC period (90 to 120 min), and every 5 minutes for 10 minutes during 

surgery, at the start of anaesthesia, the start of surgery, the start of resection and the end of 

resection. The standard continuous intraoperative glucose infusion (glucose 25 mg/ml, 
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1ml/kg/h) was unlabelled. This infusion and any ongoing insulin infusion were terminated at 

the postoperative ward, and the HNC was performed as previously described. 

10.3.2 Isotopic tracer dilution technique 

The enrichment of 6,6-2H2-D-glucose and glucose concentrations were measured in all infused 

solutions. Plasma enrichment values, molar percent excess (MPE), used in further calculation, 

represent the mean MPE value of the four 10-minute samples collected during the final 30 min 

period of HNC, or the three 5-minute samples collected during the four surgical phases. 

Glucose kinetics were calculated by using a modified Steele´s equation. For WGD, the glucose 

pool volume (V) was assumed to be 250 ml/kg and a pool correction factor (P) of 65% was 

assumed. The rate of change in plasma glucose concentration (∆G, mmol/l/min) as well as the 

total rate of tracer infusion (TI, continuous and added labelled glucose, mmol/kg/min) were 

calculated. 

Under steady-state, it is assumed that the tracer infusion rate divided by the tracer enrichment 

(MPE), equals the rate of appearance, Ra, which in the post-absorptive state represents the 

EGP, see figure 3. However, with concurrent glucose infusion, endogenous glucose Ra was 

calculated by subtracting the rates of exogenous glucose infusion (GIR) from total glucose Ra. 

At steady state rate of appearance is also assumed to be equal to rate of disappearance, Rd. 

10.3.2.1 Glucose kinetics equations: 

EGP (mmol/kg/min) = (TIR / MPE x100) - GIR - TIR 

WGD (mmol/kg/min) = GIR + EGP – (P x V x ∆G) 

 

EGP = endogenous glucose production (µmol/kg/min) 

WGD = Whole body glucose disposal (µmol/kg/min) 

TIR = Tracer infusion rate (µmol/kg/min) 

GIR = Labelled glucose infusion rate (µmol/kg/min) 

MPE = Molar percent excess, enrichment of labelled glucose in plasma (%) 

∆G = Rate of change in plasma glucose concentration (µmol/l/min) 

P = Correction factor of glucose pool (0.65) 

V = Distribution volume of glucose (250 ml/kg) 
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 SAMPLING AND ANALYSES 

Paper II-IV: Reference glucose sampling was collected using an arterial line. In paper I, a 

PVC was used for collection, as in paper III, during the preoperative HNC. 

Paper I-IV: Reference plasma glucose were taken in pre-chilled Sodium fluoride/potassium 

oxalate tubes, kept on ice, centrifuged within 60-90 min (1200G, 10 minutes in 4° C, Universal 

32 R Hettich Zentrifugen®, Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany) and 

stored at –80 oC until later analysis. Samples were analysed on an automatic analyser (Konelab 

20, Thermo Scientific, Jönköping, Sweden) using a GOD-POD analysis (Thermo Fisher 

Scientific, Vantaa, Finland). 

Paper I: Microdialysis vials were collected and analyzed within 5 hours on an automated 

analyzer (CMA600, CMA Microdialysis, Solna, Sweden). 

Paper II: The microdialysate was analysed in an online analyser module, using a GOD 

reaction. The results were sent to and displayed on the Eirus monitor. Retrospectively, MD-

measurements were calibrated to plasma glucose values by two different ways of calibration, 

by using the first plasma value only (MD1) or by recalibration every eight hour (MD8). A mean 

value of the two reference values was calculated and compared to the MD-value. Due to the 

transport of fluid in the MD catheter, there was a lag-time of 10 minutes between measurement 

and analysis. Consequently, MD-values were corrected for these 10 minutes. Only 

measurements coinciding with hourly plasma reference samples were used for calculations. 

Paper III+IV: Repeated plasma glucose measurements were performed using a bedside 

glucose analyser (Hemocue Glucose 201+ ®, Hemocue AB, Ängelholm, Sweden) both during 

surgery and clamping. In addition, safety measurements of plasma glucose and potassium were 

done hourly during surgery as well as before and after HNC using a blood gas analyser (ABL 

800 Flex, Radiometer, Denmark). 

Paper III+IV: Samples for Insulin, C-peptide and Cortisol were taken in pre-chilled EDTA 

tubes, centrifuged and stored as described above. Plasma cortisol (Paper III), insulin and C-

peptide (Paper III+IV) were analysed using an ELISA-based standard analysing kit 

(IMMULITE® 1000 Immunoassay System, Siemens®, Ill, USA). In the hormone analysis, 

some insulin values were reported as <2 or >300 µIU/ml. No apparent explanation for outliners, 

for example hemolysis, was found. For calculation, numbers 2 and 300 were used. 

Paper IV: Samples for 6,6-2H2-D-glucose were collected in pre-chilled EDTA tubes, 

centrifuged and stored as described above. Plasma glucose samples was deproteinized and 

purified using ion exchange chromatography, glucose was derivatized to its trimethylsilyl-O-

methyloxime form. 6,6-2H2-D-glucose enrichment was analysed on gas-chromatography mass-

spectrometer (GCMS) (Agilent 6890 and 5975C with Triple-Axis Detector, Agilent 

Technologies Inc., CA, USA).  
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 STATISTICS 

Paper I-IV: Values are presented as median and lower and upper quartile or mean (standard 

deviation) for non-normally and normally distributed data, respectively. Shapiro-Wilks test 

was used for testing normal distribution of data. Student’s t-test and repeated measures-

ANOVA were used to analyse normally distributed data, Mann-Whitney test and Kruskal-

Wallis ANOVA, was used for analysing continuous non-parametric data and Fischer´s exact 

test was used for analysing categorical data. 

A p-value<0,05 was considered statistical significant. Statistical analyses were performed 

using Statistica 10 (Paper I-III) or 13 (Paper IV and combined data) (StatSoft® Inc, OK, USA). 

Paper I: The percentage difference between measurements from both arms was calculated for 

each of the seven sampling timepoints in each subject. 

Paper I+II: Mean difference between reference sampling and MD-glucose is presented in 

Bland-Altman plots, (paper II) regression analysis and a Clark-Error Grid. 

Paper III+IV: Twenty plus twenty patients were analysed per protocol. In paper III one patient 

in the treatment and two in the control group were excluded, and in paper IV one patient in 

each group were excluded, due to suboptimal insulin clamping, assessed blinded. 

In paper III Kruskal-Wallis ANOVA was used for analysing the hormone levels. M-values 

were presented as mean±SD, and the difference between pre- and postoperative HNC values 

was reported as percentage. In paper IV and the combined data, M-values were reported as 

median (lower-upper quartile), and the difference between pre- and postoperative values was 

reported as M-ratio. 

In the analysis of the combined data, a correlation and forward stepwise logistic regression 

analysis were performed. The sample size of 35 patients, had a power of 80% to find a 

correlation of 0.46, in continuous data, at α 0.05. Non-normally distributed data for ANOVA 

analyses was log transformed for analysis (paper III and IV). 
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 RESULTS 

13.1 PAPER I 

Protocol I: The difference between glucose measurements in two peripheral veins (control), 

was up to 10%, with an average difference of 3±3% (mean±SD). For the 10 and 20 mm 

membrane, the average difference was 30±21% and 14±13%, respectively. 

Protocol II: At the lowest perfusion rate, 0.5 µl/min, 12 of 15 subject had a difference of less 

than 10% between plasma and microdialysis measurements, with an average of 8±7%. For the 

perfusion rates of 1 and 2 µl/min, the average differences were 25±19% and 39±28%, 

respectively. 

 

 

Figure 7: (Paper I) Bland-Altman plots of the comparison of the two plasma measurements 

from different veins in the same subject (top left), and the glucose measurements by 

microdialysis using different settings (variable membrane length and perfusion fluid rates), as 

described in chapter 11.1. For the left panels, the perfusion rate was 0.5 µl/min and for the 

right panels the membrane length was 30 mm. Values are given as the median values of the 

seven consecutive measurements over 70 min. The bold lines represent the line of equality, and 

the dotted lines the limit of agreement (SD x 1.96 of the difference). Reproduced with 

permission from Acta Anaest Scand (Rooyackers et al., 2012). 
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To compare the two different measurement methods, which had large interindividual 

variations, the median values were presented in a Bland Altman plot. For the two plasma 

measurements, i.e. the control, the line of equality was -0.09 mmol/l, and the limits of 

agreement 0.27 and -0.45 mmol/l. For the two microdialysis membrane, 10 and 20 mm, the 

limits of agreement were larger than for the control group. In addition, the lines of equality 

were different from zero, 1,62 and 0.61 mmol/l respectively. The setup used in protocol II, 

using a 30-mm membrane with a perfusion rate of 0.5 µl/min, demonstrated the best line of 

equality,  -0.11 mmol/l, and limits of agreement,1.13 and -1.35 mmol/l, see figure 7. 

Consequently, the conclusion was that the lowest perfusion rate combined with the longest 

membrane, demonstrated the best agreement, 8±7%, to plasma reference values. An interesting 

observation was the average difference between two plasma measurements, 3±3%. 

 

13.2 PAPER II 

In all patients included in the study, continuous measurements proceeded for 20 hours. Eight 

women and two men were included, with a mean age of 60 years (range 27-81). Of the 10 

patients, 3 patients had pancreatic, 6 liver and 1 gastric surgery. Four patients received a large 

bore (12F) CVC, six patients received a standard double lumen (5F) CVC, along with the 

microdialysis catheter. To avoid falsely high values due to interference from the glucose 

infusions through the venous catheters, the mean distance between the tips of the microdialysis 

and venous catheter was 59 mm (39-82mm). This placement was confirmed by postoperative 

X-ray. 

The recorded 195 individual glucose values ranged from 4.2 to 17.1 mmol/l. Mean single 

calibration glucose values (MD1) were 9.6±2.5 mmol/l, and for eight-hour calibration (MD8) 

9.8±2.4 mmol/l. Both calibration methods showed a close agreement between the continuous 

readings and reference values. They showed a mean absolute glucose difference of 0.85±0.82 

mmol/l or a mean absolute relative difference (MARD) of 8.8±8.4% and 0.61±0.76 mmol/l or 

6.8±9.3% to the reference value, in MD1 and MD8 respectively. 

In addition, both calibrations showed a high correlation to plasma readings, r=0.89 (p<0.001) 

and r=0.92 (p<0.001; t-test) in MD1 and MD 8 respectively. The agreement of the 

microdialysis glucose measurements were also presented in a Bland Altman plot. Both 

calibration methods showed lines of equality close to zero. The limit of agreement (±1.96 SD: 

CI 95%) was 24.2% (2.34 mmol/l) and 23.0% (1.94 mmol/l) for the MD1 and MD 8 calibration 

respectively, see figure 8. There was no statistical difference between MD1 and MD 8 

calibrations (p=0.09, t-test). When the values were presented in a Clarke Error Grid, 100 % of 

all values were found in the A or B areas (benign). In MD1, 92.7%, and in MD8 93.3%, of the 

values were in the A area, see figure 8. 
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Figure 8: (Paper II) Upper row: Clark Error Grid of the reference vs the microdialysis glucose 

values, the eight-hour calibration (MD8) to the left, and the single calibration (MD1) to the 

right. Lower row: Bland-Altman plots of the mean absolute reference vs the mean absolute 

microdialysis glucose values (mmol/l), to the left MD8-calibration, to the right MD1-

calibration. Bold lines represent the lines of equality, and dotted lines the limit of agreement 

(SD x 1.96 of the difference). Reproduced with permission from Critical Care (Blixt et al., 

2013). 

 

The paper concluded that 20 hours on-line continuous microdialysis glucose measurements, 

via a central vein catheter, showed a close agreement to plasma reference values. 100% of 

values were within A or B area in a Clark Error Grid, and the device demonstrated a MARD 

of 6.8±9.3%. 

 

13.3 PAPER III 

In paper III, 22 patients were included per protocol. Two patients were excluded in the 

intraoperative period due to unexpected corticosteroid treatment. Ten patients were planned in 

each group. Due to suboptimal quality of the hyperinsulinemic normoglycemic clamping (i.e. 

unable to reach steady state) another three patients were excluded (assess blinded), one patient 

in the treatment group and two patients in the control group. The groups were comparable for 

BMI, age, gender, operation and resection time, as well as blood loss and blood transfusions. 
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In the treatment group, all patients had surgery due to metastasized liver cancer, in the control 

group 6 out of 8 had the same indication for surgery, one had hepatocellular cancer, and one 

was diagnosed with benign tumor after microscopic evaluation of the resected parenchyma. 

At start, mean glucose was 6.7±0.7 and 6.7±0.9 mmol/l in the treatment group and control 

group respectively (p=0.69, t-test). Total mean intraoperative blood glucose was 6.9±0.4 and 

8.8±1.5 mmol/l in the treatment and control group respectively, and the difference between the 

groups during surgery were significant statistically (p=0.003, t-test). The mean M-value 

decreased from preoperative 6.9±2.3 to 3.3±1.7 mg/kg/min and from 7.0±2.5 to 1.6±1.7 

mg/kg/min, in the treatment and control group respectively (p=0.056, ANOVA). In paper III, 

the relative difference in postoperative insulin sensitivity is expressed as M%. It corresponds 

to the ratio between postoperative and preoperative M-value, M-ratio, given in percentage. 

Though the decrease was pronounced in both groups, it differed significantly between the 

groups, the M% was 46.8±15.5 and 21.9±16.2 in the treatment and control group respectively 

(p<0.005, t-test), see figure 9. 

Consequently, postoperative insulin resistance after liver surgery, though pronounced in both 

groups, was significantly attenuated by intraoperative glucose control. 

 

 

 

 

 

 

 

 

 

Figure 9: (Paper III) The difference between pre- and postoperative M-values presented as the 

percentage of the retained insulin sensitivity after surgery (M%). Individual and mean±SD 

values are presented. The groups preserved 46.8±15.5% vs 21.9±16.2%, in the treatment and 

control group respectively (p< 0.005, t-test). Reproduced with permission from Clinical 

Nutrition (Blixt et al., 2012). 
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13.4 PAPER IV 

In paper IV the protocol from paper III was repeated, except for the addition of isotope labelled 

glucose. The aim was to evaluate the alterations in glucose kinetics during intraoperative 

glucose control and the development of insulin resistance. 

In paper IV, another 22 patients were included. Two patients were excluded, one due to 

undiagnosed diabetes and in one the surgery was unexpectedly interrupted. As in paper III, 

another two patients, one patient in each group, were excluded due to suboptimal quality of the 

hyperinsulinemic normoglycemic clamping (assess blinded). As in paper III, the groups were 

comparable for BMI, age, gender, operation and resection time as well as blood loss and blood 

transfusions. In the treatment group, seven patients had surgery due to metastasized liver 

cancer, one had cholangiocarcinoma and one was diagnosed with a benign tumor after surgery. 

In the control group 5 patients had metastasized liver cancer, one was later diagnosed with 

neuroendocrine tumor (without overt symptoms or laboratory findings from the tumor), and 

three was diagnosed with benign tumor after microscopic evaluation of the resected 

parenchyma. 

Mean glucose at start was 6.7±0.9 and 6.3±0.7 mmol/l in the treatment and control group 

respectively (p=0.35, t-test). Mean intraoperative glucose for the first 220 mins used for 

calculations, were 7.0±0.8 and 7.7±1.1 mmol/l, in the treatment and control group respectively 

(p<0.001; ANOVA). Insulin resistance decreased in both groups, from preoperative M-value 

of 4.6(4.4-6.8) to 2.1(1.2-2.6) and from 4.6(4.1-5.0) to 0.6(0.1-1.8) mg/kg/min in the treatment 

and control group (p=0.03; ANOVA, log-transformed data), see figure 10. However, the 

relative reduction in insulin sensitivity, in paper IV reported as the ratio between postoperative 

and preoperative M-value, failed to reach significance between groups, 0.35(0.26-0.51) vs 

0.11(0.02-0.41) in treatment and control group respectively (p=0.11; Mann-Whitney). 

 

Figure 10: (Paper IV) Individual M-values (mg/kg/min) and median M-values (red), at the 

preoperative (left) to the postoperative (right) HNC, in the treatment and the control group 

respectively (p=0.03, ANOVA). 
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The preoperative endogenous glucose production (EGP) was comparable between the groups, 

1.8(-0.9-4.2) vs 2.9(1.9-3.8) µmol/kg/min. Postoperatively these increased significantly to 

3.4(2.6-6.5) vs 6.4(3.2-10.8) µmol/kg/min, in the treatment and control group respectively. 

Though a time effect was observed (p=0.05, ANOVA), the interaction did not reach significant 

difference between the groups (p=0.85, ANOVA). Similarly, whole-body glucose disposal 

(WGD) decreased significantly in both groups, from 31.6(25.6-43.0) vs 32.7(31.6-34.5) 

µmol/kg/min to 15.4(12.0-22.3) vs 14.0(11.6-16.3) µmol/kg/min, in the treatment and control 

group respectively. Whereas a significant time effect was demonstrated (p<0.0001, ANOVA), 

no statistical difference in interactions between the groups was observed (p=0.60, ANOVA). 

Intraoperative glucose kinetics revealed a decreasing EGP, with a significant difference 

between groups, from 17.2 to 11.6 µmol/kg/min in the treatment group vs 15.3 to 10.1 

µmol/kg/min in the control group (p=0.02, ANOVA). In contrast, no difference in WGD for 

either group, could be detected during surgery (p=0.67, ANOVA), see figure 11 in chapter 

14.8. 

The findings were in line with the results from paper III, which also demonstrated that 

intraoperative glucose control significantly improved postoperative insulin resistance. In paper 

IV, only the absolute reduction in insulin sensitivity reached significance (p=0.03, ANOVA). 

Postoperative glucose kinetics suggested that WGD is the major contributor to postoperative 

insulin resistance. During surgery, no clear explanation to the increased hyperglycemia was 

found, though a reduction of the EGP was revealed, possibly due to insulin treatment, while 

the WGD remained unchanged. 

13.5 COMBINED RESULTS FROM PAPER III AND IV 

Both studies, paper III and IV, were limited by the number of included subjects, 17 and 18 

respectively. The subjects were treated according to the same protocol, apart from the 

addition of the isotopic tracer dilution technique in paper IV. Consequently, the results from 

the papers were combined in the thesis, to 1) improve statistic power, and 2) to increase the 

possibility to detect significant correlations explaining the level of postoperative insulin 

resistance. In the results for the combined data, values for M-PRE, M-POP and M%/M-ratio 

reported in paper III and IV are here given as median (lower-upper quartile). 

The two groups, 18 and 17 patients in the treatment and control group respectively, were 

comparable for age, gender, BMI, blood loss, operation and resection time. Moreover, the 

groups did not differ in amount of transfused blood products or mean preoperative glucose 

values. The amount of noradrenaline administered was slightly higher in the treatment group, 

without reaching significance, 0.05±0.03 µg/kg/min and 0.04±0.02 µg/kg/min, in the treatment 

and control group respectively (p=0.06; t-test). The treatment group received insulin at a dosage 

of 21.8±11.9 mU/m2/min or 0.55±0.27 mU/kg/min. The control group only received single 

intermittent boluses, insulin was administered to 4 individual patients, at a total of 1-4 

U/patient. Notably, both groups in paper IV have lower median M-PRE values than the 
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corresponding group in paper III. Consequently, the control groups in paper III and IV are not 

comparable for that parameter (p=0.03, Mann-Whitney), while the difference between the 

treatment groups was non-significant. The baseline characteristics are presented in table 1. 

Blood glucose levels at the start of anesthesia were 6.7±0.8 and 6.4±0.8 mmol/l in the treatment 

and control group respectively (p=0.27, t-test). During surgery, the groups diverged to have 

7.0±0.7 and 8.1±1.3 mmol/l in treatment and control group respectively during the first 220 

mins (p<0.0001, ANOVA), see figure 12. No glucose value below 4.4 mmol/l was recorded 

during surgery. The total operation time differed, which implied the start of resection occurred 

at different times points from start of anesthesia. When comparing glucose levels at same 

surgical phases, the start of anesthesia, the start of liver resection and the end of resection, the 

glucose levels were still significantly higher in the control group (p<0.0001, ANOVA), see 

figure 13, in chapter 14.7. The elevation in blood glucose levels was predominantly seen 

between the start of surgery and the start of resection. However, the alterations between the 

groups, during the resection phase, were not significantly different (p=0.21, ANOVA). 
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Figure 12: Combined data of the intraoperative blood glucose concentration during the first 

220 min, in the treatment (n=18) and the control group (n=17) respectively (p<0.0001, 

ANOVA). 

 

 

The preoperative M-values, 5.9 and 5.0 mg/kg/min (p=0.61, Mann-Whitney), declined to 2.3 

and 0.9 mg/kg/min (p=0.004, Mann-Whitney) in the treatment and control group respectively, 
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see figure 14. The decrease over time between the groups, was significantly different (p<0.001, 

ANOVA on log-transformed data). The relative reduction, the ratio, between pre- and 

postoperative values was significantly different, 0.41 vs 0.12 (p=0.003 Mann-Whitney) in the 

treatment and control group respectively. Perioperative median M-values and mean glucose 

values (for the first 220 mins), for paper III, IV and combined data, are presented in table 2. 

Moreover, the M-ratio, in all patients, was strongly correlated to the randomization of insulin 

treatment and total mean intraoperative glucose values (r=0.50, p=0.002 and r=-0.46, p=0.005 

respectively). There were more men included in the trial, 27 vs 8 patients and the median M-

ratio was 0.49(0.28-0.61) and 0.31(0.11-0.45) for women and men respectively (p=0.1, Mann-

Whitney). Both BMI and gender showed a trend to significant correlation with insulin 

resistance (r=-0.31 and r=0.31 respectively, p=0.07 for both parameters). Overall, the total 

mean perioperative glucose values correlated to the Pringle maneuver, resection time and 

amount of bleeding (p=0.05, 0.008 and 0.03 respectively). As expected, the size and total time 

of surgery are correlated to the amount of bleeding and the resection time, though not to the 

Pringle maneuver. Correlations are presented in table 3, in chapter 14.7. 

Nevertheless, in a forward stepwise logistic regression analysis, neither factors (BMI or gender) 

were significant correlated to the reduction of insulin resistance, nor were age, Pringle 

maneuver, amount of bleeding, blood transfusion, noradrenaline or time or size of surgery. In 

the control group, no perioperative or baseline parameters had any correlation to the M ratio. 

In conclusion, the combined data confirmed that glucose control during liver surgery 

significantly reduced the development of postoperative insulin resistance, with a M-ratio of 

0.41 vs 0.12, or if presented as percentage, glucose control maintained 41% vs 12% of 

preoperative insulin sensitivity. 
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Figure 14: Combined data of the M-PRE vs M-POP values for the treatment (n=18) and the 

control group (n=17) (p< 0.001, ANOVA). 
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 DISCUSSION 

The land breaking trial published in 2001 by researchers in Leuven, where tight glucose control 

turned out to be beneficial to patients´ outcome compared to standard treatment, made glucose 

control a hot topic and standard care in worldwide ICU and perioperative settings. Consecutive 

studies were launched with the goal to confirm the outstanding results for these severely ill 

patients, indicating a reduced mortality of more than 30%. However, by including all types of 

patients, medical and surgical, as well as diabetics and non-diabetics, to the intensive insulin 

therapy, an increased risk for hypoglycemic events became more and more obvious7,8,10. 

Furthermore, two multicenter studies were prematurely interrupted, partly because of high 

incidences of hypoglycemic events9,11. In 2009, the NICE-SUGAR trial was published, and 

demonstrated not only a substantial risk for hypoglycemia by aiming at a tight glucose range 

compared to standard treatment, but indeed associated the hypoglycemic events to a higher 

mortality10. As a result of the interest in glucose control, various devices for improved quality 

of measurement were developed, with the intention to continuously monitor glucose 

concentration. 

Consequently, the initial eagerness to the idea of tight glucose control was cooled off. 

Moreover, further research has suggested that various kinds of fluctuations in glucose 

concentrations, not only hyper- or hypoglycemia, could add to the negative impact on patients´ 

outcome194. Whether glucose control is beneficial or not to outcome, has been suggested to 

depend on the genesis to the illness or type of surgery. Surgical patients have possibly a stronger 

benefit from glucose control, compared to non-surgical patients180. In addition, the diabetic 

status may influence dysglycemia, and thereby suggested to affect outcome. The DM status 

has been suggested to alter the tolerance for hyperglycemia, which could make the benefit from 

strict normoglycemia less pronounced199. Also, it is not known, whether it is the metabolic 

effect of insulin or the maintenance of normoglycemia that contributes to beneficial outcomes 

in certain patient groups. Finally, methods used to perform and measure glucose control in the 

different hospitals, could have affected both efficiency and safety as well as outcome in several 

trials. In conclusion, the optimal glucose target, to whom and where, as well as when and how 

to measure glucose has been vividly and frequently debated. 

14.1 ACCURACY OF GLUCOSE MEASUREMENTS 

A method to continuously measure and display glucose values is warranted. Ideally, a superior 

CGMS should combine the safe, swift analyzing and minimal labor effort of a POC-device 

with the accuracy and reliability of a blood gas analyzer or laboratory analyses. 

Proposed ways of reporting accuracy have been according to the International Organization  

for Standardization (ISO) criteria, where glucose values should be within 20% of reference 

value in >95% of the times over 4.2 mmol/l274. The standards have lately been revised, valid 

from 2016 the accuracy should be the same over a value of 5.6 mmol/l275. In contrast, the FDA 

(Food and Drug Administration) recommends higher accuracy, 95% of the values should be 
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within 15% of reference value, or 99% within 20%276. In addition, the even more stricter ICU-

consensus criteria from 2013 recommend over 98% of the readings should be within 12.5 % of 

the reference standard measurements219. Yet, another standard has been proposed, a mean 

absolute relative difference (MARD) of <10%277. Readings could also be presented in a Clark 

Error Grid, intended for single point of accuracy, or in a Bland-Altman plot. 

Sensor or sampling positioning seem to improve the measurements, though in general, 

subcutaneous CGMS report lower accuracy, quantified as MARD, than intravascular 

devices278. Trials on intravascular devices often report close to 100% of readings within the 

former ISO-standards and in the “non-dangerous” zones (A and B) in a Clark Error Grid. Other 

aspects of CGMS performances concern the need and frequency of calibration, which can 

reduce systematic errors, as well as the set-up time and reliability. 

In addition, the site of intravascular access is of interest. The difference between arterial and 

venous glucose levels has been demonstrated to be minimal, venous displayed 97% and arterial 

100% of the readings within 20% of laboratory reference measurements252. Despite this, 

arterial sampling accuracy is considered superior to venous. Moreover, a peripheral positioning 

could produce inferior readings due to vasospasm or hypothermia. Consequently, it makes 

intravascular sampling site preferred in the ICU settings. Moreover, irrespectively of the 

sampling site (arterial or venous) continuous monitoring of exact values as well as trends over 

time is suggested beneficial for reducing different types of dysglycemia and work load164. In 

contrast, it has been argued that an experienced and dedicated staff could well compensate for 

inferior methods of monitoring and sampling279, as demonstrated in the Leuven trials, and 

glycemic variability is not convincingly reduced by more intense monitoring235. 

14.2 MICRODIALYSIS TECHNIQUE 

Nevertheless, various CGMS have been developed over the last couple of years, presenting 

different degrees of agreement to plasma reference values. One of the applied techniques is 

measurements by microdialysis. The technology has the advantage of performing continuous 

sampling of interstitial fluid over a membrane, without extracting any fluid, in this case plasma. 

The drawback is the analysis is performed at a distance from the site of collection, resulting in 

a lag-time. This can also be an advantage, since the risk of misreading due to clotting of the 

analyzing part of the device is not an issue. Instead, clotting of the semi-permeable membrane 

is a potential hazard. 

As previously mentioned, Rooyackers et al. presented data for the feasibility of a MD-catheter 

in ICU patients over 5 days and in healthy volunteers258. However, the major conclusion was 

divergent reliability of the measurements, some readings showed high accuracy, whereas others 

was obviously insufficient. Another important observation was the difficulty to find adequate 

peripheral venous access in the severely ill patients. Possibly, a too large diameter of the 

microdialysis catheter could produce misreadings, by affecting the blood flow, which indicated 

the need for larger veins for insertion of the catheter. Moreover, it was suggested the catheter 

should preferably have a central position, as a distal position could imply differences in glucose 
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levels depending on which tissue the vein drains. This was illustrated by diverging glucose 

levels between different peripheral sampling sites, in the same subject. 

Another paper on the subject was published at about the same time, having investigated the 

agreement of glucose measurements by a peripheral intravenous microdialysis catheter in 14 

patients in a cardiac ICU during 3 days280. The measurements were performed in intermittent 

sampling periods during one hour each day. This study demonstrated a MARD of 14.7% and 

only 82% of the readings were within 20% of the reference. In addition, it reported a concern 

about the reliability, in 4 of 14 patients the readings were below reference values, which was 

speculated being caused by a reduced blood flow around the membrane. Another possibility 

for reduced agreement could have been the fluid rate, 1 µl/min, which was higher than the 

optimal rate reported in paper I. 

14.3 PAPER I AND II-INTRAVENOUS MICRODIALYSIS 

Consequently, paper I and II were designed to further investigate glucose measurements by 

intravenous microdialysis catheters. In the first study, the diameter of the vessel was evaluated 

by ultrasound, and no vessel with a diameter less than 3 mm was used, to avoid the catheter 

occluding the lumen and thereby reducing the surrounding blood flow. The two protocols 

evaluated the effect of the membrane length and the rate of the perfusion fluid separately. The 

best agreement to plasma reference values was demonstrated by the longest membrane, 30 mm, 

in combination with the lowest perfusion fluid rate, 0.5µl/min. The deviation from the line of 

equality can be handled by calibration. These findings were in line with the general principles 

for microdialysis measurements in other tissues, where increasing length, which gives a larger 

membrane area, and lower perfusion rate augments the agreement. The previous paper 

indicated that a shorter membrane length (10 mm) gives far lower agreement to plasma glucose 

readings than the longer membranes in paper I258. Thus, the conclusion was that the technique 

needed to be evaluated in a central vein, which by its size allows for even larger MD-catheter 

size and area of the membrane, thereby permitting higher fluid rate without losing degree of 

recovery. In addition, this shortens the lag time for analyses. Consequently, the criteria for on-

line real-time continuous glucose measurement systems could better be fulfilled. 

The larger microdialysis catheter studied in paper II was under refinement, and therefore 

delivered as a separate catheter, making the clinical handling somewhat more complicated. The 

distance between the two catheter tips were measured to avoid misreading due to concurrent 

glucose infusion in the standard central venous catheter (CVC). In later versions, the membrane 

has been integrated with the CVC, demonstrating similar agreement to plasma readings to the 

one we investigated. The catheter was evaluated over 20 hours, during and after surgery, 

without any signs of membrane failure, thereby indicating good feasibility. The device 

demonstrated a close agreement with an absolute difference of 0.6±0.8mM/l, and a MARD of 

6.8±9.3%. The readings disclosed a limit of agreement of 24.2%, with a line of equality close 

to zero. Eight of ten patients showed a good agreement to plasma values and the remaining two 

demonstrated an accurate trend to the changes in plasma glucose levels, but the exact 
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microdialysis values were lower than in plasma. The reason could have been rapid changes in 

glucose levels due to concurrent glucose infusions. Even though the two catheter tips were 

separated with a mean of 59 (39-82) mm, confirmed by X-ray, movements by the patient in the 

postoperative ward could have temporarily shortened the distance. In addition, the changes in 

the central vein and the artery (reference sampling) might not be completely synchronized 

during faster changes in glucose levels. Excluding these outliers, 95% and 98% of the readings 

were within 12.5% and 20% of reference values, respectively, which would imply the criteria 

stated in the 2013 consensus could be fulfilled. Perhaps a more frequent sampling could have 

improved the agreement. Furthermore, reference values were sampled in an arterial line and 

microdialysis values were venous, which could have added to the difference between MD and 

reference values. 

Two ways of calibration, a single calibration and every eight hour, as recommended by the 

manufacturer, were compared. Frequent calibrations are labor intense, and implementing 

continuous measurement systems have been suggested beneficial for the work load of the staff. 

In paper II, no significant difference between single and repeated calibration could be 

demonstrated, which implies that the technique is indeed applicable and reliable for this 

purpose. However, the device was only evaluated in 10 patients and for a relative short period, 

20 hours, and it is impossible to comment on the agreement during longer periods. 

No matter the technique, microdialysis or not, the advantages of a central positioning of the 

catheter have been clearly demonstrated in these trials. In paper I, the diameter of the vessel 

was assessed by ultrasound, and still possible outliers could have been explained partly by the 

catheter´s positioning. For instance, the catheter can position itself in to the vessel wall and 

block part of the membrane and blood flow. In the following paper, using a separate 

microdialysis catheter, the placement in the vessel and compared to the adjacent CVC, could 

also have been factors for misreading. 

Consequently, an integrated catheter has been developed and extensively evaluated in cardiac 

surgery patients, in gradually more advanced versions. A previous version of the MD-catheter 

as in paper II, was demonstrated having 93% of the MD-values within 20% of arterial reference 

values, though less agreement was shown to laboratory and venous values, 92 and 89% 

respectively252. In this version of the catheter, the microdialysate was collected in vials every 5 

minutes and did not represent a single-point value as the blood gas analysis. 

The MD-catheter, in the same version as in paper II, was later evaluated in 48 cardiac surgery 

patients, demonstrating a close agreement with a MARD of 5%, and 99.2% of all values within 

20% of standard reference253. The device was further developed and integrated within a CVC, 

which would be an advantage since two separate catheters could be difficult to handle, and 

increase the risk for misreading if the two tips are misplaced, as suggested in comparison 

studies. In the improved state, it had a shorter, 5 minute, time-lag and displayed similar MARD 

of 5.6%254. Though, in a study on 12 ICU patients, where the newer MD-device was used for 

3 days, the investigators demonstrated a somewhat lower agreement251, where 93.6% of 
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readings over 4.2 mmol/l were within 20% of reference, and displayed a MARD of 7.5% and 

93.6% of measurements in zone A of a Clark-Error Grid. The latter study was more close to 

our findings. However, they reported problems with the device, indicated by malfunctioning 

CVC´s or sensors. 

Altogether, the investigators demonstrated promising results, even though some reported 

malfunctioning sensors, and the main conclusion was that the MD-device is an accurate and 

reliable system. In comparison with a subcutaneous CGMS, the intravascular MD-system was 

demonstrated superior, where the subcutaneous CGMS showed a MARD of 6.5% but only 

90% within 20% of standard reference255. 

Overall, the main limitation for many CGMS is that the agreement has not been tested in the 

hypoglycemic range. As for most papers on the subject, also in paper II, there were no values 

in the hypoglycemic range, which makes it difficult to evaluate the accuracy for hypoglycemic 

values. For obvious reasons, it is difficult to intentionally perform clinical research on accuracy 

in this glucose range. However, the intravenous MD-catheter has been evaluated in the 

hypoglycemic range in an animal model. Hypoglycemia was provoked by insulin 

administration and restored by rapid glucose infusion281. The device was tested in a range 

where close to 60% of the readings were <4.1 mmol/l, and demonstrated good agreement to 

venous reference sampling, where 99% of values were in zone A in a Clarke Error Grid, 97.7% 

of the readings were within 20% of reference values and showed accurate trends. A notable 

finding, in contrast to other prior results252, was that the reference arterial values were 

consistently higher than the MD- or venous reference values, the latter was also previously 

reported by Rooyackers et al.258. A substantial difference between arterial and venous samples 

may have implications on the accuracy when arterial glucose is considered reference standard, 

though the impact can be solved by calibration. 

In paper I, the intravascular microdialysis glucose measurement using the lowest perfusion 

rate, over the longest membrane, displayed the closest agreement to plasma reference values, 

fulfilling the suggested criteria of a MARD <10%. However, glucose measurements could 

differ up to 6 % between intravenous sampling sites, an interesting finding in paper I to 

consider before accepting this criterion. 

14.4 VARIOUS INTRAVENOUS CGMS 

Other manufacturers of intravascular CGMS employ various analyzing methods, with sensor 

placement inside, or outside the vessel and different vascular accesses. One approach especially 

interesting for ICU patients, namely an arterial catheter using fluorescence sensing technique, 

was studied in a trial over 48 hours256. However, when compared to subcutaneous 

measurements, this device could not demonstrate a superior agreement, presenting only 85.8% 

of the readings within 20% of reference values vs 84.2% for the subcutaneous device. 

Moreover, when intravenous sampling in a peripheral vein over three days, by using frequent 

blood sampling over the sensor every 5 minutes, was investigated, the investigators reported a 

MARD of just above 5% and a mean absolute difference of 0.3 mmol/l282, compared to 6.8% 
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and 0.6 mmol/ in paper II. They concluded that the device is both accurate and reliable. 

However, they also reported initial problems with the catheters, requiring daily replacement, 

which would certainly imply patient discomfort. This discovery, in combination with the 

conclusions from our study group, that finding a suitable peripheral venous access in seriously 

ill patient is problematic, would argue for a central venous placement of the catheters, at least 

in the ICU-setting. However, since not all patients need, or are possible to provide with a CVC, 

a device developed for flexible vascular application, arterial, central or peripheral venous 

access, would be preferable. 

Central intravenous measurements, which apply different techniques, have been presented in 

several trials283,284. For example, a system, which uses a fluorescence sensing technique, 

presenting data every 15 seconds, demonstrated a MARD <10% in two different cohorts250. 

Another near-continuous device, using mid-infrared spectroscopy to measure blood sampled 

every 15 minute, has been evaluated248,249. Though presented with a similar accuracy as the 

MD-catheter, with a MARD of 7.6-8.0%, it could not reach the newer, stricter standards. 

However, the device was tested in both hyper- and hypoglycemic range, a strength as the latter 

is often lacking in most trials. 

However, the integrated MD-catheter has still not been a commercial success, why? Agreement 

to reference values are acceptable to good, and trials have reported reliable trend data, which 

can be argued more valuable as a single value. Early detection of unfavorable trends could 

ideally imply that the staff reacts more swiftly to changes in blood glucose levels, which could 

reduce hypoglycemic events or glucose variability. Whether that could be accomplished by 

CGMS or not can be debated. By short measurement intervals, up to every hour, a significantly 

improved glucose metrics was reached, whereas further shortening of that seemed to have less 

effect218. Further reduction could also imply considerable blood loss over time, if glucose is 

assessed by blood sampling. Interestingly, as previously discussed, high time in range (TIR), 

has been associated with an improved clinical outcome200,203,204. Accordingly, by using 

frequent arterial blood gas analyses, the Leuven investigators produced impressive results, 

possibly due to a lower variability and a higher TIR in combination with a dedicated, 

experienced staff. However, if implementing glucose control in various ICU-settings, with 

sometimes less skilled personnel, CGMS could improve safety, performance and possibly 

effect outcome. Though, this should be proven in randomized trials. 

Still, the MD-CGMS seems to have limitations, trials have reported malfunctioning sensors 

and missing data. Ideally, the start-up time until readings are presented on screen, should be as 

rapid and handling simple as invasive blood pressure measurements, but is reported 

considerably longer and more complex in comparison. In addition, to our knowledge, trials on 

clinical outcome are lacking.  

14.5 POSTOPERATIVE INSULIN RESISTANCE AND HYPERGLYCEMIA 

As previously discussed, a common feature for trauma and critical illness is the development 

of insulin resistance and subsequent hyperglycemia. The latter has been closely linked to poor 
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clinical outcome in both surgical54,74 as well as ICU settings57,58. As mentioned, the suggested 

explanation for the unfavorable hyperglycemia, is the strong associations between high glucose 

levels and an impaired immune function, delayed surgical wound healing and a higher infection 

rate33. The diabetic status may also to be a factor influencing the risk for adverse events, where 

non-DM patients seem to be more vulnerable to elevated glucose levels61,68,69,285. 

Consequently, the optimal glucose range may be different in different patient populations, and 

possibly dependent on the diabetic status. 

The degree of postoperative insulin resistance has been linked to the magnitude of surgery, 

fasting time, pain management and insulin treatment to keep normoglycemia. Abdominal 

surgery has been demonstrated to reduce insulin sensitivity by 50%, and even if most 

pronounced on the first postoperative day, it may persist for weeks after surgery100. 

Many studies on the subject are small and not designed to evaluate clinical outcome. In 

contrast, in a considerably larger prospective study, cardiac patients with poor preoperative 

blood glucose control showed higher degrees of postoperative insulin resistance (assessed by 

HNC) and increased incidence of adverse events; infections, need for blood transfusions and 

longer ICU and hospital stay53. In this study, the degree of insulin resistance was linked in a 

linear relationship to poor postoperative outcome. The authors, along with other investigators, 

propose HbA1c, indicative of poor glucose control, as a an useful tool to predict the 

development of postoperative insulin resistance62and adverse events210. Though being an 

interesting parameter, HbA1c was not included in the protocols for paper III and IV. 

14.6 PAPER III AND IV-EFFECT OF INTRAOPERATIVE GLUCOSE CONTROL 
ON INSULIN RESISTANCE 

Paper III and IV were designed to evaluate the effect of perioperative glucose control on 

postoperative insulin resistance, assessed by an hyperinsulinemic normoglycemic clamp, in a 

surgical (liver resection) research model. The intraoperative insulin infusion rate varied 

depending on the blood glucose values, sampled every 10 minutes. To our knowledge, few 

studies have used a similar protocol. If used at all, the HNC was often proceeded during 

surgery120, or glucose control pursued by using an artificial pancreas166. Moreover, insulin may 

have been administered according to a preset protocol, where blood glucose was measured at 

longer intervals193. In some studies, with focus on evaluating postoperative outcome, a so-

called GIN- or GIK-infusions with glucose and insulin in various combinations, have been used 

for glucose control6. In addition, some investigators have chosen to assess postoperative insulin 

resistance by indirect measurements, like HOMA-IR81. Even though time and labor consuming, 

we chose the HNC, which is considered the gold standard. 

In paper III the main conclusion was, that by keeping near-normoglycemia (6-8 mmol/l) during 

the intraoperative period, the postoperative insulin resistance, assessed within 2 hours after 

surgery, can be significantly reduced. The absolute postoperative reduction in insulin 

sensitivity was different between the groups, and the relative reduction, the ratio, was 

significantly attenuated in the treatment group compared to the control group. For comparison 
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between paper III and IV, all numbers for M-values are presented as the median value in the 

combined data, as data for one group in paper IV was non-normally distributed. Therefore, the 

numbers given in paper III differs from those given in the combined data, see table 2. 

After we observed a significant relative reduction of postoperative insulin sensitivity in paper 

III, we hypothesized that, by repeating the protocol and adding an isotopic tracer of glucose, 

we could discriminate the predominant site of the disturbed glucose turn-over, i.e. whether an 

increased glucose production or a reduced disposal was responsible for the alterations in insulin 

resistance. In paper IV, we confirmed that glucose control partly prevents postoperative insulin 

resistance, as the absolute reduction (M-PRE to M-POP) was significantly different between 

the groups, whereas the relative reduction in postoperative insulin sensitivity, did not reach 

significance. The relative reduction (the M-ratio) could be regarded as more accurate than the 

absolute values, as the value are suggested to remain constant between individuals, and has 

been demonstrated to correlate to the size of operations and the length of stay99. In paper III 

and IV, parameters for insulin resistance were significantly or close to significantly different 

between the groups, which may have been a result of small sample sizes. 

14.7 COMBINED DATA FROM PAPER III AND IV – GLUCOSE CONTROL AND 
POSTOPERATIVE INSULIN RESISTANCE 

We acknowledge that the main limitation in paper III and IV was the small number of patients 

included in each group, 9 vs 8 in paper III and 9 vs 9 in paper IV. Thus, the combined data 

from paper III and IV compiled data from 35 patients, and resulted in a more considerable 

number of patients subjected to open liver surgery. The improved statistical power increased 

the possibility to detect and determine mechanisms in the development of postoperative insulin 

resistance during liver surgery. Baseline characteristics of the combined treatment and control 

groups were comparable for the size of the resection, for the time of operation and resection 

and for blood loss. Though the groups were statistical comparable for most characteristics, most 

Pringle maneuvers were performed in the control group, see table 1. 

The combined results demonstrated a significant difference in the absolute reduction in M-

value, as well as in the M-ratio, between the treatment and the control group (p<0.001 ANOVA 

and p=0.003, Mann-Whitney, respectively). 

Unfortunately, in one parameter, the control groups in paper III and IV were not comparable. 

The treatment and the control group in paper IV presented lower median M-PRE values than 

the corresponding groups in paper III, and the two control groups was statistically different. 

Obviously, the patients in paper IV can be regarded as having less insulin sensitivity, even 

though handled in the same way preoperatively, and they were possibly closer to a pre-diabetic 

state. It could also have been a result of studying small sample sizes, since no other parameter 

differs significantly between papers III and IV. The only exception noted was the noradrenaline 

dosage, though this difference was only noted between the two treatment groups. 
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In addition, in paper III, preoperative glucose sampling during the HNC was collected in a 

peripheral venous catheter. Venous sampling often produces lower readings than arterial 

sampling. This is demonstrated in the combined data, where venous preoperative glucose 

values in paper III are 3.9% lower than the corresponding arterial values in paper IV, and this 

could partly explain the differences in numbers of M-values between paper III and IV. Mean 

glucose values at start of the preoperative HNC were 5.6±0.8 and 5.4±0.5 mmol/l in paper III, 

in treatment and control group respectively (p=0.55, t-test). Corresponding values in paper IV 

were 6.0±0.5 and 5.6±0.4 mmol/l, in the treatment and control groups respectively (p=0.08, t-

test). Moreover, the differences between the corresponding treatment and control groups, in 

paper III and IV, were not statistical different (p=0.26 vs 0.54, t-test), nor had any patient a 

preoperative fasting blood glucose value >7.0 mmol/l, which is the limit for diagnosing 

diabetes. Consequently, no apparent explanation for the diverging M-PRE values could be 

found. 

Since the individual times between the start of anesthesia and the start of resection differed 

between patients, the glucose values were plotted at the same phases, see fig 13. It revealed a 

significant difference between the groups (p<0.001, ANOVA), where the treatment group 

remained within glucose target, whereas the control group developed hyperglycemia, 

predominantly between the start of anesthesia and the start of resection. A similar elevation 

was also identified in paper IV, where an additional sampling point also revealed that the major 

increase in glucose levels occurred after the start of surgery, thereby indicated substantial 

alterations in glucose kinetics within this phase. 
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Figure 13. Combined data of the blood glucose concentrations for the treatment (n=18) and 

the control group (n=17) at different intraoperative phases; the start of anesthesia, the start of 

liver resection and at the end of resection (p<0.001, ANOVA). 
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The amount of hemorrhage was similar in the two groups, 500 vs 700 ml (p=0.30, Mann-

Whitney). In the data for all subjects, hemorrhage was positively correlated to the mean glucose 

value during surgery (p=0.03), and a trend for a correlation to the maximal glucose value was 

identified (p=0.06), see table 3. These findings confirmed the same association between 

bleeding per se and postoperative hyperglycemia, as Hager et al demonstrated in an animal 

model110. Perioperative hemorrhage, the need for blood transfusion, vascular clamping and/or 

vasopressors could be regarded as a cross-linked phenomenon. During liver surgery, 

hemorrhage induces hypotony, which can be corrected by either vasopressors or fluid (in major 

hemorrhage - RBCs), or the hemorrhage could be reduced by vascular clamping. All these 

factors are associated with the development of hyperglycemia, which may be corrected with 

insulin. 

The non-metabolic properties of insulin affect the NO-production, which may induce a 

vasodilating effect. This effect could theoretically induce a vicious circle, where insulin 

administration induces vasodilation in need of a vasopressor, in this case a catecholamine, 

which may cause hyperglycemia, and in turn again a need for more insulin. The interaction 

between insulin and noradrenaline has previously been demonstrated by Baron et al, where 

insulin sensitive subjects reacted less to a vasopressor than insulin resistant subjects286, and this 

could possibly explain the differences between the groups in noradrenaline dosage in paper IV. 

However, the dosage only differed for the insulin group in paper IV, see table 1. In paper III, 

the groups had comparable dosage of noradrenaline, as well as in the combined data, so it may 

have been a coincidental finding in our data. Another explanation for the diverting findings in 

the two papers, could have been the time elapsed between the trials. Even if no apparent change 

has been made in the anesthetic handling of these patients, a minor change in the use of 

vasopressors could have been introduced, with the intent of reducing the fluid administration. 

Even though the groups were comparable in most aspects, and no strong correlation could be 

found between the M-ratio or M-POP with the parameters amount of bleeding, operation time, 

resection time, transfusion or BMI, see table 3, the glucose control still positively influenced 

the postoperative insulin resistance. Interestingly, the strongest correlation was the correlation 

between M-ratio and the absolute M-POP value. As previously mentioned, the relative 

reduction of insulin sensitivity remained relatively constant between individuals and has been 

associated to the size of surgery99. However, this finding suggests the M-POP-value in itself 

could be indicative for the size of the reduction of insulin sensitivity, and therefore suggested 

useful in a simpler assessment of the development of postoperative insulin resistance. 

After correlating the parameters for all patients, the size of the resection showed no additional 

effect on the M-POP, M-ratio, BMI, age or dosage of noradrenaline. Moreover, there was no 

correlation between the amount of bleeding and the relative reduction of postoperative insulin 

sensitivity. Thus, the combined data was unable to confirm previous findings, which firmly 

correlated hyperglycemia and insulin resistance to time of operation287 and blood loss110, see 

table 3. 
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In general, more men are subjected to liver surgery, a ratio which was reflected in our data of 

27 men and 8 women. Whether the gender matters for the insulin resistance is unclear. In our 

data, BMI and gender showed a correlating trend to the development of insulin resistance. 

Though, the higher relative postoperative insulin resistance observed in the women in our 

data, 0.49 vs 0.31 (p=0.1, Mann-Whitney) failed to reach significance. The women had lower 

BMI than the men, 22.9±2.9 vs 26.4±3.3 (p=0.01, t-test), whereas no difference in age could 

be demonstrated, 66 vs 68 years (p=0.62, t-test). According to previously results reported 

from HNC performed in 70 subjects, no correlation between insulin resistance and gender, 

BMI or age could be found113. However, other authors suggested insulin resistance and 

perioperative glucose control to worsen with increasing BMI288, which in turn can be 

associated with aging289. In addition, pre-menopausal women were suggested to have higher 

insulin sensitivity149. In our trial, the menopausal status was not recorded, but all women but 

one, were by age post-menopausal. Even though no strong correlation between insulin 

resistance and age, gender or BMI could be found, there was a trend in the correlation of M-

ratio to BMI and gender (p=0.07), that indicated the parameters may be associated with the 

development of insulin resistance. 

As mentioned, data for the combined groups were comparable in most parameters. In the 

control group four patients had a Pringle maneuver performed and in the treatment group only 

one patient (p=0.18). Vascular clamping has been demonstrated to increase the perioperative 

glucose level87, and it could not be excluded that the procedure could have induced higher 

glucose values in the subjects, which were predominantly found in the control group. Though 

the maneuver was performed later during the surgery, when hyperglycemia had already 

developed in this group, it was correlated to the maximal glucose level in the control group 

(p=0.03). Nevertheless, the Pringle maneuver had no correlation to the M-ratio. 

Five patients in the treatment group, and six patients in the control group, received blood 

transfusions. The indication for transfusion, and the amount, was the choice of the 

anesthesiologist in charge, and the subgroup which received RBCs, had a blood loss of 

1545(600-2000) ml. The administered number of RBCs was similar between the groups 

(p=0.12, t-test), with a range of 1-8 units (250 ml/unit). Red pack blood cells (RBC) are stored 

in SAG-MAN solution (Saline–Adenosine–Glucose–Mannitol), which contains a considerable 

amount of glucose, approximately 15-25 mmol/unit111. The exact concentration of glucose is 

depending on the storage time, during which glucose is consumed. The storage time, and the 

exact timing of transfusion during surgery, were unfortunately not recorded. However, 

generally the main bleeding during liver surgery occurs during the resection phase. In attempt 

to reduce the central blood pressure and the risk of further bleeding, transfusion is often started 

at the end or after the resection. Moreover, as illustrated in figure 11, most patients had already 

developed hyperglycemia before this stage of the operation. The M-ratio, for all patients who 

received RBCs, was 0.30(0.07-0.55), which was equal to patients not receiving any blood 
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transfusion, 0.35(0.15-0.49) (p=0.79, Mann-Whitney). Thus, no relation between the M-ratio 

and transfusion of blood products could be demonstrated, see table 3. 

14.8 PAPER IV - GLUCOSE KINETICS 

In paper IV, the isotope tracer dilution technique was added to evaluate intra- and postoperative 

glucose kinetics. The endogenous glucose production (EGP) is assumed suppressed during the 

HNC, and thereby the amount of exogenous glucose administered at steady state, is equal to 

the whole-body glucose disposal (WGD). However, in a state of insulin resistance, the 

endogenous production might not be fully suppressed, even if a higher insulin dose is used, as 

in our protocol, and the tracer dilution technique is used to discriminate the endogenous 

contribution to the blood glucose level. 

Glucose kinetics measured during the HNC before and after surgery, indicated a development 

of a hepatic insulin resistance, as the EGP increased in both groups. In contrast, the WGD was 

significantly reduced, compared to preoperative values. However, the differences between the 

groups were subtle and failed to reach statistical significance. Possibly, both parts contributed, 

with the net result of a significantly reduced insulin resistance, a suggestion supported by the 

correlations between EGP, WGD and M-ratio (r=-0.74 and r=0.56 for EGP and WGD 

respectively). 

Few, if any, have investigated the alterations in postoperative glucose kinetics during liver 

surgery. Our results showed in absolute numbers, that the decrease in WGD was larger than 

the alterations in EGP, thereby indicating that the impaired glucose disposal was the major 

contributor to early postoperative insulin resistance in liver surgery. Though, it is possible that 

postoperative insulin resistance and glucose kinetics alters over time, as investigators have 

presented diverging results. Brandi et al. demonstrated an impaired response to insulin in the 

liver as well as peripheral tissues 6-8 hours after surgery290. Though in line with our findings, 

other investigators reported an impaired glucose disposal as being the major contributor to 

early, as early as two hours after operation, decreased postoperative insulin resistance and 

hyperglycemia39,113,124. In addition, in the same postsurgical time span, Lattermann et al. have 

repeatedly showed depressed levels of glucose clearance, interpreted as a sign of impaired 

WGD, where an additional EDA attenuated the increased EGP138,144,291. The suggested effect 

on EGP by a functional EDA, could possibly account for the insignificant changes in EGP in 

our postoperative data. A later study, where insulin resistance was assessed three hours after 

colorectal surgery, perioperative glucose control was demonstrated to influence both glucose 

production and disposal292. However, this paper confirmed, together with another trial132, our 

findings regarding the inability of insulin to fully suppress EGP and attenuate the decline in 

WGD in the postoperative setting. 

Later in the postoperative period, after the first postoperative day, the hepatic glucose 

production is probably more attenuated, whereas the reduction in glucose disposal could be 

considered consolidated114, even though contradictive results exist, where a depressed glucose 

disposal, even 2 days after colorectal surgery, have been reported139. 
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Figure 11: (Paper IV) Individual and median values (red) for intraoperative glucose kinetics, 

in the treatment and the control group. Numbers represent sampling at timepoints: 1. Start of 

Anesthesia 2. Start of Operation 3. Start of Resection 4. End of resection. Upper figure: 

Intraoperative values for endogenous glucose production, EGP (µmol/kg/min) (p = 0.02, 

ANOVA). Lower figure: Intraoperative values for the whole-body glucose disposal, WGD 

(µmol/kg/min) (p=0.67, ANOVA). 

 

 

However, these data were derived later in the postoperative phase. In paper IV, intraoperative 

glucose kinetics during liver surgery revealed a decreased EGP in both groups, with a 

significantly higher reduction in the insulin group (p=0.02, ANOVA), see figure 11. The 

decline started immediately after the induction of anesthesia, though the concurrent glucose 

infusion, in addition with the insulin infusion, may contributed to the alterations. In contrast, 

WGD remained unaltered during the operation, in both groups, which is puzzling considering 

the fact the control group developed hyperglycemia. The findings of a reduced EGP during 

surgery were in line with the data from Schricker et al., where intraoperative hyperglycemia 

developed during colorectal surgery, despite a decreased glucose production, which was 

assumed a result of diminishing glucose disposal293,294. The latter conclusion could not be 
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confirmed in our data, where the measured WGD remained unchanged. The main elevation in 

blood glucose occurred between the start of surgery and the start of liver resection, whereas 

prior, and after these phases glucose level was relatively stable. Obviously, substantial 

alterations in glucose kinetics occurred between these time points, which we unfortunately did 

not measure. 

14.9 LIMITATIONS 

In paper I, only volunteers were included, thereby the healthy subjects all presented within 

the normal glucose range. Moreover, the catheters were only tested over a short time-period, 

so no conclusion on the long-term performance can be made, which could have implications 

on the accuracy or validity in an ICU-setting, where patients present a wider glucose range. 

The MD-device investigated in paper II, was tested for 20 hours, with hourly sampling 

points, whereas a reduced sampling interval may have increased the accuracy. In addition, the 

measurement may have been affected by rapid changes in the concurrent glucose infusion, 

despite a mean distance between the catheter tips of 59 mm. The accuracy of a device with a 

venous positioning, compared to arterial reference sampling, can differ considerably, as 

Rooyackers et al. reported a limit of agreement of 12 % between arterial and venous 

values258. Moreover, of the 195 individual samples, no one was found in the hypoglycemic 

range, and the test-period was too short for making any further conclusions beyond that time. 

In the early postoperative phase, Svanfeldt et al. demonstrated an attenuated glucose production 

by administration of preoperative beverage, whereas the glucose disposal remained 

unchanged132. However, in paper III, the standard routine at the hospital was to fast the patient 

overnight. Therefore, we chose to maintain this for the study in paper IV, though fasting time 

has been demonstrated to increase postoperative insulin resistance, whereas preoperative 

beverage has been repeatedly proven to be beneficial123,124. 

Some patients had RBC transfusions administered, which could have increased the glucose 

levels. Unfortunately, the timing was not noted in relation to the level of hyperglycemia. In 

addition, there was a mismatch in gender, though it did not seem strongly correlated to the M-

ratio. 

The rate of the insulin infusion was not handled according to a preset protocol, instead manually 

directed by the investigators, depending on blood glucose values sampled every 10 minutes. 

Blood glucose measurements were performed by a POC-device. Though regarded to have an 

inferior accuracy from a blood gas analyzer, the POC device provided swift measurements and 

easy handling. A correlation analysis of the plasma reference and POC values showed 

acceptable accuracy, r=0.9 (p<0.001), and a limit of agreement (±1.96SD CI 95%) of 22.3% 

(1.6 mmol/l), with a line of equality close to zero. Though it did not meet current standards for 

POC devices, for the tight glucose measurements required in the protocol, it was vital to have 

rapid handling of samples, and the trend was as important as the point values. 
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Though having presented significant results in paper III, we acknowledge the sample size being 

small. To confirm the results, we included the same number of patients in paper IV. The 

combined data, with a sample size of 35, improve power to find correlations between the 

parameters. However, we could only find significant correlations for the randomization, M-

POP value and the mean glucose concentration to the relative reduction of insulin sensitivity. 

For other parameters, the study was underpowered, or correlations did not exist. Most clearly 

observed in paper IV, some patients in the control group remained fairly normoglycemic 

despite surgery and did not receive any insulin. This reaction could have influenced the 

outcome in paper IV, in which no significant difference in the M-ratio could be found. 

The diabetic preoperative status53 may predict the degree of perioperative insulin resistance. 

However, in paper III and IV all patients with a history of diabetes mellitus were excluded. 

Though, many patients received preoperative chemotherapy, which itself, or in combination 

with glucocorticoids, may exacerbate insulin resistance, thereby inducing overt diabetes 

mellitus295. To avoid effects from the glucocorticoid treatment, we allowed for a four-week 

wash-out period before inclusion. In addition, no patient presented with a glucose value >7.0 

mmol/l, i.e. the limit for diabetic diagnosis, before the start of preoperative HNC. 

The insulin dosage during the HNC in paper III and IV, 80 mU/m2/min or 2.0 mU/kg/min, 

differed in amount from that used in studies by Thorell, Nygren and Soop et al., 0.8 

mU/kg/min39,113,126. In contrast, other investigators have used even higher amounts during 

HNC118,129,136,287. It is assumed that EGP is suppressed at a plasma insulin level of 60 µU/ml, 

whereas higher levels only increases glucose disposal270. However, administering an insulin 

dosage, which rendered mean plasma insulin levels >150 µU/ml, failed in our trials to fully 

suppress the endogenous glucose production. This was demonstrated in several patients, which 

presented a M-POP of 0.1, and noted in the glucose kinetics data, where EGP was not fully 

inhibited. In contrast, it indicated that higher plasma insulin levels than suggested, were 

insufficient to completely suppress EGP in our patients, subjected to major abdominal surgery. 

Regarding the glucose kinetics data, baseline values are regrettably lacking. An explanation is 

that the protocol, which is time and labor consuming, made recruitment challenging. In 

addition, since tracer sampling only occurred intermittently in four specified intraoperative 

episodes, certain acute changes in glucose level would be missed, if occurring between 

measurements. 

It seems liver surgery is an immense stress for the human body. The mean M-ratio, for all 

patents, was 0.33±0.23, which represented a considerably higher reduction of preoperative 

insulin sensitivity, 67%, than previously reported in other major abdominal surgery100. Perhaps 

insulin resistance, induced by the type of surgery, is already maximized in the individual 

patient, and no additional parameter could have any further effect, as for example blood loss 

and time or size of resection. The suggestion could be exemplified by one patient in the control 

group, who was subjected to a minor, short-time resection, with a blood loss of 110 ml, and 

who displayed a M-ratio of 0.02. This means, the patient had lost 98% of its preoperative 
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insulin sensitivity. The identical M-ratio, 0.02, was found in another patient, subjected to a 

resection time of 128 min and 2200 ml of bleeding. In addition, the hypothesis can be illustrated 

by findings in the treatment group, where one patient had a minor resection and 550 ml of 

bleeding, presented a M-ratio of 0.55, while another patient which had a longer resection time, 

3100 ml bleeding and required blood transfusion, ended up with an M-ratio of 0.64. Obviously, 

these are only examples from single patients, but illustrates well the randomness in the M-ratio 

in our patients. 

However, despite its limitations, the combined data represent results from 35 patients subjected 

to liver surgery, where insulin sensitivity has been assessed by the gold standard, 

hyperinsulinemic normoglycemic clamp, before and after operation. Thereby it constitutes a 

substantial sample size for evaluating the effect of glucose control on postoperative insulin 

resistance. The patients were all handled according to standard routines for upper abdominal 

surgery in our hospital, and presented comparable baseline data. 

14.10 IS THE GLUCOSE CONTROL-REGIMEN BENEFICIAL -  AND FOR ALL 
PATIENTS? 

Dysglycemia has repeatedly been associated to poor clinical outcome, and introducing glucose 

control has been suggested to improve both morbidity and mortality. However, an association 

is not the same as causality. It has been argued that non-survivors in the ICU are more prone 

to have higher variability, harder to keep within glycemic targets, and are more susceptible to 

hypoglycemia, therefore making the glucose control regimen unsafe and perhaps even 

unnecessary296. Though, recently in a retrospective study, the insulin sensitivity and its change 

over time, assessed by a model-based index, was analyzed in ICU patients. The trial concluded 

that glucose control could be doable and beneficial for clinical outcome after all, as the patients´ 

metabolic condition seemed of less importance, since the non-survivors and survivors had 

equal variability297, whereas the non-survivors was less insulin resistant. The fact that non-

survivors presented less insulin resistance, which was speculated due to a reduced immune 

response, suggests the belief of a “beneficial” insulin resistance and hyperglycemia, originally 

developed to improve survival in animals, could be a justified theory48. 

Nevertheless, by minimizing the glucose variability, while maintained in a preset glucose 

range, and avoiding hyper- and hypoglycemia, the clinical outcome may be improved200,203. A 

recent meta-analysis suggested a blood glucose limit of <8.3 mmol to reduce the risk for 

surgical site infections298. However, the rationale raised the risk for hypoglycemia, even though 

no increase in severe adverse events or mortality was presented. Instead, individualization of 

glucose targets, depending on premorbid glycemic status or on the reason for ICU admittance, 

have been suggested beneficial164. As mentioned, DM-patients may be adapted to higher 

glucose levels, 299, whereas non-DM-patients seem to be more vulnerable to 

hyperglycemia60,184. In addition, cardiac surgical patients seem to have more advantage of a 

tight glucose control. Consequently, by combining any optimal CGMS-systems with an 

adapted insulin protocol in a closed loop system, glucose control may be improved and 
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workload reduced. However, the new devices may also create additional costs for disposable 

parts. As larger studies on the effect of CGMS on clinical outcome are lacking to our 

knowledge, this field could be the next interesting target for the researchers. 

In paper III and IV, we included only non-DM patients, or at least those assumed to be non-

DM. In the first Leuven trial, non-DM post-surgical patients had the most benefit from 

maintaining normoglycemia, as septic episodes were reduced almost by half and markers for 

kidney and liver function were significantly decreased. However, those patients had 

substantially longer insulin treatment, whereas our intervention was terminated after the end 

surgery. However, Mita et al. presented positive results on postoperative kidney function using 

a similar period of treatment168, while other findings of attenuated liver dysfunction and 

cytokine expression have been based on a prolonged treatment up to 24 hours169,170. In other 

trials, in which HNC was performed during and after cardiac surgery, an attenuated and delayed 

inflammatory and neuroendocrine stress response was demonstrated, until the clamp was 

terminated, where after the stress levels were restored117,118. Thus, glucose control has been 

associated with positive effects on postoperative myocardial and kidney function and on stress 

levels in general, despite insulin administration only in the intra- or in the early postoperative 

phase. 

The current study, was only designed for detecting differences in glucose kinetics and was 

underpowered to reveal alterations in postoperative outcome. However, perioperative tight 

glucose control, 4.1-6 mmol/l, in liver surgery, has previously been demonstrated to reduce the 

rate of surgical infections, postoperative kidney failure and hospital-length of stay166. On a 

cellular level, insulin treatment has been associated with reduced cell apoptosis and necrosis, 

as well as improved liver glycogen content169,170. The beneficial outcome may be explained by 

the findings that insulin treatment was associated with improved liver dysfunction, lowered 

levels of transaminases and creatinine167,168. Our study aimed for a higher treatment target than 

in some of the similar trials169,170,300, yet we displayed a mean glucose value of 8.1 mmol/l in 

combined control group, which is still below 10 mmol/l, a suggested limit to reduce the risk 

for hepatocyte injury45. Nevertheless, we demonstrated a significant difference in insulin 

resistance between the groups, and perhaps the effect would have been even stronger, with a 

lower glucose target in the intervention group. 

The correlation was strong between the M-ratio and the randomization (r=0.50, p=0.002), 

which suggests insulin treatment do have an important impact on the reduction of insulin 

resistance. The mean and max glucose values were also strongly correlated to the M-ratio, 

though the values were probably a result of the insulin treatment. However, some patients in 

the control group “failed” to develop high glucose levels. When comparing patients, 

irrespectively, of randomization, which had a max glucose value of < or > 8.2 mmol/l, 5 of 14 

patients within the lower group belonged to the control group. The M-ratio was significantly 

different between the groups, as the lower group had a M-ratio of 0.40(0.32-0.50) and the 

higher a M-ratio of 0.19(0.05-0.45) (p=0.02, Mann-Whitney). In contrast, this result indicated 

that maintaining normoglycemia by itself may be an important factor in the development of 
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postoperative insulin resistance. This suggestion is in line with the findings in a post-hoc 

analysis by the Leuven group, where the beneficial outcome depended on normoglycemia 

rather than the insulin dosage206. 

The magnitude of insulin resistance and postoperative hyperglycemia may have an important 

impact on the clinical outcome in general. Thorell et al. demonstrated in combined results from 

several studies, that postoperative insulin resistance correlated well to the hospital length of 

stay99. In addition, in a study by Umpierrez et al., cardiac patients were randomized to glucose 

control in range of 5.6-7.8 or 7.8-10 mmol/l, which started in the ICU and continued for 3 

months163. The cohort of non-DM patients seemed to benefit most from the regimen, having 

almost 40 % less complications than the DM cohort. 

In line with these findings, by implementing a near-normoglycemic target as in paper III and 

IV, from start from the of surgery and proceed further in the postoperative recovery phase, 

perhaps even maintained during the entire hospital-stay, the postoperative insulin sensitivity 

could be preserved better, as demonstrated in our data, and postoperative hyperglycemia 

reduced. As an improved glucose control, has been suggested to reduce adverse events in 

several patient populations, primarily in non-DM patients, this regimen could be proven 

beneficial for clinical outcome in liver surgery. 
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 CONCLUSIONS 

• The principles for intravenous microdialysis measurements of glucose concentration, 

are the same as for prior interstitial findings. In paper I, by reducing the velocity of the 

perfusion fluid, the accuracy to plasma reference values improved. By increasing the 

length on the semi-permeable membrane, the accuracy was additionally improved. The 

best agreement to reference values was demonstrated in the longer 30 mm catheter 

using the lower perfusion fluid rate of 0.5µl/min. 

 

• A larger intravenous microdialysis catheter placed in a central vein, demonstrated close 

agreement to reference plasma during a continuous on-line measurement period of 20 

hours, in patients subjected to upper major abdominal surgery. 

 

• Intraoperative glucose kinetics, assessed by isotopicly labelled glucose, demonstrated 

a reduced endogenous glucose production due to perioperative glucose control using 

insulin, whereas peripheral glucose uptake remained unchanged. Despite the data, 

patients did develop hyperglycemia during surgery, which could be explained by 

undetected rapid changes in kinetics in-between sampling periods. Glucose kinetics 

during postoperative insulin reistance assessed during a hyperinsulinemic 

normoglycemic clamp, revealed a trend towards an increased postoperative glucose 

production, with an additional reduced whole-body glucose disposal. The findings 

suggested that the major contributor to the early postoperative insulin resistance in liver 

surgery was impaired peripheral glucose disposal. 

 

• During liver surgery, irrespective the size of surgery, level of hemorrhage, blood 

transfusion, time of operation or resection, vasopressor therapy, gender, BMI or age, a 

substantial absolute and relative reduction of insulin sensitivity was demonstrated. In 

our study, for all patients, only 33% of preoperative insulin sensitivity were maintained. 

However, by maintaining glucose levels between 6-8 mmol/l under surgery, the 

development of postoperative insulin resistance was significantly reduced. The 

treatment group retained 41% and the control group 12% of the preoperative insulin 

sensitivity, assessed by a hyperinsulinemic normoglycemic clamp. 
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