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ABSTRACT 
Family history is an important risk factor for breast cancer, the presence of breast cancer in a 
first degree relative in general nearly doubles the risk and the risk increases with the number 
of affected relatives. Pathogenic mutations in BRCA1, BRCA2 and other high- and moderate 
risk-genes account for 25% of the familial risk for breast cancer. About 180 low-risk variants 
explain an additional 18% of the excess familial risk. The remainder of the genetic 
contribution to familial breast cancer is unexplained. A polygenic model, where pathogenic 
mutations with differential impact together confer an increased risk for breast cancer, has 
been suggested. The aim of this thesis has been to study and better understand how breast 
cancer is inherited and to identify underlying genetic factors that contribute to the risk in 
familial breast cancer without pathogenic mutations in BRCA1 or BRCA2 (non-BRCA 
families). 
 
In paper I tumour spectrum was investigated in our cohort of non-BRCA families with at least 
2 cases of breast cancer and one case of other tumour type in first-, second degree relatives or 
first cousins. Distribution of tumour types, other than breast cancer, was compared with the 
distribution in Sweden in two reference years. We found an overrepresentation of 
endometrial cancer in the non-BRCA families with a 6.36 % proportion (CI 4.67–8.2) 
compared to the proportion in the general population in the reference years 1970 (3.07 %) 
and 2010 (2.64 %). The main finding of the study was the strong support for a breast- and 
endometrial cancer syndrome, which is a first step towards detecting new susceptibility 
variants. 
 
In paper II we investigated if breast cancer prognosis is affected by parent-of-origin in our 
cohort of non-BRCA families. A difference in prognosis may indicate an influence of a 
genetic mechanism that produces inter-lineage effects, such as genomic imprinting. 
No significant difference in overall or recurrence-free survival between maternal and paternal 
inheritance of breast cancer was observed with HRs of 0.99 (95% CI=0.54 to 1.80) and 1.22 
(95% CI=0.78 to 1.92) respectively. An interesting finding in paper II was the predominance 
of maternally inherited cases, which indicates that parent-of-origin may not have an effect on 
breast cancer prognosis, but rather the risk of being affected. 
 
The protein truncating mutation CHEK2*1100delC is a moderate-risk variant associated with 
a 2-3 fold increased risk of developing breast cancer, but the risk is considerably higher in 
carriers with a family history. The individual risk for breast cancer in carriers of 
CHEK2*1100delC is thereby difficult to predict. In paper III we performed whole-exome 
sequencing in cases of CHEK2*1100delC carriers in search of genetic variants that may 
modify breast cancer risk in this patient group. All non-synonymous mutations were 
evaluated and 11 candidate alleles were selected and tested in a validation. No CHEK2 
specific modifier could be identified though, as none of the variants showed significant 
difference in allele frequency in CHEK2*1100delC carriers compared to controls. 
Continuous studies of genetic modifiers are of importance to improve breast cancer risk 
prediction for CHEK2*1100delC carriers.  
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Michailidou, K et al. Association analysis identifies 65 new breast cancer risk loci. 
Nature; 23 Oct 2017; DOI: 10.1038/nature24284 
Breast cancer risk is influenced by rare coding variants in susceptibility genes, such 
as BRCA1, and many common, mostly non-coding variants. However, much of the 
genetic contribution to breast cancer risk remains unknown. Here we report the 
results of a genome-wide association study of breast cancer in 122,977 cases and 
105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East 
Asian ancestry. We identified 65 new loci that are associated with overall breast 
cancer risk at P < 5 x 10-8. The majority of credible risk single-nucleotide 
polymorphisms in these loci fall in distal regulatory elements, and by integrating in 
silico data to predict target genes in breast cells at each locus, we demonstrate a 
strong overlap between candidate target genes and somatic driver genes in breast 
tumours. We also find that heritability of breast cancer due to all single-nucleotide 
polymorphisms in regulatory features was 2-5 fold enriched relative to the genome-
wide average, with strong enrichment for particular transcription factor binding sites. 
These results proved further insight into genetic susceptibility to breast cancer and 
will improve the use of genetic risk score for individualised screening and 
prevention. 
 
Milne, R et al, Identification of ten variants associated with risk of estrogen-
receptor-negative breast cancer, Nature Genetics. Received 30 May 2016; accepted 
11 January 2017; published online 23 October 2017. 
Most common breast cancer susceptibility variants have been identified through 
genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-
positive disease. We conducted a GWAS using 21,468 ER-negative cases and 
100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast 
cancer), all of European origin. We identified independent associations at P < 5 × 
10−8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 
10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation 
carrier GWAS and observed consistent associations with ER-negative disease for 
105 susceptibility variants identified by other studies. These 125 variants explain 
approximately 16% of the familial risk of this breast cancer subtype. There was high 
genetic correlation (0.72) between risk of ER-negative breast cancer and breast 
cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk 
prediction and inform further fine-mapping and functional work to better understand 
the biological basis of ER-negative breast cancer. 
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1 INTRODUCTION 
 

Breast cancer is the most common cancer type affecting women. In Sweden the life time risk 

is of being affected is estimated to 11%. Many risk factors for breast cancer have been 

identified including hormonal and lifestyle factors. Furthermore, the individual risk increases 

proportionally with the number of close relatives and early age at onset. Hereditable factors 

are estimated to contribute to 27% of the total risk of breast cancer (Table 1) [1, 2]. 

Clustering of breast cancer in families has been investigated and supported by 

epidemiological studies since the late 1940s [3]. The search and identification of risk genes 

for hereditary breast cancer progressed in the early nineties when linkage analyses in affected 

families lead to the discovery of BRCA1, BRCA2. A candidate gene approach using affected 

family members in cancer families led to the discovery of TP53 as causal factor behind Li-

Fraumeni syndrome. These high penetrance traits and identification of the breast cancer 

predisposing genes STK11, CDH1 and PTEN, that followed, have in common the occurrence 

of breast cancer as a part of a cancer syndrome, with several types of cancer involved. Further 

linkage and candidate gene studies have been unsuccessful in finding more high-penetrance 

susceptibility genes despite the fact that the already identified ones only represent a small part 

of the estimated heritable fraction. It has become clear that the remaining fraction of 

hereditability is not explained by variants in high-risk breast cancer genes. Evidence has 

accumulated that breast cancer is inherited as a polygenic disease where pathogenic 

mutations with differential impact together confers an increased risk. Focus has shifted 

towards research for genetic risk factors that confers a low to moderate risk of breast cancer. 

The first identified moderate risk gene, cell cycle checkpoint kinase 2 (CHEK2) identified in 

2002, was found to cause a twofold risk of breast cancer and an up to fourfold risk in familial 

breast cancer cases [4, 5]. Advances in genomic technologies have led to large scale 

sequencing in genome-wide associations studies that has identified a large amount of 

common low penetrance loci. Great progress has been made, but a substantial portion of the 

genetic background in familial breast cancer is yet unexplained. In addition, the functional 

and clinical implications of the risk-genes already identified are limited since their polygenic 

context is unclear. 

 

The aim of this thesis has been to study and better understand how breast cancer is inherited 

and to identify underlying genetic factors that contribute to the risk in familial breast cancer. 

We decided to focus on families without pathogenic mutations in BRCA1 or BRCA2 (non-
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BRCA families). In these families the susceptibility to inherited breast cancer varies from 

moderate, with few cases of breast cancer in close relatives, to high with many cases in every 

generation and often with low age at onset. A better understanding of inheritance patterns is 

warranted in search of new genetic candidate variants. Identifying new susceptibility variants 

will improve prevention programs and individual counselling in affected families. 

 
 
 Factor	 Risk	group	 Effect	on	

risk	(RR)	
References	

Demographic	
factors	

Geographic	area	 US	and	Northern	Europe	vs	
Africa,	Asia	

3-4	 Globocan	2012	

	     

Family	history	 On	close	relative	with	
breast	cancer	

Yes	vs	No	 1.1-2	 Pharoah	[2],	
Claus	[6]	

	 Two	first	degree	
relatives	

Yes	vs	No	 3,6	 Pharoah	[2]	

Reproductive	
factors	

Age	at	menarche	 Early	vs	Late	 1.1-2.0	 Hulka	[7]	

	 Age	at	menopause	 Late	vs	Early	 1.1-2.0	 Hulka	[7]	
	 Age	at	first	birth	 >30	vs	<	20	years	 1.1-2.0	 Hulka	[7]	
	 Parity	 Nulliparous	vs	Multiparous	 1.1-2.0	 Hulka	[7]	
	 Breastfeeding	 None	vs	>1	year	 1.1-2.0	 Lancet	[8],	

Hulka	[7]		
Other	Hormonal	
Factors	

BMI	(postmenopausal)	 High	vs	Low	 1.1-2.0	 van	den	
Brandt[9]	

 BMI	(premenopausal)	 Low	vs	High	 1.1-2.0	 van	den	
Brandt[9]		

 Oral	contraceptives	 Ever	vs	Never	use	 1.07	 Lancet	[10]	
	 Oral	contraceptives	 Current	use	vs	None	 1.24	 Lancet	[10]	
	 HRT	 Current	use	vs	None	 1.1-2.0	 Lancet	[11]	
	 Serum	estradiol	 High	vs	Low	 1.1-2.0	 Thomas	[12],	

Hankinson	[13]	
Breast	Properties	 Mammographic	density	 Dense	vs	Not	 4-5	 McCormack	[14]	
	 Atypical	Ductal	

Hyperplasia	
Yes	vs	No	 1.1-2.0	 Byrne	[15]	Page	

[16]	
Other		 Ionizing	radiation	to	the	

chest	at	young	age	
Yes	vs	No	 1.1-2-0	 Hancock	[17]	

	 Alcohol	 Daily	intake	vs	None	 1.2-2.0	 Schatzkin	[18],	
Smith-Warner	
[19]	

 
Table 1. Risk factors in breast breast cancer (Adapted from Hulka et al Lancet [7]). RR = 
relative risk. 
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1.1 EPIDEMIOLOGICAL STUDIES 
 
 
A systematic review of 74 studies, from 1935-1995, stated a pooled estimate of relative risk 

of 1.9 for having any relative affected by breast cancer, 2.1 for having one first degree 

relative and 3.6 when both mother and a sister were affected. [2]. One of the studies in the 

review was a Swedish population based study of 2660 women that found a relative risk of 1.7 

with having one or more affected first degree relatives [20]. Besides the number of affected 

relatives, it was shown that presence of bilateral breast cancer and/or low age at diagnosis in a 

relative also increases the individual risk [21, 22]. Through pedigree studies it became clear 

that inheritance patterns of breast cancer showed a spectrum of risk levels. Some families had 

a picture of a strongly inherited breast cancer with many cases across the generations. In 

addition, these families had higher incidence of bilateral disease and women were younger at 

diagnosis compared to sporadic breast cancer [23]. Several studies with segregation analysis 

followed that suggested an autosomal dominant disease and also an association with ovarian 

cancer in some affected families [24-27].) In addition, twin studies indicated a higher risk of 

breast cancer in monozygotic twins compared to dizygotic twins, supporting a strong 

inherited component behind familial clustering of breast cancer [1, 28].  

 

1.2 IDENTIFYING BREAST CANCER SUSCEPTIBILITY GENES 
 
Various approaches have led to identification of breast cancer susceptibility genes that in 

general are divided into three groups depending on their allele frequency and their conferred 

risk. The risk alleles mostly show an inversely proportional impact, from very rare mutations 

with high penetrance to the common low risk polymorphisms with allele frequency of up to 

50%: 

High-risk variants: Very rare in the population with a minor allele frequency of <0.005. The 

conferred risk of pathogenic mutations can be ten-fold.  

Moderate-risk variants: Minor allele frequency in population of 0.005-0.01%. Pathogenic 

variants confer a two- to fourfold increased risk of breast cancer. 

 Low-risk variants: Minor allele frequency > 0.05 and conferred risk of breast cancer of less 

than 1.5-fold [29]. 

1.2.1 High-risk variants 
 

The genes underlying high-risk syndromes like BRCA1 and BRCA2 have mainly been 

identified through linkage analysis and positional cloning. In 1990, after 17 years of research, 
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Mary-Claire King and her team had identified a high-risk gene assigned to chromosome 

17q21 by linkage analysis in families with early breast cancer [30]. The locus on 

chromosome 17 was supported again by Steven Narod and his team in 1991 and, in addition, 

an association with ovarian cancer was established [31]. Subsequently, in 1994, the BRCA1 

gene was identified through positional cloning and truncating mutations in the protein coding 

sequence were found to segregate with disease [32]. In 1994, an international team lead by 

Mike Stratton analysed 15 early-onset breast cancer families that were not related to BRCA1 

to search for a second high-risk gene that was localised to chromosome 13q12-13 [33]. 

Shortly thereafter, BRCA2 was cloned and, when tumour samples were examined for loss of 

heterozygosity, association with defect BRCA2 was confirmed [34, 35]. Li-Fraumeni 

syndrome was first described in 1969 as a rare clinical syndrome with a high penetrance of 

premenopausal breast cancer and sarcomas, brain tumours and adrenal cortical carcinomas at 

very young age [36]. The rarity and high mortality of the syndrome made linkage analysis 

difficult. Instead a candidate gene approach was used to identify germline mutations of the 

tumour suppressor gene TP53, located on chromosome 17p13.1, as the causative factor. TP53 

was selected as a plausible gene because it was identified as the most common inactivated 

gene in sporadic forms of cancers associated with Li-Fraumeni [37, 38].  

 

1.2.2 Moderate-risk variants 
 

Also the first identified moderate risk gene, CHEK2 (1100delC), was localized through 

linkage-analysis of a large non-BRCA family [4]. To assess the conferred risk, linkage 

analysis was combined with an association study since moderate risk genes display 

incomplete co-segregation due to their intermediate penetrance. For that reason, candidate 

gene approach is more applicable when identifying moderate penetrance genes. This search 

has focused on candidate genes, which like BRCA1 and BRCA2, are involved in DNA 

damage response or other pathways important for breast cancer biology. By resequencing of 

genes in cases from highly penetrant families moderate susceptibility genes have been 

identified and thereafter evaluated in case-control association studies. Breast cancer genes 

identified with this approach includes pathogenic variants in moderate risk genes ATM [39-

41] and PALB2 [42, 43]. Since the high-throughput technique Next Generation Sequencing 

(NGS) now is more affordable whole-exome sequencing has become a common approach to 

identify rare variants. When searching for rare risk alleles reduced statistical power demands 

sequencing of enormous numbers of unselected cases and controls. One strategy to reduce 

sample size is by performing a staged study starting with sequencing in a small cohort of 
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cases with familial aggregation of breast cancer, assuming that genetic contribution is higher. 

The cases can also be chosen due to certain criteria such as being negative for BRCA1/2 

mutations (as in paper I), tumour phenotype or sharing a previously identified susceptibility 

gene (as in paper III). Identified risk variants are thereafter genotyped in larger cohorts. 

Pathogenic variants in a new breast cancer susceptibility gene, RECQL, were identified 

through whole-exome sequencing in two cohorts consisting of 144 Polish and 51 French-

Canadian women with familial breast cancer that all were negative for BRCA1/2 founder 

mutations. In the discovery phase, candidate genes for further study were selected by 

focusing on highly deleterious mutations in genes with a function previously associated to 

cancer. Several truncating mutations in the gene RECQL, a DNA-helicase gene previously 

related to cancer were identified. Pathogenic RECQL variants were then validated in larger 

cohorts containing patients with sporadic and familial breast cancer as well as a control group 

[44]. 

 

1.2.3 Common low-risk variants 
 

The results of search for the third category of susceptibility genes, common low risk alleles, 

have mainly been achieved through genome-wide association studies (GWAS). This 

approach scans most of the genome for causal genetic variants without any assumption of 

biological function or location. The genome of two individuals is 99.55% identical, but the 

variations can greatly affect the risk of various complex disease. More than 10 million of the 

single nucleotide polymorphisms (SNPs), with a minor allele frequency of 1% or more, are 

collected in a database, dbSNP [45]. Sets of SNPs in a genomic region are in strong linkage 

disequilibrium (LD) inherited in blocks. These blocks contain a large number of SNPs with 

specific patterns, or haplotypes, that can be identified with a reduced number of tag-SNPs. 

All tag-SNPs have been categorized through the HapMap project. Because of the high 

correlation between the variants (high LD), a few hundred thousand of SNPs can be used as 

markers over the whole genome. In GWAS, genotyping platforms that allow evaluation of 

hundreds to thousands of SNPs simultaneously, are utilised. In general, in a first phase of a 

GWAS, tag-SNPs are genotyped in smaller number of cases and controls. In the second and 

third phase variants with the strongest evidence are narrowed down to a small number and 

replicated through testing for significance in large association studies. The identified low-risk 

variants are not always the causal ones; any SNPs within the haplotype block could play the 

role of casual SNP. Fine-mapping, that contains genotyping of all common variants of risk 

loci, can bring more clarity to the issue. Furthermore, most of the identified variants are 
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located in non-coding regions, intergenic- and intronic variants are common. They may have 

an effect on regulation of gene expression or function. So far more than 180 low risk loci 

associated with breast cancer risk have been identified [46-70]. Since it is more affordable 

and less complicated than complete resequencing of whole genomes, candidate gene-

association studies have also been used to search for common low-penetrance alleles, but 

with limited progress. One of few convincing examples is a variant in the CASP8 gene which 

has been associated with a protective effect. CASP8 is a tumour suppressor involved in 

regulation of apoptosis [71]. 

 

1.3 EVIDENCE OF ASSOCIATION FOR SPECIFIC GENES AND VARIANTS 
 

The following section is a summary for genes where some evidence of an association with 

breast cancer has been established. Most allelic variants associated with a moderate to high 

risk of breast cancer are protein-truncating. These are nonsense mutations, frame-shift 

insertions and deletions and splice site affecting variants that in general causes a premature 

stop codon and as a result, a non-functioning protein product. Some of the alterations 

associated with breast cancer risk are missense variants which refer to single base pair 

substitutions causing a change of one amino acid. Compared to truncating variants, the effect 

of a missense variant is more difficult to assess, the amino-acid change may not have a 

dramatic effect on the resulting protein. Risk assessment of the pathogenicity of missense 

variants can be time-consuming and requires analyses of whether the particular variant affects 

an evolutionary conserved region, the probable impact on protein function as well as genetic 

analyses in affected families and tumour subtypes. Variants of uncertain pathogenicity are 

referred to as variants of unknown significance, VUS. Furthermore, pathogenic missense 

variants are in general associated with a lower risk than truncating variants. For instance, the 

CHEK2 truncating variant c.1100delC is associated with a higher risk of breast cancer 

compared to CHEK2 missense variant I157T (c.470A > G) [72]. There are exceptions though, 

for instance, the ATM missense variant p.Val2424Gly (c.7271T > G) has been associated 

with a higher risk compared to truncating variants [73]. The Breast Cancer Information Core 

(BIC), is an open access on-line mutation database that provides all available research and 

technical support of all mutations and polymorphisms in breast cancer susceptibility genes.  
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1.3.1 High-risk genes 
 
1.3.1.1 BRCA1 and BRCA2 

The BRCA1 gene encodes a multi-domain protein that functions in a number of cellular 

pathways to maintain genomic stability, including cell cycle checkpoint activation as well as 

transcriptional regulation and apoptosis [74]. BRCA1 and BRCA2 are also important for DNA 

repair, specifically in homologous recombination of double-strand DNA breaks (DSB) [75]. 

BRCA1 and BRCA2 mutations confer a very high life-time risk for breast cancer in the range 

of 55-85% for BRCA1 and 35-60% for BRCA2 whereas the risk of ovarian cancer is up to 

40% for BRCA1 but slightly lower for BRCA2 carriers with 10-25% [76-78]. In comparison 

the estimated risk of breast cancer in Swedish women by the age of 75 is 11% and the risk of 

ovarian cancer is 1.1% [79]. BRCA1 and BRCA2 pathogenic mutations are found throughout 

the gene´s whole coding sequence and are usually truncating. Pathogenic missense mutations 

have also been described in functional domains. In addition, different pathogenic mutations 

show a various spectrum of allelic effects, such as the missense variant, R1699Q (c.5096G>A 

p.Arg1699Gln) in BRCA1 and one truncating variant, p.Lys3326 (rs11571833) in BRCA2 that 

both are associated with a significant increased risk of breast cancer, but much lower than the 

average risk for carriers in general [46, 80].  

 

Studies of other tumour types associated with BRCA1 have been inconclusive [81, 82]. 

Besides breast- and ovarian cancer in women, tumours linked with BRCA2 mutations include 

pancreatic- and early onset prostate cancer. An association with melanoma has also been 

reported [82-84]. 

 

1.3.1.2 TP53 

One of the most intensively studied tumour suppressors is tumour protein 53 (TP53) since 

loss of wild-type TP53 activity frequently detected in many different tumour types. The 

protein regulates the cell cycle, interact in DNA repair, apoptosis, cellular senescence, and 

metabolism. Inherited TP53 mutations are associated with the rare autosomal dominant 

disorder, the Li-Fraumeni syndrome (LFS). Female mutation carriers have a nearly 100% 

lifetime risk of cancer compared to 73% for males, the difference caused by breast cancer 

[85]. The high cumulative cancer risk was also seen in two later studies, but these may have 

been affected by selection bias [86]. Breast cancer is the most common tumour with a 49% 

risk of being affected before 60 years, but most women are diagnosed before age 40 [87]. 

Unlike other high-risk genes that mostly display a risk associated with truncating mutations, 

genotype-phenotype analysis in LFS families has revealed that carriers of germline missense 



 

8 

mutations are more frequent and associated with earlier onset compared to other types of 

mutations [88]. In addition, there is a more than 20% frequency of de novo mutations [85]. 

Other than breast cancer in women, TP53 mutation carriers are at increased risk of early-

onset and multiple primary cancers including sarcomas, brain- and adrenocortical tumours 

[89]. Lymphoma, melanoma, lung, pancreas, prostate and ovarian cancers also seem to be 

increased [89-91]. Childhood-onset tumours exists, most common are brain-tumours, 

followed by sarcomas. 

 
1.3.1.3 PTEN 

Cowdens syndrome is rare condition caused by germline mutations in tumour suppressor 

gene PTEN [92]. The syndrome confers an estimated 25-50% lifetime risk of breast cancer, 

with low age of onset. Carriers are also at an increased risk of several other malignancies, 

especially thyroid- and endometrial cancer with a life time risk reported to be 3-10% and 5-

10% respectively [93]. The syndrome is otherwise characterized by multiple hamartomas of 

the gastrointestinal tract and benign tumours. Cowdens syndrome was at first described as a 

clinical diagnosis in the 1960´s. In 1996 PTEN was identified after years of linkages studies 

and subsequent sequencing in Cowdens syndrome families. Germ-line mutations in PTEN 

have also been associated with other clinical distinct syndromes, in patients with disparate 

disorders, referred to as PTEN Hamartoma Tumour Syndrome (PHTS). [94]. Studies that 

have examined cancer risk in PTHS patients have identified greatly increased lifetime risk of 

breast- (67-85%), endometrial- (21-28%) thyroid and renal cancer as well as a slightly 

increased risk for colorectal cancer and melanoma [95, 96]. 

 
1.3.1.4 STK11 
 
The tumour suppressor gene STK11 is another gene with a gene product important for cell 

cycle regulation and mediation of apoptosis. Deleterious mutations causes Peutz-Jeghers 

syndrome characterized by intestinal hamartomous polyps and mucocutaneous pigmentation 

[97]. In addition, the lifetime risk of breast cancer by 60 years has been estimated to 32-54%. 

Other associated tumours with markedly elevated risk are cancers of gastrointestinal origin, 

pancreatic- and ovarian cancer [98]. Carriers of STK11 mutations have a cumulative lifetime 

risk of any cancer of up to 85% [99]. 
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1.3.1.5 CDH1 
 
The CDH1 gene encodes a protein responsible for cell-to-cell adhesion and functions as a cell 

invasion suppressor [100]. Impaired E-cadherin activity leads to increased motility and 

metastatic potential of tumour cells [101]. E-cadherin germline mutations are responsible of 

hereditary diffuse gastric cancer (HDGC). Carriers are at a high risk of diffuse gastric 

carcinoma at young age (cumulative risk 83%). There is also an association with lobular 

breast cancer, which is the second most frequent tumour type, and colorectal cancer [102, 

103]. Estimated lifetime risk of developing lobular breast cancer is 40-52% [104, 105]. 

Recent studies have provided evidence of lobular breast cancer as the first manifestation of 

HDGC. Deleterious CDH1 mutations have been identified in women with bilateral lobular 

breast cancer without a family history of diffuse gastric cancer. Also novel deleterious CDH1 

alterations have been identified raising the question whether lobular breast cancer can be 

inherited as an independent E-cadherin syndrome [106, 107]. In contrast to other cancer 

predisposition syndromes, pathogenic splice-site and missense mutations are common; 

suggesting that also reduced E-cadherin expression can be deleterious [108].  

 

1.3.2 Moderate-risk genes 

1.3.2.1 PALB2 
 
PALB2 (the partner and localizer of BRCA2 gene) was first associated with breast cancer as a 

risk gene with moderate penetrance in 2007. Loss-of-function PALB2 mutations yielded risk 

estimates of two to four-fold times higher in familial breast cancer compared to non-carriers 

[42, 43]. In a study by Antoniou et al in 2014 the estimated conferred risk by deleterious 

PALB2 mutations was overlapping BRCA2 when breast cancer risk was analysed in 362 

patients in 154 families. The risk of breast cancer in carriers by 70 years was estimated to 

35%. Breast cancer risk was depending on family history and ranged from 33-58% with risk 

in the lower range in women without a family history [109]. As a result, PALB2 is now 

entering clinical testing, in women at increased risk of breast cancer. Carriers should be 

offered measures according to guidelines for hereditary breast cancer with surveillance and 

prophylactic surgery. PALB2 was originally identified as BRCA2 interacting protein that 

enables homologous recombination and double strand break repair and check point functions 

[110]. Thereafter, it has also been shown that PALB2 interacts with BRCA1 as well [111]. A 

predisposition for ovarian- and pancreatic cancer conferred by PALB2 mutations has been 

indicated, though larger studies are needed to address this question [43, 112, 113].  
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1.3.2.2 CHEK2 
 
Checkpoint kinase 2 (CHEK2) is in response to DSB or replicative stress activated by ATM 

[114]. Activated CHEK2 plays an important role in phosphorylating downstream substrates 

including tumour suppressors TP53 and BRCA1 [115]. Originally CHEK2 was found mutated 

in Li-Fraumeni patients and one of the truncating mutations c.1100delC, has been 

reproducibly associated with breast cancer risk in different populations. It seems to be more 

frequent in affected carriers in parts of Northern and Eastern Europe (1.2-3.5%) compared to 

Southern Europe and North Amerika [116-118]. In a Swedish population the 

CHEK2*1100delC mutation was found to be most frequent in younger women with familial 

breast cancer (<45 years) with 5% compared to 2 % of all affected women with a family 

history and less than 1% in sporadic breast cancer [119]. Recently, a large study reported a 

cumulative life-time risk of breast cancer in CHEK2*1100delC carriers of about 22% [120]. 

 

Other than the CHEK2*1100delC variant, two more truncating variants have been associated 

with similar breast cancer risk (del5395 and IVS2 + 1G > A) whereas one missense mutation, 

I157T (c.470A > G) confers only slightly increased risk [72, 121, 122]. However, the few 

studies that have analysed germline mutations of the entire coding sequence of CHEK2 have 

identified more potentially deleterious variants. Since the allele frequency of the most 

common pathogenic CHEK2 variants are highly population-specific, full-gene sequencing 

has been suggested in regions where these founder mutations are rare [123]. A 3.5 fold excess 

risk for CHEK2* 1100delC carriers to develop contralateral breast cancer has been found as 

well as a worse prognosis compared to non-carriers, especially for oestrogen receptor-

positive breast cancer [124, 125].  

 

The individual risk of breast cancer for carriers of the most evaluated CHEK2 mutation, 

c.1100delC, is difficult to assess due to the moderate penetrance. As a consequence, 

mutations do not always segregate with breast cancer in the affected families. Furthermore, 

the conferred risk is affected by family history. In a study of CHEK2*1100delC carriers, an 

odds ratio of 2.7 were estimated in unselected breast cancer, 2.6 for early-onset breast cancer 

and 4.8 for familial breast cancer. The cumulative risk by 70 years was estimated to 37% in 

familial breast cancer cases [126]. There has been reports of an association between CHEK2 

pathogenic variants and ovarian cancer and several other additional malignancies, but the 

results have been inconclusive [127, 128]. A meta-analysis provided evidence that  

CHEK2*1100delC carriers may be at an increased risk of colorectal cancer [129]. In another 
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large GWAS, the result suggested an association with increased risk of lung cancer even 

though the I157T variant was associated with reduced risk [130]. 

 

1.3.2.3 ATM 
 
Homozygous or compound mutations in the ataxia-telangiectasia mutated gene (ATM) is the 

cause of a neurodegenerative disorder, named after the gene, characterized by cerebellar 

ataxia, immunological deficiency, hypersensitivity to ionizing radiation and increased risk of 

cancer. The gene encodes a protein kinase involved in DNA repair of double strand breaks 

through downstream interaction with  TP53, BRCA1 and CHEK2 proteins in the damage 

response pathway [131]. A meta-analysis found heterozygous carriers of ATM mutations at 

an estimated relative risk of 2.8 [132].  

 

1.3.2.4 NF1 
 
Neurofibromatosis 1 (NF1) is an autosomal dominant cancer syndrome, with a very variable 

phenotype, characterized by skin pigmentation and tumours of the nervous system. 

A Finnish study with a population-based cohort found a 59.6% life-time risk of cancer. 

Excess risk of breast cancer was moderate, but highest in women younger than 40 years 

[133]. These results were supported in another study of NF1 associated breast cancer risk that 

found an increased risk in women less than 50 years, but thereafter incidence patterns similar 

to the general population [134, 135]. An estimated increased relative risk of 2.6  has been 

calculated based on data from two cohort studies [132]. 

 

1.3.2.5 NBN 
 
The MRE11A-RAD50-NBN (NBS1) is an evolutionary conserved protein complex important 

for detection and early processing of double strand breaks. Carriers of heterozygous NBN 

mutations have a significant increased risk of breast cancer with an estimated odds ratio of 

3.1 [136]. In a meta-analysis of seven studies, strong evidence was presented for a moderate 

increased breast cancer-risk associated with a truncating variant, c.657del5 [137]. Another 

study provided evidence for an association between the variant and early onset breast cancer 

[138]. 
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1.3.3 Other breast cancer gene susceptibility candidates 
 
The fact that BRCA1, BRCA2 and PALB2 function in the repair of DNA double-strand breaks 

has suggested further studies on candidates in pathways controlling DNA integrity. Several 

other susceptibility genes with protein products involved in DNA damage signalling and 

repair have in different populations been associated with breast cancer risk in single studies, 

but not confirmed in large systematic associations studies. Most of the identified pathogenic 

variants are very rare, which makes a putative association with breast cancer and a robust 

estimate of penetrance difficult to assess. RAD51, a key protein in mediating homologous 

recombination, forms a complex with a family of accessory proteins known as RAD51 

paralogs. Deleterious mutations in RAD51 paralogs RAD51C, RAD51D, have shown clear 

evidence of an association with ovarian cancer, but there is insufficient evidence for an 

association with increased risk of breast cancer [139, 140]. Exome-sequencing and a 

subsequent association study identified RAD51 paralog, XXR2C, as a putative breast cancer 

gene [141]. BRIP1, that encodes a DNA helicase, has also shown clear evidence of 

predisposing for ovarian cancer but a role in breast cancer risk has not found support [142]. A 

recent large-scale association study could not provide evidence for an association between 

any truncating variant in the BRIP1 gene and breast cancer [143, 144]. The statistical analysis 

allowed exclusion of a twofold risk of breast cancer, which in general is considered the lower 

threshold for a moderate susceptibility gene. Recently, rare mutations in two other helicase 

genes, RECQL and BLM have been associated with breast cancer [44, 145]. Biallellic 

mutations in BRIP1 as well as PALB2, RAD51C and BRCA2 (also known as the FANCJ-, 

FANCD1, FANCN and FANCO genes) cause Fanconi Anemia (FA), which has prompted a 

search of other FA genes predisposing for breast cancer. Exome sequencing has identified 

heterozygous truncating mutations in FA genes FANCC and also in FANCM with a 

particularly strong predisposition for triple negative breast cancer [145-147]. A limited 

number of pathogenic germline mutations in the MRE11 and RAD50 have also been 

suggested as breast cancer predisposing variants, but their role is yet to be determined [148]. 

 

1.3.4 Low penetrance variants 
 
During the last decade genome-wide association studies (GWAS) have been successful in 

identifying a new category of susceptibility variants common single nucleotide 

polymorphisms (SNPs) with an allele frequency of up to 50%, in the population, that confer a 

relative risk of breast cancer of 1.5 or less. Collaborations that can achieve large datasets have 

proven very successful and is necessary when searching for low penetrance variants. The 
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Breast Cancer Association Consortium (BCAC), a collaboration with more than 50 

participating breast cancer case-controls studies, has conducted several combined large-scale 

genotyping studies. In a BCAC study of more than 120.000 cases and controls, in 2015, 15 

more low risk loci were added to the previously more than 90 identified [46-69]. Provided 

that the identified low risk loci combine multiplicatively, the authors concluded that risk 

profiling could identify 5% of women at a 2-fold higher risk and 0.7% of women with a >3-

fold higher risk of breast cancer than the population average [69]. The most recent genome 

wide association study, performed by BCAC and the OncoArray Consortium, added 65 more 

loci associated with breast cancer risk, 19 of them more strongly associated with ER-positive 

disease [70]. Most of the identified variants are intergenic or intronic with uncertain function, 

but they may be important for gene expression and function. Only a few casual protein 

coding variants have been suggested, one being the SNP rs11552449 which is a missense 

substitution in the DCLRE1B gene (SNM1B) involved in DNA cross-link repair [58] Further 

investigation of a tag SNP in an intron of the EXO1 gene, with a gene-product involved in 

mismatch repair, found a strong association with a putative causal variant in the coding 

region of the gene. The associated missense variant, rs4149909, encodes an amino acid 

substitution, with potential pathogenic effect related to breast cancer [69] Several GWAS 

have investigated specific effects by breast cancer subtypes, mainly by oestrogen receptor 

(ER) status. Studies in ER-negative breast cancer have revealed seven ER-negative specific 

risk loci [59, 149, 150]. Another study analysed established breast cancer loci in triple 

negative breast cancer and found that variants from 25 of 74 loci also were associated with 

increased risk of triple negative breast cancer [151]. BCAC and the OncoArray Consortium 

recently published results from a GWAS in about 40.000 cases of ER-negative breast cancer 

and BRCA1 mutations carriers. Ten new variants associated with ER-negative breast cancer 

were identified. Furthermore, previously identified variants were replicated and altogether the 

125 associated variants were estimated to explain 16% of the familial risk of ER-negative 

breast cancer [152]. 

 
 

1.4 GENETIC CONTRIBUTION IN BREAST CANCER 
 
Overall, BRCA1 and BRCA2 mutations are estimated to be responsible for about 3% and the 

other less common high penetrance genes account for less than 1 % of all breast cancer [29, 

153]. A recent study though suggests that BRCA1 and BRCA2 accounts for only 1,4 % of all 

breast cancer and that other results with higher proportions could be due to founder 

populations or to patient selection [154].  In Sweden, carrier frequency of BRCA1 was less 
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than 1 % in an unselected breast cancer cohort in Stockholm County [155]. A population 

based cohort in Southern Sweden found BRCA1 or BRCA2 pathogenic mutations in 9.0% of 

early onset breast cancer [156]. A Nordic study of mono- and dizygotic twins estimated that 

hereditary factors contribute to 27% of the total risk of breast cancer [1].  

 

Pathogenic mutations in BRCA1 and BRCA2 account for 16% of the genetic contribution in 

familial breast cancer risk [157]. In total, the high risk genes, BRCA1/2, p53, STK11 and 

PTEN account for approximately 20% of the familial risk [158]. Moderate penetrance 

variants account for up to 5% of the inherited familial risk [29, 159]. The more than 180 

identified low-risk loci explain 18% of the familial risk [70]. Altogether more than half of the 

genetic background in familial breast cancer still is unclear (Figure 1). 

 

 

 
Figure 1. Fraction of the excess familial risk of breast cancer explained by the currently 
known susceptibility genes/loci. 
 

1.5 GENETIC MODIFIERS 
 
Evidence has accumulated that familial breast cancer is a polygenic trait and that the genetic 

susceptibility is driven by variants at many loci, each conferring a low to moderate risk of the 

disease [160, 161]. This multiplicative model could explain a part of the residual component 

also in carriers of high-risk genes such as BRCA1 and BRCA2. Several studies have found 

support for low-risk variants that modify risk in BRCA1 and BRCA2 mutations carriers [162-

165]. The markedly higher lifetime risk, in CHEK2*1100delC carriers, with a family history 

High-risk	genes,	
BRCA1,	BRCA2,	p53,	
STK11,	PTEN,	CDH1	

20%

Moderate-risk	
genes,	PALB2,	
CHEK2,	ATM	5%

Unexplained	
57%

Low-risk	loci	18%
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of breast cancer compared to those without, suggests that CHEK2*1100delC combines with 

other genetic variants that together modifies the risk of breast cancer. A recent study 

investigated whether the multiplicative model was applicable on CHEK2*1100delC and 

common low penetrance susceptibility variants previously associated with breast cancer risk. 

A polygenic risk score (PRS) was calculated based on the effect of 77 low penetrance 

variants. The synergistic effect of CHEK2*1100delC and the PRS on breast cancer risk was 

estimated and the result gave strong support for the multiplicative polygenic model. The 

effect of the PRS was slightly attenuated when adjusting for family history, but remained an 

independent risk factor. The polygenic risk score was suggested as a tool for stratifying risk 

in CHEK2*1100delC carriers [166]. It is not clear whether the model can be applicable on 

combinations of moderate to high-penetrance genes. A study of a combined effects of BRCA, 

ATM and CHEK2 mutations, found no support for a multiplicative effect on breast cancer 

risk. This may reflect their biological interaction in DNA-repair. Impairment of functions up-

streams of BRCA, such as ATM and CHEK2, may confer little or no additional risk of breast 

cancer [167]. Investigating this issue is difficult since carriers of any combinations of high- 

and moderate penetrance genes are very rare. In our study of Swedish CHEK2*1100delC 

carriers, exome-sequencing was performed in search of variants of moderate to low impact 

that modify breast cancer risk, but no CHEK2 specific variants could be identified (paper III). 

 

1.6 OTHER GENETIC RISK FACTORS 

1.6.1 Epigenetic regulation 
 
Epigenetics refers to heritable changes in gene expression that occur without alteration in 

DNA sequence. In fact, epigenetic modifications regulate patterns of gene expression that are 

crucial for normal development and differentiation of cell-lines. It is now well established 

that the vast majority of human cancers harbours both genetic mutations and epigenetic 

alterations that interact in a complex network. Silencing of tumour suppressor genes and 

activation of oncogenes are caused by a variety pf epigenetic mechanisms such as DNA 

methylation, alteration in the structure of histone proteins and gene regulation by small 

noncoding microRNAs [168].  

 

Methylation target is cytosin that pairs with guanosin in CpG dinucleotieds. distributed 

unevenly throughout the genome. Regions with a high frequency of CpG sites, CpG islands, 

are common in promoter regions. Approximately 60-70% of human genes have CpG islands 

in their promotor regions. In normal cells, promoter regions are normally hypomethylated and 
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tend to be transcriptionally active. However, in tumour cells, CpG islands in promoter regions 

of tumour suppressor genes are often hypermethylated which causes silencing of those genes 

[169]. In breast cancer, genes involved in apoptosis (HOXA5 and TMS1), cell-cycle inhibition 

(p16 and RASSF1A) and DNA repair (BRCA1) have been found silenced as a result of 

hypermethylation [170-172]. When hypermethylated, the BRCA1 gene has shown the same 

gene expression pattern as the one in BRCA1-mutated breast cancer [173]. Hypermethylation 

in promoter regions is the most common and the most studied type of epigenetic mechanism. 

Different types of aberrations can occur in cancer. As an example, hypomethylation in two 

promoter regions have been associated with HER2 positive breast cancer [174]. 

Epigenetic changes are not limited to CpG methylation, but also include post-translational 

histone modification and regulation by micro-RNAs (miRNAs). Modification of histones 

refers to mechanisms that regulates chromatin structure and thereby influence the level of 

transcription of a gene. One of these mechanisms, reversible histone acetylation has been 

targeted in the development of anticancer drugs. Histone acetylase inhitibors (HDACi), have 

been approved for treatment of cutaneous T-cell lymphomas and are also tested as therapy 

against breast cancer [175]. MicroRNAs are small RNA molecules that can negatively 

control their target gene expression posttranscriptionally. Aberrant expression of miRNAs has 

been linked to breast cancer [176]. Increased expression of miR-21 has been associated with 

advanced stages of breast cancer and upregulated miR-155 with metastasis and poor 

prognosis [177, 178]. 

 

Genomic imprinting is a form of epigenetic inheritance that causes different gene expression 

depending on parent of origin. Either the maternal or the paternal allele is epigenetically 

silenced [179]. The imprints are mainly erased and rewritten during egg and sperm formation, 

but some imprinted genes bypass reprogramming [180, 181]. Imprinting mechanisms have 

been identified as methylation of imprinting control regions and histone modification [182]. 

Parent of origin effects have been studied in complex disease. Seven independent variants in 

known imprinting regions, one of them associated with breast cancer were examined. Five of 

them, including the breast cancer associated variant, were associated with parent-of-origin 

effects [183]. 
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1.6.2 Copy Number Variation 
 
Copy number variants (CNVs) are structural rearrangements of the genome of regions larger 

than 50 base-pairs, that can increase or decrease DNA contents. The variability in DNA 

sequence contributes to our uniqueness but also influences our susceptibility to disease. As 

for low risk variants, high-throughput sequencing has made it possible to explore the 

biological impact of copy number variants. Based on the estimated base-pair coverage, that is 

estimated to 5-10% of the human genome, CNVs are responsible for a larger part of genomic 

variability than SNPs. CNVs can encompass whole genes, parts of a gene or regulatory 

sequences leading to altered gene expression [184]. Genes that are thought to always occur in 

two copies can be found present in three or more copies or missing. The functional effects of 

CNVs may play an important role in complex disease including breast cancer [185-187]. 

 

1.7 BREAST CANCER SYNDROMES 
 
A significant feature for the high penetrance breast cancer genes and some of the moderate 

risk genes is the conferred risk also for other tumour types in the context of breast cancer 

syndromes. A putative association with other types of cancer can be difficult to assess 

especially for rare risk genes with an intermediate penetrance. Regional variation of 

mutations is another complicating factor. An increased risk of other malignancies within 

families carrying CHEK2 mutations includes colon, prostate, kidney, and thyroid cancer, but 

only the association with colon cancer (CHEK2*1100delC) has been supported in a meta-

analysis [128, 129]. Female carriers of Lynch syndrome mutations are at increased risk of 

ovarian- and endometrial cancer, in addition to an increased risk of gastrointestinal and 

urinary tract tumours [188]. One of the mutations behind the syndrome, MLH1, has also been 

associated with increased risk of breast cancer (18.6% cumulative risk to age 70 years 95% 

CI, 11.3–25.9), but evidence published so far has not been considered robust enough to make 

specific recommendations of screening programs for carriers [189].  

Other studies have focused on investigating familial breast cancer and any putative 

associations with other tumour types in families without any previously identified pathogenic 

mutations. In a study of 803 Swedish families with hereditary breast cancer tumours in the 

colon, ovary, endometrium, pancreas and liver, as well as leukaemia were overrepresented. A 

putative breast- and endometrial cancer syndrome was suggested [190]. An association 

between breast- and endometrial cancer was supported again in our study of tumour spectrum 

in non-BRCA breast cancer (paper I). A recently published study based on data from the 

Swedish Family-Cancer Database calculated relative risk for other types of tumours in 
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families with aggregation of breast cancer. The strongest associations with breast cancer were 

found for prostate- and ovarian cancer (p-value <10−11). Other associated tumour types were 

for example stomach and male colorectal cancer (p <2.5 × 10−6), pancreatic cancer (p <5 × 

10−4), thyroid, endometrial and testicular cancer (p < 0.0025) [191]. 

 

1.8 BREAST CANCER PROGNOSIS 
 
The established prognostic factors of breast cancer are tumour size and histologic grade, 

lymph node metastasis, distant metastasis, proliferation rate and oestrogen-, progesterone- 

and HER2 receptor status. Gene expression profiling by microarray is more recent way of 

prognostic profiling that divides breast cancer tumours into four molecular subtypes, Luminal 

A (ER positive) and Luminal B (ER positive +/- HER2), HER2-enriched and Basal-like 

(Triple negative). The prognostic factors are used for risk estimation and as predictors of 

response to adjuvant breast cancer therapy which also affects outcome [192]. An inherited 

component with impact on prognosis has been investigated from different perspectives. In a 

Swedish study breast cancer survival was investigated in first degree relatives. Sisters and  

daughters of women with poor prognosis had a significantly higher breast cancer mortality 

compared to the corresponding group with good prognosis [193]. The study was reproduced 

and the results similar after adjustment for prognostic factors and adjuvant treatment [194]. In 

another study, of 50 000 breast cancer patients (the Sister study), family history was 

investigated and the results revealed a predominance of maternally inherited cases. The 

author suggested a differential risk, with a higher risk of breast cancer with maternal 

inheritance, due to prenatal maternal effects, maternally inherited mitochondrial variants or 

an imprinting effect [195]. A parent-of-origin effect was indicated in a retrospective Swedish 

study. The results showed more than twice as many case of familial breast cancer with 

maternally inherited breast cancer compared to paternally inherited disease. Furthermore the 

difference increased over time, suggesting a worse prognosis when breast cancer was 

inherited paternally [196]. If a parent-of-origin effect on breast cancer prognosis exists, 

studies of underlying putative imprinted loci are warranted. In our study of parent-of-origin 

effects on prognosis in a cohort of familial non-BRCA breast cancer, no support for a worse 

prognosis with paternal inheritance was found, even though smaller differences could not be 

excluded due to sample size (paper II). 
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1.9 CLINICAL ASPECTS 
 
Today, definitive clinical recommendations can be drawn only for carriers of a limited 

number of high- and moderate penetrance genes. However, the risk associated with many 

missense variants in the established genes seem lower than for truncating variants whereas 

the risk from many other missense variants still is unclear. International collaborations in 

large series of patients from different populations could provide reliable estimates of risk. 

Furthermore, risk assessment of women at increased risk of breast cancer is in general limited 

due to insufficient knowledge of how a given variant interacts with other genetic risk factors, 

life-style factors and family history in terms of an absolute risk. Prospective studies 

combining genetic risk variants with or without presence of a high- or moderate risk variants 

could provide evidence for decisive risk estimates.  

 

Previously identified variants account for less than half of the inherited risk behind breast 

cancer, the rest remains unclear. Linkage analysis, in families at high risk of breast cancer, 

has not been able to find additional high penetrance genes which suggest that if they exist 

they probably account for only marginal fraction of the familial risk. Further GWAS in large 

series of patients from different populations will continue to play an important role, but 

candidate gene studies is also of great importance, especially since the results only to a small 

extent seem to overlap [197]. Recent studies show that breast cancer is associated with 

several other types of tumours suggesting that they also could share genetic susceptibility 

similarly to the previously identified breast cancer syndromes [191, 198] (paper I). One 

approach in the genetic search can therefore be to target these families with cases of breast 

cancer and other associated tumour types since the association implicates that they may share 

genetic susceptibility (paper I, editorial).  
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2 AIMS 
 
Paper I: To identify new breast cancer syndromes in familial non-BRCA breast cancer. 

Putative new breast cancer phenotypes can be targeted in search of susceptibility variants. 

 

Paper II: To investigate if breast cancer prognosis is influenced by parent-of-origin in 

non-BRCA familial breast cancer. If subgroups with worse prognosis are identified, the 

genetic background can be explored. 

 

Paper III: To analyse exome-sequencing data in CHEK2*1100delC carriers and controls 

in search of candidate variants that may modify breast cancer risk. Subsequent validation 

of candidate variants in larger cohorts.  
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3 MATERIAL AND METHODS 
 

3.1 MATERIAL 
 
The main part of patients and family data for the studies, except for paper III, were collected 

from the Department of Clinical genetics and the Cancer Counselling Clinics at 

Södersjukhuset and Radiumhemmet, Karolinska University Hospital (3.1.1). 

 

3.1.1 Patients from Cancer Counselling Clinics, Karolinska University 
Hospital (paper I-III) 

 
Patients and families with inherited increased risk of cancer are referred to or contact 

themselves the Cancer Counselling Clinics at the Department of Clinical genetics and 

Oncology at Södersjukhuset and Radiumhemmet, Karolinska University Hospital for genetic 

counselling. All families with a history of breast- and/or ovarian cancer who received 

counselling and subsequently were offered BRCA1 and BRCA2 screening that was negative 

(non-BRCA families) between February 2000 and January 2012 were eligible for the studies 

of this thesis (table 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1. Swedish criteria for BRCA1/2 screening [198]. 

 

All genetic testing was performed at the same laboratory at the Department of Oncology at 

Lund University hospital. For BRCA mutation analysis, denaturing high performance liquid 

chromatography (DHPLC) was used as screening tool between 2000 and 2005. In addition to 

DHPLC, from 2006 to 2010, multiple ligation-dependent probe amplification (MLPA) was 

performed to exclude larger genomic rearrangements. Together the DHPLC and MLPA have 

 
1. Two or more 1st or 2nd degree relatives with a least one case of breast 

cancer and one case of ovarian cancer or a single individual with 
both breast and ovarian cancer. 

2. Three or more 1st or 2nd degree  relatives with breast cancer, at least 
one with onset before 50 years of age. 

3. Two or more 1st or 2nd degree  relatives with breast cancer, at least 
one with onset before 40 years of age. 

4. One single indivdual with breast cancer before 35 years of age. 
5. Two or more 1st or 2nd degree relatives with ovarian cancer. 
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a stated sensitivity of 95%. For cases before 2006 blood samples were reanalysed with 

MLPA, when the technique was introduced. For samples from the year 2010 and after 

analysis was performed with Next Generation Sequencing with sensitivity over 95 %. 

Families in the Stockholm County with index patients that have been screened for any 

pathogenic mutations have a family number and are registered in the database 4D at the 

Department of Clinical Genetics. 

 

In the counselling procedure pedigrees were constructed of the different cancer diagnoses in 

the families, age and age at diagnoses. The counsellor verified diagnoses through medical 

records, Swedish cancer registry or death certificates, if possible, if it was considered of 

importance in the individual family. Out of 1364 non-BRCA families 1206 pedigrees could be 

collected (Table 2). In 158 families no pedigree could be found, in a random check, a 

common reason was that there were few cases of cancer in the family, sometimes only one 

case of breast- or ovarian cancer at low age. 

 

 
Table 2. Families/pedigrees from Cancer Counselling Clinics, Karolinska University Hospital 
(paper 1 and II). 
 

All index patients alive in the non-BRCA families were asked to participate in a study of 

genetic risk factors for breast cancer by leaving a blood sample for DNA and by filling in an 

optional questionnaire regarding hormonal and life style factors (Table 3). Only index 

patients investigated at the Cancer Counselling Clinics the Department of Clinical Genetics at 

Karolinska University Hospital and at Södersjukhuset were contacted. The patients were 

contacted through an invitation letter and were included after a written consent was received. 

A letter with the questionnaire and sampling tube was then sent by mail. DNA from blood 

1660 families
• Excluded: 296 families with 

pathogenic mutations in BRCA 1 
or BRCA 2

1364 non-BRCA families
• Excluded: 158  
families with no 
pedigree available

1206 non-BRCA families
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samples was prepared at the laboratory at the Department of Molecular Medicine and 

Surgery. The questionnaire consisted of questions regarding hormonal factors (age at onset, 

age at menarche and menopause, parity, oral contraceptives, hormonal replacement therapy) 

and life-style questions (alcohol, diet and exercise habits). Three hundred and twelve index 

patients accepted to participate. Most of the patients were previously affected with breast 

cancer, but nine of them had been diagnosed with ovarian cancer. Twenty-five of the patients 

had a history of bilateral breast cancer. The DNA samples were used in paper III, but have 

also been used in BCAC studies (additional papers). For the BCAC studies, clinical 

parameters from medical records and questionnaires were collected (hormonal risk factors, 

prognostic factors, adjuvant treatment, survival, family history).  

 
 
 
Table 3. Patients from Cancer Counselling Clinics at Department of clinical genetics and 
Södersjukhuset included in genetic studies (paper III).  
 

3.1.2 Patients from other cohorts 
 
3.1.2.1 Patient cohort Södersjukhuset/Huddinge University Hospital (paper II and III) 

 
Patients from a consecutive breast cancer cohort were used in paper II and III. From October 

1998 to April 2000 all women with surgically treated primary breast cancer at Sodersjukhuset 

and Huddinge University Hospital were asked to participate in a study regarding prevalence 

of breast cancer variants and defining proportions of family history. All participants in the 

study provided blood samples for DNA. Pathogenic BRCA1 mutations were excluded as a 

part of the study design. Moreover, the women were offered counselling and adequate 

636 non-BRCA
index patients

•176 patients deceased

•27 patients with no   
address available

433 index patients were 
asked to participate in 

genetic studies
• No repsonse from 121 
patients (28%)

312 index patients 
returned signed informed 
consent and provided a 

blood sample
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additional screening outside the study with the same routines and at same laboratory as for 

the main study cohort. Patients were classified according to family history of breast cancer. 

Familial breast cancer patients from the cohort were included in paper II. In paper III, both 

DNA samples from cases of sporadic breast cancer and familial cancer were used for 

validation of CHEK2*1100delC variants. 

 
3.1.2.2   SWEA Study (paper III) 
 
In paper III, DNA samples from CHEK2 carriers were collected from the SWEA study. 

SWEA is a prospective national collaboration, between all Genetic Departments and Cancer 

Counselling Clinics in Sweden that aim to investigate the genetic background in familial 

breast cancer. SWEA started in 2012 and includes familial cases, sporadic unselected breast 

cancer cases and controls. Risk-genes are assessed by complete gene sequencing (BRCA1 and 

BRCA2, TP53, PTEN, PALB2, CDH1, ATM, NBN, BARD1, BRIP1, CDKN2A, RAD50, 

RAD51C/D, MRE11A and STK11) to determine prevalence of established variants and to 

evaluate candidate variants. A more limited sequencing is also performed in an additional 

number of breast cancer candidate genes. 

 

 
3.1.2.3 Swedish Colorectal Cancer Low-Risk Study (paper III) 
 
Samples from healthy spouses of colorectal cancer patients were recruited through 

the Swedish Colorectal Cancer Low-Risk Study at Karolinska Institutet.  

 

3.1.3 Paper I 
 

In paper I all available pedigrees (1206) were used for investigation of tumour spectrum in 

the non-BRCA families from the patient cohort from Karolinska University Hospital (Table 

2). Pedigrees from the non-BRCA families were examined and included if they contained at 

least two cases of breast cancer and one cases of other tumour type in 1st, 2nd degree relatives 

or 3rd degree if first cousins on either maternal or paternal branch of the family. Pedigrees 

from 334 families fulfilled criteria. 
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3.1.4 Paper II 
 

In paper II a parent-of-origin effect on breast cancer prognosis was investigated. The 1206 

pedigrees from the mutation negative families were evaluated and included if they contained 

two cases of breast cancer in 1st, 2nd degree relatives or 3rd degree if first cousins (Table 2). In 

total, index patients from 276 families were included. Families with cases of breast cancer in 

both family branches were excluded. To increase the study sample, the cohort from 

Södersjukhuset/Huddinge University Hospital was used (3.1.2.1). Seventy-two of the 487 

patients fulfilled inclusion criteria. To avoid overrepresentation of families ascertained on 

account of the mother being affected, parents of the index case were not counted.  

 

3.1.5 Paper III 
 

In paper III we aimed to identify genetic variants that modify breast cancer risk in 

CHEK2*1100dleC carriers. 

Discovery phase: We used 28 samples from CHEK2*1100delC carriers from the SWEA 

study. All CHEK2*del1100C carriers were previously affected by breast cancer except for 

two carriers who had been diagnosed with ovarian cancer. As controls, 28 samples from 

familial breast cancer cases and 117 familial colorectal cancer cases, recruited through the 

Cancer Counselling Clinic at the Karolinska University Hospital, Solna, Sweden were used. 

 

Validation phase: We used 72 samples from CHEK2*1100delC carriers from the SWEA 

study. In total 328 cases of sporadic breast cancer, 408 cases of familial breast cancer were 

and 285 cancer free patients were used in the validation phase. Samples from patients with 

familial breast cancer were recruited from the patients at the Cancer Counselling Clinics that 

were included in genetic studies (Table 3) and from the cohort from 

Södersjukhuset/Huddinge University, which also provided samples from patients with 

sporadic breast cancer (3.1.2.1). As control cases, 284 healthy spouses of colorectal cancer 

patients recruited through the Swedish low-risk Colorectal Cancer Study were used (3.1.2.4). 
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3.2 METHODS 

3.2.1 Paper I 
 
3.2.1.1 Registration of tumour types 

All tumour types, other than breast cancer in 1st, 2nd degree relatives or 3rd degree if first 

cousins (in relation to the index patient), were registered as well as age at onset when data 

was available. If inclusion criteria were fulfilled in both the maternal and the paternal 

branches diagnoses from both branches were registered. Each individual cancer diagnosis 

could only be included once.  

 

3.2.1.2 Reference population 

As reference population, the Swedish Cancer Registry was used. To capture changes in 

incidence two years were chosen, 1970 and 2010 [199, 200].  

 

3.2.1.3 Statistical analysis  

Distribution of cancer diagnoses in the data was compared to the distribution of cancer 

diagnoses in the general Swedish population. Data of cancer diagnoses in the Swedish 

population was obtained from the National Board of Health and Welfare (Socialstyrelsen). 

Indirect standardization was here used to adjust the data from the Swedish population to that 

of the relatives with cancer diagnoses with regards to gender and age. Age was categorized 

into five-year intervals. For relatives with missing data on gender or age, the method data 

Missing Completely At Random (Rubin, 1976) was assumed. Cancer cases in the relatives 

were assumed to be independent of each other. Confidence intervals were calculated for each 

cancer diagnosis separately, using a binomial distribution. The number of cases was then 

transformed into proportion of cases, by dividing by the total number of observed cases. 

Population data were assumed to reflect a true distribution, and were used as reference 

values. Two reference years were chosen, 1970 and 2010. A cancer diagnosis was regarded 

as overrepresented in the relatives of the breast cancer patients if the confidence interval was 

above both population reference values. All statistical analyses were performed in R (R Core 

Team, 2012). Data entry was performed in EpiData (Lauritsen) 
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3.2.2 Paper II 
 

3.2.2.1 Study arms 
Probands previously affected by breast cancer were regarded as the index case, otherwise an 

index case from the youngest generation in the families was chosen. The index cases were 

divided into two study arms, paternal or maternal inheritance.  

 

3.2.2.2 Collection of clinical parameters 

Tumour characteristics (tumour size, axillary status, ER-status), adjuvant therapy and survival 

data (recurrence, cause of death) and last date of follow-up were obtained for the index 

patient from medical records. 

 

3.2.2.3 Statistical analysis 

Recurrence-free survival time was calculated from the date of diagnosis to the date of loco-

regional recurrence, date of distant recurrence or the date of death, whichever came first. For 

patients alive and recurrence-free, the time was calculated from the date of diagnosis to the 

date of last clinical check-up or the date of the most recent contact with health care.  

Overall survival was calculated from the date of diagnosis to the date of death or for patients 

still alive to the date of last clinical check-up or contact with health care.  The median follow-

up time was estimated using the reversed Kaplan-Meier technique. Survival over time was 

estimated using the Kaplan-Meier technique with the number of patients still at risk included 

in the graphs. Proportional hazards regression was used to estimate the univariate and 

multivariate effect of the different variables on survival time. Results are presented as hazard 

ratios (HRs) together with 95% confidence intervals. All reported p-values are two-sided and 

refer to Wald tests.  

 

3.2.3 Paper III 
 

3.2.3.1 Sample preparation 

In the discovery phase whole-exome sequencing was performed in the samples from 

CHEK2*del1100C carriers, colorectal cancer patients and patients with familial breast 

cancer. Genomic DNA was extracted from peripheral blood samples and subjected to whole 

exome sequencing at the National Genomics Infrastructure in Uppsala, Sweden. Exome-

enriched sequencing libraries were prepared using the Agilent SureSelectXT Human All 

Exon V5 XT2 + UTR kit (Agilent, Santa Clara, California, US). Cluster generation and 125 
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cycle paired-end sequencing was performed using the Illumina HiSeq 2500 system and v4 

sequencing chemistry (Illumina, San Diego, California, US). Next generation sequencing was 

performed at SciFiLab, University of Uppsala.  

 

3.2.3.2 Selection of candidate alleles 

The cases with hereditary colon cancer and cases with hereditary breast cancer served as 

controls of variants identified by sequencing in the CHEK2*del1100C cases. All non-

synonymous mutations in CHEK2*del1100C cases were evaluated to select candidate alleles 

for further evaluation in a second validation phase. The mutations were assessed by the 

following criteria that all should be fulfilled: 

Allele frequency: Ratios of the allele frequencies of the mutations were calculated. A ratio of 

two or more between CHEK2*del1100C cases and colon cancer cases and/or a ratio of 1.5 or 

more between CHEK2*del1100C cases and familial breast cancer cases was required (the 

group familial breast cancer 56 cases included also the 28 CHEK2*del1100C cases which is 

why a lower ratio was required).  

Gene function: Genes/mutations that were selected should display a function of a putative 

cancer driver gene when evaluated by on-line genome browser databases (OMIM, 

GeneCards) and scientific publications available on PubMed. 

Reference databases: A more than 30% higher allele frequency in CHEK2*del1100C carriers 

compared to regional reference databases was required (ExAC non Finnish population, 

1000genome2014oct European, 249 Swedes/Swedish individuals, SweGen Variant 

Frequency Browser). 

 

Variant tools: The possible impact of an amino acid substitution was assessed by nine 

bioinformatics/variant tools (SIFT, Polyphen2 HDIV/HVAR, LRT, Mutation Taster, 

FATHMM, RadialSVM, LR and MutationsAssessor). Four of the nine tools, or more, should 

indicate that the variant was at least possibly damaging.     

Sequencing accuracy: Only mutations with a sequencing accuracy of 65% or more were 

included, a criteria that was applied on all study groups.  

 

All mutations fulfilling criteria were subject for validation. In a second round, mutations 

almost fulfilling criteria were evaluated again and four more mutations were added, 

(rs811925, rs34983477, rs34523498, rs4926600) that did not fulfil the variant tool criteria 

(3/9). In addition, a missense mutation in the breast cancer gene PALB2, rs152451, was also 

selected although it has previously been suggested as a polymorphism (table 1). 



 

 31 

 

3.2.3.3 Validation of candidate alleles  

Eleven SNPs (rs2297809, rs17860405, rs8176786, rs34523498, rs117739035, rs34983477, 

rs152451, rs811925, rs7962217, rs34492126 and rs2287749) were genotyped using TaqMan 

SNP genotyping assay (Thermo Fisher Scientific, Waltham, Massachusetts, USA). 

rs35932273 was genotyped by Sanger sequencing following PCR. Genomic DNA used in the 

validation screen was extracted from peripheral blood by phenol method or a Qiagen DNA 

extraction kit for blood (Qiagen, Duesseldorf, Germany). 

 

3.2.3.4 Statistical analysis 

Odds ratios, 95% confidence intervals and p-values were calculated to test the association 

with allele frequency using the DeFinetti programme provided as an online source 

(https://ihg.gsf.de/cgi-bin/hw/hwa1.pl). 
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4 RESULTS AND DISCUSSION  

4.1 PAPER I 
 
Breast cancer inherited with other tumour types represents breast cancer syndromes, such as 

the breast- and ovarian cancer syndrome in families with BRCA1 or BRCA2 mutations. In this 

study tumour spectrum in non-BRCA families was investigated in search of associations 

between breast cancer and other types of cancer in terms of proportions of tumour types 

compared to the Swedish general population in the reference years 1970 and 2010. We found 

increased proportions of several tumour types in the 334 non-BRCA families including 

endometrial cancer, an association that had been reported before [190]. In addition, liver-, 

prostate- ovarian-, pancreatic- and liver cancer were overrepresented (Table 1). A few of the 

cancer types were present in a smaller proportion than expected. All of the underrepresented 

tumour types except for lymphoma (2.97%, CI 1.84-4.24, proportion 5.75% 1970 and 6.28% 

2010), were rare types of cancer with expected proportion of less than 1%.  

 

 
Table 1. Overrepresented tumour types in the non-BRCA families. 
 
A strength with the study was using a well-defined cohort where pathogenic BRCA mutations 

had been excluded. The risk of misclassification of gynaecological cancers due to recall bias 

is considered low since the majority of these diagnoses where verified through medical 

records or death certificates. One limitation with using this cohort is the risk of selection bias 

affecting the result, especially for ovarian cancer since patients are referred to counselling 

because of the presence of ovarian cancer in the family. The overrepresentation of ovarian 

cancer is certainly at least partly due to selection bias. The method, calculation of 

proportions, requires awareness of that changes in individual tumour proportions affect each 

other. 

Cancer	site	 Observed	
number	

Proportion	
[%]	

LL	
95%	

UL	
95%	

Proportion	
[%]	in	
Sweden	
1970**	

Proportion	
[%]	in	
Sweden	
2010**	

Reference	
outside	CI	

Prostate	 103	 14.57	 12.02	 17.26	 6.98	 11.95	 CI	above	
reference	

Ovary/Fallopian	
tube	

73	 10.33	 8.2	 12.59	 4.51	 1.93	 CI	above	
reference	

Uterus	 45	 6.36	 4.67	 8.2	 3.07	 2.64	 CI	above	
reference	

Pancreas	 33	 4.67	 3.11	 6.22	 2.79	 1.54	 CI	above	
reference	

Liver	 15	 2.12	 1.13	 3.25	 0.28	 0.13	 CI	above	
reference	
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Endometrial cancer was present in 45 cases in 43 of the non-BRCA families. Eleven of these 

families had only cases of breast- and endometrial cancer. There were 44 cases of 17 other 

tumour types in the remaining 32 families were various (Table 2). 

 

 

 
 
Table 2. Number of cases with other tumour types in the 32 out of 43 families with breast-, 
endometrial cancer and additional cancer diagnoses.  
 
 
Colorectal-, ovarian-, urinary tract and gastric cancer are tumour types that are present in 

Hereditary non-polyposis colorectal cancer (HNPCC), caused by inherited defects in DNA 

mismatch repair genes. Endometrial cancer has been associated with HNPCC and an 

association with breast cancer has been indicated, but evidence is equivocal [201]. A family 

history indicating HNPCC would have been captured and excluded genetically in the 

counselling procedure, why it is unlikely that there are undetected Lynch syndrome families 

in the cohort. Results from all genetic testing for cancer predisposition, not only breast cancer 

syndromes, were investigated before inclusion in the study.  

 

 

 

Cancer	site	 Number	of	cases
Stomach 5
Lung 4
Ovary/Fallopian	tube 4
Uterine	cervix 4
Kidney 4
Brain,	nervous	system 3
Colon 3
Prostate 3
Pancreatic 2
Rectum	and	anus 2
Lymphoma 2
Malignt	melanoma 2
Skin 2
Testis 1
Larynx 1
Urinary	tract 1
Multiple	myeloma 1
Total	number 44
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We now have strong support for an association between breast- and endometrial cancer, 

suggesting that the tumour types may, besides hormonal risk factors, also share genetic risk 

factors. A shared genetic susceptibility could involve oestrogen metabolism or cancer driver 

genes which warrant candidate gene association studies. Another approach is to investigate if 

breast- and endometrial cancer share low-risk loci identified in genome-wide association 

studies. In a recent study a breast- and endometrial cancer syndrome was again supported as 

well as our finding of an association between breast cancer and prostate- ovarian- and 

pancreatic cancer, suggesting shared susceptibility [191].   

 

4.2 PAPER II 
 
We aimed to investigate the effect of parent of origin on breast cancer prognosis. No 

significant difference in overall or recurrence-free survival between maternal and paternal 

inheritance of breast cancer was observed with HRs of 0.99 (95% CI=0.54 to 1.80) and 1.22 

(95% CI=0.78 to 1.92) respectively. In a previous study a clear difference in prognosis was 

observed with a worse prognosis when breast cancer was inherited paternally. Furthermore, 

the difference increased with time. The present study was dimensioned with this taken into 

account. However, rather few families fulfilled inclusion criteria; only 23% of them could be 

included. A common reason for exclusion was inheritance of breast cancer on both lineages 

or presence of only one case of breast cancer or only index patient and her mother (parents 

were not counted as cases). The cohort was otherwise representative of the general breast 

cancer population in Sweden except for low mean age at onset, which is expected in familial 

breast cancer.  

 

An interesting finding was the predominance of maternally inherited breast cancer. The 

asymmetry was also observed in the index patients collected from the cohort of unselected 

sporadic breast cancer (3.1.2.1), cases with maternal inheritance were twice as many as 

paternally. This may indicate that patients with paternal inheritance of breast cancer are less 

aware of their family history. However, the accuracy of self-reported history of breast cancer 

in first and second relative with breast cancer is in general high, which indicates that an 

underlying genetic mechanism may partly explain the asymmetry [202, 203].  

 

We hypothesised that genomic imprinting, or other non-standard genetic mechanisms, may 

affect breast cancer prognosis in a parent-of-origin dependent manner. Imprinting has been 

shown to contribute to phenotypic variation even though imprinting has been confirmed in 
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less than 1% of all genes [180]. In general, genome-wide association studies do not 

differentiate between paternal and maternal alleles why little is known about the number and 

effect of imprinted genes. In that perspective it would be of interest to investigate, in a larger 

cohort, if a smaller parent-or-origin effect on breast cancer exists. 

 

4.3 PAPER III 
 

In paper III we investigated cases of CHEK2*1100delC carriers in search of genetic variants 

that may modify breast cancer risk in this patient group. After selection of candidate alleles, 

11 selected variants (rs2297809, rs17860405, rs8176786, rs34523498, rs117739035, 

rs34983477, rs152451, rs811925, rs7962217, rs34492126 and rs2287749) were tested in a 

validation. No CHEK2 specific modifier could be identified, none of the variants showed 

significant difference in allele frequency in CHEK2*1100delC carriers compared to controls. 

 

The investigated samples from CHEK2*1100delC carriers were all identified cases over the 

last five years in Sweden, which makes it all well-defined cohort. Criteria were constructed to 

assess the non-synonymous mutations in the carriers contra the controls of cases of familial 

colorectal- and familial breast cancer in order to identify candidate variants. Since none of the 

selected variants in CHEK2*1100delC carriers were confirmed as candidate alleles in the 

validation we need to re-evaluate the criteria in favour of another approach. Searching for 

more rare truncating variants is one option, another to investigate several individuals in 

selected families. The limited number of CHEK2 cases has implications on statistical power. 

In the future, international collaborations would be valuable, at least for validation of putative 

candidate alleles. 

 

CHEK2*1100delC carriers have a 2-3-fold risk of breast cancer but the risk is considerably 

higher in carriers with a family history [120, 126, 132]. The individual risk for carriers is 

thereby difficult to predict. This is a clinical dilemma, since carriers in the lower risk 

spectrum may be near the risk of breast cancer of the general population, whereas many other 

carriers are at high risk and should be offered preventive programmes. Seventy-seven 

common low-risk breast cancer variants have demonstrated a modifying effect in 

CHEK2*1100delC carriers explaining a part of the excess familial risk [166]. Further studies 

are warranted to identify more genetic variants that modify risk in these families.  
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Two missense mutations, one in the DLG1 gene and one in the PRDM1 gene showed higher 

allele frequencies in both the familial cohort and the CHEK2*del1100C cohort compared to 

controls (rs34492126 OR: 1.19 and 1.15 and rs811925 OR: 1.19 and 1.09), but the 

differences were non-significant. Since these genes are interesting as putative cancer driver 

genes, testing the variants in larger cohorts would be of interest to investigate if they may be 

low-risk variants predisposing to breast cancer.  
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5 CONCLUSIONS AND CLINICAL IMPLICATIONS 
 

Paper I 

We found strong support for an association between breast cancer and endometrial cancer, 

which is a first step towards detecting new susceptibility variants. Future studies are 

warranted to identify shared genetic susceptibility that may explain some of the residual 

genetic component behind breast cancer. More identified risk genes/variants can improve the 

individual risk prediction in the families at risk. 

 

Paper II 

We found no parent-of-origin effect on breast cancer prognosis. A study in a larger cohort 

could confirm or rule out a smaller effect. Little is known about genetic mechanisms that 

confers an inherited inter-lineage effect. An incidental finding of our result, the predominance 

of maternally inherited cases, indicates that parent-of-origin may not have an effect on breast 

cancer prognosis, but rather the risk of being affected. Future studies could target both of 

these issues. 

 

Paper III 

We could not identify any variants that specifically modify breast cancer risk in 

CHEK2*1100delC carriers. Because of the imprecise risk prediction available for 

CHEK2*1100delC carriers, screening is so far not clinical routine in familial breast cancer. 

Continuous studies of genetic modifiers are thereby of importance. For counselling purpose, a 

future model that combine estimated relative risks and convert them into calculated absolute 

risks would be beneficial.  
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