
From Oncology and Pathology 
Karolinska Institutet, Stockholm, Sweden 

STUDIES OF B-AP15 – A NOVEL 
INHIBITOR OF PROTEASOME 
DEUBIQUITINASE ACTIVITY 

Chao Sun 

孙 超 

 

Stockholm 2017 
 



 

All previously published papers were reproduced with permission from the publisher. 
Published by Karolinska Institutet. 
Printed by Eprint AB 2017 
© Chao Sun, 2017 
ISBN 978-91-7676-662-0  
 



Studies of b-AP15 – a novel inhibitor of proteasome 
deubiquitinase activity 
THESIS FOR DOCTORAL DEGREE (Ph.D.) 
 
AKADEMISK AVHANDLING 
som för avläggande av medicine doktorsexamen vid Karolinska 
Institutet offentligen försvaras i CMM lecture Hall L8:00 Karolinska 
Universitetssjukhuset, Solna. 
 
Fredagen den 28 april, 2017, kl 9:00 

 

av 

Chao Sun 
M.Sc. 
 
 
 
 
 
 
Principal Supervisor: 
Professor Robert Harris 
Karolinska Institutet 
Department of Clinical Neuroscience 
Division of Neuroimmunology 

Opponent: 
Professor Petter Höglund 
Karolinska Institutet 
Department of Medicine, Huddinge 
Division of Hematology 
 
Examination Board: 
Professor Antonio Barragan 
Stockholm Universitet 
Department of Molecular Biosciences 
 
Professor Tomas Ekström 
Karolinska Institutet 
Department of Clinical Neuroscience 
 
Associate Professor Anna-Lena Ström 
Stockholm University 
Department of Neurochemistry 
 

 

 





 

 

 

Dedicated to my family 
  



 

 



 

 

ABSTRACT 
Bortezomib was the first FDA approved proteasome inhibitor that was initially very 

successful in treatment of multiple myeloma patients but acquired resistance and adverse 

side-effect highly decreased patients’ quality of life. Development of 2nd generation 

proteasome inhibitors that could overcome these shortcomings is thus of prime medical 

importance.  

Our group has developed b-AP15 as such a candidate, which targets a different subunit of the 

proteasome than does bortezomib. In study I, we determined that use of CpdA as a co-

translational translocation inhibitor in a co-treatment protocol greatly enhanced proteasome 

inhibition by b-AP15.  

Aggresome formation is a resistance mechanism evident after bortezomib treatment. In study 

II, we demonstrated that b-AP15 did not induce aggresome formation under the same 

conditions and interestingly we observed less aggresome formation with co-treatment of b-

AP15 and bortezomib compared to single treatment with bortezomib.  

In study III, we demonstrated that lymphoma cell lines were as sensitive to b-AP15 as other 

cancer cell lines previously reported. The apoptosis induced by b-AP15 correlated to 

accumulation of polyubiquitination and the ER stress response.  

In study IV, we observed that the gene expression patterns and apoptosis induction 

mechanisms of b-AP15 and bortezomib were similar, but not identical. Both induced the 

expression of Hmox-1 but only b-AP15 could induce ER stress. This study also revealed that 

ROS scavengers could reduce the apoptosis induced by b-AP15, which was due to activation 

of AP-1 

In study V, the gene expression pattern following Piperlongumine treatment was similar to 

that of other proteasome inhibitors and the drug could block the ubiquitin–proteasome system 

in cancer cells. However, Piperlongumine was determined not to be a classic but instead 

interfered upstream of UPS system. 

The overall conclusion is that further development of proteasome inhibitors such as b-AP15 

should be continued, as increased efficacy is expected following clinical translation. 
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1 INTRODUCTION 

1.1 CANCER AND CANCER TREATMENT 

1.1.1 What is Cancer 

As a top deadly disease, cancer is a serious threat to public health across the world. It is 

estimated by International Agency for Research on Cancer GLOBOCAN that a total of 8.2 

million deaths and 14.1 million newly diagnosed cases were recorded from 184 countries 

worldwide in 2012[1]. According to the definition by NIH (National Cancer Institute), 

cancer is “a collection of diseases in which some of the body’s cells continue to divide and 

spread into surrounding tissues”. Tumorigenesis is considered as a multiple-step progress in 

which normal cells develop into highly malignant cells through genetic alteration.    

 

Figure 1: 8 hallmarks of cancer. 

In general, cancer is characterized by the following eight hallmarks (Figure 1): 1) sustained 

proliferative signaling and evading growth suppressors, which is defined by the healthy cell 

number and cell proliferation in the analyzed samples; 2) resisting cell death, which is 
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investigated by detecting and evaluating the programmed cell death process, apoptosis; 3) 

enabling replicative immortality, which is identified by the up-regulated level of telomerase; 

4) sustained angiogenesis, which is identified by the up-regulated level of vascular 

endothelial growth factor-A (VEGF-A) and basic fibroblast growth factor (FGF); 5) 

activating invasion and metastasis, which exhibits incomplete or absent epithelial-

mesenchymal transition (EMT);  6) genome instability and mutation, which presents altered 

chromosomal stability; 7) reprogramming energy metabolism, which shows increased 

glycolysis level; and 8) epigenetics[2].  

1.1.2 Cancer treatment 

Cancer is usually classified into different categories based on organ or tissue-of-origin 

affected. Common treatments of cancer include surgery, chemotherapy, radiation, 

immunotherapy and targeted therapies. In addition, there are other newly developed 

treatments such as stem cell transplantation, hormone therapy and precision medicine. Some 

patients may have good responses to mono-treatments, but most patients need to receive 

different combinations of treatments. A combination of cancer therapies has been used to 

overcome the disadvantages and limitations of mono-treatments, and to produce long-lasting 

anti-cancer responses for patients not benefiting from mono-treatments. With the 

development of systemic therapeutics, patients’ life span can be expanded, and some tumor 

types can be completely cured. 

1.1.2.1 Surgery 

As a local treatment surgery can be used to cure the cancer constrained in one area if it has 

not spread. Surgery can be performed in a traditional way using surgical instruments to 

remove the cancerous tissue from the body. There are also several other types of surgeries 

without the use of scalpels, including cryosurgery, lasers, hyperthermia and photodynamic 

therapy. Cryosurgery destroys cancer tissue by extreme cold in the form of liquid nitrogen or 

argon gas that can be applied to internal tumors, such as prostate and liver tumors, and 

external tumors like skin squamous cell carcinoma [3]. Laser therapy is usually used to treat 

cancer cells in superficial areas such as the cervix, penis and vagina using high-intensity light, 

like CO2 lasers and argon lasers. Hyperthermia treatment destroys cancer cells through high 

temperature, combined with radiation or chemotherapy for a synergistic effect [4]. 

Photodynamic therapy uses a photosensitizer that stays shorter in healthy cells than in cancer 
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cells, and when the photosensitizer is exposed to visible light it triggers photochemical 

reactions and produces singlet oxygen to destroy cancer cells [5]. 

1.1.2.2 Radiation therapy 

High-energy radiation is used in radiation therapy to suppress tumor growth and to destroy 

cancer cells through DNA damage. According to NIH, this procedure is extensively used in 

almost 50% of cancer patients. Radiotherapy can be given as an externally-delivered 

photobeam or as internally-placed radiation material. External delivery radiation therapy 

methods include three-dimensional conformal radiation therapy (3D-CRT), intensity-

modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) and 

stereotactic radiosurgery. Internal radiation material can be applied in tumor tissue or the 

body cavity. In systemic radiation therapy a radioactive substance is administered by oral or 

intravenous injection to reach tissues throughout the body. The treatment planning of 

radiation therapy involves precision location using CT scan or MRI, PET and ultrasound 

scans. Radiation therapy has some side-effects, including normal cell damage, which occurs 

during the treatment or many years after the treatment. 

1.1.2.3 Chemotherapy 

Chemotherapy refers to the use of drugs to suppress cancer cell growth and to kill cancer 

cells, which is widely used in almost half of cancer patients. More than 100 drugs have been 

used for cancer chemotherapy. Chemotherapeutic drugs can be classified by their chemical 

structures, derivation and mechanisms of action. Chemotherapeutic drugs are normally 

grouped as alkylating agents, mitotic inhibitors, anti-tumor antibiotics, anti-metabolites, 

topoisomerase inhibitors, corticosteroids, miscellaneous chemotherapeutic agents and alkyl-

lysophospholipids. Some agents work through more than one mechanism, thus belonging to 

various groups. Chemotherapeutic drugs can be administered in different ways, such as 

orally, intravenous injection, intramuscular injection, intrathecal injection and intra-arterial 

injection. Chemotherapeutic drugs may induce side-effects such as damage to normal body 

cells. It is therefore necessary to use optimal drug doses for individualized treatment and to 

minimize unwanted systemic effects. The leading cause for chemotherapy failure is acquired 

drug resistance. During recent years’ research on cancer therapy has focused on the 

development of specific inhibitors targeting the oncogenic mutations that hyperactivate 

growth regulatory pathways. 
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1.1.2.4 Immunotherapy 

Immunotherapy is based on the concept that cancer development is naturally monitored by 

the immune system, which has the potential to suppress malignant cells [6]. Cancer 

immunotherapies include various strategies to stimulate immune effector mechanisms or that 

neutralize suppressive or inhibitory immune responses. There are various approaches used to 

induce immune effector cell activation, including vaccines specific for antigens expressed by 

tumors; treatment with cytokines such as IL-2 and IFN-α to stimulate the host’s immune 

system; adoptive cellular therapy with tumor-infiltrating lymphocytes; administration of 

oncolytic viruses; and antibodies to enhance the co-stimulatory signals such as targeting the 

tumor necrosis factor receptor (TNFR) superfamily members 4‑1BB, OX40, glucocorticoid-

induced TNFR-related protein (GITR), CD27, CD40 and TNFRSF14. As for the approaches 

to eliminate immune suppressive mechanisms, there are antibodies targeting surface markers 

of regulatory T cells such as CD25, LAG3 and T cell-immunoglobulin-mucin domain 

protein TIM3, and antibodies against immune-checkpoint molecules, such as programmed 

cell death protein 1(PD-1) and cytotoxic T lymphocyte associated protein 4(CTLA-4) [6, 7].   

There are limitations in the exploration of successful immunotherapies for cancer, such as 

screening of suitable and effective antigens, low response rates, restriction to specific tumor 

types, and immune-related adverse events. After years of disappointing failures, cancer 

immunotherapy has achieved some success clinically. The Sipuleucel-T vaccine was 

approved to treat asymptomatic and metastatic hormone-refractory prostate cancer by the 

FDA in 2010[8]. The anti-CTLA-4 antibody ipilimumab was approved to treat melanoma by 

the FDA in 2011. The PD1 antibody nivolumab was approved to treat metastatic melanoma 

and advanced and metastatic non-small-cell lung cancer in 2014 and 2015 respectively [9]. 

1.1.3 Clinical successes and failures in cancer treatment 

1.1.3.1 Multiple Myeloma 

Over the past 15 years the diagnosis and therapy of multiple myeloma have achieved great 

advances, and patients’ survival rates have significantly increased with the increasing 

number of new drugs [10]. Patients are usually treated with high-dose chemotherapy and 

transplantation of peripheral blood or bone marrow stem cells. According to the 2016 

guidelines of the National Comprehensive Cancer Network (NCCN) for multiple myeloma, 

newly diagnosed non-transplantation patients are treated with a triplet regimen consisting of 

bortezomib and dexamethasone combined with either cyclophosphamide or lenalidomide; or 
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melphalan and prednisone combined with bortezomib, lenalidomide or thalidomide. 

Transplantation patients are treated with a triplet regimen consisting of bortezomib and 

dexamethasone, combined with lenalidomide, thalidomide, or cyclophosphamide for 

induction therapy, and autologous stem cell transplantation (ASCT). These treatments are 

followed by maintenance therapy. After initial treatment of dexamethasone/lenalidomide/ 

bortezomib with or without ASCT, the 18-month progression-free survival (PFS) rate was 75% 

and the overall survival (OS) rate was 97%. After initial therapy with 

cyclophosphamide/bortezomib/dexamethasone, 5-year PFS and OS rates were 42% and 70%, 

respectively. For the patients who experienced relapsing multiple myeloma, numerous 

regimens such as carfilzomib/dexamethasone, elotuzumab/lenalidomide/ dexamethasone, 

and Ixazomib/lenalidomide/dexamethasone have been demonstrated to improve the median 

PFS [11]. 

1.1.3.2 Acute Myeloid Leukemia 

Of all acute myeloid leukemia (AML) patients, about 40–45% of younger (18-60 years old) 

and 10–20% of older patients will be cured using current standard chemotherapy [12]. The 

“7 + 3” induction regimen (7-day continuous intravenous cytarabine infusion and 3 daily 

doses of anthracycline, typically daunorubicin or idarubicin) is considered as the standard 

treatment for AML; and the higher dose cytarabine and nucleoside analogue doublets are the 

most modern approaches [13]. Only a small number of patients can receive allogeneic 

hematopoietic stem cell transplantation (HSCT) to prevent from recurrence, but for older 

patients the transplantation may induce higher morbidity and mortality [14]. In recent years, 

a better understanding of AML genomic and epigenomic changes has facilitated targeted 

treatments for specific subgroups. However, the outcomes in older patients (>60 years old) 

remain highly unsatisfactory and effects in relapsed or refractory patients are still poor [15]. 

1.1.3.3 Malignant Glioma 

In comparison with great improvement in the therapeutic outcomes of other types of cancer, 

the clinical outcomes of malignant glioma are disappointing. World Health Organization 

defined the anaplastic high-grade gliomas and glioblastomas as malignant gliomas [16]. 

Generally, diagnosed glioblastoma patients without any treatment will die in a few months. 

At present, glioblastoma is treated with gross total resection, radiotherapy and combined 

with concomitant DNA alkylating agent temozolomide, showing a limited efficacy. The 

median survival is extended to 14.6 months by combining temozolomide to surgery and 
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radiotherapy, only one year longer than natural course, with 2-year survival rate less than 25% 

[17]. Almost all malignant glioma patients will recur, and salvage therapy has no effect. 

1.1.3.4 Metastasis 

Metastasis is a multi-step process in which cancerous cells spread from the original location 

to distant organs through the circulatory system before establishing a secondary tumor at the 

new areas [18]. According to the statistics, metastasis causes about 90% of cancer deaths 

[19]. The process of metastasis includes invasion, survival, entering into the blood stream 

and colonization. In terms of metastatic cancers, the treatment should be directed to both the 

primary site and the secondary tumors. Moreover, the diagnosis of metastatic cancers is often 

a sign of more widely metastatic sites that have not been detected. These factors result in 

extreme difficulty for the treatment of metastatic cancer [20]. 

1.2 THE UBIQUITIN-PROTEASOME SYSTEM AND CANCER 

1.2.1 The ubiquitin network 

The synthesis and degradation balance is responsible for the maintenance of steady-state 

levels of cellular proteins. The two predominant cellular systems that regulate intracellular 

protein degradation are the cytoplasmic ubiquitin-mediated and the vacuolar pathways [21]. 

The ubiquitin-mediated pathway is responsible for about 80% protein turnover in cells [22]. 

As a conserved protein in eukaryotic cells, ubiquitin is coupled to lysine residues on target 

proteins through enzymatic reaction cascades [23]. Many components of the ubiquitin-

proteasome (UPS) system are considered as potential targets for cancer therapy, due to its 

involvement in the pathogenesis of cancer. 

There are 3 keys enzymes (E1, E2 and E3) involved in the multiple-step ubiquitination 

process (Figure 2). In eukaryotic cells, ubiquitin is an 8kDa conserved protein in its free form 

or conjugated to protein substrates. In the first step of the ubiquitination process, ubiquitin is 

activated by E1 enzyme. The high energy-consuming activity requires ATP for a thio-ester 

bond formation between E1 enzyme and ubiquitin. Then the activated ubiquitin is transferred 

from E1 to E2 conjugating enzyme by trans-thiolation. Finally, ubiquitin from the E2-linked 

complex is attached to the lysine residue of the substrate protein by E3 ubiquitin ligases [23-

25]. The human genome contains around 40 E2 enzymes and more than 600 E3 ligases [26]. 

The process of ubiquitination is reversible. Ubiquitination is controlled by deubiquitinating 

enzymes (DUBs), a divergent family of isopeptidases that reverse ubiquitination by 
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Figure 2. The ubiquitination and deubiquitination  
(From: Deubiquitinases and cancer: A snapshot) 

removing conjugated ubiquitin tags [27, 28]. 

Ubiquitinated proteins are degraded in proteasome or lysosome. The proteasome is a 26S 

complex comprising of several multi-catalytic proteases. These proteases will turn the 

polyubiquitinated proteins into short peptides. The proteasome consists of two 19S 

regulatory domains that recognize ubiquitinated proteins and a 20S core domain in charge of 

the protein degradation [29, 30]. Deubiquitination is one of the most important bases of the 

ubiquitin proteasome system (UPS), in which signal ubiquitin or multiple ubiquitin chains 

are removed from a target. More than 100 kinds of DUBs have been identified and 

characterized in human cells.  

Ubiquitination is a major post-translational modification affecting protein stability, 

localization or interaction pattern. It has been discerned that several tumor suppressors or 

oncogenes involved in the ubiquitin conjugation and deconjugation pathways are altered in 

cancerous states. The ubiquitin-proteasome system therefore becomes a potential target for 

anti-cancer drug development. 

1.2.2 E3 ubiquitin ligases in cancer 

Oncoprotein stabilization and tumor suppressor gene destabilization are the main inducers of 

cancer. Cancer cells carry genetic mutations, resulting in unlimited growth and survival in 

adverse conditions. Dysregulation of ubiquitin pathways contributes to a protein turnover 
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defect, which is associated with the clearing of oncoproteins and the stabilization of tumor 

suppressor proteins [31, 32]. Many components of the ubiquitin system have been reported 

to be correlated with tumors and are thus considered as potential candidates for cancer 

therapy, (ubiquitin ligase system, dysregulation of deubiquitinating enzymes and the 26S 

proteasome [32, 33]).  

E3 ligases are the most essential components of the ubiquitin conjugation procedure due to 

their involvement in the binding of both the specific target proteins and substrates. E3 ligases 

are a diverse group of proteins, including HECT (homologous to E6-AP C terminus)-type, 

single RING (Really interesting newly discovered gene)-type, Cul4 (Cullin 4)-base-type, 

SCF (SKP1–CUL1–F box protein)-type, and ECV (Skp1/Cdc53 or Cul1/F-box protein)–type. 

E3 ligases selectively target tumor suppressive proteins or oncogenic proteins and have a 

strong relation with the development of cancer [34]. The SCF-type E3 ligase contains 4 

components, including Skp1, Cul1, and Rbx1/Roc1, functioning as the invariable subunits, 

and a target protein receptor subunit F-box protein [35]. 

F-box protein Fbw7 mutations and its target gene mutations are reported in a variety of 

human cancers [36]. The E3 SCFFbw7 complex ubiquitinately phosphorylates oncoproteins, 

such as Notch, c- Jun, cyclin E and c-Myc.  As the first reported E3 ligase for the G1/S phase 

progression negative regulator p27, SCFSkp2 can indirectly regulate cycline–dependent 

kinases (CDK) [37]. Increased levels of F-box protein SKP2 and reduced levels of p27 are 

observed in many types of cancer [38]. The tumor suppressor Von Hippel-Lindau (VHL) is 

an ECV-type E3 ligase component, including elongin C, elongin B, Cullin 2 and bx1/ROC1. 

HIF-1α is an unstable subunit of the hypoxia-inducible transcription factor family (HIF). 

VHL E3 ligase regulates HIF-1α activity and induces oxygen-dependent ubiquitin-mediated 

destruction. Unhydroxylated HIF-1α cannot bind VHL protein and therefore accumulates in 

cells during hypoxia. VHL mutations or hypoxia can prevent ubiquitination of HIF-1α and 

increase HIF expression, thus activating the pathways to promote angiogenesis and cell 

survival, which are the advantages utilized by cancer cells [39, 40]. 

Tumor suppressor p53 acts as a sequence-specific transcription factor in apoptosis, DNA 

repair and the cell cycle.  Numerous studies have shown that the prominent function of p53 

is to regulate the process of apoptosis and pathways of cell cycle arrest. Many genes 

involved in the signaling transduction of apoptosis processes are induced by p53 to activate 

both the intrinsic and extrinsic apoptosis pathways [41]. Mitochondrial outer membrane 
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permeabilization (MOMP) plays an important role in the multiple-step signaling transduction 

of intrinsic apoptosis [42]. p53 regulates MOMP by transcriptionally inducing the expression 

of a variety of BH3-only pro-apoptotic proteins (Puma, Noxa, Bad, Bax,). It is evidenced by 

the experiments of gene knockout mice that these pro-apoptotic proteins work together to 

mediate this p53-induced apoptosis mechanism [43, 44]. p53 transcription enhances the cell 

surface death receptor levels, such as Killer/Dr5 and Fas to activate the extrinsic apoptosis 

pathways [45, 46]. Transcriptional activation of p21/WAF1, 14-3-3ơ and cdc25C by p53 

arrests cells at G1 phase and G2/M phases [47]. 

The activity and stability of p53 is regulated by ubiquitination. A series of RING or HECT 

subgroup E3 ligases have been identified to target multiple lysines on p53 for ubiquitination 

[48]. More than 10 RING-type E3 ligases are recognized to be involved with 26S 

proteasome-mediated p53 degradation. As a RING-containing E3 ligase, mouse double 

minute 2-homolog (MDM2) functions as an E3 ligase to ubiquitinated p53, which has a 

highly-conserved N-terminus. MDM2 acts on the p53 transactivation domain to consistently 

suppress p53 function. Wild-type p53 can also be downregulated by over-expression or 

amplification of MDM2, which leads to the proteasome-mediated degradation of p53 and 

promotes carcinogenesis in many human cancers [49]. As with the HECT-type E3 ligases, 

ARF-BP1 directly acts on p53 for ubiquitination, and WWP1 mediates the poly-

ubiquitination of p53 to regulate different cell functions [50]. 

1.2.3 Deubiquitination and DUBs 

Deubiquitination serves as the reverse process of protein ubiquitination. Ubiquitin is recycled 

in the ubiquitin-proteasome system (UPS), and the ubiquitin tag can be removed from the 

target complex by deubiquitinating enzymes (DUBs). DUBs release ubiquitin tags to rescue 

the marked protein from degradation, which is composed of several intracellular peptidases 

involved in ubiquitin maturation, recycling and editing, to remove ubiquitin chains from 

target complexes. Human DUBs can be classified into 5 groups, including ubiquitin-specific 

proteases (USP), ovarian tumor-like proteases (OTU), ubiquitin carboxy-terminal hydrolases 

(UCH), JAMM/MPN metalloproteases and Machado–Jakob-disease proteases (MJD)[51]. 

USP, the largest DUB family, is observed to be associated with most cancers and is involved 

in regulating multiple signaling pathways. 
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1.2.4 DUBs in cancer 

DUBs are implicated to control processes relevant to tumorigenesis, including DNA damage 

response pathways, regulation of cell-cycle, regulation of histones and signaling pathways 

associated with cancer [52].  

1.2.4.1 DNA damage response pathways 

The different damages to or lesions in DNA and deficient DNA repair mechanisms are 

associated with genetic alterations and tumorigenesis. USP1 plays an important role in 

regulating DNA damage responses. The deubiquitination of two important proteins in 

Fanconi’s anemia pathway, FANCD2 and PCNA, is mediated by USP1. Human USP2a, 

USP4, USP7, USP10, USP29 and USP42 are involved in the regulation of the p53 tumor 

suppressor protein, exerting broad effects on DNA damage repair [53]. USP28 is required to 

stabilize checkpoint kinases Chk2 and 53BP1 and regulate the apoptosis upon to DNA 

damage [54]. 

1.2.4.2 Regulation of the cell cycle 

DUBs can exert influences on cell cycle regulation to induce cellular transformation and 

malignancy. USP13, USP37, USP39, USP44 and CYLD serve as key regulators in mitosis, 

thus contributing to the cell-cycle regulation [52]. USP 50 and UbpM (USP16) regulate cell 

cycle progression by controlling the G2/M checkpoint [55]. USP7 plays an important role in 

cell differentiation and proliferation, which is shown in its regulation of phosphatase and 

tensin homolog (PTEN), and FOXO localization [56, 57]. Usp22 regulate shelterin protein 

TRF1 (TBP (TATA box-binding protein)-related factor 1) level through deubiquitination, 

which affects cell cycle and apoptosis genes [58]. 

1.2.4.3 Regulation of histones 

Histone ubiquitination affects DNA damage responses and cellular homeostasis maintenance. 

In response to DNA damage, up-regulated mono-ubiquitination was observed in H2A, H2B, 

H3 and H4. Mono-ubiquitination of histone H2A is related to transcriptional inhibition and 

maintenance of genome integrity.  USP10 can deubiqutinate the mono-ubiquitinated H2A to 

induce androgen receptor-mediated gene activation [59]. USP16 is a specific DUB for 

histone H2A, while USP49 and USP42 are specific DUBs for histone H2B. USP1, USP3, 

USP7, USP12, USP 22 and USP46 can deubiqutinate both histones H2A and H2B to 

regulate the cellular DNA repair and transcription and gene expression [55]. 
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1.2.4.4 Signaling pathways associated with cancer 

There is an increasing focus on DUB-involved cancer pathways in various tumor types, 

representing a potential drug target. The NF-κB pathway is constitutively activated and 

frequently deregulated in different kinds of cancer [60]. USP4, USP14, USP15 and USP31 

have been reported as negative regulators of NF-κB signaling through deubiquitination of 

multiple NF-κB pathway-associated molecules [61]. Epithelial-mesenchymal transition 

(EMT) is an epithelial plasticity process, involved in cancer metastasis. TGF-β signaling 

pathways, as one of the best-characterized promoters of EMT, can be stimulated by a 

number of cytokines and influenced by DUBs to promote tumor metastasis and progression 

[62]. USP4, USP11 and USP15 deubiquitinate and stabilize the TGF-β receptor I (ALK5), 

permitting sustained Smad activation and resulting in the enhancement of TGF-β signaling 

[63-65]. 

1.2.5 Proteasome-associated DUBs in cancer 

1.2.5.1 26S proteasome-associated DUBs 

 

Figure 3.3D structure of 26S Proteasome.  
(http://www.tanpaku.org/e_icsg2008/07_01.php) 

The human 26S proteasome contains approximately 50 subunits, which can be classified as 3 

sub-complexes based on their structures and functions (Figure 3): one 20S proteolytic core 



 

12 

particle is in charge of degrading proteins into amino acids and two cap 19S regulatory 

particles play a recognition and deubiquitination role in the UPS.  The 20S core particle is 

formed by 28 protein subunits, which have two stacked β-rings in the central chamber and 

two α-rings in the outside chamber. Proteolytic active parts are placed within the internal 

cavity and determine the cleavage of different types of peptides [66]. To ensure the 

specificity of proteasome-associated degradation of ubiquitinated substrates, the 19S 

regulatory particles function as the recognition of substrate and control the access of proteins 

into the proteasome. The 19S regulatory particles comprise one lid with nine non-ATP Rpn 

subunits (Rpns 3, 5, 6, 7, 8, 9, 11, 12, and 15), one base containing six ATPases (Rpt1, 2, 6, 

3, 4, 5) and four non-ATP Rpn subunits (Rpns 1, 2,10, and 13) [67]. 

 

Figure 4. Three different DUBs of proteasome  
(From: Trimming of Ubiquitin Chains by Proteasome associated Deubiquitinating Enzymes) 

Three different DUBs, including UCHL5 (also known as UCH37), USP14 and Rpn11, are 

located in the human proteasome 19S subunit, belonging to the USP, UCH and JAMM 

families, respectively (Figure 4). Of these, Rpn11 can remove the proximal end of the 

ubiquitin chain from the substrate to the poly-ubiquitin direction, and UCHL5 and USP14 

can remove ubiquitin from the top of the ubiquitin chain (distal tip) to the substrate direction. 
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Because of the directional difference, Rpn11 can induce substrate degradation by liberating 

ubiquitin from the complex, and conversely UCHL5 and USP14 can suppress substrate 

degradation by removing ubiquitin from the complex. By cleaving the iso-peptide bond and 

releasing the poly-Ub chains, USP14 can rescue the incorrectly poly-Ub- labeled substrate 

proteins [68]. Inhibition of USP14 by small molecules can enhance substrate degradation 

through proteasome [69]. These 3 DUBs have differential preferences for the position of 

deubiquitination, with Rpn11 only cutting at K63 and UCHL5 preferably cutting at K48[70].  

1.2.5.2 The role of 26S proteasome-associated DUBs in cancer 

 Rpn11 is required for cancer cell viability and also confers multidrug resistance to a 

spectrum of anti-cancer drugs [71, 72]. Screening for genetic abnormalities shows the 

involvement of USP14 in ovarian carcinogenesis [73]. USP14 is associated with lymph node 

and liver metastases, which is highly evident in colorectal cancer [74]. UCLH5 acts as an 

important regulator in oncogenic signaling. UCHL5 regulates TGF-β/Smad signaling, a 

critical regulator of cell proliferation, differentiation, and tumor pathogens, thereby allowing 

deubiquitination and stabilization of the TGF receptor [75]. Elevated level of UCHL5 is 

associated with esophageal squamous cell carcinoma outcome and recurrence [76]. POH1 

was identified as an important DUB to regulate ErbB2 levels, while the over-expression of 

ErbB2 is contributable to malignancy and poor prognosis of breast cancer [77]. 

1.3 CHEMOTHERAPY AND CANCER DRUG RESISTANCE 

1.3.1 Chemotherapy of cancer 

The treatment with cytotoxic drugs, termed chemotherapy, is mainly used as a combination 

treatment strategy with surgery and radiotherapy, sometimes including immunotherapy. 

Chemotherapeutic reagents can be divided into different types according to the mechanisms 

of action, molecular structure and the relationship with other drugs. Based on the 

mechanisms of action, chemotherapeutic drugs can be classified into different groups: anti-

metabolites, which damage the cell by acting as a natural substitute molecule for metabolites 

of DNA and RNA syntheses; alkylating agents, which act on all cell cycle phases to damage 

the DNA; anti-tumor antibiotics, which interfere with the intracellular DNA to suppress cell 

growth; mitotic inhibitors, which target tubulins to destroy the normal mitotic spindles 

function; topoisomerase inhibitors, which interrupt DNA replication in cancer cells; 

corticosteroids, which refers to natural hormones and hormone-like drugs that may induce 

apoptosis and be useful in some specific types of cancer; and alkyl-lysophospholipids, which 
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disturb the membrane phospholipid metabolism to destroy cancer cell[78, 79]. The major 

limitation for chemotherapy is intrinsic (innate) and acquired (adaptive) resistance. 

1.3.2 Cancer drug resistance 

Drug resistance affects the effectiveness of cancer chemotherapy, which is evident for most 

drugs during the treatment, with patients potentially ending up in an uncontrollable situation.  

Cancer drug resistance can be recognized as intrinsic resistance and acquired resistance. 

Tumors showing intrinsic resistance may present this character before encountering any 

chemotherapeutic drugs. Acquired resistance can be observed in tumors, which are sensitive 

in the early stage and later become insensitive to similar drugs [80]. New drug development 

should therefore focus more on drug resistance and its related signaling pathways, in addition 

to extension of patients’ life span and improvement of their life quality. Several mechanisms 

have been suggested to contribute to the cancer drug resistance (Figure 5). 

 

Figure 5. Mechanisms of cancer drug resistance. 

1.3.2.1 Drug transport and metabolism 

A number of cell membrane transporter proteins are responsible for the resistance to many 

commonly used chemotherapeutics. For example, multi-drug resistance protein 1 (MDR1), 

breast cancer resistance protein (BCRP) and MDR-associated protein 1 (MRP1) have been 
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indicated in multi-drug resistance [81]. As the first identified ATP-binding cassette (ABC) 

transporter, MDR1 is up-regulated in many tumors and can be induced by chemotherapy 

[82]. Expression of MRP1 in prostate, lung and breast is consistently associated with drug 

resistance in those cancer types [83]. Cytotoxic vincristine and etoposide are excellent 

substrates of MRP1, and the presence of GSH in living cells at mill molar concentrations 

significantly broadens the spectrum of solutes transported by MRP1[84]. BCRP possesses a 

very broad substrate and inhibitor specificity, which is different from MDR1 or MRP1. 

BCRP is associated with chemo-resistance in solid tumors, such as breast cancer, and acute 

myeloid leukemia [85]. 

1.3.2.2 Alterations in drug targets 

Mutations or decreased expression of drug targets affect drug response and resistance. The 

development of drugs targeting specific mutations in cancer cells has achieved clinical 

success in cancer therapy, but the acquired drug resistances limit the efficacy of these drugs. 

An important anti-cancer drug target is epidermal growth factor receptor (EGFR) and its 

related signaling pathways. Non-small-cell lung carcinoma (NSCLC) patients with mutations 

in exons 19 and 21 show good response to the EGFR- tyrosine kinase inhibitors (EGFR-

TKIs) gefitinib and erlotinib. The most common mechanism resulting in disease relapse and 

acquired drug resistance for EGFR-TKIs in lung cancer patients is the T790M gatekeeper 

mutation that affectes ATP binding in these kinases and reduces sensitivity to EGFR-TKIs. 

As a 1st generation inhibitor of the break point cluster-Abelson (BCR-ABL) tyrosine kinase, 

Imatinib is efficient for the treatment of chronic myelogenous leukemia patients. However, 

patients will relapse after receiving Imatinib treatment, due to ABL gene mutations and 

increased levels of BCR-ABL transcripts. NSCLC patients carry anaplastic lymphoma 

kinase (ALK) rearrangements that affect response to the ALK inhibitor crizotinib, and 

resistance to crizotinib, due to ALK fusion protein mutations and (insulin-like growth factor 

1 receptor) IGF-1R pathway activation [86-88]. 

1.3.2.3 Deregulated DNA damage signaling 

In normal cells DNA damage response (DDR) factors promote DNA damage repair 

immediately when recognizing DNA lesions. DDR gene inactivation can induce the loss of 

genomic integrity and increase the risks of cancer development. In order to have anti-cancer 

effects, most chemotherapeutic drugs induce damage in tumor cells DNA with defected 

DNA repair mechanisms. Chemotherapy resistance in DDR-dysregulated tumors can be 
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induced by compensation of deficient DNA damage signaling. Patients with inactivating 

mutations in tumor suppressor genes BRCA1/2 show defective DNA repair responses, and 

are sensitive to DNA damage reagents such as the inter-strand DNA crosslinking drugs 

cisplatin and carboplatin, and poly (ADP-ribose) polymerase inhibitors [89]. Investigation of 

cell lines carrying a germ-line BRCA2 mutation from an ovarian carcinoma patient before 

platinum treatment and after drug resistance revealed that the resistant cells carry a 

secondary BRCA2 mutation acquired by the tumor cells in patients. This leads to the 

restoration of BRCA2 function and the DNA damage repair signaling homologous 

recombination (HR), which compensates for the DDR defection and develop resistance [90]. 

Loss of p53 binding protein 1 (53BP1) can restore the end resection in BRCA1-deficient 

cells, which leads to partial restoration of HR, thereby decreasing the efficacy of 

chemotherapy for HR deficiency [91]. TP53 is a well-known DDR gene with different 

mutations, responsible for differential effects on cancer cells responding to chemotherapy. In 

advanced germ cell cancer patients, especially those with primary mediastinal 

nonseminomas, the genetic studies of cisplatin resistance reveal that TP53 mutations are 

detected dominantly in cisplatin-resistant cancer cells [92]. 

1.3.2.4 Deregulation of apoptosis 

Cancer therapeutic strategies mainly target anti-apoptotic proteins or stimulate pro-apoptotic 

molecules expression [93]. Up-regulation of pro-survival factors, such as inhibitor of 

apoptosis proteins (IAPs) and anti-apoptotic B cell lymphoma-2 (Bcl-2) family members, is 

observed to be associated with acquired chemotherapy resistance. IAPs can suppress 

apoptosis against apoptotic stimulations from chemotherapeutic agents in cancer cells. The 

human IAP member X chromosome-linked IAP protein (XIAP) binds and inhibits the key 

apoptotic effector proteases caspases 3, 7, and 9, while cellular IAP1 (cIAP-1) and cellular 

IAP2 (cIAP-2) negatively regulate caspase 8 activation.  XIAP and cIAPs are highly 

correlated with the sensitivity of chemotherapy responses in various cancers such as primary 

nodal diffuse large B-cell lymphomas, colorectal cancer, advanced head and neck cancer, 

pancreatic cancer and acute myelogenous leukemia [94-98]. Bcl-2 protein families take an 

important part in intrinsic apoptotic pathways regulation. Bcl-2 family members are 

classified into 3 groups: one anti-apoptotic subfamily (e.g. Bcl-2, Bcl-xL, Bcl-w and Mcl-1) 

avoid cells from apoptosis; two pro-apoptotic subfamilies: BH3-only proteins (e.g. Bik, Bad, 

Bid, Bim, Bmf, Noxa, Hrk, and Puma) and Bax-like multi-domain proteins (e.g. Bax, Bak 

and Bok) [99, 100]. Up-regulation of anti-apoptotic protein Bcl-2 and Bcl-xL is associated 
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with chemoresistance in CD34+ acute myeloid leukaemia cells [101], and Bcl-2 level is 

correlated with chemotherapy sensitivity in breast cancer patients [102]. Deletion or blocking 

of pro-apoptotic protein Bax promotes chemoresistance in human colorectal cancer and 

ovarian cancer cells [103, 104]. 

1.3.2.5 Autophagy 

Autophagy plays a dual role in tumorigenesis, contributing to both cell death and cell 

survival. The induction of autophagy in response to cancer therapy can inhibit tumor 

initiation and facilitate anti-cancer drug-related cancer cell survival during metabolic stress. 

There is significant evidence for upregulation of autophagy in tumor cells, with the 

autophagic cytoprotective response driving acquired resistance to chemotherapy. The EGFR-

TKIs gefitinib or erlotinib up-regulate the autophagy level through inhibition the 

PI3K/Akt/mTOR signaling pathway in human lung cancer cell lines, and gefitinib- or 

erlotinib-induced cytotoxicity was increased by pharmacological inhibition of autophagy 

[105]. Imatinib-induced autophagy may ‘antagonize’ TKI-induced cell death and be 

responsible for intrinsic resistance in chronic myeloid leukemia stem cells. As autophagy 

inhibitors, anti-malarial chloroquine and hydroxychloroquine derivatives have been tested in 

serval clinical trials with cytotoxic autophagy inducers in combination chemotherapy [106]. 

Autophagy inhibition and combination chemotherapy may overcome resistance or restore 

sensitivity in temozolomide-treated glioblastoma multiforme, 5-FU-treated colorectal cancer 

and tamoxifen and trastuzumab-treated breast cancer [107].   

1.3.2.6 Tumor microenvironment 

The cellular interactions and extracellular matrix, tumor blood flow and vasculature, and 

tumor hypoxia and acidity are important aspects of the microenvironment in solid tumors 

[108]. Cells in the tumor microenvironment can induce acquired chemo resistance through 

such mechanisms as cellular interactions to desensitize cancer cells to apoptosis, soluble 

factors to promote survival and tumor growth, direct physical cell in contact with tumor cells 

and improved tumor microenvironment hypoxia after the initial chemotherapy exposure to 

promote the survive of tumor cells [108, 109]. An example for the interactions between 

tumor cells and stromata is that myofibroblasts decrease the apoptosis and promote 

resistance to chemotherapy in a pancreatic ductal adenocarinoma model by reducing the 

expression of STAT1 and caspases [110]. In addition to solid tumors, the soluble factors in 

bone marrow microenvironments of multiple myeloma such as IL-6, fibroblast growth factor 
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(FGF)-3, insulin-like growth factor (IGF)-1 and IFN-α are associated with resistance to 

cytotoxic therapy through signaling pathways including Ras/Raf/MEK-ERK1/2 pathway, 

PI3K/AKT pathway, JAK-STAT pathway and Src-family tyrosine kinase pathways. Physical 

cell contact through integrin-mediated adhesion in multiple myeloma microenvironments 

takes an essential role in resistance to chemotherapy- induced apoptosis through the CAM 

super family [111].  

1.4 THE PROTEASOME AS A CANCER THERAPY TARGET 

1.4.1 Unfolded protein in neurological disorders 

 

Figure 6. Chemical structures of 20S proteasome inhibitors. (A) Bortezomib, (B) 
Carfilzomib, (C) Ixazomib, (D) Marizomib. 
(From: Proteasome inhibitors –molecular basis and current perspectives in multiple myeloma) 

The ubiquitin-proteasome system degrades misfolded and aggregated proteins in mammalian 

cells in order to maintain normal cell functions. The endoplasmic reticulum (ER) stresses 

from unfolded proteins accumulation can trigger a series of defense mechanisms, which is 

known as the unfolded protein response (UPR) [112]. A variety of diseases have been 

associated with unfolded protein response pathways, such as cancer, neurodegenerative 

disorders, inflammation and metabolic diseases. The importance of UPR in tissue 
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homeostasis is mostly studied in neurodegenerative disorders [113]. For example, 

Parkinson’s disease (PD) is characterized as the loss of dopaminergic neurons from the 

substantia nigra, which is associated with the formation of intraneuronal protein aggregates, 

termed Lewy bodies [114]. α-synuclein is a small presynaptic protein that tends to misfold 

and aggregate. It is a main component of Lewy bodies and the post-translational 

modifications of α-synuclein, such as phosphorylation, ubiquitination and oxidative nitration. 

In Lewy bodies, it is strongly associated with the pathogenesis of PD [115]. Parkin functions 

as an ubiquitin E3 ligase, and loss function of parkin in PD, which results in disrupted 

protein ubiquitination, α-synuclein accumulation and the formation of Lewy bodies, also 

promotes oxidative and nitrated proteins formation in affected brain regions. Elevated levels 

of oxidative or nitrative stresses trigger the UPR and ER-associated degradation, with 

subsequent increase in apoptosis, which directly leads to the degeneration of dopaminergic 

cells [116, 117].  

1.4.2 Proteasome inhibitors in cancer therapy 

Deregulation of the ubiquitin proteasome pathway can result in increased or reduced 

degradation of targets proteins, thus contributing to oncopathogenesis, such as down-

regulation of tumor-suppressor proteins p53 and cyclin-dependent kinase (CDK)-interacting 

proteins p27Kip1, or activation of oncogenic proteins NF-κb [118-120]. The proteasome is 

considered as a promising target for cancer therapy due to the abundance of proteasome in 

proliferating cells and the important role of the 26S proteasome in regulating diverse 

biological process of cell functions. A number of 20S proteasome inhibitors (e.g. botezomib, 

carfilzomib, oprozomib and marizomib) (Figure 6) and 19S proteasome inhibitors (e.g. b-

AP15, WP1130 and Azepan-4-ones) have been developed and characterized [66, 121]. Of 

the commonly studied proteasome inhibitors, bortezomib, ixazomib and carfilzomib have 

been approved for treatment of multiple myeloma or mantle-cell lymphoma (MCL). Of the 

first-generation proteasome inhibitors, bortezomib was the first FDA-approved proteasome 

inhibitor and has been commonly used in first-line and relapsed and/or refractory settings in 

patients with multiple myeloma or MCL. The second-generation proteasome inhibitors 

include carfilzomib, ixazomib and oprozomib. In 2012, carfilzomib was approved by the 

FDA as a single agent for the treatment of multiple myeloma in patients who had received at 

least two prior lines of therapy, or with disease refractory to the most recent line of treatment. 

Other new proteasome inhibitors have also been evaluated in clinical trials, including the 

orally bioavailable reversible peptide boronate ixazomib, the irreversible epoxyketone 
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oprozomib, the intravenous β-lactone marizomib, and the boronate delanzomib. In 2015, 

ixazomib was granted by FDA combined with lenalidomide and dexamethasone for the 

second-line treatment of multiple myeloma [122]. Several mechanisms have been proposed 

to be involved in the proteasome inhibitor-induced apoptotic effect in tumor cells, such as 

interference with NF-κB activity, the change of the balance between pro-apoptotic and anti-

apoptotic proteins, the interference with cell cycle proteins degradation, the inhibitory effects 

on angiogenesis and DNA repair, and the potent induction of endoplasmic reticulum stress 

[123]. 

1.4.3 Bortezomib 

As the proteasome inhibitor first approved by FDA, bortezomib (also known as Velcade®) 

reversely interacts with N‑terminal threonine of catalytic β subunits resident in the 

proteasome to inhibit the chymotrypsin-like, the trypsin-like and post-glutamyl peptide 

hydrolysing activities [124]. The targets signal pathways and action mechanism of 

bortezomib have been well studied. NF-κB and its inhibitor IκB are present as the inactive 

complex in cytoplasm, which can be activated by the proteasomal degradation of I-κB. 

Bortezomib protects IκB from degradation, binding to the promoters of target genes and 

subsequent translocation of NF-κB to the nucleus. The cell adhesion of multiple myelomas 

to bone marrow stromal cells (BMSCs) results in the NF-κB-dependent over-expression of 

IL-6. Inhibition of NF-κB can thereby suppress IL-6-dependent growth of multiple myeloma 

cells [125]. Bortezomib activates the intrinsic, extrinsic and the ER stress response apoptotic 

pathways in cancer cells. To activate the intrinsic apoptotic pathways, bortezomib induces 

pro-apoptotic protein Bax accumulation, resulting in the inhibition of caspase-9 activation 

and anti-apoptotic Bcl-2[126], promotes down-regulation of apoptosis inhibitors, and up-

regulation of pro-apoptotic protein Noxa [127], like XIAP and Bcl-2 through blocking NF-

κB expression [128], and also induces p53-dependent apoptosis [129]. To activate the 

extrinsic apoptotic pathways, bortezomib increases death-inducing receptors, Fas and DR5, 

and caspase-8 activation and Fas-mediated signaling. ER stress-induced apoptosis will be 

initiated by bortezomib via caspase-2 activation [130].  

In spite of the significant efficacy of monotherapy and combination therapy of bortezomib, 

patients with multiple myeloma still show primary or secondary resistance to bortezomib in 

their therapy process. Resistance to bortezomib treatment can be attributed to several 

mechanisms, including alterations of proteasome subunit compartment, impaired pro-
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apoptotic protein accumulation, over-expression of the endoplasmic reticulum chaperone 

protein, and tumor microenvironments. Over-expression of proteasome subunit β5 (PSMB5) 

protein results in the upregulation of various proteolytic activities of proteasome and 

contributes to bortezomib resistance. Mutations (such as Ala49Thr, Met45Val and Cys52Phe) 

located in the S1 specificity pocket of the proteasome β5-subunit (PSMB5) protein decrease 

the binding affinity of the PSMB5 to bortezomib. Over-expression of anti-apoptotic protein 

Bcl-2, which interact with the proapoptotic Bcl-2 family member Noxa, and may inhibits 

Noxa-induced apoptosis and protect the cancer cells from bortezomib treatment [131].   

The aggregation and accumulation of misfolded proteins can be promoted by proteasome 

inhibitors. Endoplasmic reticular chaperones Grp78/BiP and heat shock proteins can be 

bound to misfolded proteins, thus preventing them from aggregation and promoting 

degradation. Therefore, upregulation of protein chaperones Grp78, Hsp27, Hsp70 and Hsp90 

have been demonstrated to increase cellular resistance to bortezomib [132-136]. IL-6 and 

IGF-1 in the microenvironment could affect the growth of tumor cells, thus inducing 

resistance to bortezomib by activating NF-κB through PI3-K/Akt and Raf/MEKK1pathways 

[137, 138]. There are other mechanisms involved in the resistance to bortezomib, such as 

upregulation of reducing equivalents like NADPH [139]. 

 

Figure 7. Chemical structures of b-AP15.  
(Inhibition of proteasome deubiquitinating activity as a new cancer therapy) 
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1.4.4 b-AP15/VLX1500  

b-AP15 (3,5-bis [(4-nitrophenyl) methylidene]-1-prop-2-enoylpiperidin-4-one, NSC687852) 

(Figure 7) was originally identified as a small molecule that induces p53-independent 

apoptosis pathways in a HCT116 colon carcinoma cell line-based screen of synthetic small 

molecules compounds [140]. Later studies characterized that b-AP15 is an inhibitor of the 

UPS and induces cathepsin-D- dependent lysosomal apoptosis [141]. Additionally, it elicits a 

similar gene expression profile with several known proteasome inhibitors. b-AP15 reversely 

inhibits the activities of two 19S proteasome-associated DUBs USP14 and UCHL5. 

Treatment with b-AP15 induces the accumulation of ubiquitin conjugates and inhibitors of 

cell cycle-dependent kinases, such as CDKN1A, CDKN1B and tumor suppressor p53, thus 

resulting in inhibition of the UPS. b-AP15 induces apoptosis of colon cancer cells, which is 

not responsive to TP53, BBC3 and Bax disruption and Bcl-2 over-expression [142].  b-AP15 

induces both intrinsic and extrinsic apoptosis in multiple myeloma cell lines by activating 

caspase 3, caspase 8 and caspase 9, and also gives rise to the mitochondrial apoptosis 

pathway through activation of proapoptotic Bcl-2 family members Bax [143]. In addition, 

animal studies have demonstrated the efficacy of b-AP15 in squamous carcinoma model, 

colon carcinoma model, lung carcinoma model, breast carcinoma model, acute myeloid 

leukemia model and multiple myeloma models. Bortezomib-resistant multiple myeloma cells 

can be sensitized by b-AP15. Synergistic anti-multiple myeloma activity is observed in the 

combined treatment of b-AP15 with lenalidomide, suberoylanilide hydroxamic acid and 

dexamethasone [144]. A recent study shows that b-AP15 can exert equivalent inhibitory 

potency in both 20S proteasome and 19S regulatory domains [145]. 
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2 HYPOTHESIS AND AIM 
 

Scientific Hypothesis of this thesis 

Compared to bortezomib, b-AP15 is a more effective proteasome inhibitor in malignant cells.  

 

Scientific Aim of this thesis 

My PhD thesis aimed to explore different resistance mechanisms of b-AP15, thus improving 

the therapeutic efficiency of b-AP15. 

 

Specific scientific goals for each study were as follows. 

Study I: to investigate whether the increase of misfolded proteasome substrates could 

sensitize the therapeutic functions of ubiquitin–proteasome system (UPS) inhibitors in cancer 

cells. 

Study II: to assess if b-AP15, a novel small molecule inhibitor of proteasome deubiquitinase 

activity, could induce the accumulation of poly-ubiquitin with the absence of aggresome 

formation.  

Study III: to study the therapeutic effects of b-AP15 in lymphoma cell models, and confirm 

b-AP15 could induce apoptosis in lymphoma cell models, as a proteasome inhibitor. 

Study IV: to characterize the cellular response to proteasome DUB inhibition of bAP-15 

treatment. 

Study V: to examine whether piperlongumine was an inhibitor of the ubiquitin–proteasome 

system (UPS) in the induction of apoptosis in cancer cell models. 
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3 METHODS  

Materials and methods used in different studies are detailed in each article. In the following 

section, some of the important methods are discussed. 

3.1 CELL LINES AND CELL CULTURE 

As the major malignant cell model, HCT116 cells were involved in studies I, II, IV and V. 

hTERT-RPE1 cells functioned as a non-malignant cell model in studies I, II, IV and V. HeLa 

cells were used in immunofluorescence experiments to demonstrate aggresome formation 

using different proteasome inhibitors. MelJuSo-UbG76V-YFP cells functioned as an 

ubiquitination reporter cell line. To confirm the therapeutic mechanism of bAP15 in 

lymphoma, 8 DLBCL lymphoma cell lines and 4 Hodgkins lymphoma cell lines were used 

in study III.  

All the cells were cultured in humidified 5% CO2 atmosphere at 37°C. HCT116 cells[142] 

were cultured in McCoy’s 5A modified medium with 10% serum. RPE1 cells[142] were 

cultured in DMEM:F12 medium with 10% serum. HeLa cells were cultured in DMEM 

medium with 10% serum. MelJuSo cells[146] were cultured in DMEM medium with 10% 

serum. The 12 different lymphoma cell lines were cultured in RPMI medium with 10% 

serum, 2nM glutamine, 100U/mL penicillin, and 100mg/mL streptomycin. 

3.2 APOPTOSIS ASSAY 

Apoptosis between different proteasome inhibitors, combinations, doses or treatment times 

were compared using an ELISA kit, M30-Apoptosense ELISA[147]. The antibody of the 

M30 kit is specific for a neoepitope of cytokeratin 18, which is cut by caspase 3, 7 or 9 

during the occurrence of apoptosis.  

Aliquots of 104 target cells were seeded in 96-well plates and cultured for 16 hours with 

different treatment protocols. NP40 lysis buffer was added at the end of the treatment 

protocol to terminate the culturing, after which the apoptosis assay was conducted using the 

M30-Apoptosense ELISA kit. 

3.3 WESTERN BLOTTING 

Different target cells were lysed in NP40 lysis buffer with freshly added proteasome 

inhibitor cocktails on ice. Lysates were cleared by 13000g centrifugation for 10 mins. The 

Bradford assay was conducted to measure protein concentration in each sample. Samples 
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were adjusted to equivalent concentrations with 5X western blot loading buffer. 3-8% 

gradient gels were used to separate ubiquitin-conjugated proteins. Proteins were transferred 

to PVDF membranes, which were blocked with 5% dry milk in PBST buffer. Finally, 

interested proteins could be detected using primary and secondary antibodies; an ECL kit 

was used for to enable visualization by chemiluminescence. 

3.4 IMMUNOFLUORESCENCE CONFOCAL MICROSCOPY 

Microscope coverslips were placed in 6-well plates and then were sterilized with 70% 

ethanol and 15 mins UV exposure. Target cells were seeded and incubated overnight. Cells 

were treated with different proteasome inhibitors, combinations, doses or periods.  

After treatment medium was removed from the plate, and following washing with PBS, 4% 

formaldehyde was used to fix cells for 20 mins. 1% Triton X-100 in PBS was used for 

permeablization for 15 mins. Plates were then blocked with 5% dry milk in PBS for 30 mins. 

Coverslips were removed from the plate and then incubated with different specific primary 

antibodies for 16 hours at 4oC. The 2nd antibody was incubated at 20oC for 1 hour. Finally, 

coverslips were transferred to microscope slides and mounted with DAPI mounting media. 
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4 SUMMARY AND DISCUSSION 

The PhD project aimed to understand therapeutic actions and different resistance 

mechanisms of b-AP15. I explored how ROS, the chaperone and aggresome systems worked 

during b-AP15 treatment; tested the action of b-AP15 resistance; and explored the possibility 

of using b-AP15 to overcome bortezomib resistance. I also tested b-AP15 application in 

lymphoma cell models. To the end, I was involved in the project of verifying the role of 

piperlongumine as a proteasome inhibitor.  

4.1 STUDY I: SENSITIZING CELLS TO APOPTOSIS BY INCREASING 
MISFOLDED PROTEINS 

Background:  

As a 19S proteasome subunit inhibitor, b-AP15 can inhibit proteasome function in cells. 

After the proteasome is blocked by b-AP15, a huge quantity of polyubiquitinated proteins 

was accumulated in cells. According to previous study results, b-AP15 exhibits promising 

anti-cancer effects in different solid tumor models. As a potential chemotherapy candidate, 

the compound was very toxic in cancer cells by inducing apoptosis, but not toxic in non-

malignant cells. 

Hypothesis: 

Cells might be more sensitive to b-AP15 treatment, with increase of the total number of 

polyubiquitinated proteasome substrates. 

Methods:  

Sec61-mediated protein translocation inhibitor (CpdA) was used to increase the cellular 

levels of proteasome substrates in tumor cells and non-malignant cells. Later, cells were 

exposed to b-AP15 or bortezomib for certain times or concentrations. Western blotting was 

used to determine the accumulation of misfolded proteins, ER stress markers and apoptosis 

response markers. Cell survival was assessed under the same treatment conditions, with 

confirmed results using the MelJuSo-UbG76V-YFP reporter cell line by FACS.  

Results: 

By comparing the treatment outcome between b-AP15 and bortezomib, it was shown that b-

AP15 could induce the accumulation of high molecular weight polyubiquitinated conjugates, 

thus resulting in higher apoptosis in cancer cells. CpdA was a co-translational translocation 

inhibitor, which could affect protein translocation between endogenous prosaposin and the 

ER. The co-treatment of CpdA and b-AP15 could consequently enhance proteasome 
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inhibition. Therefore, CpdA pre-treatment was conducted in order to increase 

polyubiquitinated proteins in different cell models in order to make them sensitive to b-AP15 

treatment. Adding extra cysteine into HCT116 cells did not rescue the apoptosis mediated by 

b-AP15. Furthermore, there was no significant decrease of cellular cysteine levels by the co-

treatment of CpdA and b-AP15. 

REFLECTIONS 

This study introduced me to the field of proteasome inhibitors and multiple myeloma. I 

learned some basic knowledge of misfolded protein response elements, such as ER stress, 

chaperones and apoptosis and drug resistance. I also learned strategies about how to increase 

the therapeutic window in the development of cancer and drugs, and even about the whole 

drug discovery and development process.  

There were several technical challenges for this project: i) developing a heat shock method to 

increase the level of chaperone expression in cancer cells; ii) human and mouse primary cell 

culture; iii) quantitative analysis of cell death in multiple cell lines, and different treatment 

protocols.  

4.2 STUDY II: B-AP15 INHIBITS CYTOPROTECTIVE AGGRESOME 
FORMATION IN CANCER CELLS. 

Background:  

Proteasome inhibitors can kill cancer cells by inducing an acute proteotoxic stress response 

characterized by the accumulation of poly-ubiquitinated proteins, ER stress and the 

production of reactive oxygen species (ROS). The aggresome pathway is described as an 

escape mechanism from proteasome inhibitor-induced cytotoxicity. Previously, we have 

determined in Study I that b-AP15 and bortezomib were both proteasome inhibitors, 

although b-AP15 treatment resulted in the accumulation of higher molecular weight 

polyubiquitinated proteins and higher apoptosis, compared with bortezomib. 

Hypothesis:  

b-AP15 will induce the accumulation of poly-ubiquitin with the absence of aggresome 

formation. 

Methods:  

Hela and HCT-116 cells were treated with different concentrations of b-AP15 or bortezomib 

+/- CpdA at different time points. Ubiquitin and aggresome in cells were determined by 

immunofluorescence staining and visualized with confocal microscopy. Solubility of 

aggresome or aggregates was confirmed by the exposure of cells to saponin, which also 
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released the cytoplasm. Proteins involved in HDAC6 ubiquitination pathways were 

demonstrated using immunoprecipitation and immunofluorescence confocal microscopy 

Results:  

In Hela cells, after an overnight treatment, bortezomib induced aggresome formation. 

However, b-AP15 did not induce aggresome formation under the same conditions. We 

showed that b-AP15 could induce vimentin perinuclear clustering. Interestingly, we 

observed less aggresome formation in the co-treatment of b-AP15 and bortezomib compared 

with the single treatment of bortezomib. It is suggested that b-AP15 could disrupt aggresome 

formation. In this study, we also determined that aggresome formation was independent of 

ubiquitin, which was not inhibited by b-AP15. Chaperone binding to polyubiquitin not 

inhibited by b-AP15. In conclusion, it was shown that HDAC6 ubiquitination may be 

mediated by b-AP15 treatment. 

REFLECTIONS 

During this study, I gained knowledge about aggresome and cyto-protective mechanisms in 

cells were treated with proteasome inhibitors. Similar to study I, this is another resistance 

mechanism, and the study of which further enriched my knowledge about tumor resistance. I 

also learned some knowledge about neurological disorders such as Parkinson’s disease due 

to the similarity of aggresomes to Lewy bodies and the role of UPS inhibition in 

neurodegenerative diseases. The knowledge of HDAC6 ubiquitination was another learning 

outcome from this study. This study enhanced my practical skills of immunofluorescence 

confocal microscopy. 

4.3 STUDY III: INHIBITION OF PROTEASOME BY B-AP15 IN LYMPHOMA 
CELL LINES. 

Background:  

Bortezomib has been well studied as a proteasome inhibitor, exhibiting significant anti-

cancer activity in different cancer cells. Bortezomib is the first FDA approved proteasome 

inhibitor drug for multiple myeloma and later also approved for lymphoma treatment. 

Although bortezomib had very good performance in the beginning of treatment, numbers of 

patients acquired resistance to the compound. New chemotherapy drugs are needed to 

overcome the resistant of bortezomib in multiple myeloma and lymphoma treatments. 

Hypothesis:  

b-AP15 can inhibit the 19S proteasome in lymphoma cell lines. 

Methods: 
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Cell viability of 12 different lymphoma cell lines was evaluated using a fluorometric 

microculture cytotoxicity assay in 96-well microtiter plates. The ER stress response and 

apoptosis markers were determined by western blotting. 

Results:  

A significant concentration-dependent decrease in viability of all lymphoma cell lines (both 

DLBCL and Hodgkins lymphoma) was observed in response to b-AP15 treatment. We 

demonstrated that lymphoma cell lines were as sensitive to b-AP15 as other cancer cell lines 

previously reported. 

The treatment of all cell lines with b-AP15 promoted the accumulation of high-molecular 

weight polyubiquitin conjugates, which were correlated to the expression of heat shock 

protein 70 (Hsp70B´). Interestingly, all markers, such as polyubiquitin conjugates, Hsp70B´, 

caspase-3 expression and PARP cleavage showed significant concentration-dependent 

responses to b-AP15 treatment. 

REFLECTIONS 

In this study, I learned clinical and epidemical knowledge about lymphomas. This study gave 

me a good chance to practice floating cell culturing and to learn the fluorometric 

microculture cytotoxicity assay. 

4.4 STUDY IV: PROTEASOME INHIBITOR INDUCED CANCER CELL 
APOPTOSIS BY OXIDATIVE STRESS 

Background:   

b-AP15 is well studied as a 19S proteasome inhibitor, which interferes with deubiquitinase 

(DUBs): USP14/UCHL5 on the 19S proteasome subunit. b-AP15 induces accumulation of 

polyubiquitinated proteasome substrates by blocking the cellular protein turnover and 

inhibiting proteasome. 

Hypothesis:  

Compared with clinically approved 20S proteasome inhibitors, b-AP15 targets the 19S 

proteasome subunit. b-AP15 will be an efficient chemotherapy drug candidate, especially for 

current proteasome inhibitor-resistant tumors. 

Methods: 

To compare the cellular stress responses between b-AP15 and bortezomib, a q-PCR assay 

was used to examine the pattern of transcripts for 84 genes related to stress responses. 

Microarray analysis was also conducted with b-AP15- or bortezomib-treated cells. 
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Live-cell analysis of UPS activity was conducted in ubiquitin reporter cell lines MelJuSo 

UbG76V-YFP cells following either b-AP15 or bortezomib treatment. The generated 

fluorescence was continuously detected using an IncuCyte FLR instrument. 

Results: 

The gene expression patterns of b-AP15- or bortezomib-treated cells were similar but not 

identical, which is consistent with the previous study that although both compounds are 

proteasome inhibitors they function via different mechanisms. This study showed the 

apoptosis induced by b-AP15 was also different to bortezomib-mediated apoptosis. Both b-

AP15 and bortezomib could induce the expression of Hmox-1 [heme oxygenase (decycling) 

1], but only b-AP15 could induce ER stress. The expression of Hmox-1 was correlated with 

the accumulation of high molecular weight polyubiquited proteasome subtracts during b-

AP15 treatment. The study also showed that ROS scavengers could reduce the apoptosis 

induced by b-AP15, with activation of AP-1 to mediate b-AP15-derived apoptosis. 

REFLECTIONS 

This study gave me the opportunity to deepen my knowledge of drug discovery and 

development, especially how to pattern candidate drugs according to the existing drugs and 

how to perform subsequent studies with candidate drugs. I also learned basic knowledge of 

ROS signaling in proteasome inhibitor drug applications.  

4.5 STUDY V: CONFIGURATION OF PIPERLONGUMINE AS A PROTEASOME 
INHIBITOR 

Background:  

Piperlongumine is a natural product from the plant Piper longum. In previous studies, it was 

demonstrated that the compound is cytotoxic to tumor cell lines and has anti-cancer effects in 

different solid tumor models.  

Hypothesis: 

As an inhibitor of the ubiquitin proteasome system, piperlongumine will induce apoptosis in 

cancer cells. 

Methods: 

A fluorometric microculture cytotoxicity assay (FMCA) was performed to measure the 

cytotoxicity of piperlongumine. In vitro, a proteasome activity assay was introduced to 

examine the protein turnover activities in different proteasome subunits following 

piperlongumine treatment. A Cellomics Oxidative Stress I Kit was used to evaluate oxidative 

stress induced by piperlongumine. 
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Results: 

In this study, it could be confirmed that the gene expression pattern following 

piperlongumine treatment was similar to that of other proteasome inhibitors. Piperlongumine 

treatment could block the ubiquitin–proteasome system in cancer cells. However, the 

accumulation of polyubiquitinated proteasome substrates was induced by direct proteasome 

inhibitor, data suggest piperlongumine was not a proteasome inhibitor, but interfere the 

upstream of UPS system. In MelJuSo cells, we confirmed that the cytotoxic effects of 

piperlongumine treatment were correlated with oxidative stress. 

REFLECTIONS 

In this study, I had the opportunity to obtain some basic knowledge about how to discover 

and develop drugs from natural compounds. It also allowed me to work with a compound 

that was neither a 19S-proteasome inhibitor nor a 20S-proteasome inhibitor, but still 

performed the activity of proteasome inhibition. This study also enriched my understanding 

of the UPS system and ROS signaling. 

4.6 DISCUSSION 

4.6.1 Accumulation of different molecular weight polyubiquitinated proteins 
by different proteasome inhibitors 

A previous study indicated that b-AP15 could induce higher molecular weight 

polyubiquitinated proteins compared to those induced with bortezomib [142]. In my first 

study, we confirmed this difference following treatment of HCT116 cells, and during my 

PhD studies, I also studied these effects using several other cell models (including Hela, 

MelJuSo and RPE1 cells). We know that the proteasome includes 3 subunits, and that during 

protein turnover the 19S subunit is first linked to the polyubiquitinated proteins, after which 

the protein will insert into the 20S subunit [148]. Bortezomib is an inhibitor of the 20S 

subunit, which means even we inhibit the function of 20S subunit, polyubiquitinated proteins 

will still recognize and be linked to the 19S subunit, and that DUBs on the 19S subunit will 

still remove some ubiquitin from the conjugates. However, b-AP15 is a direct inhibitor of the 

19S subunit, which will totally block the function of the proteasome. No DUBs on the 

proteasome will thus be active, so the molecular weight of polyubiquitinated proteins will be 

higher. In study V, the action of piperlongumine treatment led to accumulation of the highest 

molecular weight polyubiquitinated conjugates. Considering that b-AP15 is a direct inhibitor 

of the DUDs on the 19S subunit, this must thus indicate that piperlongumine acts upstream 

in the UPS systems and does not function as a proteasome inhibitor. 
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4.6.2 Increasing the therapeutic window of proteasome inhibitors 

During the first day of my PhD I remember there was an interesting cartoon posted in the lab, 

which said “Remember both salt and a gun can kill cancer cells.” This is a good example of 

how we should consider drug development for cancer treatment. The strategy for cancer drug 

development must not only identify compounds which can kill cancer cells, but that also do 

not have too many side-effects. According to previous studies, proteasome inhibitors 

distinguish cancer and non-malignant cells by their protein turnover rates [122]. Cancer cells 

synthesize huge amounts of proteins compared to non-malignant cells; and at the same time 

cancer cells always carry a lot of mutations. For cancer drug development, we thus need to 

identify compounds that can make this distinction. In our studies, we could demonstrate that 

b-AP15 was very sensitive in inducing apoptosis in cancer cell lines (HCT116 and RPE1), 

but did not induce too much apoptosis in non-transformed and primary cells (human 

fibroblast cells). b-AP15 thus fulfills the requirement for a cancer drug that primarily targets 

malignant cells.  

We introduced another small molecule CpdA that is also known as CAM741 [149] into our 

study. CpdA was originally discovered as a vascular cell adhesion molecule 1 inhibitor [150], 

a low dose application of CpdA inhibiting protein translational translocation in the ER [149]. 

Exposure of cells to low concentrations of CpdA will only slightly reduce the growth rate of 

malignant cells, and it will not induce apoptosis or any other cytotoxic effect in either cancer 

or normal cells. The apoptosis induced by b-AP15 correlated to the accumulation of 

polyubiquitinated conjugates assembled from misfolded proteins and ubiquitin. We 

pretreated cells with CpdA to achieve a high amount of misfolded proteins, and then blocked 

the proteasome using b-AP15. To scientific rationale of this co-treatment was that by 

accumulating sufficient amounts of polyubiquitinated proteins through the action of the non-

toxic compound CpdA we could lower the dose of b-AP15 required for its toxic treatment 

effects. We thus expected to increase the therapeutic window of b-AP15 by using CpdA.  

While the rationale was sound, the reality proved different. In HCT116 cells we did observe 

that CpdA sensitized the apoptosis induced by b-AP15. However, the non-transformed RPE1 

cells and human fibroblast cells were also sensitized by CpdA, which means that instead of 

increasing the therapeutic window we decreased the therapeutic efficacy of b-AP15. A 

similar phenomenon following co-treatment with CpdA and bortezomib has been reported 

by another group [151].  
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An important perspective is that cell lines are not a good model to mimic normal cells in the 

human body. Furthermore, proteasome inhibitors do have side effect on stem cells, germ 

cells and pluripotent cells as these also have a high amount of protein synthesis. Nonetheless, 

considering that CpdA is not toxic to cells it is still a promising compound to investigate in 

its capacity to increase the therapeutic efficacy of proteasome inhibitors. 

4.6.3 Dominant cytotoxicity mechanisms of proteasome inhibitors  

In the academic world, there is a continuous debate about the underlying cytotoxic 

mechanisms of action of proteasome inhibitors. One part of the academic society believes the 

dominant cytotoxicity to be induced by increased levels of ROS and ER stress and focus on 

polyubiquitinated conjugate accumulation. However, the other part considers that it is the 

stabilization of anti-tumor proteins that is critical for this anti-cancer activity.  

By introducing co-treatment of CpdA and proteasome inhibitors we not only induce 

apoptosis in cancer cells but also kill non-malignant cells. Considering the function of CpdA 

is only to create more misfolded protein in the cell (but not additional functional proteins) we 

assume that the amount of anti-tumor proteins is maintained at the same level. However, by 

introduce the substrates for UPS we do increase the apoptosis. According to this finding, we 

can thus conclude that although the evidence could not exclude the possibility of stabilization 

of anti-tumor proteins, there is quite solid evidence to support the polyubiquitinated protein 

hypothesis.  

Through inhibition of the proteasome, protein degradation in the cell is blocked. As we know, 

tumor suppression proteins are rapidly turned over by the UPS system, and a blocked UPS 

will lead to accumulation of significant amounts of tumor suppressors. The high level of 

tumor suppressors will be cytotoxic to cancer cells, Myc and p53 upregulation by 

bortezomib inhibition inducing apoptosis in different cancer models [152-154]. A previous 

study of our group demonstrated Bcl-2 over-expression in bortezomib resistant cells. p53 and 

p21 accumulation through the action of b-AP15 treatment has also been reported before 

[142]. Taken together this suggests that tumor suppressor stabilization also plays an 

important role in proteasome inhibitor application, and that gene expression in apoptosis 

pathways can be also interfered by long-term expose to these compounds. Further 

investigation in this field is warranted to provide unequivocal evidence for this effect in to 

avoid any uncertain risk of clinical applications. 
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Some other people claim that the major mechanism of proteasome inhibitor is inefficient 

amino acid turnover. Previous studies have reported amino acid depletion to be important in 

yeast and murine cells [155]. Amino acids are reused in protein turnover. When old or 

misfolded proteins are recognized and linked with ubiquitin chains, the protein will be 

degraded by the proteasome and the amino acid and short peptides are released back into the 

cytosol, which will rebuild into new peptide or proteins. By blocking the proteasome, protein 

synthesis will eventually be compromised as there will be no available amino acids to build 

up. As a result, there will be no new proteins made. However, our studies suggest that block 

of the proteasome does not result in amino acid depletion, as using cysteine as a marker of 

intracellular amino acids we did not observe significant amino acid down-regulation.  

4.6.4 Acquired resistant to bortezomib and b-AP15 

Bortezomib is the most successful clinically approved proteasome inhibitor used in the 

treatment of multiple myeloma [156]. However, bortezomib is also known to be easy to 

develop acquired resistance to [156]. Although the mechanism of this resistance is yet 

unclear, several papers have reported that aggresome formation and cellular chaperone 

responses are correlated with resistance [132, 157].  

Our next approach was thus to try to set up cell lines that were resistant to both bortezomib 

and b-AP15 in order to have a test system that mimics the clinical situation. To this end, 

HCT116 cells were first exposed to low concentrations of bortezomib and b-AP15, and then 

the concentrations were increased every month. After 14 months, we had successfully 

achieved bortezomib resistant cell lines. However, we could not increase the tolerance of 

HCT116 cells to b-AP15. These results were thus of great significance, as they indicate that 

acquired resistance to b-AP15 is less likely than that known to develop to bortezomib, 

showcasing the potential high value of b-AP15 as a novel candidate drug.  

The cytotoxicity of proteasome inhibitors is correlated with the accumulation of 

polyubiquitinated proteins [142]. The underlying mechanism of aggresome protection is not 

clear either. However, we know that polyubiquitinated chains conjugated to misfolded 

proteins could upregulate ROS induction and ER stress [122]. Our major hypothesis for 

aggresome protection is that the cellular aggresome is insoluble in the cytoplasm. We show 

(the data was not included in the thesis or appendix paper) that, using saponin to release the 

cytoplasm of the cell which treated with bortezomib. As we expected aggresomes were not 

eliminated from the cells. Which suggested aggresome is an insoluble structure in the cell, 
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and cell by assemble aggresome will high reduce the polyubiquitin chains which are 

distributed in the cytoplasm. Only the polyubiquitin chain on the surface of the aggresome 

are still active to induce cytotoxicity. 

Data presented in my second study demonstrated that following treatment of Hela cells with 

bortezomib or b-AP15 aggresomes only formed in bortezomib treated cells (but not in the b-

AP15 treatment group). To confirm this result, I tested more treatment conditions (data was 

not included in this thesis or the appendix papers). We confirmed with 3, 6 or 12 hours of 

treatment that aggresomes only formed in the bortezomib treatment group. However, after 18 

and 24 hours of treatment b-AP15 also induced aggregates and aggresomes. Both 

bortezomib and b-AP15 induce cytotoxicity through apoptosis. Compared to aggresomes 

that are evident after 6 hours of bortezomib treatment, it takes at least 18 hours for b-AP15 to 

assemble aggresomes. Since the apoptosis program has already started by this time point, the 

aggresome formation is too late to rescue cells from apoptosis, and this explains the lack of 

development of cell resistance to b-AP15. Interestingly, we had also observed co-treatment 

with b-AP15 could overcome the early aggresome formation associated with bortezomib 

treatment. This suggests that b-AP15 should have another target that is outside of UPS but 

involved in the aggresome formation pathway. 

The major candidate for this alternative target is HDAC6, which is known as an atypical 

deacetylase [158]. Within the aggresome pathway HDAC6 plays an important role in 

stepwise development of the aggresome, from polyubiquitinated conjugates into aggregates 

and finally into aggresomes [159]. In our study, we showed that b-AP15 treatment led to 

significantly increased polyubiquitination of HDAC6. Considering that b-AP15 is a DUB 

inhibitor, and DUBs are not only localized on the proteasome but are also distributed in the 

cytoplasm, we assume that b-AP15 treatment frees up DUBs which inhibit de-ubiquitination 

of HDAC6. The recruiting and transporting functions of HDAC6 are mediated by the 

polyubiquitination, HDAC6 is only active when the polyubiquitin chains are partially 

removed by DUBs. Similar published results also support our hypothesis, such as that using 

HDAC6 inhibitors during bortezomib treatment reduces aggresome formation [160].  

Further studies will be needed to determine: which DUBs are involved in de-ubiquitination 

of HDAC6; is it directly inhibited by b-AP15; or just due to the DUBs on the 19S 

proteasome being inhibited by b-AP15, and the free DUBs in the cytoplasm binding to the 

substrates which are accumulated by UPS malfunction. Our study also suggests that the 
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proteasome pathway presents new potential for drug development, such as using HDAC6 

and tubulin inhibitors to overcome proteasome inhibitor resistance, or co-treatment to reduce 

the concentration of proteasome inhibitors and increase their therapeutic efficacy. 

Chaperone overexpression is another phenomenon that is associated with bortezomib 

resistant [161]. According to a previous study in the group, HSPA6 is the chaperone that is 

highly induced by b-AP15 treatment [142]. It is quite important to know the role of 

chaperones in b-AP15 treatment. In study I, II, III and IV we observed that HSPA6 

expression was highly drug concentration dependent on b-AP15, and this also correlated 

with the accumulation of polyubiquitinated proteins. In study I, II and III our results indicate 

that HSPA6 expression is also correlated to bortezomib treatment. Especially in study I, we 

demonstrated that HSPA6 expression can also be up-regulated by CpdA co-treatment. In 

study V we detected a drug concentration-dependent relationship between HSPA6 and 

piperlongumine. Taken together these data suggest that HSPA6 is the chaperone involved in 

cellular response mechanisms against UPS inhibition, polyubiquitination being the trigger of 

HSPA6 expression. Although the HSPA6 expression level is correlated with the 

accumulation of polyubiquitinated proteins, apoptosis is still most highly induced in the high 

polyubiquitinated group. We assume the HSPA6 has a cellular defense activity, but that this 

could not fully reverse the cytotoxicity induced by UPS inhibitors. 

In order to address whether HSPA6 has a cellular protection function or not, we designed as 

experiment to mimic the high level of HSPA6 observed in clinical cancer patients. We pre-

treated HCT116 cells for a short time to mildly heat shock the cells, which were then left to 

recover. This mild heat shock did not induce much cellular apoptosis. The results showed 

that HSPA6 expression can detected by western blotting from 3 hours, with a peak at about 

6-8 hours, and then the expression decreases. We thus compared b-AP15 treatment with or 

without pre-heat shock and 6 hours’ recovery. Interestingly, there was significant inhibition 

of b-AP15-induced apoptosis in the pre-heat shock group. This suggests that HSPA6 can 

only play a cellular defense role if the cell already has a high HSPA6 expression level. 

Although HSPA6 expression may act in concert with UPS inhibition, the cell seemingly 

cannot express enough chaperone to reverse the apoptosis already induced by UPS inhibition.  

We also test the HSPA6 levels in our 14-month-cultured bortezomib or b-AP15 resistant 

cells, but there was no significant upregulation of HSPA6 expression. Although our cells are 

super resistant to bortezomib, there is thus no obvious evidence that HSPA6 over-expression 
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explains the bortezomib super-resistance. Despite that our in vitro simulation of bortezomib 

resistance and heat shock responses are not fully represented of the clinical in vivo situation 

experienced by patients, our results still confirmed the importance of aggresome formation 

and chaperone responses. Further investigation should focus on determining the key 

mechanisms underlying the bortezomib resistant.  

In summary, we can conclude that both aggresome formation and HSPA6 expression can 

downregulate the apoptosis mediated by bortezomib, and that it is relatively easy to induce 

bortezomib resistance in cells. Luckily, our research candidate b-AP15 is harder to induce 

resistance to, and could also inhibit aggresome formation. It is thus a promising candidate for 

further clinical development. 

Some other interesting data generated during the aggresome project in the cell line models 

we tested (Hela, HCT116 and MelJuSo cells), was that aggresome formation had similar 

kinetics with the same proteasome inhibitors. Aggresomes formation always started as 

random small aggregates inside the cytosol, then small aggregates started to get together 

organized along cytosolic microtubules, culminating in a dominate aggresome close to the 

nuclei. Through pre-treatment with CpdA we achieved a significant increase in size of 

aggresome formation. By using anti-ubiquitin K48 and p62 specific antibodies we could 

detect the co-localization of aggresomes, polyubiquitin and p62. We determined that b-AP15 

did not interfere with function of the microtubule system.  

Taken together we thus confirmed that bortezomib-mediated aggresome formation is p62 

chaperone-dependent, that polyubiquitin chains are a major component of aggresomes, and 

that b-AP15 inhibition of aggresome is microtubule-independent.  

4.6.5 Application of b-AP15 in lymphoma 

Bortezomib is not only approved for clinical use of treatment in multiple myeloma, but is 

also FDA approved for the treatment of mantle cell lymphoma (MCL) [162]. In my third 

study, we introduced multiple lymphoma cell lines to test general sensitivity to b-AP15.As 

expected, lymphoma cells exhibited clear concentration-dependent reduction in viability, and 

in the western blot assay we observed a correlation between polyubiquitinated protein 

accumulation, ER stress marker expression and apoptosis marker expression. We included 

both HL and DLBCL cell lines in this study and compared with adherent tumor cells 

(HCT116, Hela and MelJuSo cells). The lymphomas cells were very sensitive to b-AP15 



 

38 

treatment, if we compare with HCT116 cells there was about a 5-to-10-fold sensitivity 

difference to lymphoma cells. We assume that this may be due to the lymphoma cells being 

non-adherent cells, which might increase their chance of exposure (due to their relatively 

larger surface area). There was no significant difference between HL and DLBCL cells. Our 

result suggests further consideration of b-AP15 development in lymphoma treatment.  

One systematic limitation of b-AP15 and some of its structural analogues is its very low 

solubility. In all the in vitro studies we used DMSO to dissolve the compound, which was 

further diluted in PBS. For in vivo studies we tried to use Tween20 (detergent) to dissolve 

the compound. The solubility problem restricts the research of b-AP15. However, the non-

polarity structure of b-AP15 makes it very easy to pass through cell membranes.  

As the lymphoma cells were very sensitive to b-AP15, we employed concentrations of b-

AP15 much higher than the EC50 concentration. Using the cell survival and western blot 

assays, we could then observe that the induced cytotoxic effects switched from cell apoptosis 

to cell necrosis. As for u2940 and su-DHL-6, we could detect decreases in apoptosis, 

polyubiquitination and ER stress markers at the highest concentrations of b-AP15.  

Interestingly, in WSU-NHL cells, all the markers cycled between increased and decreased 

expression, before increasing again, which we assume is an off-target effect of b-AP15 

treatment together with interference of HDAC6 de-ubiquitination. This suggests that there is 

more than one target in the b-AP15 treatment profile. Further investigation will be necessary 

to discover and understand the other target or targets of b-AP15 treatment prior to clinical 

application.  

There was an unpredictable incident during this project in that 4 of the 12 lymphoma cell 

lines which we received from our collaborator did not pass the cell identification check. 

Although in the end this did not affect the conclusion of this study, it still taught me an 

important lesson. Similar systematic confounding events that occurred in my studies was 

contamination with mycoplasma. Another systematic issue concerned the appropriateness of 

our model. Bortezomib is a successful drug in multiple myeloma treatment, and which was 

also reported as good choice for non-solid tumor treatment. However, the major cancer 

model we were working with is HCT116 cells which is a colon cancer model. Most of the 

animal studies involved solid tumor models. Although you could argue as HCT116 cells is a 

good model for study general cancer mechanisms there were several gene mutation models 

available in HCT116. But if we consider the off-target effects and that a cytotoxic switch 
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between apoptosis to necrosis was only observed with non-adherent cells, this suggests that 

multiple cell models should be employed. 

4.6.6 Comparison of therapeutic mechanisms in bortezomib and b-AP15 
treatments 

In our study, we clearly demonstrate that b-AP15 induced apoptosis much more rapidly than 

did bortezomib (Fig. 2A). Bax and Bak are not required for the apoptosis pathway induced 

by b-AP15, but they do play dominate roles in bortezomib-induced apoptosis (Fig 2B). b-

AP15 is a 19S proteasome inhibitor and bortezomib is a 20S proteasome inhibitor, and the 

19S proteasome inhibitor always accumulated higher molecular weight proteasome 

substrates compared with 20S proteasome inhibitors. This indicates that the polyubiquitin 

chains on the b-AP15-induced conjugates are longer than the bortezomib-induced conjugates. 

We thus suggest that b-AP15-induced rapid apoptosis is due to the longer polyubiquitin 

chain and does not require Bak and Bax. 

Oxidative stress has been reported as one of the major s for proteasome inhibitor- induced 

apoptosis [163, 164] and Hmox-1 is induced in response to oxidative stress [165]. In our 

study, we show that b-AP15 highly upregulated Hmox-1 gene expression induced ROS 

much more so than did bortezomib. Subsequent experimentation comparing employing a 

ROS scavenger (Trolox and NAC) suggested that ROS induction is the key mechanism 

underlying b-AP15-induced apoptosis.  

Proteasome inhibitors could induce oxidative stress through ASK1following activation of 

p38-MAPK and JNK [166], as reported for bortezomib-treated cells [167]. Our results 

confirmed b-AP15 could induce the activation of p38-MAPK and JNK, but that only JNK is 

a direct downstream mediator of the oxidative stress induced by b-AP15. 

ER stress was also reported as a conservative phenomenon occurring during proteasome 

inhibitor treatment, as has previously been reported for bortezomib [168]. In our study we 

demonstrate that b-AP15 treatment could upregulate CHOP expression, which is considered 

as the marker of ER stress. However, the ER stress responses induced by b-AP15 and 

bortezomib are different, as only b-AP15 could induce the phosphorylation of Eif2- α.  

So while bortezomib and b-AP15 are both proteasome inhibitors, both can induce apoptosis, 

and both can induce of oxidative stress and ER stress, the underlying mechanisms for these 

effects differ between the two drugs. Furthermore b-AP15 induces a more rapid apoptosis 
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than does bortezomib. We consider that this indicates that b-AP15 has high potential as a 

candidate in anti-cancer applications, especially in settings of overcoming bortezomib 

resistance. 

4.6.7 Proteasome inhibitors and neuronal disorders 

Similar phenomena such as aggresome formation, oxidative stress and ER stress induced by 

proteasome inhibitors is also characteristic of human neurodegeneration disease, such as 

Parkinson’s Disease, which is characterized by the formation of protein aggregates and Lewy 

bodies. There is currently no clinical, in vivo or in vitro data to suggest that proteasome 

inhibitor treatment will lead to neurodegeneration disorders, but peripheral neuropathy is 

reported as a major side-effect of bortezomib in the clinical applications [169]. Peripheral 

neuropathy is commonly described as damage, inflammation or desecration to peripheral 

neurves [170]. During bortezomib treatment, peripheral neuropathy has reported as 

symptoms including neuropathic pain, hypotension, sexual dysfunction and constipation 

[171, 172].  

Cancer cells exposed to bortezomib are killed within the first days of treatment but non-

malignant cells are not seemingly affected in this time frame. The binding of bortezomib to 

proteasomes has been demonstrated to be reversible. Although in the first days after 

treatment the accumulation of polyubiquitinated proteins is not problematic, after prolonged 

periods (weeks and months), cell types such as peripheral neurons that accumulate excessive 

levels of polyubiquitinated proteins and form aggresomes might have reduced viability day 

by day. To avoid such long time peripheral neuropathy is another motivation for further 

development of 2nd or 3rd generation proteasome inhibitors, which is focusing on 

irreversible inhibitors. Previous studies of our group [142] tested if b-AP15 is a reversible 

proteasome inhibitor, and our findings were that DUBs will release bound b-AP15 within 

hours. We thus hypothesis that b-AP15 is also a reversible proteasome inhibitor, which likely 

to cause peripheral neuropathy in clinical application.  

4.6.8 Solubility of b-AP15 

b-AP15 was well studied in our group for many years. This compound has very promising in 

vivo, in vitro and even clinical trial data that surpass the effects of bortezomib. However, the 

poor solubility of b-AP15, requiring DMSO for dissolution, is problematic. Local 

precipitation in the injection area will lead to local tissue damage near the injection area. 

More than 10 structural analogues were thus synthesized as new b-AP15 analogues and 
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tested. Some of these exhibit similar cellular responses and therapeutic effects, and have 

improved solubility, such as VLX1570, which has about 70% of EC50 capability as b-AP15 

and can be dissolved in PBS. VLX1561-1567 are also structural analogues of b-AP15, which 

are similar to VLX1570 are currently in continued clinical development. 
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5 CONCLUSIONS AND FUTURE PERSPECTIVES  
This thesis focused on the development of a 2nd generation proteasome inhibitor. Our major 

candidate b-AP15 was investigated in studies I-IV and the natural product piperlongumine 

was tested in study V. The findings of this thesis contributed a tiny brick to the Great Wall, 

understanding the ubiquitin proteasome system. It may inspire other researchers for future 

determinations in multiple myeloma & lymphoma, chemotherapy reagents or other emerging 

treatment.  

In study I, there is no clear evidence to distinguish whether UPS inhibition or stabilization of 

tumor suppressors is the dominant mechanism underlying the proteasome inhibitor 

application. Future experiments will be needed to test if the stability of tumor suppressors 

also plays an important or even dominant role in the cytotoxicity induced by those 2 

compounds. However, we also sensitized non-malignant cells to b-AP15. Due to the limited 

number of non-malignant cell models tested in this project we cannot draw any significant 

conclusion about increasing the therapeutic window of b-AP15 through co-treatment with 

the non-toxic drug CpdA. Future studies are needed to employ more primary or non-

transformed cell models in this investigation, and it will be of primary importance to also test 

the co-treatment in animal models or in clinical trials. 

In study II we report that the chaperone response and aggresome formation are two major 

resistance phenomena that occur with long-term bortezomib treatment. We showed that 

chaperone HSPA6 expression was highly upregulated following b-AP15 treatment, and if we 

over-expressed HSPA6 by pre-heat shocking the HCT-116 cells we could also inhibit the 

apoptosis induced by b-AP15. Taken together this suggests that the chaperone response plays 

a general role in UPS inhibition, no matter what compound interferes with DUBs on 

whichever proteasome subunit. The general applicability of this observation in different 

tumor and inhibitor systems would thus be an interesting future research focus. With respect 

to aggresome formation, we noted that co-treatment of b-AP15 and bortezomib decrease 

their formation, suggesting that b-AP15 inhibits a target such as HDAC6. In study IV we 

also recorded differences in ER stress, oxidative stress, ROS induction and metabolism 

interfere in mitochondria by b-AP15 and bortezomib treatments. While our knowledge is 

certainly increasing, future investigation should more precisely determine the differences in 

mechanisms of action between different classes of proteasome inhibitors. 
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We tested the action of b-AP15 in lymphoma cell models in study III, and demonstrated that 

they were as sensitive to b-AP15 as other cancer cell lines previously reported. In some of 

these lymphoma models we observed off-target effect are very interesting and important for 

further studies. The efficacy of b-AP15 in additional types of cancer is warranted. 

In study V our data suggested that piperlongumine was not a proteasome inhibitor, but 

instead interferes upstream of UPS. Further study will be needed to determine exactly how 

piperlongumine mediates its effects, but these observations are significant as they open for 

the possibility of upstream targeting as a therapeutic modality, which might have fewer 

adverse side-effects than those experienced with current proteasome inhibitors. Importantly, 

this study also indicates that an alternative drug development program is possible using 

ancient knowledge of the natural world. Asian medicine is the oldest recorded in the world, 

and the medicine men of bygone eras certainly seem to have had more awareness of what 

mother nature can provide than our current high-technology approaches. 

As I mentioned in the beginning of discussion in this thesis, anti-cancer drug development is 

like dancing on the tip of a knife. In order to eliminate more cancer cells we want to have the 

as powerful a therapy as possible, However, to avoid side-effects of the therapy we want to 

lower the concentration and does as much as possible. It is just like a loop and paradox. 

Theoretically we have a very low chance to discover a compound which is very effective on 

tumors but that induces only mild side-effects. Years of study in chemotherapy reagent 

development still relies on the shotgun method, a huge amount of money, time and 

expectation, but the improvement in therapy is limited.  

Immunotherapy is an emerging technique focused on targeting treatments and has very 

promising prospects. We could use immunotherapy to first treat the tumor, making it less 

proliferative and stable, greatly reducing the chance of tumor metastasis. As a second 

measure we could expose the unhealthy cancer cells to proteasome inhibitors, with a short 

treatment time, and lower concentrations with limited side-effects, I order to further weaken 

or eradicate the tumor and prevent both resistance and relapse. Another aspect of reducing 

unwanted side-effects with proteasome inhibitors (e.g. death of normal cells) would be to 

localize treatment to the solid tumor site.  A recently developed medical device at Karolinska 

Institutet, the ExtroducerTM is such a device that opens new possibilities for targeted delivery 

within tissues, including the CNS. By using this minimally invasive access catheter access is 

afforded to most organs, and injection of all kinds of reagents or cells is possible, as well as 
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biopsy of the solid tumor [173]. We can thus imagine use of the ExtroducerTM to deliver 

proteasome inhibitors into the solid tumor. Instead of continuing the search for next-

generation chemotherapy reagents we are maybe already at a stage when co-treatments with 

existing compounds and targeted delivery could be in focus instead.  
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