PHYSIOLOGICALLY BASED MODELLING
OF NANOPARTICLE BIODISTRIBUTION
AND BIOKINETICS

Ulrika Carlander

Stockholm 2016
Physiologically Based Modelling of Nanoparticle Biodistribution and Biokinetics

THESIS FOR DOCTORAL DEGREE (Ph.D.)

By

Ulrika Carlander

Principal Supervisor:
Professor Gunnar Johanson
Karolinska Institutet
Department of Environmental Medicine
Division of Work Environment Toxicology

Co-supervisor(s):
Associate Professor Hanna Karlsson
Karolinska Institutet
Department of Environmental Medicine
Division of Biochemical Toxicology

Professor Lennart Lindbom
Karolinska Institutet
Department of Physiology and Pharmacology
Division of Microvascular Physiology

Opponent:
Professor Michèle Bouchard
Université de Montréal
Department of Environmental and Occupational Health
School of Public Health

Examination Board:
Professor Mats Karlsson
Uppsala University
Department of Pharmaceutical Biosciences
Division of Pharmaceutometrics

Associate Professor Tommy Cedervall
Lund University
Department of Biochemistry and Structural Biology

Associate Professor Louiza Bohn Thomsen
Aalborg University
Department of Health Science and Technology
ABSTRACT

To predict the toxicity of nanoparticles (1-100 nm), it is crucial to understand their biokinetics i.e. how they are taken up, distributed, dissolved and removed from the body. Such information can be gained from biodistribution studies in animals. However, to make predictions for other types of nanoparticles, exposure conditions and species, including humans, extrapolations from such studies are required. Use of models, such as physiologically based pharmacokinetic (PBPK) models, makes extrapolations feasible, given that the models are sufficiently validated.

In this thesis, a conceptual nanospecific PBPK model for intravenous administration to rats was developed and applied to different types of inert nanoparticles using experimental data from recent scientific publications (Papers I and II). The model represents systemic distribution and serves as a foundation for expansion to other species and other exposure routes (inhalation, dermal, oral). The PBPK simulations suggest that the model is able to describe the biokinetics of different types of inert nanoparticles given intravenously despite large differences in properties and exposure conditions. Our model is the first to include separate compartments for phagocytic cells and saturable phagocytosis. The simulations show that (1) phagocytosis needs to be incorporated in nano PBPK models, (2) the dose has a clear impact on biokinetics, but (3) further refinements are needed to better reflect processes such as agglomeration, corona formation and dissolution. The model was slightly modified to describe the biodistribution and biokinetics of nanoceria of different sizes and administered via other routes (Paper III). While the model could well predict the biokinetics after intravenous dosing, the predictions of inhalation, instillation and ingestion data were poor. The poor agreement may be partly due to low absorption via these routes, resulting in low nanoceria levels in tissues and organs, often close to or below the detection limit, in tissues. However, low absorption is hardly the only explanation, as the experimentally observed concentration time courses of nanoceria in tissues suggest that the biokinetics depend not only on the nanoparticle properties (size, coating) but also on the exposure conditions (dose, exposure route). The PBPK model was further developed to account for the complexity of inhalation exposure to nanoparticles (Paper IV). The modified model includes regional particle deposition in the respiratory tract, mucociliary clearance and phagocytosis in the lungs, olfactory uptake, and transport into the systemic circulation by alveolar wall translocation. The PBPK model described the biodistribution well and again suggested phagocytosis to be very important.

The PBPK simulations were performed assuming that the nanoparticles are inert, i.e. do not dissolve or degrade in the body. However, when modelling the experimental data it seemed that the biokinetics might be better explained by introducing dissolution in the PBPK model. A related problem is that most experimental studies of metal nanoparticles use elemental analysis such as inductively coupled plasma mass spectrometry (ICP-MS). Such analyses do not discriminate between different forms of metal and therefore obscures the biokinetics. To test if gold nanoparticles dissolve in biological media, we developed an in vitro method to characterize dissolution of gold nanoparticles in contact with cell medium, macrophages and lipopolysaccharide (LPS)-triggered macrophages, simulating a disease state (Paper V). We demonstrated that gold nanoparticles are dissolved by cell medium and macrophages and even more so by LPS-triggered macrophages. The dissolution rate was higher for 5 nm than for 50 nm gold particles.
SVENSK SAMMANFATTNING

För att kunna förstå och förutse om nanopartiklar (1-100 nm) kan skada människor, är det viktigt att ha kunskap om nanopartiklars biokinetik d.v.s. hur de tas upp, distribueras, bryts ner i och utsöndras ur kroppen. Denna typ av information kan vi få från biodistributionsstudier på djur. För att göra prognoser för andra typer av nanopartiklar, exponeringsförhållanden och arter, inklusive människor, behöver vi oftast göra extrapoleringar utifrån den information vi har. Användning av tillräckligt validerade modeller, såsom fysiologiskt baserade farmakokinetiska (PBPK) modeller möjliggör sådana extrapoleringar.

Våra PBPK simuleringar utfördes med antagande om att partiklarna var stabila, d.v.s. de bröts inte ner i kroppen. När vi utförde modellsimulering på experimentella data för bl.a. nanopartiklar av guld så verkade det som om biokinetiken troligen bättre skulle kunna förklaras om nedbrytning inkluderades i modellen. Ett relaterat problem är att de flesta experimentella biodistributionsstudier med nanopartiklar i metall använder elementaranalys, såsom induktivt kopplad plasma-masspektrometri (ICP-MS), för att analysera mängd metall i organ. Denna typ av analys kan inte särskilja olika former av metall och därmed inte heller skillnader i biokinetik mellan dessa. För att testa om nanopartiklar av guld bryts ner i biologisk miljö, utvecklade vi en in vitro-metod för att undersöka om nanopartiklar i guld bryts ner i kontakt med cellmedium, makrofager och lipopolysackarid (LPS) -stressade makrofager (Studie V). Vi visade att guldpartiklarna bryts ner av cellmedium och av makrofager, och ännu mer om makrofagerna stressades med LPS. Nedbrytningen var snabbare för 5 nm än för 50 nm stora guldpartiklar.
LIST OF SCIENTIFIC PAPERS

This thesis is based on the following publications:

I. Dingsheng Li, Gunnar Johanson, Claude Emond, Ulrika Carlander, Martin Philbert, Olivier Jolliet
 Physiologically based pharmacokinetic modeling of polyethylene glycol-coated polyacrylamide nanoparticles in rats.
 Nanotoxicology, 2014, 8(S1), 128-137.

II. Ulrika Carlander, Dingsheng Li, Claude Edmond, Jolliet Olivier, Gunnar Johanson
 Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles.

III. Ulrika Carlander, Tshepo Paulsen Moto, Anteneh Assefa Desalegn, Robert Yokel and Gunnar Johanson
 Modelling biokinetics of nanoceria injected intravenously into rats.
 Manuscript.

IV. Dingsheng Li, Masako Morishita, James G Wagner, Mohammad Fatouraie, Margaret Wooldridge, W. Ethan Eagle, James Barres, Ulrika Carlander, Claude Emond, Olivier Jolliet
 In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats.

V. Ulrika Carlander, Klara Midander, Yolanda Hedberg, Matteo Bottai, Gunnar Johanson, Hanna Karlsson
 Triggered macrophages can dissolve gold nanoparticles.
 Manuscript

The publications are referred to by roman numerals (I-V) in the thesis text.
The articles are reproduced in full text as appendices.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad</td>
<td>Adrenal gland</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike information criterion</td>
</tr>
<tr>
<td>AM</td>
<td>Alveolar macrophages</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian information criterion</td>
</tr>
<tr>
<td>Bl</td>
<td>Blood</td>
</tr>
<tr>
<td>BM</td>
<td>Bone marrow</td>
</tr>
<tr>
<td>Bo</td>
<td>Bone</td>
</tr>
<tr>
<td>Br</td>
<td>Brain</td>
</tr>
<tr>
<td>C(^{14})</td>
<td>Carbon-14 radioactivity</td>
</tr>
<tr>
<td>CeO(_2)</td>
<td>Cerium dioxide</td>
</tr>
<tr>
<td>Co(_3)O(_4)</td>
<td>Cobalt oxide</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>D</td>
<td>Diameter</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>F</td>
<td>Faeces</td>
</tr>
<tr>
<td>Fa</td>
<td>Fat</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal tract</td>
</tr>
<tr>
<td>He</td>
<td>Heart</td>
</tr>
<tr>
<td>ICP</td>
<td>Inductively coupled plasma</td>
</tr>
<tr>
<td>Ki</td>
<td>Kidney</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>Li</td>
<td>Liver</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharides</td>
</tr>
<tr>
<td>Lu</td>
<td>Lung</td>
</tr>
<tr>
<td>Lymp</td>
<td>Lymph nodes</td>
</tr>
<tr>
<td>MAPE</td>
<td>Mean absolute percentage error</td>
</tr>
<tr>
<td>MINP</td>
<td>Magnetic imaging nanoparticles</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>Mu</td>
<td>Muscle</td>
</tr>
<tr>
<td>NP</td>
<td>Nanoparticle</td>
</tr>
<tr>
<td>PAA</td>
<td>Polyacrylamide</td>
</tr>
<tr>
<td>PBPK</td>
<td>Physiologically based pharmacokinetics</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PC</td>
<td>Phagocytic cells</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>PLGA</td>
<td>Poly(lactic-co-glycolic acid)</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>PT-ODN</td>
<td>Phosphorothioate oligonucleotide</td>
</tr>
<tr>
<td>QD</td>
<td>Quantum dots</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SF</td>
<td>Spinal fluid</td>
</tr>
<tr>
<td>SFMS</td>
<td>Sector field mass spectrometry</td>
</tr>
<tr>
<td>Sk</td>
<td>Skin</td>
</tr>
<tr>
<td>Sp</td>
<td>Spleen</td>
</tr>
<tr>
<td>Tb_2O_3</td>
<td>Terbium oxide</td>
</tr>
<tr>
<td>Te</td>
<td>Testis</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TiO_2</td>
<td>Titanium dioxide</td>
</tr>
<tr>
<td>Ty</td>
<td>Thymus</td>
</tr>
<tr>
<td>U</td>
<td>Urine</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Nanotechnology is an innovative and evolving field where new products are continuously introduced on the market. In the healthcare and medicine sector alone, the global market is estimated to increase from $30 billion in 2014 to $80 billion in 2019 (James et al., 2014). The benefits with nanotechnology are numerous and provide hope for solving many global problems such as diseases, global warming, and shortage of water and food.

Particles of a nanometre scale, often called nanoparticles, have unique properties, including superparamagnetism, catalytic activity and durability, as well as unexpected optical characteristics and increasing the strength of materials. For these reasons, nanoparticles have become popular components of products and contribute to the improvement in many sectors, such as information technology, energy, transportation, construction, environmental science, medicine, and food (Lee et al., 2010; Duncan, 2011; Parveen et al., 2012; Raj et al., 2012; Wang et al., 2012; Waser, 2012; Qu et al., 2013).

To ensure a continuous and sustainable development, nanoparticles must be safe for humans and the environment. Meanwhile, the increasing use of nanoparticles increases the likelihood of exposure and thereby the risk for unintended consequences to human health and the environment. In addition to intentional exposure, e.g. when used in pharamaceutical applications, and unintentional exposure during manufacturing, use and disposal, nanoparticles may be released from products, resulting in secondary human exposure via the skin, lungs, eyes and or mouth (Buzea et al., 2007; Nowack et al., 2013; Liou et al., 2015). Great efforts have been made to evaluate the health effects of nanomaterials on humans, but the results are inconclusive so far (Sharifi et al., 2012; Liou et al., 2015; Zhang et al., 2015). Most studies have been carried out in vitro and with animals. Data from exposed humans are rare although the number of epidemiological studies is increasing (Liou et al., 2015).

Because of their extremely small size, similar to that of the structural elements of cells, there is concern that nanoparticles may be toxic, as has indeed been reported in both in vitro and in vivo studies (Buzea et al., 2007; Krug et al., 2011; Kermanizadeh et al., 2015). To exert toxicity, these particles must reach the cell, i.e., become bioavailable in sufficiently high amounts. Several methods provide valuable information concerning the absorption, distribution, metabolism (degradation/dissolution) and excretion of nanoparticles. In vitro studies give insight into the mechanisms of action of various cellular processes; whereas in vivo studies can be employed to characterize the biodistribution in living animals (Marquis et al., 2009). Furthermore, in silico tools such as physiologically based pharmacokinetic (PBPK) models can be used to combine in vitro and in vivo data with an aim of predicting the final outcome in terms of the relation between exposure/dose and health effects (Krishnan et al., 2010; Johanson, 2014).

The advantage of PBPK modelling is that toxicological data can be extrapolated from animals to humans, from high to low doses and between different routes of exposure, without additional in vitro and/or in vivo investigations (IPCS, 2010; Krishnan et al., 2010; Johanson, 2014). However, only a few PBPK models have been published for nanoparticles to date and these are difficult to apply to other types of nanoparticles and exposure conditions because their physiological basis is limited (Li et al., 2010; Bachler et al., 2013; Kolanjiyil et al., 2013; Lin et al., 2015b; Johanson et al., 2016). More physiologically relevant models are required for trustworth extrapolations.
2 BACKGROUND

2.1 NANOPARTICLES

Nanoparticles are small, with sizes similar to the structural elements of cells, antibodies, proteins and viruses. A common definition is any shape with dimensions between 1 to 100 nm, but this may vary depending on regulatory framework (ISO, 2008; European Commission, 2011; FDA, 2014). They occur naturally, but are also produced by humans, on purpose or inadvertently (Buzea et al., 2007).

Nanoparticles can be distributed in gaseous form, as liquids or deposited on solid materials and their properties can be tailored to have extraordinary characteristics, different from molecules and bulk materials (Roduner, 2006). One such characteristic is enhanced quantum and plasmon effects, giving nanoparticles intense colours useful for biological imaging and sensing (Michalet et al., 2005; Scholl et al., 2012). Another property is superparamagnetism, which makes nanoparticles susceptible to magnetic fields and hence valuable for MRI imaging, data storage and wastewater treatment etc. (Frey et al., 2009; Reddy et al., 2012; Xu et al., 2012; Qu et al., 2013). A third property is chemical activity, and this, together with increased surface area to volume ratio, makes nanoparticles excellent catalysts (Guo et al., 2013; Liu et al., 2014). Typically, properties are tuned by changing particle size, geometry, and chemistry. Therefore, information about the nanoparticles’ physicochemical properties is crucial in nanoparticle design, applications, and risk assessment.

However, physicochemical characterization of nanoparticles is challenging and may change with environment and exposure conditions (Oberdorster et al., 2005a; Fadeel et al., 2015). To open for proper interpretation of results from toxicity and biodistribution studies, the Organization for Economic Co-operation and Development (OECD) recommends that nanoparticles are characterized at least as received from the suppliers, administrated and in situ (OECD, 2012). However, this is rarely carried out in research studies. Properties of importance to characterize are: size, size distribution, surface area, shape, crystal structure, chemical composition, surface charge, surface energy, surface coatings, solubility, agglomeration state and impurities. All these parameters have been reported to modify toxicity and biodistribution (Oberdorster et al., 2005a; Aillon et al., 2009; Nel et al., 2009; Hussain et al., 2015). In this thesis, the focus is on engineered nanoparticles that are considered inert.

2.1.1 Toxicity

The toxicity of nanoparticles depends on their physicochemical characteristics and how they interact with cellular and molecular substances in the body (Aillon et al., 2009; Nel et al., 2009; Zhu et al., 2010). Nanoparticles can absorb and release substances, and can join together to form agglomerates (loosely attached group of particles) or aggregates (tightly attached group of particles) (Jiang et al., 2009; Gliga et al., 2014). Moreover, they can catalyse or participate in chemical and biological reactions (Daniel et al., 2004). As a result of this dynamic interaction, the particle identity and its hazard potential may change with time and environment.

Through their surfaces, nanoparticles interact with the surrounding environment and their surfaces are potentially more reactive compared with larger particles because of increased surface area to volume ratio. Actually, surface area has been proposed to be a better dose
metric for toxicity than mass or number of nanoparticles (Oberdorster et al., 2005b; Braakhuis et al., 2016; Schmid et al., 2016). Despite this, mass is probably the most commonly used dose metric in toxicity studies and volume has been used to describe the overload phenomenon caused by inhaled nanoparticles (Morrow, 1988; Pauluhn, 2014; Kermanizadeh et al., 2015).

As a consequence of the wide range of nanoparticle properties, toxicity and mechanisms of toxicity differ considerably. In vitro studies show that nanoparticles can trigger a variety of toxicological mechanisms, such as release of reactive oxygen species (ROS), DNA damage, inflammatory effects and cell death through various mechanisms including autophagy (Stern et al., 2012; Gliga et al., 2014; Magdolenova et al., 2014). Sometimes the toxicity is not related to the nanoparticles themselves, but rather to the release of other substances, as observed for some metallic nanoparticles through a process called “The Trojan horse effect”, i.e. when cells take up nanoparticles, which release metallic ions inside the cells and cause toxicity (Limbach et al., 2007). Another effect is the presence in nanoparticles of endotoxins that can induce inflammation (Vallhov et al., 2006). Excessively high concentrations are often used in vitro and hence do not always reflect environmental exposures accurately (Krug et al., 2011).

In vivo, toxicity has been investigated after exposure to nanoparticles via inhalation, instillation, and dermal, oral, intraperitoneal and intravenous routes (Kermanizadeh et al., 2015). The majority of the studies focus on animals and short-term exposure. Only a few studies included repeated and long-term exposure and long post-exposure follow-up times. The number of epidemiological studies is small, but growing (Liou et al., 2015). Studies indicate health effects related to exposure to nanomaterials, such as increased expression of cardiovascular and oxidative biomarkers, reduced levels of antioxidant enzymes, allergic dermatitis and increased sneezing as an indicator of airway irritation. However, most of these studies are cross-sectional and cover small numbers of participants, low exposures and short intervals between exposure and effect. In addition, exposure assessments are inconsistent and only a few types of nanoparticles have been covered. On the other hand, nanotoxicology is linked to particle and fibre toxicology and lessons learned from this field on ultrafine particles are relevant for nanoparticles as well, such as deposition pattern, particle overload in the lung, and particle toxicity as oxidative stress, cardiovascular diseases and the fibre paradigm (Oberdorster et al., 2005b; Donaldson et al., 2012; Grosse et al., 2014; Borm et al., 2015).

Despite low uptake in the body via inhalation, skin contact and ingestion, adverse effects in a variety of distal organs have been reported (Kermanizadeh et al., 2015). Locally the deposition of nanoparticles may be higher and contributes to the toxicity (Balashazy et al., 2003). In human and animal inhalation studies, nanoparticles have induced inflammation, pulmonary fibrosis, granuloma formation, cardiovascular effects and lung tumours (Brook, 2008; Kermanizadeh et al., 2015). Oral studies in rats with nanoceria demonstrate effects on distal organs such as liver, brain and kidney (Kumari et al., 2014a; Kermanizadeh et al., 2015). Results from repeated dermal exposure in guinea pigs of silver nanoparticles suggest cardiotoxicity, nephrotoxicity and osteotoxicity (Korani et al., 2011; Kermanizadeh et al., 2015). Much like in studies in vitro, the doses used are often far higher than expected human exposure. Dissolved and released entities can also contribute to the observed toxicity (Park et al., 2010; Gliga et al., 2014). In short and as expected, toxicity differs widely depending on nanoparticle properties and exposure conditions. Several on-going efforts are made to group nanomaterials for testing, read-across, risk assessments and safety-by-design (Arts et al., 2015; Geraci et al., 2015; EU NanoSafety Cluster, 2016; OECD, 2016).
Oxidative stress is commonly induced by nanoparticles through many different mechanisms as a result of the particles’ intrinsic properties or by interaction with cells (Nel et al., 2006; Xia et al., 2006; Manke et al., 2013). Surface reactivity is an intrinsic property and may be involved in the production of reactive oxygen species via oxidation and Fenton-like processes. When nanoparticles interact with cells like macrophages and neutrophils, the cells may respond by release of oxygen species in an attempt to remove the particles and/or signal stress. Reactive oxygen species are, on the other hand, produced endogenously during vital processes like cell breathing and oxidative burst, in which superoxide (O2\(^•\), HO2\(^•\)), hydrogen peroxide (H\(_2\)O\(_2\)) and hydroxyl radicals (OH\(•\)) are formed (Halliwell et al., 2015). To neutralize the reactive oxygen species and protect itself from injuries, the cell uses antioxidant enzymes and proteins, such as glutathione, vitamins C and D, superoxide dismutase, and peroxidase. If the production of reactive oxygen species gets too high the redox homeostasis is disturbed, which may result in membrane lipid peroxidation, stress signalling, cell pathogenesis, and, ultimately, cell death. Uncontrolled oxidative stress can result in inflammation and progress into cardiovascular diseases, pulmonary fibrosis and tumour formation.

2.1.2 In vivo biodistribution

The target dose determines the toxicity. Correlating exposure to target dose information about biokinetics is essential. Biokinetics describes how nanoparticles are taken up, transported, dissolved and removed from the body over time and are based on biodistribution studies. In biodistribution studies mass-time deposition in tissues and organs is measured and target organs are identified. Consumer, patient and worker exposure can occur via inhalation and oral, dermal and intravenous routes, for instance.

2.1.2.1 Intravenous exposure

Intravenous exposure represents 100 % bioavailability and serves as a reference for the biokinetics of nanoparticles via other mechanisms, such as inhalation, dermal or oral routes. In addition, it is the most likely potential route of exposure for nanoparticles as therapeutic agents, as absorption is often negligible via other routes.

When nanoparticles are administrated intravenously, the majority of them are usually distributed to organs belonging to the mononuclear phagocyte system (MPS), especially the liver and spleen (Saba et al., 1969). In the mononuclear phagocyte, system nanoparticles are captured by phagocytic cells like macrophages and Kupffer cells. Nanoparticles are also distributed to other organs, but to a lesser extent. In addition, uptake by cell types other than phagocytic cells has been observed, as well as attachment to cell surfaces and deposition in the extracellular space (Demoy et al., 1999; van Schooneveld et al., 2008; Hirn et al., 2011; Keene et al., 2012).

As soon as the nanoparticles are in contact with blood, proteins and other biomolecules instantly begin competing over binding to the nanoparticle in a process called opsonisation, leading to the formation of a protein corona (Nel et al., 2009; Docter et al., 2015). The protein corona changes the biological property of the nanoparticles and modifies the recognition and phagocytosis by macrophages (Docter et al., 2015). Hydrophobic and charged particles appear to be opsonised more easily than uncharged hydrophilic nanoparticles such as PEG coatings. Coating with PEG tends to minimize opsonisation and
uptake by the MPS (Bazile et al., 1995; Schottler et al., 2016). In fact, opsonisation affects distribution and uptake mechanisms (Ogawara et al., 2001; Tenzer et al., 2013).

To reach the tissue, nanoparticles have to be distributed by the blood circulation to the organs and locally cross the endothelium (Figure 1). To cross the endothelium the nanoparticles have to pass between the endothelial cells or through them (Setyawati et al., 2015). To keep the barrier function, endothelial cells are linked to each other with junctions (Michel et al., 1999; Mehta et al., 2006). The junctions are tight in the brain, but in organs like the liver and bone marrow there are fenestrations, which facilitate translocation into tissue. Some nanoparticles have the ability to interact with junctions, which increases the transport to tissue (Moyes et al., 2007; Lin et al., 2012). During inflammation, tight junctions are loosened and endothelium gaps are formed in the normally continuous endothelium coated with glycocalyx, i.e. a hairy coating made of glycoprotein-polysaccharide that covers the luminal side of the endothelium (Levick, 2010).

Transcellular passage of nanoparticles can occur by different mechanisms, such as endocytosis and diffusion, see Figure 1. Endocytosis requires energy and includes processes like phagocytosis, caveolae-mediated or clathrin-mediated endocytosis and macropinocytosis with diversified characteristics (Nel et al., 2009; Canton et al., 2012). The uptake to cells involves several steps, such as transport toward the surface, recognition by cells, binding and cell internalization (Jin et al., 2009; Ohta et al., 2012; Feliu et al., 2016b). The capacity for endocytosis in capillaries is higher in organs like liver and bone marrow (Sarin, 2010). These organs are called sinusoid reticuloendothelial blood capillaries (Saba, 1970). Recently a new pathway for translocation of nanoparticles over the endothelium has been observed, called membrane nanotubes, which are formed between cells with diameters ranging between 50-200 nm in average (Rehberg et al., 2016).

![Translocation pathways over the endothelium](image)

Figure 1. Translocation pathways over the endothelium.

It has long been known that the uptake capacity of the liver can be suppressed by saturating the Kupffer cells or by depleting opsonic factors (Biozzi et al., 1953; Bradfield, 1980; Illum et al., 1986). When phagocytosis in the liver is suppressed, accumulation of particles increases in spleen, lung, kidney and bone marrow (Biozzi et al., 1953; Illum et al., 1987).
The saturation may be due to either the equilibrium between endocytosis and exocytosis or the capacity limitation of the cells.

The fate within the cell varies depending on the uptake process. In the studies where internalization of nanoparticles was evaluated, most nanoparticles were found in vesicles, lysosomes and endosomes (Moghimi, 2002; Lee et al., 2009a; Wang et al., 2010; Morais et al., 2012). In the lysosomes and phagosomes, nanoparticles are subjected to an environment with enzymes, reactive oxygen species and reduced pH. Many nanoparticles are stable, but in some cases coatings and labelling may dissolve in this environment (Briley-Saebo et al., 2004; Knop et al., 2010; Mahon et al., 2012).

The macrophages of the MPS are heterogeneous and differ slightly between species, pointing to a potential difference in the ability to recognize and capture nanoparticles (Gordon et al., 2005; Verschoor et al., 2012). Furthermore, the pool size and kinetic parameters, such as rate of migration, rate of production and mean turnover time of macrophages, may vary between tissues (van Furth, 1989). In addition, repeated exposure can suppress and stimulate the MPS depending on the dose, dosing frequency and dosing duration (Biozzi et al., 1953).

Nanoparticles are discharged from cells by diffusion (only small nanoparticles), exocytosis or due to cell death. Observation of concentration of gold nanoparticles to fewer cells suggests that clustering and cannibalism between Kupffer cells can occur (Sadauskas et al., 2009). Clearance from the body by way of urine and faeces via bile is reported. Clearance to urine has been argued to be limited to small substances (< 40 kDa) and nanoparticles (< 8 nm), but exceptions have been reported (Choi et al., 2007; Lacerda et al., 2008; Nel et al., 2009).

2.1.2.2 Inhalation

Dust- and airborne nanoparticles can be inhaled and end up in the respiratory system. The respiratory system with its conduit airways is organized in a complex branching tree structure, which can be divided into upper respiratory tract, tracheobronchial region and alveolar region (Snipes, 1989; Oberdorster et al., 2005b). When nanoparticles are inhaled they will be deposited in this system, with locally enhanced deposition in airway branches, so-called “hot spots” (Brain et al., 1976; Snipes, 1989; Balashazy et al., 2003).

Where nanoparticles are deposited and to what extent depends on their properties, the exposure conditions and the physiological and anatomical properties of the exposed species (Snipes et al., 1983; Daigle et al., 2003; Kreyling et al., 2013). The three most commonly used mechanisms to describe deposition are impaction, sedimentation and diffusion (Anjilvel et al., 1995; Hofmann, 2011). Because of the extremely small sizes, nanoparticle deposition is mainly driven by diffusion, by which the particles are transported deeper into the lung than larger particles. Larger particles are primarily deposited by impaction in the upper airways (> 1.5 μm) and by sedimentation in the tracheobronchial region (> 0.5 μm). Other mechanisms for deposition are turbulence, interception, electrostatic deposition, and thermophoretic and diffusiophoretic forces, but their impacts on deposition on nanoparticles are, thus far, not well-addressed in modelling (Guha, 2008).

Once deposited, nanoparticles are in contact with mucus and lining fluids where they may submerge and react with ions, surfactants and proteins. As a result, those particles may agglomerate, degrade, migrate or become engulfed by lung cells (Schulze et al., 2011).
Deposited nanoparticles can be cleared. In the upper respiratory tract, they are removed by coughing, sneezing and swallowing. In the tracheobronchial region, the main mechanism is by the mucociliary escalator to the larynx and further transport into the gastrointestinal tract (Oberdörster, 1988). In the alveolar region, nanoparticles are captured by alveolar macrophages, which migrate to the tracheobronchial region for mucociliary clearance or to mediastinal lymph nodes (Geiser et al., 2005; Choi et al., 2010). The retention time in the alveolar region is longer than in the tracheobronchial region (Oberdörster, 1988).

Increasing the dose may overload the system and impair macrophage clearance. For poorly soluble particles impaired clearance has been suggested to start when 6% or more of the alveolar macrophages volume in rats is occupied by particles (Morrow, 1988; Morrow et al., 1996). How to extrapolate this to human exposure limit values is debated (Pauluhn, 2014; Morfeld et al., 2016). During an overload situation an inflammation may result in an increased leakage of particles to the lymph nodes (Tran et al., 2000). Alveolar macrophages are long-lived, but new ones can be recruited, especially during inflammation.

From the lining fluid, nanoparticles can migrate to the epithelium surface and translocate into either the blood circulation or the lymphatic system. How nanoparticles translocate is not fully understood. Translocation through cells can be active or passive, whereas transport between cells is restricted to nanoparticles that fit in the cell gaps or interact with cell junctions, or occurs during inflammation when junctions are disrupted (Muhlfeld et al., 2008). Another suggested mechanism is transport with the help of macrophages and dendritic cells, especially to the lymphatic system (Harmsen et al., 1985). Interestingly, nanoparticles have been reported to re-enter the lung (Semmler-Behnke et al., 2007). Translocation of nanoparticles into extrapulmonary organs is low in general and, much like intravenously injected nanoparticles, inhaled nanoparticles tend to target the mononuclear phagocyte system (Kermanizadeh et al., 2015; Johanson et al., 2016). However, increased inhaled doses increase transport to lymph nodes (Tran et al., 2000; Keller et al., 2014).

Nanoparticles deposited in the nose region during nasal breathing can be swallowed, sneezed and coughed out. In addition, translocation into the brain via axons in olfactory nerves has been demonstrated (DeLorenzo, 1970; Elder et al., 2006). Olfactory uptake of magnesium oxide nanoparticles resulted in inflammatory changes in the brain (Elder et al., 2006). Size influences deposition and translocation.

2.1.2.3 Dermal exposure

Nanoparticles are applied on the skin intentionally via cosmetics, but also unintentionally via products not designed for skin contact. In textiles, nanoparticles of silver and other metals are added to achieve properties referred to as, e.g., anti-bacterial, water-repellent, UV-absorbing, and wear and tear resistant. Nanoparticles can also be found in products such as motor oil, fuel catalysts and cleaning products, with potential consumer and occupational exposure (Poland et al., 2013).

Skin is a large organ (15% of the body weight) and prevents loss of water and heat as well as protects the body from mechanical, biological and chemical hazards. It consists of three layers; hypodermis, dermis and epidermis (Johanson et al., 2008). The outermost layer of the epidermis, stratum cornea, provides the major barrier for nanoparticle uptake. To get into systemic circulation nanoparticles have to penetrate the stratum cornea, especially via hair follicles, sweet glands or intra/intercellular routes. Passage via hair follicles and sweet glands
is the most probable route for nanoparticles. Intercellular routes are limited to small nanoparticles and intracellular routes are primarily accessible for chemical substances and ions (Johanson et al., 2016).

The permeability of nanoparticles through intact skin is small but several factors may increase the extent of uptake. (Tinkle et al., 2003; Johanson et al., 2008; Filon et al., 2011; Filon et al., 2015) These include anatomical site (skin thickness), skin humidity, temperature, barrier integrity, mechanical flexion, nanoparticle properties, contaminants in nanoparticles, and dissolution of nanoparticles. Wounds, detergents, organic solvents and skin burns may destroy the integrity of the skin and provide breached barrier function to nanoparticles. Dissolution of nanoparticles results in release of chemical substances and ions with increased permeability over nanoparticles (Filon et al., 2015; Midander et al., 2016). With decreased size the probability for uptake increases (Filon et al., 2015; Johanson et al., 2016). Uptake through intact skin has been demonstrated for sizes smaller than 4 nm, and penetration via follicles and sweat glands seems to be possible for sizes up to 20 nm. On the other hand, penetration and permeation of sizes above 45 nm probably only take place in severely damaged skin (Filon et al., 2015).

2.1.2.4 Oral exposure

Oral exposure to nanoparticles may result from ingestion of food, fluids or drugs (Etheridge et al., 2013; McCracken et al., 2016). In addition, exposure can also occur through unintended swallowing of products containing nanoparticles or ingestion of nanoparticles released from products during interactions such as licking, sucking and chewing. Inhaled airborne particles also end up in the gastrointestinal tract when deposited non-respiratory fractions or mucociliary cleared particles are swallowed (Oberdörster, 1988; Snipes, 1989). Systemic uptake via oral exposure is an attractive distribution pathway for nutrients and drugs. Several efforts have been made to improve absorption by modification of size, shape and surface properties (Mei et al., 2013). However, reported absorption differs significantly between studies, where several studies could not demonstrate any uptake and other studies measured uptake of several per cent of administered dose (Johanson et al., 2016).

In the gastrointestinal tract, the nanoparticles interact with the local environment, including food components, which affect the uptake and the toxicity (Cao et al., 2016). During this interaction proteins and biomolecules adhere to the nanoparticle surface forming a corona (Docter et al., 2015). So far, only a few in vitro studies have evaluated the impact of the corona on uptake, but the results suggest increased absorption (Di Silvio et al., 2016). Increased absorption and toxicity can also be a result of dissolution of the nanoparticles, as reported for zinc oxide nanoparticles (Wang et al., 2014). On the other hand, nanoparticles can also affect the nutrient uptake by either damaging the intestinal cells or changing the expression in nutrient transporters (Mahler et al., 2012; Dorier et al., 2015).

To enter the body, nanoparticles have to overcome two barriers: the mucus and the epithelium. The first barrier, the mucus, is a sticky, hydrophobic and negatively charged gel wherein nanoparticles can be trapped (Lai et al., 2009). The continuous renewal of mucus transports trapped nanoparticles distally to faeces. If nanoparticles manage to migrate through the mucus, they have to pass the second barrier, the epithelium, to reach the systemic circulation (des Rieux et al., 2006). The dominant cell type in the intestinal epithelium is the enterocyte, but it does not seem to account for the major transcellular transport, though uptake has been demonstrated. Instead, transport takes place in the less numerous M-cells in
the Peyer’s patch. M-cells account for approximately 1% of the intestinal epithelium cell population and are part of the mucus-associated lymphoid tissues. From the interstitial space, nanoparticles can translocate into blood circulation and lymph systems for further distribution to distal organs and tissues (Li et al., 2010; Roger et al., 2010).

2.2 PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELING

PBPK models provide information about mass-time profiles of individual tissues and organs and use mathematical equations to describe how substances are absorbed, distributed, metabolized and excreted over time (IPCS, 2010; Krishnan et al., 2010; Johanson, 2014). By incorporation of knowledge about anatomy, physiological mechanisms and substance kinetics, the mathematical model can predict the internal dose of a substance based on information about external exposure. PBPK models also allow interspecies extrapolation, where findings from animals can be scaled up to humans without additional testing. In fact, PBPK models are used for drug development, animal toxicity test designs and human health risk assessments. Moreover, PBPK models are useful for extrapolation between species, doses and routes of exposure.

A PBPK model is structured into compartments that represent organs (IPCS, 2010; Krishnan et al., 2010; Johanson, 2014). Each compartment is organized in a biologically relevant position and compartments are interconnected through the mass transport between them. How many the compartments are and how they are structured is determined by the intended use of the model and knowledge about the substance(s) of interest. Typically, the model includes separate compartments for target tissues, tissues with biotransformation and clearance, and storage tissues. To avoid over-parameterization and reduce computation time, the complexity of the model should be minimized. Pooling of organs is one way of doing this, where tissues with similar properties, such as blood flow and partitions, are lumped into a joint compartment.

Substances enter the system by exposure routes such as inhalation, injection into blood, dermal contact and/or digestion. To reach the circulatory system for further transport to distal organs, substances may need to pass barriers. Transport over barriers occurs by active or passive processes. Once absorbed, substances are distributed to organs via the circulatory system. In the organs, substances move into the tissue, a phenomenon often described by mass-balance differential equations of the first order with either perfusion- and or diffusion-limited processes. Distribution between blood and tissue may for substances be described by a partition coefficient, which assumes a well-stirred compartment in a quasi-steady state. Clearance occurs from organs such as the liver and kidney and may involve metabolism. When processes involve saturation they can often be described using Hill equations.

The model includes parameters which are physiologically based or substance-specific and are typically derived from scientific literature, experiments or estimated by the model (IPCS, 2010; Krishnan et al., 2010; Johanson, 2014). Body and organ weight, blood flow, and ventilation rate are examples of physical parameters, whereas partition and metabolic rates are examples of substance-specific parameters.

Optimizing the performance of a PBPK model is an iterative process (IPCS, 2010; Krishnan et al., 2010; Johanson, 2014). The process starts with comparing predictions with experimental data from biodistribution studies and then refining the model, if they do not cohere. Refinements involve adjustment of model structure and/or optimization of parameters.
to provide the best fit between predictions and experimental observations. The process is called calibration. During validation, the performance of the calibrated model is evaluated by comparing the model predictions with external data, i.e., data not used for calibration. Model performance is evaluated by visual inspection and/or goodness-of-fit criteria, such as, coefficient of determination (R^2), maximum log-likelihood and the Akaike information criterion.

To identify model parameters that influence model outcome the most, sensitivity analyses are carried out (IPCS, 2010; Krishnan et al., 2010; Johanson, 2014). This is important as a small change in a sensitive parameter will have a large impact on the accuracy of the output. Sensitivity analysis is a quantitative evaluation, where a change in response/output is measured as a result of a change in an input parameter. Changing one parameter at a time is called local sensitivity analysis. Local sensitivity analysis has the limitation that covariates and interactions between parameters cannot be assessed. By varying multiple parameters simultaneously such relationships can be assessed. This is referred to as a global sensitivity analysis. However, a global sensitivity analysis requires a powerful computer processor, which often limits its usability.

2.2.1 PBPK model for intravenously injected nanoparticles

An increasing number of PBPK models for nanoparticles injected intravenously have been published; most of them aim to describe experimental data (Table 1).

Table 1. Summary of PBPK models for rodents injected intravenously with nanoparticles.

<table>
<thead>
<tr>
<th>Type of nanoparticles</th>
<th>Model parameter</th>
<th>Model evaluation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-ODN</td>
<td>x x -</td>
<td>-</td>
<td>Peng et al., 2001</td>
</tr>
<tr>
<td>Quantum dots</td>
<td>x - -</td>
<td>-</td>
<td>Lin et al., 2008</td>
</tr>
<tr>
<td>Quantum dots</td>
<td>x - -</td>
<td>-</td>
<td>Lee et al., 2009b</td>
</tr>
<tr>
<td>Silver</td>
<td>x - x^a</td>
<td>-</td>
<td>Lankveld et al., 2010</td>
</tr>
<tr>
<td>MINP</td>
<td>x x -</td>
<td>-</td>
<td>Optz et al., 2010</td>
</tr>
<tr>
<td>Gold dendrimers</td>
<td>x x x^a</td>
<td>-</td>
<td>Mager et al., 2012</td>
</tr>
<tr>
<td>PLGA</td>
<td>x x -</td>
<td>-</td>
<td>Li et al., 2012</td>
</tr>
<tr>
<td>Silver</td>
<td>x x x</td>
<td>x</td>
<td>Bachler et al., 2013</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>x x x</td>
<td>x</td>
<td>Bachler et al., 2015b</td>
</tr>
<tr>
<td>PAA</td>
<td>x x x</td>
<td>x</td>
<td>Li et al., 2014</td>
</tr>
<tr>
<td>Gold</td>
<td>x x x</td>
<td>x</td>
<td>Lin et al., 2015a</td>
</tr>
<tr>
<td>Block co-polymer</td>
<td>x - -</td>
<td>x</td>
<td>Gilkey et al., 2015</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>x - -</td>
<td>x</td>
<td>Elgrabli et al., 2015</td>
</tr>
<tr>
<td>Zinc oxide</td>
<td>x - -</td>
<td>x</td>
<td>Chen et al., 2015</td>
</tr>
<tr>
<td>Gold</td>
<td>x x x</td>
<td>x</td>
<td>Lin et al., 2016</td>
</tr>
<tr>
<td>Gold, titanium dioxide, PAA, PAA-PEG</td>
<td>x x x</td>
<td>-</td>
<td>Carlander et al., 2016</td>
</tr>
</tbody>
</table>

*a Uptake to a storage compartment in tissue
b Performed but no details provided

Abbreviations: AIC - Akaike information criterion, BIC - Bayesian information criterion, MAPE - mean absolute percentage error, MINP – Magnetic imaging nanoparticles, PAA – Polyacrylamide, PLGA - poly(lactic-co-glycolic acid), PT-ODN - phosphorothioate oligonucleotide, R^2 - coefficient of correlation.
The early models followed the structure used for xenobiotics, but they did not adequately explain the more complex kinetics exhibited by nanoparticles. To improve the models, additional factors of relevance for nanoparticles have been incorporated, such as phagocytosis and permeability restrictions (Peng et al., 2001; Li et al., 2014). Time- and size-dependent phagocytic rates and time-dependent partitioning are other examples of modifications implemented into PBPK models for nanoparticles (Lin et al., 2008; Bachler et al., 2013; Chen et al., 2015; Lin et al., 2015a). Evaluation of the performance of models has frequently been done by visual inspection, but statistical methods such as coefficient of correlation and the Akaike criterion have also been used. Validations of models with external data and to additional species have not always been performed, which probably reflects the lack of suitable data for modelling. So far, most models are limited to a single type of nanoparticles and models for repeated and life-long exposure are not yet available.

2.2.2 PBPK model for inhalation of nanoparticles

The number of published PBPK models for inhaled nanoparticles is limited and their usability is restricted to a few types of nanoparticles, see Table 2. The structure differs widely between the models, for example as regards the structure of the lung and the number of extra pulmonary organs. The respiratory system is described by one or several compartments and some models include alveolar macrophages. In the lung, the majority of the nanoparticles are cleared via uptake by alveolar macrophages and mucociliary clearance, described in models with separate transport processes or as a joint process. From the lung, a fraction of deposited nanoparticles is transported to the interstitium, lymph system and/or blood circulation. In addition, some models address uptake to the brain via the olfactory system. When nanoparticles are cleared from the lung via mucociliary clearance the majority of the models assume that nanoparticles reach the gastrointestinal tract and/or get cleared by cough or sneezing.

Table 2. Summary of PBPK models for inhalation of nanoparticles and compartments included in the model structure.

<table>
<thead>
<tr>
<th>Type of nanoparticles</th>
<th>Number of compartments in Extra pulmonary organs</th>
<th>Breathing system</th>
<th>Compartments in model</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium silicate</td>
<td>3</td>
<td>4</td>
<td>x</td>
<td>(Snipes et al., 1983)</td>
</tr>
<tr>
<td>Iridium</td>
<td>9</td>
<td>6</td>
<td>x x x x x x</td>
<td>(MacCalman et al., 2009)</td>
</tr>
<tr>
<td>Carbon</td>
<td>22</td>
<td>2</td>
<td>x - - - - x</td>
<td>(Pery et al., 2009)</td>
</tr>
<tr>
<td>Ag, Au, QD, PS, carbon</td>
<td>11</td>
<td>2</td>
<td>x x x x x</td>
<td>(Li et al., 2011)</td>
</tr>
<tr>
<td>Iridium, Co₃O₄, Tb₂O₃</td>
<td>4</td>
<td>12</td>
<td>x y x x -</td>
<td>(Kolanjiyil et al., 2013)</td>
</tr>
<tr>
<td>Ag</td>
<td>10</td>
<td>1</td>
<td>x x x x</td>
<td>(Bachler et al., 2013)</td>
</tr>
<tr>
<td>Gold</td>
<td>6</td>
<td>2</td>
<td>x y x x</td>
<td>(Bachler et al., 2015a)</td>
</tr>
<tr>
<td>Iridium and silver</td>
<td>10</td>
<td>6</td>
<td>x x x x x x</td>
<td>(Sweeney et al., 2015)</td>
</tr>
<tr>
<td>Nanoceria</td>
<td>10</td>
<td>7</td>
<td>x x x x x</td>
<td>(Carlander et al., 2016)</td>
</tr>
</tbody>
</table>

* All organs and tissues outside the breathing system
* Compartments for deposition as upper respiratory tract, tracheobronchial region, alveolar region and sub-compartments such as AM, lung interstitium and lung lymph nodes
* Uptake to a storage compartment in tissue
* Not expressed as uptake to AM, but similar to uptake to AM

Abbreviations: Ag - silver, AM - alveolar macrophages, Co₃O₄ - cobalt oxide, GIT - gastrointestinal tract, PS - polystyrene, QD - quantum dots, Tb₂O₃ - terbium oxide
Building a PBPK model for inhalation information regarding deposition in the lung is essential. To get information about deposition in the respiratory system, deposition models and/or experimental data are used. Several computational models and approaches are available to describe and calculate deposition of particles in the lung (Hofmann, 2011). Deposition models can be divided into two categories depending on the intended use: whole-lung or local deposition models. The whole-lung model provides information about deposition in the entire respiratory system, whereas the more complex and computer-intense local models so far only address local deposition in the upper respiratory tract. In PBPK modelling, whole-lung deposition models are more frequently used than local deposition models and the most commonly used model is probably the Multi-Path Particle Dosimetry (MPPD) model (Anjilvel et al., 1995; RIVM, 2002).

The MPPD model is an open access software that calculates deposition and clearance of mono-dispersed and poly-dispersed particles in the range 0.01 µm to 2 µm in the respiratory system of humans and animal species such as rats, mice, rabbits and pigs. A fraction of the particles from external exposure are filtrated in the nose and mouth, described by an empirical efficiency function in the model. Once inhaled, particles will be deposited and the deposition is theoretically calculated by diffusion, sedimentation and impaction, calibrated and validated with external data. The structure of the lung is represented either by a single symmetric tree or by a multi-path branching, as selected by the user. The asymmetric branching pattern of the multi-path model has been derived from actual measurements on lung casts. To receive information about deposition and clearance, the model requires input data from the user on a breathing scenario and particle properties. The output presents calculations on total, regional (head, tracheobronchial, and pulmonary) and lobar fractional deposition. Regional deposition values from the MPPD model have been used as input for PBPK models, but the MPPD model has not yet been incorporated as part of the model.

2.2.3 PBPK model for mixed exposure routes

Only three PBPK models for mixed exposure routes to nanoparticles have been published so far (Li et al., 2011; Bachler et al., 2013; Bachler et al., 2015b). These models include inhalation, dermal contact and/or digestion of nanoparticles.

One of the models is framed as a general PBPK model and covers inhalation, digestion and intravenous injection of different types of nanoparticles and species (Li et al., 2011). To predict biokinetics, first-order mass transfer rates to and from organs in well-mixed compartments are used, but the model does not account for, e.g., diffusion-limited processes, phagocytosis, degradation or size-dependent deposition in the lung. Pooled data from in vivo studies on various types of nanoparticles and exposure conditions and routes have been used for calibration.

The other two models have similar model structures; one is designed for silver ions and silver nanoparticles (15 nm to 150 nm) and the second describes the biokinetics of titanium dioxide nanoparticles (Bachler et al., 2013; Bachler et al., 2015b). Both models include the same organs, use permeability-restricted transport processes and allow uptake of nanoparticles directly from blood to phagocytes in liver, spleen and lung. In addition, both models use first-order mass transfer rates and have been optimized with rodent and human biokinetic data. On the other hand, they differ in that the silver model has a substructure for ions and a size-dependent uptake rate in phagocytic cells, which the titanium dioxide model does not.
In short, all three models are reported to perform well, but as no clear relationships between nanoparticle properties, exposure conditions and model parameters are provided their usability for risk assessment is limited. Consequently, extrapolations between nanoparticle types, species, doses and routes of exposure are not yet possible.

2.2.4 Dissolution in PBPK modelling

So far, only one PBPK model for nanoparticles includes dissolution. This models describes the biokintics for silver nanoparticles and the dissolution of silver into silver ions and glutathione bounded silver (Bachler et al., 2013).

Dissolution is a process that makes metallic nanoparticles transform into ionic species and by which their properties and abundance are altered. The dissolution rate and characteristics of dissolved species depend on the characteristics of the nanoparticles, such as chemical composition, size, shape, crystallinity, surface coatings and agglomeration, as well as on the surrounding media and exposure conditions, such as dose, composition, ion strength, pH, and temperature (Costa et al., 2001; Mishra et al., 2011; Utembe et al., 2015; Feliu et al., 2016a). If the dissolution rate is low, the risk for bioaccumulation increases, but if the dissolution rate is high, substances can migrate and dissolve into surrounding media. Dissolved and solubilized substances can, in fact, have different properties, toxicity and biokinetics compared with the nanoparticles, and consequently requires consideration in PBPK modelling (Molina et al., 2014; Sabella et al., 2014).

Dissolution of metals involves release of ions. Some ions complex bind to substances in the surrounding environment, which sometimes results in generation of new types of nanoparticles as observed for silver and cerium (Loeschner et al., 2011; van der Zande et al., 2012; Graham et al., 2014). Consequently, the abundance in tissue can be a mixture of nanoparticles, complex bounded ions, and free ions, making analysis challenging and the biokinetics complex.

Inclusion of dissolution in PBPK models requires experimental data on the biokinetics of nanoparticles as well as on the dissolved species. However, most biodistribution studies performed on metallic nanoparticles have only used elementary analysis such as ICP-MS and atomic absorption spectroscopy to measure the organ burden, and hence cannot distinguish between different forms of metals (Johanson et al., 2016).

Modelling dissolution kinetics of nanoparticles is under development but such models have not yet been implemented in PBPK models for nanoparticles (Costa et al., 2001; Mishra et al., 2011; Utembe et al., 2015). These dissolution models are often based on experience from larger particles and assume release from surfaces. To describe dissolution mathematically, zero-, first-, or second-order kinetics with release rate constants dependent on surface area, volume and diffusion have been tested. The majority of existing models for nanoparticles are related to particles with high dissolution rates and in vitro conditions.
3 AIMS

The PBPK simulations were performed assuming that the nanoparticles are inert, i.e. do not dissolve or degrade in the body. When modelling the experimental data it seemed that the biokinetics might be better explained by introducing dissolution in the PBPK model. Therefore, an additional aim was introduced, i.e. to evaluate dissolution of stable nanoparticles in the presence of macrophages.

The specific aims were:

1. To develop and verify a PBPK model for stable nanoparticles that were administered intravenously (Papers I, II and III).
2. To extend the PBPK model to account for other routes of exposures (Papers III and IV).
3. To evaluate the stability of gold nanoparticles when exposed to macrophages (Paper V).
4 MATERIALS AND METHODS

This section summarizes the materials and methods used for this thesis (Papers I-V). The first part relates to the development of nano PBPK models and presents how the PBPK model was evaluated and modified to describe biokinetics of nanoparticles considered inert, such as polyacrylamide (PAA), gold (Au), titanium dioxide (TiO$_2$) and cerium dioxide (nanoceria and CeO$_2$) when delivered to rats via intravenous administration, inhalation, instillation and ingestion (Papers I-IV). The second part describes a follow-up study from a finding in Paper II related to the dissolution of gold by macrophages (Paper V).

4.1 PBPK MODELLING OF NANO PARTICLES

The process used to develop PBPK models for nanoparticles considered inert and administered intravenously or via inhalation, instillation and ingestion into rats is described in Figure 2 and summarized in paragraphs 4.1.1 to 4.1.5. More detailed information can be found in Papers I-IV.

![Figure 2. Overview of the modelling process in this thesis.](image)

4.1.1 Development of a nano PBPK model for intravenous exposure

As a first step a PBPK model for nanoparticles injected intravenously into rats was developed (Paper I). Conceptually, the model represents systemic exposure without involvement of absorption barriers. The model was designed based on experimental data on tissues/organs and body fluids analysed for polyethylene glycol-coated polyacrylamide (PAA-PEG) nanoparticles, combined with general information about the biokinetic behaviour of nanoparticles.

To build a conceptual PBPK model for inert nanoparticles injected intravenously, experimental data from a published study on PAA-PEG was used (Wenger et al., 2011). The PAA-PEG study was designed for PBPK modelling and hence contained relevant data, i.e., data from multiple organs, multiple post-injection follow-up times, and total recovery, see Table 4. The PAA-PEG nanoparticles were administered with a bolus intravenous dose to
five groups of rats. Organs were collected and analysed with liquid scintillation counting of C14.

The model contains ten compartments: arterial and venous blood, liver, spleen, lung, kidney, heart, brain, bone marrow and other organs. The lymphatic system was not included in the model, even though data was available and this probably is a common pathway for nanoparticles. However, adding the lymph system to the model would introduce increased model complexity. In addition, model optimization had to be carried out on values that contributed to a negligible amount of the total body burden (< 0.1 %).

Each organ compartment is subdivided into three sub-compartments: capillary blood, tissue and phagocytic cells, with venous and arterial blood described by two sub-compartments: blood and phagocytic cells. The compartments are interconnected with each other via blood flow and organized in physiological order. Excretion to faeces takes place from liver tissue and to urine from capillary blood via the kidneys.

The model parameters consist of nanoparticle-independent parameters and nanoparticle-dependent parameters, summarized in Table 3. Values on physiological parameters were primarily taken from experiments and secondarily collected from the literature (Brookes, 1967; Bernareggi et al., 1991; Brown et al., 1997; Travlos, 2006). Data on the nanoparticle uptake capacity of phagocytic cells in organs were sparse and therefore experimental data were used as a basis for model estimation of these parameters. All nanoparticle-dependent parameters were fitted.

<table>
<thead>
<tr>
<th>Nanoparticle-independent</th>
<th>Nanoparticle-dependent parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bodyweight</td>
<td>• Rate of clearance in urine (CL\textsubscript{ur})</td>
</tr>
<tr>
<td>• Cardiac output</td>
<td>• Rate of clearance in faeces (CL\textsubscript{fa})</td>
</tr>
<tr>
<td>• Fraction of cardiac output to tissue/organ</td>
<td>• Rate of uptake by phagocytic cells (K\textsubscript{ab0})</td>
</tr>
<tr>
<td>• Fraction of total bodyweight for different tissues</td>
<td>• Rate of uptake by phagocytic cells in spleen (K\textsubscript{sb0})</td>
</tr>
<tr>
<td>• Fraction of blood in different tissues</td>
<td>• Uptake capacity of phagocytic cells in different tissues (M\textsubscript{cap,i})</td>
</tr>
<tr>
<td>• Fraction of residual blood in brain</td>
<td>• Tissue:blood partition coefficient (P)</td>
</tr>
<tr>
<td>• Fraction of residual blood in tissue</td>
<td>• Coefficient of permeability from blood to the liver, spleen, lung, kidney, heart and brain (X\textsubscript{fast})</td>
</tr>
<tr>
<td></td>
<td>• Coefficient of permeability from blood to other organs (X\textsubscript{rest})</td>
</tr>
<tr>
<td></td>
<td>• Coefficient of permeability from blood to the brain (X\textsubscript{brain})</td>
</tr>
</tbody>
</table>

The transport of nanoparticles from blood to tissues/organs is described by flow- and diffusion-limited processes, and in the PBPK model controlled by the coefficients for permeability and fractions of cardiac output to organs. There are three permeability coefficients in the model. The first is used for fast perfused organs (X\textsubscript{fast}): liver, spleen, lung, kidney, heart, and bone marrow, while the second is designed for brain (X\textsubscript{fast}) and the third is utilized for other organs (X\textsubscript{rest}). The permeability coefficient in brain is set to zero, based on the assumption of a tight and impermeable blood-brain barrier.
During the development of the model, inclusion of a tissue:blood partition coefficient in the PBPK model was needed to describe the biokinetics of PAA-PEG nanoparticles. This is assumed to reflect the changes in the corona formed on the particles due to differences in composition of blood and interstitial fluid, causing PAA-PEG to have a preference for blood over tissue (Lundqvist et al., 2008; Monopoli et al., 2012). Despite differences in composition of interstitial fluids between tissues, the tissue:blood coefficient kept the same value for all organs/tissues.

In tissue, the phagocytic cells engulf a fraction of the nanoparticles and eventually the phagocytic cells get saturated. The saturation process is controlled by the balance between uptake and exocytosis rates and the maximum uptake capacity of phagocytic cells in tissues. The uptake rate is described as a function of maximum uptake capacity and decreases as the phagocytic cells reach saturation. Moreover, the maximum uptake capacity in each organ is assumed to reflect the density of phagocytic cells in tissue.

According to the study design for PAA-PEG, the blood vessels were not rinsed before harvesting of organs (Wenger et al., 2011). Consequently, residual blood may have remained in organs. In fact, the levels in brain could be explained by implementation of a coefficient that assumes that the capillary blood in organs was not entirely removed when organs were harvested. In the model, two coefficients accounting for fraction of residual bloods in organs were introduced and fitted to observed data, one constant for the brain and another constant for all other organs.

4.1.2 Expansion of the PBPK model to other nanoparticles given intravenously

As a next step, the model was expanded to other inert nanoparticles (Paper II).

Data for modelling were retrieved from the literature to evaluate if the model in Paper I could describe the biokinetics of other considerable inert nanoparticles intravenously injected in rats. To find such data, a literature review was carried out in SciFinder, PubMed, Google Scholar and Web of Science and reference lists in papers were scrutinized. Information about nanoparticle properties, study designs and test results were extracted from the collected studies (> 200 data sets). To select data sets for modelling, the following criteria were used:

1. The nanoparticle and its label should not be soluble or degradable.
2. The dose should be reported in quantitative units.
3. The amount or concentration in organs should be reported or possible to extract from figures in quantitative units.
4. The organs analyzed should include blood, liver, spleen and at least two additional organs or tissues.
5. The observation period post-injection should be at least 24 h, with at least four sampling times.
6. The total recovery in all reported tissues/organs monitored must be at least 25 % of the injected dose.

Using the above criteria, three data sets on polyacrylamide, gold and titanium dioxide nanoparticles were found, in addition to the data set in Paper I. Numerical data were reported in the papers for coated and uncoated polyacrylamide and for titanium dioxide, but data on gold had to be extracted from figures and the bodyweight estimated based on the strain and
age of rats used. Study characteristics of the four data sets in Paper I and Paper II are summarized in Table 4.

The model structure is the same as in Paper I, but the model parameter describing uptake capacity in phagocytic cells in tissues (M_{cap}) has been modified and the grouping of organs correlated to the three blood-organ coefficients of permeability (X_{fast}, X_{rest} and X_{brain}) were elaborated.

In Paper I, it was assumed that all phagocytic cells behaved the same but that their abundance varied between organs. The parameter (M_{cap}) was defined as the uptake capacity of phagocytic cells per gram tissue and hence independent (number of phagocytic cells per gram tissue) and dependent (uptake capacity of an individual phagocytic cell) of nanoparticle properties. To separate the nanoparticle-dependent part from (M_{cap}), (M_{cap}) was divided into two coefficients in Paper II. The first coefficient described the number of phagocytic cells per gram tissue ($N_{\text{cap, tissue}}$) and the second described the uptake capacity of an individual phagocytic cell (M_{capPC}). This separation made it possible to compare uptake capacity of phagocytic cells predicted by the model with experimental data from in vitro studies.

There are three blood-organ coefficients of permeability in the PBPK model. Each coefficient is connected to a set of organs. The grouping of organs was elaborated to explore dependence on permeability in endothelium and presence of phagocytic cells in direct contact with blood. Three different groupings were tested. The first grouping was the same as in Paper I. In the second, the (X_{fast}) was assigned to spleen and liver. In the third, the (X_{fast}) was reserved for liver, spleen and bone marrow.
Table 4. Summary characteristics of data sets for nanoparticles intravenously administered to rats, used to develop the nanospecific PBPK model in Paper I, Paper II and Paper III.

<table>
<thead>
<tr>
<th>Material</th>
<th>PAA</th>
<th>PAA</th>
<th>Gold</th>
<th>TiO<sub>2</sub></th>
<th>CeO<sub>2</sub></th>
<th>CeO<sub>2</sub></th>
<th>CeO<sub>2</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade name</td>
<td>Synthesized</td>
<td>Synthesized</td>
<td>Synthesized</td>
<td>Degussa P25</td>
<td>Synthesized</td>
<td>Synthesized</td>
<td>Synthesized</td>
</tr>
<tr>
<td>Coating</td>
<td>PEG</td>
<td>No</td>
<td>CTAB</td>
<td>No</td>
<td>Citrate</td>
<td>Citrate</td>
<td>Citrate</td>
</tr>
<tr>
<td>Shape</td>
<td>Sphere</td>
<td>Sphere</td>
<td>Rod</td>
<td>Sphere</td>
<td>Polyhedral</td>
<td>Polyhedral</td>
<td>Cubic</td>
</tr>
<tr>
<td>Size (nm)</td>
<td>D:31</td>
<td>D:31</td>
<td>L:56</td>
<td>D:63</td>
<td>D:5</td>
<td>D:5</td>
<td>D:30</td>
</tr>
<tr>
<td>Size method</td>
<td>DLS</td>
<td>DLS</td>
<td>TEM</td>
<td>DLS</td>
<td>TEM</td>
<td>TEM</td>
<td>TEM</td>
</tr>
<tr>
<td>Z-potential (mV)</td>
<td>+2.3</td>
<td>-</td>
<td>+29</td>
<td>-</td>
<td>-3</td>
<td>-53</td>
<td>-56</td>
</tr>
<tr>
<td>Dose (mg/kg)</td>
<td>28</td>
<td>45</td>
<td>0.56</td>
<td>0.95</td>
<td>85</td>
<td>11</td>
<td>85</td>
</tr>
<tr>
<td>Dosing</td>
<td>Bolus</td>
<td>Bolus</td>
<td>Bolus</td>
<td>1 h infusion</td>
<td>1 h infusion</td>
<td>1 h infusion</td>
<td></td>
</tr>
<tr>
<td>Sampling times, post dosing (h)</td>
<td>0.08, 0.17, 0.5, 1, 4, 8, 24, 48, 72, 96, 120</td>
<td>0.08, 0.17, 0.33, 0.5, 1, 4, 16, 24, 72, 72, 96, 120</td>
<td>6, 24, 72, 168, 720</td>
<td>1, 20, 720</td>
<td>1, 20, 720, 2160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat strain</td>
<td>Sprague Dawley</td>
<td>Sprague Dawley</td>
<td>Sprague Dawley</td>
<td>F344/DuCrIcrj</td>
<td>Sprague Dawley</td>
<td>Sprague Dawley</td>
<td>Sprague Dawley</td>
</tr>
<tr>
<td>Bodyweight (g)*</td>
<td>253</td>
<td>253</td>
<td>160</td>
<td>244</td>
<td>425</td>
<td>440</td>
<td>441</td>
</tr>
<tr>
<td>Number of animals</td>
<td>2-3</td>
<td>3</td>
<td>5</td>
<td>7-12</td>
<td>5</td>
<td>3-7</td>
<td></td>
</tr>
<tr>
<td>Organs collected</td>
<td>Bl, Li, Sp, Lu, Ki, He, Br, Lymp, BM, Carcass</td>
<td>Bl, Li, Sp, Lu, Ki, He, Br, Lymp, BM, Carcass</td>
<td>Bl, Li, Sp, Lu, Ki, He, Br, Bo, Mu</td>
<td>Bl, Li, Sp, Lu, Ki, He, Br, Lymp</td>
<td>Ad, Bl, BM, Bo, Br, Fa, He, Ki, Li, Lu, Mu, Sk, Sp, Te, Ty</td>
<td>Ad, Bl, BM, Bo, Br, Fa, He, Ki, Li, Lu, Mu, Sk, Sp, Te, Ty</td>
<td>Ad, Bl, BM, Bo, Br, Fa, He, Ki, Li, Lu, Mu, Sk, Sp, Te, Ty</td>
</tr>
<tr>
<td>Excretion</td>
<td>U+F</td>
<td>U+F</td>
<td>U+F</td>
<td>U+F</td>
<td>-</td>
<td>-</td>
<td>U+F</td>
</tr>
<tr>
<td>Analytical method</td>
<td>C14</td>
<td>C14</td>
<td>ICP-MS</td>
<td>ICP-SFMS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
<td>ICP-MS</td>
</tr>
<tr>
<td>Paper(s)</td>
<td>I+Il</td>
<td>Il</td>
<td>Il</td>
<td>Il</td>
<td>Il</td>
<td>Il</td>
<td>Il</td>
</tr>
</tbody>
</table>

* Bodyweight used in model

4.1.3 Expansion of the PBPK model to nanoceria administered by various routes

Next, biokinetics for cerium dioxide nanoparticles (CeO$_2$ or nanoceria) were characterized using the same model structure as in Paper II, but also modified to include inhalation, instillation and oral exposure (Paper III).

Raw data were received from Yokel and colleagues on nanoceria infused intravenously into rats and additional biodistribution studies on intravenous, inhalation, instillation and oral exposure were collected from the literature. A literature review was performed using SciFinder, PubMed, Google Scholar and Web of Science and scrutinizing reference lists in papers. If data were presented as figures, data was extracted using WebPlotDigitizer version 2.6. In total, we found 16 data sets from eight studies for intravenous exposure covering different sizes (3, 5, 15, 30, 40 and 55 nm), coatings (uncoated, citrate, citrate/EDTA coated), doses (between 6 and 750 mg/kg) and dosing methods (bolus and infusion) (Yokel et al., 2009; Hardas et al., 2010; Dan et al., 2012; Yokel et al., 2012; Heckman et al., 2013; Yokel et al., 2013b; Yokel et al., 2014; Konduru et al., 2016). The number of inhalation and instillation studies was seven, including 16 data sets (He et al., 2010; Nalabotu et al., 2011; Geraets et al., 2012; Keller et al., 2014; Molina et al., 2014; Konduru et al., 2015b; Konduru et al., 2016; Li et al., 2016). Ingestion of nanoceria was described in four studies, covering nine data sets (Park et al., 2009; Kumari et al., 2014a; Kumari et al., 2014b; Molina et al., 2014). For more information about collected studies, see Paper III.

The richest data set/sets (most organs and at least three sampling times post-administration) among the biodistribution studies for intravenous administration were selected and used for optimization of PBPK models to experimental data on 5 and 30 nm nanoceria. To meet criteria on multiple organs and frequent sampling, two studies had to be used for optimization of PBPK model to 5 nm nanoceria (Yokel et al., 2013b; Yokel et al., 2014). For optimization of the model to 30 nm nanoceria, the richest data set, reported by Yokel and colleagues in 2012, was employed (Yokel et al., 2012). The remaining data sets were utilized for validation of the model: four data sets for the 5 nm PBPK model and five for the 30 nm PBPK model. A summary of study characteristics for the three data sets used for optimization in Paper III is presented in Table 4. Data on 15 and 50 nm did not have sufficient information for model calibration, instead they were compared with predictions from the PBPK model calibrated to 5 nm and 30 nm nanoceria.

In addition to the work done in Paper II, the model’s predictability for independent data sets was evaluated (validation), as such data were available. The model was the same as in Paper II, but nanoparticle-dependent parameter in the model were re-optimized separately for 5 and 30 nm nanoceria. We also tested two other models from other research groups, Lin and Bachler and their colleagues, but the outcomes from these models are not reported as they did not improve the results (Bachler et al., 2015b; Lin et al., 2016).

The impact of exposure routes on biokinetics was compared with that of intravenous administration, by calculating and comparing the ratios between reported concentration in internal tissues/organs and the concentration in liver. To study differences in absorption efficiency, the mass ratios between liver and lung or liver and administered dose were calculated and compared for inhalation, instillation and oral data.
To simulate uptake into the circulatory system after oral and lung exposure, the PBPK model was modified by adding compartments for such exposure routes: one compartment for uptake from lung and one compartment for absorption from gastrointestinal tract. Absorption into systemic circulation was described by first-order kinetics. Clearance via the mucociliary escalator in lung and clearance to faeces in the gastrointestinal tract were expressed using first-order clearance rates. The clearance rate constants and the absorption rate constants in the modified model were estimated by fitting the constants, one by one, to each individual data set collected for inhalation, instillation and oral exposure. All other parameters of the model were kept the same as for the 5 nm PBPK model, but scaled to bodyweight in experiments.

4.1.4 Further refinement of the PBPK model to account for inhalation exposure

Inhalation of nanoparticles results in deposition of nanoparticles in the respiratory system, with potential uptake into the body. In Paper IV, we modified the PBPK model from Paper II to include this type of exposure route by including deposition in the respiratory system and transfer to the GI tract.

Biodistribution data on nanoceria were produced and reported in Paper IV. A experimental system was developed to generate aged and pristine nanoceria and deliver the particles to the respiratory system. Aging involved exposure to ambient urban air conditions with UV light irradiation.

Via a nose-only exposure chamber, Sprague Dawley rats were exposed to combustion-generated nanoceria particles, aged and pristine, during 4 hours. Organs were harvested 15 min, 24 h, and 7 days post-exposure and urine and faeces were collected for the first 24 hours.

In the PBPK model, the respiratory system is divided into three compartments; 1) upper respiratory tract, 2) tracheobronchial region, and 3) pulmonary region. Absorption from the respiratory system into lung tissue is assumed to take place in the pulmonary region following first-order kinetics. In the pulmonary region, alveolar macrophages can engulf deposited nanoparticles. The alveolar macrophages move the nanoparticles to the tracheobronchial region for clearance to mouth via the mucociliary escalator followed by swallowing into gastrointestinal tract. Alveolar macrophages were assumed to behave the same as other phagocytic cells in the model. Transport of alveolar macrophages to tracheobronchial region and clearance via the mucociliary escalator were described by first-order kinetics.

Deposition of nanoparticles in the upper respiratory tract may result in translocation of nanoparticles into the brain via olfactory and trigeminal nerves. Therefore, a first-order uptake rate into brain was included in the model. In addition, deposition of nanoparticles in the upper respiratory tract also results in swallowing into the gastrointestinal tract. In the gastrointestinal tract, uptake into the body can take place and was described by a first-order kinetics in the model.
4.1.5 Computer software and numerical algorithms

All models in Papers I-IV were built in Berkeley MadonnaTM version 8.3.18 (Berkeley, CA) and acslTM Libero version 3.0.2.1 (Huntsville, AL). Berkeley Madonna was used for sensitivity analysis and acslX for optimization.

To solve differential equations, different algorithms were used. Runge Kutta 4 was used for sensitivity analyses, because this algorithm has fixed step sizes. Fixed steps are required when predictions at exact time points are to be compared. On the other hand, nanoparticles covered in this thesis had biokinetic profiles that shifted between fast and slow processes, for such mixed processes Runge Kutta is too slow for optimization and here algorithms using variable step sizes are preferred, such as Gear and CVODE. Gear was used in Papers I and III and CVODE in Papers II and IV.

Optimization was performed in acslX Libero using maximum log-likelihood estimation and Nedler Mead methods. Different algorithms and heteroscedasticities were tested, but in general Nedler Mead tended to give the best maximum log-likelihood values and varying heteroscedasticities had only minor impact on the results. To evaluate results from complex systems, such as PBPK modelling of nanoparticles, there are no general best methods to use and as a result the evaluation methods vary among research groups, see Table 1. In this thesis, the results were evaluated by determining the deviation from the line of unity between the log\textsubscript{10} of observed and predicted values and calculating the corresponding R2. In Paper II, we also used the PBPK indices. In Paper IV, the predictability of the 5 nm PBPK model for nanoceria was evaluated using independent data sets. If the predicted values were within a factor 2 of the observed mean values, the model was considered to be adequately validated, a requirement proposed by the International Programme on Chemical Safety (IPCS, 2010).

To identify model parameters that influence model outcomes the most, sensitivity analyses were carried out using normalized (relative) sensitivity coefficients. These sensitivity coefficients were calculated as the relative change in area under the mass-time curve divided by a change in parameter values.

4.2 DISSOLUTION OF GOLD NANOPARTICLES

An observation we made in Paper II was that the model did not capture the slow decrease in organs with low concentration of gold and titanium dioxide \textit{e.g.} heart and kidney, which may be due to dissolution. If dissolution takes place, contrary to our PBPK model assumption, this will not only influence the biokinetics but also how PBPK models are designed and how toxicological findings should be interpreted. Nanoparticles are taken up by macrophages. Macrophages have the ability to release reactive oxygen species, which may dissolve apparently inert nanoparticles.

To study this, we developed an \textit{in vitro} method and evaluated dissolution of gold in cell medium, cell medium with macrophages or cell medium with macrophages triggered with LPS. This section provides an overview of this dissolution study.

4.2.1 Material – Gold nanoparticles

The dissolution study was carried out using citrated gold nanoparticles from Nanocomposix with diameters of 5 and 50 nm. Gold ions (from HAuCl\textsubscript{4}) were used to measure recovery of gold ions in the test system.
4.2.2 Method

We investigated the dissolution of 5 nm and 50 nm gold nanoparticles at simulated healthy and diseased conditions, i.e., in macrophages and in LPS-triggered macrophages, as well as in cell medium only. Gold nanoparticles were incubated in cell medium (5 μg/ml), with or without murine macrophages (RAW 264.7), for different time periods (0, 24 or 168 h).

After exposure, cell medium and mechanically lysed cells were collected and centrifuged. In practice, the separation of small gold nanoparticles and dissolved gold ions/complexes constituted the crucial experimental challenge. The centrifugation efficiency was improved by the presence of mechanically lysed cells. To allow a direct comparison between the dissolution of gold nanoparticles in media (only) and in media with macrophages, cell lysate was also added to samples of media-incubated gold nanoparticles. By this simple, yet novel, procedure for handling critical separation of small gold nanoparticles and the dissolved fraction we ensured similar test conditions and avoided flaws in the comparison due to different centrifugation efficiencies.

After centrifugation, the supernatant was collected, treated with aqua regia and analysed with inductively coupled plasma mass spectrometry (ICP-MS), to obtain quantitative results of gold dissolution after different time periods. The effect on gold nanoparticle dissolution and relationships between particle size, time of incubation and exposure conditions were evaluated using median linear regression modelling with correlation between all parameters. The dissolution method is summarized in Figure 3.

Figure 3. Overview of the method for dissolution of gold nanoparticles in vitro. Step 1: 5 μg of 5 or 50 nm gold particles or 0.25, 1 or 5 μg of Au⁺ (from HAuCl₄) were added to wells with cell medium, macrophages or macrophages triggered with LPS and incubated for 0, 24, or 168 h. Step 2: Cell medium was collected in e-tube. Water was added and the cells were mechanically lysed with a needle and a syringe. Lysed cells were transferred to e-tube with collected cell medium. Step 3: E-tubes were centrifuged for 30 minutes at 13,000 rpm. Step 4: The supernatant was collected and treated with aqua regia for at least 24 hours. Step 5: Aqua regia solution was diluted and internal standards were added, followed by ICP-MS analysis.
5 RESULTS AND DISCUSSION

This section summarizes the results and the discussions for Papers I-V. The first part relates to the development of nano PBPK models for nanoparticles considered inert, delivered to rats via intravenous administration, inhalation, instillation and ingestion (Papers I-IV). The second part describes a follow-up study from a finding in Paper II related to the dissolution of gold by macrophages (Paper V).

5.1 PBPK MODELLING OF NANOPARTICLES

5.1.1 Development of a nano PBPK model for intravenous exposure

As a first step, a conceptual model for inert nanoparticles injected intravenously in rats was developed using polyethylene glycol-coated polyacrylamide (PAA-PEG) nanoparticles as the modelling substance (Paper I). The model accurately described the biokinetics of measured amounts of PAA-PEG in different organs (R^2 on the log scale 0.97).

According to the model, there was a fast initial clearance from blood because nanoparticles were rapidly distributed to organs, where phagocytic cells internalized them until these phagocytic cells became saturated. After four hours, phagocytic cells in most organs were saturated and free nanoparticles were distributed to the rest of the body. Phagocytic cells worked as a storage compartment for nanoparticles. In short, inclusion of a separate compartment for phagocytic cells was successful and a natural component of a PBPK model for nanoparticles.

The sensitivity analysis indicated that the key determinants for the biokinetics of PAA-PEG nanoparticles are the uptake capacities of phagocytizing cells in organs, the partitioning between tissue and blood, and the permeability between capillary blood and tissues.

5.1.1.1 Model structures and parameters

Our model structure for intravenous exposure in Paper I, also used in Papers II-IV with modifications, has some similarities, but also differences, compared with published nano PBPK models, see Table 1. Differences are not only limited to which species and nanoparticles the models have been applied to, but also encompass how many compartments and parameters are included in each model, and how the models were evaluated. Consequently, results from one model cannot readily be compared with results from another, unless the models are applied to the same data sets; this has not been done yet, but would constitute an interesting next step.

Since the publication of Paper I, the concept of phagocytic cells has been implemented in other models, but not necessarily in a similar way as in our model (Bachler et al., 2013; Bachler et al., 2015b; Lin et al., 2015a; Lin et al., 2016). The models by Lin and colleagues assume that the uptake of gold nanoparticles by phagocytic cells occurs directly from blood for larger gold nanoparticles (100 nm), whereas for smaller gold nanoparticles (10 nm) the uptake takes place in the tissue. To describe the uptake rate constant for phagocytic cells, they employed a time-dependent Hill equation, which introduced a more complex model structure with more parameters. In the first model from 2015, Lin and colleagues did not include saturation of phagocytic cells, but in a model reported by the same group in 2016 saturation was added and described as in Paper I (Lin et al., 2015a; Lin et al., 2016). Bachler and co-
workers assumed that the uptake of titanium dioxide by phagocytic cells takes place directly from blood, and can be described by a one-compartment structure without saturation (Bachler et al., 2015b).

Our model assumption is that phagocytic cells behave the same, but their densities in tissue vary (Papers I-IV). In reality, phagocytic cells are diverse and differ across organs, species and conditions of health (Gordon et al., 2005). The large variability obtained from the parameterization of the model coheres with the expected densities of phagocytic cells in tissues. We noticed the highest uptake capacity in organs such as spleen, liver and bone marrow, which is in line with other studies (Lang et al., 1992; Hyafil et al., 2007).

Another simplification we made was to assume a single mechanism for phagocytosis, when in fact multiple endocytotic pathways exist (Sahay et al., 2010; Canton et al., 2012). Endocytosis has also been shown in vitro to be highly dependent on the properties of the nanoparticles as well as agglomeration and the corona formation (Chithrani et al., 2006; Jiang et al., 2008; Luciani et al., 2009; Albanese et al., 2011; Lesniak et al., 2012). In our model, the phagocytic process is saturable and involves an uptake rate constant (one for the spleen and another for all other organs), a single release rate constant and a single maximal uptake capacity constant. In models developed to describe the kinetics for uptake of nanoparticles in vitro, more process steps are included than in our model, i.e., adherence to the cell membrane prior to engulfment and reprocessing of receptors required for endocytosis (Wilhelm et al., 2002; Ohta et al., 2012). We considered incorporation of in vitro models for phagocytosis into our own, but since extensive experimental data is not available this could lead to over-parameterization.

The modelling suggested that PAA-PEG had a preference for blood and a partition coefficient between tissue and blood was introduced to describe this behaviour. The partition coefficient may reflect the dynamic formation of corona formed around the nanoparticles, but the mechanism behind this is not fully understood. Corona formation is a dynamic process that is highly influenced by the properties of the nanoparticles, such as size, surface charge, shape and coatings and the biological environment (Cedervall et al., 2007; Nel et al., 2009).

Another difference with our model compared with other models is the inclusion of a parameter to account for residual blood in organs after harvesting. The experimental data on PAA-PEG indicated that levels in blood and brain were correlated, with parallel curves. In addition, when analysed, the brain contained residual blood. Therefore, we assumed that the blood-brain barrier is impermeable and that nanoparticles are actually present in residual blood. If residual blood is not taken into consideration, the conclusion may be that the nanoparticles are taken up, even when they are not (Frigell et al., 2014). Unfortunately, biodistribution studies rarely report how harvesting was carried out and the measured level of nanoparticles in organs as brain and heart is often low. This makes measurement, visualization and model optimization challenging and sometimes uncertain.

5.1.2 Expansion of the PBPK model to other nanoparticles given intravenously

To investigate how generalizable the model developed in Paper I was for other nanoparticles considered inert, the model was applied to three additional types of nanoparticles (Paper II). In total, data sets from four different types of nanoparticles were used: PEGylated polyacrylamide (PAA-PEG), polyacrylamide (PAA), gold and titanium dioxide (TiO₂).
The data sets for these four particle types differed substantially both in nanoparticle properties and study design. Despite this, the model adequately described the biokinetics for all four, excepting the slow decrease with time observed for the amounts of gold and titanium dioxide in organs with low content, such as heart (R² on the log scale ranging from 0.88 to 0.96).

The differences in properties among the four types of nanoparticles were reflected by differences in values of nanoparticle-dependent model parameters. PAA and PAA-PEG had more similar values than gold and titanium dioxide. PAA was more readily cleared from blood than PAA-PEG, as a result of a 3-fold higher uptake rate constant to phagocytic cells. On the other hand, clearance from blood was much faster for gold and titanium dioxide than for PAA and PAA-PEG. According to the model, this was partly a result of faster uptake into phagocytic cells in spleen (> 9-fold higher khab0) and easier access to liver, spleen, bone marrow and brain (> 100-fold higher Xfast) for gold and titanium dioxide, respectively, compared with PAA and PAA-PEG. The time courses for gold and titanium dioxide look similar but in fact also differ, mainly because the uptake rate by phagocytic cells was much higher for titanium dioxide than for gold (> 6-fold difference), and titanium dioxide had a higher preference for tissue than gold (P was 0.97 for titanium dioxide and 0.13 for gold), but lower permeability into tissues (5- to 9-fold).

Another interesting result was the dose dependence. Higher doses saturate the phagocytic cells, which profoundly modifies biokinetics. The doses used for PAA and PAA-PEG were more than 30 times higher than for gold and titanium dioxide. As a result of this, more phagocytic cells became saturated for PAA and PAA-PEG than for gold and titanium dioxide.

We tested different grouping of organs connected to the three permeability coefficients in the model. The results demonstrated that the best fitting was achieved when the high permeability coefficient (Xfast) was assigned to liver, spleen and bone marrow. This grouping also reflected the anatomical structure of endothelium most accurately (Sarin, 2010; Setyawati et al., 2015). In addition, and in contrast to Paper I, a low permeability over the blood-brain barrier had to be implemented to describe the levels of gold and titanium dioxide in brain.

The results from the sensitivity analysis demonstrated that even if the model structure is the same for all four types of nanoparticles, the different values on model parameters resulted in totally different sensitivity coefficients. In this study, this is partly a consequence of the saturation level of phagocytic cells. Our results suggest that sensitivity analysis cannot be done only once; it should preferably be updated when model parameters are changed.

5.1.2.1 Data for modelling

PBPK modelling requires data. To collect data for Paper II, we carried out an extensive literature review. However, as we and other researchers have experienced, access to published data useful for modelling is sparse. Partly, this is a result of study objectives differing from ours. In all biodistribution studies reviewed, the majority of reported aims focused on comparing biodistribution profiles for different nanoparticles, identifying target organs, or linking toxicity to a target dose.
For our purposes (Paper II), we reviewed data reported for nanoparticles with a variety of properties and applications, including gold, silver, titanium dioxide, silica and polymers, administered to rats via a single intravenous injection. These data exhibited serious limitations for modelling, including: (1) incomplete characterization of the nanoparticles and dose, (2) short follow-up after dosing, (3) analysis of only a few samples per tissue and only a few tissues per organ, (4) failure to account for the mass balance, and (5) lack of confirmation of nanoparticle integrity in the tissues. Such limitations make modelling of the time course, half-life and bioaccumulation difficult. Overall, our review revealed the complexity involved in drawing general conclusions about nanoparticle biodistribution, with no individual factor such as size, coating, shape, charge, chemical composition or agglomerations providing a complete explanation. In choosing among all reviewed studies (> 200 data sets), we decided to focus on inert nanoparticles and three additional data sets were found.

In short, the quality of the data sets used has a large impact on the modelling result and therefore we recommended in Paper II that new biodistribution studies should preferably involve: “1) extensive characterization of NPs (size, size distribution, integrity, etc.), 2) monitoring of several organs at several time points, 3) frequent sampling immediately after dosing, 4) long follow-ups, 5) determination of the mass balance (total recovery), and 6) a detailed description of the analytical procedures employed (specificity, limits of detection, background levels, etc.)”.

5.1.2.2 Model structure and parameters

The description of uptake capacity of phagocytic cells was modified by separating the phagocytic uptake capacity constant in Paper I into two constants. The first constant reflected the uptake capacity of an individual phagocytic cell (nanoparticle-dependent) and the second constant described the density of phagocytic cells in the tissue (nanoparticle-independent). This separation makes it possible to compare uptake capacity of phagocytic cells predicted by the model with experimental data from in vitro studies.

The predicted uptake capacity of an individual phagocytic cell for the particles of PAA-PEG, PAA, gold and TiO$_2$ are in the range of those previously reported in vitro (Alkilany et al., 2010; Ferrari et al., 2014). The model suggested that the maximum uptake capacity is in the range of 0.5-5 pg per phagocytic cell, which corresponds to 2,000-300,000 NPs per phagocytic cell. Alkilany measured an uptake of 45-150,000 gold nanoparticles per cell and Ferrari and co-workers reported 45-10,000,000 polymeric nanoparticles per cell, depending on cell line, composition, size, charge and dose of nanoparticles. Hence, the in vitro values varied substantially, by several orders of magnitude. These large differences in uptake rate may reflect differences in nanoparticle properties, but also the method used to measure and model the uptake. In fact, the cellular dose in an in vitro system depends on how the nanoparticles interact, diffuse, settle and agglomerate in the cell medium (Teeguarden et al., 2007; Hinderliter et al., 2010; Cohen et al., 2013).

The finding that the prediction of brain levels of PAA on the basis of residual blood is not as accurate as for PAA-PEG may reflect a slight difference in the way the organ was harvested, leaving a smaller amount of blood for PAA than for PAA-PEG. However, residual blood cannot explain the biokinetics of gold and TiO$_2$ nanoparticles with respect to the brain, since the level in blood approaches background levels. In these cases, brain levels must represent something else, probably uptake, in line with what has been observed by other researchers (Sonavane et al., 2008; Kolhar et al., 2013; Yokel et al., 2013a; Frigell et al., 2014; Geraets
et al., 2014). These problems with residual blood illustrate the importance of an accurate description of how organs are harvested, which, unfortunately, is often lacking and contributes uncertainty in the modelling results.

5.1.3 Expansion of the PBPK model to nanoceria administered by various routes

As a next step, we wanted to model the systemic distribution of cerium dioxide nanoparticles (nanoceria). We first collected experimental biodistribution data on nanoceria in rats (various exposure routes, sizes, coatings and tissues sampled) from the literature. Next, the PBPK model was calibrated and validated against data for 30 nm citrate-coated nanoceria, followed by recalibration and revalidation for 5 nm nanoceria. Finally, the model was modified and tested against inhalation, instillation and oral nanoceria data.

The model adequately described ($R^2 = 0.91$) and predicted the biokinetics of 5 nm nanoceria infused into rats, but failed to do so for other sizes, although some predictions were reasonable, e.g., for liver and spleen. The 5 nm model could predict the values of new data within 2-fold for 17 out of 24 values for the 5 nm nanoceria, but the model under-predicted the concentration in blood at every time point for 3 nm nanoceria with a coating different from that of the 5 nm data sets. On the other hand, this result is in agreement with the opinion of Heckman and co-workers (Heckman et al., 2013).

The experimental studies collected for 5 nm nanoceria were more similar than the studies for 30 nm nanoceria, both as regards the properties of the nanoparticles used and the study designs. This probably explains our problem in describing the biokinetics for the 30 nm nanoceria. The doses administered for 30 nm nanoceria ranged between 6 and 750 mg/kg, whereas the doses ranged between 10 and 85 mg/kg for 5 nm nanoceria. The experimental data for the 30 nm nanoceria suggested dose-dependent biokinetics. When the concentration was increased from 6 to 87 mg/kg, the concentration-time profile in blood, kidney and lung changed over time and 3 months after the administration of the highest dose the concentration increased. This behaviour cannot be described by the existing model and the mechanism behind it is not fully understood. However, a higher dose may trigger an inflammatory response resulting in recruitment of phagocytic cells. Phagocytic cells may dissolve the nanoceria and thereby change the biokinetics. Dissolution of nanoceria has been observed and cerium ions have been demonstrated to have a different biokinetic profile than nanoceria (Graham et al., 2014; Molina et al., 2014). On the other hand, the biodistribution profile for ions cannot explain the change in biokinetics for 30 nm nanoceria, which suggests a more complex mechanism.

In agreement with the conclusions of previous researchers, the compilation of data from biodistribution studies on inhalation, instillation and oral exposure points to a low systemic uptake. Less than 1 mass % (median) of the lung burden was transported to the liver and less than 0.01 mass % (median) of the administered oral dose was distributed to the liver, Figure 4.

Plotting the concentration ratios between organs (blood:liver, spleen:liver, brain:liver) over time suggested substantial dependence on the administration route (iv, inhalation, instillation, and ingestion). The ratios differed by several orders of magnitude and the shape of ratio-time curves varied. In comparison, the ratio-time curve following intravenous administration differed marginally between studies, in spite of the different sizes, coatings and doses,
whereas studies using other exposure routes showed ratio differences several orders of magnitude greater.

Figure 4. Comparison of experimental data on nanoceria by plotting the ratios between amount in liver and amount in lung or dose after inhalation, instillation and oral exposure in rats (Park et al., 2009; He et al., 2010; Nalabotu et al., 2011; Geraets et al., 2014; Keller et al., 2014; Kumari et al., 2014a; Kumari et al., 2014b; Molina et al., 2014; Konduru et al., 2015a; Li et al., 2016). The circles represent individual data and the solid line is the median value.

Re-optimization of the model to inhalation, instillation and oral exposure was not successful, mainly because the absorption via these routes was low, with low and variable nanoceria levels in tissues. Despite this, the time course pattern appeared to differ from the intravenous data and proved hard to reproduce.

Overall, our modelling results suggest that the biokinetics of nanoceria depend not only on the nanoparticle properties (size, coating), but also on the exposure conditions (dose, exposure route).

5.1.3.1 Model structure and parameters

The model structure was the same as in Paper II, but modified to include systemic uptake from the lung and gastrointestinal tract. The implemented modifications to the model were not successful and the modified model could not describe the systemic distribution of experimental data from inhalation, instillation and oral exposure. However, a complicating factor during modelling was access to rich data sets. Moreover, experimental data reported low uptake of nanoceria via these types of exposure routes, making the levels in internal organs low with large variability and often no significant differences between the organs.

Despite these limitations, the model structure may be too simplistic to describe the uptake process in the lung and gastrointestinal tract. In the lung, deposited nanoparticles can be transported via mucociliary clearance to the larynx followed by swallowing into the gastrointestinal tract (Oberdörster, 1988; Snipes, 1989). Mucociliary clearance is described in the model, but not translocation into the stomach and potential later systemic uptake from this
region. On the other hand, the uptake from the gastrointestinal tract appeared to be much lower than from the lung and the clearance rate from the lung is much lower than in the gastrointestinal tract, making exposure from the lung almost continuous.

In the lung, particles can also translocate into the lymphatic system, which the model does not describe. On the other hand, data in local lymph nodes were only reported in one of seven studies. In this model the lung is described with one compartment, which might be too simplistic. In Paper IV, we introduce a more complex structure for the lung.

The gastrointestinal tract is, like the lung, only represented as a single compartment. Here too, the systemic uptake may be more complex than a first-order absorption rate constant into the systemic circulation. Once again the lymphatic system is not included in the model, but none of the collected studies reported such data.

5.1.4 Further refinement of the PBPK model to account for inhalation exposure

The PBPK model was refined to account for the complexity of inhalation exposure using data generated within the study, from a short-term inhalation exposure to aged and pristine nanoceria in rats. The model includes mucociliary clearance, olfactory uptake, phagocytosis, and entry into the systemic circulation by alveolar wall penetration. The PBPK model described the biodistribution well and again suggested phagocytosis as a key process for biokinetics.

No significant differences either in biodistribution or properties between aged and unaged nanoceria were found. The majority of inhaled nanoparticles were recovered in the lung or in faeces and the levels decreased over time. Despite differences in the inhaled dose, the amount of nanoceria recovered in extrapulmonary organs was similar, within 65% of each other. We think this reflects the amount of smaller particles with sizes less than 70 nm. According to the scanning mobility particle size data, this fraction of particles varied less than 31%. The majority of nanoceria was recovered in faeces, followed by the lung. In total, less than 4% was detected in extrapulmonary organs.

The model, expanded to inhalation exposure, described the measured data in the four experiments well (R² on the log scale ranging from 0.68 to 0.95). However, the increase in levels in extrapulmonary organs could not be captured.

The model predictions were sensitive to changes in model parameters, such as the fraction of inhaled nanoparticles deposited in the upper airway and in the pulmonary region, the faeces clearance rate from the GI tract, the uptake rate from the GI tract, the partition between blood and tissue and the permeability coefficient connected to lung, kidney, heart and carcass.

5.1.4.1 Model structure and parameters

The model structure for the systemic distribution was the same as in Paper II, but expanded to include the respiratory system. To describe the respiratory system, a similar structure as that used by Sweeney and colleagues was added to the model (Sweeney et al., 2015; Carlander et al., 2016). The respiratory system was represented by three compartments: 1) the upper airway, 2) the tracheobronchial region, and 3) the pulmonary region and the gastrointestinal tract with one compartment.
Following inhalation, nanoceria are deposited in the three regions. Deposited nanoparticles can be cleared (Oberdörster, 1988). In the upper airway, the model assumes that swallowing into the gastrointestinal tract clears the nanoceria. In the tracheobronchial region, the main clearance mechanism is the mucociliary escalator to the larynx and further transport into the gastrointestinal tract (Oberdörster, 1988; Snipes, 1989). In the pulmonary region, the particles can be engulfed by alveolar macrophages and transferred to the bronchial region or translocate into the interstitium.

Initially, we tried to use the deposition fraction calculated from the Multiple-Path Particle Dosimetry Model (MPPD v 2.11), but this was not successful. The strategy was changed and the deposition was fitted to observed data instead, assuming the same deposition fraction for all four runs. Interestingly, the fitted deposition fractions in the tracheobronchial and pulmonary regions calculated using the expanded PBPK model were lower than those calculated using the Multiple-Path Particle Dosimetry Model (MPPD v 2.11), while the deposition fraction in the upper airway region was higher. This could be explained by agglomeration. The original size of the nanoceria is 2-3 nm, but on their way to the animals the nanoceria agglomerate, as recorded by the scanning mobility particle sizer (SMPS) measurements. It is likely that the agglomeration continues after the SMPS measurements until the nanoceria get inside the animals, as the equipment is not in direct contact with the animals. Moreover, in the respiratory system the air conditions change and become more humid, which may increase agglomeration. Increased agglomeration leads to a higher deposition fraction in the upper airways, with fewer particles reaching the lower respiratory regions.

More than half of the recovered amount of nanoceria was found in faeces. This was much higher than the fraction reported by He and colleagues, who had approximately 20% dose recovery in faeces (He et al., 2010). On the other hand, He and co-workers used instillation with a bolus dose, which excludes deposition outside the lung, limiting transport to the gastrointestinal tract only to mucociliary clearance. In this study, the nanoceria were delivered in a nose-only inhalation chamber and deposition in the upper airway, as well on the whiskers and snout, will take place and contribute to the ingestion of nanoceria. In whole body exposure chambers, deposition on the fur followed by licking also adds to the ingestion of nanoceria. Unfortunately, many studies do not report the amount in faeces, urine and total recovery, which limits the ability to compare results and develop nano PBPK models. For nanoceria, the model predicted that the uptake to extrapulmonary organs mainly came from translocation from the lung. This is in agreement with other researchers, who have reported that uptake from the gastrointestinal tract is lower than from the lung (Yokel et al., 2012; Molina et al., 2014).

Several research groups have showed that, in the lung, nanoparticles translocate to the lymphatic system, that this translocation depends on nanoparticle properties, such as size, and that it increases with increased lung burden (Tran et al., 2000; Choi et al., 2010; Keller et al., 2014). Our model does not include the lymphatic system, mainly because we did not have access to such data. Adding a compartment for the lymphatic system without the ability to calibrate this to experimental data would increase uncertainty and enhance the complexity of the model. We therefore decided to exclude the lymphatic system until data was available. In our study, the lymph nodes around the lung were not removed before the lung was analysed. Even if the concentration in the local lymph nodes would be high, the amount in local lymph nodes would contribute negligibly to the overall amount in the lung, because of their small
size and limited translocation. In our study, the inhalation concentration was more than ten times lower compared with studies showing increased translocation to the lymph nodes (Keller et al., 2014). In other studies, we have noticed that it is often unclear whether lymph nodes have been removed or not before analysis of the lung.

Another limitation with this study is the large variability in some of the experimental data, which may result from for example the individual behaviours of rats, differences in delivered concentration and methodology. This variability combined with low concentration in extrapulmonary tissues contributed to uncertainties in the optimization of the model.

5.2 DISSOLUTION OF GOLD NANOPARTICLES

Most published PBPK models for nanoparticles, including our own, do not include dissolution processes of nanoparticles. One explanation might be that the common opinion is that nanoparticles used for modelling, such as gold, titanium dioxide, nanoceria and quantum dots, do not dissolve during the relatively short time period described by models. However, if models are going to be used for humans, long-term exposure scenarios are required and then dissolution of nanoparticles might be a relevant, even critical, process (Misra et al., 2012; Utembe et al., 2015; Feliu et al., 2016a). Another aspect is that the biokinetics and the toxicities of dissolved entities may differ from those of the particles (Molina et al., 2014; Sabella et al., 2014). Consequently, if dissolution takes place, this process should be implemented into PBPK models. Implementing dissolution processes into a PBPK model might seem straightforward, but in fact it is not, because the models get more complex and require experimental data on the biokinetics of nanoparticles and dissolution species that are not yet available. In addition, the kinetics of dissolution of nanoparticles considered inert, such as gold in a biological environment, have not yet been described in the literature.

In Paper V, we wanted to challenge a common opinion that gold is inert. This was due to results from our modelling efforts in Paper II suggesting that gold might dissolve over time. Combined with information from the literature, this triggered us to create a hypothesis: Gold can be dissolved by macrophages.

To test this hypothesis, an *in vitro* method was developed to compare the dissolution of AuNPs in i) cell medium, ii) macrophages, and iii) LPS-triggered macrophages (simulating inflammatory conditions), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements of gold in the media.

We exposed the *in vitro* system to 5 µg/ml of 5 nm and 50 nm gold nanoparticles for 0, 24 and 168 h (1 week). A clear, time-dependent dissolution of the 5 nm AuNPs was seen already in the cell medium, corresponding to 3 % and 0.6 % of the added amount of 5 nm and 50 nm AuNPs, respectively, after 1 w (168 h) of incubation. The dissolution of 5 nm AuNPs was further increased to 4 % in the presence of macrophages and reached 14 % after LPS-triggering. In contrast, no such increases were observed for 50 nm AuNPs, except after 1 w in the presence of LPS.

The size-dependent dissolution of gold nanoparticles in cell medium (without cells) can be explained by differences in surface area and agglomeration. We observed lower differences (three- to six-fold) in dissolution than would be expected from surface area differences (ten-fold), but on the other hand, 5 nm nanoceria appear to agglomerate more than 50 nm nanoceria, which would reduce the differences. In contrast, dissolution in the presence of
triggered macrophages cannot be explained by increased agglomeration or uptake of 5 nm nanoceria. In agreement with results reported by other researchers, we found higher cell doses (NPs taken up or attached to cells) for the 50 nm AuNPs (approx. 80 % of added amount) than for the 5 nm (approx. 60 %) after 24 h (Chithrani et al., 2006). After 1 week, the dissolution was 5-fold higher when 5 nm nanoceria were exposed to triggered macrophages than when exposed to the cell medium only, whereas for 50 nm nanoceria, the dissolution was only slightly increased. A more likely explanation is that the inherent properties of the small AuNPs, such as higher surface energy, catalytic activity and defects of the surface, are the main reasons for the observed difference in gold dissolution in the presence of macrophages (Clarke et al., 2001; Zhou et al., 2010).

We were interested in the total release of dissolution products from gold, i.e., both inside, on, and outside the cell, and therefore both the cell medium and the cells were collected at the end of incubation. The cells were mechanically sheared to provide a cell lysate before being mixed with the cell medium. In practice, the separation of small gold nanoparticles and dissolved gold ions/complexes turned out to be an experimental challenge, especially for our gold nanoparticles incubated in cell medium (only). When we added unexposed cell lysates to the gold nanoparticles incubated in cell medium (only), the centrifugation efficiency was improved and the variations in results reduced. This novel but simple process ensured similar test conditions for all samples.

When macrophages are triggered with LPS, a condition of oxidative stress is induced and the production of reactive oxygen species is elevated (Forman et al., 2002; Gantner et al., 2003). Hydroxyl radicals are reactive oxygen species with high redox potential, even higher than gold, and consequently dissolution of gold through an electrochemical process is possible (Mohr, 2009). We therefore expected that triggered macrophages would increase dissolution, which was confirmed in this study.

The high redox potential of gold suggests that gold is not easily dissolved and released gold ions will easily be reduced back to elementary gold. To test if the method could detect gold ions in the cell medium, we performed a recovery test by incubating cell medium with gold ions followed by lysate-assisted centrifugation. We added gold ions (0.25 µg in 1 ml) to the cell medium, and recovered approximately 70 % of the added gold amount. As expected, a lower percentage was detected when higher concentrations were used (1 and 5 µg in 1 ml). This is interesting because it is far higher than the results from classical thermodynamic equilibrium modelling (Joint Expert Speciation System, version 8.3). According to the modelling, only 0.4 % (for the highest gold concentration of 5 µg/mL) and 8 % (for the lowest gold concentration of 0.25 µg/mL) would be in solution as gold hydroxide (AuOH). However, thermodynamic equilibrium modelling only includes certain components in cell medium as input for calculations of properties in test medium, such as pH and ion strength, but possible reactions between gold and biological substances in the medium is not accounted for. Indeed, our results suggest that such reactions are critical and gold has been shown to interact with thiols, cyanides and amino acids (components of cell medium and lysed cells), generating ligands with dissolved gold ions (Brown et al., 1982; Larsen et al., 2007; Mohr, 2009; Paulsson et al., 2009). The next step is to identify where the dissolution takes place, characterize the constitution of the gold ions/complexes formed and take a closer look at the dynamics and processes inside the cells. Another improvement would be to update classical thermodynamic equilibrium models with information about reactions between gold and biological substances.
6 CONCLUSIONS

In this thesis, a PBPK model for nanoparticles considered inert has been developed. The model adequately describes the biokinetics of different types of inert nanoparticles given intravenously into rats, despite large differences in properties and exposure conditions (PAA-PEG, PAA, gold, titanium dioxide and nanoceria). In addition, after modification to account for the complexity of inhalation exposure of nanoparticles, the model well captured the biokinetics of nanoceria inhaled by rats. Uptake of nanoparticles by phagocytic cells was identified as a critical process. This process is saturable and has great impact on the biokinetics of nanoparticles. Our model was the first to include saturable phagocytic cells and has been copied by other research groups and we argue that phagocytic cells should be a natural compartment in nano PBPK models. However, nano PBPK models are still in their infancy and require further development to better reflect processes such as agglomeration, corona formation and dissolution.

Validated PBPK models can describe and predict how substances are taken up, distributed, degraded and excreted from the body, even when the relationship between external and target dose is non-linear. Our results indicate that this is the case for biokinetics of nanoparticles, meaning that a validated nano PBPK model would be of great value to risk assessors, who often need to extrapolate exposure risks for humans on the basis of animal data. Our model represents a first step in that direction. In the future, it needs to be validated for different exposure routes and species. This was not yet possible, because experimental data are not available. In a next step, more experimental data are needed to predict the behaviour of new types of nanoparticles in order to link their properties to model parameters.

PBPK models are not limited to use only in risk assessment. This thesis clearly demonstrates that modelling also contributes to evaluating the quality of biodistribution studies, identifying knowledge gaps, and to generation and testing of hypotheses.

The review of biodistribution studies points to the need for improved control and reporting of study results. Such improvements should involve more detailed reporting of nanoparticle characteristics and methodology.

Even though a lot has been published on how the biokinetics of nanoparticles are influenced by their properties (such as size, shape, surface chemistry, and agglomeration) and their interaction with the bio-environment (corona formation, phagocytosis, dissolution), these factors are not well characterized in quantitative terms and thus not readily implemented in PBPK models for nanoparticles. This illustrates the need for quantification of such factors.

The modelling efforts also demonstrate that results may lead to new hypotheses, as in Paper II, where we generated a hypothesis that gold is dissolved by macrophages. In Paper V, we tested the hypothesis and demonstrated that macrophages in vitro can dissolve gold nanoparticles.
7 FUTURE PERSPECTIVES

The existing nano PBPK models are of limited use for risk assessment, since they cannot readily be applied to new types of nanoparticles, species or conditions of exposure without access to experimental data. Improvement of available models requires appropriately designed investigations of biodistribution. Today, for example, most published PBPK models are limited to short-term exposure and single doses. To make models useful for humans, long-term exposure and repeated doses need to be implemented. Extrapolating short-term results to long-term and repeated exposure is not recommended because the rate-limiting factors driving the biokinetics may change over time. So far data for such exposure conditions are sparse; thus, this field needs further attention.

Another important improvement of study designs would be to combine in silico, in vitro and in vivo approaches, which would help to answer some of the currently most urgent questions in the field: Can we choose model parameters on the basis of the physicochemical properties of the nanoparticles? What key factors, including species differences, dictate the biokinetic behaviours of these particles? How do we implement the dynamic behaviour of corona formation, agglomeration and dissolution into our models?

In addition to extrapolating and combining current findings/knowledge to predict the impact of nanomaterials on different organs and different species, in silico procedures, such as principle component analysis (PCA), quantitative structural activity relationship (QSAR/QNAR) and PBPK, can help in the design of robust in vivo studies by providing information about, e.g., structural patterns in data, relationships between parameters and toxic endpoints, and appropriate dosing and sampling frequencies.

Continuous improvements of in vitro methods make them more and more similar to the in vivo situation. Today, we know much about the mechanisms by which nanoparticles are taken up by cells, but less about uptake kinetics and even less about nanoparticle release.

Most important for good PBPK model development is access to experimental data. However, data on physiological parameters are unfortunately not as easily found as we thought. Databases developed for collection of such data are often not public and those that are public are often not updated. Requiring the reporting of such data into databases, as carried out for reporting of genomes, would improve the quality of models, as well as contributing to the 3Rs (reduction, refinement and replacement) of animal testing.

My belief is that focus and cross-scientific collaboration will generate useful nano PBPK models in the future. But, as usual, hard work is required.
8 ACKNOWLEDGEMENTS

Thanks a lot to the financial supporters of my research project.

- The Swedish Research Council for health Working Life and Welfare (Forte, grant No 2010-0702), Sweden,
- The NANoREG project of the European Union Seventh Framework Programme (grant No 310584), and
- IMM’s funding of strategic grants for pilot collaboration projects, Karolinska Institutet, Sweden.

Gunnar Johanson. It has been a true honour to have you as my supervisor. You have immensely supported my understanding of the scientific world. This has been truly valuable. I do however have to admit that there have been periods where my frustration level has reached new levels. Your inputs on my writing have been exceptional. Before I got used, I read the first drafts with mixed emotions, now I really look forward to reading them as I learn so much. You have a fantastic sense for structure. You combine this ability with a tremendous eye for details, and a knowledge base that is exceptionally broad. On top of that you are caring when the need occurs. It has been a true honour.

Hanna Karlsson, you are fantastic. The level of energy you bring to a meeting makes one wonder why we need nuclear plants at all. Your way of being is in itself a reduction of the human environmental footprint. It has been inspiring to have you as a co-supervisor. When we at last, after all conversations, got the opportunity to design and perform a study together, we had so much fun. Despite its simplicity, it became a golden story that I will remember with a lot of joy. You are super.

Lennart Lindbom. Never in my life I would have understood that the structure and function of endothelium (blood vessels for the normal population) could be as complex as it in truth is. On the other hand, maybe I should have realized, just by the name glycocalyx (the name of the hairs that grow on the inner walls of blood vessels)…. It has been a pleasure to tap your brain on a fragment of your overwhelming expertise and dig into your field of research, fascinatingly interesting and fundamentally complex. You are one of a kind.

Lars Magnus Bjursten, the very best mentor ever!!! I have learnt so much from you. I like your style. You are brave, a bit eccentric but above all supportive. There is never a situation that hinders you from giving inspiring and at the same time (oddly enough) constructive support. It is to no-bodies surprise that you have succeeded to such levels. A million thanks for all your support. You are fantastic.

Dingsheng Li. It has been a pleasure to work with you. Your stubborn, inspiring, gentle, polite push when you are convinced that you know the answer has challenged my intellect and made me think in new ways. I think we have learnt a lot from each other on our way to become independent researchers. In any case I know that I have learnt a lot from you. I have appreciated your comments and our discussions. Thanks and good luck with your future ventures. I hope our future cooperation will take us both far.

Claude Emonde and Olivier Jolliet, many thanks for your support in the field of developing PBPK models for nanoparticles. It has been a pleasure to ventilate problems and solutions on
improvement of the models. You have truly enriched my research and made it more competitive.

I also want to acknowledge my co-authors in Paper I, Martin Philbert and in Paper IV, Masako Morishita, James G Wagner, Mohammad Fatouraie, Margaret Wooldridge, W. Ethan Eagle, James Barres. Thanks for letting me be a part of your research.

Klara Midander. You are my joyful, funny whirlwind and inspiring colleague. Our conversations have made me understand that I actually bring something to the research environment in which I try to contribute. Your belief in people releases their ability to perform.

Yolanda Hedberg and Matteo Bottai. Thanks for sharing your expertise in materials characterisation and statistical analysis respectively during our collaborations. Without your contributions, no Paper V would ever reach outside the corridor of the IMM building.

Robert Yokel, the gentleman from the other side of the pond, who kindly volunteered all his valuable data to us. Thank you for the opportunity to work with you. Your encouraging support has brought the PBPK modelling forward.

Robin MacDougall, Marc Andre and Conrad Houser, thanks for all your support. You have patiently handled my impatience in learning acslX Libero, and now when I can handle it reasonably independently, acslX is no longer available on the market. Luckily it still runs on my computer.

Audrey Gallud, Sebastiano Di Bucchianico, Francesca Cappellini, Anda Gliga, Siiri Latvala, and Behnaz Erfani for all the support in the lab. You all contributed to my Paper V.

Emma Vincent, Stephanie Juran and Mia Johansson, thanks for taking me out of the office for exercises, “chat walks”, chocolate production, reflections on life and the world as a whole, the importance of things and more. With colleagues like you, life is just so much easier. The magnitude of things gets so much more reachable. It has been so very appreciated and relaxing.

Aishwarya Mishra, Anna-Karin Mörk, Carolina Vogs, Elin Törnqvist, Joakim Ringblom, Johanna Bengtsson, Kristin Larsson, Kristin Stamyr, Linda Bergander, Linda Schenk, Martin Fransson, Tao Liu, Matias Rauma, and so many more. In Swedish society the ability to have a valuable lunch chat is of essence. You have substantially contributed in making this every day experience.

The colleagues at Unit of Work Environmental Toxicology, Arbetsmiljöverket, Gentekniknämnden, and lately also Occupational and Environmental Dermatology, and Lung and Airway Research, you have contributed through enriching the important Swedish fika-conversations. You contribute to the coffee consumption in Sweden and to foreigners feeling the power of integration into the Swedish working society. I’m glad that I have had the opportunity to be a part of such a nice workplace.

Annika Hanberg, Johanna Zilliacus, Charlotte Nilsson, Ralf Morgenstern, Kristian Dreij and Emma Vincent, thanks for letting me be part of the team educating of the master students in toxicology and biomedicine. It has been so enjoyable and inspiring. You are a perfect mega super team.
Doctoral education board, I humbly thank you for supporting my development as an independent researcher. You have given me insight into the process of qualifying projects as well as candidates for successful research projects.

All ambitious students of the toxicology and the biomedical programs. You have supported my educational skills. It has been a joy and I wish all of you a prosperous future.

A specially thanks to Anteneh Assefa Desalegn, who allowed me to be his supervisor during his master project and to Tshepo Moto, who continue the nanoceria modelling work after Anteneh.

Not to forget, I would like to give my greatest gratitude to all collaborators and knowledgeable people around the world that I have met during my doctoral education. You contributed greatly to my education and made it such an instructive and memorable period.

A big hug to all my friends, to all of you who have made my spare time rich and fun. What would life be without you? Less worth living. You are fantastic.

Finally, I would like to express a special gratitude to Linnea Holmén, Vibeke Carlander, John Carlander, Lars-Magnus Bjursten, Anneli Julander, Klara Midander, Joakim Ringblom, Linda Schenk, Stephanie Juran, Hanna Karlsson and Gunnar Johanson for your precious support during my kappa writing and for all the useful tips on the dissertation process I got from Joakim Ringblom, being just in from of me in this process.
9 REFERENCES

Alkilany AM and Murphy CJ (2010). "Toxicity and cellular uptake of gold nanoparticles: What we have learned so far?". Journal of nanomaterial research : an interdisciplinary forum for nanoscale science and technology 12(7): 2313-2333.

FDA (2014) "Guidance for industry considering whether an fda - regulated product involves the application of nanotechnology".

Krishnan K and Andersen ME (2010). "Quantitative modeling in toxicology". West Sussex, John Wiley & Sons Ltd.

Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR and Larsen EH (2011). "Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate". *Particle and Fibre Toxicology* 8: 18.

Mahon E, Hristov DR and Dawson KA (2012). "Stabilising fluorescent silica nanoparticles against dissolution effects for biological studies". *Chem Commun (Camb)* 48(64): 7970-7972.

Morfeld P, Bruch J, Levy L, Ngiewih Y, Chaudhuri I, Muranko HJ, Myerson R and McCunney RJ (2016). "Response to the reply on behalf of the 'permanent senate commission for the investigation of health hazards of chemical compounds in the work area' (mak commission) by andrea hartwig karlsruhe institute of technology (kit)". *Particle and Fibre Toxicology* 13.

Pauluhn J (2014). "Derivation of occupational exposure levels (oeils) of low-toxicity isometric biopersistent particles: How can the kinetic lung overload paradigm be used for improved inhalation toxicity study design and oeil-derivation?". *Particle and Fibre Toxicology* 11(1): 72.

Schmid O and Stoeger T (2016). "Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung". *Journal of Aerosol Science* 99: 133-143.

Stern ST, Adiseshaiah PP and Crist RM (2012). "Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity". *Particle and Fibre Toxicology* 9.

