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ABSTRACT 

Streptococcus pneumoniae is a major cause of severe infections such as pneumonia, 

septicemia and meningitis, but also a common colonizer of the nasopharynx in children. In 

most individuals colonization is harmless and eventually cleared by the immune system, but 

in rare cases pneumococci can reach deeper into the body and cause diseases. It is not 

understood why pneumococci cause infections in a few individuals while in most cases the 

bacteria are limited to the nasopharynx and eventually cleared. It is clear, however, that a 

well-orchestrated immune system is essential to prevent and limit pneumococcal infections. 

Macrophages are essential for an early clearance of pneumococci and dendritic cells are 

required to initiate appropriate adaptive responses. Both cell types were studied in this thesis.  

Cytokine secretion by dendritic cells directs the development of T-cells, and we studied the 

induction of IL-12 secretion by dendritic cells in response to pneumococci. We showed that 

pneumococcal RNA was recognized by TLR3, which together with the adapter molecule 

TRIF induced secretion of IL-12. Infection of dendritic cells with influenza A virus 

upregulated TLR3 expression which contributed to a more efficient detection of pneumococci 

and enhanced IL-12 secretion. 

We observed that the pneumococcal pore forming toxin pneumolysin had profound effects on 

cytokine responses in human dendritic cells and macrophages. We found a cell death 

independent inhibition of cytokine secretion in human dendritic cells and macrophages by 

pneumolysin expressing pneumococci. Interestingly however, cytokine secretion by 

macrophages derived from the human THP-1 cell line was enhanced in the presence of 

pneumolysin. We described pneumolysin mediated effects on these cell types and explored 

initial insight into the underlying mechanisms.  

Clearance of pneumococci by macrophages is supported by deposition of complement on the 

bacterial surface. The pneumococcal surface protein PspC binds human Factor H to evade 

opsonophagocytosis, and can also act as an adhesin. We characterized two variants of PspC 

proteins present in B6 clinical isolates. The two proteins showed differential expression 

patters on the bacterial surface and had distinct functions as Factor H binding protein or 

adhesin. Small changes in surface localization impaired the protein function, indicating the 

importance of correct surface expression. 

We tested the effects of vitamin D on the activation of dendritic cells by pneumococci and the 

induction of T-cell responses. Vitamin D supported dendritic cell maturation and skewed T-

cell responses from an inflammatory to a regulatory phenotype.  

This work gives insight into the complex interactions between S. pneumoniae and human 

immune cells, and underlines the dynamic effects of pneumococcal virulence factors on the 

host. A thorough understanding of the activation and evasion of immune responses by 

pneumococci as well as the effects of immunomodulatory agents such as vitamin D is 

essential for the development of future treatment options and vaccine approaches.  
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1 INTRODUCTION 

1.1 STREPTOCOCCUS PNEUMONIAE 

 

Streptococcus pneumoniae was first described in 1881 when Steinberg and Pasteur 

independently reported the isolation of a lancet shaped diplococcus from the blood of rabbits 

injected with human saliva (1, 2). Within the same decade, the potential of the bacterium to 

cause pneumonia, meningitis and otitis media was established and due to its role in 

pneumonia, the bacterium was referred to as Pneumococcus or Diplococcus pneumoniae. In 

1974 it was given its current name, Streptococcus pneumoniae, based on the characteristic 

long chains of cocci that are formed when the bacterium grows in liquid media (3). 

Nevertheless, the bacterium is still commonly referred to as the pneumococcus.  

The pneumococcus is facultative anaerobe and grows on blood agar plates where it forms 

colonies surrounded by a green zone, indicating Ŭ-hemolysis (Fig. 1). The green color 

appears because the bacterium lyses red blood cells and oxidizes hemoglobin. S. pneumoniae 

is sensitive to optochin and can thereby be distinguished from bacteria of the commensal S. 

viridans group, which also are Ŭ-hemolytic.  

The Gram-positive cell wall of pneumococci is surrounded by a characteristic thick 

polysaccharide capsule. The composition of the capsular polysaccharides is very diverse and 

determines the serotype of a pneumococcus. Over 90 different serotypes have been identified 

so far.  

 

 

Figure 1 Serotype 4 strain TIGR4 grown over night at 37°C and 5% CO2 on a blood agar plate. 
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Pneumococci are naturally transformable, which means that they efficiently take up genetic 

material from their environment and integrate it into their genome, creating a high genetic 

diversity between pneumococcal strains (4). Griffith demonstrated this for the first time by 

injecting mice subcutaneously with an unencapsulated non-virulent variant, as well as a heat 

killed encapsulated variant of S. pneumoniae. The mice succumbed to the infection and 

Griffith could isolate encapsulated bacteria from the blood, indicating that the genetic 

material for the capsule was transferred from the dead bacteria to the live and previously 

unencapsulated ones (5). This led later to the groundbreaking discovery of deoxyribonucleic 

acid (DNA) as the transforming principle by Avery, which was the first time DNA was 

identified as genetic material (6). 

 

 

1.1.1 Pneumococcal Diseases 

 

Colonization 

S. pneumoniae is part of the natural flora of the human nasopharynx and small children are 

commonly colonized with the bacterium. Pneumococci are airborne, spread via droplets, and 

colonization rates can reach up to 60% in children (7, 8), whereas around 5% of adults are 

colonized (9, 10). In most cases, the bacterium resides silently in the nose and is eventually 

cleared by the immune system, but in rare cases pneumococci reach deeper into the body and 

cause pneumococcal diseases.  

The serotypes of pneumococci differ in their potential to colonize the nose and to cause 

invasive disease. While some serotypes, such as 6B, 19F and 23F are frequent colonizers and 

rarely cause disease, others, such as serotype 1, 5 and 7 are prominent causes of disease (11).  

Carriage duration varies between serotypes and age groups. A Swedish study observed 

periods of carriage between 2 and 368 days, with an average duration of 37 days. The 

duration of colonization also depended on the age, where children under the age of 5 had 

significantly longer periods of colonization than older individuals. Serotype 6 and 23 showed 

the longest colonization periods in children younger than 5 years (12). 

Pneumococcal colonization is a prerequisite for pneumococcal disease and can lead to mild 

diseases such as otitis media and sinusitis or severe invasive diseases like pneumonia, 

bacteremia and meningitis. 
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Otitis Media 

The most common manifestation of S. pneumoniae infections is acute otitis media, an 

infection of the middle ear which occurs with high frequency in small children. In the United 

States, pneumococcal infections are estimated to annually cause 3.1 million cases of otitis 

media in children younger than 5 years (13). The infection usually fully resolves 

spontaneously but recurrent otitis media can lead to sequelae including hearing loss and 

speech delay. Pneumococci rank among the most frequent bacteria isolated in otitis media 

(14) and are associated with early acute otitis media. These early infections can predispose 

children to infections with other bacteria and viruses leading to recurrent and more persistent 

mixed-species infections (15).  

 

Sinusitis 

Sinusitis, also known as rhinosinusitis, is an inflammation of the paranasal sinuses, which are 

cavities in the cranial bone around the nose. S. pneumoniae is one of the most frequently 

isolated bacteria causing sinusitis (16). 

 

Pneumonia 

Pneumonia, an inflammatory condition of the lungs, is the second most common 

pneumococcal disease. Community acquired pneumonia is common in children under 5 years 

and in adults older than 65 years (17). It is the cause of 19% of the deaths worldwide in 

children under 5 years, which makes it the biggest killer of this age group. Death due to 

pneumonia varies strongly between regions, with 2% of childhood deaths caused by 

pneumonia in the industrial world and 20% in developing countries (18). In almost all 

countries of the world S. pneumoniae in the leading cause of pneumonia (18) and in Europe 

35% of the pneumonia cases are caused by this bacterium (17).  

A few serotypes were shown to have a high potential to cause pneumonia, such as serotype 1 

and 5. There is also a correlation between the risk for death from pneumonia and the carriage 

prevalence of serotypes, as well as an inverted relationship between the carriage prevalence 

and invasive pneumonia. Serotype 19F, for example, has a high carriage rate and is associated 

with a high risk of death due to pneumonia, but the potential of 19F to cause pneumonia is 

very low. Serotype 1 in contrast, has a low carriage rate and causes a low risk of death by 

pneumonia, but its potential to cause pneumonia is very high (19). Short-term mortality 

(within 30 days) of hospitalized pneumococcal pneumonia patients ranges from 4-18% (17).  
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Bacteremia and Sepsis 

Bacteremia occurs when pneumococci infect the blood stream. This can happen in connection 

with otitis media, pneumonia or meningitis, or without a focal infection. The bacteria can 

cause a strong immune response in the body leading to the development of sepsis. The 30-day 

mortality of sepsis is around 20% depending on the severity of the sepsis, and the age of the 

patients (20-22). The serotype also contributes to the severity of the infection and there is an 

inverse relationship between the invasive disease potential and the disease severity as well as 

fatality rate of the serotypes (23). 

 

Meningitis 

Meningitis is an inflammation of the meninges, which are the membranes covering the brain 

and the spinal cord. Meningitis is a severe disease with 16-37 % mortality and common long-

lasting neurological sequelae, affecting 30-52 % of the survivors. Sequelae include hearing 

loss, cognitive impairment and neurological deficits (24). S. pneumoniae is the main cause of 

meningitis in most of the world and it especially affects children younger than 2 years of age 

(25). In the United States, 2000 cases of pneumococcal meningitis are reported annually (13).  

 

The global burden of pneumococcal disease 

Infections with S. pneumoniae contribute strongly to the global mortality. It was estimated for 

the year 2000 that pneumococcal diseases caused 800,000 deaths in children under the age of 

5 years which was 11% of all deaths in this age group (26). In 2008 it was estimated that 

pneumococcal infections were responsible for 500,000 deaths in children younger than 5 

years, which was 5% of the total deaths in this age group (27). The mortality due to 

pneumococcal disease varies largely between countries with low mortality in the developed 

world and higher mortality in the less developed countries. The highest mortality in children 

under 5 years can be found in south Asia and sub-Saharan Africa (Fig. 2). In the EU, the rate 

of reported invasive pneumococcal diseases decreased 2010 to 2014 from 6.0 to 4.8 per 

100,000 people and the rates for the age groups under 1 year and over 65 years in 2014 were 

11.3 and 13.8 per 100,000, respectively (28).  

Clearly, the number of pneumococcal infections and the associated mortality is decreasing 

worldwide. The developed world has access to vaccines and optimal treatment in hospitals 

which keeps the case and mortality rates of pneumococcal infections very low. Especially in 

south Asia and sub-Saharan Africa where case and mortality rates are high, prevention and 

treatment of pneumococcal infections requires significant improvement. 
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1.1.2 Risk Factors 

 

Several risk factors for pneumococcal diseases have been identified. A functional immune 

system is key to prevent and clear pneumococcal infections. While adults with a functional 

immune system rarely suffer from pneumococcal infections, the immune system of children 

under the age of 2 years is not fully matured and the immune responses in the elderly weaken, 

which puts these age groups at an increased risk to acquire pneumococcal infections. 

Understandably, immunocompromised individuals (due to e.g. HIV, cancer, primary immune 

deficiencies, immunosuppressive therapy or splenectomy) are also at high risk for 

pneumococcal disease (29, 30).  

Risk factors for immunocompetent individuals are underlying diseases, including diabetes, 

cardiovascular diseases and alcoholism (29, 30). Additionally, ethnic groups such as Afro-

Americans, Native Americans and Alaskan native populations have higher risks for 

colonization, which indicates a genetic factor (31). Behavioral factors such as smoking, as 

well as socioeconomic and environmental factors, including crowding, contact with children, 

or preceding viral infections also increase the risk for pneumococcal infections (29, 30). 

 

 

 

Figure 2 Global mortality rates of pneumococcal disease in children younger than 5 years. 

Estimated mortality rates are shown per 100,000 children younger than 5 years. Adopted from (26). 
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Coinfections with Influenza A virus 

Infections with influenza predispose individuals for severe secondary pneumococcal 

infections. A recent study showed that bacterial superinfection in hospitalized influenza 

patients occurs in 2% to 65% of the cases, and S. pneumoniae was the most isolated 

bacterium (32). The impact of superinfections with S. pneumoniae becomes particularly clear 

during pandemic influenza outbreaks, like the Spanish flu in 1918, the Asian flu in 1957, the 

Hong Kong flu in 1968 and the recent ñswine fluò in 2009 (33). The Spanish flu in 1918 was 

caused by an influenza A H1N1 virus and caused over 50 million deaths worldwide. Only a 

small proportion (5%) of the deaths occurred early after infection, while most occurred 7-14 

days after infection. This, together with the isolation of bacteria, mainly S. pneumoniae, in 

85-90% of the autopsies indicates that bacterial superinfection was a leading cause of death 

during this pandemic (33, 34). The pandemics in 1957 and 1968, caused by the H2N2 and 

H3N2 viruses, respectively, had much lower mortality due to the use of antibiotics and 

influenza vaccines. Nevertheless, Staphylococcus aureus was the main bacterium isolated 

during the 1957 flu and S. pneumoniae during the 1968 flu. The ñswine influenzaò caused by 

an H1N1 virus in 2009 resulted in 200,000 estimated deaths, which is not higher than during 

seasonal influenzas. However, the affected age group was younger than during a seasonal 

influenza. Bacteria were isolated from 25-50% of the severe infections and S. aureus and S. 

pneumoniae were most commonly found (33, 35, 36).  

 

 

1.1.3  Prevention and Treatment 

 

Treatment 

Pneumococci are naturally sensitive to penicillin, therefore penicillin and other ɓ-lactams are 

the antibiotics of choice to treat pneumococcal infections. These antibiotics bind to penicillin 

binding proteins (Pbp) which are important for cell wall synthesis, leading to death and lysis 

of the bacteria.  

Penicillin was first introduced in 1943 and since then has also been used to treat 

pneumococcal infections. Penicillin use has dramatically improved disease outcome for 

patients and decreased the mortality for pneumococcal sepsis from 82% to 17 % (37). 

However, antibiotic resistance within pneumococcal isolates emerged soon, and the first 

penicillin resistant strain was isolated in Australia in 1967 (38). Since then penicillin and ɓ-

lactam resistance has dramatically increased, and up to 50% of the pneumococcal isolates 

have reduced susceptibility to penicillin in some regions. In countries with low antibiotic use, 

like Sweden, resistance rates are low. In 2014 7.9 % of invasive pneumococcal isolates in 

Sweden had reduced susceptibility to penicillin (39).  
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Resistance is mediated by allelic variants of Pbps with low affinity for ɓ-lactam. The pbp 

genes of highly resistant strains have a mosaic structure and have probably evolved as a 

consequence of point mutations as well as recombination with genes from the oral 

commensal bacteria Streptococcus mitis and Streptococcus oralis which were acquired by 

horizontal gene transfer (4). 

Infections with ɓ-lactam resistant pneumococci are treated with macrolides or 

fluoroquinolones. Macrolides inhibit protein synthesis by binding to a ribosomal subunit, 

which prevents binding of the ribosome to the messenger ribonucleic acid (mRNA). 

Fluoroquinolones act on the enzyme topoisomerase which is involved in DNA synthesis. 

Strains resistant to macrolides or resistant to both penicillin and macrolides are frequently 

isolated in European countries (39). 

 

Prevention 

The pneumococcal vaccines currently on the market are listed in Table 1. The 23-valent 

pneumococcal polysaccharide vaccine (PPV23) contains polysaccharides of the 

pneumococcal capsule and protects against the 23 most common serotypes causing invasive 

disease. The vaccine was introduced in 1983 but due to the low immunogenicity of pure 

polysaccharides, it did not induce sufficient immunity in children under 2 years (29, 30). 

Nevertheless, PPV23 is recommended for individuals over 65 years. 

In 2000, the first pneumococcal conjugate vaccine (PCV) was licensed. This vaccine contains 

polysaccharides conjugated to a non-toxic recombinant variant of diphtheria toxin, which 

improves immunogenicity. PCVs are able to induce T-cell dependent B-cell responses and 

long lasting immunity in children younger than 2 years (described further in chapter 1.2.2). In 

PCV7, 7 capsular serotypes are included and they were chosen based on the most common 

serotypes causing invasive disease in the United States. The serotype distribution varies 

among countries and the PCV7 vaccine covered the serotypes of 70-88 % of all invasive 

pneumococcal diseases in children in North America, Europe and Africa, but fewer than 65% 

in Latin America and Asia (40). 

Table 1 Pneumococcal vaccines currently on the market 
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In 2009 and 2010 the new conjugate vaccines PCV10 and PVC13 were introduced. The 

additional serotypes in these vaccines should account for global differences in in coverage. 

The PCV10 and PCV13 vaccine should prevent acute otitis media, pneumonia and invasive 

pneumococcal disease in children under 5 and PCV 13 can also be used in older age groups 

(29, 30).  

In 2012 44% of all WHO member states had introduced PCVs in their childhood vaccination 

program (29, 30). The PCVs have globally dramatically reduced invasive pneumococcal 

diseases among all age groups (41). In the United States, the invasive pneumococcal disease 

cases in children under 5 years decreased 77% after the introduction of PCV7 and the rate of 

hospitalization for pneumococcal pneumonia in children under 2 years decreased 65% (42, 

43). Additionally, carriage rate of pneumococci and the frequency of antibiotic resistant 

strains decreased in some countries (13), whereas other countries found the same rates of 

carriage and antibiotic resistance after vaccine introduction (44). In some countries the 

introduction of PCV7 also reduced pneumococcal disease in the un-vaccinated population, 

such as adults under 65 years (44) and children under 90 days of age (45). This ñherd effectò 

of vaccines is especially important to protect groups which cannot be vaccinated, such as the 

smallest children. 

Although PCV7 had positive effects on pneumococcal disease globally, it also led to the 

emergence of serotypes not covered by the vaccine, so called non-vaccine types, especially 

serotype 19A (46, 47). The inclusion of 19A in PCV13 counteracted this emergence but did 

not prevent from the emergence of further serotypes not covered by the 13-valent vaccine. In 

the Stockholm area an increase in carriage of the non-vaccine types 11A and 22F has been 

observed during the last years after the introduction of PCVs (44). 

It is not fully understood which processes underlie the emergence of non-vaccine types, but 

most likely the elimination of vaccine strains gives non-vaccine types the possibility to take 

over the free niche. Another explanation is that strains that were successful prior to 

vaccination switch their capsular type by acquiring capsule genes over horizontal gene 

transfer from co-colonizing strains.  

Future vaccines should offer protection from a larger spectrum of pneumococci. The number 

of serotypes that can be included in a PCV is limited and other vaccine approaches are being 

investigated. Current research is focused on vaccine candidates for a protein vaccine. The 

optimal protein should be a surface exposed virulence factor present in all virulent strains. 

Several proteins have been implicated and are currently studied, among them are 

pneumolysin and pneumococcal surface protein C (PspC) (48, 49), which are studied in this 

thesis. Since it is easier for a bacterium to evade a vaccine composed of one or a few proteins, 

another promising approach is the use of a whole cell vaccine composed of killed non-

encapsulated pneumococci (50). 
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1.2 THE IMMUNE SYSTEM 

 

Our body is under constant attack by potentially infectious agents such as bacteria, viruses, 

fungi and parasites, and the immune system prevents and eliminates these infections. The 

immune system is highly complex and includes physical barriers, lymphoid organs, immune 

cells as well as soluble mediators. The cells of the immune system communicate by direct 

cell contact, or secretion of molecules such as cytokines and chemokines that can modulate 

and regulate the immune responses.  

In general, the immune system can be divided into innate and adaptive immunity. The innate 

immune system is the first line of defense against invading agents. The responses are fast and 

their role is to prevent infections from being established. If the innate immunity fails, the 

adaptive immune system must respond to clear the established infection and to develop a 

memory which will prevent from the same infection in the future. Adaptive immunity 

develops over a life time and adjusts to each infectious encounter.  

 

 

1.2.1 Innate Immunity 

 

Components of innate immunity are physical barriers such as epithelia and mucous layers on 

the surfaces of the body, antimicrobial peptides, serum proteins, and innate immune cells 

including neutrophils, monocytes, macrophages and dendritic cells.  

 

Pattern Recognition Receptors 

The first recognition of pathogens by the host occurs when pathogen associated molecular 

patterns (PAMPs) are detected by pattern recognition receptors (PRRs). PRRs can be located 

in the cytosol of host cells, such as nucleotide-binding oligomerization domain (NOD)-like 

receptors (NLRs) and retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs), or 

membrane bound such as Toll-like receptors (TLRs). Relevant PRR signaling for this thesis 

is summarized in Figure 3. 

In humans, 10 TLRs have been identified and they are either located on the plasma 

membrane or the endosomal membrane. TLRs are transmembrane proteins that form homo- 

or heterodimers. Their ectodomains contain leucine-rich repeats responsible for PAMP 

binding, and the cytosolic Toll/interleukin-1 receptor (TIR) domain mediates the intracellular 

signaling. The TIR domain interacts with TIR-domain containing cytosolic adapters, such as 
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myeloid differentiation primary response protein 8 (MyD88) and TIR-domain-containing 

adapter inducing IFNɓ (TRIF) (51).  

All TLRs, apart from TLR3, use MyD88 as an adaptor molecule. MyD88 interacts directly 

with the TIR-domain of TLRs, or over the sorting adapter TIR-domain containing adapter 

protein (TIRAP) (51, 52). MyD88 recruits interleukin-1 receptor-associated kinase (IRAK) 

family members which have intrinsic serine/threonine kinase activity. Upon stimulation, 

IRAK4 an IRAK1 autophosphorylate and dissociates from MyD88. They activate tumor 

necrosis factor receptor-associated factor 6 (TRAF6) which then activates transforming 

growth factor-b-activated protein kinase 1 (TAK1). TAK1 activates the IəB kinase (IKK ) 

complex which phosphorylates inhibitor of nuclear factor (NF)-əB (IəB) leading to the 

release of NF-əB from IəB, translocation of NF-əB into the nucleus and transcription of 

inflammatory genes. TAK1 also activates mitogen-activated protein kinases (MAPKs) which 

lead to the activation of activating factor-1 (AP-1) and the transcription of inflammatory 

genes.  

 

 

Figure 3 Signaling pathways of selected PRRs and activation of PRRs by S. pneumoniae. The 

TLRs TLR2, TLR4 and TLR9 can be activated by pneumococcal lipoteichoic acid (LTA), 

pneumolysin and DNA, respectively. The activation starts a signaling cascade involving MyD88, 

IRAK1/4, TRAF6, TAK1 and MAPKs, leading to the activation of the transcription factors AP-1 and 

NFəB. TLR4 as well as TLR3 activate TRIF which induces transcription of AP-1, NFəB as well as 

IRF3 regulated genes over the signaling molecules TRAF6, RIP1 or TBK1 and IKKi. Pneumococcal 

DNA can also activates an unknown receptor leading to the activation of STING and IRF3 dependent 

transcription, and peptidoglycan (PGN) can activate NOD2 which over RIP2 leads to AP-1 and NFəB 

activation. The NLRP3 or AIM inflammasome are indirectly activated by pneumolysin leading to the 

cleavage of pro-IL-1ɓ into IL-1ɓ.  
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The adapter molecule TRIF is only involved in TLR3- and TLR4-mediated signaling. It 

directly interacts with TLR3, but requires the sorting adapter TRIF-related adapter molecule 

(TRAM) to bridge the interaction with TLR4. Just as MyD88, TRIF can induce NFəB 

activation by recruiting TRAF6, but also via activation of receptor interacting protein (RIP) 

1. Moreover, TRIF interacts with TANK-binding kinase (TBK1) which together with IKKi 

phosphorylates interferon regulatory factor (IRF) 3, leading to the transcription of interferon 

(IFN) ɓ (52). 

In summary, the activation of most TLRs leads to the recruitment of MyD88 and the 

activation of NFəB and AP-1, ultimately leading to the transcription of inflammatory 

cytokines. Only TLR3 and TLR4 recruit the adapter molecule TRIF, which additionally 

activates IRF3, leading to the transcription of IFNɓ.  

The intracellular PRRs of the RLR family are RNA helicases which recognize double 

stranded viral RNA. RIG-I and melanoma differentiation-associated protein 5 (MDA-5) 

belong to this family. They signal over their adapter molecule mitochondrial antiviral 

signaling protein (MAVS), ultimately leading to IRF3 and NFəB activation (53). Stimulator 

of IFN genes (STING) is localized on the endoplasmatic reticulum and mediates signaling in 

response to sensors of viral DNA leading to IRF3 activation (53). 

The NLRs NOD1 and NOD2 are localized in the cytoplasm and recognize bacterial cell wall 

components. They activate RIP2, leading to the transcription of NFəB and AP-1 regulated 

genes (53). NLRs such as NLRP3 are the sensors of inflammasome complexes. NLRP3 

responds to a variety of stimuli including bacterial cell wall components, extracellular ATP, 

potassium efflux or crystalline. Due to the large variety in stimuli it is likely that NLRP3 

reacts to cellular stress induced by the stimuli, such as potassium efflux, calcium signaling or 

reactive oxygen species (ROS). Activation of NLRPs leads to the recruitment of the adapter 

apoptosis-associated speck-like protein containing a caspase activation and recruitment 

domain (ASC) and subsequent binding of caspase-1 to ASC. Caspase-1 undergoes cleavage 

into the active subunits p10 and p20 which cleave the pro-forms of IL-1ɓ and IL-18 into the 

active forms. Additionally, inflammasome activation can induce a pro-inflammatory type of 

cell death called pyroptosis (54). Inflammasomes are not only activated by NLRs. They are 

also activated by absent in melanoma 2 (AIM2) a DNA binding sensor which also recruits 

ASC and forms an inflammasome complex (54).  

Components of S. pneumoniae have been shown to activate several PRRs leading to the 

secretion of cytokines (Fig. 3). The pneumococcal cell wall component lipoteichoic acid 

(LTA) has been shown to interact with TLR2 (55), TLR9 can be activated by pneumococcal 

DNA (56), and TLR4 might be activated by the pneumococcal toxin pneumolysin (57-60). 

Many TLRs are redundant in in vivo models and the knockout of TLRs often has only mild or 

no effects (56, 61, 62). MyD88 in contrast is a central adaptor molecule important for the 

signaling of most TLRs and a knockout of MyD88 strongly impairs the immune defence 

against pneumococci (63).  
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The intracellular receptor NOD2 has been shown to be activated by pneumococcal 

peptidoglycan and the activation requires presence of the pore forming toxin pneumolysin, 

probably to promote access of peptidoglycan to the cytosol (64-66). STING can be activated 

by pneumococcal DNA over an unknown receptor, and similar to NOD2, it requires the 

presence of pneumolysin for activation (67). Both the NLRP3 and the AIM inflammasome 

can be activated by pneumococci and this activation also depends on the presence of 

pneumolysin (68-71). 

 

JAK /STAT signaling 

A functional immune system requires communication between the immune cells. This 

communication happens over direct cell contact, but also by the secretion of cytokines. 

Cytokines do not only act paracrine, which means that they effect other cell types, but can 

also act autocrine, affecting the same cell that secreted the cytokine. 

A classic example of cytokine signaling is Janus kinase / Signal Transducers and Activators 

of Transcription (JAK/STAT) signaling. JAK/STAT signaling can be activated in response to 

binding of a cytokine to its cytokine receptor on the cell surface. The binding leads to the 

dimerization of the receptor, which brings two JAKs, which are bound to the cytosolic part of 

the receptor, into close contact. The contact leads to their activation and phosphorylation. 

Subsequently, the JAKs phosphorylate the receptor, creating a STAT binding site. Upon 

binding to the receptor, STAT is phosphorylated and forms hetero- or homo-dimers. The 

phosphorylated and dimerized STAT migrates to the nucleus to bind to its binding sequence 

to regulate the expression of its target genes (72). Four JAKs and seven STATs are found in 

mammals and they respond to over 50 cytokines and growth hormones (73).  

The classical activation of JAK/STAT signaling by type-1 IFNs is shown in Figure 4. Type-1 

IFNs bind to the IFN receptor which is a heterodimer composed of IFNAR1 and IFNAR2. 

Receptor dimerization leads to the activation and phosphorylation of Tyrosine kinase 2 

(TYK2) and JAK1 leading to phosphorylation of STAT1 or STAT2. STAT1 forms a 

homodimer or a STAT1/STAT2 heterodimer. The heterodimer binds the transcription factor 

IRF9 to form the IFN stimulated gene factor 3 (ISGF3) complex which translocates into the 

nucleus to bind to the IFN-stimulated response elements (ISREs). The STAT1 homodimer 

can directly translocate into the nucleus and binds to IFN-ɔ activated site (GAS) elements 

(74).  
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The complement system 

Complement is a class of over 30 serum proteases which are important for the clearance of 

pathogens. Complement proteins are activated by proteolytic cleavage and bind to the surface 

of pathogens. Once the first complement proteins are activated, they trigger a hierarchical 

cascade of proteolytic complement cleavage which rapidly amplifies and results in several 

outcomes. Complement coats pathogens (a process called opsonization) so that they can be 

detected and taken up by phagocytes, it forms membrane attack complexes (MACs) which 

lyse pathogens, and it activates inflammation (75). The complement cascade can be activated 

over three different pathways; the classical, the alternative and the lectin pathway. All 

pathways lead to the activation of a C3 convertase. 

The classical complement pathway is activated when antibodies form a complex with 

antigens on the pathogen surface. This leads to binding of the C1 complex, formed by the 

complement proteins C1q, C1r and C1s, to the constant Fc portion of the antibody. The 

binding activates C1r and C1s which cleave C4 and C2 into C4a, C4b, C2a and C2b. The 

larger cleavage products assemble to form the C4aC2b C3 convertase, which cleaves C3 into 

C3b and C3a. C3b binds to the C4aC2b C3 convertase to form the C4aC2bC3b C5-

convertase.  

  

 

Figure 4 Activation of the JAK/STAT pathway by the type 1 interferon IFNɓ. Binding of IFNɓ to 

its receptor induces receptor dimerization and phosphorylation of TYK2 and JAK1, leading to the 

phosphorylation of STAT1 and STAT2. The STAT proteins dimerize, translocate into the nucleus and 

together with the transcription factor IRF9, form the ISGF3 complex inducing the transcription of IFN 

stimulated response elements (ISREs). 
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Figure 5 The alternative pathway of complement activation and the inhibitory role of Factor H. 

After spontaneous hydrolysis of C3, C3b binds to the pathogen surface. C3b binds Factor B which is 

processed by Factor D to form the C3bBb C3 convertase. The convertase cleaves large amounts of C3 

into C3a and C3b to form further C3 convertases and to form the C5 convertase C3bBbC3b. Factor H 

inhibits the C3b convertase by degrading C3b into iC3b with the help of Factor I. Factor H also 

inhibits the binding of Factor B to C3b and it promotes the degradation of the C3 convertase.  

 

The lectin pathway is activated when mannose binding lectin (MBL) binds to carbohydrate 

structures on the pathogen. This activates the MBL-associated serine proteases which cleave 

C2 and C4 leading to the formation of the C4aC2b C3 convertase, and similar to the classical 

complement pathway, to the activation of the C5 convertase. 

The alternative pathway (Fig. 5) is activated by spontaneous hydrolysis of C3 in the serum. 

When C3 is hydrolyzed into C3a and C3b, the larger product C3b binds to the pathogen 

surface and together with Factor B and Factor D forms the C3bBb C3 convertase. Cleavage 

of further C3 proteins leads to the formation of the C3bBbC3b C5 convertase. 

The C5-convertase cleaves C5 into C5a and C5b. C5b activation is followed by the activation 

of further complement proteins (C6-C9) that ultimately lead to the formation of the MAC and 

lysis of the pathogen. 

C3b is a key complement protein, not only because it is part of the C3 convertase, but also 

because it coats pathogens and is detected by complement receptors that induce phagocytosis 

and in that way help to clear the infection. 

Small products of complement cleavage, such as C3a, C4b and C5a are potent inflammatory 

proteins that recruit and activate immune cells. 

To protect the bodyôs own healthy cells from complement attack, complement activation is 

tightly regulated. The regulation occurs mainly at the level of the convertases and at the 

assembly of MACs. Factor H is a protein that contributes to the inhibition of convertases 
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(Fig. 5). Factor H prevents binding of C3b to Factor B and it is a cofactor for the serum 

protease Factor I which cleaves C3b into the inactive form iC3b. Factor H also acts as a 

decay accelerating factor, which means that it accelerates the degradation of the C3bBb C3-

convertase (75, 76). Factor H has binding specificity for host cells but pathogens also express 

Factor H binding proteins on their surface to capture Factor H and to protect themselves from 

complement killing. Pneumococci express the Factor H binding protein PspC which is 

studied in this thesis and further described in chapter 1.3.5. 

Gram positive bacteria are protected from killing by the MAC due to their thick outer layer of 

peptidoglycan, and the main effect of complement on these bacteria is to opsonize them for 

phagocytosis (77). The importance of complement for the prevention of pneumococcal 

infections is demonstrated by recurrent invasive pneumococcal infections in patients with 

complement deficiencies (78, 79). 

 

Neutrophils 

Neutrophils are constantly generated in the bone marrow and are released into the blood 

where they constitute 50-70% of the leucocytes. Neutrophils are quickly recruited to the site 

of infection where they kill pathogens with their granules filled with ROS and antimicrobial 

proteins. The granules can be releases for extracellular killing of pathogens or fuse with 

phagolysosomes for intracellular killing. Strongly activated neutrophils can even release their 

contents including their DNA, histones and the granules to form neutrophil extracellular 

traps (NETs) which immobilize pathogens to limit spread of the infection.  

To evade NETs, pneumococci produce endonuclease A, which degrades DNA and releases 

the bacteria (80). Additionally, the capsule protects pneumococci from getting trapped in 

NETs (81). 

 

Monocytes 

Monocytes are formed in the bone marrow and then enter the blood stream. They constitute 

10% of the human leucocyte population in the circulating blood and have diverse functions 

which support the immune responses. Monocytes help to clear infections by phagocytosis of 

pathogens, they can present antigen to support adaptive responses and they replenish the 

reservoir of resident immune cells, such as macrophages and dendritic cells in the dermis and 

intestine during steady state (82). Alveolar macrophages and dendritic cells are rather 

maintained by proliferation of local long-lived precursor cells in the lungs (83). During 

inflammation, however, monocytes also contribute to the reservoir of alveolar macrophages 

and dendritic cells (82). 
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Macrophages 

Macrophages have high phagocytic activity and express receptors such as lectins, scavenger 

receptors, Fc-receptors as well as complement receptors to promote uptake of particles. 

Macrophages are a highly plastic group of cells and, and develop into different subsets 

depending on the cytokine environment that they encounter. Traditionally, macrophages have 

been divided into M1- and M2-macrophages, depending on the helper T -cell (TH-cell) subset 

that activates them (T-cell subsets are described further in chapter 1.2.2.). M1-macrophages 

are the classically-activated macrophages that differentiate in response to LPS or the TH-1 

specific cytokine IFNɔ. They eliminate intracellular pathogens and produce nitric oxide as 

well as large amounts of the inflammatory cytokines interleukin (IL)-1ɓ and tumor necrosis 

factor Ŭ (TNFŬ) (84, 85). M2-macrophages are alternatively-activated macrophages that 

differentiate in response to the TH-2 specific cytokines IL-4 and IL-13. They encapsulate 

parasites and promote wound healing. M2-macrophages express high levels of macrophage 

mannose receptor 1 (MRC-1) and arginase 1 which prevents nitric oxide formation (86, 87). 

In addition to the T-cell cytokines, granulocyte-macrophage colony-stimulating factor (GM-

CSF) and macrophage colony-stimulating factor (M-CSF) have also been shown to induce 

the M1- and M2-macrophage like polarization in vitro (88). The discovery of new T-cell 

subtypes led to the description of further macrophage polarizing stimuli, and the division of 

M2-macrophages into further subtypes (89). However, macrophages encounter a multitude of 

stimuli in their environment which shape their phenotype and the subtypes rather represent a 

spectrum in which macrophages can develop.   

The ingestion and intracellular killing by macrophages is important for the clearance of 

pneumococci. Apart from the increased uptake of opsonized pneumococci, macrophages also 

phagocytose pneumococci via the macrophage receptor with collagenous structure 

(MARCO) (90), class A macrophage scavenger receptor (SR-A) (91), SIGN related-1 

(SIGNR1) (92) and MRC-1 (93, 94). 

 

Dendritic cells 

Dendritic cells form the link between the innate and adaptive immune responses. Like 

macrophages, they have phagocytic activity and express lectins, scavenger receptors, Fc-

receptors and complement receptors (95). Their main function, however, is not to clear 

infections by killing of pathogens, but to process the antigen and to present it to T-cells of the 

adaptive immune system. Dendritic cells are the most efficient antigen presenting cells 

(APCs) of the immune system. 

Dendritic cells are rare; they comprise about 1% of the immune cells in most tissues (96). 

They reside in the mucosal linings of the body and constantly sample antigen, which they 

present on their surface via the major histocompatibility complex class II (MHCII). Upon 

encounter of a pathogen, dendritic cells become activated, which induces many functional 
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changes. The activation leads to an increased expression of MHCII on the cell surface which 

allows for the presentation of large amounts of antigen. Co-stimulatory molecules like cluster 

of differentiation (CD) 80, CD86 and CD40, which are required for a successful interaction 

with T-cells, are also expressed in high amounts. Depending on the kind of pathogen that the 

dendritic cell encountered, it secretes specific cytokines. Activated dendritic cells have 

reduced phagocytic activity and upregulate the expression of the chemokine receptor CCR7 

which guides the migration of the cells into the lymph node. In the lymph node dendritic cells 

meet T-cells to which they present the antigen. Once a dendritic cell interacts with a T-cell 

expressing a T-cell receptor specific to the presented antigen, this T-cell is activated. 

Depending on the cytokines that are secreted by the dendritic cell, the T-cell develops into 

different subtypes (97). 

Dendritic cells can be largely divided into three subsets: plasmacytoid dendritic cells, 

myeloid or conventional dendritic cells and monocyte-derived dendritic cells. They all differ 

in their capacity to produce cytokines and express different subsets of immune receptors (96). 

In this thesis, the effect of pneumococcal infections on monocyte-derived DCs has been 

studied, and they most closely resemble inflammatory myeloid DCs in vivo and express most 

of the TLRs, apart from TLR9 and TLR10 and only low amounts of TLR7 (96, 98).  

 

 

1.2.2 Adaptive Immunity 

 

T-lymphocytes 

T-lymphocytes, also called T-cells, mature in the thymus. Antigen specific T-cells are 

activated by professional APCs, such as dendritic cells. T-cells are divided into CD4
+
 and 

CD8
+
 T-cells. CD8

+
 T-cells are also called cytotoxic T-cells and develop in the presence of 

IL-2. They are activated in response to intracellular antigen such as viral antigen presented on 

MHCI. In response, they release lytic granules containing perforin and granzyme to induce 

apoptosis of the infected target cell (99). CD4
+
 T-cells, also called TH-cells can develop into 

several subtypes including TH-1, TH-2, TH-17 and regulatory T-cells (Tregs).  

TH-1 cells develop in response to the cytokines IL-12 and IFNɔ, and initiate cell-mediated 

immunity by secreting the cytokines IFNɔ and TNFŬ. The cytokines support intracellular 

killing by macrophages, which is important for the clearance of intracellular pathogens.  

TH-2 cells develop in response to IL-4 and induce humoral immunity. They produce the 

cytokines IL-4, IL-5 and IL-13, and activate B-cells to undergo affinity maturation and 

isotype switching. This process is required for the production immunoglobulin (Ig) G, IgA 

and IgE antibodies of high affinity to fight extracellular pathogens. 
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TH-17 cells develop in response to IL-6, IL-23, and TGFɓ. IL-23 is a cytokine similar to IL-

12. Both cytokines contain the subunit p35, which combined with p40 forms IL-12 and with 

p19 forms IL-23. TH-17 cells are pro-inflammatory and produce IL-17, a cytokine involved in 

the recruitment of neutrophils. 

Tregs produce the anti-inflammatory cytokines IL-10 and Transforming growth factor ɓ 

(TGF-ɓ) and regulate cell-mediated immunity as well as B-cell responses (99). 

Several T-cell subsets are important in clearing colonization and infections with S. 

pneumoniae. In humans it has been shown that TH-1 cells disappear from the blood during 

pneumococcal infections, which is thought to be due to their migration and help in the tissue 

(100). IL-12, the cytokine that drives the development of TH-1 cells, seems to be important 

for the immune response towards pneumococci, since a patient with severe IL-12 deficiency 

suffered from recurrent pneumococcal infections (101). Additionally, IFNɔ which is 

produced by TH-1 cells, has been shown to be protective in in vivo mouse models (102, 103). 

In summary, a TH-1 phenotype seems to be beneficial to clear pneumococcal infections. 

It has been reported that TH-17 cells are involved in mediating an antibody independent 

protective immunity to pneumococci (104) and that they are important for the clearing of 

pneumococcal carriage in naive mice (105). This protection is mediated by the recruitment of 

phagocytes to the tissue which clear the colonizing bacteria (105). A human colonization 

model showed that carriage with pneumococci significantly enhanced the numbers of IL-

17A
+
 and CD4

+
 memory cells in the blood and lungs (106). Studies of mucosal tissue from 

children and adults have shown that pneumococcus-specific TH-1 and TH-17 cells sequester 

with increasing age (107, 108).  

Knowledge about the role of Tregs during pneumococcal infections is just emerging within 

the last years. Comparison of Balb/c mice, which are more resistant to pneumococcal 

infections, to CBA/ca mice, which are more susceptible to pneumococcal infections, revealed 

a higher TGF-ɓ production and a higher number of Tregs in the lungs of Balb/c mice. 

Adoptive transfer experiments confirmed that Tregs have a protective role during 

pneumococcal infections in a murine model (109). Nevertheless, studies of human nasal 

associated lymphoid tissue indicate that pneumococcal carriage coincides with low levels of 

TH-17 and high levels of Tregs (108, 110), implicating a negative effect of Tregs in the 

clearing of colonization. 

Although the role of the different T-cell subsets during pneumococcal infections is not fully 

understood, emerging data implicates an importance of TH-1 and TH-17 for the prevention of 

colonization and disease. 
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B-lymphocytes 

B-lymphocytes, also called B-cells, are the cells of the immune system that produce 

antibodies. In the context of an infection, B-cells take up antigen and present it on MHCII. 

TH-cells with specificity for this antigen can activate the B-cell to undergo affinity maturation 

and isotype switching. This leads to the formation of long lived plasma cells producing 

antibodies of type IgG, IgE and IgA, and to the differentiation of memory B-cells. 

Alternatively, B-cells can be activated in a T-cell independent manner. This happens in 

response to pure polysaccharides of the pneumococcal capsule, such as in the PPV23 vaccine. 

These anionic polysaccharides are not able to bind to MHCII, and therefore T-cells cannot be 

activated by dendritic cells and B-cells cannot present the antigen. Instead, polysaccharides 

activate B-cells by crosslinking the B-cell receptors, but without T-cell help they do not 

undergo memory B-cell differentiation, affinity maturation and isotype switching. The B-

cells develop into short lived plasma cells that produce antibodies mainly of the type IgM. 

The produced antibodies have low affinity and do not provide long lasting immunity. 

Children under the age of 2 years are not able to induce this T-cell independent B-cell 

activation because their B-cells are not fully developed (111).  

In conjugated vaccines like PCV7, the polysaccharides are bound to a carrier protein. This 

protein can be presented on MHCII and initiates T-cell dependent B-cell activation as during 

a normal infection process. This induces affinity maturation, isotype switching and 

differentiation into long lasting memory cells (111). 

IgA is an antibody class important for mucosal immunity. Nevertheless, its contribution to the 

prevention of pneumococcal infections is not clear. Selective IgA deficiency is the most 

common immunodeficiency in Western countries and 1/600 individuals is affected. Although 

the affected individuals lack the mucosal IgA antibodies, they rarely have an increased risk 

for infections. IgG can be divided into 4 subclasses (IgG1, IgG2, IgG3 and IgG4) and IgG2 

antibodies are formed towards capsular polysaccharides. A deficiency in IgG2 is associated 

with recurrent respiratory tract infections (112). 

 

1.2.3  Immunomodulation by Vitamin D 

 

Vitamin D is produced in the skin upon exposure to sunlight. The ultraviolet (UV) B 

radiation of the sun leads to photolytic cleavage of 7-dehydrocholesterol into pre-vitamin D3 

which by thermal isomerization becomes vitamin D3 (cholecalciferol). Apart from 

endogenous vitamin D3 production in the skin, vitamin D3 can also be adsorbed from food 

sources in the intestine. Activation of vitamin D3 requires two hydroxylation steps. First 

vitamin D is transported to the liver where it is hydroxylated by the 25-hydroxylase to 

25(OH)D3 (calcidiol). 25(OH)D3 is the most common circulating form of vitamin D in the 



 

20 

blood and is used to determine the vitamin D status of individuals. 25(OH)D3 is further 

hydroxylated to 1,25(OH)2D3 (calcitriol) by the 1Ŭ-hydroxylase (Cyp27B1) in the kidneys 

and in other tissues. 1,25(OH)2D3 is the active form of vitamin D and can bind to the vitamin 

D receptor (VDR) which is present in nearly all vertebrate cell types (113). The VDR 

together with the retinoid X receptor (RXR) binds to the vitamin D response elements 

(VDREs) and regulates the transcription of over 200 genes (114).  

Vitamin D is important for calcium absorption from the intestine and for mineralization of the 

bones. The classic disease associated with vitamin D deficiency is rickets, marked by defects 

in calcium metabolism leading to deformations and fractures of bones. However, an 

immunomodulatory role of vitamin D on the innate and adaptive immune responses also 

becomes increasingly clear.  

Immunomodulatory effects of vitamin D have been described for many cell types. Vitamin D 

supports innate immune responses by inducing the production of antimicrobial peptides, such 

as cathelicidin (LL-37) and human ɓ defensins, and enhances the antibacterial activity of 

monocytes and macrophages (115, 116). In the presence of vitamin D, adaptive immune 

responses are dampened and monocytes differentiate into dendritic cells with an inhibitory 

phenotype. Maturation, IL-12 production and T-cell activation is strongly reduced in these 

dendritic cells, while they secrete increased amounts of IL-10 (117). Vitamin D inhibits T-

cell proliferation and modulates the T-cell phenotype; it reduces TH-1, TH-2 and TH-17 

responses whereas it supports the development of Tregs (118, 119).  

A positive effect of vitamin D on respiratory tract infections (RTIs) was suspected when 

children suffering from rickets also were found to have an increased risk for RTIs (120). The 

prototypical example of a connection between vitamin D and infections is tuberculosis. A 

correlation between low vitamin D levels and tuberculosis has long been suspected and this 

connection was recently confirmed in two larger observational studies (121, 122). 

Likewise, an association between low serum levels and an increased risk for RTIs has been 

found in observational several studies (123, 124). However, a direct causality has not been 

proven and randomized placebo controlled trails (RCTs) evaluating the effect of vitamin D 

supplementation on the prevention of RTIs were not conclusive. The two most recent 

systemic reviews and meta-analyses found large heterogeneity between the RCTs and the role 

of vitamin D in prevention of RTIs is still unclear (125, 126).  
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1.3 PNEUMOCOCCAL VIRULENCE FACTORS AND THE HOST 

 

During pneumococcal colonization and invasive disease, the bacteria are in a constant 

interplay with the host. While the immune system detects pneumococci with the help of 

PRRs, antibodies and the complement system, pneumococci have developed strategies to 

evade and modulate the immune responses to their benefit. The pneumococcal cell wall with 

the anti-phagocytic capsule and the virulence factors autolysin, pneumolysin and PspC will 

be discussed in this chapter. 

 

 

1.3.1 The Cell Wall 

 

Pneumococci are surrounded by a Gram-positive cell wall, which consists of a thick layer of 

peptidoglycan and teichoic acids (Fig. 6). Peptidoglycan is a multilayered structure of long 

glycan chains composed of N-acetylglucosamine (GlcNAc) and N-acetlymuramic acid 

(MurNAc). The glycan layers are cross-linked with peptide chains. Teichoic acids (TAs) are 

highly conserved in pneumococci and they consist of repeating units of sugars. They can be 

divided into lipoteichoic acids (LTAs) which are linked to the cytoplasmic membrane and 

wall teichoic acids (WTA) which are attached to peptidoglycan. TAs are decorated with 

phosphocholine residues, which play an important role as anchors for the choline binding 

surface proteins of pneumococci (127). The cell wall also contains surface proteins with a 

LPxTG motif, that are covalently linked to the peptidoglycan by sortase catalyzed 

transpeptidase reactions, and lipoproteins that are attached to the cytoplasmic membrane.  

The cell wall is vital to keep the shape of the bacteria and to protect them from bursting. 

However, it also contains components that are detected by the immune system and cause an 

inflammatory response. Peptidoglycan can be released into the cytosol when the endosome is 

lysed by the pneumococcal toxin pneumolysin, leading to activation of NOD2 (64-66). LTAs 

have been reported to activate TLR2 (55) although more recent studies show that the role of 

LTA in TLR2 activation is limited and that the activation mainly results from lipoproteins 

found in the LTA preparations (128). To avoid the detection by the immune system, the 

pneumococcal cell wall is surrounded by a polysaccharide capsule.  
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1.3.2 The Capsule 

 

The pneumococcal cell wall is surrounded by a polysaccharide capsule which is highly 

diverse in saccharide composition (129). Due to this large variation in the capsule, protective 

antibodies against pneumococci are specific to only one serotype or one serogroup and do 

usually not protect from infections with other serogroups. The capsule protects the bacteria 

from opsonization with complement, and is a major factor determining the extent of 

complement deposition (130), although the genetic background of pneumococci also 

contributes (130, 131). A consequence of the reduced opsonization but also of the 

predominantly negative charge of the capsule is the decreased phagocytosis of encapsulated 

pneumococci (129, 130). Additionally, the capsule prevents pneumococci from getting 

trapped in NETs released by neutrophils (81) or the mucous in the lungs (132).  

The capsule is the major virulence factor of pneumococci and while non-encapsulated S. 

pneumoniae strains compose 9-13% of the carriage isolates, they are rarely associated with 

invasive disease (133). While the capsule is an important virulence factor and protects 

bacteria from phagocytic killing in the blood stream, it might also hinder the adhesion during 

colonization and infection of the lungs. Phase variation is a phenomenon which might help 

 

Figure 6. The pneumococcal cell wall. The cell wall consists of a thick layer of peptidoglycan 

covering the cytoplasmic membrane as well as lipoteichoic acids (LTA) and wall teichoic acids 

(WTA). The teichoic acids are decorated with phosphocholine residues. Proteins are attached to the 

lipid layer (lipoproteins), to phosphocholine (choline binding proteins) or to peptidoglycan (LPxTG 

linked proteins). The cell wall is surrounded by the capsule. 
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the bacteria to overcome this dilemma. It has been shown that pneumococci spontaneously 

can switch between a transparent and an opaque phenotype of which the former is able to 

colonize the nasopharynx (134) and the latter is virulent in an invasive model (135). 

Interestingly, the transparent phenotype is associated with a reduced capsule production 

(135), but the phenotypic changes are also affecting other pneumococcal virulence factors 

(136). Visualization of pneumococci together with epithelial cells revealed that the bacteria in 

close contact with the cells produce reduced amounts of capsule compared to bacteria that do 

not have contact with cells (137), supporting that pneumococci might decrease capsule 

production for close interactions with epithelia.  

 

1.3.3 Autolysin 

 

Pneumococcal cultures in stationary phase undergo a characteristic lysis in vitro and the 

protein responsible for this is the major autolysin LytA. LytA is a choline binding protein 

with amidase activity. The amidase acts on peptidoglycan and cleaves the lactyl-amide bond 

between MurNAc in the glycan strand and the stem peptide of the peptide chain (138), which 

destabilizes the bacterial cell wall and causes autolysis. LytA also mediates sensitivity to cell 

wall-acting antibiotics, such as penicillin G or vancomycin (139, 140). The regulation and the 

molecular mechanism of LytA activity is not fully understood, but it is known that the protein 

is primarily localized in the cytoplasm during early exponential growth and is released into 

the medium during stationary and lytic phase. It binds to the bacterial surface and localizes to 

the equatorial division site, where the nascent peptidoglycan is synthesized (140). LytA is 

activated by the disruption of cell wall synthesis and requires long glycan chains as 

substrates. The present knowledge points towards a regulation of LytA activity by substrate 

recognition and that it might specifically recognize nascent peptidoglycan at the equatorial 

plain during growth inhibition. (140, 141).  

LytA is required for virulence in in vivo models of meningitis (142), intra peritoneal infection 

(143), intravenous infection (144) and pneumonia (145) but the function of the autolysin 

during pathogenesis is not fully understood. The virulence for LytA can to a large extend be 

explained by the release of the toxin pneumolysin during autolysis (142, 143, 146) but also 

pneumolysin independent immunomodulation by LytA has been reported (147). Additionally, 

LytA might contribute to lysis of pneumococci during competence and increase 

transformation of competent pneumococci with the released DNA (148). Recently, a role for 

LytA in capsule shedding in response to the antimicrobial peptide LL-37 has been described 

(149).  
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1.3.4 Pneumolysin 

 

Pneumolysin is a 53 kDa cholesterol binding cytolysin expressed by virtually all invasive 

isolates of pneumococci (150). At high concentration, the toxin forms pores in cholesterol 

containing cell membranes and induces lysis of host cells. However, cytolytic activity of 

pneumolysin is not required to cause disease, since a non-hemolytic version of pneumolysin 

can be found in serotype 1 strains, which are associated with pneumococcal disease outbreaks 

(151, 152).  

The crystal structure of pneumolysin has recently been solved and shows that the protein is 

build up in 4 domains. Domain 4 on the C-terminal part of the protein interacts with 

cholesterol in plasma membranes, but it can also act as a lectin and bind mannose or the 

blood type sugar LewisX (153-155). It is the current understanding that pneumolysin 

monomers bind to the cell membrane and form multimers of 30-50 molecules to assemble a 

pre-pore. Upon pre-pore assembly, the multimer undergoes a large conformational change, 

leading to the perturbation of the membrane by domain 4 and the formation of a pore with a 

320-430 Å diameter (156). No active transport mechanism for pneumolysin has been 

identified and it is therefore believed that the toxin is released during autolysis of the bacteria. 

Extracellular pneumolysin mainly localizes to the pneumococcal cell wall but is also found in 

the culture supernatant of pneumococci (157). Pneumolysin can activate the classical 

complement pathway (158) and this is believed to be due to structural similarity of domain 4 

to the Fc-portion of antibodies (159). 

At high concentrations, pneumolysin induces cell death by pore formation and slows down 

ciliary beating of respiratory epithelium (160, 161). At sublytic concentrations pneumolysin 

can form micropores, and a range of modulating effects on host responses have been 

identified. It has been shown that pneumolysin can rearrange the cytoskeleton of 

neuroblastoma cells and astrocytes. It directly interacts through lipid layers with actin and it 

can activate the GTPases Rho1 and RacA which modulate the actin cytoskeleton. This leads 

to the formation of stress fibers, lamelopodia and filopodia (162, 163). Pneumolysin also 

induces microtubule bundling at sublytic concentrations, but the mechanisms behind this are 

not understood. The toxin does not directly in interact with microtubule and the mechanisms 

leading to the bundling might be multifactorial (164).  

A well-documented function of pneumolysin is the induction of pro-inflammatory cytokines. 

Pneumolysin can activate the NLRP3 and AIM2 inflammasomes leading to the production of 

IL-1ɓ and IL-17 (68, 70, 71). The activation requires the presence of cytolytic pneumolysin 

and is not induced by serotype 1 and 8 (165). Furthermore, several reports show an activation 

of TLR4 by pneumolysin leading to the secretion of cytokines (57-60) whereas other studies 

report TLR4 independent cytokine secretion (68, 166, 167). Recently it has also been shown 

that pneumolysin has the capacity to permeabilize endolysosomal membranes, leading to the 

release of peptidoglycan into the cytosol which might activate NOD receptors (66). 



 

 25 

Anti-inflammatory or inhibitory functions of pneumolysin are less frequently described. In 

the 1980ôs it was reported that pneumolysin inhibited the activation, proliferation, and 

antibody production of lymphocytes (168), as well as the respiratory burst and antimicrobial 

activities in monocytes and neutrophils (169, 170). It remained unclear in these studies to 

which extend the inhibition was due to cytotoxic effects of pneumolysin. Littmann et al. 

(171) showed that dendritic cell activation, maturation and cytokine secretion is inhibited by 

pneumolysin. The inhibition could largely but not fully be explained by the induction of 

apoptosis and cell death in dendritic cells. 

 

1.3.5 Pneumococcal surface protein C 

 

PspC is an important virulence factor of pneumococci. It is a highly polymorphic protein and 

based on sequence homology, 11 major groups of PspC have been identified. PspCs of group 

1-6 bind to the bacterial cell wall via a choline binding domain, and group 7-11 bind to the 

cell wall via a LPxTG motif (172). Some pneumococci, including clinical isolates of serotype 

6B belonging to clonal complex (CC) 138, express two PspC proteins of which one has a 

choline binding domain and one a LPxTG motif (172, 173). 

Functionally, PspC is very diverse but mainly mediates immune evasion by binding to Factor 

H (174) and preventing C3b deposition (175). Additionally, PspC contributes to adhesion to 

host tissue. PspC exerts adhesive functions by interacting with the secretory component (SC) 

of secretory IgA and the poly Ig receptor (pIgR) (176). The interaction with SC of pIgR has 

been shown to mediate invasion of (177, 178) and translocation through epithelia cells (179). 

PspC also mediates adherence by interacting with extracellular matrix proteins such as 

vitronectin (180) and human thrombospondin-1 (181). The binding of Factor H to PspC also 

supports adhesion to host cells (182).  

Due to the multiple functions and allelic variations of PspC, the protein has also been called 

choline binding protein A (CbpA), Factor H inhibitor of complement (Hic) and Streptococcus 

pneumoniae secretory IgA binding protein (SpsA). 

PspC contributes to colonization, pneumonia and bacteremia in murine models (183, 184). 

However interestingly, PspC interacts specifically with human and not murine secretory IgA 

(179, 185), SCpIgR (185) and Factor H (186), offering a possible explanation for the species 

specificity of pneumococci to infect humans. 
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1.3.6 Pathogenesis of Influenza Pneumococcal Coinfections 

 

Infection with influenza virus predisposes the host for a superinfection with S. pneumoniae. 

The mechanisms underlying the increased susceptibility and more severe infections are not 

fully understood but experimental evidence, mainly from murine models, suggests a 

contribution of multiple factors.  

Influenza induces changes in the lung environment which promote pneumococcal infections, 

such as damage to the lung epithelia and mucosa. The viral neuraminidase has been shown to 

cleave off sialic acids from the lung, exposing receptors required for pneumococcal 

adherence (187) and the released sialic acids also provide a nutrient source for pneumococcal 

growth (188). Additionally, influenza infection desensitizes TLRs in alveolar macrophages, 

which lasts for several weeks after the infection (189). At the same time coinfections induce a 

cytokine storm in the lungs and the increased inflammation might support the bacterial 

infection (190, 191). 

The viral infection also affects the amount and function of immune cells in the lungs. It has 

been shown that the numbers of neutrophils in the lungs increase and the numbers of alveolar 

macrophages decrease seven days post influenza infection. This correlates with the peak of 

susceptibility for pneumococcal infections. Nevertheless, it is not clear to which extent the 

neutrophil influx affects the bacterial infection (33). It is clear however, that alveolar 

macrophages are crucial to prevent and clear pneumococcal infections and the depletion of 

macrophages during influenza infection has been shown to account at least partially for the 

enhanced pneumococcal virulence (192). Additional to the reduced number of macrophages 

in the lungs, macrophage function is impaired. IFNɔ levels are increased during influenza 

pneumococcal coinfections and the cytokine reduces the expression of MARCO, a scavenger 

receptor involved in phagocytosis of pneumococci, on macrophages which leads to impaired 

clearance and more severe disease outcome (193). Type I interferons are also induced by 

influenza and they have been shown to compromise T-cell function which leads to reduced 

IL-17 production and increased virulence of pneumococci (194). The role of dendritic cells 

during coinfections is not well studied. It has been shown that dendritic cell numbers in the 

lungs are not affected during coinfections (195). A cytokine boost in influenza primed human 

dendritic cells infected with pneumococci has been observed in vitro (196, 197). The altered 

cytokine secretion in dendritic cells might contribute to the cytokine storm in the lung and the 

impaired macrophage and T-cell functions. 
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2 AIMS 

 

The general aim of this thesis was to explore the interactions between S. pneumoniae and the 

immune system. A focus was put on the innate immune responses of macrophages and 

dendritic cells. The studies should contribute to the knowledge about pneumococcal factors 

that activate or evade immune responses and about possible modulations of the immune 

responses to pneumococci to benefit the host.  

 

2.1 SPECIFIC AIMS 

 

Paper I 

To investigate pneumococcal components and host receptors required for induction of 

cytokine secretion by dendritic cells. A mechanism underlying the increased cytokine 

responses of dendritic cells in coinfection with influenza A virus and S. pneumoniae is 

described. 

Paper II 

To describe the differential effects of the pneumococcal toxin pneumolysin on immune cells 

and to investigate mechanisms behind the inhibitory effects of pneumolysin on dendritic 

cells. 

Paper III  

To characterize two variants of the pneumococcal protein PspC expressed in B6 clinical 

isolates regarding their localization on the bacterial surface as well as their role in 

complement evasion and adhesion to host cells. 

Paper IV 

To explore the immunomodulatory effects of vitamin D on dendritic cells and T-cells in the 

context of pneumococcal infection. 
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3 METHODOLOGICAL CONSIDERATIONS 

 

Bacteria: 

In this thesis, pneumococcal strains of serotype 2, 4 and 6B have been studied.  

TIGR4 (T4) an invasive serotype 4 isolate from a Norwegian patient (198) was used in paper 

I, II , III  and IV. The pneumococcal capsule prevents efficient uptake of pneumococci in in 

vitro assays. It has previously been shown that phagocytosis rates can be increased by 

opsonisation of the bacteria or by using an unencapsulated mutant (171). Therefore, we used 

an isogenic unencapsulated mutant of serotype 4 (T4R) (199), in paper I, II and IV, as well as 

opsonized T4 in paper I.  

Serotype 6B isolates belonging to CC138 were used in paper III. CC138 is common in 

colonization and associated with high mortality rates (173, 200). The isolates BHN191 and 

BHN418 of CC138 have previously been shown to express two closely linked copies of the 

pspC allele, which differ in their domains for cell wall attachment. pspC1 encodes a choline 

binding domain, and pspC2 encodes a LPxTG motif. BHN191 is a nasopharyngeal isolate 

from a healthy child, and BHN418 is isolated from blood of a meningitis patient. We used the 

isolates to study the function of the two PspC proteins in paper III. Mutants of the pspC genes 

were created by fusion PCR mutagenesis. The serotype 2 strain D39 and T4 were also used in 

this study because they only express one copy of the pspC allele.  

 

Virus:  

Severe pneumococcal infections occur in close temporal proximity after infections with 

influenza virus. Our group has previously studied the effects of S. pneumoniae and influenza 

A virus (IAV) coinfections on dendritic cells (196) and in paper I we follow up on this study. 

We used the X31 strain of IAV propagated in Madine-Darby canine kidney (MDCK) cells. 

Dendritic cells were stimulated for 2 hours with IAV and subsequently infected with T4R. 

 

Immunostimulation:  

Paper I, II and IV investigate the immune response to pneumococci and pneumococcal 

components. The pneumococcal component used in paper I was total RNA isolated from 

T4R. Pneumococcal peptidoglycan was used as a stimulant in paper IV.  

Substances to stimulate specific PRRs were used in paper I, II and IV (Table 2). Polyinosinic-

polycytidylic acid (Poly I:C) is a synthetic double stranded-RNA analog which activates 

TLR3. Lipopolysaccharide (LPS) is a component of the Gram negative cell wall and a strong 

activator of TLR4. R848, also called Resquimod, is a guanosine derivate which activates 
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TLR7 and TLR8. Muramyl dipeptide (MDP) is a small component of peptidoglycan, known 

to stimulate NOD2. 

Table 2 TLR agonists used in this thesis. 

Substance PRR Included in 

Poly I:C TLR3 Paper I 

LPS TLR4 Paper I, II and IV 

R848 TLR7 and TLR8 Paper I  

MDP NOD2 Paper IV 

 

Cells: 

This thesis investigates the effects of pneumococci and pneumococcal components on human 

immune cells. While much research has been performed on the effect of pneumococci on 

murine immune cells, we used to a large extent immune cells derived from human primary 

monocytes. Mice are not a natural host for pneumococci and the human and murine immune 

system differ in aspects that were important for the studies of this thesis. Cytokine responses 

to pneumococci, which were studied in paper I and II and IV, differ significantly between 

murine dendritic cells and human dendritic cells (171). The pneumococcal protein PspC, 

which is studied in paper III is known to interact with human Factor H but does not bind 

Factor H from other species (186). Immunomodulation by vitamin D, studied in paper IV, 

differs in the human and the murine system, especially the expression of antimicrobial 

peptides is differentially regulated (201). 

The following cell types were used in this study: 

Human monocytes 

Human monocytes were isolated from buffy coats from healthy donors, provided by 

Karolinska University Hospital. CD14
+
 monocytes were isolated by negative selection with 

the RosetteSep human monocyte enrichment cocktail (StemCell Technologies) and a gradient 

centrifugation with Ficoll-Plaque plus (GE healthcare). The cells were used for the 

differentiation of dendritic cells and macrophages in paper I and II. In paper IV, peripheral 

blood mononuclear cells (PBMCs) were isolated by gradient centrifugation with Ficoll-

Plaque plus (GE healthcare), and monocytes were allowed to adhere to culture flasks for 2 

hours. Non-adherent cells were carefully washed off. 

Human monocyte derived dendritic cells 

Human monocyte derived dendritic cells were used in paper I, II and IV. They were 

differentiated from human monocytes in the presence of IL-4 and GM-CSF (Peprotech) for 6 

days. The cells were over 90% positive for CD1a and CD11c. 
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Human monocyte derived macrophages 

Human monocyte derived macrophages were used in paper II. They were differentiated from 

human monocytes for 6 days in the presence of GM-CSF or M-CSF (Peprotech) into M1-like 

macrophages or M2-like macrophages, respectively. 

Human CD4
+
 naïve and memory T-cells 

Human CD4
+
 naïve and memory T-cells were cocultured with stimulated autologous 

dendritic cells in paper IV. The T-cells were isolated with the EasySep human memory CD4
+
 

T-cell enrichment kit, or with the EasySep human naïve CD4
+
 T-cell enrichment kit 

(StemCell Technologies) from non-adherent PBMCs. 

THP-1 derived macrophages 

THP-1 cells are a monocytic human cell line derived from an acute monocytic leukemia 

patient (American Type Culture Collection [ATCC], Manassas, VA). The cells were 

differentiated for 48 h with phorbol myristate acetate (PMA) (Sigma) into macrophage-like 

cells which were used in paper II and III. 

A549 cells 

A549 cells are alveolar basal epithelia cells derived from a human lung adenocarcinoma 

(American Type Culture Collection [ATCC], Manassas, VA). The cells are used in paper III 

to study the adhesion of pneumococci to host cells. 

HEK293 cells 

Human embryonic kidney 293 (HEK293) cell originate from healthy fetal kidney cells 

transformed with adenovirus DNA. HEK293 cells stably transfected with plasmids 

expressing either TLR4, MD2, CD14 and luciferase under the regulation of the NFəB 

promoter, or TLR3 and luciferase under the ELAM promoter were used in paper I. The cells 

were transfected with pneumococcal RNA and luciferase activity was measured to study the 

activation of the receptors.  
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4 RESULTS AND DISCUSSION 

 

4.1 PAPER I 

 

Toll -like receptor 3/TRIF-dependent IL-12p70 secretion mediated by Streptococcus pneumoniae 

RNA and its priming by influenza A virus coinfection in human dendritic cells 

In paper I we investigate the recognition of S. pneumoniae by dendritic cells, which leads to 

the secretion of the cytokine IL-12p70. Additionally, we studied the effect of prior influenza 

A virus (IAV) infection on the cytokine secretion. 

When we silenced the adapter molecule TRIF with small interfering RNA (siRNA) in 

dendritic cells, we observed a marked decrease in IL-12p70 secretion in response to 

pneumococci. The only receptors known to recruit the adapter TRIF are TLR3 and TLR4 

(202, 203). Due to the previously reported activation of TLR4 by the pneumococcal toxin 

pneumolysin (57-60) we hypothesized that TRIF is mediating signals from TLR4 leading to 

the secretion of IL-12p70. However, silencing of TLR4 with siRNA revealed that IL-12p70 

secretion is independent of TLR4. The activation of TLR4 by pneumococci is still debated 

(68, 166, 167) and differences might stem from contaminants in the pneumolysin 

preparations as well as differences in the model system. Our data indicate that pneumococci 

induce IL-12p70 secretion in dendritic cells in a TLR4 independent manner. 

Due to the lack of TLR4 activation we investigated the role of TLR3, a receptor for double 

stranded RNA (dsRNA) previously not shown to be activated by pneumococci. We found that 

silencing of TLR3 with siRNA significantly reduced IL-12p70 secretion in dendritic cells, a 

result which we could confirm with the use of a chemical TLR3/dsRNA complex inhibitor. 

The activation of an endosomal receptor like TLR3 is further supported by the requirement of 

bacterial uptake by dendritic cells for IL-12p70 secretion. 

The results were surprising, since TLR3 is known to be activated by viral dsRNA and 

bacteria produce only single stranded RNA (ssRNA). However, secondary RNA structures 

such as in ribosomal RNA (rRNA) or transfer RNA (tRNA) might be able to activate TLR3. 

The role of bacterial RNA in the activation of PRRs has just emerged within the last years. 

Several studies have shown that RNA isolated from bacteria can activate cells in a TLR3 

dependent (204-207) or independent manner (208-214). RNA might be an important signal of 

bacterial viability to the immune system (212). Pneumococcal RNA as a signal for TLR3 had 

not been investigated previously.  

To study the role of pneumococcal RNA in TLR3 activation, we transfected total RNA into 

dendritic cells as well as HEK293 cells expressing TLR3. Pneumococcal RNA was sufficient 

to activate the HEK293 cells and to induce IL-12p70 secretion in dendritic cells in a TLR3 

dependent manner. Additionally, we stimulated dendritic cells with UV-killed pneumococci 
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which were pretreated with RNAses, and confirmed the importance of RNA as a 

pneumococcal stimulus in dendritic cells.  

Our group had previously observed that IAV infection could prime dendritic cells to secrete 

increased amounts of the cytokines IL-6 and IL-12p70 during subsequent pneumococcal 

infection. The priming of dendritic cells was mediated by a soluble factor and IFNŬ was a 

sufficient stimulus to prime the cells (196). Since viral infection as well as type I interferons 

can increase the expression of TLR3 (215, 216), we investigated TLR3 expression as a 

possible mechanism underlying the increased cytokine secretion in pneumococcal IAV 

coinfection. TLR3 expression was enhanced by IAV and, to a lesser extent, by IFNŬ. 

Additionally, the increased IL-12p70 secretion in pneumococcal IAV coinfection was 

inhibited by the TLR3/dsRNA complex inhibitor. The data indicates that IAV upregulates 

TLR3, probably by soluble factors such as IFNŬ, and the increase in receptors contributes to 

the enhanced IL-12p70 secretion in pneumococcal IAV coinfections. 

In summary, we found that dendritic cells sense pneumococcal RNA via the receptor TLR3. 

TLR3 recruits TRIF, which ultimately leads to the expression and secretion of IL-12. This 

signaling in dendritic cells might be of particular importance during pneumococcal IAV 

coinfections, due to the upregulation of TLR3 by the virus, leading to an increased cytokine 

response to pneumococci.  

IL-12 is an important part of the immune responses against pneumococcal infections. It 

induces the differentiation of T-cells into TH-1 cells which produce IFNɔ and support 

clearance of pneumococcal infections (102, 103). IL-12 deficient mice have decreased 

survival in a pneumococcal pneumonia model (103, 217) and a patient with a severe IL-12 

deficiency suffered from recurrent pneumococcal infections (101). However, uncontrolled 

cytokine production as in coinfections with IAV and S. pneumoniae can damage the lungs 

and negatively affect disease outcome (191). Enhanced IFNɔ in IAV pneumococcal 

coinfections impairs clearance by macrophages and has detrimental effects on survival in 

murine models (193). Concluding, tightly regulated secretion of cytokines is important for a 

positive disease outcome, and TLR3 activation by pneumococcal RNA in dendritic cells 

might contribute to clearance of pneumococci but also to pathogenesis. 
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4.2 PAPER II 

 

Pneumococcal toxin pneumolysin mediates cell type specific inhibition of cytokine 

secretion 

The cytolytic toxin pneumolysin is an important virulence factor required for invasive 

pneumococcal disease in murine models (143, 144). The proinflammatory effects of 

pneumolysin are well established (218), although it is not clear whether pneumolysin 

mediates the proinflammatory effects via the receptor TLR4 (57-60) or in a TLR4 

independent manner (68, 166, 167). Inhibitory effects of pneumolysin on immune cells have 

been reported in the 1980ôs by the Paton group which described an inhibition of the functions 

of human neutrophils, lymphocytes and monocytes (168-170). However, it is unclear whether 

these effects were a consequence of pneumolysin induced cell death. Our group reported that 

pneumolysin expression by pneumococci inhibits dendritic cell functions, which largely but 

not fully correlated with pneumolysin induced cell death (171).  

In paper II we compared the effects of pneumolysin on different cell types. We infected 

dendritic cells, M1-like macrophages differentiated with GM-CSF, M2-like macrophages 

differentiated with M-CSF and THP-1 derived macrophages with a low dose of pneumolysin 

proficient (T4R) or deficient (T4Rȹply) pneumococci. For dendritic cells and GM-CSF 

macrophages, we observed an inhibition of cytokine secretion (TNFŬ, IL-10 and IL-1ɓ) by 

pneumolysin expressing pneumococci which could not be explained by pneumolysin induced 

cell death. Cytokine secretion by THP-1 derived macrophages, however, was activated in the 

presence of pneumolysin. M-CSF macrophages showed an intermediate phenotype with 

unaffected TNFŬ and IL-1ɓ production and inhibited IL-10 production in the presence of 

pneumolysin. Cytokine secretion required bacterial uptake by all the cells and a mutant of the 

autolysin LytA induced similar effects as the pneumolysin mutant, indicating that the release 

of pneumolysin by autolysis might be important for its effects on the cells.  

Since we found the most pronounced differences in the effect of pneumolysin between 

dendritic cells and THP-1 macrophages, we further investigated the role of pneumolysin in 

these cell types. We used siRNA to silence TLR4 in THP-1 macrophages and showed that the 

increased secretion of TNFŬ in response to pneumolysin expressing pneumococci did not 

require the presence of TLR4. Therefore, pneumolysin must activate THP-1 macrophages in 

a different manner and further studies are required to understand this activation. The cytosolic 

receptor NOD2 as well as STING can be activated by pneumococci in a pneumolysin 

dependent manner (64, 65, 67), and could be a possible explanation for the observed 

activation of THP-1 macrophages.  

We explored the inhibitory effects of pneumolysin on dendritic cells by measuring the 

expression of 84 genes associated to innate immunity and TLR signaling. 29 of the genes 

were at least 2-fold up- or down regulated in dendritic cells infected with T4R or T4Rȹply 

compared to uninfected cells. Interestingly, all cytokines were expressed higher in T4Rȹply 
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infected than in T4R dendritic cells, apart from IFNɓ, which was expressed to similar levels. 

We measured the secretion of IFNɓ in dendritic cells infected with T4R and T4Rȹply and 

confirmed that also the protein levels of IFNɓ are unaffected by the expression of 

pneumolysin.  

To investigate the fairly general inhibitory effects of pneumolysin on cytokine expression, we 

measured the expression of inhibitory proteins known to affect cytokine expression. We 

found an increased expression of suppressor of cytokine signaling 1 (SOCS1) in dendritic 

cells infected with T4R compared to T4Rȹply after 9 hours of infection and Western blot 

analysis showed that the SOCS1 protein level after 4 and 9 hours of infection also was higher 

in T4R than in T4Rȹply infected DCs. SOCS1 inhibits JAK/STAT signaling by binding to 

interferon receptors as well as JAKs. We measured STAT1Tyr701 phosphorylation in dendritic 

cells 3 to 7 hours after infection and found a delayed STAT1 phosphorylation in T4R 

compared to T4Rȹply infected dendritic cells. Our data show that pneumolysin expression by 

pneumococci increases the SOCS1 levels in dendritic cells, leading to a delayed 

phosphorylation of STAT1, which might cause a general reduction in cytokine expression.  

SOCS1 can also directly inhibit TLR dependent cytokine signaling by binding to TIRAP or 

the p65 unit of NFəB, which leads to their ubiquitination and degradation. An inhibition of 

NFəB regulated gene expression would inhibit the expression of most cytokines, while it 

would not affect IFNɓ expression. Future studies will show if SOCS inhibits NFəB activation 

in dendritic cells infected with pneumolysin expressing pneumococci. 

A pneumolysin dependent increase in SOCS1 levels has not been reported previously and 

none of the known functions of pneumolysin could explain the upregulation of SOCS. 

Therefore, we performed a pulldown to identify new interaction partners for pneumolysin. 

Next to 31 other proteins, we pulled down macrophage mannose receptor 1 (MRC-1) from 

dendritic cell lysates but not from THP-1 macrophages. We confirmed the interaction 

between pneumolysin and MRC-1 by co-immunoprecipitation. Interestingly, the receptor is 

not expressed in THP-1 macrophages, whereas it is expressed in dendritic cells, GM-CSF and 

M-CSF macrophages.  

MRC-1 is a lectin which with high affinity binds mannose and fructose. The receptor has no 

signal domain but it is important for non-opsonized phagocytosis. It has been shown that the 

receptor can mediate phagocytosis of pneumococci by binding to the capsular sugars (93, 94). 

Interactions between pneumolysin and MRC-1 have not been reported so far. However, 

pneumolysin can bind to sugars such as the blood antigen LewisX (153, 154), and structural 

analysis has shown that it can bind two mannose molecules (155). Interestingly, activation of 

MRC-1 has been connected to an anti-inflammatory phenotype (219) and binding of 

Schistosoma glycan to MRC-1 increases SOCS1 expression in dendritic cells and inhibits 

cytokine secretion (220). Only the cell types in which cytokine secretion was inhibited by 

pneumolysin expressed MRC-1. THP-1 macrophages did neither express MRC-1 or SOCS1. 

Future studies will show whether MRC-1 is connected to the inhibitory phenotype that we 

observe in dendritic cells.  
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To conclude, pneumolysin mediates differential effects on immune cells, ranging from an 

activation of cytokine secretion in THP-1 macrophages to an inhibition in dendritic cells. 

Future studies will unravel whether the ability of cells to express receptors such as MRC-1 or 

the expression of SOCS1 determines the effect of pneumolysin expression by pneumococci 

on cytokine responses. 
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4.3 PAPER III 

 

Spatial representation and density of human factor H binding proteins on Streptococcus 

pneumoniae affects virulence function 

Evasion of complement attack is an important survival strategy of S. pneumoniae. The 

pneumococcal surface protein PspC binds human Factor H and thereby prevents deposition 

of complement on the bacterial surface (174). While most pneumococci express PspC with a 

choline binding domain to anchor to the cell wall, a few PspCs are covalently link to the cell 

wall with a LPxTG motif. Our group previously identified clinical isolates of serotype 6B 

belonging to clonal complex CC138 which expressed two PspC proteins, PspC1 with a 

choline binding domain and PspC2 with a LPxTG motif (173).  

Paper III compares the function of the two PspC proteins as well as their localization on the 

bacterial surface. We studied two 6B clinical isolates, BHN191 and BHN418. BHN191 was 

isolated from the blood of a meningitis patient, and BHN418 was a nasopharyngeal isolate of 

a healthy child. Flow cytometry showed that the ability of BHN191 and BHN418 to recruit 

Factor H to the bacterial surface was higher in comparison to D39 and T4 which only express 

one PspC protein.  

Immunofluorescence staining of PspC1 and PspC2 as well as High resolution STED 

microscopy revealed that PspC1 and PspC2 bind to distinct parts of the bacteria. While 

PspC1 is localized at distinct para septal rings to the equatorial plane of dividing bacteria, 

PspC2 localizes at the poles of the bacteria.  

Co-staining with Factor H showed that Factor H preferentially binds to sites not occupied by 

PspC2 with a pattern of septal rings similar to PspC1. Factor H staining of PspC1 and PspC2 

deletion mutants in the BHN418 background, and analysis by Flow cytometry confirmed that 

PspC1 contributes more to Factor H binding than PspC2. This was in contrast to results from 

surface plasmon resonance where both copies bound Factor H equally well, indicating that 

the expression on the bacterial surface might affect the protein function. 

Staining for C3 showed that both PspC proteins contribute to the protection from C3 

deposition, but absence of PspC1 from the bacterial surface had a larger effect than absence 

of PspC2. The data indicate that PspC1 is the major Factor H binding protein of the two PspC 

proteins. 

Next to Factor H binding and protection from C3 deposition, PspC is an important 

pneumococcal adhesin (180-182). We therefore assessed the role of the two PspC proteins in 

adhesion to A549 lung epithelia cells. Interestingly, we found that the absence of PspC2 

significantly decreased adhesion to A549 cells, whereas the absence of PspC1 had no effect. 

Interestingly, fluorescence microscopy showed that the bacteria preferentially adhere to the 

cells via their poles, the area mainly populated by PspC2. Together this data indicate that 

PspC2 is the major adhesin of the two proteins.  
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Additionally, we assessed opsonophagocytic uptake of pneumococci by THP-1 derived 

macrophages. We found that uptake of serum opsonized pneumococci by macrophages was 

increased in the absence of PspC1, whereas the absence of PspC2 did not significantly affect 

uptake. This is consistent with the role of PspC1 as the major Factor H binding protein. 

However, a PspC1 PspC2 double mutant was phagocytosed less as compared to the PspC1 

mutant. This might be explained by the role of PspC2 in promoting adhesion, a factor that 

could lead to decreased uptake in the double mutant. 

Due to the distinct functions and distinct localization patterns of PspC1 and PspC2, we 

speculated that surface localization might contribute to the function of the proteins. Analysis 

of other LPxTG linked or choline binding PspC proteins showed that PspC is localized as 

septal rings in strains expressing only one copy of PspC, irrespective of the anchoring 

domain.  

Previously it has been shown that the surface localization of proteins in Gram positive 

bacteria can be changed by altering the signal peptide (221).  

A signal peptide switch mutant in which the signal peptide of PspC1 was exchanged with the 

signal peptide of PspC2 showed an altered localization pattern of PspC1 on the bacterial 

surface. Instead of distinct rings located at the septum, the mutant PspC1 distributed over a 

larger area. Due to the normal expression of PspC2, adhesion to A549 cells was not affected 

in the signal peptide-switch mutant. However, the ability of the mutant to bind Factor H was 

impaired, and C3 deposition was increased. Consequently, the opsonized mutant was taken 

up more efficiently by macrophages. Co-staining with Factor H revealed that Factor H 

binding did not fully overlap with the larger surface distribution of PspC1 on the signal 

peptide switch-mutant. Factor H bound to rings in the septal area where the density of PspC1 

was the highest. 

In summary, we found that the two PspC proteins PspC1 and PspC2 in serotype 6B strains 

belonging to CC138 fulfil  distinct functions and are located differentially on the bacterial 

surface. While PspC2 localizes to the bacterial poles and is important for adhesion to 

epithelia cells, PspC1 is located as dense para septal rings and is the major Factor H binding 

protein. Changing the surface localization of PspC1 impaired its function and indicated that 

Factor H binding occurs at sites of high PspC1 density.  

Serotype 6B strains belonging to CC138 are efficient colonizers of the nasopharynx in 

children but also successful in invasive disease (173, 200). The functions of PspC1 and 

PspC2 as Factor H binding protein and adhesin, respectively, might contribute to the success 

of this clone. It is interesting that adhesion and Factor H binding occur at distinct sites of the 

bacterial surface. Adhesive structures often are located at the apical poles of bacteria, such as 

the polar fimbriae of Escherichia coli (222), the polar presentation of ActA in Listeria 

monocytogenes (223) and the polar invasion of epithelia cells by group B streptococci (224). 

We found that C3 deposits fairly equally on the bacterial surface at sites not protected by 

PspC proteins, however it has been reported that the MAC complex preferentially assembles 
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at the division septum in Streptococcus pyogenes (225). Gram positive bacteria are protected 

from lysis by the MAC complex, which is believed to be due to the thick peptidoglycan layer 

of the cell wall (77), and the effect of MAC proteins binding to the septum is not known. 

However, the deposition of MAC proteins at the septum might be one reason for the septal 

localization of PspC1. 
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4.4 PAPER IV 

 

Immunomodulatory effects of vitamin D on innate and adaptive immune responses to 

Streptococcus pneumoniae 

Immunomodulatory effects of vitamin D are well documented (115-119). The effect of 

vitamin D on immune responses to pneumococcal infections however has not been 

investigated.  

In paper IV we explored the modulatory effects of vitamin D on dendritic cell and T-cell 

responses to S. pneumoniae. Dendritic cells were stimulated with T4, the unencapsulated 

isogenic mutant T4R or pneumococcal peptidoglycan (PGN), and the expression of MHCII 

and the costimulatory molecule CD86 was measured. The anti-phagocytic capsule of T4 

prevented upregulation of MHCII and CD86, whereas T4R as well as PGN triggered an 

upregulation of these maturation markers.  

We studied the effect of the active form of vitamin D, 1,25 (OH)2D3, on dendritic cells and 

found that vitamin D enhanced CD86 expression in response to T4, T4R and PGN. Vitamin 

D did not affect CD86 expression on unstimulated cells. Pro-vitamin D, 25(OH)D3, was also 

able to induce a small increase of CD86 expression on PGN stimulated dendritic cells, and 

the effect of pro-vitamin D was blocked by itraconazole, an inhibitor of the Cyp27B1 1Ŭ-

hydroxylase. Additionally, vitamin D upregulated the expression of the chemokine receptor 

CCR7 in response to PGN and inhibited uptake of T4R by dendritic cells.  

The expression of the costimulatory molecule CD86 and the chemokine receptor CCR7, as 

well as reduced phagocytic activity, are typical changes associated with matured dendritic 

cells which migrate to the draining lymph nodes and present antigen. Our data indicate that 

dendritic cells are able to convert the pro-form of vitamin D into the active form, and that 

vitamin D enhances maturation of dendritic cells activated by pneumococcal components. 

Further, the expression of the PGN receptors NOD2 and TLR2 was synergistically 

upregulated by vitamin D and PGN, whereas TLR4 expression was unaffected. Upregulation 

of the innate receptors TLR2 and NOD2 by vitamin D might be beneficial during 

pneumococcal infections since it can enhance the detection of bacteria by the immune 

system.  

In line with the upregulation of the PRRs, expression of the antimicrobial peptide human beta 

defensin 3 (hBD-3), and expression and secretion of IL-1ɓ was increased in the presence of 

vitamin D. hBD-3 has antimicrobial activity against S. pneumoniae, and IL-1ɓ is a pro-

inflammatory cytokine important for the recruitment of phagocytes during infections. 

Increased killing by phagocytes and antimicrobial peptides can contribute to the clearance of 

pneumococcal infections. 



 

42 

Coculture of CD4
+
 memory T-cells with PGN primed dendritic cells resulted in the secretion 

of large amounts of IFNɔ and low amounts of IL-17 and IL-10. IFNɔ, IL-17 and IL-10 are 

associated with TH-1, TH-17 and Treg phenotypes, respectively. The presence of vitamin D 

reduced IFNɔ and IL-17 production and enhanced IL-10 secretion, indicating that the T-cell 

responses were skewed toward an anti-inflammatory phenotype by vitamin D.  

Several studies showed an important role of TH-1 and TH-17 responses for the prevention of 

pneumococcal colonization and disease (100-106). The role of regulatory T-cell responses is 

less clear (108-110), but an anti-inflammatory T-cell phenotype might be beneficial for the 

prevention of excessive inflammation. While inflammatory responses are essential to clear 

pneumococcal infections, excessive inflammation and tissue destruction can promote 

pneumococcal disease. Further studies will provide insight into the clinical implications of 

vitamin D on pneumococcal infections.  

In conclusion, vitamin D modulated the dendritic cell and T-cell responses to S. pneumoniae. 

The maturation of dendritic cells as well as the expression of key innate elements was 

enhanced by vitamin D whereas adaptive T-cell responses were dampened. Our data supports 

a possible positive effect of vitamin D on the human immune responses to pneumococcal 

infections, which will need to be confirmed by clinical studies. 
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5 CONCLUDING REMARKS 

 

Even today, with the availability of vaccines and antibiotics, infections with S. pneumoniae 

remain a major health problem. For the development of future vaccines and treatment options 

a thorough understanding of the interactions between pneumococci and the immune system is 

essential. Macrophages are required for the immediate clearance of invading pneumococci 

and dendritic cells are essential for the initiation of appropriate adaptive responses. The 

cytokines secreted by dendritic cells determine the T-cell subtype which has significant 

effects on the immune responses as a whole.  

In paper I we identified TLR3, a receptor previously not known to be activated by 

pneumococci, as a receptor for pneumococcal RNA in dendritic cells. The activation of TLR3 

was essential for full secretion of the cytokine IL-12 and could be enhanced by prior infection 

with IAV.  

Paper II explored the differential effects of pneumolysin on dendritic cells and macrophages. 

We found a cell death independent inhibitory effect of pneumolysin on dendritic cells and 

describe initial insight into the mechanisms behind this inhibition.  

In paper III we discovered distinct roles in adhesion and complement evasion for the two 

closely linked proteins PspC1 and PspC2. The proteins were differentially localized on the 

bacterial surface, and correct localization was essential for the function of PspC1. 

In paper IV we found that vitamin D enhances innate responses of dendritic cells to 

pneumococcal PGN, and modulates adaptive T-cell responses towards a regulatory 

phenotype. This effect of vitamin D on the immune responses might be beneficial during 

pneumococcal infection. 

Effects of pneumococcal virulence factors cannot necessarily be transferred between cell 

types. Additionally, pneumococcal virulence factors can have multiple effects on the host and 

a slight disturbance of their surface expression can impair their function. This thesis 

underlines the complexity of the interplay between pneumococci and the host. The papers 

give insight into the activation (paper I and II), evasion (paper II and III) and modulation 

(paper IV) of the human immune responses to pneumococci. Hopefully, this knowledge will  

make some contribution to the development of protein vaccines or immunomodulatory 

therapies in the future. 
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