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ABSTRACT 

Coronary artery disease (CAD) is the underlying cause of myocardial infarction and stroke that 

together are responsible for nearly 30% of all global deaths. CAD is a common complex disease 

caused by the interactions of multiple genetic and environmental risk factors acting across 

several metabolic and vascular tissues. Owing to the complexity of these interactions, systems 

genetics is an increasingly recognized path to a better understanding of complex diseases. In 

this thesis, we applied systems genetics by integrating the analysis of genotype (DNA) and 

global gene expression (RNA) data from metabolic and vascular tissues with phenotype data 

from the clinically well-characterized subjects in the Stockholm Atherosclerosis Gene 

Expression (STAGE) study. We validated the initial findings using genome-wide association 

studies (GWAS) and several gene expression datasets from mice and cell models. As a result, 

we for the first time inferred regulatory gene networks (RGNs) with key drivers of CAD, several 

of its main risk factors and atherosclerosis regression. 

In paper I, we designed a computational pipeline to reconstruct RGNs with key drivers in 

CAD using the STAGE study. Then, by integrating expression quantitative traits (eQTLs) of 

these RGNs with genotype data from several GWAS, 30 CAD-causal RGNs interconnected in 

blood, vascular and metabolic tissues were identified. Twelve of these RGNs were further 

validated in gene expression and phenotype data from the Hybrid Mouse Diversity Panel. As 

proof of concept, by targeting the key drivers AIP, DRAP1, POLR2I, and PQBP1 in a cross-

species-validated, arterial-wall RGN involving RNA-processing genes, we re-identified this 

RGN in THP-1 foam cells and independent gene expression data from CAD macrophages and 

carotid lesions.  

In paper II, we developed a cross-tissue weighted gene co-expression network analysis (X-

WGCNA) method (used in Paper I) that reliably captures gene activities both within and across 

tissues. X-WGCNA is implemented as a package in R and is available online.  

In paper III, we inferred transcription factor (TF) RGNs from three plasma cholesterol 

lowering (PCL)-responsive gene sets causally related to regression of early, mature, and 

advanced mouse atherosclerosis. We then used THP-1 cells in an in vitro atherosclerosis 

regression model to successfully validate 3 key drivers in these RGNs driving regression in 

early (PPARG), mature (MLL5), and advanced (SRSF10/XRN2) atherosclerosis. 

In paper IV, we inferred the STAGE eQTLs (used in papers I and II) and identified subsets 

with gene regulatory effects across multiple tissues that according to GWAS were highly 

enriched in association with CAD. To better understand the pathophysiological role of these 

multi-tissue eQTLs, we identified and analyzed a number of associated gene sets. 

A key result of this thesis is a repository of RGNs with key drivers for CAD, CAD risk factors, 

and atherosclerosis regression. This repository together with the computational pipeline 

including X-WGCNA should be useful in future studies that aim to go beyond genetic loci 

identified by GWAS and provide opportunities for novel diagnostics and therapies. 
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1 INTRODUCTION 

Atherosclerosis is a disease of the arterial wall where lipid-rich plaques form over a life time, 

leading to a gradual impairment of the blood flow. As the plaques expands into the arterial 

lumen, blood flow becomes increasingly restricted and eventually the stress to the endothelial 

layer leads to a rupture and clot formation by aggravating blood platelets. Together, the 

plaque and clot can cause a complete blockage of the local arterial blood flow; blockage of 

the coronary arteries of the heart leads to a myocardial infarction (MI). If a blood clot instead 

is released, it might travel with the circulation to the brain and cause a stroke. Atherosclerosis 

of the coronary arteries is called coronary artery disease (CAD) —the most common cause 

of mortality worldwide. In fact, according to a report by the World Health Organization 

(WHO) as well as other studies [1-5], cardiovascular diseases were responsible for 17.5 

million deaths in 2012, which corresponds to 31% of all global deaths; 14 million of these 

deaths were due to CAD or stroke. These statistics are surprising, given lifestyle 

improvements (in particular, a sharp reduction in the number of active smokers) and the 

successful targeting of CAD risk factors, such as hypercholesterolemia by statins [6] and 

hypertension by beta-blockers [7], but at the same time underscore the urgency of developing 

new research strategies to battle atherosclerosis and CAD. 

One such strategy is systems biology, which integrates genetics (i.e., DNA associations with 

phenotypes) with genomics (i.e., RNA phenotypes) and is therefore increasingly referred to 

as systems genetics [8-13]. Systems genetics is based on the idea of understanding the flow 

of all biological information from inherited DNA variants that increase risk of disease 

through and their interactions with environmental factors to produce complex disease 

phenotypes. Systems genetics has largely been made possible by the development and 

refinement of high-throughput next-generation techniques. This development has also led to 

markedly reduced cost and allow genome-wide scale (omics) measurements of DNA, RNA 

(transcriptomics), proteins (proteomics), metabolites (metabolomics), and lipids 

(lipidomics). A chief reason for the development of systems genetics is genome-wide 

association studies (GWAS). In GWAS large cohorts consisting of tens of thousands of 

patients and controls are compared to find DNA variants associated with disease. For CAD, 

GWAS have identified more than 150 genetic risk loci [14, 15]. The challenge now is to 

identify the causal mechanisms by which these loci contribute to CAD development. It 

remains unclear if single variants within these loci affect the expression or function of a single 

gene in a given cell type or whether instead multiple DNA variants within loci affect several 

genes across cell types, tissues, or even organs to cause disease [8, 16]. In parallel to many 

single-gene approaches, we and others [8-10, 12] have proposed a network-enabled wisdom 

(“NEW”) strategy, which relies on sophisticated algorithms incorporated into computational 

tools that can be applied to data from GWAS, genetic (DNA) and genomic (RNA) studies to 

identify disease-driving molecular networks. 

In this thesis, I describe a computational pipeline we developed that integrates multi-tissue 

systems genetics and GWAS as well as cross-species analyses. When this pipeline was first 
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applied to the Stockholm Atherosclerosis Gene Expression (STAGE) study (to which I have 

had unique access during my PhD studies), we were able to robustly reconstruct and validate 

regulatory gene networks (RGNs) and key disease drivers in CAD. To implement this 

pipeline, we mainly relied on existing methods but also developed a new computational tool 

that extends the established method of weighted gene co-expression network analysis 

(WGCNA) by making it applicable to cross-tissue (CT) analysis (X-WGCNA).  

1.1 BACKGROUND 

As the name implies, CAD affects the coronary arteries of the heart to cause MI [17]. The 

development of CAD, however, is chiefly determined by a number of metabolic and 

inflammatory CAD risk factors. 

1.1.1 Coronary artery disease (CAD) 

Arteries are vessels within the body that carry oxygen-rich blood to all our organs, including 

the heart. Atherosclerosis affects most large to middle-sized arteries, including those in the 

heart, brain, legs, pelvis, and kidneys. CAD in the coronary circulation of the heart is a 

progressive life-long inflammatory disease [17-19]. If you do not have CAD you are highly 

unlikely to have an MI, although MI is a result of both CAD and thrombosis (i.e., the 

formation of blood clots). Thus, preventing CAD can also to a great extent prevent MI. It is 

therefore important to understand the risk factors and etiology of CAD. CAD is a 

multifactorial common complex disease. Although the central disease process in CAD is in 

the arterial walls of the heart, plaque formation (see further below) is also driven by metabolic 

factors [20], including hypercholesterolemia and diabetes as well as hypertension (mechanical 

stress to the arterial wall). Metabolic factors are mostly caused by molecular defects in the main 

metabolic organs, such as the liver, skeletal muscle, and fat deposits. 

1.1.2 CAD-risk factor 

CAD has both genetic risk factors, which cannot be modified, and environmental risk factors, 

which can be modified [17, 19]. Genetic risk factors include elevated levels of low-density 

lipoprotein (LDL)/very low-density lipoprotein  (VLDL) [21] and lipoprotein (a), hypertension 

[22], age, sex, family history [23], obesity, [24] and diabetes [22]. Environmental risk factors 

include a high-fat diet, smoking, lack of exercise, and infectious agents. 

1.1.3 Atherosclerosis development 

Normal large artery consists of three layers, Figure 1 [17, 19, 25]: 

1) Intima (the innermost layer), a monolayer of endothelial cells oriented toward the 

circulating blood and a basal membrane oriented toward the media. 

2) Media (the middle layer), consisting of smooth muscle cells (SMCs) 

3) Adventitia (the outer layer), consisting mostly of structural cell types such fibroblasts. 
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Figure 1: The structure of healthy aorta. (left) Cross section of an aorta. (right) Different 

layers. Modified from [26] 

Atherosclerosis starts with the activation of the endothelium, the cell layer between the blood 

flow and the arterial wall (specifically, the intima), particularly at sites of turbulent blood flow, 

such as bifurcations. This leads to the accumulation of cholesterol-rich low-density lipoprotein 

(LDL) particles at these sites in the sub-endothelial matrix, where they become oxidized, which 

further activates the endothelium. The activated endothelium now attracts circulating 

inflammatory cells (i.e., white blood cells, primarily monocytes) that migrate into the arterial 

wall (intima). Inside the intima, migrating monocytes proliferate and also differentiate into 

macrophages. These macrophages react to and internalize oxidized LDL. Eventually, the 

macrophages become lipid-laden with an appearance in the microscope resembling foam cells, 

which together form so-called fatty streaks—the starting point for the development of 

atherosclerotic plaque (Figure 2). 

 

Figure 2: Foam cell formation. Modified from [27] 

As foam cells increase in number, they begin to accumulate in a necrotic core consisting of live 

foam cells as well as foam cells undergoing apoptosis or necrosis. As a result, vascular smooth 

muscle cells start to migrate from the media to the intima layer of the artery, where they start 
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to produce collagen to form fibrous cap to contain the growing core of lipids. As the necrotic 

core with its fibrous cap grows into the lumen of the artery, it starts to impede blood flow. Over 

time, the plaques harden, and the fibrous cap can break, causing a so-called plaque rupture that 

triggers the coagulation systems to form a blood clot. An MI happens when a plaque ruptures 

in the coronary arteries, which together with the resulting blood clot may occlude blood flow 

and cause distal ischemia to heart muscle supplied by the affected artery. This leads typically 

to severe chest pain radiating to the left arm. The blood clot can also detach, forming a blood 

embolus that may end up in the brain and cause a stroke or elsewhere in the body and cause 

ischemia (typically muscle pain). 

Atherosclerosis is believed to be a life-long progressive disease, which can start as early as the 

second decade of life. The initial stages of the disease are asymptomatic (Figure 3). In the later 

stages, when the clinical events occur, it is generally too late the regress CAD to healthy 

coronary arteries. Today, in patients suffering from CAD (e.g., chest-pain after heavy or mild 

labor) or MI, the acute event is often treated successfully. However, these patients eventually 

die from heart failure due to multiple smaller heart attacks, which result in insufficient healthy 

heart muscle to maintain adequate circulation. 

 

Figure 3: Different stages of atherosclerosis development. Modified from [28] 

1.2 NEW: “NETWORK-ENABLED WISDOM” IN BIOLOGY, MEDICINE AND 
HEALTH 

NEW biology is a data-driven approach based on accurate generation of high-throughput 

genetic and genomic data and high-performance computing [9-13, 29, 30]. In biology, 

medicine, and health, NEW rests on the fact that the human body consists of highly integrated 

organ systems. As a result, normal functioning as well as malfunctioning (i.e., disease states) 

must always involve the dynamic interaction of thousands of genes, proteins, and metabolites 

across multiple cell and tissue types shifting over time. This is in vast contrast to single- or so-

called Mendelian diseases, in which frequently only one or a few genes in a single, linear 

pathway are responsible for the malfunction/disease. Thus, to capture the true complexity of 
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Figure 4: NEW biology strategies. Panel A, generation of genetics-of-gene-expression 

(GGE) studies. Panel B, various model of GGE studies. Panel C, different layers of networks 

across multiple biological scales- genes, proteins, and metabolites. Modified from [10, 12, 31] 
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normal molecular biology and how such states are perturbed in states of disease, the NEW 

biology puts forward RGNs as a much more appropriate representation of molecular biology 

than linear pathways. The development of high-throughput data collection and high-

performance computing has allowed the NEW biology era to surface by provided the necessary 

means to infer RGNs from observational measurements in hundreds to thousands of 

individuals. 

A challenge for the NEW biology is to design computational tools to reconstruct molecular 

networks that are causal (not reactive or independent) for variation in disease phenotypes across 

individuals (Figure 4A). 

The first model assumes that an alteration in DNA alleles—such as a single nucleotide 

polymorphism (SNP), a copy-number variation, or insertions/deletions—is directly linked to 

a phenotype through a single intermediate phenotype such as a transcript. In the second 

model, multiple intermediate states (such as transcripts, proteins, and metabolites) can be 

activated by the genetic variation to cause a phenotype. These multiple intermediate effectors 

including environmental perturbations can, through omics measurements, be captured in 

regulatory networks (Figure 4B). According to the central dogma, different intermediate 

phenotypes can be ordered into a causal hierarchy in relation to the end phenotype/disease 

(Figure 4C). 

1.2.1 High-throughput data collection techniques 

With advanced technologies, it is now possible to quantify global transcript levels in relevant 

tissues by using hybridization-based microarray or next-generation sequencing methods of 

RNA sequencing (RNA-seq). 

Microarray: Microarray analysis was the first high-throughput technology to measure the 

expression of thousands of genes simultaneously [32]. The main limitation of microarray 

analysis is that it examines only genes for which there are probes on the chip and thus cannot 

detect novel RNA transcripts [33]. 

Next-generation sequencing: Next-generation sequencing technology [34-37] is a major 

breakthrough to extract biological information from DNA and RNA samples. Unlike the 

microarray technology, RNA-seq is not limited to a certain set of probes, since RNA-sequences 

generated from a RNA sample are mapped to its unique region of the genome. Thus, novel 

transcripts can be detected [38]. 

1.2.2 Biological network 

Biological networks [16, 31, 39-42] are the graphical representation of probabilistic or 

associative interactions (edges) between biological components (e.g., DNA, genes, proteins, 

metabolites (network “nodes”)) that together characterize a biological system. In this thesis, we 

will study networks with edges between genes that are either undirected (representing co-
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expression associations between the nodes) or directed (representing regulatory or probabilistic 

gene interactions (e.g., Bayesian networks)).  

 Co-expression gene network  

A co-expression gene network is an undirected graph in which each network node has at least 

one edge to another node, as the node-pair is significantly co-expressed (Figure 5A). With 

expression profiles from several RNA samples, co-expression similarity for each gene pair can 

be computed. Co-expressed genes are biologically meaningful because nodes in a co-

expression network collectively represent biological functions or pathways. Numerous 

computational methods and tools have been developed to construct co-expression gene 

networks [43-45]. Such methods measure the expression similarity between each gene pair in 

the data by using a method (Pearson or Spearman) to rank correlations that then are represented 

in a topology overlap matrix (TOM), where weak (i.e., non-significant) correlations are 

removed. 

 Regulatory gene network 

A regulatory gene network (RGN) is a directed graph where edges between nodes/genes are 

directed from the regulatory/source node to the regulated/target node (Figure 5B). Thus, the 

variation in expression of the source node causes variation in expression in the target node, and 

not the other way around. Again, various computational methods are available to construct 

RGNs [11, 30, 46-50]. Details are further explained in “Materials and Methods” section (see 

below, pages 18, 23). 

 Tissue-specific versus cross-tissue gene networks 

As the name implies, tissue-specific networks are derived from data isolated from a single 

tissue. However, complex multifactorial diseases like CAD are driven by molecular processes 

that are affected by multiple tissues. For example, cholesterol metabolism is regulated by the 

liver (synthesis and uptake) and adipose tissue and skeletal muscle (lipolysis). Therefore, it 

makes sense to also seek gene networks operating across different tissues. With studies like 

STAGE, we are fortunate to have gene expression data from multiple tissues of each CAD 

patient, allowing us to reconstruct network of genes also across tissues into so-called cross-

tissue (CT) gene networks. In CT gene networks, each node corresponds to a gene-tissue pair. 

Thus, a given gene might occur more than once in a network if it originates from different 

tissues. A typical CT gene network looks like a bipartite graph (Figure 5C). Of note, CT 

correlations can only be calculated based on common samples between two tissues (Figure 

5D). As a consequence, the sample size becomes smaller when assessing CT edges, further 

weakening correlations that are already weak, likely because intermediate CT network nodes 

are not detectable in the gene expression data connecting separate tissues such as signaling 

molecules in plasma and lymph and also because of neuronal signaling. We therefore reasoned 

that the cut-offs for significant CT gene-gene interactions (i.e., edges) need to be set at a more 

relaxed level than significant gene-gene interactions (i.e., edges) within a single tissue (see 

below, “Materials and Methods”, pages 19-20). 
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Figure 5: Schematic gene network and cluster. (A) Co-expression gene network, where gene 

G1 is significantly co-expressed with genes G2 and G3. (B) RGN, where gene G1 is a regulator 

and regulates its target genes G2 and G3. (C) Typical CT connections between two tissues. (D) 

Correlation measurements; shaded samples are common in both tissues; therefore, for CT 

correlations we considered only those samples. Small arc shows TS correlations; big arc shows 

CT correlations (E) Gene clusters, a heatmap of gene-gene correlation. In top and left color-

coded bars, each color represent a co-expression cluster (i.e., network). The diagonal indicates 

that the significantly co-expressed genes form co-expression clusters/networks. 
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 Gene co-expression clustering 

The human genome consists of around 20,000 coding genes in each tissue and cell type to allow 

them fulfill their role in the human body. It has been observed that when genes are functionally 

associated (frequently termed a “gene module”), they are also to some extent co-expressed and 

therefore can be captured by co-expression clustering. Various algorithms and tools are 

available to perform co-expression clustering [43, 51]. We used weighted gene co-expression 

network analysis to generate co-expression clusters (Figure 5E). 

1.2.3 Expression quantitative trait locus 

Besides environmental influences, genetic variations affect gene expression [52-55]. Genomic 

regions (i.e., SNPs) that are associated with gene expressions are termed expression 

quantitative trait loci (eQTLs). When an eQTL affecting the expression level of transcript is 

located in the same region of the gene, it is called a cis-eQTL (i.e., SNP affecting the transcript 

is within 1 Mbp up- or downstream of the transcriptional starting site of the gene), (Figure 

6A). In contrast, when an eQTL affects the expression level of transcript/gene outside 1 Mbp 

or on another chromosome it is termed a trans-eQTL (Figure 6B). Studies in mice, rats, and 

human cells and tissues have shown that ≥30% of variation in gene expression is influenced by 

eQTLs [55-57]. Genomic regions containing eQTLs affecting hundreds of genes are called “hot 

spot” regions [58].  

 

Figure 6: cis- and trans-eQTL Modified from [13] 

1.2.4 Genome-wide association studies 

Genome-wide association studies (GWAS) identify genomic loci where DNA variance is 

associated with a trait or disease. GWAS are most commonly performed in thousands of 

patients with a given disease who are compared to population controls assumed to have no 

disease. In this fashion, SNPs that occur more frequently in people with a particular disease 

(i.e., cases) than in people without the disease (i.e., controls) can be identified [59, 60]. GWAS 

have been performed for hundreds of human traits and diseases [61, 62]. Specifically for CAD, 

the largest current GWAS combine data from over 194,000 individuals and have robustly 

identified 150 loci associated with increased risk of CAD [14]. 
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GWAS Catalog: The GWAS Catalog is a collection of all published SNP-trait associations 

with P-values < 1.0 x 10-5 identified by GAWS [61]. As of 1 August 2016, the GWAS Catalog 

documented 24069 unique SNP-trait associations from 2512 studies.  

1.2.5 Causal network 

 

Figure 7: Causal relationships and causal gene network 

According to the central dogma in molecular biology and in the heart of systems genetics, 

causal genes are defined as genes that either are known to be regulatory (i.e., transcription 

factors) or are regulatory in other ways, such as by acting through eQTLs. The causal nature of 

these genes propagate to downstream genes in signaling pathway that in turn affects other 

biochemical pathways [11, 49]. Following this principal, “CAD-causal” modules/networks are 

distinguished (as opposed to reactive or independent networks) (Figure 7) as follows: 

o Networks containing one or more CAD candidate genes mapped to genome-wide 

significant loci for CAD by GWAS or  

o Networks containing more eQTLs whose underlying SNPs are significantly associated 

with CAD (P-value < 0.05) according to the summary dataset of case-control 

CARDIoGRAM meta-analysis of CAD GWAS [14] than expected by chance (i.e., 

roughly 5 % of the eQTLs in a network are expected by chance to have a GWAS P-

value < 0.05).  

1.2.6 Clinical cohort 

To unravel the complexity and causes of common complex diseases (CCDs) like CAD, more 

integrative biology is needed. The analysis of genetics-of-gene-expression (GGE) datasets has 

already proven useful for identifying disease-linked networks and, within these networks, novel 

candidate genes [9, 49, 63-65]. 

In NEW biology, the first major step is to collect clinical cohorts with intermediate phenotypes 

that besides DNA and clinical characteristics are RNA from disease-relevant tissues. Early 

GGE studies used blood samples, as these are easily obtainable. However, for complex diseases 

like CAD vascular and metabolic tissues are equally important. The Genotype–Tissue 

Expression (GTEx) [66, 67] is one of the largest GGE datasets, containing 1641 samples across 

43 tissues collected from 175 individuals. A possible limitation of this cohort is that samples 

are collected postmortem. The Stockholm Atherosclerosis Gene Expression (STAGE) dataset 

[68, 69], used in this thesis, is a unique CAD GGE study that considers seven vascular and 
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metabolic tissues of well-characterized CAD patients. Two vascular and four metabolic tissues 

and blood were collected during coronary artery bypass grafting surgery from 121 well-

characterized CAD patients. STAGE is now followed by The Stockholm-Tartu Atherosclerosis 

Reverse Network Engineering Task (STARNET) study [70], in which the same samples are 

gathered from 600 CAD patients. 
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2 AIM OF THE THESIS 

The main aim of this thesis is to design and implement a computational pipeline using the 

unique GGE STAGE study to, for the first time, allow discovery of RGNs with key driver’s 

across seven vascular and metabolic tissues acting to cause CAD. More specifically: 

I. Develop and implement a computaional pipeline to identify and validate RGNs 

causal for CAD and some of its risk factors by primarily using the STAGE study. 

II. Develop and validate a CT-weighted gene co-expression network analysis (X-

WGCNA) method. 

III. Reconstruct human TF-regulatory gene networks from genes involved in regression 

of atherosclerosis in mice. 

IV. To infer eQTLs from the STAGE study and define key regulatory eQTLs acting 

across vascular and metabolic tissues and with these assocaited gene sets. 
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3 MATERIALS AND METHODS 

3.1 GENETICS OF GENE EXPRESSION COHORT 

3.1.1 STAGE 

In the Stockholm Atherosclerosis Gene Expression (STAGE) study, seven vascular and 

metabolic tissues of well-characterized CAD patients were sampled during coronary artery 

bypass grafting (CABG) surgery [68, 69, 71]. Patients eligible for CABG were included but 

those with severe systematic non-CAD diseases were excluded. Tissue samples (Table 1) were 

obtained from atherosclerotic arterial wall (AAW), internal mammary artery (IMA, 

nonatherosclerotic arterial wall), liver, skeletal muscle (SM), subcutaneous fat (SF), visceral 

fat (VF), and blood. 

Table 1: Number of genotype and global gene expression samples in STAGE 

 AAW IMA Liver SM SF VF Blood 

AAW 73 (68) 57 59 57 48 62 65 

IMA  88(79) 68 70 58 77 77 

Liver   87(77) 71 56 77 75 

SM    89(78) 61 78 76 

SF     72(63) 61 60 

VF      98(88) 87 

Blood       105(102) 

The STAGE study comprises a total of 121 patients with global gene expression data from 

up to 7 tissues whereof 109 also were genotyped. The main diagonal of the table shows the 

numbers of samples with global gene expression data and in brackets the number of samples 

with both gene expression and genotype data. The off-diagonal numbers indicate the 

common number of gene expression samples between all pairs of tissues. 

DNA from 109 patients with sufficient quantities and qualities (≥1 µg, 1.7 > 260/280 > 1.9 

with Nanodrop, Agilent) were genotyped with the GenomeWideSNP_6 array (Affymetrix). 

Allele frequencies for 909,622 single-nucleotide polymorphisms (SNPs) were determined with 

the Birdseed algorithm in Affymetrix Power Tools (v 1.14.2); 530,222 autosomal SNPs with 

call rates of 100% and minor allele frequency >5% and in Hardy-Weinberg equilibrium (P-

value > 10-6) were used for downstream analysis (the “QC SNP set”) [71]. 

Custom-made HuRSTA-2a520709 arrays (Affymetrix) were used for gene expression 

profiling of total RNA samples (≥5 µg, 1.95 > 260/280 > 2.05 with Nanodrop, Agilent) from 

121 patients according to the manufacturer’s instructions [69]. 
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 Phenotypic measurements, mostly standard plasma measures, were collected as described [68] 

and are shown in Table 2. 

 

To determine the extent of atherosclerosis, all CABG patients underwent preoperative biplane 

coronary angiography (Judkins technique). Angiograms were evaluated with quantitative 

coronary angiography (QCA) techniques. The left and right coronary arteries and their 

branches were divided into segments [72]. Each segment was measured during end-diastole. 

Two measurements, stenosis score and segment area score, were calculated as explained below 

to define the degree of atherosclerosis: 

i. The stenosis score measures stenosis in each patient and calculates the percentage 

diameter stenosis (%DS)—the reduction in lumen diameter caused by the plaque (see 

Figure 8). Stenosis was categorized as mild or severe, as shown below. A total 

occlusion is 100%DS. The score is calculated as 1 x #mild stenosis + 2 x #severe 

stenosis. 

 

 

Table 2: Basic characteristics of the STAGE patients 

Plasma cholesterol (mmol/L) Plasma triglycerides (mmol/L) 

    Total  4.09 ± 1.01     Total 1.41 ± 0.73 

    VLDL 0.32 ± 0.25     VLDL 1.04 ± 0.67 

    HDL  1.50 ± 0.29     HDL 0.16 ± 0.05 

    LDL 2.10 ± 0.79     LDL 0.26 ± 0.09 

Patients (n) 124 CRP (mg/L) 8.8 ± 2.93 

Age (years) 66 ± 8 HbA1c   5.24 ± 1.41 

Gender (male) 110 (89%) Diagnoses and 

therapies 

 

BMI (kg/m2) 27 ± 3.7     Hypertension 74 (60%) 

Waist/hip ratio (m) 0.94 ± 0.06     Beta-blockers 103 (83%) 

Blood pressure (mm Hg)      Hyperlipidemia 86 (69%) 

    Systolic  141 ± 19     Lipid lowering 101 (81%) 

    Diastolic  80 ± 9.1     Diabetes mellitus 25 (20%) 

Smokers 8 (7%)     Insulin 23 (19%) 

Values are mean ± SD or n (% of all STAGE patients) 
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Figure 8: Stenosis score measurement 

ii. The segment area score measures the amount of atherosclerosis in all the vessels in a 

patient. The measurement is the total percentage of plaque area in a segment (see 

Figure 9). To obtain a final score, the average percent stenosis over all the segments is 

calculated. 

 

Figure 9: Segment area score measurement 

Clinical phenotypes strongly and robustly associated with CAD were classified in four groups: 

I. Extent of atherosclerosis 

1. Stenosis score 

2. Segment area score 

II. Cholesterol: The following plasma levels considered as type of cholesterol associated 

with CAD, 

1. Total cholesterol (TC) 

2. Very low density lipoprotein (VLDL) 

3. Low-density lipoprotein (LDL) 

4. High-density lipoprotein (HDL) 

III. Glucose: The following four measurements considered as type of glucose associated 

with CAD [73, 74]: 

1. Plasma glucose (fasting) 

2. HbA1c 

3. Pro-insulin 

4. Insulin 

IV. C-reactive protein (CRP): Inflammation is intimately and robustly linked to CAD and 

that is why we and others use CRP as a marker of inflammation in the context of CAD. 

[75, 76] These study shows CRP provides improved method of identifying persons at 

risk for cardiovascular diseases. 
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3.1.2 SÖS 

SÖS is an extension of the STAGE study in which 39 CAD patients sampled during carotid 

stenosis surgery at the Södersjukhuset (SÖS) hospital in Stockholm [68, 77]. Patient exclusion 

criteria were same as STAGE (i.e., free from any other severe systematic diseases). Tissue 

samples were collected from carotid lesions (n = 25) as well as blood. From blood monocytes 

were isolated using Ficoll separation [78] and differentiated into macrophages (n = 36) in vitro. 

Gene expression profiling was done with the same platforms as in the STAGE study. Table 3 

shows basic characteristics of the STAGE SÖS patients. 

3.1.3 HMDP 

Hybrid mouse diversity panel (HMDP) [53, 79] is a global gene expression datasets from DNA 

and RNA samples isolated from 105 strains of mice fed regular, high fat diet and cross-bred to 

the atherosclerosis-prone ApoE-Leiden background. Here are the definitions of different 

subgroups of mice from the HMDP: 

 Healthy male mice fed a chow diet for 16 weeks and then sacrificed. 

 High-fat diet mice were fed a chow diet for 8 weeks and then put on a high-fat, high-

sucrose diet for 8 weeks before sacrifice.  

 Atherosclerosis-prone mice where the 105 strains were bred onto the C57/BL6 

background and were made transgenic for ApoE-Leiden and ApoB. These mice were 

fed a chow diet for 8 weeks and then fed a high-fat diet for 16 weeks before sacrifice. 

Table 3: Basic characteristics of the STAGE SÖS patients 

Plasma cholesterol (mmol/L) Plasma triglycerides (mmol/L) 

    Total  4.56 ± 1.09     Total 1.30 ± 0.49 

    VLDL 0.27 ± 0.19     VLDL 0.85 ± 0.41 

    HDL  1.70 ± 0.42     HDL 0.20 ± 0.07 

    LDL 2.45 ± 0.85     LDL 0.30 ± 0.09 

Patients (n) 38 Diagnoses and therapies  

Age (years) 69 ± 10     Hypertension 16 (42%) 

Gender (male) 25 (66%)     Beta-blockers 20 (53%) 

BMI (kg/m2) 25 ± 3.2     Hyperlipidemia 7 (18%) 

Waist/hip ratio (m) 0.91 ± 0.07      Statins 25 (66%) 

IMT, mm (mean ± SD) 1.20 ± 0.16      ACE inhibitors 12 (32%) 

      Calcium channel blockers 7 (18%) 

       Loop diuretics 4 (11%) 

Values are mean ± SD or number (%) of patients. ACE indicates angiotensin-converting 

enzyme; IMT, intima-media thickness; 
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Relevant to STAGE tissues/expression profiles were mouse tissues sampled from the aorta, 

liver, adipose and heart. From the atherosclerosis-prone ApoE-Leiden mice, atherosclerotic 

aortic arch samples were collected for gene expression profiling and for assessment of the 

extent of atherosclerosis. The phenotypes of the HMDP mice were similar to those obtained in 

STAGE. 

3.2 ATHEROSCLEROSIS MOUSE MODEL 

3.2.1 Mouse model 

The Ldlr-/-Apob100/100Mttpflox/floxMx1-Cre mouse model [80, 81] used to study atherosclerosis 

regression. These mice have a plasma lipoprotein profile (Ldlr-/-Apob100/100 ) resembling that of 

familial hypercholesterolemia causing advanced and rapid atherosclerosis formation. These 

mice also have a genetic switch (Mttpflox/floxMx1-Cre) to lower plasma cholesterol at any time 

point during atherosclerosis progression. 

3.2.2 Mouse dataset 

Total RNA was isolated with an RNeasy Mini-kit with a DNAse I treatment step (Qiagen). 

RNA quality was assessed with a Bioanalyzer and RNA quantity with a Nanodrop. Mouse 

Gene 1.0 ST arrays (Affymetrix) were used for global mRNA expression profiling [81].  

3.3 DATA PRE-PROCESSING 

3.3.1 Data normalization 

Robust multi-array average (RMA) was used for background correction, normalization, and 

summarization of raw microarray data through Affymetrix Power Tools, v 1.14.2. A custom-

made Chip Description File (CDF) was used to match 381,707 probes on the array to 19,610 

probe sets for unique genes (to avoid cross-hybridization between alternative transcripts) 

according to the hg19 human genome assembly [69]. 

3.3.2 Principal component analysis 

To ensure the quality of data, we analyzed 612 mRNA profiles (considered as 19610-

dimensional vectors) by multidimensional scaling using the Euclidean distance and Sammon’s 

nonlinear mapping criterion [71]. 

3.4 GWAS DATASETS 

To define causality for CAD, we used the CARDIoGRAM [14], WTCCC [82], and MIGen 

[83] GWAS datasets. For causality in CAD risk factors, we used the fasting glucose [84], blood 

lipids [85], HbA1c [86], and pro-insulin [87] GWAS datasets. In addition, we also used the 

GWAS Catalog [61, 88] to identify CAD GWAS candidate genes. 
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3.5 COMPUTATION ANALYSIS OF A SET OF GENES OF INTEREST  

3.5.1 Reconstruction of TF-RGNs 

To reconstruct TF-RGNs, we used the context likelihood of relatedness (CLR) method [46, 89] 

with co-expression similarities measured by Pearson correlation. After reconstructing TF-

RGN, we used the data processing inequality (DPI) [90] technique to remove weak 

connections. The TF-RGN analysis flowchart is shown in Figure 10. 

 

Figure 10: TF-RGN flowchart 

The TF-RGN reconstruction algorithm was implemented in C++ and is available at 

https://github.com/hustal/TF-RGN. 

3.5.2 Key driver identification, part I 

In the first part of my thesis, I used a simplified definition of “key drivers” as network nodes 

belonging to the top 15% highly connected nodes. Subsequently, I used a more stringent and 

sophisticated way of defining key disease drivers in RGNs (see section below, “Key driver 

identification, part II”, page 24).   

3.6 COMPUTATION ANALYSIS OF GENETICS OF GENE EXPRESSION DATA  

For the analysis GGE data, we established an overall computational pipeline (Figure 11). 

The individual steps are explained below. 

https://github.com/hustal/TF-RGN
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Figure 11: Computational pipeline for GGE analysis. (top) Yellow color shows steps in 

discovery phase and (bottom) green color shows steps in validation phase. 

3.6.1 Module identification 

To identify co-expressed genes in functionally associated modules (active in and across tissues) 

from global gene expression data, we used the CT-weighted gene co-expression network 

analysis (X-WGCNA) method, which we modified from the original weighted gene co-

expression network analysis (WGCNA) method [43, 44] in Paper II. 

In brief, X-WGCNA takes as input a set of normalized gene expression matrices, one for each 

tissue, where rows indicate samples (i.e., individuals) and columns indicate gene symbols. For 

each tissue, the most variant genes are selected on the basis of their standard deviation across 

the samples in each tissue. We either used a standard deviation or a "number of genes" cut-off. 

Then, an adjacency matrix A was calculated across all selected expression traits (i.e., gene-

tissue pairs) as 

Aij = {
  |𝐶𝑖𝑗|𝛽1      if 𝑖 and 𝑗 belong to the same tissue    

|𝐶𝑖𝑗|𝛽2      if 𝑖 and 𝑗 belong to different tissues
 

In WGCNA [43], the adjacency matrix is calculated using a single parameter β = β1 = β2. In X-

WGCNA [Paper-II], the parameters β1 and β2 are determined independently to obtain scale-

free tissue-specific as well as cross-tissue subnetworks, as measured by fitting index R2 of the 

linear model which regresses logP(k) on log(k), where k ranges over the degree (i.e., weighted 

number of connections) values in the various subnetworks and P(k) is the frequency 

distribution of k. The next steps of X-WGCNA are identical to WGCNA: the topological 

overlap matrix (TOM) for A is calculated as described by [43], genes are grouped by average 
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linkage hierarchical modelling of the TOM, and a dynamic tree cut algorithm was used to cut 

the modelling dendrogram into gene clusters [91]. Finally, a user-defined threshold (default 

95%) is used to define tissue-specific (percentage of genes from the same tissue exceeding the 

threshold) and cross-tissue (otherwise) clusters. X-WGCNA is implemented as an R package 

and is available from https://github.com/hustal/X-WGCNA. A summary of the workflow is 

shown below in Figure 12. 

 

Figure 12: X-WGCNA workflow. Blue colored steps are out of scope of X-WGCNA, for 

which any tool or software could be use. Lighter red color shows input and output state. Green 

color shows the steps which will execute by X-WGCNA. For orange colored steps one could 

use X-WGCNA or any other tool.  

3.6.2 Cross-tissue modules robustness 

To test the robustness of the identified CT modules, we repeated the co-expression analysis 

seven times, each time removing the expression data from one tissue. For each tissue, we 

https://github.com/hustal/X-WGCNA
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compared the gene content of the original modules (excluding genes only expressed in the 

removed tissue) to that of the new modules.  

3.6.3 GO function analysis 

To assess the enrichment of modules in molecular functions, biological processes, and cellular 

components, we used Gene Ontology (GO) according to Bingo [92]. Fisher's exact test, and 

the Benjamini-Hochberg FDR method [93] were used to assess the statistical significances of 

GO-enriched modules (GO data version: 2014-01-29) [94, 95]. 

3.6.4 Disease-associated modules 

To identify possible disease associations with the identified co-expression modules, we used 

two methods to detect both linear and stepwise phenotype associations with each module’s 

gene expression levels. In this fashion, module associations with 4 main CAD phenotypes 

(described in section 3.1.1, page 15) were analyzed.  

i. Non-linear associations: For a given co-expression module, patients who donated 

samples of all tissues represented in the module were grouped by K-means clustering. 

Next, for the two most distinct patient groups the extent to which one of the 4 main 

CAD phenotypes differed was assessed with a rank-sum test (P-value < 0.05)  

 

ii. Linear associations: Again for the patients who donated samples of all tissues 

represented in the module, we determined non-zero Pearson correlations between the 

levels of any of the 4 main CAD phenotypes and the first principal component of the 

data matrix generated from the module gene expression levels (i.e., the “module 

eigengene” [96]). 

We combined the P-values for both these statistical tests into a single P-value by using a 

weighted data integration method to maximize the overall statistical power of the combined 

associations [97]. To correct for multiple testing, we used Story's method to estimate a positive 

false discovery rate (FDR) for each P-value in the resulting table of module-phenotype 

associations  [98]. An FDR threshold of 20% (corresponding to a nominal P-value threshold of 

0.03) was used to define true module-phenotype associations. The individually most significant 

clinical measurement for each phenotype association was recorded, and the association was 

considered established only if the combined P-value < 0.03 (FDR = 20%). 

3.6.5 Identification of causal modules 

As alluded to in section 1.2.5, page 10, we defined “CAD-causal” modules as those either 

containing: 

i. One or more of the 53 CAD candidate genes mapped to the lead SNPs within CAD 

loci having a genome-wide significance of P-value < 1.0 x 10-8 according to GWAS of 

CAD [14] or 
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ii. A larger-than-expected-by-chance number of eQTLs with CAD association (P-value 

< 0.05) according to the SNP summary dataset of the case-control CARDIoGRAM 

meta-analysis GWAS. The schematics of the risk-enrichment analysis is shown in 

Figure 13. 

 

Figure 13: Schematic of inherited risk enrichment analysis 

In brief, the set of eQTLs used to match module genes was that previously calculated from the 

STAGE cohort [71]. After matching individual eQTLs to module genes, each set of module 

eQTLs was first expanded using the 1000 Genomes to include SNPs in strong LD (r2 > 0.9). 

The enrichment of CAD association (P-value < 0.05) according to the CARDIoGRAM meta-

analysis dataset of the resulting expanded SNP set was then compared to the average 

enrichment of CAD association in 10,000 randomized, equal sized and chromosomal 

distributed SNP sets from the same data. The fold-enrichment was calculated by comparing the 

number of disease associated SNPs (𝑁 P−value < 0.05
𝑟𝑒𝑎𝑙 ) in the expanded SNP set with the average 

number of disease-associated SNPs in the 10,000 random set (𝑁̅ P−value < 0.05
𝑟𝑎𝑛𝑑 ). As the null 

distributions approximately followed a normal distribution, we defined Z-statistics as follow: 

𝑍 =  
𝑁P−value < 0.05

𝑟𝑒𝑎𝑙 −  𝑁̅P−value < 0.05
𝑟𝑎𝑛𝑑  

√ 1
𝑛 − 1 ∑ |𝑁P−value < 0.05

𝑖 − 𝑁̅P−value < 0.05
𝑟𝑎𝑛𝑑 |

2𝑛
𝑖=1

    , 𝑛 = 10,000 

The P-values were calculated from Φ(𝑍), standard normal cumulative probabilities [71, 99]. 

For modules with less than 10 eQTLs, we instead mapped SNPs of the GWA dataset to a region 

of ± 500kb of the transcription start or end site of a gene. Next, for G genes in a module, Pg for 

each gene using S mapped SNPs ( 𝑃1 <  𝑃2 < ⋯ < 𝑃𝑠) the CAD association P-value for each 

gene was calculated using Simes’ combination test [100] as following:  

𝑃𝑔 =  min
𝑘

{
𝑆.𝑃𝑘

𝑘
} , 

Where, k is the rank of sorted PS. The enrichment of CAD association (P-value < 0.001) was 

then calculated as described for eQTLs above. 
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3.6.6 Reconstruction of regulatory gene networks 

Bayesian regulatory-gene networks (RGNs) were inferred taking into account eSNP and other 

prior information to derive the most probable causal interactions from undirected co-expression 

associations. Briefly, given a directed acyclic graph (DAG) G between N expression traits, the 

joint distribution of their expression levels xi (i  = 1,...,N) is assumed to take the form 

p (x1, . . . . . . , xN | G) = ∏ 𝑝𝑁
𝑖=1 (𝑥𝑖  | {𝑥𝑗 ∶ 𝑗 ∈ 𝑃𝑎𝑖}), 

where Pai denotes the set of parent nodes of node i in the graph G. We further assume that the 

RGN is a linear Gaussian network [101] such that the conditional distributions are given by 

p (𝑥𝑖 | {𝑥𝑗 ∶ 𝑗 ∈ 𝑃𝑎𝑖}) = 𝒩(𝛼𝑖 +  ∑ 𝛽𝑖𝑗𝑥𝑗; 𝜎𝑖
2

𝑗∈𝑃𝑎𝑖 ), 

where 𝒩(µ;σ 2) denotes a normal probability distribution with mean µ and standard deviation 

σ. The parameters αi, βi,j and  σi are to be determined along with the graph structure G. 

Given a dataset D = (xim)im of expression levels for N traits in M samples, assumed to be 

drawn independently from the distribution, the likelihood of observing the data given a DAG 

G is given by 

p (D | G) = ∏ ∏ 𝑝(𝑥𝑖𝑚 | { 𝑥𝑗𝑚 ∶ 𝑗 ∈  𝑃𝑎𝑖})𝑁
𝑖=1

𝑀
𝑚=1 . 

Using Bayes’ theorem we can therefore write the likelihood of observing G given the data D 

as  

P (G | D) =  
𝑝(𝐷 |𝐺) 𝑃(𝐺)

𝑍
 , 

where P(G) is the prior probability of observing G and Z is a normalization constant. 

Expression traits with cis-acting eQTLs or known transcription factors (TFs) are more likely 

to act as causal regulators of other expression traits and this information can be encoded in the 

prior probability P(G) to reconstruct causal networks [102]. Here we imposed a hard prior that 

only expression traits with eQTLs, GWAS candidate genes or known TFs are allowed to be 

parents of any other traits (i.e. P(G) = 0 if G contains an edge having a non-eQTL, non-TF or 

non-GWAS gene as its source node, and constant otherwise). A locally optimal DAG was then 

found starting from a random graph by randomly adding, removing and reversing edges until 

the likelihood no longer improves. Maximum-likelihood values for the model parameters α, β 

and σ are learned along with the graph structure by linearly regressing a node on its current 

parents. 

Because it is computationally and statistically infeasible to reconstruct RGNs with 20,912 

nodes (total number of expression traits in the co-expression network) with a hundred samples 

or less, we imposed an additional constraint in the structure prior P(G), where traits were 

imposed to take their parent nodes from among traits with which they share a co-expression 

module. This prior effectively breaks down the ‘large’ problem of reconstructing a DAG on 
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the entire set of traits to a set of independent ‘small’ problems of reconstructing a DAG for 

each co-expression module, and significantly reduces the number of parameters to be estimated 

from the data.  

Here we employed the Bayesian Information Criterion (BIC) to score models and a multiple 

restart greedy hill-climbing algorithm, using edge additions, deletions, and reversals to search 

locally optimal DAGs for each co-expression module [103]. 

Algorithm parameters were set to solve 25*N2 regression problems during each run of the 

search algorithm, where N is the number of traits in a module. A final consensus causal network 

was constructed by considering all edges that appeared in 30% or more of the locally optimal 

DAGs found during each run of the search algorithm. The consensus network was made acyclic 

by iteratively removing the weakest supported edge from every cycle in the network.  

3.6.7 Key driver identification, part II 

Key drivers—the key regulators, or upstream genes, in a gene network—were also identified 

according to a published method [104]. In its simplest form, a key driver of an RGN is its most 

highly connected regulator gene (see Key driver identification, part I, page 18), the one with 

the highest number of outgoing edges. However, a gene that regulates one or more highly 

connected regulators is in fact more influential than the downstream regulators, even if it is not 

itself highly connected. Therefore, in the second key driver analysis, we also considered how 

many network genes can be reached from a given regulator in up to H+1 steps, where H is the 

parameter of the method. The value H=1 (i.e., considering direct neighbors and two-step 

neighbors) was used as the default value in the key driver software that has been implemented 

in R. 

3.7 VALIDATION OF REGULATORY GENE NETWORKS 

3.7.1 Cross-species validation 

As briefly described above (page 16), to assess the cross-species conservation of the identified 

STAGE modules associated with any of the 4 main CAD phenotypes, we used the HMDP gene 

expression and phenotype data [53, 79]. First, we identified mouse orthologs of the human 

genes in the CAD-associated STAGE modules. Then, identical to the STAGE CAD phenotype-

module associations (see above, page 21), we sought mouse gene expression and phenotype 

linear and nonlinear associations between gene expression matching STAGE and HMDP 

tissues (atherosclerotic aorta, adipose, SM-heart, liver) and matching phenotypes in STAGE 

and HMDP (i.e., extent of atherosclerosis assessed from angiograms (STAGE) and the aortic 

root (HMDP) as well as measures of plasma cholesterol and glucose). Since mice do not 

express CRP, CRP-associated CAD-causal modules were not validated. 

3.7.2 Key driver validation 

Key drivers identified in RGNs of the atherosclerotic arterial wall were validated by siRNA 

silencing in THP-1 macrophages, which were then incubated with Ac-LDL to induce foam cell 
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formation, as described [69, 105]. Gene expression data from siRNA-treated and control THP-

1 cells were generated with Agilent Human Custom Gene Expression Microarray 8x15K, 

containing the three module genes (in total 245 unique genes from the modules 42, 58, and 98) 

(spotted in triplicate), according to the manufacturer’s instructions. The quantile normalization 

method was used to normalize the data, and differentially expressed genes were identified by 

maintaining P-value (< 0.05) and FDR (< 10%) with the Benjamini-Hochberg procedure [93] 

through the ‘limma’ package in R. 

The probability that a key driver was specific for its network rather than not affecting it more 

than expected by chance, or affecting all three networks indiscriminately, was calculated by 

using hypergeometric distribution P-values in R, with the expression of all module genes as 

background. 

3.7.3 Module connectivity 

To assess module connectivity, we compared the total connectivity (sum of adjacency values, 

i.e. weighted correlation coefficients using scaling parameter beta = 6) of module genes in 

independent data to the total connectivity of 10000 random gene sets of the same size. We 

confirmed that the random connectivities were normally distributed and used their Z-score 

and P-values from the normal distribution to test if the real connectivity value deviated 

significantly from the random ones. 

3.7.4 Module differential connectivity 

Module differential connectivity (MDC) between pairs of similar tissues (i.e., AAW and IMA) 

was calculated as the ratio of total module connectivity (sum of adjacency values, i.e. weighted 

correlation coefficients using scaling parameter beta = 6, between all pairs of module genes). 

3.8 RECONSTRUCTION OF SUPER NETWORK  

To construct a super-network of the CAD-causal modules to assess how causal modules may 

communicate, we calculated the Pearson correlation (considering common samples between 

module pairs) between all “module eigengenes” [96] and keeping all edges with absolute 

correlation threshold, r > 0.40 and P-value < 0.05. 
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4 RESULT 

4.1 PAPER I 

The main goal of the Paper I was to establish and implement a pipeline (Figure 11, page 19) 

to reconstruct and validate CAD RGNs and key drivers from GGE cohort. Key findings of this 

paper are shown in Box1. 

We used 20,912 (7703 unique) of the most variant genes from 612 gene expression profiles in 

the seven STAGE tissues for CT-weighted gene co-

expression network analysis. One hundred seventy-one 

modules (94 tissue-specific and 77 cross-tissue) were 

identified; 33% of the module genes were previously 

related to atherosclerosis or CAD, and 147 module 

genes were found to be CAD candidate genes identified 

by GWAS.  

Sixty-one of 171 modules were associated with one of 

the four main CAD phenotypes: 14 atherosclerosis 

modules, 29 cholesterol modules, 14 glucose modules, 

and 15 CRP modules. Ten modules were associated with 

more than one phenotype. Atherosclerosis, cholesterol, and CRP modules were found to be 

mostly tissue-specific, whereas glucose modules were mostly CT modules. 

Thirty of 61 phenotype-associated modules were also identified as CAD-causal: eight 

atherosclerosis modules (of 14), 10 cholesterol modules (of 29), five glucose modules (of 14), 

and four CRP modules (of 15). Three additional CAD-causal modules were associated with 

more than one of the four CAD phenotypes. Of the genes in the CAD-causal modules, 42% 

had previously been related to atherosclerosis or CAD. The CAD-causal modules also 

contained 59 unique CAD candidate genes identified by GWAS. 

Twelve of 26 CAD-causal modules were validated through phenotypic associations in the 

HMDP. The CAD-causal atherosclerosis modules 42, 58, and 98 were also validated against 

the extent of atherosclerosis in mice (Figure 14). RGN 42 was re-identified in independent in-

house data from atherosclerotic carotid artery lesions (module 42 genes had 9.5-fold higher 

connectivity compared to background), as well as in associated blood macrophages (3.7-fold 

higher connectivity). Moreover, RGN 42 was also validated in two external datasets: 

lipopolysaccharide-stimulated monocytes (2.2-fold higher connectivity) and macrophages 

(2.0-fold higher connectivity) isolated from patients with CAD (GEO: GSE9820).  

Finally, four of seven key drivers in RGN 42 (AIP, DRAP1, POLR2I, and PQBP1) were 

validated in the THP-1 foam cell model in that siRNA targeting affected cholesterol-ester 

accumulation primarily by affecting RGN 42 genes. 

Box1 

AIP, DRAP1, POLR2I and 

PQBP1 are THP-1 foam cell 

validated key drivers in RGN 

42, which was identified as a 

cross-species, independently 

validated CAD-causal 

atherosclerosis module 

involved in RNA processing. 
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Figure 14: Cross-species validated atherosclerosis RGNs. Bayesian RGNs with key drivers 

inferred from mice validated CAD-causal modules (i.e., module eQTLs are risk-enriched or 

contain CAD GWA candidate genes) linked to extent of coronary atherosclerosis (A–C). KD, 

key driver; GWA genes, total and CAD candidate genes identified in GWAS of CAD, plasma 

lipid/glucose levels, and type 2 diabetes. Fold enrichment for CAD association was assessed 

for network eQTLs/SNPs using the CARDIoGRAM dataset. The molecular process with the 

strongest functional enrichment assessed by Gene Ontology is indicated. 
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We also tested the network connectivity of CAD-phenotype-associated modules by comparing 

gene connectivity between genes in modules identified in AAW (diseased artery) and IMA 

(healthy artery). Overall, we found that the connectivity for CAD-causal AAW/IMA modules 

increased in the diseased compared to healthy state. In contrast, the connectivity of CAD-

reactive modules (i.e., modules that were not CAD-causal) either did not change or was lower 

in AAW than in IMA. We concluded that in CAD-driving modules, which frequently 

represented disease activity such as inflammation, gene-gene interactions increased in the 

disease state. The non-causal modules, however, reflected more normal vascular functions, and 

the connectivity of those modules was reduced in the disease state, suggesting that normal 

vascular physiology is impaired in the disease state. 

Outside the main study pipeline, we also examined the connectivity between the 30 CAD-

causal RGNs in a super-network based on RGN eigengene correlations. All 30 RGNs were 

connected to at least one of these 30 RGNs (Figure 15). CT modules 98 (dominated by VF 

genes, including its four key drivers) and 113 (dominated by SF genes, including its key 

drivers) appeared to act as hub modules and thus as key driver RGNs in this super-network. 

These two RGNs mediated all but one connection (from RGN 27 in SF) from the metabolic 

tissues to coronary atherosclerosis (i.e., AAW) RGNs.  

 

Figure 15: Super network of CAD-causal modules. Eigengene associations (r > 0.4, P-value 

< 0.05) were used to link the 30 CAD-causal modules. RGNs/modules (circles) are oriented 

according to dominating tissue-belonging of genes and are color-coded accordingly. Numbers 

in circles are the module IDs. Circle size corresponds to the number of RGN/module genes. 

Colored circle circumferences indicate phenotype associations; dotted lines, RGNs/modules 

that are reactive to indicated phenotype; solid line, RGNs/modules that are causal for indicated 
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phenotype. Orange, plasma cholesterol measures; blue, plasma glucose metabolism measures; 

and purple, plasma CRP levels. Next to each box, the names of GWA genes in the 

RGNs/modules and related trait (in superscript) are indicated. 

We noted that CT RGNs/modules appeared to have more connections in this super-network of 

30 CAD-causal modules than in TS RGNs/modules. This notion was reinforced by 

computational assessment of the super-network's connectivity. From this we found greater and 

stronger connectivity for CT modules than for TS modules (mean number of connections: 5.33 

± 1.73 vs. 3.43 ± 2.04, P-value < 0.02; mean connectivity strength: 2.96 ± 0.98 vs. 1.98 ± 1.20, 

P-value < 0.03). Notably, module 98 contains genes involved in endopeptidase activity 

previously implicated in atherosclerosis [106], and one of its four key drivers, CDKN2A, is a 

CAD candidate gene for the well-established Chr9p21 CAD risk locus [61]. 
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4.2 PAPER II 

In this study, we invented and validated a CT-weighted gene co-expression network analysis 

(X-WGCNA) method as an extension of weighted gene co-expression network analysis 

(WGCNA) [43]. We also implemented X-WGCNA in R.  

X-WGCNA considers gene expression matrix from n number of tissues as an input to produce 

both TS and CT modules. We tested the X-WGCNA with seven tissues and 100,000 genes. 

Figure 16 shows a comparison of WGCNA and X-WGCNA modules constructed from the 

STAGE and GTEx [67] dataset. Regardless of the threshold cut-off, this comparison indicated 

that X-WGCNA captures both CT and TS modules using both STAGE and GTEx datasets, 

whereas WGCNA mostly capture TS modules. 

 

Figure 16: Comparison between X-WGCNA and WGCNA. X-axis for threshold level to 

detect module type and y-axis for number of modules. Blue, CT modules; green, TS modules. 
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With the X-WGCNA, the GO enrichment of CT modules was higher (68%, 999 categories vs. 

58%, 881 categories), especially if we consider only categories that are exclusively found in 

CT modules (296 categories or 20% of total vs. 107 categories or 7% of total). These findings 

reinforce the idea that CT-modules are identifiable and real. 

To further compare cross-tissue modules inferred with X-WGCNA and WGCNA, we took 

advantage of having the genotype data available for the STAGE study participants. Another 

proof of the biological relevance of the CT-modules was that the X-WGCNA CT modules 

contained 2.5-fold more genes with eQTLs than the TS modules (344 vs. 134), which was not 

the case for WGCNA-inferred modules (230 vs. 286). We also found that X-WGCNA CT 

modules were more often enriched with inherited risk for CAD than TS modules (15 modules 

vs. 1 module), which was not the case when comparing WGCNA CT versus TS modules (6 vs. 

9). 

Finally, X-WGCNA was found to be flexible in terms of choosing parameters like scale-free 

fitness, total tissue, most variant genes, minimum module size, and module type. 
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4.3 PAPER III 

In this study, we examined gene expression in the atherosclerotic arterial wall in mice during 

atherosclerosis regression as a result of plasma cholesterol lowering (PCL) at three different 

stages of atherosclerosis progression: early (30 weeks), mature (40 weeks), and advanced (50 

weeks) (Figure 17). 

First, the extent of atherosclerosis progression and regression was studied in atherosclerosis-

prone mice. We found that atherosclerosis regression in response to PCL occurred at all three 

stages (early, mature, and advanced), but only at the early stage did PCL lead to complete 

regression after 20 weeks. PCL at the mature and advanced stages led to substantial, but not 

complete, atherosclerosis regression (Figure 17A).  
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Figure 17: Major steps and results of cholesterol responsive gene network study. (A) 

Atherosclerosis progression and regression curves (Straight line and dotted line for 

progression and regression curve respectively). Values are surface lesion area. Lesion 

development in controls without PCL (●) and in mice after PCL started at week 30 (▲), 40 

(▄), or 50 ( ). (B) Venn diagram of identified PCL-responsive and regression-reactive gene 

sets for the three stages. Green circle, early stage; yellow circle, mature stage; red circle, 

advanced stage. (C) TF-RGN from early PCL-responsive gene sets. Red rectangles, master 

regulators; yellow rectangle, validated master regulator. Modified from [81] 

Next, we identified PCL-responsive and regression-reactive genes for the three different stages 

(Figure 17B). The three PCL-responsive gene sets were less shared among the stages than the 

regression reactive gene sets. Analysis of inherited CAD-risk enrichment showed that only the 

PCL-responsive gene sets were risk-enriched (early, 2.0-fold, P-value = 3.1 x 10-14; mature, 

1.4-fold, P-value = 6.8 x 10-4; advanced, 1.5-fold, P-value = 1.3 x 10-6), indicating that the 

PCL-responsive genes were causal for the regression of atherosclerosis. 

Given the causal role of the PCL-responsive gene sets, we reconstructed PCL-responsive TF-

RGNs and within these identified master regulators: 

Out of 215 human orthologs matching the early mouse PCL-responsive gene set, 53 were found 

in a TF RGN with PPARA and PPARG as top master regulators (Figure 17C).  

Similarly, 185 PCL-responsive genes identified in the mature lesions formed a TF-RGN with 

the master regulators HMGB2, ADORA2A, TERF1, and MLL5.  

In the advanced PCL-responsive TF-RGN, the top master regulators were SRSF10, XRN2, and 

HMGB1, which regulated a total of 379 network genes. 

Using the THP-1 foam cell model, we validated four master regulators as affecting cholesterol-

esters accumulation in vitro: PPARG in early (Figure 17C), MLL5 in the mature, and SRSF10, 

and XRN2 in advanced TF-RGNs. 
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4.4 PAPER IV 

In this study, STAGE eQTLs were inferred from seven CAD-relevant tissues using matrix 

based eQTL discovery method kruX [107] and examined for inherited CAD-risk enrichment. 

In Figure 18 (left side), the principal steps of this study are shown. Principal component 

analysis of gene expression data showed that gene expression clearly clustered according to 

individual tissues (Figure 18A). 
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Figure 18: STAGE eQTL and their inherited CAD risk enrichment. (A) Sammon plots of 

global gene expression. Each dot represents each samples expression profiles in each tissue. 

(B) Distribution of 29,530 cis-eQTLs in terms of their transcription start site (TSS). Dark blue, 

TS eQTLs; light blue, eQTLs shared by 2 tissues; orange, eQTLs shared by 3 tissues; red, 

eQTLs shared by >3 tissues. (C) STAGE eQTLs inherited risk enrichment analysis for TS 

eQTLs (first layer, outer circle) and multi-tissue eQTLs (nth layer from outer circle means 

shared by n tissues). Color scale satnds for degree of enrichment. Modified from [71] 

In total, we discovered 29,530 cis-eQTLs (associated with 6450 unique genes), of which 7429 

(about 25% of total) were multi-tissue eQTLs, and 1494 trans-eQTLs, of which only 2.9% 

were multi-tissue eQTLs. Figure 18B shows distribution of cis-eQTLs in relation to the 

transcription start site (TSS).  

Analysis of inherited CAD-risk analyis revealed that multi-tissue cis-eQTLs were more 

enriched with CAD risk than TS cis-eQTLs according to both MIGen and WTCCC GWAS. 

Among the multi-tissue cis-eQTLs, those increasingly shared were increasingly risk enriched 

(Figure 18C).  

Then, 42 multi-tissue (shared by 5 or 6 tissues) cis-eQTLs were found to be more risk enriched 

(7.3 -fold, P-value < 7.7 x 10-20 in WTCCC; 2.3-fold, P-value < 3.1 x 10-6 in MIGen and 4.2-

fold, P-value < 1.1 x 10-54 in CARDIoGRAM). To assess downstream effects on gene 

expression governed by these eQTLs, we identified gene sets of correlated genes, which we 

further analyzed using GO. Twenty-nine highly co-expressed (absolute correlation >0.85) gene 

sets (each containing 30 genes from different tissues) were associated with 16 of the above 42 

multi-tissue cis-eQTLs. This 29 multi-tissue gene sets contains 19 unique genes called master 

regulatory eQTL genes. G3BP1, FLYWCH1, PSORS1C3, and SNAPIN were ranked as top four 

master regulatory eQTL genes based on their association with the functional and biological 

process and with the atherosclerosis score in STAGE. Finally three (G3BP1, FLYWCH1, and 

PSORS1C3) of them were validated in the THP-1 foam cell model. 

 

 

 

 

 

 

 

 

 



 

36 

5 DISCUSSION 

In this thesis, we used a multifaceted systems genetics approach in which we integrated 

analyses of gene expression, DNA genotypes, clinical phenotypes, and GWAS datasets. We 

established a computational pipelines showing how systems genetics can be used to discover 

and validate eQTLs, regulatory gene networks, and key disease drivers active within and across 

tissues that are important for a common complex disease, CAD.  

Our findings in Paper I provides a preliminary view of the regulatory landscape of causal 

molecular processes active within and across a majority of tissues believed to be central to 

advanced CAD. We identified 94 TS modules and 77 CT modules using X-WGCNA, an 

extension of WGCNA (explained in Paper II). Computationally it was not feasible to consider 

all genes from the seven STAGE tissues and therefore we only considered the most variant 

genes from each tissue. Nonetheless, we could still identify TS and CT RGNs that included 

both established [108] and previously unreported CAD candidate genes in the form of key 

drivers. These candidate genes participate in diverse molecular processes and established 

pathways of atherosclerosis, cholesterol and glucose metabolism, and acute inflammation, and 

were regulated in both TS and CT networks. Importantly, we found that nearly half of the 

RGNs were evolutionarily conserved, as judged from validation against the HMDP [53]. As 

proof of concept, in RGN 42, a cross-species-validated, mouse atherosclerosis- and CAD-

causal network active in AAW and involving RNA-processing genes, four key drivers (AIP, 

DRAP1, POLR2I, and PQBP1) specifically activated the same network genes and affected 

THP-1 foam cell formation. The entire RGN 42 was also re-identified in independent gene 

expression data from both CAD macrophages and carotid lesions. 

We also reconstructed a super-network containing all 30 CAD-causal RGNs across all the main 

CAD tissues. This super-network may prove to be important for understanding CAD because 

it links a good portion of disease-driving molecular processes known for CAD, including their 

relation to key metabolic risk factors; it also provides a preliminary overview of the gene 

regulatory landscape in CAD. Mapping the regulatory framework of complex diseases in this 

fashion provides a starting point to assess the overall molecular status of individual patients 

[9]. In fact, more detailed versions of regulatory maps like the one presented here (Figure 15, 

page 28) will likely be required to achieve the goals of precision medicine. 

Besides integrated whole-systems genetics study, it is equally essential to study specific 

subsystems or development phases of disease. In Paper III, we conducted such studies, and we 

discovered PCL-responsive genes causal for atherosclerosis regression for three stages of 

atherosclerosis progression. Here we used only TF genes as prior and the CLR-Pearson method 

to reconstruct RGNs instead of the more commonly used Bayesian method. We identified three 

TF RGNs with key drivers that were significantly associated with CAD-related functions like 

immune response. In the end, we validated key drivers by showing their effects on foam cell 

formation, a key and continuous disease-driving process at all stages of atherosclerosis 

development. 
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Analysis of inherited risk enrichment of module genes using GWAS is a novel way to define 

causality. We have implemented this approach in Papers I and III. Paper IV originally describes 

this method and the eQTL discovery in STAGE. STAGE eQTL risk enrichment revealed that 

multi-tissue (shared by more than one tissue) eQTLs are more enriched in CAD risk than TS 

eQTLs. This finding is consistent with our module risk enrichment result in Paper I—that CT 

modules are more risk enriched than TS modules—and is a feasible finding considering the 

multifactorial and CT nature of CAD.  

We made another noticeable observation of this thesis: In Paper I, we discovered RGNs by 

analyzing a human dataset and validated them in a mouse dataset, whereas in Paper III we 

discovered PCL-responsive gene sets in mice and validated those genes in human datasets. 

Thus, it appears both approaches are valid although it seems to us that if possible, it is always 

preferable to make the initial finding in humans and thereafter to validate the findings in animal 

models such as mice. 

In this thesis, we also extensively discussed and showed how integrated systems genetics 

analysis can and perhaps must be used to embrace the complexity of common diseases like 

CAD. A limitation of this thesis is that we only analyzed transcriptomics data along with 

genotype and clinical phenotype. Proteomics, metabolomics, and other omics data will no 

doubt complement systems genetics approaches to CAD. 

In sum, in this thesis we show that a systems genetics approach on the STAGE GGE study has 

helped to provide a better understanding of the molecular landscape in CAD and regression of 

atherosclerosis. It is our hope that the RGNs revealed in this thesis will be proven useful for 

finding novel therapies and early diagnostics and thereby help to reduce the heavy burden CAD 

puts on most societies. 
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6 CONCLUDING REMARKS AND FUTURE WORKS 

In this thesis, we showed an application of the NEW biology by using an integrated systems 

genetics approach to retrieve disease associated gene networks and key drivers. We also 

developed a cross-tissue weighted gene co-expression network analysis method, called X-

WGCNA, and proved that it can reliably capture both TS and CT modules across tissues. 

Specifically for CAD, my thesis provides a first repository of RGNs and KDs in CAD. In the 

near future I plan to,  

 Apply X-WGCNA to other complex diseases for which multiple tissues have or will 

be sampled.  By updating X-WGCNA from sequential execution to parallel execution, 

we can minimize its run time and maximize its capacity. 

 Apply the X-WGCNA to RNAseq data of the STARNET study 

 Map the RGNs to corresponding protein-protein interaction networks. 

 Further validate the RGNs and KDs disclosed in this thesis by working together with 

CAD scientists with in-depth knowledge of established CAD pathways. 
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