DEVELOPMENT OF NOVEL PET RADIOLIGANDS FOR VISUALIZING BETA CELL MASS AND AMYLOID PLAQUES

Mahabuba Jahan

Stockholm 2016
Cover Illustration:

From left to right; i) whole body PET scans in pigs using radioligands 18FFE-DTBZ (left) and 18FFE-DTBZ-d4 (right) ii) transaxial PET/CT fusion image in pig where white and red arrows indicate pancreas and hepatic tissues uptake iii) autoradiogram and insulin staining of consecutive human pancreas section iii) whole hemisphere coronal autoradiographs of AD (left) and non-AD (right) subjects.

All previously published papers were reproduced with permission from the publisher.

Published by Karolinska Institutet.

Printed by Eprint AB 2016

© Mahabuba Jahan, 2016
Development of novel PET radioligands for visualizing Beta Cell Mass and Amyloid Plaques

Thesis for doctoral degree (Ph.D.)

By

Mahabuba Jahan

Principal Supervisor:
Professor Christer Halldin
Karolinska Institutet
Dept. of Clinical Neuroscience

Co-supervisor(s):
Associate Professor Olof Eriksson
Uppsala Universitet
Dept. of Medicinal Chemistry

Dr. Peter Johnström
AstraZeneca Translational Science Center
Karolinska Institutet
Dept. of Clinical Neuroscience

Opponent:
Associate Professor Dirk Bender
Aarhus University
Dept. of Nuclear Medicine & PET research
Aarhus, Denmark.

Examination Board:
Professor MD Mikael Rydén
Karolinska Institutet
Dept. of Medicine
Huddinge, Sweden.

Professor Franklin Aigbirhio
Cambridge University
Dept. of Clinical Neuroscience
Cambridge, UK.

Associate Professor Luke Odell
Uppsala Universitet
Dept. of Medicinal Chemistry
Uppsala, Sweden.
Goals aren't a matter of luck; they're a matter of persistence. Nothing worth achieving happens overnight.

This thesis is dedicated

To the loving memory of my father, for your endless support and strong belief in me,
To my mother, for giving me the light of this world,
To my husband, for loving me exactly who I am,
To my adorable daughter, for giving me a new meaning in life.
ABSTRACT

The aim of the thesis was twofold. The first aim was to radiolabel small molecules by using carbon-11 and fluorine-18 for visualising beta cell mass (BCM) in the pancreas by PET. Diabetes Mellitus (DM) is a chronic metabolic disorder that results from an absolute or relative lack of BCM of endocrine pancreas. The lack of an adequate non-invasive imaging PET probe prevents detailed examination of beta cell loss during onset and progression of DM as well as development of novel treatments and islets transplantation progress. The second aim of the thesis was to radiolabel peptide molecules with fluorine-18 to visualise beta amyloid in Alzheimer’s disease (AD) brain. AD is a chronic, progressive neurodegenerative disorder. Brain penetration study of a labelled peptide, specific for beta amyloid that can cross blood-brain-barrier (BBB), is important to gain knowledge about the fate of the molecule as a diagnostic probe.

A series of three novel radioligands for BCM imaging has been developed in this thesis. In paper I, a vesicular monoamine transporter type 2 (VMAT2) specific radioligand $[^{18}F]$FE-DTBZ-d4 was synthesised in two steps. First step is the nucleophilic $[^{18}F]$fluorination to produce deuterated-$[^{18}F]$fluoroethylbromide followed by the O-alkylation of desmethyl-DTBZ precursor to produce $[^{18}F]$FE-DTBZ-d4. The in vivo pharmacokinetics (PK) studies in pigs by PET/CT demonstrated reduced in vivo defluorination; therefore, it may be an improved potential candidate for imaging VMAT2 dense tissue i.e. islets transplantation in proximity to cortical bone structure. In Paper II, a glucokinase (GK) specific radioligand, $[^{11}C]$AZ12504948, was synthesised in one step via alkylation of O-desmethyl precursor using $[^{11}C]$methyl iodide. Both in vitro and in vivo (pig and monkey) studies with $[^{11}C]$AZ12504948 for imaging GK in the pancreas and liver indicated low specificity. Increased target specificity is required for further progress in GK imaging using PET radioligands. In Paper III, a radioligand for G-protein coupled receptor 44 (GPR44), $[^{11}C]/[^{3}H]$AZ Compound X, was synthesised via S-methylation of sodium sulfinate salt in one step using $[^{11}C]/[^{3}H]$methyl iodide. In vitro binding of the radioligand, evaluated by autoradiography (ARG) on human and rat pancreatic tissues, confirmed higher specific binding in islets of human pancreatic tissue and no measurable binding in rat pancreas, which is devoid of GPR44. These studies indicate that the radioligand has suitable properties for beta cell imaging with high potential for further preclinical and clinical evaluation.

Three novel D-peptides were radiolabelled with fluorine-18 ($[^{18}F]$ACI-87, $[^{18}F]$ACI-88, $[^{18}F]$ACI-89) by using prosthetic group N-succinimidyl-4-[18F]fluorobenzoate, $[^{18}F]$SFB, with epsilon (ε)-amino groups of lysine residues of peptide precursors in two steps. First step is the synthesis of $[^{18}F]$SFB followed by the addition of $[^{18}F]$SFB via acylation to the peptide molecule. Trimethylammonium salt $[^{18}F]$SFB as well as the reference standard SFB were synthesised with good yields. Three 18F-peptide reference standards were also synthesised by using SFB. Preliminary ARG measurements were performed in AD and control human brains. ARG demonstrated higher radioligand uptake in the AD brain compared to age-matched control brain, which makes them potential for further use in in vivo testing by PET. However, preliminary PET (in vivo) studies in cynomolagus monkey brain, using these 18F-D-peptides, confirmed too low BBB penetration, making them unsuitable for further use as in vivo PET probes.
LIST OF THESIS PUBLICATIONS

III. Radiosynthesis and preliminary evaluation of novel radioligand for GPR44 using autoradiography on postmortem pancreas for visualizing Beta Cells. (Manuscript).

Related publication which is not part of the thesis:

In vivo and *in vitro* characterization of $[^{18}\text{F}]$-FE-$(++)$-DTBZ as a tracer for beta-cell mass. *Nuclear Medicine and Biology* 2010, 357-63.
CONTENTS

1 Introduction .. 1
 1.1 Molecular imaging using PET ... 1
 1.2 How does PET work ... 2
 1.3 Development of PET radioligands ... 4
 1.3.1 Time aspects ... 4
 1.3.2 Binding affinity .. 5
 1.3.3 Specificity, selectivity and sensitivity ... 5
 1.3.4 Lipophilicity .. 5
 1.3.5 Specific radioactivity (SRA) ... 6
 1.3.6 Radiolabelling and radiometabolism ... 7
 1.4 Strategies for carbon-11 labelling ... 7
 1.5 Strategies for fluorine-18 labelling .. 8
 1.5.1 Electrophilic substitution ... 9
 1.5.2 Nucleophilic substitution ... 10
 1.5.3 ¹⁸F-Fluorination via prosthetic groups (Papers I and IV) 11
 1.6 Radiochemical purity, purification and formulation ... 12
 1.7 Combine modality (PET/CT) .. 13
 1.8 Diabetes mellitus .. 13
 1.8.1 Beta cell imaging (BCI) ... 15
 1.9 Alzheimer’s disease (AD) .. 16

2 Aims .. 18

3 Materials and Methods .. 19
 3.1 Radiochemistry .. 19
 3.1.1 Production of [¹¹C]methyl iodide ([¹¹C]CH₃I) ... 19
 3.1.2 Production of [¹¹C]methyl triflate ([¹¹C]CH₃OTf) ... 20
 3.1.3 Radiosynthesis, purification and formulation of ¹¹C-radiopharmaceuticals 20
 3.1.4 Production of fluorine-18 .. 22
 3.1.5 Radiosynthesis, purification and formulation of ¹⁸F-radiopharmaceuticals 22
 3.2 Quality control of ¹¹C and ¹⁸F labelled radiopharmaceuticals 24
 3.3 Specific radioactivity (SRA) determination .. 24
 3.4 Liquid chromatography-mass spectrometry (LC-MS/MS) analysis.............................. 25
 3.5 In vitro autoradiography ... 25
 3.6 Homogenate tissue saturation binding ... 27
 3.7 PET/CT in pig and nonhuman primate (NHP) ... 27

4 Results and discussion ... 29
 4.1 Radiolabelling and biological evaluation of deuterated ... 29
 [¹⁸F]FE-DTBZ-d4 (Paper I) ... 29
4.2 Radiolabelling and biological evaluation of $[^{11}C]$AZ12504948 in pancreas and liver (Paper II) ...31

4.3 Radiosynthesis and *in vitro* evaluation of $[^{11}C]/[^{3}H]$AZ compound X in human pancreas (Paper III). ..34

4.4 Fluorine-18 labelling of three novel D-peptides with $[^{18}F]$SFB and evaluation by whole-hemisphere human brain slices autoradiography (Paper IV) ..37

5 Summary of findings ...42

6 Future perspective and challenges ...43

7 Acknowledgements ..45

8 References ...48
List of abbreviations

^{11}C Radioactive, neutron deficient isotope of carbon
^{18}F Radioactive, neutron deficient isotope of fluorine
^{13}N Radioactive, neutron deficient isotope of nitrogen
^{15}O Radioactive, neutron deficient isotope of oxygen
BCI Beta cell imaging
BCM Beta cell mass
CT Computed tomography
MRI Magnetic resonance tomography
$[^{11}\text{C}]\text{CH}_4$ $[^{11}\text{C}]\text{Methane}$
$[^{11}\text{C}]\text{CH}_3\text{I}$ $[^{11}\text{C}]\text{Methyl iodide}$
$[^{11}\text{C}]\text{CH}_3\text{OTf}$ $[^{11}\text{C}]\text{Methyl triflate}$
DTBZ Dihydrotetrabenazine
VMAT2 Vesicular monoamine transporter 2
ARG Autoradiography
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
EOB End of bombardment (Irradiation)
EOS End of synthesis
Cyclotron Particle accelerator
MeV Mega electron volt
Carrier Nonradioactive form of radioligand/radiotracer
α Alpha particle, positive helium ion (He^{2+})
Bq Becquerel, SI derived unit of radioactivity
Hot-Cell Lead-shielded containment box
HPLC High performance liquid chromatography
HRRT High resolution research tomography
Kryptofix ($\text{K}_{2.2.2.}$) 4, 7, 13, 16, 21, 24-hexaoxa-1, 10-diazabicyclo [8.8.8]-hexacosane
Lipophilic Non-polar, tendency to not dissolve well in water
Hydrophilic Polar, tendency to dissolve well in water
LogP Logarithm of partition coefficient octanol/water
MeCN Acetonitrile
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
RCY Radiochemical yield
RT Room temperature
SRA Specific radioactivity
ROI Region of interest
SUV Standard uptake value
$T_{1/2}$ Half-life
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Binding potential</td>
</tr>
<tr>
<td>PVE</td>
<td>Partial volume effect</td>
</tr>
<tr>
<td>PTC</td>
<td>Phase transfer catalysts</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>In vitro</td>
<td>“in flask” i.e. in the test tube</td>
</tr>
<tr>
<td>In vivo</td>
<td>“in life” i.e. in the organism</td>
</tr>
<tr>
<td>ID</td>
<td>Injected dose</td>
</tr>
<tr>
<td>B<sub>max</sub></td>
<td>Binding maximum i.e. total receptor density</td>
</tr>
<tr>
<td>K<sub>d</sub></td>
<td>Dissociation constant</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>I.V.</td>
<td>Intravenous injection</td>
</tr>
<tr>
<td>p.i.</td>
<td>Post injection</td>
</tr>
<tr>
<td>MIP</td>
<td>Maximum intensity projection</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>RM</td>
<td>Reaction mixture</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>β-Cells</td>
<td>Beta cells</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Henri Becquerel discovered natural radioactivity in 1896, immediately after the discovery of X-rays by W. C. Röntgen. The research on radioactivity was further investigated by Marie Curie and her husband Pierre Curie, and they were able to isolate natural radioactive elements in 1898. The discovery of this natural radioactivity had great scientific sensation at that time and still has tremendous implications in our lives. Suddenly, several new elements were discovered that emitted different types of radiation but were chemically identical with already known elements, and to solve the problem, the concept of isotopes (Greek; iso=same, tope=place) was introduced by Soddy in 1913. Almost at the same time (1913), the practical implication of the isotopic theory was demonstrated by George de Hevesy and his colleagues in the field of inorganic chemistry. De Hevesy was also the first one to use the radioactive tracer technique in biology by using the radioisotope lead-212, ^{212}Pb, to investigate lead uptake in plants and radiotracer phosphorous-32, ^{32}P, to study the tracer distribution in rats. So far, for the radioactive nuclides used in these studies, nature was the supplier.

1.1 MOLECULAR IMAGING USING PET

New era of tracer technique using radiation started with the discovery of artificially induced radioactivity by the couple Irene Curie and Frédéric Joliot in 1934. They demonstrated the production of artificial radioactive isotope (^{30}P) with short half-life ($t_{1/2} = 3.15$ min), by bombarding aluminium foil with alpha particles via the nuclear reaction $^{27}\text{Al} (\alpha, n)^{30}\text{P}$. They also suggested that it was possible to produce similar radioactive elements with different nuclear reactions by using different bombarding particles, such as protons, neutrons and deuterons. This hypothesis was proved to be true by Ernest Lawrence et al. in Berkeley, California who had already started working with accelerating particles between two D-shaped magnets, called a cyclotron, to produce high energy protons and deuterons that could bombard elements to explore the nature of the atomic nucleus. In the same year (1934), with the progression of increased size of the cyclotron, Lawrence and Livingston et al. could produce large quantities of artificial short lived radioisotopes, including carbon-11, nitrogen-13, oxygen-15 and fluorine-18, which have subsequently been proved to have great significance in biomedical science, research and clinical practice today.

The term molecular imaging can be defined as the non-invasive visualisation of biological processes in vivo at the molecular or cellular levels using specific imaging techniques.
tracers. Positron emission tomography (PET) is a non-invasive molecular imaging \textit{(in vivo)} technique that allows for the localisation of a molecule labelled with positron emitting nuclides, based on the detection of positron annihilation radiation and subsequently processing of raw data onto an image. PET was developed at the end of 1970s, but the full potential of the technique was not acknowledged outside the scientific community until 1990s. Numerous studies with 18F-labelled deoxyglucose ([18F]FDG), developed by Ido et al., using PET scanners demonstrated how accumulation of [18F]FDG in cancerous lesions helped by giving a solution for many problems by means of diagnosis and prognosis with cancer patients. Nowadays, PET is frequently used for early detection, characterisation, real time monitoring of diseases as well as investigating the effectiveness of therapeutic drugs. PET can provide the molecular interactions between the tracer molecule and the biological target, e.g. a protein, transporter, enzyme function and inhibition, metabolism and general biochemical function. PET has become a powerful functional imaging tool, and the most used application of PET imaging is implemented in oncology, neuroscience and cardiovascular diseases.

Another major utility of PET imaging is to understand and facilitate drug action and development, which can be investigated in two ways. First, actual drugs or new drug candidates can be radiolabelled, and pharmacokinetics of the drug such as absorption, distribution, metabolism and excretion (ADME) can be studied by PET using the microdose concept i.e. maximum doses of \leq 100 \mu g or 1/100th of the therapeutic doses are used. Based on early \textit{in vivo} PET studies, costly failures of ‘go’ or ‘no go’ decisions can be made in very early stages of drug development. The second area is to evaluate pharmacodynamics or dose finding studies through receptor occupancy. Several well characterised PET radioligands have been used to measure receptor occupancies of antipsychotic drugs and the relationship between receptor occupancy, clinical usefulness and side-effects.

1.2 HOW DOES PET WORK

PET imaging agents are radiolabelled with positron emitting radionuclides, such as 11C, 18F, 13N and 15O, which are the radioisotopes of the stable natural elements of 12C, 19F, 14N and 16O, respectively, and they decay (with different half-lives, Table 1) by the emission of a positively charged particle, called positron. For example, 11C-radioisotope decays by positron emission and forms the stable nuclide boron, 11B. When the labelled compound (radiotracer or radioligand) is administered intravenously \textit{in vivo}, the emitting positron from the radio-
nuclide travels a short distance in the surrounding matter or wet tissue where it collides with its antiparticle, an electron, and consequently annihilates. This annihilation results in emission of two 511 KeV gamma rays (photons), which travel approximately 180° apart from each other and are detected by an array of surrounding gamma ray detectors of the PET scanning device (Figure 1). Photons, which are registered only in pairs (within few nanoseconds) by the PET scanner, are considered to be originated from the same source and thereby, the position of the positron. The distribution of the radioactivity is then visualised and quantified as a function of time after reconstruction and appropriate correction for scatter and random coincidences. The distance travelled by the positron in the surrounding tissue before annihilation is known as positron range. The emitted positron energy is different for each radionuclide, which determines the travel length of the positron before annihilation (Table 1). The larger the positron energy, the longer the average distance the positron travels before annihilation and the larger the loss in spatial resolution.

![Figure 1](image.png)

Figure 1. Schematic diagram representing acquisition and reconstruction of PET images.

Table 1. Physical properties of commonly used positron emitting radionuclides (the shorter the half-life, the higher the SRA value).

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Half-life ($T_{1/2}$, min)</th>
<th>Maximum Energy (MeV)</th>
<th>Max linear range in water (mm)</th>
<th>Theoretical SRA (GBq/µmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15O</td>
<td>2.04</td>
<td>1.72</td>
<td>8.20</td>
<td>3.4×10^6</td>
</tr>
<tr>
<td>13N</td>
<td>9.96</td>
<td>1.19</td>
<td>5.39</td>
<td>7.0×10^3</td>
</tr>
<tr>
<td>11C</td>
<td>20.4</td>
<td>0.96</td>
<td>4.12</td>
<td>3.4×10^3</td>
</tr>
<tr>
<td>68Ga</td>
<td>67.6</td>
<td>1.899</td>
<td>9</td>
<td>1×10^5</td>
</tr>
<tr>
<td>18F</td>
<td>109.7</td>
<td>0.635</td>
<td>2.39</td>
<td>6.3×10^4</td>
</tr>
</tbody>
</table>
1.3 DEVELOPMENT OF PET RADIOLIGANDS

The real challenge in PET molecular imaging is the search for the ‘optimal’ ligand. This development requires a multidisciplinary approach regarding; molecular target and radionuclide selection, organic synthesis, production of radionuclide, radiolabelling, quality control, in vitro and in vivo evaluation, detection of radiation, tomographic reconstruction, and finally, the application of a series of corrections to provide image representative of the ligand distribution in the live animals or human. In order to be able to develop a successful innovative radioligand, some important parameters need to be taken under consideration which are discussed below.

1.3.1 Time aspects

In syntheses using short-lived radionuclides, time is more important than in conventional synthetic work. The 11C decay curve and the yield curves (Figure 2) indicate the importance of optimising synthesis time in relation to the labelled product formation. The length of the radiosynthesis and purification time should be as short as possible, and the radionuclide incorporation in the synthetic route should be as late as possible due to short half-lives of the radionuclides. To minimise the losses of radioactivity due to radioactive decay, work up procedure should be optimised to maximise radiochemical yield (RCY) and specific radioactivity (SRA), for example, solid phase extraction (SPE) purification is more desirable than high performance liquid chromatography (HPLC), microwave heating more than conventional heating to speed up the process. In radiochemistry, it is also important to remember that the labelled precursors (11C or 18F) are produced in very low amounts; therefore, by increasing the amount of non-labelled reactants/precursor (10^3-10^4 fold of labelled precursor), one can increase the reaction rate and rapid formation of the radiolabelled product.

![Figure 2. Decay curve for 11C (dotted line), chemical yield in a hypothetical chemical reaction involving only stable nuclides 13C (solid line), and decay-corrected RCY using same reaction but including 11C-(bold-line)°.](image)
1.3.2 Binding affinity

Binding affinity means how tightly a ligand binds to its target e.g. receptor, transporter or enzyme. Affinity is denoted as K_d and it can be expressed as the inverse equilibrium dissociation constant i.e. $K_d = k_{off}/k_{on}$. The required affinity mainly depends on the concentration of binding sites (B_{max}) in the region of interest. A low concentration of binding sites means the affinity of the radioligand must be high (low K_d). Since sites are easier to saturate, the SRA of the ligand needs to be sufficiently high. It is preferable if B_{max} is higher than K_d by one order of magnitude, i.e. if B_{max} exists at nanomolar concentration, K_d should have subnanomolar concentration for good image contrast\(^{44}\). Typically, the most successful ligand have subnanomolar or low nanomolar affinity to the target of interest \textit{in vitro}. A binding potential (BP), ratio of B_{max}/K_d, value $> 5-10$ can be used as a rule of thumb\(^{49,50}\) the higher the ratio, the more sensitive the signal.

1.3.3 Specificity, selectivity and sensitivity

The characteristic of a binding site or receptor to be activated only by a single molecule or class of molecules is known as specificity. The selectivity can be defined as relative affinity of the radioligand to the region of interest over other binding sites. If the biological target is well separated from the nonbinding site, then ligands with low selectivity can also be considered. High specificity and selectivity is required for low dense receptor site to get good signal to noise ratio. Many radioligands fail in early stages due to high non-target binding i.e. binding to a target or tissue other than the site of interest\(^{51}\). The sensitivity is affected by other factors such as kinetics, surrounding-tissue uptake, spatial resolution, data handling, etc.

1.3.4 Lipophilicity

During the development of a new radioligand, lipophilicity (log P) of a molecule plays an important role, since non-specific interaction in addition to the tissue or target increases with increased lipophilicity\(^{49}\) i.e. specific-to-nonspecific binding ratios. For example, high lipophilic molecules tend to bind to plasma protein, thus, resulting in a reduction of free fraction in the blood and reduced delivery of the ligand to the specific sites. In contrast, molecules with low lipophilicity have higher water solubility, thus, faster clearance through the kidneys and limited blood-brain-barrier (BBB) penetration. Therefore, to find an optimal log P value is a challenge during radioligand development. The
recommended log P value to cross the BBB is between 1 and 3.5, preferably less than 352. Lipophilicity can influence a drug’s or ligand’s pharmacokinetics i.e. ADME53. For example, high lipophilic compound is eliminated mostly via the liver, thus, confounding PET images of nearby tissues, e.g. in this thesis, the pancreas. Due to high uptake or nonspecific binding near gastrointestinal tract, delineation of pancreas is troublesome, consequently affecting the specific uptake. However, lipophilicity and thereby elimination path can be altered by designing the ligand to be more hydrophilic upon addition of various amide linkers54 or by incorporation of a fluorine atom; replacement of a hydrogen atom by fluorine in an aliphatic position generally decreases the lipophilicity, while substitution in an aryl group increases the lipophilicity55. Lipophilicity can be calculated theoretically in advance by using computer programs56 or practically by the logarithm of the partition coefficient ratio between octanol and water/buffer at physiological pH.

1.3.5 Specific radioactivity (SRA)

SRA is defined as the concentration of a radioactive material in a sample, and is expressed as the radioactivity of the labelled compound divided by the molar amount of the compound (Bq/mol). In this thesis, SRA is expressed as GBq/µmol. The higher the SRA, the less the amount of ligand used, consequently, minimising the risk of saturation of the binding sites, as well as less risk of perturbation of the investigated biological system with unlabelled counterpart. For low density receptor binding sites, the SRA of the radioligand is very important and can limit its usefulness as an imaging agent. Even a small amount of injected cold ligand may lead to significant receptor occupancy and decrease the signal-to-noise ratio while possibly inducing pharmacological effects. For receptor-ligand interaction studies, high SRA is required to quantify the number of free receptors followed by drug occupancy. In contrast, for drug distribution studies or labelled endogenous compounds, SRA is not that important. Theoretical SRA values of PET radionuclides are very high, since they have short half-lives (Table 1). Due to isotopic dilution with its stable element, it is impossible to reach the theoretical SRA values with 11C and 18F radioligands. Despite isotopic dilution, the obtained SRA of 11C and 18F radioligand is sufficiently high enough to follow biochemical and physiological processes. For example, in clinical settings with consistent production of the radioligand, [11]CAZ Compound X, with SRA>1000 GBq/µmol on average and in combination with weight of human (60-80 kg), the estimated administered chemical amount of the carrier following injection of 300 MBq would be <0.001 µg/kg [Paper III].
1.3.6 Radiolabelling and radiometabolism

The position of the radiolabelling is not critical for in vitro studies (e.g. frozen tissue autoradiography), since radioligand metabolism is not expected. In contrast, ligand metabolism occurs throughout in vivo PET studies; therefore, the position of the labelling is very important. The PET scanner is unable to distinguish between radiochemical entities, since it can measure only radioactivity. As a result, if a radiometabolite enters the target, it will confound PET images with background radioactivity, which is not associated with the biological process under study; especially if the radiometabolite has some degree of target selectivity. Therefore, a labelling position should be chosen carefully so that it is metabolically stable, preferably during the PET investigation, or, alternatively, labelled metabolites are hydrophilic enough and consequently eliminated quickly. For example, metabolic loss of ^{18}F in vivo can be reduced by replacing hydrogen atoms with deuterium (Paper I of this thesis) and can change the rate of reaction. The rate of metabolism of a radioligand and the lipophilicity of radiometabolites can be estimated quantitatively using radio-HPLC technique; moreover, radiometabolites can be identified with the help of highly sensitive LC-MS/MS techniques.

1.4 STRATEGIES FOR CARBON-11 LABELLING

As a key element of life, carbon is of special interest for labelling compounds, including endogenous as well as other naturally occurring bio-molecules. Replacement of naturally occurring ^{12}C by ^{11}C does not alter the (bio)chemical properties of a molecule. The choice of radionuclide is ^{11}C for radiolabelling during investigation of drugs for drug development or to measure biochemical processes. Since ^{11}C has short half-life, longitudinal in vivo studies can be performed on the same day on the same subject. Many synthetic routes to ^{11}C-compounds are already available (Figure 3) and several others are currently under development. Primary ^{11}C-precursors are mainly $[^{11}\text{C}]\text{CO}_2$ and $[^{11}\text{C}]\text{CH}_4$, which can be produced by the same nuclear reaction in nitrogen gas targets containing trace amounts of oxygen and hydrogen gas, respectively (Figure 3). Target produced $[^{11}\text{C}]\text{CO}_2$ gives lower SRA due to unavoidable isotopic dilution; nonetheless, different secondary ^{11}C-precursors can be prepared from $[^{11}\text{C}]\text{CO}_2$ by online or in one-pot procedures, which can give high SRA such as $[^{11}\text{C}]\text{cyanide}$ ($[^{11}\text{C}]\text{CN}$) and $[^{11}\text{C}]\text{carbon monoxide}$ ($[^{11}\text{C}]\text{CO}$). Secondary ^{11}C-precursors $[^{11}\text{C}]\text{CH}_3\text{I}$, obtained via gas-phase method from target produced $[^{11}\text{C}]\text{CH}_4$, can produce very high SRA (10^4 GBq/µmol) compared to $[^{11}\text{C}]\text{CO}_2$.
The most widely used methylating agent $[^{11}\text{C}]\text{CH}_3\text{I}$, introduced in 1970s68, 69 was mainly used for methylation on nitrogen, oxygen and sulfur containing nucleophiles with the corresponding desmethyl precursors44, 47. $[^{11}\text{C}]\text{CH}_3\text{I}$ can be produced either by the “wet” method or by the “dry” method70. Besides $[^{11}\text{C}]\text{CH}_3\text{I}$, carbon disulfide, $[^{11}\text{C}]\text{CS}_2$ was introduced as ^{11}C-labelling reagent for an effective route to synthesise ^{11}C-labelled organosulfur compounds71, and $[^{11}\text{C}]$methyl triflate, $[^{11}\text{C}]\text{CH}_3\text{OTf}$72-74, has been utilised to improve the RCY in ^{11}C-methylations. Recent development of the micro-reactor technology for radiosynthesis has some advantages over conventional laboratory methods such as purer products, higher yields and shorter reaction times due to superior heating and controlled mixing of reagent streams75, 76. The formation of carbon-carbon bond (^{11}C-C) via nucleophilic addition of Grignard reagent to $[^{11}\text{C}]\text{CO}_2$77 or via $[^{11}\text{C}]\text{CN}$78, 79 were very popular; however, recently organometallic-mediated ^{11}C-C cross-coupling reactions using Stille, Suzuki or Sonogashira have also emerged80-83.

![Figure 3](image.png)

Figure 3. Routes of producing ^{11}C-labelled radiopharmaceuticals.

1.5 STRATEGIES FOR FLUORINE-18 LABELLING

Fluorine atom (F) is generally not a constituent of biomolecules; nevertheless, substitution of hydrogen atom (H) or hydroxyl group (OH) from a molecule with fluorine atom is one of the most commonly used bioisosteric replacements to introduce F in radiochemistry as well as in drug development. The F and H atoms are quite similar in size; therefore, replacement with F for a H would induce minimum steric perturbations84. The capability of F atom to form hydrogen bonds due to its high electronegetivity makes it similar to a OH substituent, and due to nature of high-energy bonding with carbon, fluoro-organic pharmaceutical derivatives have improved pharmacological properties85. Therefore, almost 20% of the marketed drugs today contain at least one fluorine substituent86. Incorporation of
fluorine into drug candidates can increase or decrease the lipophilicity without changing the size of the molecule or changing the rates of in vivo absorption, but still allows for the molecule to fit into its binding site. According to radiochemistry point of view, fluorine-18 is a very attractive choice for radionuclide, mainly for two reasons. First, longer half-life (T½), which allows radiochemist to perform multi-step synthesis as well as permitting transport of 18F-radioligands over considerable distances. It allows PET scans to be acquired over a few hours and consequently following biological processes with quite slow kinetics. Secondly, the mode of decay; fluorine-18 emits quite a low energy positron (maximally 0.635 MeV), which on average has a short path in vivo (~2 mm in water) before its annihilation. The positron path is similar to the highest spatial resolution achievable with modern PET cameras today (2–4 mm for a clinical PET camera and 1–2 mm for a μPET camera), therefore, optimal PET image quality compared to other PET radionuclides.

Fluorine-18 can be manufactured from the cyclotron in two chemical forms; [18F]fluorine gas (act as an electrophile) or [18F]fluoride (electron-rich and act as a nucleophile), which determines the possible reactions. The principal 18F-labelling methods are restricted to a few and can be divided into these two ways: electrophilic and nucleophilic substitution.

1.5.1 Electrophilic substitution

For electrophilic 18F-labelling reactions, carrier-added (c.a.) [18F]fluorine ([18F]F2) gas is used as electrophile and can be produced directly from the target. Two different types of nuclear reactions are available for producing elemental [18F]F2; 20Ne(d,α)18F and 18O2(p,n)18F. In both cases, produced 18F is adsorbed on the target walls so that an addition of elemental F2 to the target gas is mandatory to extract the radioactivity; therefore, low SRA is obtained. The most common and practical process for producing [18F]F2 is 20Ne(d,α)18F reaction even though higher RCY and SRA of [18F]F2 is achieved from 18O2 target using 18O2(p,n)18F reaction (since two consecutive irradiations are necessary). Electrophilic c.a. radiofluorination is limited to applications where low SRA is accepted such as endogenous compounds. Reported highest SRA in literature, obtained for [18F]F2, is 2 GBq/umol, which has been improved to ~55 GBq/umol (for ~7.5 GBq of [18F]F2) from [18F]F produced from a water target. However, high SRA is not only preferable but also mandatory for investigations of low concentration binding sites, e.g. BCM in pancreas, which is why only no carrier added (n.c.a.) [18F]fluoride form has been considered in this thesis.
1.5.2 Nucleophilic substitution

Most of the ^{18}F-labelled radiopharmaceuticals available and clinically used today are obtained from nucleophilic substitution reactions based on n.c.a. $[^{18}\text{F}]$fluoride ($[^{18}\text{F}]$F), which is directly available from the target. The main reason behind the popularity of using $[^{18}\text{F}]$fluoride is based on getting highest SRA, e.g. 5.2×10^3 GBq/µmol98. The nucleophilic ^{18}F is achieved as fluoride ion in aqueous solution from $^{18}\text{O}(p,n)^{18}\text{F}$ nuclear reaction and delivered from the target to the hot cell. Due to high charge density of the anion, it is highly hydrated and inactivated for nucleophilic reactions. Therefore, strict exclusion of water is needed using $[^{18}\text{F}]$F as a nucleophile. This kind of reaction is also sensitive to the presence of trace amounts of metal ions co-eluting with $[^{18}\text{F}]$F from the target99. In the presence of Lewis acids, the $[^{18}\text{F}]$F has a strong tendency to form complexes and hence will be masked by ions of heavy metals. Moreover, $[^{18}\text{F}]$F is very easily protonated, forming hydrogen fluoride and hence becoming unavailable for the next reaction. Therefore, radiolabelling has to take place under aprotic but polar conditions. The $[^{18}\text{F}]$F is isolated and separated from the ^{18}O-water as well as metal ions by passing through an anion exchange resin100. The retained $[^{18}\text{F}]$F is then eluted with an acetonitrile solution of kryptofix$_{2.2.2}$ and potassium carbonate (K$_2$CO$_3$); subsequently, water is removed by azeotropic distillation with acetonitrile to produce ‘naked’ $[^{18}\text{F}]$F of high nucleophilicity. The Kryptofix$_{2.2.2}$ (aminopolyether), in combination with K$_2$CO$_3$ or oxalate101, is mainly used as phase transfer catalysts (PTC) for further activation of the $[^{18}\text{F}]$F anion. Tetraalkylammonium hydrogenocarbonates$^{102, 103}$ can also be used as PTC and in some cases, it showed advantages over kryptofix for $[^{18}\text{F}]$F activation$^{104, 105}$, especially if the precursor is sensitive to basic conditions. In general, nucleophilic substitution with $[^{18}\text{F}]$F occurs by heating (>100°C) the dried residue of $[^{18}\text{F}]$F/K$_2$CO$_3$/kryptofix$_{2.2.2}$ with right precursor, in presence of a polar aprotic solvent such as ACN, DMF, DMSO or o-DCB104.

Nucleophilic substitution reaction with $[^{18}\text{F}]$F can be divided further into two categories: i) Direct fluorination (one step) via aliphatic and aromatic substitution and ii) Indirect fluorination (two steps) via ^{18}F-labelled prosthetic group or synthon formation followed by a second reaction, such as alkylation, acylation, etc. The aliphatic nucleophilic substitution reaction proceeds via S$_{N}$2-mechanism, where substitution takes place by $[^{18}\text{F}]$F ion on a precursor containing appropriate leaving group such as halogens (I, Br and Cl) or sulphonic acid ester groups, e.g. mesylate, tosylate, nosylate, triflate, etc. The nucleophilic aromatic substitution (S$_{N}$Ar) is of even greater importance for ^{18}F-labelled radiopharmaceuticals due to their greater metabolic stability. This reaction takes place with the presence of activating electron withdrawing group (EWG) in the ortho or para positions
relative to the leaving group. In particular, substituents with strong electron withdrawing properties such as nitro, cyano, carbonyl and trifluoromethyl groups are suitable for the activation step. Halogens (F, Cl, Br), nitro (NO$_2$) and the trimethylammonium salts [N(CH$_3$)$_3$]$^+$ show increasing reactivity as the leaving group. The leaving group [N(CH$_3$)$_3$]$^+$ can be advantageous compared to NO$_2$ due to better separation of the excess precursor from the final product; however, this precursor can lead to some competitive side reactions that can reduce RCY. On the other hand, CN group as EWG might not be suitable, since CN is very sensitive to basic conditions, which can lead to undesired hydrolysis product than the desired radiolabelled product.

To avoid the presence of extra activating groups in the precursor molecule, many different approaches have been introduced in the radiochemistry field, such as heteroarenes (pyridine) labelling with 18F in the ortho positioned leaving group. Introduction and extensive work on labelling of $[^{18}$F]fluoroarenes using diaryliodonium salts as well iodonium ylides precursor have opened new door for radiochemists to explore a class of compounds that are not possible to synthesise via S$_{N}$Ar reaction.

1.5.3 18F-Fluorination via prosthetic groups (Papers I and IV)

As mentioned above, indirect method is used in 18F-fluorination via prosthetic group. It means a primary 18F-compound is labelled by direct fluorination as described above (either by aliphatic or aromatic substitution), followed by coupling of 18F-compound i.e. prosthetic group, with a second molecule. Important procedures via prosthetic groups include: $[^{18}$F]fluoroalkylation, $[^{18}$F]fluoroacylation and $[^{18}$F]fluoroamidation. Application of prosthetic groups is most common for molecules carrying a protic functional group such as thiol, amino or hydroxyl group.

18F-Fluoroalkyl agents such as $[^{18}$F]fluoropropyl, ethyl or methyl are synthesised by substitution of halogens or sulfonate esters with n.c.a. $[^{18}$F]F-. 18F-Fluoroalkyl agents can be purified very easily via disposable Sep-Pak cartridges or distillation from the reaction mixture, as they have low boiling point. This purification process of 18F-fluoroalkyl agents produces more chemically and radiochemically pure product as well as eliminates nonvolatile impurities, thus, increasing the RCY of the second reaction. Well-known aliphatic substitution reactions using 18F-fluoroalkyl agents include $[^{18}$F]fluorocholine, $[^{18}$F]FET and $[^{18}$F]β-CFT-FP. In this thesis, in paper I, $[^{18}$F]fluoroethyl was used as prosthetic group to radiolabel the hydroxyl group so that we could use same precursor for both 11C and 18F radiolabelling.
Many methods are available to label proteins and peptides; however, most common methods applied for labelling peptide with \(^{18}\)F is the prosthetic group approach\(^{133}\). The advantage of using the prosthetic group approach is that the peptide coupling reaction can be performed under mild conditions, thereby, preserving the integrity of the peptide, especially those that are heat and pH sensitive. The disadvantage is the multiple-step time-consuming synthetic procedure, which is an obstacle for widespread clinical applications. The most commonly used prosthetic groups are \(N\)-succinimidyl-\(4\)\-[\(^{18}\)F]fluorobenzoate, \([^{18}\text{F}]\text{SFB}\) and \([^{18}\text{F}]\text{fluorobenzaldehyde} \([^{18}\text{F}]\text{FBA}\). In this thesis, in Paper \textbf{IV}, we have radiolabelled peptides with lysine group; therefore, \([^{18}\text{F}]\text{SFB}\) has been used for radiolabelling. \([^{18}\text{F}]\text{SFB}\) is an analogue of Bolton-Hunter reagent developed in 1973 for radioiodination of proteins\(^{134}\), and later on it has been successfully developed for PET radiolabelling\(^{135-137}\). The aromatic fluorine-carbon bond of \([^{18}\text{F}]\text{SFB}\) is more stable and less sensitive towards hydrolysis. Activated esters of \(N\)-hydroxysuccinimide are good electrophiles for conjugation to nucleophiles (amines of peptides), in order to form stable amide bonds. Based on all these observations, \([^{18}\text{F}]\text{SFB}\) was selected even though multiple radiochemical steps were required for its production. If aliphatic defluorination is not a concern, an alternative \(N\)-succinimidyl-\(4\)\-[\(^{18}\)F]fluoromethyl benzoate, analogue to \([^{18}\text{F}]\text{SFB}\) can be produced in one step from a tosyl or nosyl leaving group\(^{138-140}\). The recent discovery and development of \([^{18}\text{F}]\text{fluoride-aluminum complex (Al}^{18}\text{F})\) to radiono-label peptides also provided a good alternative for simplifying the labelling procedure\(^{141}\). Unfortunately, the current procedure for forming Al\(^{18}\text{F-NOTA complex also requires relatively high temperatures, which has reduced the scope of this method.}

1.6 RADIOCHEMICAL PURITY, PURIFICATION AND FORMULATION

Radiochemical purity is defined as the fraction of the radioactive species that is in the desired chemical form. All PET radioligands, whether for human or animal use, need to possess a high level of chemical and radiochemical purity (typically \(>95\%\)). To isolate radiolabelled probe in highest purity form, reaction mixtures (RM) need to be purified after radiolabelling, from other radioactive by-products as well as from precursor and other reagents used during synthesis. HPLC is the best choice to purify radioligand, while SPE cartridge can be used if other impurities are well separated from the radioligand. Generally, RM contains large amounts of organic solvents (e.g. acetonitrile, DMF, DMSO) and need to be diluted with water or buffer prior to injection on HPLC to avoid excessive peak broadening. The preparative HPLC column should be large enough to efficiently separate the
relatively large mass amount of precursor (typically 0.1–10 mg) from the trace amounts of the PET probe. For 18F-labelling, pre-purification of RM on an in-line SPE column is useful for the elimination of relatively large amounts of un-reacted radioactivity [18F]fluoride142. Any organic solvents used in mobile phase during preparative HPLC purification procedure that are not compatible with I.V. injection should be removed either by evaporation or by SPE, followed by desorption with ethanol. This step can be omitted if ethanol is used as an organic modifier in the mobile phase; however, due to high viscosity of ethanol it results in a higher back pressure in comparison with other organic solvents such as acetonitrile or methanol.

The pure radioligand after HPLC purification is formulated by dilution with buffer or salt solution to achieve an isotonic injectable solution143, which is sterilised by sterile membrane filtration or by autoclave. To prevent radiolysis, scavengers such as ascorbic acid or sodium ascorbate or ethanol can be added144, and solubilising agents such as Tween-80 can be added to lipophilic radioligand formulations to reduce loss of radioactivity by means of adsorption during sterile filtration as well as in syringes and catheters during injection.

1.7 COMBINE MODALITY (PET/CT)

With the development of a prototype integrated PET/CT scanner, a revolution in medical imaging field occurred in 2000145. Lack of a clear anatomical reference frame and relatively low spatial resolution are some of the limitations of PET imaging alone. It is also even more difficult to accurately outline anatomic structure of small organs, such as pancreas, which is situated close to abdominal region, without help of structural imaging methods such as CT. Due to spill over of radioligand uptake from the kidney, liver or gastrointestinal tract (that exhibit higher nonspecific radioligand accumulation) and partial volume effect (PVE), it is nearly impossible to delineate the pancreas on the PET image. This limitation can be overcome by integrating functional and anatomical tissue information obtained by combined PET/CT module, which has increased both accuracy of the interpretation and confidence level of the image analyser. All the in vivo studies performed in this thesis were investigated using a hybrid PET/CT scanner.

1.8 DIABETES MELLITUS

The pancreas consists of mainly two tissue types: endocrine and exocrine. Only a small percentage (1–2%) of pancreatic mass (~100 g healthy human pancreas) is accounted for as endocrine tissue, which is scattered heterogeneously in Islets of Langerhans all over the exocrine pancreas. Islets are comprised of four different cell types: alpha, beta, delta and
pancreatic polypeptide (PP)-cells, and among them only beta cells secrete insulin in response to elevated blood glucose levels. In islets, beta cells are the most abundant cells (50–80%), followed by alpha cells (20–30%) and the rest are delta and pp-cells (Figure 4)146. The islets are well perfused and small in size (40–300 µm in diameter)147, and the number of beta cells may vary between healthy subjects148. Since beta cells are responsible for maintaining normal glucose levels in the blood, an adequate number of functional pancreatic beta cells are required. The collective beta cell numbers are referred to as beta cell mass (BCM), and the proper release of insulin in response to glucose is referred to as beta cell function (BCF). The loss of beta cells reduces insulin production and consequently causes diabetes. Diabetes mellitus (DM) is a metabolic disorder, characterised by hyperglycemia; moreover, it is one of the major causes of death and disability worldwide. In 2012, 1.5 million people died from diabetes149, and currently >340 million people are affected which will increase to around 522 million by 2030150. Two different forms of diabetes are distinguished based on different pathogenesis: Type 1 (T1DM) or insulin dependent and Type 2 (T2DM) or insulin resistant. BCM is reduced significantly in both type 1 and 2 diabetes patients, compared to non-diabetic individuals. In T1DM, an autoimmune attack against pancreatic beta cells results in a rapid loss of endocrine BCM, close to >90%151 and in T2DM, insulin resistance and beta cell dysfunction build up a progressive reduction of BCM, ranging from 25% to 65%148, 152. People with either type of diabetes are at high risk of developing a range of complications, such as retinopathy, nephropathy, neuropathy and cardiovascular disease153, which can endanger their health and survival; consequently, the high costs of care increase the risk of catastrophic medical expenses154.
15

Figure 4. Schematic representation of the location of the human pancreas, Islets of Langerhans and its composition

1.8.1 Beta cell imaging (BCI)

As discussed earlier, functional loss of BCM is associated with both T1DM and T2DM. At present, most information on human BCM during the progress of DM is obtained from post mortem pancreatic biopsy studies, “as a golden standard.” *In vivo* biopsies of the pancreas for determination of BCM in either healthy or diabetic patients are associated with complications and therefore unacceptable in clinical studies. The other functional clinical tests such as insulin/C-peptide concentration in the blood as a response to a stimuli, does not reflect on BCM, but rather BCF. Production of insulin in individual beta cells can increase significantly to compensate for the decreased total BCM. Consequently, we lack reliable, reproducible data on the actual progress in BCM during progress of T1DM and T2DM even at group levels. Importantly, we currently lack the tools to follow the fate of BCM longitudinally over time in individual subjects.

In T1DM, BCM and its function proportionally decline quite rapidly with the onset of hyperglycemia, and in T2DM, diagnosis is sometimes not possible until several years after its onset. Therefore, there is a real need for an accurate and noninvasive *in vivo* imaging technique to study the dynamic changes of BCM at onset and progression of the disease to be able to diagnose early stages of diabetes or at high risk of its development, as well as to
monitor the efficacy of new drugs or stem cell therapy or islet transplantation. An attractive approach to determine BCM in vivo is PET, which can detect very low concentrations in subpicomolar range of the radioligand in the target tissue, with high sensitivity. However, several challenges have to be met before developing a PET radioligand for detecting BCM, which is discussed later. The ideal radioligand and the target for BCI have not been found yet. Several 11C and 18F labelled PET radioligands, aiming at three different molecular targets, such as $[^{11}\text{C}]$DTBZ161 and $[^{18}\text{F}]$fluoropropyl (FP)-DTBZ (targets VMAT2)$^{162, 163}$, $[^{68}\text{Ga}]$exendin-4 (targets GLP-1R)164 and $[^{11}\text{C}]$5-HTP (targets serotonin biosynthesis)165 have undergone initial clinical validation, but none of them could fulfil all criteria for a ‘perfect’ BCI agent. An important argument against the use of PET radioligands in endogenous BCM imaging is striking the scientific area, where several theoretical, technical and biological limitations are discussed to determine if the sensitivity and specificity are good enough to detect subtle changes of BCM over time$^{167, 168}$. However, PET imaging could be very fruitful to monitor efficacy of glucose lowering drugs for treating T2DM, islets transplantation efficiency and graft survival for treating T1DM patients and thereby, optimise islet transplantation procedures and detect postoperative complications.

In this thesis, three different molecular targets have been explored by using three novel 18F and 11C-labelled radioligands, $[^{18}\text{F}]$FE-DTBZ-d4 (targets VMAT2, Paper I), $[^{11}\text{C}]$AZ12504948 (targets glucokinase, Paper II) and $[^{11}\text{C}]$AZ compound X (targets GPR44, Paper III), for visualising native BCM in the pancreas by PET.

1.9 ALZHEIMER’S DISEASE (AD)

Alzheimer’s disease (AD) is a chronic, progressive neurodegenerative disorder and is one of the most common causes of dementia169, which gradually worsens with the lapse of time in middle or late life. Death occurs, on average, nine years after diagnosis170; nevertheless, the onset of the pathological processes occurs probably years prior to the onset of cognitive symptoms132. The amyloid hypothesis states that aggregated amyloid-beta (Aβ) peptides have a major role in the development of AD$^{171, 172}$; therefore, in vivo imaging of Aβ plaques may be beneficial for the diagnosis, staging and treatment of AD. Over the last decade, the development of amyloid-specific PET radioligands has proved successful for distinguishing between AD and healthy controls. Most radioligands used for Aβ plaque imaging are derived from dyes, such as Congo red (CR) and thioflavin-T (Th-T), which have been used for fluorescent staining of Aβ plaques in postmortem AD brain sections$^{173, 174}$. Two analogues of Th-T; $[^{11}\text{C}]$PIB175,176 and $[^{11}\text{C}]$AZD2184177,178 have been used for clinical trials in AD
patients. However, due to short half-life of 11C, alternative 15F-labelled ligands with longer half-lives have undergone clinical trials such as a PIB derivative $[^{18}$F]flutemetamol (3-$[^{18}$F]F-PIB),179,180 AZD2184 derivative $[^{18}$F]AZD4694,181 pegylated stilbene and styrylpyridine derivatives, $[^{18}$F]florbetaben (BAY 94-9172)$^{182-184}$ and $[^{18}$F]florbetapir (AV-45),184,185 respectively. At present, medications used for treating moderate to severe AD can provide temporary relief from symptoms but no outcome with a strong disease-modifying effect.186,187 Inhibition of the Aβ peptides formation, thus, emerged as a potential therapeutic approach. To identify BBB, penetrable small molecule drugs such as small peptides that interfere with Aβ peptide interactions, which are expected to prevent and/or cure these diseases, appear attractive. In this thesis, three small 12-mer D-enantiomeric peptides, specific to amyloid plaques (Aβ$_{1-42}$) peptides of AD, were selected to observe the BBB penetration properties for diagnosis and potential therapy for AD.
2 AIMS

The overall aim of the thesis was to develop novel fluorine-18 and carbon-11 labelled PET radioligands for two different important molecular targets: beta cell mass (BCM) for imaging diabetes related health problems and amyloid plaques for imaging Alzheimer’s disease (AD).

The specific aims of the thesis were as follows:

1. Development of novel radioligands for visualising endogenous BCM with the following sub-aims:
 a. Radiolabelling of 18FFE-DTBZ-d4 (targets VMAT2), using fluorine-18 for imaging beta cells by PET and to compare its *in vitro* and *in vivo* binding characteristics with the non-deuterated analogue 18FFE-DTBZ.
 b. Radiolabelling of 11CAZ12504948 (targets glucokinase), using carbon-11 for visualising both liver and pancreatic beta cells by PET, as well as to evaluate *in vitro* and *in vivo* characteristics.
 c. Radiolabelling of a ligand targeting GPR44, AZ compound X, using carbon-11 and tritium for beta cell imaging by PET and to evaluate *in vitro* binding using autoradiography in human and rat pancreatic tissue slices.

2. Radiolabelling and *in vitro* evaluation of 18F-labelled D-peptides for visualising amyloid (Aβ) plaques in human brain tissue slices by autoradiography.
3 MATERIALS AND METHODS

A brief summary of the general experiments and methods used during this thesis work are described in this section. However, for the complete experimental details, the reader is referred to the copies of the full papers and manuscripts that follow.

3.1 RADIOCHEMISTRY

Both radionuclides carbon-11 and fluorine-18 were produced from a GE PETtrace cyclotron (GE Uppsala, Sweden) using 16.4 MeV protons. All the gases used for positron emitting isotope production were purchased from AGA Gas AB (Sundbyberg, Sweden).

3.1.1 Production of 11C methyl iodide (11CCH$_3$I)

Carbon-11 was produced by proton bombardment of nitrogen gas via the 14N(p,α)11C nuclear reaction. The primary precursor 11CCH$_4$ was produced from the mixture of target gas in nitrogen (N$_2$) with 10% hydrogen (H$_2$) of scientific grade purity (99.9999%). Throughout this thesis, 11CCH$_4$ was further converted to the secondary precursors, 11CCH$_3$I and 11CCH$_3$OTf using an online procedure. An aluminium target (78 mL) body was used with Havar foils (25 µm), where the target body was cooled using water and the foil using helium (He), respectively. The gas mixture was purified using gas purifier (All Pure™ Alltech) prior to entering the target body to remove any traces of stable carbon-12.

11CCH$_3$I, was produced from 11CCH$_4$ following previously published method67. In short, 11CCH$_4$ was transferred from the cyclotron to the dedicated methyl iodide synthesiser (methane system, DMA, Stockholm, Sweden) by Helium pressure (500 mL/min) and passed through a phosphorous pentoxide (P$_2$O$_5$) trap to remove traces of ammonia and water produced during the nuclear reaction. After passing through P$_2$O$_5$ trap, 11CCH$_4$ was trapped in a Porapak Q trap with liquid N$_2$, which was purged with He to remove any reacted target gases. Following collection, 11CCH$_4$ was released from the Porapak Q trap by heating with pressurised air into a recirculation system via He flow. The recirculation system consisted of a micro diaphragm gas pump (NMP830KVDC, KNF Neuberger, and Freiburg, Germany), quartz tube containing iodine and ascarite, three ovens, as well as a Porapak Q trap. The 11CCH$_4$ was first pumped to the quartz tube, where it was mixed with vapour of iodine crystals at 60°C (1st oven), and then the radical reaction occurred in the reaction chamber at 720°C (2nd oven) to produce 11CCH$_3$I. Produced 11CCH$_3$I was trapped at RT to Porapak Q
trap, and the excess amounts of iodine and by-product hydroiodic acid (HI) were trapped on ascarite (sodium hydroxide coated silica trap). The unreacted $[^{11}\text{C}]\text{CH}_4$ was recirculated for 3–4 min to reach the maximum amount of $[^{11}\text{C}]\text{CH}_3\text{I}$ in the Porapak Q trap (Figure 5). $[^{11}\text{C}]\text{CH}_3\text{I}$ was further released from the Q trap by heating the homemade oven (3rd Oven) at 180°C; subsequently, it was trapped in a suitable solvent or reaction mixture where the radiosynthesis i.e. methylation reaction, HPLC purification and formulation took place. The preparation of $[^{11}\text{C}]\text{CH}_3\text{I}$ was ready for use within 10–11 min from the end of radionuclide production (Figure 5).

![Flow chart for production of $[^{11}\text{C}]\text{CH}_3\text{I}$ from in-target produced $[^{11}\text{C}]\text{CH}_4$ via gas phase iodination.](image)

Figure 5. Flow chart for production of $[^{11}\text{C}]\text{CH}_3\text{I}$ from in-target produced $[^{11}\text{C}]\text{CH}_4$ via gas phase iodination.67

3.1.2 Production of $[^{11}\text{C}]$methyl triflate ($[^{11}\text{C}]\text{CH}_3\text{OTf}$)

Carbon-11 labelled $[^{11}\text{C}]\text{CH}_3\text{OTf}$ was produced from $[^{11}\text{C}]\text{CH}_3\text{I}$, following previously described method.73,188 Produced $[^{11}\text{C}]\text{CH}_3\text{I}$ was passed in a stream of He gas through a soda-glass column (i.d: 3.7 mm; length 150 mm; oven temperature 165°C) containing silver triflate-impregnated graphitized carbon. The formed $[^{11}\text{C}]\text{CH}_3\text{OTf}$ was trapped in appropriate solvent containing precursor material.

3.1.3 Radiosynthesis, purification and formulation of 11C-radiopharmaceuticals

The methylation reaction was performed in a fully automated custom built synthesis module (Scansys, Copenhagen, Denmark), where a PC programme is developed for the
control and programming of the system. The operator gets running information during the synthesis. During the entire process, the radioactivity was monitored using GM radio detectors. The reagents and solution used during the synthesis were placed in a clean air atmosphere. Radiosynthesis, purification and formulation of the final product took place under HEPA filtered air.

Radioligand $[^{11}\text{C}]$AZ12504948 (Paper II) and $[^{11}\text{C}]$AZ compound X (Paper III) were synthesised by O-methylation and S-methylation, respectively, using $[^{11}\text{C}]$CH$_3$I as methylating agent in one step. $[^{11}\text{C}]$AZ12504948 was obtained by trapping $[^{11}\text{C}]$CH$_3$I at room temperature in a reaction vessel containing the precursor AZ12555620 (1.0 mg–1.6 mg, 2.16 µmol–3.45 µmol) and freshly powdered solid potassium hydroxide (KOH) (10–13 mg, 178 µmol–232 µmol) in dimethylsulfoxide (DMSO) (300 µL). After end of $[^{11}\text{C}]$CH$_3$I trapping, the reaction mixture was diluted with sterile water (500 µL) before injecting to the built-in high performance liquid chromatography (HPLC) system for purification of the labelled compound.

$[^{11}\text{C}]$AZ Compound X was synthesised by trapping $[^{11}\text{C}]$CH$_3$I at room temperature in a reaction vessel containing the precursor (1.0 mg–2.0 mg, 2.48 µmol–4.95 µmol) in dimethylformamide (DMF) (300 µL). After end of $[^{11}\text{C}]$CH$_3$I trapping, the reaction mixture was heated at 70°C for 5 minutes. The reaction mixture was diluted with sterile water (500 µL) before injecting to the built-in HPLC system for the purification of the labelled compound.

The chromatographic process was monitored in real time by means of UV detector and GM radio detector; furthermore, the HPLC column was scanned continuously by means of an extra GM radio-detector. After collecting the pure fraction of the corresponding radioligand, evaporation of the mobile phase was performed continuously online by stream of He using a carburetor. The labelled product was accumulated in the carburetor spiral, which was heated to moderate temperature (80°C), while the mobile phase was evaporated off. The HPLC system consisted of a pump (Gilson 304), an automated sample injector (Gilson 234 autoinjector) and an ACE column (RP C18, 10 × 250 mm, and 5 µm). The formulation of the final product was accomplished by flushing the spiral with sterile phosphate buffer saline (PBS) and followed by filtration through a sterile filter (0.22 µm; Millipore, Sweden) into a sterile vial to get pyrogen free solution before applications. Self-cleaning routines of the autosampler syringe, HPLC system, evaporator and tubing were executed, before and after the synthesis. All the running information during the synthesis was printed out after the completion of the synthesis.
3.1.4 Production of fluorine-18

Fluorine-18 fluoride, $[^{18}\text{F}]F^-$, was produced from bombardment of 18O-enriched water ($[^{18}\text{O}]\text{H}_2\text{O}$), using the 18O(p, n)18F nuclear reaction from high pressurised silver target189. Produced $[^{18}\text{F}]F^-$ was transferred to the dedicated hot cell with He pressure and isolated from $[^{18}\text{O}]\text{H}_2\text{O}$ to a pre-conditioned [i] 10 mL 0.5 M K$_2$CO$_3$ solution ii) 15 mL water (18 MΩ) SepPak QMA light anion exchange cartridge (Waters). Trapped $[^{18}\text{F}]F^-$ was eluted from the QMA cartridge with QMA eluent (1.5–2.0 mL), which consisted of a mixture of K$_2$CO$_3$, Kryptofix 2.2.2. (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8.8.8.]hexacosane-K$_2$.2.2) in water and acetonitrile, via N$_2$ flow to a reaction vessel190. The QMA eluent was evaporated to dryness at 160°C under continuous N$_2$ flow to form a dry complex of $[^{18}\text{F}]F^-$/K$_2$CO$_3$/K$_2$.2.2, and the residue was cooled to RT. The preparation of dry complex, $[^{18}\text{F}]F^-$/K$_2$CO$_3$/K$_2$.2.2, was ready to use within 20–21 min after the end of radionuclide production (Figure 6).

3.1.5 Radiosynthesis, purification and formulation of 18F-radiopharmaceuticals

The 18F-radioligands synthesis (Papers I and IV) including HPLC purification, SPE isolation, as well as formulation of the final product took place in a semi-automatic 18F-synthesis module (FIA-1 DMA, Figure 6). All valves, temperatures (R1 and R2) and radio-detector output were possible to control or monitor using a touch screen. Flow of N$_2$ gas was controlled by a needle valve and was followed by the flow metre, which was situated outside and inside of the hot cell, respectively.

In paper I, precursor, 1-bromoethyl-2-tosylate-d4 (BrEtOTs-d4, 15 µL) was dissolved in aprotic polar solvent o-DCB (700 µL) and mixed with dry complex of fluoride, $[^{18}\text{F}]F^-$/K$_2$CO$_3$/K$_2$.2.2 to synthesise the prosthetic group $[^{18}\text{F}]$fluoroethylbromide-d4, ([$^{18}\text{F}]$FEtBr-d4). The reaction mixture (RM) was heated at 160°C for 10 min to produce crude $[^{18}\text{F}]$FEtBr-d4, which was purified by fractional distillation and collected in a second vial containing desmethyl-DTBZ precursor (2.0–2.5 mg, 6.55–8.19 µmol), sodium hydroxide (15 µL, 5M) in DMF (500 µL). The vial was placed in the 2nd reactor (R2 in Figure 6), and the RM was heated at 110°C for 5 min to produce crude $[^{18}\text{F}]$FE-DTBZ-d4.

In paper IV, prosthetic group N-succinimidyl-4-$[^{18}\text{F}]$fluorobenzoate, $[^{18}\text{F}]$SFB, was synthesised following the previously described method after modifications$^{191, 192}$. The precursor 4-trimethylammoniumbenzoate trifluoromethanesulfonate (1) (5.0 mg, 20 mmol) in anhydrous MeCN (1 mL) was added to the dry $[^{18}\text{F}]$F/K$_2$CO$_3$/K$_2$.2.2 complex, and the RM was heated at 90°C for 10 min to produce ethyl-4-$[^{18}\text{F}]$fluorobenzoate ([^{18}F]2), which was
used for the next reaction without further purification. $^{[18}\text{F}]_2$ was treated with tetrabutylammonium hydroxide (TBAH) (13 μL, 1 M in water) in 0.2 mL MeCN by heating at 120°C for 3 min to produce 4-$^{[18}\text{F}]$fluorobenzoic acid salt ($^{[18}\text{F}]_3$). The mixture was dried azeotropically using MeCN (1 mL) at 160°C under continuous N$_2$ flow to remove excess water from the addition of the aqueous solution of TBAH. The RM was cooled to 40°C, and a solution of the reagent N,N,N,N-tetramethyl-O-(N-succinimidyl)uronium hexafluorophosphate (HSTU) (12 mg, 33 mmol) in MeCN (1 mL) was added to $^{[18}\text{F}]_3$ and heated at 90°C for 5 min to produce $^{[18}\text{F}]$SFB, which was purified by semi-preparative HPLC followed by SPE isolation (HLB 60 mg) before use in the next step. Pure $^{[18}\text{F}]$SFB was eluted with MeCN (~800 μL) from the SPE and used for the radiolabelling of $^{[18}\text{F}]$D-peptides, ([$^{18}\text{F}]$ACI-87-F, $^{[18}\text{F}]$ACI-88-F and $^{[18}\text{F}]$ACI-89-F). In a solution of $^{[18}\text{F}]$SFB (200 μL ~ 900 MBq) in MeCN, precursor peptides (1.2 mg) in borate buffer (0.5 M, pH 8.8; 150 μL) solution were dissolved and kept at RT for 10 min to produce crude $^{[18}\text{F}]$D-peptides. Three $^{[18}\text{F}]$D-peptides were purified using analytical HPLC column (RP C18, 3.9×300 mm, 10 μm, Waters). The radiosynthesis and purification of $^{[18}\text{F}]$D-peptides were performed in another hot cell, which is not included in Figure 6.

Figure 6. Flow chart of production of both one step (only one reactor R1 is used) and two steps (both reactors R1 & R2 are used) fluorine-18 labelled radiopharmaceuticals, purification and formulation.
After the reaction, the crude reaction mixture was cooled to RT and was injected manually to the built-in HPLC purification system (Figure 6). The HPLC system consisted of a μ-Bondapak column (RP C18, 7.8×300 mm, 10 µm, Waters) and a UV detector in series with a GM tube. The pure fraction of the corresponding 18F-radioligand was collected in a bottle containing water (40–50 mL) for dilution, which was continuously passed through a pre-conditioned SPE (tiC18 plus) cartridge [i) ethanol (10 mL) and ii) sterile water (10 mL)] by stream of N$_2$ gas for isolation. SPE was washed by water (10 mL) using the manual syringe which was positioned outside of the hot cell. The formulation of the final product was accomplished by flushing the SPE with ethanol (<10%) and sterile PBS solution and collected in a sterile vial (Figure 6). All formulated 18F-labelled radioligands were filtered through a sterile filter (0.22 µm; Millipore, Sweden) into a sterile vial to get pyrogen free solution before applications. The aseptic work was performed in a laminar air flow workstation (LAFW).

3.2 QUALITY CONTROL OF 11C AND 18F LABELLED RADIOPHARMACEUTICALS

The radiochemical purity, identity and stability of 11C and 18F labelled radiopharmaceuticals were identified using analytical HPLC. The HPLC system consisted of RP analytical column, Merck-Hitatchi L-7100 Pump, L-7400 UV detector in series with a radioactivity detector (β-flow; Beckman, Fullerton, CA) for radioactivity detection. The identity of 11C and 18F labelled radiopharmaceutical(s) was confirmed by co-injection of the radiopharmaceutical(s) with its unlabelled reference standard, where the retention time of the radiopharmaceutical(s) was compared to that of the unlabelled reference standard. The stability of the radiopharmaceutical(s) was tested at different time intervals: 30, 60, 90, 120 minutes after end of radiosynthesis.

3.3 SPECIFIC RADIOACTIVITY (SRA) DETERMINATION

The specific radioactivity (SRA) of all radiopharmaceutical(s) was measured using analytical HPLC system from Merck-Hitachi with D-6200A pump, L-4000 UV detector and D-6000 interface. SRA was calibrated for UV absorbance response per mass of ligand and calculated as the radioactivity of the radioligand (Gbq) divided by the amount of associated carrier substance (µmol). Each sample (radioligand after decay) was analysed three times and compared to a reference standard (known concentration) which was also analysed three times, by taking same amount of the sample by the auto-sampler of the HPLC system.
3.4 LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC-MS/MS) ANALYSIS

The structure of 11C and 18F radiopharmaceuticals were further confirmed by comparing LC and MS fragmentation pattern of the reference standards and that of the carrier of the corresponding nonradioactive compounds. LC-MS/MS analysis was performed using a Waters Acquity™ ultra performance LC system connected with a Micromass premier™ Quadrupole time of flight (TOF) mass spectrometer (Waters, Milford, MA, USA). LC was performed using a Waters Acquity UPLC™ BEH column (C18, 2.1 × 50 mm, 1.7 µm particle size) kept at 50°C. The mobile phase consisted of 0.1% formic acid in water (A) and 0.1% formic acid in ACN (B). Samples were analysed using a linear gradient at a flow rate of 0.5 mL/min. The MS was operated in positive electrospray ionization (+ESI) mode, with the following settings: capillary voltage 3.0 kV; cone voltage 35 V; source temperature 100°C; dissolvation temperature 400°C and collision energy 20 eV. The formulated product, 11C and 18F radiopharmaceuticals, was analysed after radioactive decay without further dilution.

3.5 IN VITRO AUTORADIOGRAPHY

Biopsies from human pancreas and liver of healthy subjects and type 2 diabetic (T2D) subjects were collected from deceased human donors (Paper II-III). The use of human tissue was approved by the Uppsala Ethical Review Board (Dnr 2015-401; # 2011/473, #Ups 02-577) and tissues obtained from Uppsala Biobank. The biopsies were frozen to -80°C and processed into 20 µm slices. Slides were kept at -20°C until use.

AD human brain (Paper IV) was obtained from the Alzheimer Brain Bank of the University of Szeged, Hungary. The age matched control human brain was obtained from the Institute for Forensic Medicine, Semmelweis University, Budapest, Hungary. Brains had been removed during a forensic autopsy and were handled in a manner similar to that previously described$^{193, 194}$. Fresh frozen whole hemisphere brain slices (100 µm) was prepared. Ethical permissions for the study were obtained from the relevant university ethical boards. Slides were kept at -20°C until use.

In paper II, to study radioligand binding properties of different tissues, pancreas [healthy (n=1), T2D (n=2)] and liver [healthy (n=1)], slices were incubated in different concentration (0.05-1.0 nM) of the radioligand, $[^{11}]$C[A]Z\text{I}2504948, in 50 mM TRIS HCl containing 5 mM D-(+)-glucose (Sigma-Aldrich, St Louis, MO, USA) and 0.4 mg/mL β-
cyclodextrin (Kleptose HPB, original formulation 300 mg/mL, Apoteket, Umeå, Sweden) for 40 minutes at RT. Non-displaceable binding was assessed by adding excess amount of (11-13 µM) of unlabelled AZ12504948. Tissue slices were washed twice for two minutes in 50 mM TRIS HCl containing 5 mM D-(+)-glucose at RT to remove excess tracer, followed by a brief wash in distilled water and then dried for 5 min on a hot-plate (37°C). The slices were then exposed to a phosphor-imager screen (Amersham Biosciences, Uppsala, Sweden) for 4-6 hours, scanned using a Phosphorimager SI (Molecular Dynamics, Sunnyvale, CA, USA) and analysed using ImageQuant (Molecular Dynamics, Sunnyvale, CA, USA). The affinity for the specific binding was expressed as the dissociation constant K_d, determined by GraphPad Prism 5 (San Diego, CA, USA).

In paper III, sections of pancreas from non-diabetic ($n=6$) and T2DM ($n=6$) as well as from Sprague Dawley rats ($n=4$) for ARG experiments using the PET ligand $^{[11]}$C]AZ compound X, were pre-incubated in 100 mL 50 mM PBS (pH 7.4) for 10 minutes. Then, radioactivity corresponding to 1 nM $^{[11]}$C]AZ Compound X ($n=3$) was added, and sections were incubated with the radioligand for 30 min at RT. Non-displaceable binding was assessed in a separate assay, by co-incubation with 20 µM of the GPR44 antagonist AZ Compound Y. Autoradiography (ARG) experiments using tritiated ligand, $^{[3]}$H]AZ Compound X, were performed by following similar procedure as described for $^{[11]}$C]AZ Compound X, except all sections were (healthy, $n=3$ and rats $n=3$) incubated with 1 nM $^{[3]}$H]AZ Compound X at RT for 3 hours. Following incubation, tissue sections were washed 3 times for 2 minutes in 50 mM PBS at 4°C. The sections were dried and exposed to phosphor-imager screen for 40 minutes with $^{[11]}$C]AZ Compound X and 90 hours with $^{[3]}$H]AZ Compound X.

In paper IV, ARG was performed on fresh frozen whole hemisphere brain slices. The incubation buffer consisted of TRIS HCl (50 mM) including NaCl (120 mM), KCl (5 mM), CaCl$_2$ (2 mM) and MgCl$_2$ (1 mM), as well as 10 µM pargylin and 0.3% bovine serum albumine, pH 7.4. The brain slices were incubated with the buffer at radioligand concentration of 0.02 MBq/mL with $^{[18]}$F]-peptides for 90 min, at RT. The measurements were done in duplicates. The slices were then rinsed with a buffer consisting of TRIS HCl (50 mM), three times for 5 min each at 4°C; followed by dipping in ice cold distilled water.

The slices (Papers III-IV) were scanned using a Cyclone Plus Phosphor imager (Perkin Elmer) at 600 dpi in case of $^{[11]}$C]AZ Compound X and $^{[18]}$F]peptides, as well as Fujifilm BAS-5000 phosphor imager (Fujifilm, Tokyo, Japan) in case of $^{[3]}$H]AZ Compound X. The images were analysed using ImageJ (NIH). Specific binding was defined by subtracting non-displaceable binding from total binding.
3.6 HOMOGENATE TISSUE SATURATION BINDING

Isolated endocrine and exocrine tissues from human pancreas were homogenised by using a polytron tissue homogeniser (Polytron® PT 3000, Kinematica AG, Littau, Switzerland) and incubated in TRIS [tris(hydroxymethyl)aminomethane] (50 mM) solution. The tissue homogenates (0.5–6 mg/mL) were incubated in 1 mL TRIS (pH 7.4) with different concentrations of specific 11C- or 18F-radioligand around an expected K_d. Aliquots of the homogenates were stored at -80°C until used. All homogenised endocrine and exocrine samples were incubated separately for 30 to 60 min at RT with radioactivity and then moved onto a Brandel 1.2 µm Whatman filter (pre-treated with 0.05% polyethylenimine or TRIS) by M-48 cell harvester (Brandel, Gaithersburg, MD, USA). The filter was washed four times with 3 mL TRIS (RT) and measured in a well-counter (Uppsala Imanet AB, GE Healthcare, Sweden). Tissue samples and references were prepared in triplicates and filter binding controls in duplicates. Non-displaceable binding was accessed by adding unlabelled cold ligand in high concentration (10–20 µM) to the incubation buffer. The specific binding was calculated by subtracting the non-specific binding from the total binding, and the endocrine-to-exocrine binding ratio was calculated. Tissue protein content (mg protein/sample) was assessed by a BioRad Protein Assay (BioRad, Hercules, CA, USA), and absorbance was measured with an EL808 microplate reader (BioTek, Winooski, VT, USA). The Binding Potential (BP), (B_{max}/K_d), was determined by non-linear regression (Paper I).

3.7 PET/CT IN PIG AND NONHUMAN PRIMATE (NHP)

Swedish Landrace piglets were used in this thesis work and were housed under the proper lab conditions. All procedures were approved by the local ethical committee for animal experimentation (Uppsala, Sweden; ethical permit Dnr C 245/8) and performed in accordance with local institutions and Swedish national rules and regulations. Piglets were anesthetised by using ketamine and morphine and they were intubated and placed on a ventilator. The anaesthesia was maintained by 2.5% sevofluran. Normoglycemia was confirmed by determining blood glucose content (4.4 to 7.6 mM) using an i-STAT analyser (CG8+cartridges, Abbot Point-of-Care, Inc, Princeton, NJ, USA). Animals were administered 5.9–20.6 MBq/Kg of the radioligand intravenously (baseline scan, $n=3$), and the blocking study ($n=2$) was performed by co-administration with 1.5 mg/kg unlabelled ligand formulated in a mixture of sterile ethanol (30%) in propylene glycol and sterile PBS (3:5) to study the specific binding. The pharmacological effect was analysed by comparing decrease
in plasma glucose levels before and 90 min after unlabelled ligand administration. The biodistribution as well as kinetics of the radioligand were studied by a Discovery ST PET/CT scanner (GE, Milwaukee, WI, USA) for 90 min with a dynamic sequence of (30 sec frames x 4, 1 min frames x 3, 3 min frames x 5, 5 min frames x 14). The CT scans were acquired for attenuation correction. Arterial (Paper I) and venous (Paper II) blood samples were acquired throughout the study and centrifuged at 3500 rpm for 5 minutes to separate the plasma. Both whole blood and plasma were measured for radioactivity using the well counter.

Cynomolgus monkeys (Macaca fascicularis), housed in the Astrid Fagraeus laboratory, Karolinska Institutet, Solna, Sweden. The experiment with the monkey was approved (N 399/08) by the Animal Ethics Committee of the Swedish Animal Welfare Agency and was performed according to the Guide for the Care and Use of Laboratory Animals. One cynomolgus monkey (male, 5.4 kg) was used in this thesis (Paper II); the monkey handling, anaesthesia and PET/CT procedure were under the control of research nurses. The anaesthesia was induced by intramuscular injection of ketamine hydrochloride and maintained by intravenous infusion of ketamine hydrochloride and xylazine hydrochloride. The body of the monkey was immobilised using a vacuum pad. Blood glucose content was assessed by using an i-STAT analyser (CG8+cartridges, Abbot Point-of-Care, Inc, Princeton, NJ, USA). The monkey was positioned in order to view the abdomen in the field of view (FOV). The whole body PET measurement was performed for 120 min (3-min frame x 3, 4-min frame x 3, 5-min frame x 3, 6-min frame x 14) in a PET/CT scanner (Siemens Biograph 64). Baseline and blocking studies were accomplished by administration of 34 and 37 MBq/kg of the radioligand, respectively. The blocking study was performed by co-administration with 0.5 mg/kg unlabelled ligand formulated in a mixture of sterile ethanol (30%) in propylene glycol and sterile PBS (3:5).

Tissue uptake and kinetics for both pig and NHP were obtained by delineating VOIs on partially summed PET images assisted by CT morphology. All image analysis was performed with the PMOD software (PMOD Technologies Ltd, Zürich, Switzerland). Measurements of the uptake were analysed by using standardised uptake value (SUV), which is the regional tissue radioactivity concentration normalised for the injected dose and body weight of the subject.

\[
\text{%SUV} = \frac{\text{tissue radioactivity concentration (kBq/cc)}}{\text{injected radioactivity (kBq)}} \times \text{body weight (g)} \times 100
\]
4 RESULTS AND DISCUSSION

4.1 RADIOLABELLING AND BIOLOGICAL EVALUATION OF DEUTERATED $[^{18}\text{F}]\text{FE-DTBZ-D4}$ (PAPER I)

Dihydrotetrabenazine (DTBZ) is highly specific for the vesicular monoamine transporter type 2 (VMAT2), and VMAT2 is co-localised with insulin in islets but is not detectable in exocrine pancreas\(^{197}\). $[^{11}\text{C}]$-(+)-DTBZ has been shown to be a BCM biomarker with a potential to distinguish between healthy and diabetic subjects longitudinally, however, with some difficulties\(^{161}\). Development of ^{18}F-labelled DTBZ derivative such as $[^{18}\text{F}]$fluoroalkyl-DTBZ\(^{198-200}\) and $[^{18}\text{F}]$fluoroeoxide-DTBZ\(^{201}\) appeared in order to get improved version of $[^{11}\text{C}]$DTBZ as BCM biomarker, since ^{18}F has longer half-life and higher electronegativity compared to ^{11}C. The radioligand, $[^{18}\text{F}]$FE-DTBZ, was investigated by our group in 2010 as a first attempt for the development of BCM biomarker; at that time, we found that the radioligand was metabolised extensively by \textit{in vivo} defluorination in a large piglet model\(^{202}\). In order to improve the \textit{in vivo} stability, deuterated analogue of $[^{18}\text{F}]$FE-DTBZ was designed, which could improve the VMAT2 uptake in BCM as well as in central nervous system (CNS). The \textit{in vitro} and \textit{in vivo} results of deuterated FE-DTBZ-d4 were compared retrospectively to that of the non-deuterated FE-DTBZ radioligand.

$[^{18}\text{F}]$FE-DTBZ-d4 was synthesised in two steps via indirect fluorination strategy following the previously described method, with slight modifications\(^{203}\) (Scheme 1). In the first step, the prosthetic group $[^{18}\text{F}]$FEtBr-d4 was synthesised by aliphatic nucleophilic substitution reaction via S\(_\text{N}\)2 mechanism, where the tosylate (-OTs) leaving group of the precursor BrEtOTs-d4 was substituted with $[^{18}\text{F}]$fluoride and formed $[^{18}\text{F}]$FEtBr-d4. In the second step, the final 18F-product $[^{18}\text{F}]$FE-DTBZ-d4, was synthesised via the coupling of the $[^{18}\text{F}]$fluoroethyl-d4 moiety to the 9-O-desmethyl-DTBZ precursor. Purification of $[^{18}\text{F}]$FEtBr-d4, was performed by distillation and isolated in good yield. The conversion of the second step i.e. conversion of $[^{18}\text{F}]$FEtBr-d4 to $[^{18}\text{F}]$FE-DTBZ-d4 was >70% based on analytical HPLC analysis. Determination of pH and volume, and visual inspections of the final formulated product were performed before releasing it for the QC analysis. The total time of the radiosynthesis, including purification and formulation, was 100±20 min after the end of 18F-production. $[^{18}\text{F}]$FE-DTBZ-d4 was produced in good and reproducible radiochemical yield; 1.7 to 3.0 GBq of the pure product was obtained from 20 to 25 min of proton bombardment with beam current of 35 μA. The radiochemical purity was >98% up to 2 hours after EOS, and QC analysis was performed before releasing the radioligand for applications.
such as \textit{in vitro} ARG, homogenate binding and \textit{in vivo} PET/CT studies. The structure of the radioligand was further confirmed by comparing the LC-MS/MS data of both reference standard and carrier of the $[^{18}\text{F}]$FE-DTBZ-d4 (after decay). The retention time of the formulated product and the fragmentation pattern of the parent peak were identical to that of the reference standard. SRA of $[^{18}\text{F}]$FE-DTBZ-d4 was high, with a range of 192–529 GBq/μmol after EOS.

Scheme 1. Synthesis of $[^{18}\text{F}]$FE-DTBZ-d4 using $[^{18}\text{F}]$FetBr-d4 as alkylation agent in two steps.

The \textit{in vitro} BP ratio of deuterated $[^{18}\text{F}]$FE-DTBZ-d4, in human endocrine and exocrine tissue homogenate was slightly higher than that of the non-deuterated $[^{18}\text{F}]$FE-DTBZ analogue (16 vs 11) i.e. greater tissue discrimination. The \textit{in vivo} PET/CT piglet studies ($n=3$) showed homogeneous uptake of the radioligand in the pancreas with no difference in the head, tail and body of the tissue. The average uptake of the radioligand, expressed in SUV, reached 2.64 shortly after the I.V. administration with a SUV of 1.8 after 90 min, which was comparable to that of the non-deuterated version. Notable accumulation was observed in the liver and spleen with faster washout kinetics than the pancreas. Apart from the excretion through the bile system, excretion through the kidney, bladder and urethra was also observed (Figure 7a). The main goal of the study was achieved by observing reduced bone uptake of the deuterated radioligand \textit{in vivo}, where it showed moderate uptake (SUV 1.4) of radioactivity with no further accumulation (Figure 7b), whereas the bone uptake increased linearly with time for the non-deuterated analogue (SUV of 3.1 at 90 min). However, there was no significant difference observed in specific VMAT2 binding uptake in the pancreas in \textit{in vivo} PET/CT studies, even though more native $[^{18}\text{F}]$FE-DTBZ-d4 was present in blood plasma.
Figure 7a: Delineation of pancreas (red), spleen (green) and parts of the anterior and posterior hepatic segments (black) exemplified on a transaxial PET/CT fusion image (a). The average dynamic uptake of 18F-DTBZ-d4 in pancreas and other abdominal tissues from 4 different piglets (b). Excretion through the biliary system is the fate of a majority of the tracer and its metabolites (c), but there is also elimination of tracer by urine (d).

Figure 7b: 3D Maximum Intensity Projection (MIP) 90 minutes after administration of (a) 18F-DTBZ-d4, low accumulation in bone structures indicates low levels of free 18F. (b) non-deuterated 18F-DTBZ, high accumulation in bone structures due to higher levels of free 18F. Colours indicate SUV 0 (black) to SUV 30 (white).

4.2 RADIOLABELLING AND BIOLOGICAL EVALUATION OF 11CAZ12504948 IN PANCREAS AND LIVER (PAPER II)

Glucokinase (GK) is an enzyme predominantly present in the beta cells of the islets of Langerhans in the pancreas204 and hepatocytes in the liver205 and as a result, is a potential target for BCM visualisation. GK is regulated by a class of small molecules called glucokinase activators (GKAs). GKAs increase the enzymatic activity of GK upon binding to a hydrophobic pocket, thereby, stabilising the bound state between GK and its substrates206. The GKA mechanism of action offers a pharmaceutical target for control of hyperglycemia; therefore, GKAs have been a hot topic in drug development207,208.

A novel GKA radioligand, 11CAZ12504948, was synthesised by O-methylation using a combination of methylating agent 11CCH_3I, base KOH($_s$) and DMSO as solvent in one step at RT (Scheme 2). The solution of the aliphatic desmethyl precursor, AZ12555620, with freshly powdered KOH in DMSO, needed to be vortex for ten min to ensure formation of the alkoxide anion prior to labelling with 11CCH_3I. Besides DMSO,
DMF was also used as solvent for the reaction but did not result in the formation of the desired labelled product. Several bases such as sodium hydride (60% in oil), aqueous NaOH (5M and 0.5M), triethylamine, solid powdered K₂CO₃, KOH and NaOH were assessed; however, only NaOH(S) resulted in the desired labelled product. Reaction parameters such as temperature (RT-140°C), reaction time (1–15 min), amount of precursor used (0.2–1.6 mg) were also investigated. Heating the reaction mixture did not improve the yield but started the decomposition of the formed [¹¹C]AZ12504948. It was observed that the radiochemical conversion of [¹¹C]CH₃I to the desired product [¹¹C]AZ12504948 was dependent on the used concentration of the precursor. Further experiments were performed to optimise the RCY by using the identical reaction conditions but with variation in the amount of precursor AZ12555620 used. The RCY varied from 10%–85%, depending on the amount of the precursor (0.2 mg–1.6 mg), and the yield reached maximum when amount of the precursor was >1.0 mg.

The total time of radiosynthesis including purification and formulation of the product was 28–30 min after end of the radionuclide production. The synthesis was highly reproducible, and the conversion of [¹¹C]CH₃I to [¹¹C]AZ12504948 was >90% (based on analytical HPLC). It was possible to produce up to 3000 MBq of pure product from 30 min of proton bombardment, at beam current of 35 μA, for PET studies. The radiochemical purity was >98% up to 2 hours after EOS. The specific radioactivity ranged from 582–2350 GBq/µmol after EOS. The precursor, AZ12555620, had two active sites for alkylation, which potentially could be radiolabelled by ¹¹C-methylation, either at the N-position of the secondary amide or at the O-position of the aliphatic hydroxyl group. The goal was to label at O-position with ¹¹C to get the desired product [¹¹C]AZ12504948 (Scheme 2). The position of the methylation, O-alkylation instead of N-alkylation, was confirmed by comparing the LC-MS/MS fragmentation of the reference standard and precursor compound.

Scheme 2. Radiosynthesis of [¹¹C]AZ12504948 via [¹¹C]CH₃I.
In vitro ARG saturation binding study in human tissues showed around 50% specificity (47.3±4.1%) to liver and low specificity (only 7.8±3.6%) to pancreas from non-diabetic human donors at sub-nanomolar concentration of \[^{11}\text{C}]AZ12504948. However, despite the low portion of specific receptor binding in the in vitro studies, we decided to perform additional studies using pigs to observe the bio-distribution of \[^{11}\text{C}]AZ12504948 in baseline condition and the specificity of \[^{11}\text{C}]AZ12504948 by performing blocking experiments (co-injection of cold ligand, 1.5 mg/kg). During the blocking experiments, pharmacological effect of the cold ligand (GKA), AZ12504948, was followed by measuring the blood glucose concentration, which decreased from 5.2 to 3.6 mM (measurement 1) and from 4.0 to 2.7 mM (measurement 2). The baseline studies demonstrated moderate uptake in the pancreas and slightly higher uptake in the liver following similar kinetics. In blood plasma, only 20–25% of the radioactivity was observed in the first 10 min and increased up to 40% after 90 min during the scan. In the blocking studies, the pancreatic uptake was reduced by 24% and liver uptake by 15%, after 30–60 min. In blood plasma, around 70% of the radioactivity was observed after 90 min (Figure 8).

In the non-human primate study \((n=1)\), both baseline and blocking experiments were performed during the same day. In the baseline study, uptake in GK rich tissues such as pancreas and liver was higher in the monkey than in the pigs with similar bio-distribution pattern. In the blocking experiment, 0.5 mg/kg of the cold ligand (AZ12504948) was used, and the pharmacological effect of GK agonist was confirmed by a reduction in blood glucose concentration from 7.1 to 5.2 mM after 90 min. The uptake of the liver was reduced by 14% after 30–60 min post injection (p.i.), whereas no reduction was observed for pancreas after blocking (Figure 9).

![Figure 8.](image-url) Tracer kinetics in liver, pancreas and blood plasma during baseline \((n=3)\) and blocking scans \((n=2)\) in pig. Values are expressed as SUV and given as means ± SEM.
Figure 9. Tracer kinetics in liver and pancreas during baseline \((n=1)\) and blocking scans \((n=1)\) in non-human primate. Values are expressed as SUV.

The major route of excretion of the radioligand was through the bile system into the duodenum and large intestine, which could result in difficulty in detecting and separating the specific ligand-GK interactions in both the liver and pancreas. However, increased target specificity is required for further progress in GK imaging using PET radioligands in pancreas and liver based on this class of GK activators.

4.3 RADIOSYNTHESIS AND IN VITRO EVALUATION OF \([^{11}\text{C}]^{[3}\text{H}]AZ\) COMPOUND X IN HUMAN PANCREAS (PAPER III).

G-protein coupled receptor 44 (GPR44, also known as postaglandin D2 receptor 2) is a protein recently characterised as a highly beta cell specific surface target and absent from remaining islet cells as well as exocrine cells\(^{209}\). To generate a potential PET radioligand for visualising BCM in native pancreas, the GPR44 specific ligand, AZ Compound X, was selected and here radiolabelled with carbon-11 and tritium. The ligand was labelled using tritium, to validate and characterise the binding properties using high resolution in vitro ARG technique with human and rat pancreatic tissue. Similar in vitro binding properties were explored using the \([^{11}\text{C}]AZ\) Compound X in post-mortem human and rat pancreatic tissue slices.

The radioligand, \([^{11}\text{C}]^{[3}\text{H}]AZ\) Compound X, was synthesised from the sodium salt of sulfinic acid precursor, in DMF using methylating agent \([^{11}\text{C}]^{[3}\text{H}]\text{CH}_3\text{I}\) in one step (Scheme 3). The radiolabelled product was formed as sulfone instead of sulfinate ester via \(\text{S-alkylation}\) instead of \(\text{O-alkylation}\), which was in agreement with the Hard Soft Acid Base (HSAB) principle\(^{210}\). It has been shown previously that alkylation of sulfinate anion with hard alkylating agent results predominantly in ester formation, whereas soft alkylating agent such
as methyl iodide mainly results in the formation of sulfone211, which supported our findings. In case of \([^{11}C]CH_3I\), methyl carbonium ion \((CH_3^+)\) is attached to a soft base Iodide \((I-)\); thus, \(CH_3^+\) acts as a soft acid. Co-ordination of \(CH_3^+\) with the soft base Sulphur \((S)\) is preferable compared to the harder base Oxygen \((O)\) present in the precursor molecule. When more reactive methylating agent \([^{11}C]CH_3OTf\) was used for labelling, a major radiolabelled by-product was formed. This did not co-elute with the reference standard in analytical radio-HPLC, which can be explained by formation of \(O\)-alkylated sulfonate ester. However, the formed radiolabelled entity was not characterised.

The conversion of \([^{11}C/\text{3}H]CH_3I\) to the product, \([^{11}C/\text{3}H]AZ\) Compound X, was almost quantitative at this condition. The total time of the radiosynthesis was 28–30 min after EOB, including online HPLC purification and formulation (PBS). The synthesis was highly reproducible; it was possible to produce up to 2500 MBq of pure product from 30 min of proton bombardment at a beam current of 35 \(\mu\)A. The radiochemical purity of \([^{11}C]AZ\) Compound X was >99% up to 2 hours and >99% for \([^{3}H]AZ\) Compound X in formulation solution, even after 1 week of EOS. The SRA of \([^{11}C]AZ\) Compound X ranged from 900–3000 GBq/\(\mu\)mol and for \([^{3}H]AZ\) Compound X was 2 GBq/\(\mu\)mol after EOS.

\[\text{Scheme 3. Radiosynthesis of } [^{11}C/\text{3}H]AZ \text{ Compound X via } [^{11}C/\text{3}H]CH_3I.\]

The ARG images using \([^{11}C]AZ\) Compound X in human pancreatic slices showed heterogeneous hotspots corresponding to islets of Langerhans in both healthy and T2DM subjects in contrast with rat pancreas, which has no GPR44 expression (used here as negative control). It was possible to almost completely block the binding to human pancreatic tissue in contrast with rat pancreatic tissue by co-incubation with 20 \(\mu\)M GPR44 antagonist AZ Compound Y. The enrichment in islet hotspots was >7 times higher than the exocrine background in tissues from both healthy and T2DM subjects (Figure 11). Comparable \textit{in vitro} ARG results were found using \([^{3}H]AZ\) Compound X (Figure 12). \textit{In vitro} binding of \([^{11}C]AZ\) Compound X to pancreatic tissue homogenates showed higher specificity towards islets than exocrine tissue. The specific binding was 8–20 times higher in islets of Langerhans than in exocrine preparations (Figure 13). No experiments were performed using tissue homogenates with the tritium labelled ligand. The specificity of the radioligand \([^{11}C]AZ\) Compound X
towards islets was confirmed by insulin staining, where most of the hotspots were co-localised with insulin (Figure 14).

Figure 11: In vitro autoradiography of $^{[13]}\text{C}]$AZ Compound X, Specific binding in pancreas from healthy human subjects (A), subjects with T2D (B) and healthy rat (C). The pancreatic binding of tracer is displaceable in human but not in rat (D), and the human pancreatic binding is concentrated to the islet of Langerhans (E).

Figure 12: In vitro autoradiography total binding in pancreas by 1 nM $[^3\text{H}]$AZ Compound X incubated for 3h from healthy human subjects (A) and healthy rat (B).

Figure 13: The islet-to-exocrine specific binding ratio was close to 20 at nanomolar concentration of radioligand $^{[13]}\text{C}]$AZ Compound X.
Figure 14. Autoradiogram (A) and insulin staining (B) of consecutive section of non-diabetic human pancreas show correlation of the $[^{11}\text{C}]$AZ Compound X tracer uptake to beta cells.

The *in vitro* binding properties of GPR44 radioligand, $[^{11}\text{C}]$/$[^{3}\text{H}]$AZ Compound X, in human pancreas and rat pancreas showed very promising results. These results motivate its further evaluation as a PET radioligand, in a preclinical setting.

4.4 FLUORINE-18 LABELLING OF THREE NOVEL D-PEPTIDES WITH $[^{18}\text{F}]$SFB AND EVALUATION BY WHOLE-HEMISPHERE HUMAN BRAIN SLICES AUTORADIOGRAPHY (PAPER IV)

A mirror image phase display selection approach212 was used to find small size peptide (12-mer, a.a sequence = qshyrhispaqv, named D1) using amyloid peptide Aβ (1-42) as target. *In vitro* studies using D1-peptide labelled with fluorescence dye FITC demonstrated specific binding to Aβ plaques in brain tissue sections from former AD patients and did not bind to fibrillary deposits derived from other amyloidosis (which do not contain Aβ(1-42))213 in contrast with Congo red, which is known to bind to any amyloid and amyloid-like fibrils, regardless of their chemical identity213,214. *In vivo* studies with FITC-D1 peptide in transgenic AD model mice confirmed high specificity to dense Aβ deposits (i.e. plaques), compared to diffuse Aβ deposits215. Moreover, D1-peptide showed properties in reducing Aβ cell toxicity and amyloid fibril formation216. All data taken together demonstrates that D1-peptide or derivative of D1-peptide might be suitable for use as a molecular probe for the detection of
amyloid plaques in living humans or animals for early diagnosis of AD or to search for compounds that are suitable for AD therapy or to monitor Aβ plaque load during disease progression. In this present work, D-enantiomeric a.a was selected, since D-enantiomeric peptides are known to be less protease sensitive and more resistant to degradation in animals217-219 than L-a.a.220-223. Therefore, D-peptides will be advantageous as a PET probe for visualising amyloid plaques in vivo. Three derivatives of D1-peptides were chosen as precursor and chemically constructed having a lysine (k) group for \(^{18}\text{F}\)-radiolabelling by conjugation of prosthetic group \(^{18}\text{F}\)SFB.

Unlabelled SFB and the triflate precursor (1) for the radiolabelling of \(^{18}\text{F}\)SFB were synthesised following previously published method, with good yield224, 225 (Scheme 4). \(^{18}\text{F}\)SFB was synthesised in three steps in one pot via HPLC purification before using it for the next step (\(^{18}\text{F}\)-peptide synthesis) based on the literature method, with modifications226, 227 (Scheme 5). In our hands, purification of \(^{18}\text{F}\)SFB using only cartridge was not good for the \(^{18}\text{F}\)-peptide labelling. Probably, some unidentified nonradioactive by-products, which were not removed during SPE purification of \(^{18}\text{F}\)SFB, affected the radiolabelling of the peptides.

Dry complex of \(^{18}\text{F}\)F/K\(_2\)CO\(_3\)/K\(_2\)\(_2\).2.2 was isolated in a reaction vial to which the precursor (1) in acetonitrile was transferred. The aromatic nucleophilic substitution reaction took place under heating and \(^{18}\text{F}\)2 was formed, followed by hydrolysis using base under heating, and \(^{18}\text{F}\)3 was produced. A solution of the reagent HSTU in acetonitrile was added to \(^{18}\text{F}\)3, and \(^{18}\text{F}\)SFB was produced under heating followed by purification on semi-preparative RP HPLC column. The fraction of \(^{18}\text{F}\)SFB was isolated on a SPE cartridge and eluted by acetonitrile for use in the second step. The total time of \(^{18}\text{F}\)SFB synthesis was 90 min from the EOB, and \(^{18}\text{F}\)SFB was produced in good yield (up to 3600 MBq from 15 min of irradiation, 30–35 μA). The \(^{18}\text{F}\)SFB was identified by analytical HPLC, comparing with the synthesised nonradioactive reference standard SFB. The radiochemical purity of \(^{18}\text{F}\)SFB was >98%.

![Scheme 4. Synthesis of SFB (reference of \(^{18}\text{F}\)SFB).](image-url)
Scheme 5. Radiosynthesis of 18F-SFB via 18F-fluoride (18F$^-$) by three steps in one pot.

The references, 19F-peptides ($[^{19}$F$]$ACI-87-F, $[^{19}$F$]$ACI-88-F and $[^{19}$F$]$ACI-89-F), were synthesised in one step (Scheme 6) where precursor peptides were dissolved in borate buffer solution (pH~8.8) and excess amount of SFB in acetonitrile was added. The reference 19F-peptides were purified by analytical HPLC system using a gradient method with acidic condition. All 19F-peptides were unstable in the acidic mobile phase used during purification; therefore, purified peptide fractions were collected in a prefilled basic solution (adjusted with NaOH) in which the 19F-peptides were stable. Three 18F-peptides ($[^{18}$F$]$ACI-87-F or $[^{18}$F$]$ACI-88-F or $[^{18}$F$]$ACI-89-F) were radiolabelled using produced purified $[^{18}$F$]$SFB in the first step. Reaction condition for labelling was similar as the condition used for reference peptide synthesis. The incorporation yield of $[^{18}$F$]$SFB to the 18F-peptides was >80% in all synthesis. Crude 18F-peptides were purified by analytical HPLC system; in our hands, purification of peptides was not possible using semi-prep HPLC column. Pure fraction of 18F-peptides was loaded to a SPE cartridge and eluted using EtOH and formulated in PBS solution. The formulated 18F-peptides were filtered manually via a sterile filter (0.22 µm) and transferred to a sterile vial to get pyrogen free product before further use. Total time of synthesis was 40 min at the EOS of $[^{18}$F$]$SFB. The identity and radiochemical purity of 18F-peptides was confirmed by analytical HPLC, comparing with the unlabelled synthesised reference peptides (19F-peptides). The radiochemical purity of the formulated 18F-peptides was >98% and was found to be radiochemically stable for up to 3 hours. The specific radioactivity obtained from $[^{18}$F$]$ACI-87-F was 16 GBq/µmol and 11 GBq/µmol, $[^{18}$F$]$ACI-88-F was 113 GBq/µmol and 9 GBq/µmol, $[^{18}$F$]$ACI-89-F was 86 GBq/µmol and 27 GBq/µmol.
Scheme 6. Radiosynthesis of $[^{18}\text{F}]/[^{19}\text{F}]$-peptides using the prosthetic group $[^{18}\text{F}]/[^{19}\text{F}]$SFB at RT.

The in vitro autoradiographs of whole hemisphere human brain slices (coronal sections) of an AD patient and an age matched control (non-AD) demonstrated higher radioligand binding at the level of hippocampus. The average grey matter-white matter uptake ratios of the three D1 derivatives was also higher in AD brain than control brain slices, and $[^{18}\text{F}]\text{ACI-88-F}$ showed the best result (Figure 15 is an example of $[^{18}\text{F}]\text{ACI-88-F}$). These promising in vitro data indicated their potential as imaging biomarkers for visualising amyloid plaques in the living brain.
Figure 15: Whole hemisphere coronal autoradiographs, using [18F]ACI-88-F as radioligand, brain of a 50-year-old female with AD (A) and a 54-year-old male control (B). Higher binding in the grey matter and in the hippocampus was observed in AD slice compared to the control (darker colour indicates higher radioligand uptake). Panels (C) and (E) represent the enlargements, indicated by the rectangular image boxes in panels (A) and (B).
5 SUMMARY OF FINDINGS

The present thesis focused on development of small molecule PET probes for BCM imaging and development of peptide molecule (12-amino acid), PET probes, for Aβ plaque imaging in the brain.

Firstly, a fluorinated analogue of the VMAT2 radioligand DTBZ was developed. In order to reduce the rate of in vivo defluorination of previously published radioligand, [18F]FE-DTBZ, isotopic substitution of the four hydrogen atoms on the 18F-ethyl group with deuterium was performed and tested, both in vitro and in vivo by PET. [18F]FE-DTBZ-d4, was radiolabelled in two steps from optically resolved 9-O-desmethyl-(+)-DTBZ precursor using the prosthetic group, deuterated [18F]fluoroethylbromide [18F]FETBr-d4, at O-position by nucleophilic alkylation reaction. The in vivo stability of the novel radioligand [18F]FE-DTBZ-d4 has improved notably through the deuterium isotopic effect, since cleavage of C-D bond via enzymatic attack is more difficult to break than C-H bond. However, our findings suggest that [18F]FE-DTBZ-d4 is not a suitable PET radioligand for endogenous BCM imaging in pancreas due to high nonspecific interactions in vivo obscuring the islet signals.

Secondly, carbon-11 labelled small molecule glucokinase activator, [11C]AZ12504948, was synthesised from its aliphatic desmethyl precursor using [11C]methyl iodide, [11C]CH3I. Alkylation of the O-position via nucleophilic substitution reaction was successful without masking the amide group present in the precursor molecule. Radioligand [11C]AZ12504948 was evaluated both in vitro and in vivo by autoradiography (ARG) and PET, respectively, to visualise intracellular target enzyme glucokinase in the liver and pancreas. These studies confirmed the specificity of the radioligand was too low to provide clear signal to noise ratio.

Thirdly, a small molecule GPR44 specific ligand, AZ compound X, was radiolabelled using both carbon-11 and tritium radionuclides, from the sodium sulfinic acid salt precursor, using [11C/H]CH3I for visualising BCM in pancreas. The in vitro binding studies using ARG technique demonstrated binding with high specificity to human islets of pancreatic tissues, which seems promising for further evaluation in vivo. The presence of islets was confirmed by insulin staining, using sequential human pancreatic slices used for ARG.

Finally, three different fluorine-18 labelled D-peptides were developed and radiolabelled using prosthetic group [18F]SFB, for visualising amyloid plaques in the human brain by PET. In vitro ARG studies demonstrated higher accumulation of the 18F-peptides in Alzheimer’s disease (AD) brain tissue slices compared to that of age-matched control non-AD individual, and one of these three 18F-peptides was proven to be the best candidate for further evaluation in vivo.
6 FUTURE PERSPECTIVE AND CHALLENGES

To find an ideal radioligand for beta cell mass (BCM), imaging has already been proven to be a difficult task compared to other research areas. The main challenge in beta cell imaging (BCI) is the small volume (1–2%) of endocrine tissue and heterogeneity of islets throughout the exocrine pancreas228, in contrast with tumour imaging where the target of interest is over expressed. The second challenge is the location of the pancreas, which is surrounded by the liver and gastrointestinal system; thereby, excretion route is considered to be an obstacle. The hepatobilary excretion of radioligand or radiometabolites results in enhanced non-target radioactivity concentrations in the intestinal tract, which makes delineation of the pancreatic uptake difficult. The sensitivity of PET imaging is dependent on the endogenous expression level of the target protein and the specificity, as well as binding affinity of the radioligand with high specific radioactivity. Thus, it is critical to develop radionuclide probes with high contrast and beta cell specificity with favourable pharmacokinetics. A recent theoretical quantitative analysis of non-invasive BCM imaging was published166, where they estimated that the specificity of the radioligand towards β-cells should be 100-fold to 1000-fold more than exocrine cells (volume fraction of β-cells and exocrine cells; 1:100). With the progression of the disease i.e. decrease of BCM, the specificity of the radioligand for β-cells increases exponentially. This is an achievement difficult for any radioligand. In any case, in spite of severe methodological challenges, progress has been documented for BCM imaging using PET technique. None of the methods available so far has proven to predict BCM with a comparable accuracy as the functional PET method applied herein162, 165-167. It is important to emphasise that significant efforts have recently been underway to identify β-cell specific targets and to design as highly specific radioligands to these targets as possible. In the present work, three novel PET radioligands were developed for three different molecular targets and explored for BCM imaging in order to contribute to the development of so called “ideal” radioligand to gain knowledge about diabetes and to assist patients with personalised medical care as well as to advance drug discovery, which is finally the ultimate goal.

Vesicular monoamine transporter type 2 (VMAT2) is a target for imaging BCM, and radioligand dihydrotetrabenazine (DTBZ) binds specifically to target VMAT2. Hepatic islet transplantation is suffering from poor long-term outcome and graft failure due to inadequate graft revascularisation. DTBZ-based radioligands are out of reach to follow hepatic islet transplantation, since the liver is responsible for many metabolic pathways i.e. high non-target signals. Currently, new transplanted sites have been evaluated for increased graft
survival, and outcome tissues are bone marrow and brachioradialis (forearm muscle). Our
developed novel radioligand, \([^{18}F]FE\)-DTBZ-d4, has the characteristics considering the study
to VMAT2 dense tissue in proximity to cortical bone structure such as intramuscular islet
transplantation in clinical and preclinical settings.

The GPR44 receptor, which is highly expressed on the surface of the \(\beta\)-cells in pancreas
seems a very attractive target for BCI. Based on our experiments, the developed GPR44
specific radioligand (AZ compound X) demonstrated high specificity towards the islets of
human pancreas \textit{in vitro}. The \textit{in vivo} PET studies in preclinical settings are highly desirable
to validate this radioligand, in non-diabetic large animals for visualisation and quantification
of BCM in pancreas. To confirm the specificity of the radioligand, pretreatment or
displacement studies with cold ligand is required. In order to be able to follow the small
difference of radioligand uptake in the pancreas of non-diabetic and diabetic subjects i.e.
BCM, type 1 diabetic model of animal is essential. Unfortunately, GPR44 is not expressed in
rat pancreas, as several rodent diabetes models are available. Therefore, pig models of T1DM
or T2DM could be utilised for \textit{in vivo} evaluation of \([^{11}C]AZ\) Compound X similarly by
following previously evaluated method229. Radiometabolite analysis of \([^{11}C]AZ\) Compound
X needs to be performed to follow the stability of the parent radioligand throughout the PET
scan, especially for the kinetic modelling quantification.

The main challenge in case of labelled peptide for brain PET imaging is the blood-brain-
barrier (BBB) penetration compared to small molecules. Poor distribution to the brain and
high nonspecific binding is the main reason for failure of useful CNS radioligands.
Substances that are able to inhibit A\(\beta\) aggregation and reduce its toxic effects are still highly
desirable for diagnosis and potential therapy. \textit{In vitro} studies of three \(^{18}\text{F}-\text{D-}\)peptides using
ARG technique demonstrated high specificity towards A\(\beta\) plaques of AD patient’s brain
slices compared to non-AD subject, which makes them have a potential for further evaluation
\textit{in vivo} by highly sensitive PET imaging techniques. Our preliminary results of dynamic PET
(\textit{in vivo}) studies in cynomolgus monkey brain, using these three \(^{18}\text{F}-\text{D-}\)peptides,
demonstrated low brain penetration (in the range of 0.1 \% of the injected dose corrected for
blood volume and arterial blood concentration), which makes these \(^{18}\text{F-}\)peptides unsuitable as
PET probe in its current form. The study of metabolism of three \(^{18}\text{F}-\text{D-}\)peptides during the
PET experiments showed very high stability and metabolic resistance. In conclusion, desired
modification of D-enantiomeric peptide (which is fully synthetic) is necessary to improve the
properties to cross the BBB for future PET studies in order to visualise amyloid plaques in
AD brain.
7 ACKNOWLEDGEMENTS

This thesis was made possible by the direct or indirect help and support from numerous people. I would specially like to thank:

First of all, I would like to express my sincere gratitude to my world-renowned supervisor Prof. Christer Halldin for accepting me as a PhD student in your group. I feel so proud to be a part of your famousness. Everybody knows about you in the radiochemistry field and I will always carry a piece of your fame wherever I go, after getting the PhD degree under your supervision. Thanks for being there, supporting me and encouraging me when I needed it the most, and for being so enthusiastic about my work, no matter where you were in the world! Your positive way of looking at life and work, your openness to accept my opinion with great consideration, your belief on my “research, productions and writings” gave me so much strength to solve many challenges I faced during my working life at KI. Thank you! “You do really care about your PhD student’s wellbeing”.

Thanks to my co-supervisor, Dr. Peter Johnström for your constructive criticism, reviewing my thesis with special care and to share knowledge about radiochemistry and drug development whenever you had time. My co-supervisor Dr. Olof Eriksson; you are the rising star of BCM imaging; you will reach the top. Your guidance and helpfulness regarding our radioligands application taught me enough about diabetes and the pancreas and gave me the confidence to face my defense discussion about PET imaging. Dr. Lars Johansson, for your avid involvement in BCM project from 2008-2014.

My expert co-workers at Karolinska PET group from whom I have learned so much; Dr. Kenneth Dahl; for your technical assistance, helpful approach to coach new equipments with patience and for creating a nice working and friendly environment. Dr. Sangram Nag; your knowledge about chemistry and your optimistic and cooperative nature constantly amaze me. You always have answers to all of my questions and come up with solutions for anything from radiochemistry to technical matters. Dr. Magnus Schou; for your politeness, discussions about radiochemistry and your jokes which gave some brightness at regular and late evening working hours. Dr. Zhisheng Jia; your helpfulness and effectiveness during productions as well as research are always enjoyable; it has been a pleasure to work with you. Dr. Raisa Krasikova; for your valuable scientific discussions and willingness to share your knowledge about radiochemistry. Arsalan Amir; for your technical assistance with QC and productive suggestions on improving quality of life and work, Guennadi Jogolev; for your technical assistance with QC and co-operation in the lab. Past and present members of KI PET group: Dr. Jan Andersson; for being such a nice and kind colleague and for also being a great listener, Dr. Sjoerd J. Finnema; for your valuable conversation about science and life, Carsten Steiger; for being a great office-mate and sharing your knowledge from radiochemistry to quality control. Dr. Arindam Das, Johan Ullin, Anton Lindberg, Petra Agirman, Youssef EL Khoury, Dr. Vladimir Stepanov, Maria Yakovleva, Hanna I. Jacobsson, Andreas Westermark, Nandoor Kapósy, Henrik Alfredéen, Dr. Pavitra Kannan, Steffan Martinsson, Ana Maria, Mahdi Moein and Antonio Bermejo for keeping up a pleasant atmosphere in the office corridor.
Dr. Balazs Gulyás, Dr. Marie Svedberg, Åsa Södergren and Siv Eriksson; for sharing your expertise and assistance with autoradiography experiments and data analysis. Dr. Akihiro Takano for sharing your expertise in NHP experiments and data analysis. Dr. Nahid Ebrahimi-Mehrabani and Phong Truong for your friendship and constant support with the cyclotron. Dr. Ram Kumar Selvaraju for your assistance with the in vitro experiments and data analysis, for your friendship and valuable comments about my thesis. Karin Zahir, for your administrative assistance concerning both personal and work-related issues, and for your loving care. Urban Hansson, for all the IT support and positive energy.

Dr. Martin Schain, Dr. Anton Forsberg, Dr. Magdalena Nord, Granville Matheson, Pontus P. Sigray, Dr. Miklós Tóth, Dr. Jenny Häggkvist, Lenke Tari, Pauliina Ikonen, Karin Collste, Dr. Mikael Tiger, Dr. Simon Cervenka, Dr. Jacqueline Borg, Dr. Johan Lundberg, Patrik Fazio, Emma Veldman, Max Andersson; for providing such a friendly and welcoming atmosphere at lunch. No matter if you were in the middle of a conversation, whether you were talking about science or movies or sports, you always had time to welcome any newcomer into the discussion or make space at a crowded table. You could be a role model for any group, when it comes to integrating many people who come from different parts of the world! Being away from home many years, missing all my friends and lunchtime discussions, you gave me that taste of home!

Dr. Lars Farde, Dr. Andrea Varrone, Dr. Per Stenkrona, Dr. Katarina Varnäs, Göran Rosenqvist, Dr. Rafael Maior, Nina Knave, Jonas Ahlgren, Gudran Nylen, Ryosuke Arakawa, Kai-Chun Yang, Anne Bystrom, Emma Meyer, Hanna Elgstrand for your support and comforting atmosphere. Kia Hultberg-Lundberg; for all your support when my mom was visiting, Opokua Britton; for nail art talk, Karin Olsson; for your love and being Leeba’s extra Grandma, Sara Lundqvist and Zsolt Sarnyai for your friendly activities.

Members of the PET Neuroradiology group, Prof. Sharon Stone-Elander, Dr. Jan-Olov Thorell, Dr. Erik Samén, Dr. Obaidur Rahman, Emma Jussing, Johanna Backström, Rebecka Dahlfors, Marlène Dilenstam, Seth Björk for keeping smooth co-operation in the radiochemistry labs.

Thanks to Prof. Bengt Långström for introducing me with this fascinating radiochemistry world; for providing outstanding working facilities and made me feel very welcome in your group during my M.Sc. thesis work at Uppsala University. Thanks to Prof. Ian Nicholls and Assoc. Prof. Susanne Wikman; for your warm welcome and generosity during my short-stay at Kalmar University. Prof. Jean DaSilva for your supervision and hospitality all through my work at the University of Ottawa Heart Institute and to Dr. Tayebeh Hadizad; for your support at UOHI lab and friendship.

My friends from Sweden: Magdalena for being so true friend and always being there for me whenever I needed, both for laughter and sorrow. Marie, for sharing your wisdom and exclusive books from your rich library. I have learned many things from you and constantly learning. I am so blessed to have friends like you around me here in Sweden where I can go whenever I feel down. Kristofer, Bernt, Pamela, Emo, Kazi and Ratan vai for being around.
My friends of Chemistry Department and Science faculty of Dhaka University; I miss you intensely, all the chit-chat around Carzon hall, the tea breaks, lunch breaks, new year’s celebration, book fair, study tour, watching cricket, all the fun we had together. Those long hours in the library studying for our exams, making notes, long intensive theory and practical classes from 8-17 everyday, I wouldn’t have survived without you guys through those long years. Special thanks to Mahbub, I would have dropped out from studying Chemistry in the 1st year, if you had not been there! Ehsan for your great help and support for taking care of my family in Dhaka when I wasn’t around, it means a lot to me. Nipa, Nila, Monzur for keeping your friendship. Thanks to Ma, Bapi, Dada, Shiuly di, Biku, Popy for giving me a new family.

Thanks to all my excellent scholar cousins and family members who always inspired me to be one of them! I am lucky to have such a family who were giving me fuel all the time, special thanks to my uncle Fazlul Hoque and aunt Taslimah, Swapan, Shaku, Himu, Tanvir and Shahin dada, Liton vai, Lopa, Tania, Miki, Jerin and Shamu apu, Juthy, Anik, Shoumik, Shoily, Shoha, Tisha, Arham, Reem, Mahadia and all of you that I didn’t mention herein.

My parents and family; My father, who is not here anymore to share my achievement, would be so proud of me today; thanks to him and my mother for your enormous support, inspiration and forgiveness. I know I wasn’t always easy to handle, my stubbornness and independent way of thinking upset you at times, but in the end you have proven that “love and affection” is stronger than anything else! To my only sister Poly for your encouragement and strong influence all through my life, to my elder brother Murad for your kindness and love, My younger brothers Babu and Sharnav; for your undying support throughout the years, your patience and taking so great care of our parents in our absence; it is not so easy to live far from home and not to be able to contribute when you need the most. I love you all with my heart.

My dear husband Sangram, I don’t know where to start and where to end; you are the rock upon which I stand! Without your love, your endless patience and support, it would not be possible to accomplish this thesis. You have taken such great care of me and Leeba. From the time you and Leeba came into my life, I feel complete and now with this PhD, I feel satisfied. I am sure after these all painful months, you have learned what Islets of Langerhans is and Leeba has learned to say “Mummy, I have a small Pancreas”.

My sweet daughter Leeba: you are my sunshine; you are the best thing that has ever happened to me 😊.

Mahabuba (Jolly)
Stockholm, August 2016
REFERENCES

78. Christman DR, Finn RD, Karlstrom KI, Wolf AP. The production of ultra high activity 11C-labeled hydrogen cyanide, carbon dioxide, carbon monoxide and methane
via the 14N(p,α)11C reaction (XV). *The International Journal of Applied Radiation and Isotopes.* 1975;26(8):435-442.

61

224. Johnström P, Harris NG, Fryer TD, Barret O, Clark JC, Pickard JD, Davenport AP. 18F-Endothelin-1, a positron emission tomography (PET) radioligand for the endothelin receptor system: radiosynthesis and in vivo imaging using microPET. *Clinical Science*. Aug 2002;103:4S-8S.

