The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Mechanisms of type 1 diabetic serum-induced hyperactivation of \(\text{Ca}_\text{V}1 \) channels in the pancreatic \(\beta \) cell

AKADEMISK AVHANDLING
som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras på engelska språket i Leksellsalen, T3:02, Eugeniahemmet, Karolinska Universitetssjukhuset, Solna.

Fredagen den 26 februari 2016, kl 09.00

av
Yue Shi

Huvudhandledare:
Docent Shao-Nian Yang
Karolinska Institutet
Institutionen för Molekylär Medicin och Kirurgi

Bihandledare:
Professor Per-Olof Berggren
Karolinska Institutet
Institutionen för Molekylär Medicin och Kirurgi

Fakultetsopponent:
Professor Erik Renström
Lunds Universitet
Institutionen för Kliniska Vetenskaper, Malmö

Betygsnämnd:
Professor Mikael Rydén
Karolinska Institutet
Institutionen för Medicin, Huddinge

Professor Anna Krook
Karolinska Institutet
Institutionen för Molekylär Medicin och Kirurgi

Docent Sebastian Barg
Uppsala Universitet
Institutionen för Medicinsk Cellbiologi

Stockholm 2016
ABSTRACT

The pancreatic β cell relies on appropriate Ca\(^{2+}\) entry through voltage-gated calcium (Ca\(_V\)) channels to accomplish its unique function insulin secretion and to guarantee its viability. Well-regulated β cell Ca\(_V\) channels are critical to ensure adequate functional β cell mass, thereby maintaining adequate insulin release and glucose homeostasis in the body. When β cell Ca\(_V\) channels mediate insufficient or excessive Ca\(^{2+}\) influx due to either inherited or acquired defects, β cell becomes malfunctioning and even dies. Type 1 diabetic (T1D) serum hyperactivates β cell Ca\(_V\)1 channels driving Ca\(^{2+}\)-dependent β cell apoptosis via previously unappreciated mechanisms. The present PhD work has mechanistically dissected T1D serum-induced hyperactivation of Ca\(_V\)1 channels in the β cell by combining patch-clamp techniques, confocal microscopy, as well as molecular and cellular approaches. It reveals the following findings:

Functional Ca\(_V\)1.3 channels reside in 20 % of mouse islet Ca\(_V\)1.2\(^{-/-}\) β cells. They characteristically show a large unitary Ba\(^{2+}\) conductance with long-lasting openings in plasma membrane patches of islet cells endowed with undetectable voltage-gated Na\(^+\) currents, larger cell capacitance (> 7 pF) and insulin mRNA. These observations pinpoint β cell-specific Ca\(_V\)1.2\(^{-/-}\) mice as a convenient small animal model for investigation of human β cell Ca\(_V\)1.3 channel-related disorders such as T1D serum-induced hyperactivation of β cell Ca\(_V\)1.3 channels.

T1D serum hyperactivates both Ca\(_V\)1.2 and Ca\(_V\)1.3 channels by elevating their conductivity and number in the β cell plasma membrane. This finding emphasizes that both Ca\(_V\)1.2 and Ca\(_V\)1.3 channels are potential druggable targets for prevention of Ca\(^{2+}\) overload-induced β cell death.

Apolipoprotein CIII (ApoCIII) in T1D serum is electrophysiologically validated to be the actual factor enhancing Ca\(_V\) channel currents in the β cell. This validation opens up the possibility to deplete or neutralize ApoCIII in T1D serum for medical intervention of Ca\(_V\) channel hyperactivation-driven β cell destruction.

ApoCIII activates both PKA and Src kinase in a scavenger receptor class B type I/β1 integrin-dependent fashion to selectively hyperactivate β cell Ca\(_V\)1 channels without altering β cell Ca\(_V\)1 channel expression. ApoCIII-induced hyperactivation of β cell Ca\(_V\)1 channels results from the enriched density and increased activity of functional Ca\(_V\)1 channels in the β cell plasma membrane. This newly-identified signaling pathway shows great potential as a set of novel druggable targets for prevention of Ca\(^{2+}\)-dependent β cell death in association with diabetes.

The key endocytic protein syndapin I/PACSIN 1 (PCS1) is richly expressed in β cells to govern endocytic activity. PCS1-mediated endocytosis acts as a homeostatic control system to fine-tune the Ca\(_V\)1 channel density in the β cell plasma membrane. These findings add a new layer of complexity to the mechanisms of β cell Ca\(_V\)1 channel regulation.

ApoCIII impairs both constitutive and regulated β cell endocytosis with no influence on PCS1 expression. Consequently, ApoCIII abrogates PCS1-dependent endocytic trafficking, thereby accumulating excessive Ca\(_V\)1 channels in the β cell plasma membrane. These results delineate a novel mechanism of Ca\(^{2+}\)-dependent β cell destruction in diabetes development and reveal a promising and attractive option to counteract the critical diabetogenic process of Ca\(^{2+}\)-dependent β cell death.

Overall, the aforementioned findings depict a mechanistic picture of how ApoCIII renders Ca\(_V\)1 channels highly enriched and excessively activated in the β cell plasma membrane, thereby resulting in pathologically exaggerated Ca\(^{2+}\) influx and Ca\(^{2+}\)-dependent β death. These findings lay the foundation for novel treatment strategies for diabetes.