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ABSTRACT 
Oxidative stress is one of the earliest signs in Alzheimer Disease (AD) brain. In order to protect 

themselves against oxidative stress, neurons use antioxidants as a defense mechanism. Such an 

antioxidant is Thioredoxin-1 (Trx1). Previous studies have shown that the levels of Trx1 are 

reduced in the brains of AD patients. The aim of this thesis was to further examine the function 

of Trx1 in AD pathogenesis. 

In Paper I and III, the role of Trx1 in the mechanisms behind risk-modulating factors is 

investigated. The incidence of AD is higher in women than in men and one reason for this is 

thought to be the post-menopausal lack of estrogen. In addition, estrogen was shown to have 

neuroprotective effects both in vitro and in vivo. In Paper I we studied the protective effect of 

estrogen against amyloid-beta (Aβ) toxicity in vitro. We found that estrogen is protective via 

phosphorylation of Protein kinase B (AKT) and inhibition of the Apoptosis signal-regulating 

kinase 1 (ASK-1) pathway. However, this occurs independently of Trx1 expression. In Paper III 

we investigated the effect of Apolipoprotein E (ApoE) isoforms on Trx1 in the brain. The ApoE 

isoform ε4 (ApoE4) is the most important genetic risk factor for sporadic AD and it is also 

associated with increased oxidative stress in the brain. Furthermore, ApoE4 is suggested to have 

direct toxic effects via apoptosis. We found that presence of ApoE4 causes a reduction in Trx1 

levels, both in vivo, in hippocampus of ApoE Target Replacement Mice, and in vitro, in human 

primary cortical neurons and neuroblastoma cells. This occurred after leakage of the lysosomal 

membrane and cytosolic release of Cathepsin D, and it induced apoptotic cell death via 

activation of the ASK-1 pathway. 

Thioredoxin-1 can be truncated into an 80 amino acid long peptide called Thioredoxin-80 

(Trx80). In Paper II and IV, we demonstrate for the very first time that this peptide is present in 

the brain, mainly in neurons. The levels were reduced significantly in AD patients and this was 

also seen in the cerebrospinal fluid (CSF). The reduction in CSF was present already in patients 

with mild cognitive impairment (MCI). Furthermore, we demonstrate that the peptide is 

generated by α-secretase cleavage of Trx1 and is secreted from cells in exosomes. The peptide 

inhibits the aggregation of Aβ and prevents its toxic effects both in vitro and in a Drosophila 

Melanogaster model of AD. In addition, Trx80 lowers the levels of Aβ, possibly through a 

mechanism that involves autophagy.  

These findings give support to the view that oxidative stress in general, and Trx1 in particular, 

has a key role in AD pathogenesis. It also presents Trx80 as a completely new player to the field 

that has potential as a specific biomarker for the disease. In addition, therapeutic strategies based 

on these two peptides could be a possibility in AD that should be further investigated.   



SAMMANFATTNING PÅ SVENSKA 
lzheimers sjukdom (AS) är den vanligaste formen av demens och påverkar flera funktioner 

i hjärnan varav försämring av minnesförmågan är den mest påtagliga. Sjukdomen är 

progressiv och bryter långsamt ned hjärnan. Dessvärre finns idag inget botemedel tillgängligt.  

Förutom den fruktansvärda börda som sjukdomen innebär för patienterna och deras anhöriga så 

är det också en stor utmaning för samhället i stort. Idag uppskattas att nästan 47 miljoner 

människor är drabbade och antalet stiger i takt med att jordens befolkning ökar och att andelen 

äldre blir allt fler. Kostnaden för demens i världen är beräknad till 800 miljarder dollar årligen och 

väntas öka till ofattbara 2 biljoner inom 15 år. Detta kräver omedelbara insatser för att förbättra 

behandling, diagnos och vård av patienter.  

Man brukar dela in sjukdomen i två underkategorier, familjär och sporadisk AS. Den familjära 

formen utgör endast ett par procent av det totala antalet patienter och orsakas av vissa nedärvda 

mutationer. Resterande del utgörs av den sporadiska formen och man vet ännu inte vad som 

orsakar sjukdomen hos dessa patienter men flera bidragande orsaker har föreslagits. De tydligaste 

förändringarna vid sjukdomen är att neuroner och synapser dör vilket får till följd att hjärnan 

krymper. Dessutom framträder ansamlingar av proteiner, så kallade plack och neurofibrillära 

nystan. Placken består huvudsakligen av ett felveckat protein som heter amyloid-beta (Aβ). Man 

tror att detta protein spelar en viktig roll vid sjukdomsutvecklingen och flera studier har visat det 

har toxiska effekter i hjärnan vid AS.  

En annan förändring i hjärnan är oxidativ stress vilket kan detekteras redan tidigt i 

sjukdomsutvecklingen. Definitionen av oxidativ stress är obalans mellan bildandet av fria 

syreradikaler och cellens försvar i form av antioxidanter. Detta kan orsakas antingen genom ökad 

produktion av syreradikaler eller genom en minskning av antioxidanter. En av kroppens 

viktigaste antioxidanter är Thioredoxin-1 (Trx1). Detta protein finns i princip alla kroppens celler 

och kan eliminera syreradikaler och återställa skadade proteiner. Dessutom kan det skydda 

cellerna genom att hämma aktivering av programmerad celldöd, så kallad apoptos. Tidigare 

studier har visat att proteinet har en skyddande effekt mot de neurotoxiska effekterna som 

orsakas av Aβ, samt att dess nivåer är minskade i hjärnan hos Alzheimerpatienter. I delarbetena 

som ingår i denna avhandling har vi vidare studerat vilken roll Trx1 har vid AS. 

I Studie I och III har vi undersökt om Trx1 är involverat i mekanismerna bakom kända faktorer 

som påverkar risken att drabbas av AS. Kvinnor drabbas i något större utsträckning av 

sjukdomen än män och en orsak till detta tros vara den brist på östrogen som drabbar kvinnor i 

samband med klimakteriet. Östrogen har en skyddande effekt på neuroner och tidigare 
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experiment i cellkulturer har visat att det också kan hämma Aβ-toxicitet. Dessutom har det visat 

sig att östrogen ökar nivåerna av Trx1. I Studie I ville vi därför undersöka om östrogen hämmar 

Aβ-toxicitet genom att öka mängden Trx1. Resultaten vi erhöll visade att de skyddande 

effekterna sker genom aktivering av en specifik östrogenreceptor men dock oberoende av ökad 

mängd Trx1. 

En annan faktor som påverkar risken att drabbas av AS är genvarianten ε4 av Apolipoprotein E 

(ApoE4), som bärs av cirka 15 % av befolkningen. Individer som har enkel genuppsättning av 

ApoE4 har ungefär tre gånger högre risk att drabbas, medan hos de som har dubbel uppsättning 

ökar risken med nästan 15 gånger. Apolipoprotein E4 har associerats med ökad oxidativ stress i 

hjärnan hos Alzheimerpatienter och dessutom har det föreslagits att proteinet kan ha direkt 

skadliga effekter på neuroner. I Studie III har vi studerat hur Trx1 påverkas av ApoE4 i hjärnan. 

Till vår hjälp använde vi möss, där musens ApoE ersatts med humant ApoE. Vi fann att de möss 

som bar på ApoE4-varianten hade lägre nivåer av Trx1 i hjärnan. På samma sätt minskade 

nivåerna då vi behandlade odlade neuroner med ApoE4. I dessa neuroner försökte vi därefter 

förstå mekanismen bakom minskningen och fann att ApoE4 orsakar en destabilisering av en 

struktur inne i cellerna som kallas lysosomer. Denna destabilisering gjorde också att enzymet 

Cathepsin D läckte ut från lysosomerna. Detta enzym kan bryta ner Trx1 vilket kan vara 

anledningen till att mössen och de odlade cellerna har lägre nivåer av Trx1 i närvaro av ApoE4. 

Dessutom såg vi att ApoE4 orsakade aktivering av programmerad celldöd. Med dessa resultat 

presenterar vi en ny mekanism för hur ApoE4 kan orsaka oxidativ stress och celldöd. 

Thioredoxin-1 består av 105 aminosyror. Denna kedja kan klyvas och bilda en 80 aminosyror 

lång peptidkedja som kallas Thioredoxin-80 (Trx80). Tidigare rapporter om denna molekyl har 

huvudsakligen behandlat dess roll i immunförsvaret. Huruvida peptiden finns i hjärnan har dock 

varit okänt. I Studie II och IV visade vi för första gången att Trx80 finns i hjärnan, främst i 

neuroner, och att nivåerna är kraftigt minskade hos Alzheimerpatienter. Denna minskning var 

påtaglig även i ryggmärgsvätska och kunde detekteras redan hos patienter med mild kognitiv 

svikt, vilket är ett förstadie till AS. När vi jämförde patienter med mild kognitiv svikt som inom 

två år utvecklade AS med sådana som ej utvecklade sjukdomen fann vi att de som senare 

utvecklade AS hade lägre nivåer av Trx80 initialt jämfört med de som var stabila. Detta tyder på 

att Trx80 skulle kunna användas som en diagnostisk och prognostisk markör för sjukdomen.  

Man har tidigare inte vetat vilket enzym som generar denna peptid. I Studie II visar vi att ett 

enzym som kallas α-sekretas kan klyva Trx1 till Trx80. Vi visar dessutom att peptiden kan hindra 

Aβ från att klumpa ihop sig vilket därmed hämmar dess toxiska effekter. Detta kunde vi se i både 

cellkulturer och i bananfluga. Därtill fann vi att celler med höga nivåer av Trx80 hade minskade 



nivåer av Aβ. Liknande upptäckt gjorde vi i hjärnan hos bananflugorna. De bananflugor som 

hade höga nivåer av Trx80 hade minskad ansamling av Aβ i hjärnan. Dessa bananflugor hade 

också förbättrad rörelseförmåga och ökad livslängd. Till sist fann vi att peptiden kan utsöndras 

från celler inuti små strukturer som kallas exosomer. Man vet sedan tidigare att även Aβ finns i 

dessa strukturer och man tror att Aβ på så sätt kan spridas från cell till cell och därigenom bidra 

till att sjukdomen sprids i hjärnan. Med tanke på de resultaten som beskrivits ovan är det 

tänkbart att Trx80 i normala fall kan hindra detta men inte vid AS då nivåerna av Trx80 är låga.  

Dessa resultat ger ytterligare stöd för uppfattningen att oxidativ stress i allmänhet, och Trx1 i 

synnerhet, har en nyckelroll vid AS. De presenterar också Trx80 som en helt ny aktör med 

potential som specifik biomarkör för sjukdomen. Dessutom tyder detta på att terapeutiska 

strategier, baserade på dessa två peptider, kan vara en möjlighet vid AD som bör utredas vidare. 
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1 INTRODUCTION 

ince the beginning of medical science in the ancient Egyptian and Greek societies, copious 

discoveries have been made for the benefit of humanity. Despite all these innovations and 

breakthroughs, no one has yet found a way to prevent us from aging. Unfortunately, not all 

of us are lucky enough to expect a healthy and active life when we get older and some may even 

face burdensome disorders. Such a disorder is Alzheimer Disease. The heavy burden of this 

disease is not only carried by the patients, who might experience how themselves and the world 

around them are changing uncontrollably, but also by family and friends who see their loved-

ones fade away.  

1.1 ALZHEIMER DISEASE 

Alzheimer Disease (AD) is a neurodegenerative disorder that affects cognition, memory and 

behavior. It is the most common form of dementia with almost 47 million people affected 

worldwide. With an increasing and aging population, the number is expected to reach more than 

130 million by year 2050 1. The disease is progressive and eventually fatal and today there is no 

cure available. Not only is there an urgent need for a curative treatment for all patients but also 

for society at large. The global cost for society is more than 800 billion US dollars annually and in 

only 15 years the cost is predicted to reach a staggering 2 trillion US dollars! This calls for an 

immediate action, not only to find better treatments but also to identify prevention strategies, 

develop new ways to diagnose patients at an earlier stage and to improve care for affected 

individuals.  

1.1.1 Neuropathology 

The disease is characterized by altered cholinergic function and loss of synapses and neurons in 

the cerebral cortex and parts of the subcortical areas. In addition, brain accumulation of amyloid-

beta (Aβ) peptides and hyperphosphorylated tau, leading to the formation of plaques and 

neurofibrilliary tangles (NFT) respectively, are other markers of the disease 2,3. Along with these 

signs, the brains of individuals with AD also show activation of inflammatory pathways 4 with 

activated microglia and reactive astrocytes, often in association with Aβ plaques 5. Many of these 

primary pathologies emerge years before the first signs of cognitive dysfunction. In early stages,  

the Aβ deposits are mainly found in the basal parts of the frontal, temporal and occipital lobes of 

the neocortex, later these can also be found in the allocortex including the hippocampus and 

finally spreading to subcortical areas 6.  The tau aggregates on the other hand are formed initially 

in locus coeruleus in the brainstem followed by the entorhinal cortex, the hippocampal 

formation and finally also throughout the neocortex 7. The majority of patients also have vascular 
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changes in the brain such as cerebral amyloid angiopathy (CAA), which is a condition where 

protein deposits build up in the walls of blood vessels, and this can lead to cerebral ischemia 8. 

Another major sign is increased oxidative stress in the brain, which is given a deeper review in a 

separate section below (1.2). 

1.1.2 Amyloid-beta 
The characteristic plaques in AD brain consist mainly of Aβ peptides. These peptides are 

generated through sequential cleavage of the Amyloid Precursor Protein (APP) by the β-secretase 

enzyme and the γ-secretase complex. This cleavage sequence can generate Aβ peptides that 

ranges from 39 to 43 amino acids 9, however, the two most abundant species has 40 (Aβ40)  or 42 

(Aβ42) amino acids 10. The latter one is more hydrophilic and prone to form amyloid aggregates 

and is the major component of the amyloid plaques 11. The familial forms of AD (FAD), are all 

caused by mutations in genes related to the production of Aβ; APP, Presenilin-1 (PS-1) and 

Presenilin-2 (PS2), where the two latter constitute the catalytic subunit of the γ-secretase 

complex 12. More than 200 mutations have been identified in these genes 13. The APP gene is 

located on chromosome 21, which exists in three copies in people with Down’s syndrome. These 

individuals have an overproduction of Aβ peptides and they also develop Alzheimer-like 

pathology early in life. Despite this, it is not clear how Aβ contributes to the disease or what the 

physiological role of the peptide is. Several studies have shown that Aβ is neurotoxic and 

different mechanisms have been proposed. Administration of Aβ directly into rat brain caused 

both excitotoxicity 14 and synaptic dysfunction 15. Studies have also shown how Aβ can interact 

with components both inside the cell and on the plasma membrane leading to cellular 

dysfunction and cell death. For example, the mitochondrial enzyme Aβ-binding alcohol 

dehydrogenase (ABAD), was demonstrated to interact with Aβ inside the mitochondria in both 

AD patients and transgenic mice, causing mitochondrial dysfunction 16. On the cell surface, many 

membrane proteins were shown to interact with Aβ leading to direct toxicity 17. In addition, 

several studies have linked Aβ to the generation of free radicals and oxidative stress 18-20. Between 

cleavage of APP to the formation of plaques, the monomeric Aβ misfolds and forms dimers, 

oligomers, protofibrils and mature fibrils in a sequential manner 21,22.  In the early 90’s, the 

amyloid hypothesis was presented, which states that it is the Aβ species that are neurotoxic and 

the driving force behind the disease, with the formation of NFTs and cell death being secondary 

events 23. During the last two decades, the Alzheimer research community has debated which 

one of the Aβ entities is the one mediating the neurotoxic effects. The dimers, oligomers and 

protofibrils have all been shown to have toxic effects in different studies 24 25,26. However, there 

are also arguments against the amyloid hypothesis. First of all, the amyloid hypothesis is mainly 

based on FAD that is caused by deterministic genes. This cannot explain the sporadic form of 
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AD, which accounts for more than 95% of all Alzheimer cases. Interestingly, a recent study in a 

mouse model showed how some known PS-1 mutations led to abolished protease activity and 

impaired brain function, independently of Aβ 27. The neuropathological signs of AD, plaques and 

tangles, start and spread differently in the brain. If Aβ were the driving force one would expect 

the two pathologies to follow the same pattern of spreading yet the grade of cognitive 

impairment is actually more correlated with NFTs than plaques. In addition, people can have 

plaque pathology in the brain without any signs of dementia 28. Despite the fact that it was almost 

thirty years since Aβ was discovered, its physiological function is still not known. However, it has 

been suggested that Aβ can be involved in control of synaptic activity 29 and that it even can have 

antioxidant-, neuroprotective- or anti-microbial function 30-32.  

 

The Amyloid Precursor Protein can also be cleaved in a way that does not generate the Aβ 

peptides. This occurs when APP is initially cleaved by α-secretase instead of β-secretase and it is 

this pathway, the non-amyloidogenic, which dominates in the healthy brain 12. The most studied 

α-secretases belongs to the A Disintegrin And Metalloproteinase domain-containing protein 

(ADAM) family 33. They are transmembrane proteolytic enzymes that perform ectodomain 

shedding of other transmembrane proteins such as APP 34. One of the most studied proteins in 

the ADAM family is ADAM10. Besides APP, ADAM10 together with γ-secretase also cleave the 

Notch protein 35, which is involved in embryogenesis and neurodevelopment. In fact, ADAM10 

knockout mice are embryonically lethal. The APP cleavage by ADAM10 occurs constitutively 

but can be also be regulated through activation of intracellular signaling mediators such as 

protein kinase C and MAPK 36,37. ADAM17 is another member of the ADAM family that is 

considered to have a more regulated α-secretase activity 38. 

1.1.3 Tau 

The other major protein accumulation found in AD brain, neurofibrillary tangles (NFT) are 

made up of hyperphosphorylated tau protein. These lesions can be seen in other 

neurodegenerative diseases as well such as frontotemporal dementia (FTD). The exact role of tau 

in these diseases is not known, but it is likely a combination of a toxic effect, and a lost 

physiological function as the protein aggregates 39. Tau is mainly expressed in neurons and has six 

different isoforms 40. They are involved in the stabilization of microtubules. One way to regulate 

tau is by phosphorylation, an event that is increased in AD 41. When tau gets 

hyperphosphorylated it can destabilize the protein leading to dissociation from the microtubule 

and aggregation of tau into filaments that make up the NFTs. The formation of these tangles is 

correlated with the severity and progression of the disease 42. The protein has several 

phosphorylation sites and the different epitopes are correlated with different stages of aggregated 



 

 4 

tau 43. Furthermore, different modulations of tau have been shown to have neurotoxic effects, 

such as phosphorylations at certain residues, truncation, oligomerization and formation of the 

NFTs 44. 

1.1.4 Apolipoprotein E 

The human gene for Apolipoprotein E (ApoE) is located on chromosome 19 and exists 

principally as three different alleles named ε2, ε3 and ε4 (ApoE2, 3 and 4). The ε3 is the most 

common and has a global frequency of 78% whereas ε2 and ε4 has 8% and 14% respectively 45. 

Apolipoprotein E4 is the major genetic risk factor for sporadic AD. Individuals who carry one 

copy of the ε4 allele have an approximately three times higher risk while those with two copies 

have an almost 15 times higher risk for developing AD. However, there are variances between 

different ethnic populations. The ε4 allele is also associated with earlier age of onset, both for 

familial and sporadic AD. The mean age of onset for the sporadic cases are 84 years in non-

carriers and 68 years in ε4 homozygotes 46. The risk of developing AD is likely a result of the 

interactions between genetic and environmental risk factors. Both epidemiological and 

experimental studies have shown that apoE4, in combination with life-style risk factors, can 

amplify the risk and cause more severe damage than the individual risk factors alone 47,48. 

The differences between the isoforms are located at position 112 and 158 in the amino acid 

sequence of ApoE.  These amino acids are etiher cysteine (Cys) or arginine (Arg) in the following 

arrangement: apoE2 (Cys112, Cys158), apoE3 (Cys112, Arg158), apoE4 (Arg112, Arg 158) 49,50. 

The protein consists of two major domains, a receptor-binding domain and a lipid-binding 

domain 51. One of the main functions of ApoE is to bind lipoprotein and transport them from 

the site of production to its target destination. The main source of ApoE is the liver but it is also 

present in high amounts in the brain. 52 It is synthetized by glial cells and it transports cholesterol 

to neurons for uptake. The brain is rich in cholesterol and is a main component of cell 

membranes and myelin sheets. Consequently, ApoE is also important for neuronal repair after 

brain injury 53. The secreted ApoE is internalized through interactions with members of the low-

density lipoprotein (LDL) receptor family 54,55, which are more abundant in neurons compared to 

glial cells 56. The ApoE3 and ApoE4 isoforms have an equal binding capacity to the lipoprotein 

receptors while the capacity for ApoE2 is poor 49. The ε2 allele is linked to the genetic disorder 

type III hyperlipoproteinemia and the reduced binding capacity to the receptor is thought to be a 

causative factor for this disease. There are also differences in lipid preference between the two 

isoforms. Apolipoprotein E2 and E3 prefer smaller lipoproteins enriched in phospholipids 

(HDLs) while ApoE4 favors the larger ones with high triglyceride content (VLDLs). Even 

though the lipidation state is important for the receptor preference of ApoE, it has been 
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demonstrated that lipid binding is not required for internalization into the cells. In addition, lipid-

free ApoE prefers lipoprotein receptor-related protein (LRP) over the LDL receptor 57. 

Furthermore, ApoE4 is rather unstable compared to the other isoforms and can form a so-called 

molten globule state where the hydrophobic core of the protein is more exposed 58. How ApoE4 

contributes to a greater risk of AD is not clear and hypotheses including both a gain of toxicity 

and loss of function have been suggested. 59 Some of them are described below and a summary is 

found in Table 1. 

The gene dosage of ApoE4 was negatively correlated with the number of dendritic spines in the 

hippocampus, moreover in ApoE4 Targeted Replacement (TR) mice the excitatory synaptic 

acitivity was reduced compared to ApoE3 mice 60. This suggests that ApoE4 mediates AD risk 

through synaptic dysfunction. Other studies using mice models have shown that ApoE4 is 

associated with impaired lipid metabolism, by reduced neuronal uptake and lower levels of 

cholesterol in the brain 61,62, and with defective neurogenesis by weakened maturation of 

newborn neurons in the hippocampus 63. All these are examples of ‘’loss of function”, where 

normal processes in the brain are disturbed.  

Table 1 - Suggested roles of ApoE4 in AD pathogeneis 

Loss of function References Gain of function References 

Synaptic dysfunction 60 Atrophy 64, 65 

Lipid metabolism 61, 62 Tau 

phosphorylation 

66, 67 

Neurogenesis 63 Aβ aggregation 68 

Aβ clearance 69 Oxidative stress 70 - 72 

  Neurotoxity 73 - 77 

 

On the ‘gain of function’ side are examples of higher brain atrophy in the hippocampus and 

cortex of ε4 carriers 64,65. There are also associations between ε4 genotype and the classical 

hallmarks for AD, Aβ and tau. A truncated version of ApoE induces tau phosphorylation in 

brains of transgenic mice and tangle-like inclusions in neuronal cell cultures 66,67. In addition 

ApoE4 is associated with increased aggregation and reduced clearance of Aβ. A study using 

Pittsburg compound B (PiB) positron emission tomography (PET) scans revealed an association 

between ε4 gene dose and fibrillar Aβ in several brain areas of cognitively normal subjects 68. 

Furthermore, a study in mice models expressing the human variants of ApoE, showed by using 
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in vivo microdialysis, that the genotype affects the clearance of Aβ and the efficiency was lowest 

for the ApoE4-expressing mice 69. Moreover, there is a correlation between ApoE4 and 

oxidative stress. AD patients who were ε4 carriers had increased oxidative stress and reduced 

antioxidant activity in the hippocampus compared to non-carriers 70. A similar effect was seen in 

human ApoE4 mice, where markers of oxidative stress were increased in the cortex, especially in 

females. Notably, these mice had lower estrogen levels in the brain 71. In vitro, it was also 

demonstrated that ApoE4 worsens Aβ induced oxidative damage to synaptosomes 72. A deeper 

review of oxidative stress in general and its role in AD is found in section 1.2. Finally, the ApoE4 

peptide can have neurotoxic effects, either by causing direct cell death or by mediating the toxic 

effects of Aβ 73,74. This has been shown with both full-length ApoE4 and a truncated version 75. 

The toxicity has been suggested to occur through different mechanism e.g. mitochondrial 

dysfunction and increase in intracellular calcium levels 76,77. In Paper III, a new mechanism for 

ApoE4 mediated neurotoxicity with a clear link to oxidative stress is presented. 

1.1.5 Other risk factors 

There are many other identified risk factors for AD besides ApoE, both genetic and 

environmental. One of the acknowledged risk genes for the disease is the SORL1 gene that 

codes for the sortilin receptor-related protein (SORL1) 78. A proposed mechanism for SORL1 in 

AD pathophysiology is through regulation of endocytic trafficking of APP containing vesicles. 

Interestingly, SORL1 can also function as a receptor for ApoE 79. With the use of Genome-wide 

association studies (GWAS) more genes were discovered including CLU, CR1 and PICALM 80. 

In 2013, an even larger GWAS study was conducted with 17,000 AD cases and more than 

double the amount in controls. In this study, eleven new susceptibility loci for AD were 

identified 81. Many of the candidate genes at these loci are linked to immune response and 

inflammation.  

There are many environmental and life-style factors that are linked to increased risk for AD. The 

main one is aging, even though one can argue whether it is an environmental or life-style factor. 

Anyhow, the risk for dementia increases as we age. In western Europe, in the age group 60 - 64, 

the prevalence of dementia is 1,6%, and increases gradually for each sequential age group. For 

people above 90 years of age, the prevalence is 43% 82. Family history is another important 

aspect. People with a first-degree relative of dementia, have a higher risk of developing AD. This 

has likely to do with a combination of other genetic and environmental risk factors 83. As in many 

other diseases, the diet plays an important role in preventing or contributing to the development 

of AD. A low intake of certain nutrients such as vitamins and antioxidants is linked to an 

elevated risk of the disease, while a moderate intake of unsaturated fats and a so-called 
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Mediterranean diet might be protective 84. Alcohol abuse and tobacco smoking are examples of 

life-style factors that have been linked to increased risk for AD 85,86.  Other types of diseases or 

medical conditions can also predispose individuals to develop AD. Such a condition is diabetes 

mellitus. A population-based twin study concluded that diabetes increases the risk of AD. 

Intriguingly, the risk was stronger if the diabetes onset occurred before 65 years of age 87. Similar 

results have also been seen regarding high blood pressure and high plasma levels of cholesterol. 

Hypertension in mid-life increases the risk of AD later in life 88. Regarding cholesterol levels, the 

results are conflicting but principally high plasma levels of cholesterol in mid-life increases the 

risk for AD, while the situation is opposite in older individuals 89. However, this does not say that 

increasing cholesterol late in life could protect individuals from developing AD.  The last three 

mentioned risk factors are all directly or indirectly linked to the metabolic syndrome (MetS), 

which is a cluster of conditions that also includes obesity, and it is important challenge for public 

health worldwide. Few longitudinal studies have been conducted in order to investigate AD risk 

by the combined MetS factors. In a study from 2009, no association was found between MetS at 

baseline and risk for AD within the 4-year follow-up time 90. However, all of the participants in 

the study were above 65 years of age, which could explain why no association was found. Apart 

from the risk factors, there are also environmental influences that are considered to be protective 

such as physical- and social activity and higher levels of formal education 91.  

Highly relevant to this thesis work, is also the fact that the prevalence of AD is higher in women 

than in men, and a proposed reason is the estrogen deficiency in post-menopausal women 92. In 

fact, reduced levels in CSF of the most abundant form of estrogen, 17β -estradiol (E2), are 

associated with more Aβ in the brain of female AD patients. 93 Estrogen also had 

neuroprotective effects both in in vitro- and in vivo models of AD 94,95. It has also been 

demonstrated in post-mortem tissue that female AD patients are deficient in mitochondrial 

estrogen receptor (ER)β 96.   

A hypothesis for the mechanism behind estrogen neuroprotection is via defense and 

improvement of the mitochondria, followed by a reduction in ROS formation, and/or activation 

of the antioxidant defense system 97,98 A study from 2003 demonstrated that estrogen induced the 

expression of Trx1 and suggested that it could play an important role in the neuroprotective 

mechanism 99. In Paper I, this is investigated further. With this knowledge, clinical trials have 

been conducted using estrogen-containing hormone therapy as a treatment for AD patients. 

Unfortunately, they have been unsuccessful 100. However, none of the trials were done to 

evaluate estrogen as a prevention strategy in younger individuals. Furthermore, women above 65 

who got post-menopausal hormone therapy had an increased risk for brain atrophy 101. This 

marks the importance of finding the right target groups in the design of clinical trials. 
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1.1.6 Cell death in Alzheimer disease 

The loss of neurons was mentioned earlier as one of the key features of AD pathogenesis. Many 

toxic triggers have been suggested as a potential cause of cell death such as Aβ, tau, apoE4 and 

oxidative stress. Unfortunately, there are no therapeutic options available today in order to rescue 

dying neurons, and the mechanisms behind cell death in AD are not fully elucidated. Cell death is 

classically divided into two separate categories; necrosis and apoptosis but there are examples of 

mechanisms that are separate from these two e.g. “dark neurons” that can be formed when 

neurons lose their communication with other neurons through loss of synapses 102.  Necrosis has 

been considered as a form of uncontrolled cell death that involves loss of membrane integrity, 

cell swelling, lysosomal leakage, random DNA fragmentation and lysis. It is often also 

accompanied with a significant inflammatory response 103. This has also been seen merely as a 

random event and a consequence of accidental insult but the view has changed and it seems as if 

the necrosis process can be regulated as well 104,105. Necrosis has been proposed as a possible 

mechanism of cell death in AD. A morphologic and biochemical characterization of 

hippocampal post mortem section in brains from patients with FAD, showed the typical pattern 

of necrotic cell death 106. In addition, the glutamatergic neurotransmission is impaired in AD 

patients and when glutamate accumulates it can induce necrosis or apoptosis depending on the 

concentration 107. 

Apoptosis, the other archetypal mechanism of cell death, is considered to be a more controlled 

or physiological mechanism and is often referred to as programmed cell death. The classical view 

of apoptosis has been that it is induced by a physiological stimulus, followed by membrane 

blebbing, shrinkage of the cell, non-random fragmentation of DNA and formation of apoptotic 

bodies that is engulfed by phagocytes. In addition, this view states that the lysosomal 

compartments generally are kept intact and that no inflammatory response is provoked 103. Inside 

the cells there are certain proteins and pathways that can mediate the signal for apoptosis, such as 

p53, MAPK, Bax, Bcl-2, cathepsins and caspases. The latter ones are a family of cysteine 

proteases that are important in the end-stages of several apoptotic pathways.  Caspase-3 is 

activated in the very last stage and is considered to be the executioner of these pathways 108.  

There are several signs of apoptotic cell death in AD and several studies using TUNEL assay to 

detect DNA damage have shown positive staining in neurons and glia in post-mortem tissue 

from AD brains, especially in the hippocampal region 109 110. Interestingly, these studies found 

little correlation between the DNA damage and the amyloid plaques. A TUNEL assay labels the 

terminal end of nucleic acids and is commonly used to detect apoptotic cell death. However, as 
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fragmentation of DNA occurs also in necrotic cell death, results from TUNEL assays need to be 

carefully interpreted in combination with additional structural analysis. Other major signs of 

apoptosis in AD are increased activation of caspases, including caspase 3, 6 and 8 111-113.  

The marked separation of apoptosis and necrosis in neuronal cell death in AD has been 

questioned 114. The end-stage of apoptosis is rather fast and can be completed within 24 hours. 

This would imply that only a small fraction of all neurons die every day considering the long 

duration of the disease progression. This corresponds with the lack of apoptotic bodies seen in 

AD brain. However, the number of neurons with apoptotic features is much higher. If all these 

neurons complete their cell death process, the brain would be short of neurons at a much earlier 

stage, making pure apoptosis unlikely as the main cause of cell death in AD. Likely, an alternative 

mechanism is dominant that involves characteristics from both necrosis and apoptosis. 

Furthermore, activation of an apoptotic pathway does not always lead to cell death but the 

process can be reversed 115. 

Lysosomal impairment was long considered to be a part of necrosis solely. However, nowadays it 

is clear that it is involved in apoptosis as well. A low amount of stress and physiological stimuli 

can trigger lysosomal membrane permeabilization (LMP), which releases cathepsins that can 

activate apoptosis. An overly high stress load can instead cause the lysosomes to rupture with 

necrotic cell death as a consequence 116,117. An important protein regulating cell death is the 

lysosomal protease Cathepsin D. It can activate apoptosis through the cleavage of Bid, induction 

of mitochondrial dysfunction and the release of cytochrome c followed by further activation of 

caspases. 118,119. Furthermore, Cathepsin D has been identified with both β-secretase-like acitivity 

and a role in Aβ clearance 120,121. These functions are possibly reflected in the fact that cathepsin 

D is found in amyloid plaques 122 and there is a correlation between a Cathepsin D 

polymorphism and the amount of Aβ deposited in these accumulations 123. In addition, 

Cathepsin D can degrade Trx1 and thereby, disrupt the inhibition of the ASK-1 pathway, 

another road to apoptosis 124. This pathway mediates the signal through c-Jun N-terminal kinase 

(JNK) and p38 mitogen activated kinase (MAPK) 125 with subsequent translocation of death-

domain associated protein (Daxx) from the nucleus to the cytosol 126. The pathway can be 

activated by several factors such as tumor necrosis factor (TNF), endoplasmic reticulum stress 

and oxidative stress. With relevance to AD, it has also been found that Aβ can activate ASK-1 

through oxidative stress 19,127, and that tau can be phosphorylated by p38 MAPK 128. In addition, 

gene expression profiling studies showed increased expression of the Daxx gene in the 

hippocampus of AD patients. 129,130. In Paper I and III, the role of Trx1 and the inhibition of the 

ASK-1 pathway are elucidated further in relation to two risk factors for AD; estrogen and 

ApoE4. 
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1.2 OXIDATIVE STRESS 

The term “oxidative stress” was devised 30 years ago 131 and is defined as the imbalance between 

the formation of reactive oxygen/nitrogen species (ROS/RNS) and the ability of the cell to 

counteract them by its antioxidant defense. ROS is mainly formed during oxidative 

phosphorylation by the electron transport chain (ETC) at the inner membrane of the 

mitochondria. Here, energy is converted from NADH and FADH2 to ATP via transport of 

electrons through specific protein complexes. Finally, these electrons react with oxygen and 

hydrogen ions to form water 132. During this process, electrons can “leak” and react with oxygen, 

forming superoxide anions (O2!
-). In further reactions, they can form hydroxyl ions (OH-), 

hydrogen peroxide (H2O2) and hydroxyl radicals (OH!), where the latter one is the most reactive 
133. When O2!

- reacts with nitric oxide (NO) it forms RNS in the form of peroxynitrite (ONOO-

). It can then react further to generate other forms of RNS such as nitrogen dioxide (NO2!) 

and nitrosoperoxycarbonate (ONOOCO2
-). Transition metals are also involved in the 

production of ROS. They have changeable oxidation states and can catalyze both reduction and 

oxidation reactions. For example, hydrogen peroxide can react with ferrous ions (Fe2+) to 

generate hydroxyl radicals in the so-called Fenton reaction 134. Certain enzymes can also generate 

ROS in order to mediate cellular signaling 135, and immune cells produce ROS/RNS as a way to 

activate the innate immune response 136. However, when the production of ROS/RNS is 

excessive or the antioxidant defense is insufficient, the cell is in a state of oxidative stress, which 

is potentially harmful to all macromolecules of the cell. 

When the DNA strand gets oxidized it can affect transcription and replication of genes. The 

nucleoside guanosine can be oxidized by OH! forming 8-hydroxyguanosine (8-OH-dG) and is 

used as s biomarker of oxidative stress 137. In a similar way, RNA bases can become oxidized 138, 

which can lead to breakage of the nucleotide chain or ribosomal dysfunction 139. The nuclei 

appears to be rather resistant to oxidation 140, which can explain why RNA is considered to be 

more susceptible to oxidation compared to DNA. Modifications of DNA are more likely leading 

to irreversible changes in the cell, making the need for compartmentalized protection higher. 

The lipids of the cell membranes are also sensitive to oxidation. The most susceptible of the fatty 

acids are the polyunsaturated ones (PUFA). When they are attacked by OH! they get 

peroxidized forming isoprostanes 141. Another way of lipid modification is the formation of 

reactive aldehydes such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA). These 

aldehydes are dangerous in a sense, as they can react with proteins and nucleic acids disturbing 

their function 142. Direct oxidation of proteins can occur at several different sites causing 

different types of changes such as backbone fragmentation, side-chain oxidation, loss of activity, 
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unfolding and misfolding 143. The amino acids are sensitive to oxidative stress, e.g. methionines 

and cysteines are easily oxidized and this is considered to be a type of post-translational 

modification 144,145. The thiol (-SH) group of the cysteine residue can form sulfenic- (-SOH), 

sulfinic- (-SO2H) and sulfonic (-SO3H) acid when oxidixed. In addition, it can form disulfides 

with other cysteines, which can cause a dramatic conformational change of the protein.  In 

general, these changes are reversible but there are examples of irreversible modifications as well 

e.g. when cysteines covalently bind fumarate or dicarbonyl groups forming S-

carboxymethylcysteine (CMC) or S-(2-Succinyl)cysteine (2-SC) respectively 146,147. Carbonyl 

products are usually formed when threonine, arginine, lysine and proline get oxidized. They can 

be formed in reactions with the lipid aldehydes mentioned above and are often used as markers 

of protein oxidation 148. As the mitochondrion is a major site for the generation of ROS it is also 

susceptible to oxidative damage. The DNA coding for the mitochondrial proteins are located 

within the mitochondria itself making them extra vulnerable. In addition, mitochondria is the site 

of formation of biologically available iron by iron/sulfur clusters 149. Hence, impairment of 

macromolecules within the mitochondria can cause even more ROS formation and eventually 

lead to cell death 150. 

Luckily, the cells have a versatile defense system against oxidative damage, in the form of 

antioxidants. Some of them are exogenous, coming from our dietary intake, including different 

vitamins and polyphenols. Many of these are essential to cellular function. However, an 

excessive intake of exogenous antioxidants can instead have a pro-oxidant effect, giving a 

double-edged sword character to these dietary compounds 151. The other types of antioxidants 

are endogenous and are synthesized by the cells themselves. They can be both enzymatic and 

non-enzymatic. Examples of non-enzymatic compounds are lipoic acid, coenzyme Q10 and 

the most abundant one, glutathione (GSH). Glutathione can scavenge oxygen radicals directly 

or act as a substrate for the enzymatic antioxidants glutathione peroxidase (GPx), glutathione 

reductase (GR) and glutathione S-transferase (GST) 152. There are many other enzymatic 

antioxidants, all with specific functions. Superoxide dismutase (SOD) catalyzes the conversion 

of superoxide anions to H2O2 and O2. Furthermore, catalase converts the generated H2O2 to 

water and oxygen 153. Another important antioxidant, Thioredoxin-1 (Trx1), which is the main 

topic of this thesis, will be reviewed in a specific section below (see 1.3). 

1.2.1 Oxidative stress in Alzheimer disease 

One major sign of aging is increased oxidative stress and there is a wide spread theory saying that 

oxidative stress is the answer to why we age 154. This theory states that aging is driven by the 

accumulation of oxidative damage. Evidence supporting this theory shows that some animal 
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models with extended longevity due to genetic alteration or calorie restriction, also had reduced 

oxidative stress burden. This has also been observed in the brain. One rat strain that has higher 

longevity than common rats and lives longer without any disease symptoms also showed 

conserved antioxidant function in brain 155. Increased oxidative stress in combination with a 

decreased antioxidant defense is also seen in the aging human brain 156. The brain is vulnerable to 

oxidative stress due to several reasons. First of all, the metabolism of the brain is relatively high 

with 20% of all oxygen and 25% of all glucose being consumed by cerebral functions 157.  

Moreover, the brain is an organ with a high amount of PUFA that are more sensitive to 

oxidation 158 and the levels of redox active metals are also high, which can render an even further 

increased ROS production 159. With this in mind, the brain has relatively low levels of 

antioxidants in comparison with other tissues, especially catalase and GPx, the two most 

important enzymes in the detoxification of hydrogen peroxide 160. The fact that neurons in the 

adult brain are post-mitotic 

and are generally not 

replaced also contributes to 

the vulnerability of this 

organ. 

In AD, the signs of 

oxidative stress are 

prominent and affects all 

parts of the cell. Studies on 

lipid peroxidation showed 

how the levels of both 

isoprostanes and HNE 

were increased in early stages of the disease 161,162. The levels were also higher when comparing 

with other neurological disorders 163. Oxidative damage is also evident when analyzing the nucleic 

acids of the cell. The levels of 8-hydroxyguanine were increased in AD compared to control, in 

areas of the brain that are predominantly affected by AD pathology 164.  The same was observed 

in a study of oxidative protein modifications 165. Interestingly, the changes were observed early in 

the disease progression, in patients with mild AD and the levels did not differ in the later stages 

of the disease. Modifications of proteins by oxidative stress has been linked to 

neurodegeneration via protein misfolding. When protein-disulphide isomerase gets nitrosylated, 

its chaperone activity is inhibited, which can cause accumulation of misfolded proteins that is 

seen in AD and other neurodegenerative disorders 166. 

Glucose metabolism
Energy consumption
Redox-active metals
PUFA concentration
Mitochondrial dysfunction
ApoE4
Aβ

Catalase
GPx
GSH/GSSG
MsrA
Trx1
Estrogen

Proposed factors contributing to oxidative stress in
AD brain.

HIGH LOW
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The changes in AD brain stated above can also be detected in the cerebrospinal fluid (CSF). 

Increased levels of oxidated lipids, DNA, and proteins, have all been detected in samples from 

AD patients 167-169. The latter was also negatively correlated with the Mini–Mental State 

Examination (MMSE) score, a test examining cognition. When it comes to the analyses of 

plasma and serum, the results have been ambiguous and a study in rats showed that there is no 

correlation between markers of lipid peroxidation in the brain and plasma 170. This suggests that 

markers of oxidative stress in the blood do not mirror the oxidative damage in brain. Also when 

RNA oxidation was analyzed in both CSF and blood, no correlation was found 171. 

Not only is the oxidative damage higher in AD brain, there is also an impairment in the 

antioxidant defense that is more severe than what is observed for the aging brain. In affected 

brain regions of AD patients, the ratio between reduced and oxidized glutathione is lower 

compared to controls 172. However, both forms of glutathione are individually increased 

compared to controls, which could reflect a compensatory mechanism where more GSH is 

produced in order to resist the increased oxidation.   There are also examples of enzymatic 

antioxidants having reduced levels and/or activities in the AD brain e.g. Catalase 173, Methionine 

sulfoxide reductase (MsrA) 174, GPx 175 and Trx1 19. On the contrary, there are enzymes showing 

increased levels in the brain, for example Manganese superoxide dismutase (MnSOD), which is a 

protein localized to the mitochondria 176. In AD brains, this enzyme is increased in neurons in 

several regions of the hippocampus. Since the role of MnSOD is to detoxify O2!
-, this general 

increase is likely a compensatory mechanism for the increase in oxidative stress. Interestingly, the 

increase was smallest in the CA1 region, the region that is most affected by AD pathology.  

The Aβ peptides that are excessively produced in AD brains may also have a connection with 

oxidative stress. Aβ can cause increased production of ROS 127, via reduction of redox active 

metals 177, and mitochondrial dysfunction 178. Furthermore, the triple-transgenic mouse model 

that carries mutations associated with familial AD have increased lipid peroxidation in the brain 

before any signs of plaque pathology 18. In another AD mouse model overexpressing a double 

mutant of APP, induction of oxidative stress increased the levels of Aβ42 and worsened the 

plaque load 179.  Cell experiments have also shown that oxidative stress can induce production 

and accumulation of Aβ 180,181. These studies demonstrate that the cause/effect relationship 

between oxidative stress and Aβ works in both directions. The question is, which of the two is 

the primary event in AD pathogenesis. It has been reported that oxidative damage is the earliest 

event of the disease 182. In FAD, the inherited mutations are undoubtedly the causing factor but 

oxidative stress probably plays a role in the disease progression. In the sporadic cases however, 

oxidative stress could instead be the driving force.  
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1.3 THIOREDOXIN-1 

More than 50 years ago, in March 1964, researchers from Karolinska Institutet and Uppsala 

University showed for the first time how they managed to isolate and characterize Thioredoxin 

(Trx) from E.coli 183. They write: “The biological function of the protein described in this paper is dependent on 

the cyclic reduction-oxidation of a single S-S group of the compound, and the name thioredoxin therefore seems to be 

appropriate”. Even though the function of the protein was not clear at this time, the scientist 

suggested that it was functioning as an electron donor for ribonucleotide reductase and that 

Thioredoxin reductase (TrxR), at that time with a different name, can catalyze the reduction of 

Trx. These statements turned out to be true and since then, the human thioredoxin family has 

shown to play an important role in human physiology and has been implicated in several major 

diseases. Trx1 was previously known as adult t-cell leukemia factor but in the late 1980’s it was 

identified as human homologue of Trx 184. There are three variants of Trxs in humans; Trx1, 

which is the most studied, a mitochondrial form called Trx2 and SpTrx that are predominantly 

expressed in spermatozoa 185. All these variants contain an active site that is conserved through 

evolution and consists of the amino acids –Cysteiene-Glycine-Proline-Cysteine- (Cys-Gly-Pro-

Cys). This is the site where the oxidoreductase reaction is occurring. In this reaction, two 

electrons are transferred from the cysteine residues in the active site of Trx to a substrate, e.g. an 

oxidized protein. Consequently Trx becomes oxidized in this reaction and needs to be 

reactivated. This is achieved by TrxR as 

stated by Laurent el al. in the very 

beginning of the Trx history 183. In this 

reactivation reaction, TrxR receives 

electrons from NADPH and utilizes 

FAD as a co-factor 186. See Fig. 1 for a 

schematic representation of the 

combined reaction.  

There is a plethora of features described 

for Trx1 and its importance for cellular 

functions is reflected in the fact that 

homozygous Trx1 knockout mice are 

embryonically lethal 187,188. As mentioned 

above, it is involved in DNA replication 

as a hydrogen donor for ribonucleotide 

Trx1

SH SH

Protein-S2 Protein-SH2

Trx1

S S

TrxR

S S

TrxR

SH SH

FADFAD

NADPH + H+ NADP+
Figure 1 - A schematic representation of how electrons are 
transferred from NAPH to the oxidized protein (Protein-S2) via 
TrxR and Trx1. 
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reductase. It is also a part in the regulation of several important transcription factors such as 

NFκB and p53.189,190. In addition, it has been attributed with a chemokine role in inflammation 191 

and has anti-apoptotic properties via inhibition of the ASK-1 pathway and inactivation of 

caspase 3 192,193. However, the main function described for Trx1 is in the protection of proteins 

against oxidative damage, both directly by reducing protein disulfides, and indirectly through 

activation of other antioxidant proteins such as peroxiredoxin and methionine sulfoxide 

reductase 185,194,195. The activity of Trx1 can be regulated by the Thioredoxin-interacting protein 

(TXNIP). It binds the active site and thereby inhibits the reducing function. It resides normally 

in the nucleus but can reach the cytosol to interact with Trx1 upon oxidative stress 196,197. 

Increased levels of Trx1 has been linked to many types of cancers but its role is controversial. 

Since cancer cells are under oxidative stress, it is possible that the increase in Trx1 levels is merely 

a response mechanism. However, since Trx1 has an anti-apoptotic function it could potentially 

stimulate tumor development. In addition, many cancer therapies rely on the production of ROS 

to kill cancer cells. Therefore, inhibition of Trx1 has been suggested as a treatment 198. On the 

other hand, Trx1 can protect against DNA damage that otherwise could be carcinogenic 199. 

1.3.1 Thioredoxin-1 in neurodegeneration 

Trx1 is a ubiquitous protein that is expressed in virtually all tissues of the human body. However, 

expression in the brain is rather low compared to other organs 200. This could explain why the 

Trx1 system in brain is sensitive to disturbances and why it is implicated in many 

neurodegenerative disorders. Several studies have been done in order to determine the levels of 

Trx1 in AD brains. In the earliest one, Trx1 was detected mostly in the white matter, especially in 

glial cells, and the levels were higher in AD compared to non-neurological cases 201. Later, when 

areas of the grey matter were analyzed more in detail, the levels of Trx1 was shown to be 

decreased in all brain regions studied, especially in the amygdala, the hippocampal region and 

parts of the temporal lobe. The same studies also showed an increased activity of TrxR in all 

regions, with statistically significant differences in the amygdala and cerebellum 202. Results from 

my lab showed similar results using immunohistochemistry (IHC). The immunoreactivity of 

Trx1 was reduced in neurons in the frontal cortex and hippocampus of AD patients. 

Interestingly, the opposite was seen for cells with an astrocyte-like profile 19. In addition, another 

study showed reduction in hippocampal Trx1 levels already in patients with amnestic mild 

cognitive impairment (MCI), which is a pre-stage to AD 203. However, a recent report showed no 

differences in Trx1 levels when using IHC on hippocampal sections. According to the authors, 

the localization of the protein differed with more cytosolic, and less nuclear staining in AD 

brains compared to control 204. There are also a number of experimental studies that have 
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analyzed the role of Trx1 in AD pathogenesis. Many of them have linked Trx1 in the protection 

against Aβ toxicity. Both Trx1 treatment in rat primary cultures and overexpression of Trx1 in 

neuroblastoma cells protected from Aβ-induced reduction in cell viability 19,202. It was also 

demonstrated that Aβ could cause neuronal cell death through generation of ROS, oxidation of 

Trx1 and activation of ASK-1 19,127. Furthermore, there are examples of indirect protection, 

where known neuroprotective compounds upregulate Trx1. This was seen for Omega-3 and S-

nitrosoglutathione. They both showed neuroprotection against Aβ cytotoxicity in combination 

with increased Trx1 levels 205,206. In addition, a certain neuronal murine cell line, that was resistant 

against the damaging effect of Aβ, showed increased expression of Trx1. There a fewer links 

between Trx1 and the other major neuropathological hallmark for AD, the NFTs. However, one 

in vitro study demonstrated how cysteine oxidation of tau could impair its ability to promote 

microtubule assembly, and how addition of Trx1 could restore this function 207. In this thesis, the 

role of Trx1 in AD pathogenesis is further investigated. 

Thioredoxin-1 also has a neuroprotective role after ischemic stroke. Studies on rats showed how 

experimentally induced ischemia, through middle cerebral artery occlusion, diminished Trx1 in 

the ischemic region while the levels were increased in the penumbra. This was seen in 

combination with increased survival of cells in the penumbra while the ischemic region was more 

susceptible to cell death 208. Furthermore, experimentally increased Trx1 levels led to decreased 

brain damage in mice models of cerebral ischemia. This was seen after both intravenous and 

intraperitoneal injections of recombinant Trx1 and in overexpressing mice 209-211.  

1.4 THIOREDOXIN-80 

Trx1 can become truncated at the C-terminal generating an 80 amino acid long peptide called 

Thioredoxin-80 (Trx80) 212,213 (Fig. 2). This peptide was known before as eosinophil cytotoxicity-

enhancing factor and was discovered in the supernatant of human peripheral blood mononuclear 

cell (PBMC). 214,215. When Trx1 gets truncated it looses one helix and one strand which 

theoretically exposes the inner hydrophobic area. However, the active site and all structural 

cysteines are still left in the sequence but the remaining N-terminal peptide does not maintain the 

oxidoreductase activity of Trx1. Until we published our results in Paper II, the enzyme 

responsible for cleaving Trx80 was unknown. There is a limited amount of studies on Trx80 and 

the majority of the work is done on macrophages and monocytes. In these cells, the peptide was 

reported to be present mainly at the cell surface facing the extracellular environment and also 

secreted into plasma 216,217. There is a rather big variance between individuals in the Trx80 levels 

in plasma, and the levels do not correlate with the levels of Trx1 217. 
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Figure 2 – TRX80 is generated via enzymatic cleavage at a lysine residue at postion 80 in the amino acid sequence of 
Trx1. The active site and all structural cysteines remain after truncation (not shown) but the peptide looses its reductive 
capacity. 

Most reports of the function of the peptide are related to the immune system. Interestingly, the 

function can differ dramatically between Trx80 and Trx1. When exogenous Trx1 was applied to 

human macrophages carrying the HIV virus, it inhibited the expression of the virus, while Trx80 

enhanced the production 218. In a similar way, Trx1 and Trx80 had opposite effects in 

activating/inhibiting the complement cascade 219. Furthermore, a study on Peripheral blood 

mononuclear cells (PBMC) showed that Trx80 had a mitogenic effect that was not seen for Trx1. 

In addition, Trx80 increased the production of the cytokines Interleukin-12 (IL-12) and 

Interferon-gamma (IFN-γ) in these cells 220. Monocytes can be activated and differentiated by 

Trx80, and it has been described as a new cell type called Thioredoxin-80-Activated Monocytes 

(TAMs). The differentiation occurs via activation of MAP kinase pathways and these cells have 

been shown to inhibit the replication of intracellular pathogens 221,222. Regarding diseases, Trx80 

has been linked to both atherosclerosis and rheumatoid arthritis. A recent study showed how the 

peptide promoted differentiation of macrophages into the M1 phenotype and how it severed 

vessel lesions after intraperitoneal injections in a mouse model of artherosclerosis 223. 

Synoviocytes from rheumatoid arthritis patients released Trx80 after stimulation with 

inflammatory cytokines 224. However, whether Trx80 is found in the brain or not has been 

entirely unknown. Paper II and IV show the first results on Trx80 in the brain and its 

implications in AD. 
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1.5 BRAIN NEUROPROTECTION AND COGNITIVE RESERVE  

The most frequently used drugs to treat AD today are cholinesterase inhibitors and an NMDA 

antagonist. They are used in mild to moderate AD and delays symptoms for a limited time. 

Unfortunately, these drugs are only symptomatic and they do not stop the disease progression. A 

large amount of clinical trials have been conducted in order to find a disease-modifying treatment 

but have so far been unsuccessful 225. Many of the trials have had Aβ as a target, by lowering its 

production, increasing its clearance or inhibiting its aggregation. However, they have all failed 

since the primary end-point was not met and/or the treatment had adverse side effects 226. The 

reason for the lack of effects in these trials has partially been attributed to the fact that the study 

population was not optimal with respect to both age and pathology. A lesson learnt from this has 

been that a treatment is more probable to be successful if it is given in an early stage of the 

disease. In order to tackle this issue, improved diagnostics is needed. However, AD is a 

heterogeneous disorder with many factors contributing to the disease. This makes single-target 

strategies questionable. Perhaps neuroprotective strategies in combination with therapies that 

directly target the disease mechanisms would be a better option to find a cure. At the same time, 

preventive approaches against neurodegeneration are also important in order to lower the 

incidence and delay the age of onset. Since many environmental risk factors are identified, the 

options for such an approach are potentially numerous. In a double-blind randomized controlled 

trial, aged individuals were given a multi-domain intervention including diet, physical training, 

cognitive exercise and vascular risk monitoring for 2 years. The control group was given general 

health advice. The outcome of the study showed that the group receiving the intervention 

improved or maintained their cognitive function 227.  

An example of a neuroprotective and preventative strategy is the use of antioxidants 228. 

Disappointingly, none of the trials performed have shown any clear improvement in patients, or 

a preventative effect in patients at risk. However, many of them consisted of treatments with a 

single compound, which can explain the lack of effect since exogenous antioxidants often have 

selective areas in the cells where they are protective. Interestingly, a study using a mix of several 

antioxidants and other nutrients that were given to healthy individuals without dementia showed 

an improvement in cognitive testing. This supports the idea of a multifaceted treatment 

approach. However, when using exogenous and dietary antioxidant, the effect on ROS will not 

only occur locally, which can lead to an unnecessary depletion of oxidants in areas not affected 

by the disease. Therefore, activation of endogenous antioxidants could be a more suitable 

approach for neuroprotection. Support from this are seen in experimental models of Parkinson 

disease, AD and cerebral ischemia 19,211,229. There are also other approaches with neuroprotection 

as a focus. Insulin has neuroprotective effects both in vivo and in vitro. In a pilot trial, insulin was 
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administered nasally in healthy subjects, MCI- and AD patients. The healthy subjects showed 

improvement in attention and memory tasks and the MCI/AD patients also showed 

improvements in memory tasks, cerebrospinal fluid markers and in fluorodeoxyglucose (FDG)-

PET analysis. 230. Estrogen, which was mentioned previously, is another example of a 

neuroprotective hormone that has been used in clinical trials 100. Furthermore, growth factors 

such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) hold great 

potential as protective and stimulating agents in AD brains. The latter one has been tested in a 

small study using encapsulated delivery of NGF producing cells to the basal forebrain. Of the six 

patients participating in this study, two showed a positive result on cognitive tests 231,232. These 

responders also showed less brain shrinkage and a better status of CSF biomarkers at follow-up. 

Interestingly, Trx1 has been reported to be important for NGF mediated signaling and neurite 

outgrowth 233. Regarding BDNF, several studies have shown beneficial effects in in vivo models of 

AD 234. 

On top of the preventative, neuroprotective and mechanistic treatment comes also the concept 

of cognitive reserve. This suggests that individual differences exist in neural networks and 

processes behind cognitive functions that make some individuals more prone to brain damage 

than others 235. This is linked to AD since individuals can have widespread AD pathology with 

few clinical symptoms of the disease 236. Studies have also shown that factors such as education 

and leisure activities can reduce the risk of dementia suggesting that the cognitive reserve is 

modifiable 237. Cognitive reserve is also related to brain reserve, which essentially means the size 

of the brain and number of neurons. These two concepts are likely important in deciding the 

symptomatic manifestation of a pathological or damaging insult to the brain. To understand the 

neural basis of cognitive reserve is important in order to find new therapeutic options in AD. 
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2 AIMS 

he brain is sensitive to oxidative stress and this is reflected in the brains of AD patients and 

could be a driving force of the disease. The patients also exhibit a reduction in the levels 

and activities of several antioxidant proteins, including Trx1. The general aim of this thesis 

was to investigate the role of Trx1 in AD using a molecular and cell biology approach in order to 

deeply understand the underlying mechanisms of the disease. 

SPECIFIC AIMS 

• To investigate the role of Trx1 in the mechanisms behind factors that modulate the risk 

for developing AD (Paper I and III) 

• To investigate the production of Trx80 in the brain and its potential role in AD 

pathogenesis. (Paper II and IV)  

• To investigate the influence of Trx1 and Trx80 on Aβ effects (Paper I, II, IV). 

T 
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3 METHODOLOGICAL CONSIDERATION 

his thesis covers a cell and molecular biology approach aiming to understand mechanisms 

in the human brain. For this, several models have been used. All of them have advantages 

and limitations and in the following section some of them will be discussed. A more 

detailed description of all methods and models can be found in the individual papers (Paper I-

IV). 

3.1 EXPERIMENTAL MODELS 

To study the mechanisms underlying AD it would be ideal to do experiments on actual patients 

carrying the disease. For obvious ethical and practical reasons this is not possible and therefore it 

is crucial to find the optimal model for what you are analyzing. When choosing the right model 

several factors have to be taken into consideration including: ethics, species, time, price, 

availability and the possibilities to do experimental modifications. The corresponding ethical 

committees have approved all the work done on human and animal samples in the studies. 

3.1.1 Cell lines or primary cultures 

In all of the studies presented in this thesis, a neuroblastoma cell line has been used (SH-SY5Y). 

This is a simple but excellent model for studies of cellular mechanisms, with high reproducibility 

that allows for genetic manipulation in a convenient way, either through overexpression or 

silencing of genes. In addition, it is easy to obtain a large amount of these cells which some 

experiments require while no ethical permit is needed. However, this is a cancer cell line that is 

immortalized and is originally derived from a tumor. The neurons in the brain are typically post-

mitotic, which is not the case for neuroblastoma cells, and in many situations they will not 

behave the same. Hence, the data obtained should be carefully interpreted and extrapolation to 

what occurs in the human brain cannot be done directly. However, primary neuronal cells 

derived from embryos of rodents can be used instead and is done in this thesis work as well, 

although to a limited extent (Paper II). These cells reflect the human brain more, even though 

they are isolated embryonic cells and are no longer part of such a complex organ as the brain. In 

addition, differences exist between species that have to be taken into consideration. To 

overcome this problem, human primary cultures derived from elective routine, first trimester 

abortions are used in two of the studies presented (Paper II and III). They mirror even more 

what is happening in the human brain. However, the access to these cells is limited and they can 

only be obtained in small amounts. There is also a major ethical aspect that has to be taken into 
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consideration when using this material and it is not uncontroversial. In Paper II, we also used 

mixed human primary cultures with both neurons and glial cells. These cultures are more 

complex and demanding but provide the interplay between different cell types, which mirrors the 

situation in the brain further.  

3.1.2 ApoE Targeted Replacement Mice 

In Paper III we use ApoE TR mice in order to study the effect of human ApoE isoforms on 

Trx1 levels in the hippocampus. These mice express human ApoE3 or ApoE4 under the control 

of the endogenous murine ApoE regulatory sequences 48. This model offers a well-designed in 

vivo system that allows us to analyze the effect of physiological levels of ApoE in the brain, in the 

same temporal and spatial pattern as murine ApoE. This is suitable especially since the human 

and mouse ApoE promotors differ significantly 238 and there is a clear advantage to use this 

model compared to “knock-in” or “knock-out” models. Nonetheless, the human ApoE gene still 

differs from mouse ApoE and there is no mouse equivalent of the human isoforms. In addition, 

the ApoE4 TR mice have lower ApoE levels in the brain compared to ApoE3 TR mice. 

However, this is also seen in humans, where a reduction in hippocampal ApoE is proportional to 

ApoE4 allele dose 239. 

3.1.3 Drosophila Melanogaster 

In Paper IV we use a transgenic fly model in order to investigate the effect of Trx80 on Aβ 

induced neurotoxicity.  This model has some strong advantages in experimental research. It is 

relatively cheap and easy to handle. It has a short generation time, allowing for fast production of 

new genotypes when crossing flies. It also ensures a significant amount of replicates to work 

with. The Drosophila Melanogaster genome has about 17,000 genes and has many human analogs 
240. This makes it a simple but relevant model for studying human diseases. The flies have four 

chromosomes including the sex chromosome. When crossing flies, a few balancer chromosome 

fly lines are used. Flies homozygous for the balancer are not viable. The balancers also carry a 

physical marker such as curly wings or distorted eyes, which makes it possible to distinguish 

genotypes without genetic screening 241. In order to express the transgenes we use a GAL4/UAS 

system 242. Briefly, this system uses an upstream activating sequence (UAS) that is placed 

upstream of the gene of interest. This sequence has a GAL4 binding site that controls the 

expression of the gene. By crossing a fly line containing the UAS sequence plus the gene of 

interest (responder) with a line having tissue specific expression of GAL4 (driver) one achieves 

selective expression in certain tissues. We use a driver line called ElavC155 that expresses the 

transgenes in all types of neurons. However, the expression of GAL4 is temperature dependent 

with more expression at higher temperatures. This demands a good control of temperature in the 
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fly incubators to minimize variability 243. In our model, we overexpress two peptides that are not 

present in normal flies. This has to be taken into account when interpreting results. 

3.2 EXPERIMENTAL METHODS 

As with experimental models it is important to find the appropriate method for what you want 

to study. It can be a qualitative, quantitative or semi-quantitative method. In the latter one, the 

experimenter does not obtain a real value of what is measured but rather a value that has to be 

related to others. In this thesis work, we have used many different methods and a few of them 

are discussed below. 

3.2.1 Cell viability assay 

In order to study what effect a certain influence has on cell viability we have used cell viability 

assays, primarily an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. 

The MTT assay relies on the decrease, or absence of the activity of mitochondrial 

succinyldehydrogenases and other reductases. Dead cells do not have any mitochondrial activity 

and apoptotic cells or cells under stress also have a reduced activity. A membrane-permeable 

tetrazolium salt, which is a substrate for succinyldehydrogenases, is added to the cultures. Living 

and healthy cells then produce a purple-colored and water-insoluble formazan salt, which can be 

dissolved in DMSO. The absorbance of the solution is proportional to the mitochondrial 

enzymatic activity, and indirectly to the viability of the cells in the culture 244. Hence, a reduction 

in signal in the MTT assay does not necessarily mean more cell death but could rather be a 

reduced acitivity of the mitochondrial enzymes. A similar kind of assay is the resazurin assay used 

in Paper IV. In this assay, a rezasurin salt is converted to another formazan by the same type of 

enzymes as for the MTT assay. However, this formazan is fluorescent and water-soluble making 

this assay an improvement over the MTT assay. In Paper III, we use a method that measures 

the formation of mono- and oligonucleosomes. Since DNA cleavage is a sign of apoptotic cell 

death, this assay indirectly measures the levels of apoptosis, which is more specific than just 

measuring cell death in general. 

3.2.2 Analysis of ASK-1 activation 

In Paper I and III, we have analyzed the effect of estrogen and ApoE on activation of the ASK-

1 pathway. We have previously used a vast amount of commercially available antibodies in order 

to detect endogenous ASK-1, either directly by Western Blot (WB) or via immunoprecipitation 

of the protein to increase the concentration. However, all of these antibodies have failed to 

detect the ASK-1 in non-overexpressing conditions. Therefore, we have used Daxx as an indirect 

measure of ASK-1 activation. This protein is located downstream of ASK-1 and translocates 
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from the nucleus to the cytosol when the pathway is activated 245,246. We have analyzed this event 

both by separation of cell lysates into nuclear and cytosolic fractions, and by 

immunocytochemistry. 

3.2.3 In vitro experiments using Aβ and ApoE 

In all the papers of this thesis work, we have performed treatments of cells with Aβ. As 

mentioned above, it is debated which of the Aβ species: dimers, oligomers or fibrils, is the one 

mediating the neurotoxic effects.  In our experiments we have mainly used recombinant Aβ that 

has been aged for 24-48h. This kind of preparation generates a mixture of different aggregation 

states 26. Due to the fact that Aβ exists in several different aggregation forms it is difficult mimic 

the true physiological concentration in the brain. The plaques and its proximity obviously have a 

high concentration while other areas have lower. In addition there differences also exist between 

anatomical areas of the brain. In our experiments we have mainly studied the neurotoxic effects 

of Aβ. Therefore we have used a concentration of 10 µM, since in our model this generated a 

consistent decrease in cell viability of approximately 40%. Furthermore, we have also used Aβ 

enriched fractions from human brain in our experiment on cell viability in Paper II. The effect 

from this type of Aβ was similar to the recombinant preparation. 

In Paper III, we treat cells with recombinant ApoE peptide. In the brain, neurons take up 

ApoE that is mainly synthetized by astrocytes. Therefore, we used exogenous treatment of ApoE 

in neuroblastoma cells and human primary neurons, in order to study its neurotoxic effects. 

ApoE binds members of the low-density lipoprotein (LDL) receptor on the surface of the 

neurons and can then be internalized. The lipidation state of ApoE plays an important role for 

the receptor preference, however lipid binding is not required for ApoE binding to the receptors 

and internalization into cells 55. We have used 100 nM of ApoE in these experiments, which is 

also considered to be the physiological concentration 247.  
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4 RESULTS & DISCUSSION 

In the following chapter, the main findings of this thesis will be summarized and discussed. 

Details about results and methods can be found in the individual papers. 

4.1 THIOREDOXIN-1 IN RELATION TO RISK/PROTECTIVE FACTORS FOR 
ALZHEIMER DISEASE 

There are many factors, both environmental and genetic, that affect the risk of developing AD. 

Some of them will increase the risk while others are protective. Previous studies have 

demonstrated how Trx1 is decreased in AD brain.  Therefore, we wanted to study the role of 

Trx1 in the mechanism behind some of the factors that modulates the risk for AD (Paper I and 

III).  

4.1.1 Estrogen protection against Aβ neurotoxicity occurs independently of 
Trx1 expression. 

Estrogen is a factor that is considered to have a protective effect against AD. The incidence of 

the disease is higher in women than in men and one reason for this is thought to be the post-

menopausal lack of this hormone. In addition, several evidences from in vitro and in vivo studies 

have shown that estrogen has neuroprotective effects against Aβ induced toxicity. Since Trx1 

inhibits Aβ toxicity in vitro, we wanted to test if the protection of estrogen was mediated by Trx1 

(Paper I). As a model, we used SH-SY5Y cells treated with “aged” Aβ42 together with 17β-

estradiol (E2) or agonists specific for either ERα or ERβ. We found, using MTT assay that E2 

protected against the reduction in cell viability caused by Aβ, and it prevented the cytosolic 

translocation of Daxx from the nucleus to the cytosol, a downstream event of ASK-1 activation, 

as seen by immunocytochemistry (ICC) and nuclear fractionation. Furthermore, E2 induced 

phosphorylation of Extracellular signal-regulated kinase (ERK) and Protein kinase B (AKT), two 

events that is linked to estrogen-mediated neuroprotection 248. In addition, E2 also increased the 

expression of Trx1. However, when using selective agonists, the effect on cell viability and Daxx 

translocation was only seen for the ERα-agonist. Moreover, treatment with this agonist induced 

the phosphorylation of AKT but not ERK, and it did not affect the expression of Trx1. From 

these results, we concluded that activation of AKT was the most important mechanism for the 

E2 protection against Aβ toxicity in SH-SY5Y cells and that the protection occurred 

independently of Trx1 expression. 
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4.1.2 Apolipoprotein E4 causes a reduction in TRX1 levels and activation of 
apoptosis via lysosomal leakage. 

Apolipoprotein E4 is the most important genetic risk factor for AD and several mechanisms for 

how ApoE4 contributes to the disease development has been proposed. It has been suggested 

that ApoE4 has direct injurious effects on the brain, either via activation of apoptosis or through 

mediation of Aβ toxicity. Furthermore, AD patients have increased oxidative stress in the brain 

and this is worsened in ApoE4 carriers. Therefore, we wanted to study the effects of ApoE on 

Trx1 in the brain (Paper III). To do this, we used transgenic mice expressing human isoforms of 

ApoE, and different cell models treated with recombinant ApoE isoforms. We discovered that 

the Trx1 levels were decreased in the hippocampus of ApoE4 mice compared to ApoE3 mice. A 

similar effect was seen in SH-SY5Y cells and human primary cortical neurons after 5h treatment 

with ApoE4. In the ApoE4 mice, the mRNA expression of Trx1 was instead increased while it 

was not affected in vitro. This suggests that the reduction in Trx1 levels were due to degradation. 

Since lower Trx1 levels would imply less inhibition of ASK-1, we wanted to investigate how 

ApoE4 affected cell viability and the subcellular localization of Daxx. We found that 24h 

treatment with ApoE4 caused a reduction in cell viability and increased levels of apoptosis. This 

was accompanied by a cytosolic translocation of Daxx suggesting an activation of the ASK-1 

pathway. This was supported by the fact that overexpression of TRX1 and other endogenous 

ASK-1 inhibitors, including DJ-1 and Glutaredoxin-1, inhibited the ApoE4 induced reduction in 

cell viability. However, the treatment did not affect the redox status of TRX1, which previously 

was shown as a mechanism behind Aβ induced activation of ASK-1 19. Instead, ApoE4 caused a 

disruption of lysosomes and a leakage of the lysosomal protease Cathepsin D into the cytosol. 

This was seen using both co-localization studies of Cathepsin D and the lysosomal marker 

LAMP-2, and fractionation of cell lysates into cytosolic and microsomal fractions. It has 

previously been shown that ApoE4 is taken up into lysosomes and that it can destabilize 

membranes via formation of a so-called molten globule structure 58,249. It has also been reported 

that Cathepsin D degrades Trx1, and lysosomal leakage of Cathepsin D can activate other 

apoptotic pathways as well 119,124. Hence, presence of ApoE4 leads to a reduction in Trx1 levels 

and activation of apoptosis, via destabilization of the lysosomal membrane and leakage of 

Cathepsin D. This is a new mechanistic explanation as to why ApoE4 confers increased risk for 

AD. However, it is unlikely that ApoE4 carriers have constantly leaking lysosomes and activated 

apoptotic pathways. However, these individuals might be extra sensitive to other insults that can 

destabilize the lysosomal membrane such as Aβ. The significance of our findings in an in vivo 

context of neurodegeneration should be further investigated. 
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4.2 THIOREDOXIN-80 IN ALZHEIMER DISEASE 

The results presented above involved Trx1. However this protein can be truncated, generating an 

80 amino acid long peptide called Trx80. This peptide lacks the oxidoreductase capacity of the 

full-length protein and its function differs dramatically in many occasions. Until our first 

published results, all studies on Trx80 in humans had been dealing with its role in the periphery 

and nothing was known about Trx80 in the brain. In Paper II and IV, we have analyzed Trx80 

in the brain and explored its possible role in AD. 

4.2.1 Thioredoxin-80 is cleaved by α-secretase and is decreased in AD brain. 

In Paper II we first performed IHC and WB analyses of cortex and hippocampus from human 

brain and discovered the presence of Trx80. The staining by IHC was mainly seen in pyramidal 

and bipolar neurons but it was also detected in glia cells when analyzing human primary cells. In 

pure neuronal cultures, we found that Trx80 was present in both the soma and neurites. In WB 

analyses, where peptides are separated according to size, we found that the Trx80 band was 

mainly migrating at approximately 30 kDa. The predicted size of Trx80 is rather 10 kDa but we 

could by a number of different analyses, including gene overexpression and silencing, confirm 

that the 30kDa band indeed was representing Trx80. It is likely that the peptide is present in 

brain in an aggregated form. Furthermore, we could also detect Trx80 in the media from 

cultivated cells. In Paper IV, we did additional investigations on the secretion of Trx80 and 

discovered that both Trx80 and the full-length protein Trx1 were present in exosomes purified 

from human brain. By using immuno electronmicroscopy on neuroblastoma cells we could 

detect Trx80 intracellularly in vesicular structures resembling multivesicular bodies (MVB). The 

vesicular localization was already suggested in Paper II, in our aim to find the enzyme 

responsible for cleavage of Trx1 to Trx80. We then observed, using ICC that Trx80 was co-

localizing with the enzyme ADAM17 in vesicular structures in the cytoplasm. This enzyme is a 

metalloprotease and has α-secretase activity, meaning it can cleave APP without generating Aβ 

species. When using modulators of ADAM17 and ADAM10, which is another α-secretase, we 

could see that the levels of Trx80 and Trx1 were changed. Thus, we concluded that Trx80 could 

be generated by α-secretase. The general α-secretase activity is decreased in AD brain 250 and so 

are the levels of Trx1. Consequently we also found a drastic decrease in Trx80 levels in AD 

brains. This decrease was also seen in the CSF, and the reduction was detectable already in 

samples from MCI patients. Interestingly, there was a significant decrease in MCI patients that 

progressed to AD within 2 years, compared to those that were stable. This suggests that Trx80 

has potential as a diagnostic and prognostic biomarker for AD. 
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4.2.2 Thioredoxin-80 protects against Aβ neurotoxicity in vitro and in vivo. 

Thioredoxin-1 has a neuroprotective effect against Aβ neurotoxicity as mentioned above. 

Therefore we wanted to test if Trx80 had the same effect.  In Paper II, we treated 

neuroblastoma cells with “aged” Aβ 42 and analyzed the effect on cell viability as in Paper I. We 

found that cells overexpressing Trx80 were protected against the Aβ42 induced toxicity. The 

protection was also seen when Aβ42 was aged together with the Trx80 peptide but not when the 

peptide was co-treated with already aged Aβ42. From these results, we speculated that Trx80 

could stop the amyloid formation of Aβ 42. To test this hypothesis, we used a Thioflavin T (ThT) 

assay. The fluorescence of ThT is enhanced when it binds to amyloid fibrils. We found that 

monomeric Aβ42 quickly formed amyloid fibrils when incubated in solution but this was inhibited 

by co-incubation with Trx80. From the amino acid sequence of Trx80 and the crystal structure 

of Trx1 we performed in silico analyses to determine the hydrophobicity and aggregation profile 

of Trx80. From this we identified a hydrophobic region in the core of the Trx1 structure that is 

prone to aggregation. This region is shielded by an alpha helix in the Trx1 structure but would 

likely be exposed after truncation (Fig. 3). Furthermore, this region has a sequence (KLVVV) 

with similar properties as the sequence in Aβ42 that is responsible for its aggregation (KLVFF).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Surface representation of Trx1 
and Trx80. Hydrophobic residues are 
shown in orange. Pink residues represent 
the KLVVV sequence. The size of the 
hydrophobic surface increases after 
cleavage. 
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We hypothesized that these regions are involved in the Aβ-Trx80 interaction. In Paper IV, we 

examined this further in silico with a protein-protein docking analysis of Trx80 and the crystal 

structures of Aβ40 and Aβ42. This showed that Trx80 likely interacts with both Aβ species and the 

indicated region is expected to be part of the interaction. However, when we changed two amino 

acids in the Trx80 sequence by point mutations and overexpressed it in neuroblastoma cells, we 

did not observe any loss of protection against Aβ toxicity. This could mean that other amino 

acids are involved in the interaction or that Trx80 protects against the toxicity independently of 

Aβ binding. 

These studies mainly explain the effect of Trx80 on extracellular Aβ but not the intracellular 

content. Using ICC analyses, we measured the levels of Aβ40 and Aβ42 in SH-SY5Y cells 

overexpressing Trx80. The results show that both species were reduced intracellularly in these 

cells compared to control. We also saw that the overexpressing cells had an increased staining of 

LAMP-2. Furthermore, by WB we discovered that levels of LC3-II were increased in these cells. 

LAMP-2 is not only a lysosomal marker but it also positively correlates with chaperon-mediated 

autophagy, and the levels of LC3-II reflect the formation of autophagosomes. This suggests that 

Trx80 promotes the autophagy machinery, which could be the reason for lower Aβ levels in 

Trx80 overexpressing cells.  

Next, we wanted to know how Trx80 affects Aβ in an in vivo model. We used a transgenic 

Drosophila Melanogaster expressing Aβ42 in the CNS. By removing the brain from the head of the 

flies and staining them with an antibody for Aβ42, we found that Aβ42 accumulated in the brain. 

This was accompanied by a reduction in the lifespan and impaired locomotor activity, measured 

by a climbing assay. However, when the flies also expressed Trx80 there were clearly less Aβ42 

accumulation in the brains. These flies also had the same life span as wild-type flies and the 

locomotor activity was restored. This shows that Trx80 also protects against the neurotoxic 

effects of Aβ42 in vivo. Since Trx80 reduced the levels of Aβ42 in these flies similarly to what was 

observed in cells, it is possible that autophagy is involved in the removal of Aβ42. This however 

needs to be further investigated in this model as well.  

In summary, Trx80 is present in the brain and is generated by α-secretases. It is located 

intracellularly in MVB-like vesicles and is secreted in exosomes. The levels of the peptide are 

decreased in the brain and CSF of AD patients. In addition, it interacts with Aβ and inhibits its 

polymerization and toxic effects both in vitro and in vivo. Furthermore, it lowers the intracellular 

levels of Aβ, possibly through a degradation mechanism involving autophagy. Together this 

suggests that Trx80 could be used as a specific biomarker for AD and that therapeutic strategies 

based on Trx80 have potential. 
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5 CONCLUDING REMARKS AND FUTURE PERSPECTIVES 
he work presented in this thesis has been focused on the role of Trx1 in AD. The findings 

in the studies support the notion that Trx1 has an important function in AD pathogenesis 

and it also adds a completely new player to the field, namely the cleavage product, Trx80.  

The hypothesis in Paper I was that Trx1 is involved in the mechanism behind estrogen 

neuroprotection against Aβ. However, our findings demonstrate that the protection occurs 

independently of Trx1 expression. Estrogen has been tried as a preventative and therapeutic 

strategy for AD, however, without any clear beneficial outcome. To find the right target group 

seems to be important if strategies based on estrogen should work. However, estrogen will 

increase the expression of Trx1 and this could increase the risk of tumor development. This has 

to be taken into consideration when investigating the estrogen approach of neuroprotection. 

The presence of ApoE4 is associated with increased oxidative stress in AD patients. In Paper 

III, a mechanism is presented that shows how ApoE4 leads to lower levels of Trx1. Since Trx1 

is a major antioxidant protein, this could partially explain why ApoE4 carriers are subjected to 

higher oxidative stress. In addition, the study explained how ApoE4 could be neurotoxic via 

lysosomal leakage and activation of apoptosis.  Thus the possibility that individuals carrying 

ApoE4 are extra sensitive to other insults such as Aβ, or other factors causing oxidative stress, 

should be investigated. Support of this can be found in epidemiological studies that have shown 

that ApoE4 in combination with environmental risk factors multiplies the risk of developing 

AD. A lack of also Trx1 implies a lower inhibition of the ASK- pathway and an increased 

susceptibility to the activation of apoptosis.  

In Paper II and IV, the presence of Trx80 in the brain is described for the first time. In addition, 

the studies describe the location, generation and secretion of the peptide. This substantially adds 

to the existing knowledge about Trx80. Furthermore, we found that the levels were dramatically 

decreased in the brains and CSF of AD patients. We also show that Trx80 inhibits 

polymerization of Aβ and protects against its neurotoxic effects, both in vitro and in vivo. 

Moreover, we demonstrate that Trx80 lowers the levels of Aβ and propose a mechanism where 

Trx80 stimulates autophagic degradation of Aβ. 

The physiological role of Trx80 could be as a chaperone for Aβ, keeping it in a native condition 

and mediating its secretion in exosomes or degradation in lysosomes via autophagy (Fig. 4, top). 

However, in a pathological situation where Trx80 levels are depleted, Aβ can start to aggregate 

into toxic species that can spread to other neurons via exosomes, and thereby spread the 

pathology (Fig. 4, bottom).  

T 
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Figure 4 – Summary of results presented in this thesis and suggested mechanisms.  
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Inside the neurons, Aβ starts to accumulate in the vesicles where it is generated. The lysosomes 

will try to degrade the increased misfolded Aβ but when the load is too high the lysosomes will 

fail to function properly and might start to leak. In the presence of ApoE4, this condition will be 

worsened and Cathepsin D will leak out into the cytosol. This will induce a number of apoptotic 

pathways including degradation of Trx1 and activation of the ASK-1 pathway. A reduction in 

Trx1 levels will likely also to lead to less Trx80 and a vicious circle ensues. On top of this, in a 

state of chronic oxidative stress, the amount of reduced and active Trx1 will be even lower which 

makes the ASK-1 pathway even more susceptible to activation  (Fig. 4, bottom). 

The scenario above highlights the importance in maintaining the levels of Trx1 in neurons and 

therefore opens up new therapeutic opportunities in AD. One strategy would be to increase the 

levels of Trx80 in the brain. Since α-secretase can cleave Trx1 to Trx80, activators of these 

enzymes would generate more Trx80. However, this strategy has some major obstacles. First, the 

activity of α-secretases is not confined to Trx1 but has various other substrates as well. 

Therefore, activation of these enzymes could lead to several unwanted off-effects. Second, more 

α-secretase cleavage would lead to less full-length protein and less inhibition of ASK-1 and lower 

protection against oxidative stress. Finally, if the activators are administered in a way that it also 

increases Trx80 levels in the periphery, it will likely cause inflammation due to its pro-

inflammatory effects on macrophages.  Other options would be to find ways to directly deliver 

Trx80 into the brain or to generate Trx80-like peptides that do not have a pro-inflammatory 

effect but is still capable of interacting with Aβ.  

Another opportunity would be to increase the levels of Trx1 however this strategy also has 

drawbacks. Since the cell also uses ROS as a signaling mechanism it is not desirable to deplete 

them if the cell is not under oxidative stress.  Furthermore, Trx1 is linked to many types of 

cancers and an increase in Trx1 levels could increase the risk of tumor development. However, 

neurons are generally post-mitotic and therefore less prone to proliferate uncontrollably. 

Therefore, a selective increase of Trx1 in neurons could be a better option. Delivery of peptides 

directly into neurons is an alternative but this is also problematic due to the combination of the 

large molecular weight and two specific hurdles, the blood-brain barrier and the plasma 

membrane. Gene therapy by viral vectors could be an option but this method needs 

improvement, especially regarding safety. Stimulation of the neuronal expression of Trx1 would 

be a more plausible possiblity and in addition, one would also expect an increase in Trx80 levels. 

I believe this last approach holds potential and suggest that it should be further investigated. 

Interestingly, physical exercise increased the level of Trx1 in rat brain 251, suggesting that not only 

pharmacological interventions should be considered. However, AD is a heterogeneous disorder 

with many factors that contribute to the disease development and progression. Therefore, a 
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multimodal strategy is more likely to achieve success in curing or preventing AD. There is also 

heterogeneity between patients that perhaps demands different treatments for different 

subgroups of patients. The results in Paper III suggest that ApoE4 carriers might be such a 

subgroup. 

A few of the explanations suggested for Trx80 and Trx1 function in this thesis work needs to be 

further analyzed. To achieve this, a genetic model with reduced levels of Trx80 is preferred. A 

classic knockout approach is not possible due the fact that the peptide is generated via enzymatic 

cleavage and not transcription and translation. However, with the new CRISPR/Cas9 tools 

available it is possible to do genomic point mutations. By mutating the cleavage site on Trx1, one 

can generate a model that completely lacks Trx80. For such a model to be optimal one must 

ensure that the point mutation does not affect the redox activity of Trx1. It is not known if 

Trx80 is present in rodents. However, both human Trx1 and α-secretases have homologues in 

mice and rats, thus Trx80 is likely present in these animals. A rodent Trx80 “knock-out” model is 

therefore a possibility and would contribute significantly to the understanding of Trx80 function. 

Is Trx80 involved in other neurodegenerative disorders? Does the peptide have anti-aggregant 

effects against other amyloidogenic peptides? Can it be used as a specific biomarker to set 

diagnosis and prognosis of AD? How is Trx80 affected by risk/protective factors? Many 

questions still remain and hopefully this thesis work will bring more interest to Trx80 as an 

important factor in the brain, so these questions can be answered. 

The population in the world is growing and elderly people make up an increasing share. This 

inevitable fact together with the immense impact AD has on patients, relatives and society 

demands urgent action from all parts of society. Many attempts to find a disease-modifying 

treatment has failed but our knowledge about the underlying mechanisms is increasing and I am 

optimistic that a cure will be found in the near future, as long as the extent of the challenges are 

taken seriously. 

 

 

 

 

 



 

  37 

 

6 ACKNOWLEDGEMENTS 

This thesis work would have been impossible without the support from colleagues, friends and 
family. I would like to acknowledge and thank some of these people below. 

Associate Professor Angel Cedazo-Minguez, my main supervisor. First I have to thank you for 
bringing me to your group and accepting me as a Ph.D. student. You have given me freedom to 
grow as a researcher and guided me when I needed it. Some of your best skills are your creativity 
and optimism, and the research group you created probably has the best atmosphere I will ever 
experience. You are great a co-worker and friend and I hope we will collaborate in the future as 
well. 

My co-supervisor, associate professor Lars Tjernberg, for your great mix of humor and 
seriousness when asking me about my projects. Even though we have not interacted so much 
regarding my work, I have always that felt that I had your support. Every time we discuss science 
you give me ideas and suggestions and sometimes those talks have made big changes in the 
actual projects.  

Professor Lars-Olof Wahlund, my other co-supervisor, for accepting me as a Ph.D. student. I 
admire your work and what you have contributed to the center. I also enjoy your attitude and the 
nice discussions we had during lunch. 

Professor Bengt Winblad for creating a top-class center in Alzheimer research and for your true 
passion in the field. You are an inspiration and it is an honor to be a part of your team. I am also 
very grateful for the support you have given me for continuing doing research abroad and for 
giving me this opportunity. 

Professor Gunnar Norstedt and Amilcar Flores-Morales for accepting me a master student at 
KI and for introducing me to medical science. 

Professor Thomas Sakmar for your inspirational talk during the NVS day and for giving me the 
opportunity to work in your lab. I am looking forward to the new adventure. 

Mattias Vesterlund for teaching me how to work in the lab during my master thesis and for 
your great taste in music. What you taught me then, I teach master students today.  

Professor Sophia Hober for being my mentor. I appreciated our meetings a lot and how you 
always had time for me despite your busy schedule. 

All the co-authors in my papers especially; Francisco Gil-Bea, Susanne Akterin, Javier Avila-
Cariño, Angel Gutierrez-Rodriguez, Arne Holmgren, Rocio Perez-Gonzalez, Efrat Levy 
and Jenny Presto for all your great contribution to the work on Thioredoxin-80. 

Erik Sundström for all your contribution to my work, the interesting courses and for being 
aware of the beauty in routines. Eva-Britt Samuelsson for helping me with the human primary 
cultures. 

Helen and Erik Hermansson for all your help and for teaching me about flies, Kerstin for 
helping me with ordering and for creating a neat working environment. 

All senior scientists at Division of Neurogeriatrics, especially Helena for nice discussions in the 
cell lab and for your nice and warm attitude, Maria for your great work as a director of doctoral 
education at NVS and for helping us in the PhD Student Council, Homira for nice early 
morning chats and your struggle to improve the PhD seminars, Janne for your valuable 



 

 38 

comments to our Trx80 projects and for letting me use your fly lab, Dag for fruitful 
collaboration and for refreshing my Norwegian, Ronnie for all your help and the quick chats in 
the corridors. 

Bitti, Lotta and Lena for your joyful spirit in the “glass box”. 

The administrators for invaluable help with all types of issues, especially Gunilla, Inga-Lill, Eva 
and Anna J. 

To all the present group members: Mustafa, we have been on this journey together and you 
have made it a lot easier. You have made every new person in the group feel welcome, including 
me on my first day. Thanks for the inspiring discussions about politics and science in the office 
and for putting up with me when I joke about milk and chocolate. Thanks also for all the work 
you did to improve the PhD student council and for proofreading my thesis. I am privileged to 
have you as a friend. Anna S for “holding my hand” when I was new in the lab and for doing it 
again when I was writing my thesis. It was truly great having you back in the group and you are a 
very intelligent and funny person that I admire a lot. Silvia, for your great attitude and for being 
normal when everyone else was insane. Thanks also for all the help in the lab and for sharing 
thoughts about parenthood. Gorka, for giving a new meaning to the word “always”. Thanks also 
for all the help with the flies and for nice discussions about being a father. Paula, for all the 
laughs in the office and for teaching me about brain anatomy. Now I have finally reached the 
end of the beginning, but I have to stay alert, just in Bieber. Patricia, for all your help in the 
Trx80 project and for always supporting me and cheering me up when I need it. Cristina, for 
sharing my taste in humor. Raul, for your constant smile and all the movie and tv-serie 
suggestions. Laura M for teaching me new methods in the beginning and for nice collaboration 
in our papers. Laura P for being the new master of our apartment and for the partying in 
Almázan. Christa for nice discussions about long-distance running. Yi and Erik Hansson for 
helping me in the end of my thesis work. 

I also want to acknowledge former members of the group, especially: Javi, for all your 
contributions to my thesis work. You are a true scientist! Thanks also for all our talks about the 
most important thing in life, football. Bea, for sharing the first confusing months in the lab and 
for all the fun in Barcelona. Francesca and Marta for your work on the ApoE paper and for all 
your positive energy. Elena P, Elena C, Maria, Inci, Nihan, Lin, Shirin, Monica, Manuel, 
Lucia, Raquel and all other former group member for contributing to the nice atmosphere in 
the ACM group.  

I am also grateful for all the former and present colleagues and friends at Dept of NVS. I would 
especially like to acknowledge Erik Hjorth, Per-Henrik and Erik Westman for all deep and 
competent discussions we have had during Friday meetings, Walid for nice collaboration and for 
being the best sheriff in town, Lisa for the nice discussions and complaining-sessions in the lab, 
Heela for being so creative, smart and sometimes lovely naïve, Carlos for helping me with the 
thesis printing process and a special thanks also to Anna L, Louise, Linn, Jennie, Michael, 
Annelie, Johanna, Antonio, Simone, Jolanta, Daniele, Carlos, Camilla, Joana, Bernadette, 
Cata, Nuno, Alina, Mahmod, Daniela, Ning, Aleks, Märta, Xiuzhe, Minqin, Alex, Gefei, 
Nina, Henrik, Jojje, Anton, Oihan, Médoune, Kirsten, Quipin, Huei-Hsin, Kostas, 
Mohammed, and all other colleagues at Dept. of NVS. 

Jag vill också rikta ett stort tack till alla vänner utanför jobbet. Från och med nu hoppas jag 
kunna ta igen lite förlorat umgänge. 

Johan A, för du är en fantastisk vän. Ditt stöd är ovärderligt och de 10 senaste åren i Stockholm 
hade varit betydligt tristare utan dig. Tack också för all ”pepp” under luncherna de sista veckorna 
av skrivande, Daniel, för din unika personlighet som jag uppskattar enormt och värdesätter 
högt. Tack också för orienteringsrundorna, Bajenmatcherna och för att du ser det vackra i att 



 

  39 

vara manisk ibland, Johan S för din humor, energi och för att du förgyller allt häng i Stockholm, 
Jens för din värme, underfundighet och stora empati. Tillsammans är ni fyra ypperliga vänner! 

Anders, för vår tid i Prag och för att du visade att man kan skapa nära vänner i ”vuxen” ålder, 
Pawel för ditt mentorskap och för att du delade allt lidande på Söderstadion med mig. Nu går vi 
mot nya tider! Christian för Bajenmatcher, middagar i Kransen, och för Allan-tiden. Jonas för 
att du sa ja till vår vänskap på KTH och för att du delat med dig av livet som doktorand. 

Till sist vill jag tacka min älskade familj: 

Farmor för att du fick mig att flytta till Stockholm och för allt stöd under pluggtiden och åren 
som doktorand. Jag är stolt över att just du är min farmor. Nina för alla roliga resor med 
familjen, till Nässjö och utomlands, och för din evigt postiva inställning. Arthur, för att du kom 
till oss så lägligt. Jag ser fram emot att lära känna dig mer och leka med dig tills jag storknar. 

Andreas, för att du är världens bästa bror. Du har alltid skyddat mig och banat vägen. Jag har 
alltid sett upp till dig och är väldigt stolt över att vara din bror.  

Mamma och Pappa, för allt stöd under mina studier och för att ni visat att kärlek och trygghet 
är viktigare än prestation. Jag vet att ni är stolta och jag hade aldrig nått hit utan er. 

Signe, min skatt. Sen du kom har du skapat ett nytt ljus i mitt liv som jag aldrig kunnat föreställa 
mig. Den kärlek jag känner för dig är obeskrivlig och att varje dag få se glädjen och glöden i dina 
ögon är ovärderligt. Jag ser fram emot att följa dina äventyr genom livet. 

Charlotte, min fru och allra bästa vän. Jag är oerhört lycklig över att få dela livet med Dig och är 
oerhört tacksam över det stöd Du gett mig. Du har dragit ett tungt lass hemma då jag skrivit 
avhandlingen, men snart är det över. Du är det bästa som jag vet och jag älskar Dig! 

 

Tack också till alla stiftelser och fonder som gjort detta arbete möjligt:  

Swedish Brain Power, Gun & Bertil Stohnes stiftelse, Margaretha af Ugglas stiftelsen, Stiftelsen 
för Gamla Tjänarinnor, Alzheimerfonden, Stiftelsen för ålderssjukdomar vid Karolinska 
Institutet, Anders Otto Swärds stiftelse, Insamlingsstiftelsen för Alzheimer och demensforskning 
(SADF), Knut och Alice Wallenberg stiftelsen, Stiftelsen Sigurd och Elsa Goljes Minne, 
Alzheimer association (USA), AFA Soria (Spanien), Demensförbundet, National Institute on 
Aging (USA) och Lundströms minne. 

 





 

  41 

7 REFERENCES 

1. Alzheimer's Disease International (ADI). World Alzheimer Report - The Global Impact 
of Dementia - An analysis of prevalence, incidence, cost and trends, 2015. 

2. Selkoe DJ. The deposition of amyloid proteins in the aging mammalian brain: implications 
for Alzheimer's disease. Ann Med 1989; 21(2): 73-6. 

3. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-
associated protein tau. A component of Alzheimer paired helical filaments. The Journal of 
biological chemistry 1986; 261(13): 6084-9. 

4. Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiology 
of aging 2000; 21(3): 383-421. 

5. Dandrea MR, Reiser PA, Gumula NA, Hertzog BM, Andrade-Gordon P. Application of 
triple immunohistochemistry to characterize amyloid plaque-associated inflammation in 
brains with Alzheimer's disease. Biotech Histochem 2001; 76(2): 97-106. 

6. Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain 
and its relevance for the development of AD. Neurology 2002; 58(12): 1791-800. 

7. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer 
disease-associated neurofibrillary pathology using paraffin sections and 
immunocytochemistry. Acta Neuropathol 2006; 112(4): 389-404. 

8. Weller RO, Nicoll JA. Cerebral amyloid angiopathy: pathogenesis and effects on the ageing 
and Alzheimer brain. Neurol Res 2003; 25(6): 611-6. 

9. Teplow DB. Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 
1998; 5(2): 121-42. 

10. Murphy MP, LeVine H, 3rd. Alzheimer's disease and the amyloid-beta peptide. Journal of 
Alzheimer's disease : JAD 2010; 19(1): 311-23. 

11. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 
42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that 
an initially deposited species is A beta 42(43). Neuron 1994; 13(1): 45-53. 

12. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiological reviews 2001; 81(2): 
741-66. 

13. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for 
neurodegenerative brain diseases. Hum Mutat 2012; 33(9): 1340-4. 

14. Harkany T, Abraham I, Timmerman W, et al. beta-amyloid neurotoxicity is mediated by a 
glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 2000; 12(8): 
2735-45. 

15. Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta 
protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002; 
416(6880): 535-9. 

16. Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta to mitochondrial toxicity 
in Alzheimer's disease. Science 2004; 304(5669): 448-52. 

17. Verdier Y, Penke B. Binding sites of amyloid beta-peptide in cell plasma membrane and 
implications for Alzheimer's disease. Curr Protein Pept Sci 2004; 5(1): 19-31. 



 

 42 

18. Resende R, Moreira PI, Proenca T, et al. Brain oxidative stress in a triple-transgenic mouse 
model of Alzheimer disease. Free radical biology & medicine 2008; 44(12): 2051-7. 

19. Akterin S, Cowburn RF, Miranda-Vizuete A, et al. Involvement of glutaredoxin-1 and 
thioredoxin-1 in beta-amyloid toxicity and Alzheimer's disease. Cell death and differentiation 
2006; 13(9): 1454-65. 

20. Butterfield DA, Hensley K, Harris M, Mattson M, Carney J. beta-Amyloid peptide free 
radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: 
implications to Alzheimer's disease. Biochem Biophys Res Commun 1994; 200(2): 710-5. 

21. Harper JD, Lansbury PT, Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: 
mechanistic truths and physiological consequences of the time-dependent solubility of 
amyloid proteins. Annu Rev Biochem 1997; 66: 385-407. 

22. Lee J, Culyba EK, Powers ET, Kelly JW. Amyloid-beta forms fibrils by nucleated 
conformational conversion of oligomers. Nat Chem Biol 2011; 7(9): 602-9. 

23. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992; 
256(5054): 184-5. 

24. Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from 
Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008; 14(8): 837-42. 

25. Ahmed M, Davis J, Aucoin D, et al. Structural conversion of neurotoxic amyloid-beta(1-
42) oligomers to fibrils. Nat Struct Mol Biol 2010; 17(5): 561-7. 

26. Hartley DM, Walsh DM, Ye CP, et al. Protofibrillar intermediates of amyloid beta-protein 
induce acute electrophysiological changes and progressive neurotoxicity in cortical 
neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 1999; 19(20): 
8876-84. 

27. Xia D, Watanabe H, Wu B, et al. Presenilin-1 Knockin Mice Reveal Loss-of-Function 
Mechanism for Familial Alzheimer's Disease. Neuron 2015; 85(5): 967-81. 

28. Crystal H, Dickson D, Fuld P, et al. Clinico-pathologic studies in dementia: nondemented 
subjects with pathologically confirmed Alzheimer's disease. Neurology 1988; 38(11): 1682-7. 

29. Kamenetz F, Tomita T, Hsieh H, et al. APP processing and synaptic function. Neuron 
2003; 37(6): 925-37. 

30. Kontush A, Berndt C, Weber W, et al. Amyloid-beta is an antioxidant for lipoproteins in 
cerebrospinal fluid and plasma. Free radical biology & medicine 2001; 30(1): 119-28. 

31. Giuffrida ML, Caraci F, Pignataro B, et al. Beta-amyloid monomers are neuroprotective. 
The Journal of neuroscience : the official journal of the Society for Neuroscience 2009; 29(34): 10582-7. 

32. Soscia SJ, Kirby JE, Washicosky KJ, et al. The Alzheimer's disease-associated amyloid 
beta-protein is an antimicrobial peptide. PloS one 2010; 5(3): e9505. 

33. Lichtenthaler SF. alpha-secretase in Alzheimer's disease: molecular identity, regulation and 
therapeutic potential. Journal of neurochemistry 2011; 116(1): 10-21. 

34. Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects 
Med 2008; 29(5): 258-89. 

35. Hartmann D, de Strooper B, Serneels L, et al. The disintegrin/metalloprotease ADAM 10 
is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Human 
molecular genetics 2002; 11(21): 2615-24. 



 

  43 

36. Lammich S, Kojro E, Postina R, et al. Constitutive and regulated alpha-secretase cleavage 
of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proceedings of the 
National Academy of Sciences of the United States of America 1999; 96(7): 3922-7. 

37. Bandyopadhyay S, Goldstein LE, Lahiri DK, Rogers JT. Role of the APP non-
amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target 
for treatment of Alzheimer's disease. Curr Med Chem 2007; 14(27): 2848-64. 

38. Ludwig A, Hundhausen C, Lambert MH, et al. Metalloproteinase inhibitors for the 
disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block 
constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem 
High Throughput Screen 2005; 8(2): 161-71. 

39. Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's 
disease and related disorders. Nat Rev Neurosci 2007; 8(9): 663-72. 

40. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of 
human microtubule-associated protein tau: sequences and localization in neurofibrillary 
tangles of Alzheimer's disease. Neuron 1989; 3(4): 519-26. 

41. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal 
phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal 
pathology. Proceedings of the National Academy of Sciences of the United States of America 1986; 
83(13): 4913-7. 

42. Congdon EE, Duff KE. Is tau aggregation toxic or protective? Journal of Alzheimer's disease : 
JAD 2008; 14(4): 453-7. 

43. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. Specific tau phosphorylation 
sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta 
Neuropathol 2002; 103(1): 26-35. 

44. Farias G, Cornejo A, Jimenez J, Guzman L, Maccioni RB. Mechanisms of tau self-
aggregation and neurotoxicity. Curr Alzheimer Res 2011; 8(6): 608-14. 

45. Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the 
association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. 
APOE and Alzheimer Disease Meta Analysis Consortium. JAMA : the journal of the 
American Medical Association 1997; 278(16): 1349-56. 

46. Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 
allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261(5123): 921-
3. 

47. Kivipelto M, Rovio S, Ngandu T, et al. Apolipoprotein E epsilon4 magnifies lifestyle risks 
for dementia: a population-based study. Journal of cellular and molecular medicine 2008; 12(6B): 
2762-71. 

48. Maioli S, Puerta E, Merino-Serrais P, et al. Combination of apolipoprotein E4 and high 
carbohydrate diet reduces hippocampal BDNF and arc levels and impairs memory in 
young mice. Journal of Alzheimer's disease : JAD 2012; 32(2): 341-55. 

49. Rall SC, Jr., Weisgraber KH, Mahley RW. Human apolipoprotein E. The complete amino 
acid sequence. The Journal of biological chemistry 1982; 257(8): 4171-8. 

50. Weisgraber KH, Rall SC, Jr., Mahley RW. Human E apoprotein heterogeneity. Cysteine-
arginine interchanges in the amino acid sequence of the apo-E isoforms. The Journal of 
biological chemistry 1981; 256(17): 9077-83. 



 

 44 

51. Mahley RW, Rall SC, Jr. Apolipoprotein E: far more than a lipid transport protein. Annual 
review of genomics and human genetics 2000; 1: 507-37. 

52. Elshourbagy NA, Liao WS, Mahley RW, Taylor JM. Apolipoprotein E mRNA is abundant 
in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of 
rats and marmosets. Proceedings of the National Academy of Sciences of the United States of America 
1985; 82(1): 203-7. 

53. Horsburgh K, Graham DI, Stewart J, Nicoll JA. Influence of apolipoprotein E genotype 
on neuronal damage and apoE immunoreactivity in human hippocampus following global 
ischemia. Journal of neuropathology and experimental neurology 1999; 58(3): 227-34. 

54. Williams KR, Saunders AM, Roses AD, Armati PJ. Uptake and internalization of 
exogenous apolipoprotein E3 by cultured human central nervous system neurons. 
Neurobiology of disease 1998; 5(4): 271-9. 

55. Ruiz J, Kouiavskaia D, Migliorini M, et al. The apoE isoform binding properties of the 
VLDL receptor reveal marked differences from LRP and the LDL receptor. Journal of lipid 
research 2005; 46(8): 1721-31. 

56. Wolf BB, Lopes MB, VandenBerg SR, Gonias SL. Characterization and 
immunohistochemical localization of alpha 2-macroglobulin receptor (low-density 
lipoprotein receptor-related protein) in human brain. The American journal of pathology 1992; 
141(1): 37-42. 

57. LaDu MJ, Stine WB, Jr., Narita M, Getz GS, Reardon CA, Bu G. Self-assembly of HEK 
cell-secreted ApoE particles resembles ApoE enrichment of lipoproteins as a ligand for 
the LDL receptor-related protein. Biochemistry 2006; 45(2): 381-90. 

58. Morrow JA, Hatters DM, Lu B, et al. Apolipoprotein E4 forms a molten globule. A 
potential basis for its association with disease. The Journal of biological chemistry 2002; 277(52): 
50380-5. 

59. Michaelson DM. APOE epsilon4: The most prevalent yet understudied risk factor for 
Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association 2014; 
10(6): 861-8. 

60. Ji Y, Gong Y, Gan W, Beach T, Holtzman DM, Wisniewski T. Apolipoprotein E isoform-
specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and 
Alzheimer's disease patients. Neuroscience 2003; 122(2): 305-15. 

61. Rapp A, Gmeiner B, Huttinger M. Implication of apoE isoforms in cholesterol 
metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 2006; 88(5): 473-
83. 

62. Hamanaka H, Katoh-Fukui Y, Suzuki K, et al. Altered cholesterol metabolism in human 
apolipoprotein E4 knock-in mice. Human molecular genetics 2000; 9(3): 353-61. 

63. Li G, Bien-Ly N, Andrews-Zwilling Y, et al. GABAergic interneuron dysfunction impairs 
hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 2009; 
5(6): 634-45. 

64. Manning EN, Barnes J, Cash DM, et al. APOE epsilon4 is associated with 
disproportionate progressive hippocampal atrophy in AD. PloS one 2014; 9(5): e97608. 

65. Espeseth T, Westlye LT, Fjell AM, Walhovd KB, Rootwelt H, Reinvang I. Accelerated 
age-related cortical thinning in healthy carriers of apolipoprotein E epsilon 4. Neurobiology of 
aging 2008; 29(3): 329-40. 



 

  45 

66. Brecht WJ, Harris FM, Chang S, et al. Neuron-specific apolipoprotein e4 proteolysis is 
associated with increased tau phosphorylation in brains of transgenic mice. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 2004; 24(10): 2527-34. 

67. Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW. Apolipoprotein E 
fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like 
intracellular inclusions in neurons. Proceedings of the National Academy of Sciences of the United 
States of America 2001; 98(15): 8838-43. 

68. Reiman EM, Chen K, Liu X, et al. Fibrillar amyloid-beta burden in cognitively normal 
people at 3 levels of genetic risk for Alzheimer's disease. Proceedings of the National Academy of 
Sciences of the United States of America 2009; 106(16): 6820-5. 

69. Castellano JM, Kim J, Stewart FR, et al. Human apoE isoforms differentially regulate brain 
amyloid-beta peptide clearance. Sci Transl Med 2011; 3(89): 89ra57. 

70. Ramassamy C, Averill D, Beffert U, et al. Oxidative insults are associated with 
apolipoprotein E genotype in Alzheimer's disease brain. Neurobiology of disease 2000; 7(1): 
23-37. 

71. Shi L, Du X, Zhou H, et al. Cumulative effects of the ApoE genotype and gender on the 
synaptic proteome and oxidative stress in the mouse brain. Int J Neuropsychopharmacol 2014; 
17(11): 1863-79. 

72. Lauderback CM, Kanski J, Hackett JM, Maeda N, Kindy MS, Butterfield DA. 
Apolipoprotein E modulates Alzheimer's Abeta(1-42)-induced oxidative damage to 
synaptosomes in an allele-specific manner. Brain research 2002; 924(1): 90-7. 

73. Cedazo-Minguez A, Huttinger M, Cowburn RF. Beta-VLDL protects against A beta(1-42) 
and apoE toxicity in human SH-SY5Y neuroblastoma cells. Neuroreport 2001; 12(2): 201-6. 

74. Ji ZS, Miranda RD, Newhouse YM, Weisgraber KH, Huang Y, Mahley RW. 
Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and 
apoptosis in neuronal cells. The Journal of biological chemistry 2002; 277(24): 21821-8. 

75. Marques MA, Tolar M, Harmony JA, Crutcher KA. A thrombin cleavage fragment of 
apolipoprotein E exhibits isoform-specific neurotoxicity. Neuroreport 1996; 7(15-17): 2529-
32. 

76. Tolar M, Keller JN, Chan S, Mattson MP, Marques MA, Crutcher KA. Truncated 
apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE 
neurotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience 1999; 
19(16): 7100-10. 

77. Chang S, ran Ma T, Miranda RD, Balestra ME, Mahley RW, Huang Y. Lipid- and 
receptor-binding regions of apolipoprotein E4 fragments act in concert to cause 
mitochondrial dysfunction and neurotoxicity. Proceedings of the National Academy of Sciences of 
the United States of America 2005; 102(51): 18694-9. 

78. Rogaeva E, Meng Y, Lee JH, et al. The neuronal sortilin-related receptor SORL1 is 
genetically associated with Alzheimer disease. Nat Genet 2007; 39(2): 168-77. 

79. Yamazaki H, Bujo H, Kusunoki J, et al. Elements of neural adhesion molecules and a yeast 
vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein 
receptor family member. The Journal of biological chemistry 1996; 271(40): 24761-8. 

80. Jun G, Naj AC, Beecham GW, et al. Meta-analysis confirms CR1, CLU, and PICALM as 
alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 
2010; 67(12): 1473-84. 



 

 46 

81. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals 
identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 2013; 45(12): 1452-8. 

82. World Health Organization (WHO) and Alzheimer Disease International (ADI). 
Dementia: a public health priority, 2012. 

83. van Duijn CM, Clayton D, Chandra V, et al. Familial aggregation of Alzheimer's disease 
and related disorders: a collaborative re-analysis of case-control studies. Int J Epidemiol 
1991; 20 Suppl 2: S13-20. 

84. Mi W, van Wijk N, Cansev M, Sijben JW, Kamphuis PJ. Nutritional approaches in the risk 
reduction and management of Alzheimer's disease. Nutrition 2013; 29(9): 1080-9. 

85. Peters R, Poulter R, Warner J, Beckett N, Burch L, Bulpitt C. Smoking, dementia and 
cognitive decline in the elderly, a systematic review. BMC Geriatr 2008; 8: 36. 

86. Fratiglioni L, Ahlbom A, Viitanen M, Winblad B. Risk factors for late-onset Alzheimer's 
disease: a population-based, case-control study. Annals of neurology 1993; 33(3): 258-66. 

87. Xu W, Qiu C, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Mid- and late-life 
diabetes in relation to the risk of dementia: a population-based twin study. Diabetes 2009; 
58(1): 71-7. 

88. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive 
function and dementia. Lancet Neurol 2005; 4(8): 487-99. 

89. Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer 
disease: I. Review of epidemiological and preclinical studies. Arch Neurol 2011; 68(10): 
1239-44. 

90. Raffaitin C, Gin H, Empana JP, et al. Metabolic syndrome and risk for incident 
Alzheimer's disease or vascular dementia: the Three-City Study. Diabetes Care 2009; 32(1): 
169-74. 

91. Sindi S, Mangialasche F, Kivipelto M. Advances in the prevention of Alzheimer's Disease. 
F1000Prime Rep 2015; 7: 50. 

92. Tang MX, Jacobs D, Stern Y, et al. Effect of oestrogen during menopause on risk and age 
at onset of Alzheimer's disease. Lancet 1996; 348(9025): 429-32. 

93. Schonknecht P, Pantel J, Klinga K, et al. Reduced cerebrospinal fluid estradiol levels are 
associated with increased beta-amyloid levels in female patients with Alzheimer's disease. 
Neuroscience letters 2001; 307(2): 122-4. 

94. Amtul Z, Wang L, Westaway D, Rozmahel RF. Neuroprotective mechanism conferred by 
17beta-estradiol on the biochemical basis of Alzheimer's disease. Neuroscience 2010; 169(2): 
781-6. 

95. Yao M, Nguyen TV, Pike CJ. Estrogen regulates Bcl-w and Bim expression: role in 
protection against beta-amyloid peptide-induced neuronal death. The Journal of neuroscience : 
the official journal of the Society for Neuroscience 2007; 27(6): 1422-33. 

96. Long J, He P, Shen Y, Li R. New evidence of mitochondria dysfunction in the female 
Alzheimer's disease brain: deficiency of estrogen receptor-beta. Journal of Alzheimer's disease : 
JAD 2012; 30(3): 545-58. 

97. Olivieri G, Novakovic M, Savaskan E, et al. The effects of beta-estradiol on SHSY5Y 
neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-
amyloid secretion. Neuroscience 2002; 113(4): 849-55. 



 

  47 

98. Nilsen J. Estradiol and neurodegenerative oxidative stress. Front Neuroendocrinol 2008; 29(4): 
463-75. 

99. Chiueh C, Lee S, Andoh T, Murphy D. Induction of antioxidative and antiapoptotic 
thioredoxin supports neuroprotective hypothesis of estrogen. Endocrine 2003; 21(1): 27-31. 

100. Henderson VW. Alzheimer's disease: review of hormone therapy trials and implications 
for treatment and prevention after menopause. J Steroid Biochem Mol Biol 2014; 142: 99-106. 

101. Espeland MA, Brinton RD, Manson JE, et al. Postmenopausal hormone therapy, type 2 
diabetes mellitus, and brain volumes. Neurology 2015; 85(13): 1131-8. 

102. Csordas A, Mazlo M, Gallyas F. Recovery versus death of "dark" (compacted) neurons in 
non-impaired parenchymal environment: light and electron microscopic observations. Acta 
Neuropathol 2003; 106(1): 37-49. 

103. Mohamad N, Gutierrez A, Nunez M, et al. Mitochondrial apoptotic pathways. Biocell 2005; 
29(2): 149-61. 

104. Liu K, Ding L, Li Y, et al. Neuronal necrosis is regulated by a conserved chromatin-
modifying cascade. Proceedings of the National Academy of Sciences of the United States of America 
2014; 111(38): 13960-5. 

105. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends 
Biochem Sci 2007; 32(1): 37-43. 

106. Velez-Pardo C, Arroyave ST, Lopera F, Castano AD, Jimenez Del Rio M. Ultrastructure 
evidence of necrotic neural cell death in familial Alzheimer's disease brains bearing 
presenilin-1 E280A mutation. Journal of Alzheimer's disease : JAD 2001; 3(4): 409-15. 

107. Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a 
succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 
15(4): 961-73. 

108. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-
516. 

109. Lucassen PJ, Chung WC, Kamphorst W, Swaab DF. DNA damage distribution in the 
human brain as shown by in situ end labeling; area-specific differences in aging and 
Alzheimer disease in the absence of apoptotic morphology. Journal of neuropathology and 
experimental neurology 1997; 56(8): 887-900. 

110. Sugaya K, Reeves M, McKinney M. Topographic associations between DNA 
fragmentation and Alzheimer's disease neuropathology in the hippocampus. Neurochem Int 
1997; 31(2): 275-81. 

111. Stadelmann C, Deckwerth TL, Srinivasan A, et al. Activation of caspase-3 in single 
neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. 
Evidence for apoptotic cell death. The American journal of pathology 1999; 155(5): 1459-66. 

112. Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC. Active caspase-6 
and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles 
of Alzheimer's disease. The American journal of pathology 2004; 165(2): 523-31. 

113. Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH. Activation of caspase-8 in the 
Alzheimer's disease brain. Neurobiology of disease 2001; 8(6): 1006-16. 

114. Zhu X, Raina AK, Perry G, Smith MA. Apoptosis in Alzheimer disease: a mathematical 
improbability. Curr Alzheimer Res 2006; 3(4): 393-6. 



 

 48 

115. Geske FJ, Lieberman R, Strange R, Gerschenson LE. Early stages of p53-induced 
apoptosis are reversible. Cell death and differentiation 2001; 8(2): 182-91. 

116. Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell 
death and differentiation 2001; 8(6): 569-81. 

117. Turk B, Turk V. Lysosomes as "suicide bags" in cell death: myth or reality? The Journal of 
biological chemistry 2009; 284(33): 21783-7. 

118. Bidere N, Lorenzo HK, Carmona S, et al. Cathepsin D triggers Bax activation, resulting in 
selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early 
commitment phase to apoptosis. The Journal of biological chemistry 2003; 278(33): 31401-11. 

119. Appelqvist H, Johansson AC, Linderoth E, et al. Lysosome-mediated apoptosis is 
associated with cathepsin D-specific processing of bid at Phe24, Trp48, and Phe183. 
Annals of clinical and laboratory science 2012; 42(3): 231-42. 

120. Gruninger-Leitch F, Berndt P, Langen H, Nelboeck P, Dobeli H. Identification of beta-
secretase-like activity using a mass spectrometry-based assay system. Nat Biotechnol 2000; 
18(1): 66-70. 

121. Hamazaki H. Cathepsin D is involved in the clearance of Alzheimer's beta-amyloid 
protein. FEBS letters 1996; 396(2-3): 139-42. 

122. Malik M, Fenko MD, Sheikh AM, Wen G, Li X. A novel approach for characterization of 
cathepsin D protease and its effect on tau and beta-amyloid proteins. Neurochemical research 
2011; 36(5): 754-60. 

123. Davidson Y, Gibbons L, Pritchard A, et al. Genetic associations between cathepsin D 
exon 2 C-->T polymorphism and Alzheimer's disease, and pathological correlations with 
genotype. J Neurol Neurosurg Psychiatry 2006; 77(4): 515-7. 

124. Haendeler J, Popp R, Goy C, Tischler V, Zeiher AM, Dimmeler S. Cathepsin D and 
H2O2 stimulate degradation of thioredoxin-1: implication for endothelial cell apoptosis. 
The Journal of biological chemistry 2005; 280(52): 42945-51. 

125. Tobiume K, Matsuzawa A, Takahashi T, et al. ASK1 is required for sustained activations 
of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2001; 2(3): 222-8. 

126. Khelifi AF, D'Alcontres MS, Salomoni P. Daxx is required for stress-induced cell death 
and JNK activation. Cell death and differentiation 2005; 12(7): 724-33. 

127. Kadowaki H, Nishitoh H, Urano F, et al. Amyloid beta induces neuronal cell death 
through ROS-mediated ASK1 activation. Cell death and differentiation 2005; 12(1): 19-24. 

128. Peel AL, Sorscher N, Kim JY, Galvan V, Chen S, Bredesen DE. Tau phosphorylation in 
Alzheimer's disease: potential involvement of an APP-MAP kinase complex. Neuromolecular 
Med 2004; 5(3): 205-18. 

129. Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ. Gene expression 
profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic 
factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. 
Journal of neuroscience research 2002; 70(3): 462-73. 

130. Lukiw WJ. Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a 
continuum of stress-related signaling. Neurochemical research 2004; 29(6): 1287-97. 

131. Sies H. Oxidative stress. London: Orlando : Academic Press; 1985. 



 

  49 

132. Koopman WJ, Nijtmans LG, Dieteren CE, et al. Mammalian mitochondrial complex I: 
biogenesis, regulation, and reactive oxygen species generation. Antioxidants & redox signaling 
2010; 12(12): 1431-70. 

133. Pryor WA. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu 
Rev Physiol 1986; 48: 657-67. 

134. Lloyd RV, Hanna PM, Mason RP. The origin of the hydroxyl radical oxygen in the Fenton 
reaction. Free radical biology & medicine 1997; 22(5): 885-8. 

135. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung 
Cell Mol Physiol 2000; 279(6): L1005-28. 

136. Kohchi C, Inagawa H, Nishizawa T, Soma G. ROS and innate immunity. Anticancer Res 
2009; 29(3): 817-21. 

137. Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2' -deoxyguanosine (8-OHdG): A 
critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ 
Carcinog Ecotoxicol Rev 2009; 27(2): 120-39. 

138. Poulsen HE, Specht E, Broedbaek K, et al. RNA modifications by oxidation: a novel 
disease mechanism? Free radical biology & medicine 2012; 52(8): 1353-61. 

139. Ding Q, Markesbery WR, Chen Q, Li F, Keller JN. Ribosome dysfunction is an early event 
in Alzheimer's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 
2005; 25(40): 9171-5. 

140. Go YM, Jones DP. Redox compartmentalization in eukaryotic cells. Biochimica et biophysica 
acta 2008; 1780(11): 1273-90. 

141. Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: 
an overview. Biomarkers 2005; 10 Suppl 1: S10-23. 

142. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, 
malonaldehyde and related aldehydes. Free radical biology & medicine 1991; 11(1): 81-128. 

143. Headlam HA, Davies MJ. Markers of protein oxidation: different oxidants give rise to 
variable yields of bound and released carbonyl products. Free radical biology & medicine 2004; 
36(9): 1175-84. 

144. Hoshi T, Heinemann S. Regulation of cell function by methionine oxidation and 
reduction. J Physiol 2001; 531(Pt 1): 1-11. 

145. Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine 
oxidation. Curr Opin Chem Biol 2008; 12(6): 746-54. 

146. Alderson NL, Wang Y, Blatnik M, et al. S-(2-Succinyl)cysteine: a novel chemical 
modification of tissue proteins by a Krebs cycle intermediate. Arch Biochem Biophys 2006; 
450(1): 1-8. 

147. Zeng J, Davies MJ. Evidence for the formation of adducts and S-(carboxymethyl)cysteine 
on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, 
and proteins. Chem Res Toxicol 2005; 18(8): 1232-41. 

148. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. The 
Journal of biological chemistry 1997; 272(33): 20313-6. 

149. Levi S, Rovida E. The role of iron in mitochondrial function. Biochimica et biophysica acta 
2009; 1790(7): 629-36. 



 

 50 

150. Ricci C, Pastukh V, Leonard J, et al. Mitochondrial DNA damage triggers mitochondrial-
superoxide generation and apoptosis. American journal of physiology Cell physiology 2008; 294(2): 
C413-22. 

151. Bouayed J, Bohn T. Exogenous antioxidants - Double-edged swords in cellular redox 
state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. 
Oxid Med Cell Longev 2010; 3(4): 228-37. 

152. Meister A. Glutathione metabolism. Methods in enzymology 1995; 251: 3-7. 

153. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J 
Biomed Sci 2008; 4(2): 89-96. 

154. Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free 
radical biology & medicine 2014; 71: 368-78. 

155. Moyse E, Arseneault M, Gaudreau P, Ferland G, Ramassamy C. Gender- and region-
dependent changes of redox biomarkers in the brain of successfully aging LOU/C rats. 
Mech Ageing Dev 2015; 149: 19-30. 

156. Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK. Elevated 
oxidative stress and decreased antioxidant function in the human hippocampus and frontal 
cortex with increasing age: implications for neurodegeneration in Alzheimer's disease. 
Neurochemical research 2012; 37(8): 1601-14. 

157. Belanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-
neuron metabolic cooperation. Cell Metab 2011; 14(6): 724-38. 

158. Marszalek JR, Lodish HF. Docosahexaenoic acid, fatty acid-interacting proteins, and 
neuronal function: breastmilk and fish are good for you. Annual review of cell and developmental 
biology 2005; 21: 633-57. 

159. Bush AI. Metals and neuroscience. Curr Opin Chem Biol 2000; 4(2): 184-91. 

160. Marklund SL, Westman NG, Lundgren E, Roos G. Copper- and zinc-containing 
superoxide dismutase, manganese-containing superoxide dismutase, catalase, and 
glutathione peroxidase in normal and neoplastic human cell lines and normal human 
tissues. Cancer research 1982; 42(5): 1955-61. 

161. Bradley MA, Xiong-Fister S, Markesbery WR, Lovell MA. Elevated 4-hydroxyhexenal in 
Alzheimer's disease (AD) progression. Neurobiology of aging 2012; 33(6): 1034-44. 

162. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD. Lipid peroxidation is an early event 
in the brain in amnestic mild cognitive impairment. Annals of neurology 2005; 58(5): 730-5. 

163. Pratico D, V MYL, Trojanowski JQ, Rokach J, Fitzgerald GA. Increased F2-isoprostanes 
in Alzheimer's disease: evidence for enhanced lipid peroxidation in vivo. FASEB journal : 
official publication of the Federation of American Societies for Experimental Biology 1998; 12(15): 
1777-83. 

164. Lovell MA, Soman S, Bradley MA. Oxidatively modified nucleic acids in preclinical 
Alzheimer's disease (PCAD) brain. Mech Ageing Dev 2011; 132(8-9): 443-8. 

165. Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between 
Alzheimer's disease histopathology and biomarkers of protein oxidation. Journal of 
neurochemistry 1995; 65(5): 2146-56. 

166. Uehara T, Nakamura T, Yao D, et al. S-nitrosylated protein-disulphide isomerase links 
protein misfolding to neurodegeneration. Nature 2006; 441(7092): 513-7. 



 

  51 

167. Montine TJ, Beal MF, Cudkowicz ME, et al. Increased CSF F2-isoprostane concentration 
in probable AD. Neurology 1999; 52(3): 562-5. 

168. Lovell MA, Gabbita SP, Markesbery WR. Increased DNA oxidation and decreased levels 
of repair products in Alzheimer's disease ventricular CSF. Journal of neurochemistry 1999; 
72(2): 771-6. 

169. Ahmed N, Ahmed U, Thornalley PJ, Hager K, Fleischer G, Munch G. Protein glycation, 
oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in 
Alzheimer's disease and link to cognitive impairment. Journal of neurochemistry 2005; 92(2): 
255-63. 

170. Montine TJ, Quinn JF, Milatovic D, et al. Peripheral F2-isoprostanes and F4-
neuroprostanes are not increased in Alzheimer's disease. Annals of neurology 2002; 52(2): 
175-9. 

171. Abe T, Tohgi H, Isobe C, Murata T, Sato C. Remarkable increase in the concentration of 
8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease. Journal of 
neuroscience research 2002; 70(3): 447-50. 

172. Adams JD, Jr., Klaidman LK, Odunze IN, Shen HC, Miller CA. Alzheimer's and 
Parkinson's disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol 
Chem Neuropathol 1991; 14(3): 213-26. 

173. Gsell W, Conrad R, Hickethier M, et al. Decreased catalase activity but unchanged 
superoxide dismutase activity in brains of patients with dementia of Alzheimer type. Journal 
of neurochemistry 1995; 64(3): 1216-23. 

174. Gabbita SP, Aksenov MY, Lovell MA, Markesbery WR. Decrease in peptide methionine 
sulfoxide reductase in Alzheimer's disease brain. Journal of neurochemistry 1999; 73(4): 1660-6. 

175. Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the 
frontal cortex. Journal of neuropathology and experimental neurology 2010; 69(2): 155-67. 

176. Marcus DL, Strafaci JA, Freedman ML. Differential neuronal expression of manganese 
superoxide dismutase in Alzheimer's disease. Med Sci Monit 2006; 12(1): BR8-14. 

177. Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-active metals, oxidative stress, 
and Alzheimer's disease pathology. Ann N Y Acad Sci 2004; 1012: 153-63. 

178. Takuma K, Yao J, Huang J, et al. ABAD enhances Abeta-induced cell stress via 
mitochondrial dysfunction. FASEB journal : official publication of the Federation of American 
Societies for Experimental Biology 2005; 19(6): 597-8. 

179. Karuppagounder SS, Xu H, Shi Q, et al. Thiamine deficiency induces oxidative stress and 
exacerbates the plaque pathology in Alzheimer's mouse model. Neurobiology of aging 2009; 
30(10): 1587-600. 

180. Misonou H, Morishima-Kawashima M, Ihara Y. Oxidative stress induces intracellular 
accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry 
2000; 39(23): 6951-9. 

181. Paola D, Domenicotti C, Nitti M, et al. Oxidative stress induces increase in intracellular 
amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 
cells. Biochem Biophys Res Commun 2000; 268(2): 642-6. 

182. Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer 
disease. Journal of neuropathology and experimental neurology 2001; 60(8): 759-67. 



 

 52 

183. Laurent TC, Moore EC, Reichard P. Enzymatic Synthesis of Deoxyribonucleotides. Iv. 
Isolation and Characterization of Thioredoxin, the Hydrogen Donor from Escherichia 
Coli B. The Journal of biological chemistry 1964; 239: 3436-44. 

184. Tagaya Y, Maeda Y, Mitsui A, et al. ATL-derived factor (ADF), an IL-2 receptor/Tac 
inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 
receptor induction. The EMBO journal 1989; 8(3): 757-64. 

185. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian 
thioredoxin system. Free radical biology & medicine 2001; 31(11): 1287-312. 

186. Collet JF, Messens J. Structure, function, and mechanism of thioredoxin proteins. 
Antioxidants & redox signaling 2010; 13(8): 1205-16. 

187. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. 
European journal of biochemistry / FEBS 2000; 267(20): 6102-9. 

188. Matsui M, Oshima M, Oshima H, et al. Early embryonic lethality caused by targeted 
disruption of the mouse thioredoxin gene. Dev Biol 1996; 178(1): 179-85. 

189. Schenk H, Klein M, Erdbrugger W, Droge W, Schulze-Osthoff K. Distinct effects of 
thioredoxin and antioxidants on the activation of transcription factors NF-kappa B and 
AP-1. Proceedings of the National Academy of Sciences of the United States of America 1994; 91(5): 
1672-6. 

190. Ueno M, Masutani H, Arai RJ, et al. Thioredoxin-dependent redox regulation of p53-
mediated p21 activation. The Journal of biological chemistry 1999; 274(50): 35809-15. 

191. Bertini R, Howard OM, Dong HF, et al. Thioredoxin, a redox enzyme released in infection 
and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J 
Exp Med 1999; 189(11): 1783-9. 

192. Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of 
apoptosis signal-regulating kinase (ASK) 1. The EMBO journal 1998; 17(9): 2596-606. 

193. Mitchell DA, Morton SU, Fernhoff NB, Marletta MA. Thioredoxin is required for S-
nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proceedings of the 
National Academy of Sciences of the United States of America 2007; 104(28): 11609-14. 

194. Stadtman ER, Moskovitz J, Levine RL. Oxidation of methionine residues of proteins: 
biological consequences. Antioxidants & redox signaling 2003; 5(5): 577-82. 

195. Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce 
peroxides in presence of thioredoxin. Methods in enzymology 1999; 300: 219-26. 

196. Lu J, Holmgren A. The thioredoxin antioxidant system. Free radical biology & medicine 2014; 
66: 75-87. 

197. Yu Y, Xing K, Badamas R, Kuszynski CA, Wu H, Lou MF. Overexpression of 
thioredoxin-binding protein 2 increases oxidation sensitivity and apoptosis in human lens 
epithelial cells. Free radical biology & medicine 2013; 57: 92-104. 

198. Tonissen KF, Di Trapani G. Thioredoxin system inhibitors as mediators of apoptosis for 
cancer therapy. Mol Nutr Food Res 2009; 53(1): 87-103. 

199. Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative 
diseases. Science 1983; 221(4617): 1256-64. 

200. Cha MK, Suh KH, Kim IH. Overexpression of peroxiredoxin I and thioredoxin1 in 
human breast carcinoma. J Exp Clin Cancer Res 2009; 28: 93. 



 

  53 

201. Asahina M, Yamada T, Yoshiyama Y, Yodoi J. Expression of adult T cell leukemia-derived 
factor in human brain and peripheral nerve tissues. Dementia and geriatric cognitive disorders 
1998; 9(4): 181-5. 

202. Lovell MA, Xie C, Gabbita SP, Markesbery WR. Decreased thioredoxin and increased 
thioredoxin reductase levels in Alzheimer's disease brain. Free radical biology & medicine 2000; 
28(3): 418-27. 

203. Di Domenico F, Sultana R, Tiu GF, et al. Protein levels of heat shock proteins 27, 32, 60, 
70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the 
role of cellular stress response in the progression of Alzheimer disease. Brain research 2010; 
1333: 72-81. 

204. Arodin L, Lamparter H, Karlsson H, et al. Alteration of thioredoxin and glutaredoxin in 
the progression of Alzheimer's disease. Journal of Alzheimer's disease : JAD 2014; 39(4): 787-
97. 

205. Casanas-Sanchez V, Perez JA, Fabelo N, et al. Addition of docosahexaenoic acid, but not 
arachidonic acid, activates glutathione and thioredoxin antioxidant systems in murine 
hippocampal HT22 cells: potential implications in neuroprotection. Journal of neurochemistry 
2014; 131(4): 470-83. 

206. Ju TC, Chen SD, Liu CC, Yang DI. Protective effects of S-nitrosoglutathione against 
amyloid beta-peptide neurotoxicity. Free radical biology & medicine 2005; 38(7): 938-49. 

207. Landino LM, Skreslet TE, Alston JA. Cysteine oxidation of tau and microtubule-associated 
protein-2 by peroxynitrite: modulation of microtubule assembly kinetics by the thioredoxin 
reductase system. The Journal of biological chemistry 2004; 279(33): 35101-5. 

208. Takagi Y, Tokime T, Nozaki K, Gon Y, Kikuchi H, Yodoi J. Redox control of neuronal 
damage during brain ischemia after middle cerebral artery occlusion in the rat: 
immunohistochemical and hybridization studies of thioredoxin. J Cereb Blood Flow Metab 
1998; 18(2): 206-14. 

209. Hattori I, Takagi Y, Nakamura H, et al. Intravenous administration of thioredoxin 
decreases brain damage following transient focal cerebral ischemia in mice. Antioxidants & 
redox signaling 2004; 6(1): 81-7. 

210. Wang B, Tian S, Wang J, et al. Intraperitoneal administration of thioredoxin decreases 
brain damage from ischemic stroke. Brain research 2015; 1615: 89-97. 

211. Takagi Y, Mitsui A, Nishiyama A, et al. Overexpression of thioredoxin in transgenic mice 
attenuates focal ischemic brain damage. Proceedings of the National Academy of Sciences of the 
United States of America 1999; 96(7): 4131-6. 

212. Pekkari K, Holmgren A. Truncated thioredoxin: physiological functions and mechanism. 
Antioxidants & redox signaling 2004; 6(1): 53-61. 

213. Silberstein DS, McDonough S, Minkoff MS, Balcewicz-Sablinska MK. Human eosinophil 
cytotoxicity-enhancing factor. Eosinophil-stimulating and dithiol reductase activities of 
biosynthetic (recombinant) species with COOH-terminal deletions. The Journal of biological 
chemistry 1993; 268(12): 9138-42. 

214. Balcewicz-Sablinska MK, Wollman EE, Gorti R, Silberstein DS. Human eosinophil 
cytotoxicity-enhancing factor. II. Multiple forms synthesized by U937 cells and their 
relationship to thioredoxin/adult T cell leukemia-derived factor. Journal of immunology 1991; 
147(7): 2170-4. 



 

 54 

215. Dessein AJ, Lenzi HL, Bina JC, et al. Modulation of eosinophil cytotoxicity by blood 
mononuclear cells from healthy subjects and patients with chronic schistosomiasis 
mansoni. Cell Immunol 1984; 85(1): 100-13. 

216. Elsas PX, Elsas MI, Dessein AJ. Eosinophil cytotoxicity enhancing factor: purification, 
characterization and immunocytochemical localization on the monocyte surface. Eur J 
Immunol 1990; 20(5): 1143-51. 

217. Pekkari K, Gurunath R, Arner ES, Holmgren A. Truncated thioredoxin is a mitogenic 
cytokine for resting human peripheral blood mononuclear cells and is present in human 
plasma. The Journal of biological chemistry 2000; 275(48): 37474-80. 

218. Newman GW, Balcewicz-Sablinska MK, Guarnaccia JR, Remold HG, Silberstein DS. 
Opposing regulatory effects of thioredoxin and eosinophil cytotoxicity-enhancing factor 
on the development of human immunodeficiency virus 1. J Exp Med 1994; 180(1): 359-63. 

219. King BC, Nowakowska J, Karsten CM, Kohl J, Renstrom E, Blom AM. Truncated and 
full-length thioredoxin-1 have opposing activating and inhibitory properties for human 
complement with relevance to endothelial surfaces. Journal of immunology 2012; 188(8): 4103-
12. 

220. Pekkari K, Avila-Carino J, Bengtsson A, Gurunath R, Scheynius A, Holmgren A. 
Truncated thioredoxin (Trx80) induces production of interleukin-12 and enhances CD14 
expression in human monocytes. Blood 2001; 97(10): 3184-90. 

221. Pekkari K, Goodarzi MT, Scheynius A, Holmgren A, Avila-Carino J. Truncated 
thioredoxin (Trx80) induces differentiation of human CD14+ monocytes into a novel cell 
type (TAMs) via activation of the MAP kinases p38, ERK, and JNK. Blood 2005; 105(4): 
1598-605. 

222. Cortes-Bratti X, Basseres E, Herrera-Rodriguez F, et al. Thioredoxin 80-activated-
monocytes (TAMs) inhibit the replication of intracellular pathogens. PloS one 2011; 6(2): 
e16960. 

223. Mahmood DF, Abderrazak A, Couchie D, et al. Truncated thioredoxin (Trx-80) promotes 
pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis. J Cell 
Physiol 2013; 228(7): 1577-83. 

224. Lemarechal H, Anract P, Beaudeux JL, Bonnefont-Rousselot D, Ekindjian OG, Borderie 
D. Expression and extracellular release of Trx80, the truncated form of thioredoxin, by 
TNF-alpha- and IL-1beta-stimulated human synoviocytes from patients with rheumatoid 
arthritis. Clin Sci (Lond) 2007; 113(3): 149-55. 

225. Schneider LS, Mangialasche F, Andreasen N, et al. Clinical trials and late-stage drug 
development for Alzheimer's disease: an appraisal from 1984 to 2014. J Intern Med 2014; 
275(3): 251-83. 

226. Panza F, Logroscino G, Imbimbo BP, Solfrizzi V. Is there still any hope for amyloid-based 
immunotherapy for Alzheimer's disease? Curr Opin Psychiatry 2014; 27(2): 128-37. 

227. Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, 
exercise, cognitive training, and vascular risk monitoring versus control to prevent 
cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 
2015; 385(9984): 2255-63. 

228. Persson T, Popescu BO, Cedazo-Minguez A. Oxidative stress in Alzheimer's disease: why 
did antioxidant therapy fail? Oxid Med Cell Longev 2014; 2014: 427318. 



 

  55 

229. Arodin L, Miranda-Vizuete A, Swoboda P, Fernandes AP. Protective effects of the 
thioredoxin and glutaredoxin systems in dopamine-induced cell death. Free radical biology & 
medicine 2014; 73: 328-36. 

230. Holscher C. First clinical data of the neuroprotective effects of nasal insulin application in 
patients with Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's 
Association 2014; 10(1 Suppl): S33-7. 

231. Eriksdotter-Jonhagen M, Linderoth B, Lind G, et al. Encapsulated cell biodelivery of nerve 
growth factor to the Basal forebrain in patients with Alzheimer's disease. Dementia and 
geriatric cognitive disorders 2012; 33(1): 18-28. 

232. Ferreira D, Westman E, Eyjolfsdottir H, et al. Brain changes in Alzheimer's disease 
patients with implanted encapsulated cells releasing nerve growth factor. Journal of 
Alzheimer's disease : JAD 2015; 43(3): 1059-72. 

233. Bai J, Nakamura H, Kwon YW, et al. Critical roles of thioredoxin in nerve growth factor-
mediated signal transduction and neurite outgrowth in PC12 cells. The Journal of neuroscience : 
the official journal of the Society for Neuroscience 2003; 23(2): 503-9. 

234. Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and 
psychiatric disorders. Nat Rev Drug Discov 2011; 10(3): 209-19. 

235. Stern Y. Cognitive reserve. Neuropsychologia 2009; 47(10): 2015-28. 

236. Katzman R, Terry R, DeTeresa R, et al. Clinical, pathological, and neurochemical changes 
in dementia: a subgroup with preserved mental status and numerous neocortical plaques. 
Annals of neurology 1988; 23(2): 138-44. 

237. Valenzuela MJ, Sachdev P. Brain reserve and dementia: a systematic review. Psychol Med 
2006; 36(4): 441-54. 

238. Maloney B, Ge YW, Alley GM, Lahiri DK. Important differences between human and 
mouse APOE gene promoters: limitation of mouse APOE model in studying Alzheimer's 
disease. Journal of neurochemistry 2007; 103(3): 1237-57. 

239. Bertrand P, Poirier J, Oda T, Finch CE, Pasinetti GM. Association of apolipoprotein E 
genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in 
Alzheimer disease. Brain Res Mol Brain Res 1995; 33(1): 174-8. 

240. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human 
disease-associated gene sequences in Drosophila melanogaster. Genome Res 2001; 11(6): 
1114-25. 

241. Zheng B, Sage M, Cai WW, et al. Engineering a mouse balancer chromosome. Nat Genet 
1999; 22(4): 375-8. 

242. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and 
generating dominant phenotypes. Development 1993; 118(2): 401-15. 

243. Duffy JB. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 2002; 
34(1-2): 1-15. 

244. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to 
proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63. 

245. Karunakaran S, Diwakar L, Saeed U, et al. Activation of apoptosis signal regulating kinase 
1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars 
compacta in a mouse model of Parkinson's disease: protection by alpha-lipoic acid. 



 

 56 

FASEB journal : official publication of the Federation of American Societies for Experimental Biology 
2007; 21(9): 2226-36. 

246. Song JJ, Lee YJ. Role of the ASK1-SEK1-JNK1-HIPK1 signal in Daxx trafficking and 
ASK1 oligomerization. The Journal of biological chemistry 2003; 278(47): 47245-52. 

247. Moir RD, Atwood CS, Romano DM, et al. Differential effects of apolipoprotein E 
isoforms on metal-induced aggregation of A beta using physiological concentrations. 
Biochemistry 1999; 38(14): 4595-603. 

248. Brann DW, Dhandapani K, Wakade C, Mahesh VB, Khan MM. Neurotrophic and 
neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 
2007; 72(5): 381-405. 

249. DeKroon RM, Armati PJ. The endosomal trafficking of apolipoprotein E3 and E4 in 
cultured human brain neurons and astrocytes. Neurobiology of disease 2001; 8(1): 78-89. 

250. Tyler SJ, Dawbarn D, Wilcock GK, Allen SJ. alpha- and beta-secretase: profound changes 
in Alzheimer's disease. Biochem Biophys Res Commun 2002; 299(3): 373-6. 

251. Lappalainen Z, Lappalainen J, Oksala NK, et al. Diabetes impairs exercise training-
associated thioredoxin response and glutathione status in rat brain. J Appl Physiol (1985) 
2009; 106(2): 461-7. 

 


