From The Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Surgery

Karolinska Institutet, Stockholm, Sweden

ANAEMIA, BLOOD LOSS and COLORECTAL CANCER

Malin Mörner

Stockholm 2015
All previously published papers were reproduced with permission from the publisher. Reproduction and print of figure 4 and the associated figure legend (Mörner, M, MD; Gunnarsson, U, PhD; Jestin, P, PhD and Egenvall, M, PhD. Volume of blood loss during surgery for colon cancer is a risk determinant for future small bowel obstruction caused by recurrence – a population based epidemiological study. Springer and Langenbecks Archives of Surgery, 400, 2015, 599-607), with kind permission from Springer Science and Business Media.

Published by Karolinska Institutet.
Printed by E-Print AB 2015
© Malin Mörner, 2015
Anaemia, blood loss and colorectal cancer

THESIS FOR DOCTORAL DEGREE (Ph.D.)

By

Malin Mörner

Principal Supervisor:
MD, PhD Monika Egenvall
Karolinska Institutet
CLINTEC
Division of Surgery

Co-supervisor:
MD, Professor, Ulf Gunnarsson
Umeå University
Department of Surgical and Perioperative
Sciences, Division of Surgery

Opponent:
Professor Tom-Harald Edna
Norwegian University of Science and
Technology, Trondheim
Department of Cancer Research and Molecular
Medicine

Examination Board:
Associate professor Eva Angenete
University of Gothenburg
Sahlgrenska Academy, Institute of Clinical
Sciences

Professor Anders Oldner
Karolinska Institutet
Department of Physiology and Pharmacology

Associate Professor David Edler
Karolinska Institutet
Department of Molecular Medicine and Surgery

Stockholm 2015
Till John och Agnes
“Sometimes you are the fly

Sometimes you are the windshield”

-Barry Weiss
ABSTRACT

Introduction: Colorectal cancer (CRC) is the fourth most common cancer worldwide and strikes both sexes. The age-adjusted 5-year survival in Sweden was 60% in the early 21st century. Approximately 50% of patients are anaemic at the time of diagnosis. Many patients need blood transfusion due to anaemia or surgical blood-loss. Blood transfusions administered to patients with CRC have been associated with an increase in the risk for cancer recurrence, independent of tumour stage. One long-term complication to abdominal surgery is small bowel obstruction (SBO) necessitating further surgery.

Hypotheses:
- Anaemia prior to surgery and perioperative red blood cell transfusion increase overall mortality and risk of recurrence in patients after curative resections for CRC.
- Blood-loss in surgery for colon cancer impairs overall survival.
- The amount of blood lost at index surgery for colon cancer increases the risk of future surgery for SBO due to adhesions.
- Major blood loss during surgery for rectal cancer increases the risk for SBO due to adhesions or tumour recurrence and reduces overall survival.

Materials and methods: All studies are retrospective cohort studies of prospectively collected data. All patients who had abdominal resection for CRC stage I-III at Karolinska University hospital from 2007 to 2010 were included in the study considering the effects of anaemia and blood transfusion. Information was retrieved from the Swedish Colorectal Cancer Registry and linked to information on transfusion and laboratory data on haemoglobin. Patient records were validated for recurrent disease. The studies on blood loss are based on all patients with CRC in the Uppsala-Örebro region 1997 to 2003. Data from the Swedish Rectal and Regional Colon Cancer Registries were linked to information on hospital admissions for SBO and abdominal pain. Patient charts for those undergoing surgery for diagnoses congruent with SBO were validated for cause of SBO. Statistics were calculated using non-parametric methods, logistic regression, and Cox Proportional Hazards regression analyses.

Results: Anaemia prior to surgery for CRC increased the risk of overall mortality (HR 2.2; 95% CI: 1.4-3.3). The analyses also revealed a trend towards an association between preoperative anaemia and recurrence (HR 1.6; 95% CI: 0.99-2.6). No association between perioperative blood transfusion and risk of recurrence or overall mortality was found. Blood loss ≥ median (250 ml) impaired overall survival (HR 1.1; 95% CI: 1.0-1.2) after surgery for colon cancer. There was no association between blood loss and survival for the rectal cancer patients. A blood loss ≥ median for patients with colon cancer (250 ml) increased the risk of future surgery for SBO caused by tumour recurrence (HR 2.2; 95% CI: 1.1-4.3). The same was found for patients with rectal cancers who had blood loss ≥ median 800 ml (HR 10.5; 95% CI: 1.4-81.5). There was no increased risk for surgery for SBO caused by adhesions for colon or rectal cancer patients.

Conclusions: Anaemia prior to surgery for CRC is a predictive factor for mortality and a trend was seen towards an association with recurrence. Additional effort should be given to study this topic. No association was established between a perioperative blood transfusion and future risk of recurrence or mortality. Blood loss at surgery for CRC should be kept to a minimum to decrease mortality in patients with colon cancer and reduce future risk for SBO due to tumour recurrence.

© Malin Mörner, 2015
LIST OF SCIENTIFIC PAPERS

The thesis is based on the following papers.

II. Mörner, M, MD; Gunnarsson, U, PhD; Jestin, P, PhD and Egenvall, M, PhD. Volume of blood loss during surgery for colon cancer is a risk determinant for future small bowel obstruction caused by recurrence – a population based epidemiological study. Springer and *Langenbecks Archives of Surgery*, 400, 2015, 599-607, reproduced and printed with kind permission from Springer Science and Business Media.

III. Egenvall, M, MD, PhD; Mörner, M, MD; Påhlman, L, MD, PhD; Gunnarsson U, MD, PhD. Degree of blood loss during surgery for rectal cancer: surgical complications and survival - a population-based epidemiologic study. *Colorectal Dis*, 2014: Sep;16(9):696-702.

IV. Mörner, M, MD; Edgren, G, PhD, Martling, A, PhD; Gunnarsson, U, PhD; Egenvall, M, PhD. Preoperative anaemia and perioperative red blood cell-transfusion as prognostic factors for recurrence and mortality in colorectal cancer – A Swedish cohort study. *Manuscript*
TABLE OF CONTENTS

1 Introduction ... 1
2 Background .. 2
 2.1 Epidemiology and etiology .. 2
 2.2 Symptoms .. 3
 2.3 Survival ... 3
 2.4 Colorectal cancer staging ... 4
 2.4.1 Clinical staging .. 4
 2.4.2 Histopathological staging .. 4
 2.5 Treatment .. 7
 2.5.1 Neoadjuvant oncological treatment .. 7
 2.5.2 Rectal cancer .. 7
 2.5.3 Colon cancer .. 8
 2.5.4 Lymph node metastases .. 9
 2.5.5 Distant metastases .. 9
 2.5.6 Adjuvant oncological treatment ... 10
 2.5.7 Follow up ... 10
 2.6 Blood loss and Colon cancer surgery .. 11
 2.7 Small bowel obstruction ... 11
 2.8 Anaemia and colorectal cancer disease ... 12
3 Aims .. 15
4 Methods ... 16
 4.1 Settings .. 16
 4.1.1 Personal Registration Number .. 16
 4.1.2 The Swedish Cancer Register .. 16
 4.1.3 The National Patient Register .. 17
 4.1.4 The local blood transfusion database ... 18
 4.1.5 KarDa and Structured Patient Data ... 18
 4.2 Study populations ... 19
 4.2.1 Studies I-III .. 19
 4.2.2 Study IV .. 24
 4.3 Statistical analysis ... 25
 4.3.1 Study I .. 25
 4.3.2 Study II .. 26
 4.3.3 Study III .. 28
 4.3.4 Study IV .. 29
5 Results .. 31
 5.1 Study I ... 31
 5.2 Study II .. 32
 5.2.1 Surgery for SBO according to blood loss .. 33
 5.2.2 Admission to hospital for SBO without surgery according to blood loss ... 35
 5.2.3 Admission to hospital for emergency abdominal pain according to blood loss ... 35
 5.3 Study III .. 35
 5.3.1 Surgery for ASBO and TSBO according to blood loss 36
5.3.2 Admission to hospital for SBO without surgery according to blood loss ... 37
5.3.3 Overall 5-year survival according to blood loss 37
5.3.4 Surgical complication according to blood loss 37
5.4 Study IV ... 37
5.4.1 Risk of recurrent disease .. 39
5.4.2 Overall mortality ... 39
6 Methodological discussion ... 40
6.1 Study design .. 40
6.1.1 Precision ... 41
6.1.2 External validity .. 41
6.1.3 Internal validity .. 41
6.2 Studies I-III .. 43
6.2.1 Precision ... 43
6.2.2 External validity .. 45
6.2.3 Internal validity .. 45
6.3 Study IV ... 47
6.3.1 Precision ... 47
6.3.2 External validity .. 47
6.3.3 Internal validity .. 48
7 General Discussion ... 50
7.1 Anaemia, Blood transfusion and recurrence 50
7.2 Anaemia, blood transfusion and survival 51
7.3 Surgical Blood loss and overall survival 52
7.4 Surgical Blood loss and small bowel obstruction 53
7.4.1 Surgery for SBO .. 53
7.4.2 Hospital admission for SBO without surgery 54
8 Conclusion .. 56
9 Sammanfattning på svenska .. 57
9.1 Bakgrund ... 57
9.2 Metod ... 58
9.3 Resultat ... 58
9.4 Slutsats ... 59
10 Acknowledgements ... 60
11 References ... 63
LIST OF ABBREVIATIONS

APR Abdomino perineal resection
ASBO Adhesive small bowel obstruction
CEA Carcinoembryonic antigen
CI Confidence interval
CME Complete Mesocolic Excision
CRC Colorectal Cancer
DFS Disease-free survival
Hb Haemoglobin
HR Hazard Ratio
IDA Iron deficiency anaemia
ICD International Statistical Classification of Diseases and Related Health Problems
LAR Low anterior resection
MRI Magnetic Resonance Imaging
NPR National Patient Register
OR Odds Ratio
PRN Personal Registration Number
RBC Red blood cells
RCC Regional Cancer Center
ROC Regional Oncology Center
RT Radiotherapy
SBO Small Bowel Obstruction
The Board National Board of Health and Welfare
TME Total Mesorectal Excision
TNM Tumour Node Metastases
TSBO Small bowel obstruction due to tumour recurrence
1 INTRODUCTION

While colorectal cancer (CRC) is one of the most common malignancies, scientific documentation of the effects of anaemia and blood loss on complications, overall survival and oncological outcome is sparse.

This thesis analyses CRC epidemiology focusing on the effects of anaemia prior to surgery and peroperative bleeding based on the Swedish Colorectal Cancer Registry. The thesis consists of four studies exploring; whether preoperative anaemia and blood transfusion influence the risk of recurrent disease and overall mortality (IV), if the volume of blood lost during surgery influences overall survival in colon (I) and rectal (III) cancer and the risk of future surgery and in hospital stay for small bowel obstruction (SBO), (II and III).

Chapters 3-6 describe the studies in the order they were conducted (I-IV). Abstract, introduction, chapter 7, and 8 describe the thesis from a more clinical/chronological perspective starting with study IV (preoperative anaemia) followed by study I-III.
2 BACKGROUND

2.1 EPIDEMIOLOGY AND ETIOLOGY

Colorectal cancer is the third most common cancer in Sweden with an annual incidence exceeding 6,000 cases\(^1\). Worldwide, it is the fourth most common type of cancer constituting 9.4% of all incidental malignancies in men (third most common cancer after lung and bronchus cancer, and prostate cancer\(^2\)) and 10.1% in women (second most common after breast cancer\(^2\))\(^3\). The highest incidence is seen in Australia and New Zealand, Europe, North America and Eastern Asia whereas the lowest incidence has been observed in Middle Africa\(^2\).

Risk factors for CRC are both genetic and environmental. It has been suggested that environmental factors play a larger role than previously assumed. Now, environmental factors are believed responsible for about 70-80% of all CRC\(^3\). Risk factors for CRC include high age, personal history of inflammatory bowel disease or adenomatous polyps, family history of the two previous factors, dietary and life-style factors\(^3,4\). Women have a higher risk than men of developing colon cancer whereas men have a higher risk of developing rectal cancers than women\(^5\).

Most colorectal neoplasms emanate from premalignant intestinal adenomas or “polyps” transforming to adenocarcinomas\(^6\). Out of all CRC’s, approximately 60% are localised in the colon and 40% in the rectum\(^7\). Prevention of CRC disease is accomplished through screening programs with detection of faecal blood\(^8\) and/or colonoscopy with polypectomy\(^6\). In Sweden it is recommended that all citizens aged 60-74 years should be afforded screening through detection of faecal occult blood\(^9\). Nowadays many screening programs use an immunologic test for faecal blood since it is easy to use and has a high sensitivity\(^9\). Introducing screening programmes has been shown to decrease CRC incidence\(^10,11\) and mortality\(^11\). During the past 25 years, management of CRC has changed regarding both surgical\(^12-14\) and oncological treatment\(^15\). Examples are implementation of preoperative radiotherapy (RT) and Total Mesorectal
Excision (TME)16 for rectal cancer and the use of adjuvant chemotherapy in colon cancer17.

\section*{2.2 SYMPTOMS}

In its initial stage, CRC often remains asymptomatic. The main symptom from CRC is altered mode of defecation such as altering diarrhoea and constipation, rectal blood and/or mucus when passing stool, pain and an urgent need for defecation.

Patients with right-sided colon cancers are often anaemic18 (iron deficiency anaemia, IDA19) with poor general state of health at the time of diagnosis. Left-sided tumours and rectal cancers often present with changed mode of defecation, pain and blood/mucus in stool19.

\section*{2.3 SURVIVAL}

For patients diagnosed with CRC in the late 1980s, the age-adjusted 5-year overall survival for CRC in Sweden was 51.5\%. In the early 21st century, the corresponding figure was 60.3\%. The gain in age-adjusted 5-year survival was more pronounced among Swedish men (+11.0\%) than in women (+6.8\%). The same pattern was seen throughout Europe7.

Approximately 25\% of the colon cancers present as emergencies20. Emergency cases are associated with decreased stage-specific survival20.

Stage at time of diagnosis is the strongest predictor for survival. The more advanced the stage, the poorer the prognosis7, 21-23. The regimen for treatment of distant metastases has been subject to constant development24, 25 since the mid-90s. Today, a larger proportion of patients with distant metastases are eligible for treatment with curative intention. In patients having a liver resection due to metastasis from CRC, the 5-year survival has increased by about 25\% during a 20-year period24.

Comorbidity plays an important role for overall survival. A Danish study showed that comorbidity at diagnosis increased mortality mainly during the first year.
after diagnosis26. In Sweden, approximately 60\% of all CRC are diagnosed in persons aged 70 years or older27.

2.4 COLORECTAL CANCER STAGING

2.4.1 Clinical staging

In Sweden, patients with a CRC diagnosis, or suspected CRC diagnosis are referred to a surgical clinic for investigation. Assessment is designed to stage for local growth or spread to regional lymph nodes or distant organs. Staging is performed using clinical examination, imaging and pathology19. After clinical investigation and use of appropriate imaging modalities, all patients are discussed at an MDT conference to ensure they meet prevailing guidelines.

Clinical investigation includes digital rectal examination, colonoscopy and investigation with rigid rectoscopy for rectal cancer. Confirmation of a malignant diagnosis necessitates a tumour biopsy. In all cases of colorectal tumours, a clean colon assessment preferably by colonoscopy shall be performed and preferably prior to surgery19.

The preferred imaging method for screening for metastases is computed tomography (CT) of the thorax and abdomen. In addition local staging is performed with CT in colon cancer and Magnetic Resonance Imaging (MRI) in rectal cancer28. Sometimes appropriate radiological assessment necessitates several imaging modalities, including Positron Emission Tomography PET-CT28.

2.4.2 Histopathological staging

Several systems for histopathological staging have been used. For example, the Dukes system and the Astler-Coller classification (mostly used in US literature)19. Currently, these systems have been replaced by the TNM classification system29. In 1953, the International Commission on Stage-Grouping in Cancer and Presentation agreed to use the TNM system for classification of cancer30.
The TNM classification is basically divided in three parameters. T describes the primary tumour, N the nodal (lymph node) status, and M, the presence of distant metastases or not. 30 Tumours are classified by the clinical TNM (cTNM) based on imaging and clinical examination and the histopathological TNM (pTNM) based on examination of the resection specimen. 30.

TNM-Classification 7th edition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T – Primary tumour</td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>Primary tumour cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumour</td>
</tr>
<tr>
<td>Tis</td>
<td>Carcinoma in situ: intraepithelial or invasion of lamina propria</td>
</tr>
<tr>
<td>T1</td>
<td>Tumour invades submucosa</td>
</tr>
<tr>
<td>T2</td>
<td>Tumour invades muscularis propria</td>
</tr>
<tr>
<td>T3</td>
<td>Tumour invades subserosa or into non-peritonealised pericolic or perirectal tissues</td>
</tr>
<tr>
<td>T4</td>
<td>Tumour directly invades other organs or structures and/or perforates visceral peritoneum</td>
</tr>
<tr>
<td>T4a</td>
<td>Tumour perforates visceral peritoneum</td>
</tr>
<tr>
<td>T4b</td>
<td>Tumour directly invades other organs or structures</td>
</tr>
<tr>
<td>N – Regional Lymph Nodes</td>
<td></td>
</tr>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis in 1-3 regional lymph nodes</td>
</tr>
<tr>
<td>N1a</td>
<td>Metastasis in 1 regional lymph node</td>
</tr>
<tr>
<td>N1b</td>
<td>Metastasis in 2-3 regional lymph nodes</td>
</tr>
<tr>
<td>N1c</td>
<td>Tumour deposit(s), i.e., satellites in the subserosa or in non-peritonealised pericolic or perirectal soft tissue without regional lymph node metastasis</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasis in 4 or more regional lymph nodes</td>
</tr>
<tr>
<td>N2a</td>
<td>Metastasis in 4-6 regional lymph nodes</td>
</tr>
<tr>
<td>N2b</td>
<td>Metastasis in 7 or more regional lymph nodes</td>
</tr>
<tr>
<td>M – Distant metastasis</td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis</td>
</tr>
<tr>
<td>M1a</td>
<td>Metastasis confined to one organ (liver, lung, ovary, non-regional lymph node(s))</td>
</tr>
<tr>
<td>M1b</td>
<td>Metastasis in more than one organ or the peritoneum</td>
</tr>
</tbody>
</table>
TNM stage grouping30

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage I</td>
<td>T1, T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T3, T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIC</td>
<td>T4b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>Any T</td>
<td>N1, N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>T1, T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>T3, T4a</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2, T3</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1, T2</td>
<td>N2b</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>T4a</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3, T4a</td>
<td>N2b</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4b</td>
<td>N1, N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IVA</td>
<td>Any T</td>
<td>Any N</td>
<td>M1a</td>
</tr>
<tr>
<td>Stage IVB</td>
<td>Any T</td>
<td>Any N</td>
<td>M1b</td>
</tr>
</tbody>
</table>

Modern pathology reports often include information on assessment of tumour deposits, extramural vascular invasion, perineural growth, mucinous characteristics and tumour growth threatening the mesorectal/ mesocolic fascia.

Residual tumour after treatment is classified as R0 if no residual tumour is found macroscopically and no tumour cells are found in the resection margins; R1 if there is tumour cells in the resection margin of the specimen; and R2 if there is macroscopically residual tumour30. If presence of residual tumour cannot be assessed; Rx is used.
2.5 TREATMENT

Nowadays, the treatment regimen is a structured mix of neoadjuvant and adjuvant chemotherapy, RT (for rectal cancer) and surgery following distinct protocols28. Still, the only curative treatment is surgical removal of the tumour.

2.5.1 Neoadjuvant oncological treatment

Rectal cancer treatment regimen is more complex than for colon cancer. Depending on tumour stage, some patients should receive preoperative RT or preoperative RT combined with chemotherapy. RT has been proven to significantly reduce the risk of local recurrence31 and improve survival32-35.

The oncological regimens are continuously improving and given according to distinct evidence-based protocols28 or patients are included in study protocols.

2.5.2 Rectal cancer

Since the mid-1980s, the gold standard in rectal cancer surgery is TME13,14. It has proven to significantly reduce recurrence rate12,13 and increase both cancer-specific and overall survival12. Surgery for rectal cancer is challenging and demands a high degree of specialisation, ensuring improved 5-year local recurrence rate and 5-year cancer specific survival12,19. However, there are studies pointing in a different direction36 that suggest surgeon specialisation or hospital case-load \textit{per se} are not independent predictors for survival after CRC-surgery.

Rectal cancer surgery offers the surgeon a considerable challenge due to anatomical circumstances. The tumours are located in the pelvis, which constitutes narrow conditions for surgery, especially in men and in advanced cases, and neighbouring organs may have to be resected en bloc.

The TME technique aims to remove a complete bloc of tumour, blood vessels and lymph nodes wrapped in an intact visceral fascia. An intact fascia combined with an R0 resection margin is crucial for minimising the risk of local recurrence37.
It is also possible to perform surgery for CRC laparoscopically38 and this is considered an attractive alternative to open surgery39 with comparable outcome38. In Sweden, the proportion of laparoscopically performed procedures is still relatively low (with regional differences) but this is steadily increasing22.

An emerging technique in CRC is robotic surgery40. One study reported overall 3-year survival as 93.1\% and the cumulative disease free survival (DFS) to 79.2\% for stage I-IV rectal cancer40.

\textbf{2.5.3 Colon cancer}

The anatomical structures and embryological planes used as natural borders for surgical dissection in rectal cancer surgery can also be applied when operating on patients with colon cancer. Tissue layers surrounding most of the colon, runs behind the spleen and pancreas including the mesenteric root on the right hand side. This makes it possible to remove a complete mass of intact tumour and lymphatic drainage41. In the event of a spread to the lymph nodes, this spread will occur alongside of the supplying arteries, where the corresponding lymph drainage is situated41.

In order to achieve radical surgery, the surgeon is prompted to sharply dissect in the avascular embryological plane between the visceral and parietal planes19, Complete Mesocolic Excision (CME)41. The colic arteries are divided proximally and it has been debated whether a very central ligature is beneficial for the total outcome41. For patients having a procedure with curative intent, it is possible to achieve R0 in 97\% of surgeries41.

Over the past 20 years, it has also become possible to perform colon cancer surgery laparoscopically, even with the CME technique42, 43. In Sweden, the proportion of laparoscopic surgeries for colon cancer is increasing. However, from an international perspective the proportion of laparoscopy vs. open resections remains low21.
2.5.4 Lymph node metastases

Survival for patients with N-positive disease has shown a positive trend in recent decades (Table 1).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Just below 80‡</td>
<td>Just over 80‡</td>
<td>-</td>
<td>≈90‡</td>
<td></td>
</tr>
<tr>
<td>≈50‡</td>
<td>≈65‡</td>
<td>≈50*</td>
<td>≈70‡</td>
<td></td>
</tr>
</tbody>
</table>

*Table 1. The trend in survival among Swedish patients with CRC in recent decades. Figures in per cent. ‡: 5-year survival. †: Relative 5-year survival. *: Overall 5-year survival.*

It is still difficult to assess dissemination to the lymph nodes by imaging prior to surgery 28. Therefore, it is important during surgery to harvest as many lymph nodes as possible 28 to assure correct staging and thus appropriate treatment. Currently, the recommendation is to examine ≥12 lymph nodes 19,28,45 The higher the ratio between cancer-infiltrated lymph nodes and examined lymph nodes, the shorter the DFS 46.

2.5.5 Distant metastases

Approximately 20% of CRC patients have synchronous distant metastases at cancer diagnosis 22,21,47, most commonly to the liver, lungs and the peritoneum.

Liver resection for metastatic CRC can be performed with an overall median 5-year survival between 22-44% depending on disease severity and oncological therapy 48. Some studies report a survival rate of 58% 49. A continuous increase in overall 5-year survival has occurred since the mid-90s 24.

In a recent study, approximately 10% of all CRC cases had peritoneal metastases 50. If no other distant metastases are present, the treatment strategy has changed from palliative to treatment with curative intent 50. The technique for treatment is cytoreductive surgery with intraperitoneal chemotherapy 51.
(hyperthermic intraperitoneal chemotherapy28). This treatment significantly improves both disease specific survival and progression free survival50. Five-year survival has been reported to 45\% for patients with a complete cytoreduction at surgery50.

2.5.6 Adjuvant oncolgical treatment

The objective of adjuvant chemotherapy is to eradicate micro metastases in order to prevent future generalisation of disease52.

Patients with stage III colon-cancer are recommended postoperative chemotherapy28, 44, 52 decreasing recurrence rate and increasing overall survival52. In 2013, 84\% of stage III colon cancer patients aged <75 were planned for adjuvant therapy, whereas the corresponding figure for patients aged >75 years was 34\%. The use of adjuvant treatment was equally distributed between acute and elective cases53.

For rectal cancer, there is no clear evidence of benefit in survival or recurrence from adjuvant chemotherapy. Findings in studies regarding this question are contradictory54–56. Some speculate that the differences in outcome can be ascribed to differences in localisation of the tumours57. Guidelines still provide no consensus28, 52.

2.5.7 Follow up

Yet, there is no scientific consensus on surveillance of CRC patients after surgery, though there are ongoing international studies. One is the COLOFOL study58, in which many Swedish centres have participated. The study randomises patients with stage II and III between low frequency follow-up, \textit{i.e.} CT of the abdomen and chest combined with carcinoembryonic antigen (CEA) at 12 and 36 months and a high frequent follow up arm, \textit{i.e.} the same investigations at 6, 12, 18, 24 and 36 months. Until those studies have reported complete results, patients with low risk for recurrent disease are followed according to the low frequency arm at many Swedish hospitals, while patients with high risk of recurrence are followed according to the high frequency follow-up arm.
One month after surgery, the patients come to a clinical follow up including CEA19. From 3 years after the surgery and every 5 years until the biologic age of 75, patients also undergo a colonoscopy19.

Patients with poor physical health or advanced biological age not considered candidates for oncological or surgical treatment if diagnosed with recurrence are usually not followed.

2.6 BLOOD LOSS AND COLON CANCER SURGERY

Intraoperative haemorrhage is dependent on a number of factors, such as surgical technique, complexity of surgical procedure, patient coagulation status and intraoperative body temperature. Intraoperative systemic warming has been shown to decrease blood loss59, 60. To minimise the amount of blood lost during surgery, preventive measures such as discontinuing medication potentially interfering with the coagulation system61 should be undertaken. Over recent years, surgical techniques have improved for both colon41, 62 and rectal cancer63.

There are a variety of methods to measure haemorrhage during surgery. The different methods of estimation (spectrophotometric haemoglobin analysis, gravimetric analysis64, 65 and visual estimation66) all risk miscalculation. In one study, the authors concluded that the gravimetric, \textit{i.e.} weighing of surgical swabs, is preferable65. Another study recommends visual estimation, if performed routinely66. The method used in this thesis is visual estimation by the anaesthetic nurse immediately after surgery. This estimate is specified in the national quality register on which the studies are based.

2.7 SMALL BOWEL OBSTRUCTION

Small bowel obstruction is a common, well-known complication to abdominal surgery67, 68. This thesis addresses benign and malignant SBO.

It has been shown that approximately 65\% of intra-abdominal adhesions are secondary to traumatisation (abdominal surgery) of the peritoneum. This fraction increases with type of surgery (minor versus major) and number of surgeries69. Development of adhesions is likely caused by lack of equilibrium between
formation of fibrin by activation of fibrinogen and the degree of fibrinolysis70. It is known that longer duration of surgery is associated with a decrease in fibrinolytic activity71. This supports a theory that haemorrhage possibly induces activation of fibrinogen and concurrent decreasing or disturbed fibrinolytic activity. Such a complex of reactions may result in increasing formation of adhesions.

In some materials, the incidence of surgery for SBO after colorectal surgery in long-term postoperative course is reported at 10\% 72,73. The risk of admission to hospital for symptoms possibly or directly related to adhesions following colorectal surgery has been reported to 19\% four years after surgery 74. A Swedish population-based study reported mechanical bowel obstruction as the dominant symptom from local or regional recurrence in approximately 25\% of the patients75. In patients operated for SBO who were previously operated for colon cancer, about 80\% of adhesions have been reported as benign in patients with no known recurrence, and 30\% in patients with known recurrence76.

Before starting the studies for this thesis, little was known about whether haemorrhage during surgery can contribute to future morbidity due to SBO. Only one study was available72. In that study of 472 patients operated for colorectal cancer (121 for palliative surgery), the authors state that blood loss of 1,000 ml or more was associated with the occurrence of late episodes of SBO. Of the patients with SBO, approximately 50\% had a malignant reason for their SBO and 50\% had SBO from benign reasons72.

2.8 ANAEMIA AND COLORECTAL CANCER DISEASE

Many patients with CRC have intestinal bleeding from their tumour before diagnosis, but symptoms before diagnosis vary according to tumour localisation19. Bleeding from a proximal tumour is more likely to pass unnoticed than bleeding from a distal tumour18,77.

Anaemia is common in cancer78 and prevalence in CRC disease has been reported from 21\% to 75\% 18,77-79 in various materials. This thesis uses the WHO classification for anaemia (Table 2)80. Anaemia can be classified by morphology
or aetiology. Aetiological classification is roughly subdivided into excessive blood loss or destruction of red blood cells, and insufficient regeneration of red blood cells from bone-marrow. In CRC patients, anaemia is usually due to iron deficiency, IDA secondary to blood loss.

<table>
<thead>
<tr>
<th>Population</th>
<th>Non Anaemia</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-pregnant women</td>
<td>≥120</td>
<td>110-119</td>
<td>80-109</td>
<td><80</td>
</tr>
<tr>
<td>Pregnant women</td>
<td>≥110</td>
<td>100-109</td>
<td>70-99</td>
<td><70</td>
</tr>
<tr>
<td>Men</td>
<td>≥130</td>
<td>110-129</td>
<td>80-109</td>
<td><80</td>
</tr>
</tbody>
</table>

Table 2. WHO classification of anaemia for adult population (above 15 years of age). Haemoglobin levels to diagnose anaemia at sea-level.

Red blood cells (RBC) contain iron. The human body is able to absorb approximately 1-2 mg of iron per day. Daily demand from haematopoiesis is approximately 20-30 mg. Most of this is provided to the body by macrophages, facilitating recycling of iron from old RBC.

In a study preoperative anaemia, defined as haemoglobin (Hb) <110g/l, was an independent predictive factor for impaired survival in a multivariate model including patients with both curative and palliative surgery. Another study showed negative association between preoperative mild anaemia and overall survival 3-8 years after surgery in patients with CRC stage I-IV. Iron deficiency anaemia has been reported to be associated with impaired DFS for patients with T3N0M0 stage colorectal cancer. In that paper (Zhen et. al.) made no correction for ASA stage, or transfusion. The multivariate analysis in the same paper, also stated that IDA was a predictor for impaired DFS in the T3N0M0 group but not in the T4N0M0 group. The only independent predictor for DFS coherent between the two groups was lymphovascular infiltration.

2.8.1.1 Blood transfusion

In 2006, a Cochrane report stated that perioperative blood transfusion, defined as one month prior to until one month after CRC surgery, was associated with an increased risk for tumour recurrence. Transfusions have also been reported to
decrease survival after surgery for CRC88. When deciding on whether a patient with CRC should receive a blood transfusion or not, the most important parameters in the equation are the amount of blood lost during surgery and anaemia prior to surgery.
3 AIMS

Study I: To evaluate the risk for impaired overall survival according to blood loss at index surgery for colon cancer.

Study II: To test the hypothesis that the volume of blood lost during surgery for colon cancer increases the risk for future SBO, mainly due to adhesions.

Study III: To investigate if major blood loss during surgery for rectal cancer increases the risk for surgical complications, SBO due to adhesions, or tumour recurrence; or reduces overall survival.

Study IV: To test the hypothesis that anaemia prior to surgery and perioperative red blood cell transfusion increases the risk of recurrence and overall mortality in patients with stage 0-III CRC after curative abdominal resections.
4 METHODS

4.1 SETTINGS

4.1.1 Personal Registration Number

All Swedish citizens have a unique identification number (Personal Registration Number (PRN)). This number cannot be changed during the person’s lifetime and is used for identification. The number includes the date of birth (8 digits) and four control digits (YYYYMMDD-CCCC). The third control digit indicates sex. Even numbers designate female and odd designates male. Swedish authorities use the PRN for identification and registration. It is also used in national quality registers. This provides a unique capability to trace individuals between databases or registers and link these datasets to each other.

4.1.2 The Swedish Cancer Register

The Swedish Cancer Register was founded in 1958 to create a nationwide population based register to monitor cancer statistics in Sweden. It also enabled comparison of Swedish cancer statistics with cancer incidence in other countries. Initially, all data was collected by the Swedish National Board of Health and Welfare (the Board).

In the 1970s, six Regional Oncology Centres (ROCs) were established for data collection. These institutions were renamed Regional Cancer Centres (RCC) when their responsibilities were broadened to include working with guidelines and common principles. These centres are responsible for quality control of the cancer register and provide the Board annual data updates.

Every Swedish physician must report all new tumours and tumour like conditions to the Cancer register. Both the clinician in charge of the patient investigation and the pathologist are urged to submit separate reports.

4.1.2.1 The Uppsala-Örebro regional oncology centre for colorectal cancer

Since 1995, all surgeries for rectal adenocarcinomas are registered in a national quality register held by regional centres. Since 1997, all colon adenocarcinomas
in the Uppsala-Örebro region are also registered at ROC92. The Swedish national colon cancer registry was founded in 200793. These registers, now run by the successor RCCs, have been shown to have high validity92.

Register data are prospectively collected. The system includes automatic grids and logic checks to prevent registration of incongruous data94. The register steering committee compiles an annual national report for colon and rectal cancer21,22 including reports on long-term follow up. These reports are published officially to maintain national quality assurance.

4.1.2.1.1 Contents of the registers provided by the ROC

The ROC registers include for example data on PRN, pretherapeutic staging (radiology, biopsies), date of surgery, type of surgery, complication, resection margin, blood loss, histopathology staging and date of death. These parameters were retrieved from the register. Some parameters were not included in the registers from the start. ASA score (American Society of Anaesthesiologists95) was introduced to the register in 200796. Recurrence was added to the rectal cancer register in 1995 whereas for colon cancer it was added in 2007. From 1995 to 2006 data on recurrence (local, distant, radiation etc.) was recorded on a separate form annually 1-5 years after surgery.

Surgical complications are classified as: none, wound infection, perineal infection, intraabdominal infection, postoperative bleeding, anastomotic complication, ostomy, indwelling catheter when leaving the hospital, and other complication. In the ROC register data is limited to surgical complications occurring during the same hospital stay as the CRC surgery.

4.1.3 The National Patient Register

The National Patient Register (NPR), is a complete nationwide register of the Board. Reporting to the register is compulsory for each in-patient care institution. NPR has almost complete data from somatic and psychiatric care since 198797. The register provides data on the patient (PRN), date of hospital-admission and –discharge, ICD-code, and codes for classification of surgical
procedure97,98. In 2009 it had complete data on diagnoses for 99\% of the hospital admissions in Sweden97. From 1997 and on, the register allows registration of one main-diagnosis and up to seven secondary diagnoses at discharge97. Each registration includes data on one hospital-episode97. The largest proportion of missing data is in psychiatric care97.

4.1.3.1 \textit{The ICD system}

The ICD-system (International Statistical Classification of Diseases and Related Health Problems) is an international system in use for about a century. The WHO has managed the ICD since 1948. It has been revised several times and the current edition (ICD 10) was published in 1990. ICD 10 has been in use in Sweden since 199799.

4.1.4 \textit{The local blood transfusion database}

The local blood transfusion database is based on a system called ProSang. ProSang is a database system used for storage of transfusion data. Every completed transfusion must be reported to the system. The PRN and the transfusion bag ID number are scanned. The user reports completion of the transfusion. Returned unused units can also be reported100.

Validation of the local blood transfusion database has proven it has a high degree of accuracy101.

4.1.5 \textit{KarDa and Structured Patient Data}

KarDa (Karolinska Datalagring) was originally created for patient follow-up at the Karolinska University hospital. This database contains data from the computerised patient record system, TakeCare®, at Karolinska University Hospital. Data are complete from 2007 and linked to PRNs, including data on laboratory results, blood pressure, weight and other parameters registered as measurements or values in the TakeCare system102.
4.2 STUDY POPULATIONS

All studies adhere to the Helsinki declaration and were conducted after approval from the Stockholm Regional Ethics Committee.

4.2.1 Studies I-III

Studies I-III are sprung from the same cohort. Data were retrieved from ROC on all patients operated for colorectal cancer during 1997-2003 in the Uppsala-Örebro region. In 1997, this region consisted of seven counties with one to five hospitals in each county. Currently, none of the counties runs more than three hospitals. Altogether, the region contains approximately 20% of the Swedish population. Data were extracted from the register on July 29th 2009. This ensured data on 5-year survival for the entire cohort. In total, the material constituted 7,047 patients having CRC surgery.

Data on recurrence was not included in the extracted dataset. ASA score was not included in the registry during the timespan studied.

4.2.1.1 Study I

The original cohort constituted 4,502 cases of colon cancer resections. Exclusions were made according to Table 3.
<table>
<thead>
<tr>
<th></th>
<th>Study I</th>
<th></th>
<th>Study II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N excluded</td>
<td>N left</td>
<td>N excluded</td>
<td>N left</td>
</tr>
<tr>
<td>N at start</td>
<td>4,502</td>
<td>3,803</td>
<td>4,492*</td>
<td>3,771</td>
</tr>
<tr>
<td>Not curative surgery</td>
<td>699</td>
<td>3,803</td>
<td>721</td>
<td>3,771</td>
</tr>
<tr>
<td>Stage IV/missing/undeterminable</td>
<td>381</td>
<td>3,422</td>
<td>19</td>
<td>3,752</td>
</tr>
<tr>
<td>Death within 6 months after surgery</td>
<td>204</td>
<td>3,218</td>
<td>195</td>
<td>3,557</td>
</tr>
<tr>
<td>Blood loss missing</td>
<td>45</td>
<td>3,173</td>
<td>1</td>
<td>3,556</td>
</tr>
<tr>
<td>Unusual surgical procedures</td>
<td>111</td>
<td>3,062</td>
<td>2</td>
<td>3,554</td>
</tr>
<tr>
<td>N left for analysis</td>
<td>3,062</td>
<td></td>
<td>3,554</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Exclusions for colon cancer patients in studies I and II. * When evaluating the data for study II, 10 patients out of 4,502 who had had a resection for both colon and rectal cancer were identified. Cases with colon cancer surgery were excluded.

4.2.1.2 Studies II and III

Data from ROC of the 7,047 CRC patients were sent to the Board. PRNs were matched to the NPR to identify cases with a diagnosis indicating hospital admission due to abdominal pain or small bowel obstruction according to certain ICD codes. ICD 9: (560B Paralytic ileus, 560D Impaction of intestine, 560W Other intestinal obstruction, 560X Other intestinal obstruction without information of hernia, 568A Peritoneal adhesions, 789A Abdominal pain) and ICD 10: (K567 Bowel obstruction, unspecified, K566 Other and unspecified intestinal obstruction, K565 Intestinal adhesions [bands] with obstruction, K560 Paralytic ileus, K564 Other impaction of intestine R104 Abdominal pain).

Identified in-patient episodes were scanned for codes indicating surgical treatment of the diagnoses listed above. The resulting datasets were anonymised with unique study codes for each patient. The Board saved a key for the study codes.
Following extraction of data from the Board, it was possible to link the anonymised datasets from the ROC and the Board to each other. This matching provided the study codes of 377 patients who had a surgical procedure >30 days105 after the CRC-operation until the censoring date, July 29th 2009. A new request was made to the Board for the PRN of the 377 patients. This was made possible by the key between the PRNs and the study code saved by the Board. The hospitals where these patients had their CRC surgeries were asked to send a copy of the patient record including the surgical report and a pathology specimen report for the specified hospital stay (Figure 1).

Data from the patient records were entered into an Access® database. The main outcome was surgery for SBO. Collected parameters were: study code, date of surgery and reason for surgery. The exclusion criteria included surgery for other reasons than SBO and surgery more than 30 days after surgery obviously due to complications in the postoperative course. In case of uncertainties about the reason for surgery, the record was reviewed by Egenvall and Gunnarsson for a consensus discussion.

After entering all the data into the Access® database, it was possible to merge these with the previously merged file of data from the ROC and the Board using the study code (Figure 1).

For rectal cancer, 182 patients were registered to the Access® database. The corresponding figure for colon cancer was 186.
4.2.1.2.1 Study II

This study includes the colon cancer patients described in the section above.

Exclusions were made according to Table 3, leaving 3,554 patients for analysis.

Of the 3,554 patients, 110 had the outcome “surgery for SBO”. Forty-nine of these were operated due to adhesion, 43 due to a tumour recurrence and 18 were defined as “other reason” (8 hernia, 2 benign strictures, 1 volvolation, 1 postoperative complication, 3 other malignancies, 1 Mb von Recklinghausen and 2 indeterminable) (Table 4).

Analyses were also made for the outcomes “hospital admission for SBO without surgery” (n=228) and “hospital admission for abdominal pain” (n=370) (Table 4).
4.2.1.2.2 Study III

Study III includes the rectal cancer patients in the cohort described above. The material constituted 2,555 patients. After exclusion of patients according to Figure 2, 1,843 patients remained for analysis. At this level, the exclusions took three different paths according to the dependent variable chosen for analysis (Figure 2).

Of the remaining 1,843 patients, 82 had the outcome “surgery for SBO due to adhesions”. Twelve patients had had surgery for SBO due to cancer recurrence (Table 4).

As in study number two, an analysis was made for hospital stay due to SBO not requiring surgery (Table 4).
Colon	Rectum
Number | 3,554 | 1,843
SBO – | | |
Adhesive | 49 | 82* |
Tumour recurrence | 43 | 12 |
Other | 18 | 26 |
Hospitalized SBO | 228 | 287 |
Hospitalized abdominal pain | 370 | - |

Table 4. Number of cases in study II (colon) and III (rectum). * 1 patient with adhesive SBO was excluded in the exclusions for SBO-analysis.

4.2.2 Study IV

All patients with surgically and microscopically radical resections with curative intent for CRC stage I-III at Karolinska University hospital 2007-2010 (n=546) were included. Data was collected from RCC, in the Stockholm-Gotland region at January 7th 2014. Patient charts were validated for recurrence, prior surgery for colorectal cancer, and surgery for synchronous liver metastasis. This information was entered into an Access® database.

Data on blood transfusion two months prior to and one month after surgery were retrieved from the local blood transfusion database. Laboratory values for Hb two months prior to surgery were collected from KarDa. The files from ROC, the local blood transfusion database, KarDa and the Access database were sent to the Board which anonymised the files and provided each observation with a study code instead of PRNs. Study codes were harmonised between the files. The datasets were then merged for statistical analysis.

Patients were excluded from the material according to the algorithm specified in Figure 3, leaving 496 patients for analysis; 282 colon cancer patients and 214 rectal cancer patients.
Figure 3. Algorithm for exclusions leaving 496 patients for analysis.

4.3 **STATISTICAL ANALYSIS**

4.3.1 **Study I**

Survival analysis was calculated using the Cox proportional hazard Regression analysis with a 95% confidence interval (CI). Each patient contributed risk exposure from the date of surgery until death or censoring date, July 29th 2009. A univariate analysis was performed for parameters potentially influencing
outcome. Factors significant in the univariate model were entered into the multivariate model.

Kendall Tau tests were performed between factors suspected not independent of each other. Blood transfusion and complication correlated significantly with blood loss. Thus, three separate multivariate models were performed with overall survival as dependent variable and with blood loss, transfusion and complication respectively as independent variables. Male gender, stage I-III disease and age <75 years were used as independent variables in all three multivariate models (Table 6).

Blood-loss was split into two groups according to the median blood loss for the studied cohort of 3,062 patients, <250 ml or ≥250ml.

Each procedure was classified into one of three groups (right hemicolectomy and ileocecal resection; left hemicolectomy and sigmoid resection; colectomy and subtotal colectomy). This grouping was used for stratification of the survival analyses.

Mann-Whitney U test was performed to analyse whether there was a difference in blood-loss between the three groups. This test did not reveal any significant difference in the amount of blood lost.

The software used for statistical calculation was Statistica version 7 (Statsoft, Tulsa, OK, USA).

4.3.2 Study II

Three main outcomes were investigated; surgery for SBO (adhesive SBO, ASBO, and SBO due to tumour recurrence, TSBO); in hospital admission for SBO not requiring surgery; and hospital admission for abdominal pain. The patients contributed with exposure-time in a hierarchical way depending on analysis.
In analysis of surgery for SBO, patients contributed with risk exposure time from the surgery date until the first of censoring date (July 29th 2009), death or date of surgery for SBO.

In analysis of hospital admission for SBO, patients contributed with risk exposure time from surgery date until the first of death, censoring date (July 29th 2009), surgery date for SBO, or hospital admission date for SBO.

Analysing in hospital episode of “abdominal pain” as dependent variable, patients contributed with risk exposure-time from the surgery date until the first of death, censoring date (July 29th 2009), date of surgery for SBO, date of hospital admission for SBO, or date for hospital admission for abdominal pain.

Median blood loss was 250 ml. Three cut-offs for blood loss were used in the analyses: \geq median, \geq 800 ml (median blood loss for rectal cancer patients having surgery during the corresponding time period) and \geq half that volume, 400 ml. Patients with recorded blood-loss of 0 ml were excluded, since it was considered unlikely to have zero blood loss for open resection surgery.

Three separate Cox proportional hazard analyses of surgery for SBO were made. At first, surgery for SBO independent of pathogenesis was analysed. In a second step, SBO was split into TSBO and ASBO according to the pathogenesis and Cox proportional hazard analyses were made using ASBO and TSBO as independent variables. Analyses were made with a 95% CI. Univariate and multivariate analyses were performed in the same manner as in study I, but with no stratification for type of surgery.

Kaplan Maier curves were prepared for SBO surgery independent of pathogenesis, for TSBO, ASBO and for hospital admission for SBO not requiring surgery for each amount of blood loss. Log Rank tests were done to calculate significance between the Kaplan Maier curves. A p-value <0.05 was set as level of significance.

The Mann-Whitney U test was performed to show any significant difference in volume of blood loss between the ASBO and TSBO groups.
Statistica version 10 (StatSoft, Tulsa, OK, USA) was used for the Cox analyses, preparation of Kaplan Maier curves and Log Rank tests. STATA IC/11.0® was used for the Mann-Whitney U-test.

4.3.3 Study III

Patients contributed with risk exposure time from date of index surgery until death or censoring the date (July 29th) in all analyses. In addition to these dates, in analysis of surgery for SBO, patients were also censored at the date of surgery for SBO, whichever came first. Analogously, in analysis of hospital admission for SBO without surgery, patients were censored at the first of previously mentioned dates or date of hospital admission.

Haemorrhage during index surgery for the cohort studied was divided into four groups according to quartiles. These ‘classes’ of haemorrhage were used as independent variables in the uni- and multivariate Cox proportional hazard regression analyses and the Logistic regression analyses.

A Chi-square test was performed for comparisons between the parameters sex, age, stage, surgical complication, surgery for SBO, hospital admission for SBO, RT, death within 6 months and death within 5 years for the analysed quartiles of blood loss.

Cox proportional hazard regression analysis with 95% CI was used for calculation of hazard ratios (HR) for ASBO, TSBO, 5-year overall death, and hospital admission for SBO not requiring surgery as dependent variables (Figure 2). Uni- and multivariate analyses were performed in the same manner as in studies I and II, but without stratification for type of surgery (as in study I).

Analysis for surgical complication was calculated using logistic regression analysis providing odds ratios (OR) with 95% CI. Significant parameters in the univariate model were entered into the multivariate model analogously to the procedure used for the Cox calculations (Figure 2).

A Kaplan Maier curve for cumulative survival grouped for the occurrence of a surgical complication at index surgery was prepared. Log rank test was used to
calculate differences between the two curves. P-value <0.05 was set as level of significance.

Statistica 10 (StatSoft, Tulsa, OK, USA) was used for all statistical analyses except for the Chi-square tests of parameters requiring a larger matrix than a 2 by 2 table, for which R by C-tables in OpenEpi was used.

4.3.4 Study IV

Anaemia was classified according to the WHO classification shown in (Table 2). The Hb value used for classification was the lowest observed value two months before the date of surgery. In the analyses, material was grouped as no anaemia and anaemia (mild, moderate and severe).

A patient was considered transfused if he or she had received an allogeneic red cell blood transfusion within one day before or after surgery.

Time to recurrence was calculated from date of surgery until the first of date of recurrence, death, or censoring date. A recurrence was considered as an occurrence in the statistical analysis.

Overall mortality was calculated as time from surgery until death or censoring date, whichever came first. Death was considered as an occurrence in the statistical analyses.

Patients with pT reported as 0 (n=19) and pTNM=0 (n=16) were classified as pT=1 and pTNM=1. Patients were classified according to type of surgery into one of three groups: colonic resections, low anterior resections (LAR), and Hartmann´s procedure for rectal cancers and APR.

Kaplan-Meier curves were prepared for anaemia and transfusion for the outcomes risk of recurrence and overall mortality for which p-value <0.05 was considered significant.

Parameters (sex, ASA grade, pTNM, pT, type of surgery and neo-adjuvant treatment) suspected to influence the outcomes for risk of recurrence and overall
mortality were entered as independent variables in the multivariate Cox proportional Hazards regression analysis. Analyses were also adjusted for age and haemorrhage as restricted cubic splines with three degrees of freedom.

A Chi-square test was performed to test correlation between anaemia and transfusion and to analyse statistical differences between anaemia and sex, colon or rectal cancer, ASA class, pTNM and pT. Level of significance was set to \(p<0.05 \).

STATA IC/11.0® was used for statistical calculations and preparation of figures.
5 RESULTS

5.1 STUDY I

After exclusions, 3,062 patients were eligible for analysis. Patient characteristics are given in Table 5. The median follow-up time for the included patients was 6.25 years and the total years at risk for the studied cohort was 18,504.

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex Man : Woman (n)</td>
<td>1,481 : 1,581</td>
<td></td>
</tr>
<tr>
<td>Blood transfusion Y : N : missing (n)</td>
<td>660 : 2,347 : 55</td>
<td></td>
</tr>
<tr>
<td>Surgical complication Y : N : missing (n)</td>
<td>650 : 2,411 : 1</td>
<td></td>
</tr>
<tr>
<td>Stage I : II : III (n)</td>
<td>452 : 1,539 : 1071</td>
<td></td>
</tr>
<tr>
<td>Age (years) <75 : ≥75 (n)</td>
<td>1,665 : 1,397</td>
<td></td>
</tr>
<tr>
<td>Age (years) median (mean)</td>
<td>73.8 (72)</td>
<td></td>
</tr>
<tr>
<td>Blood loss (ml) <250 : ≥250 (n)</td>
<td>1,474 : 1,588</td>
<td></td>
</tr>
<tr>
<td>Surgical procedure (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right hemicolec. ileocecal resection</td>
<td>1,548</td>
<td></td>
</tr>
<tr>
<td>Left hemicolec. sigmoid resection</td>
<td>1,361</td>
<td></td>
</tr>
<tr>
<td>Colectomy subtotal colectomy</td>
<td>153</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Patient characteristics.

Volume of blood lost above the median, male gender, stage III disease and age ≥75 years were identified as risk factors for impaired survival in the multivariate model (Table 6).

<table>
<thead>
<tr>
<th>Cox Proportional Hazard regression</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemorrhage ≥250 ml</td>
<td>1.18 (1.07-1.31)</td>
</tr>
<tr>
<td>Men</td>
<td>1.19 (1.08-1.31)</td>
</tr>
<tr>
<td>Stage I</td>
<td>0.66 (0.57-0.77)</td>
</tr>
<tr>
<td>Stage II</td>
<td>0.65 (0.59-0.72)</td>
</tr>
<tr>
<td>Stage III</td>
<td>1.97 (1.78-2.18)</td>
</tr>
<tr>
<td>Age <75 years</td>
<td>0.44 (0.39-0.48)</td>
</tr>
</tbody>
</table>

Table 6. Uni- and multivariate Cox proportional hazards regression analysis of risk factors for death.
When entering blood loss and age as continuous variables in the same Cox regression analysis, the risk for overall mortality was still significantly elevated, (Hazard Ratio (HR) 1.0002; 95% CI 1.00004-1.0003) and (HR 1.05 95% CI 1.05-1.06) respectively106.

The Mann-Whitney U test did not reveal a significant difference in haemorrhage between the three groups of surgical procedures.

Analyses using Cox proportional hazard regression was also done for complication and blood transfusion. The occurrence of a complication was associated with significantly increased mortality (HR 1.30; 95% CI 1.16-1.45) with approximately the same HR for the other parameters as in Table 6. Transfusion did not increase the risk for overall mortality in a multivariate model.

5.2 STUDY II

After exclusions, 3,554 patients were eligible for analysis. Of these, 110 had surgery for SBO >30 days after their index surgery (Table 4). Fifty % of the studied cohort was female, the median age at index surgery was 74 years and 13.6\% had suffered a surgical complication. Stage distribution was as follows: I+II 58.0\%, III 32.5\%, IV 9.5\%. Patient characteristics for each volume of blood loss are given in Table 7.

<table>
<thead>
<tr>
<th></th>
<th>Blood-loss <250 ml (n=1619)</th>
<th>Blood-loss ≥250 ml (n=1935)</th>
<th>Blood-loss ≥400 ml (n=1245)</th>
<th>Blood-loss ≥800 ml (n=425)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age median (range) (y)</td>
<td>75 (12-98)</td>
<td>74 (22-96)</td>
<td>74 (24-96)</td>
<td>72 (28-92)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>58.2</td>
<td>43.3</td>
<td>40.2</td>
<td>39.3</td>
</tr>
<tr>
<td>Stage I+II : III : IV (%)</td>
<td>62.3 : 29.3 : 8.4</td>
<td>54.7 : 35 : 10.3</td>
<td>51.9 : 37 : 11.1</td>
<td>50.8 : 37.9 : 11.3</td>
</tr>
<tr>
<td>Complication (%)</td>
<td>11.6</td>
<td>15.3</td>
<td>16.9</td>
<td>18.1</td>
</tr>
<tr>
<td>ASBO (n)</td>
<td>27</td>
<td>22</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>TSBO (n)</td>
<td>12</td>
<td>31</td>
<td>22</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 7. Patient characteristics for each amount of blood loss
5.2.1 Surgery for SBO according to blood loss

There was no evidence that greater blood loss increased the risk for ASBO in the univariate or the multivariate model (Figure 4107).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3}
\caption{Kaplan-Maier curve for the cumulative proportion of patients without surgery for small bowel obstruction caused by adhesions according to blood loss of \geq800 ml or less. P value represent log-rank test107.}
\end{figure}

There was a significant increase in risk of surgery for SBO for a blood-loss \geq400 ml. The risk for future surgery for TSBO was significantly elevated for a blood loss \geq250 and remained elevated with further increase of blood loss (Table 8).

Median time from index surgery until surgery for SBO was 632 days (range 97 to 2,640 days).

There was no increased risk for future surgery for SBO or TSBO in men compared to women in the uni- or multivariate Cox proportional hazard analyses. Suffering from a surgical complication increased the risk for future surgery for SBO but not for TSBO in the multivariate Cox proportional hazard regression analysis. Stage III and IV disease were risk factors for future surgery for both SBO and TSBO (Table 8).
The Mann-Whitney U test revealed that TSBO cases bled more than ASBO cases (p=0.0072) at the index operation (Figure 5). Stage distribution among TSBO cases is shown in Figure 6.

<table>
<thead>
<tr>
<th></th>
<th>Surgery for SBO†</th>
<th>Surgery for TSBO†</th>
<th>Hospital admission SBO†</th>
<th>Hospital admission abdominal pain†</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥250 ml</td>
<td>1.26(1.05-1.58)†</td>
<td>2.20(1.12-4.31)†</td>
<td>1.78(1.34-2.36)†</td>
<td>ns</td>
</tr>
<tr>
<td>≥400 ml</td>
<td>1.58(1.08-2.33)†</td>
<td>1.97(1.07-3.63)†</td>
<td>1.87(1.43-2.43)†</td>
<td>ns</td>
</tr>
<tr>
<td>≥800 ml</td>
<td>2.11(1.33-3.36)†</td>
<td>2.68(1.34-5.37)†</td>
<td>1.78(1.28-2.49)†</td>
<td>ns</td>
</tr>
<tr>
<td>Complication*</td>
<td>1.81(1.12-2.93)</td>
<td>1.95(0.93-4.08)</td>
<td>2.32(1.71-3.16)</td>
<td></td>
</tr>
<tr>
<td>Stage III*</td>
<td>1.74(1.16-2.62)</td>
<td>2.36(1.21-4.58)</td>
<td>1.85(1.39-2.47)</td>
<td></td>
</tr>
<tr>
<td>Stage IV*</td>
<td>2.28(1.11-4.70)</td>
<td>3.78(1.36-10.49)</td>
<td>3.23(2.04-5.11)</td>
<td></td>
</tr>
<tr>
<td>Male*</td>
<td>0.70(0.48-1.02)</td>
<td>0.63(0.34-1.17)</td>
<td>0.98(0.75-1.27)</td>
<td></td>
</tr>
</tbody>
</table>

*HRs are given for surgical haemorrhage ≥250 ml. †Adjusted for complication, stage and gender.

Table 8. Results from multivariate cox proportional hazard regression.

Figure 5. Distribution of blood-loss (ml) for ASBO (green) and TSBO (red). Y-axis indicates number of cases within each amount of blood lost.
5.2.2 Admission to hospital for SBO without surgery according to blood loss

Blood loss equal to or above median (250 ml) increased the hazard for future hospital admission for SBO not necessitating surgery in both the uni- and multivariate model (Table 8). This hazard also remained elevated for blood loss of ≥400 ml and ≥800 ml. Also, surgical complication, stage III and IV disease increased the hazard. There was, however, no elevated hazard for future hospital admission for men compared to women.

5.2.3 Admission to hospital for emergency abdominal pain according to blood loss

When calculated with a Cox proportional hazard regression analysis, there was no elevated hazard risk for hospital admission for emergency abdominal pain regardless of blood loss at index surgery (blood loss ≥400 ml (HR 1.16; 95% CI 0.94-1.44)) (Table 8). Nor did the log rank test show significant increase in risk (p-value 0.075).

5.3 STUDY III

After basic exclusions, 1,843 patients remained for statistical analyses, (Figure 2).
Men bled more than women and so did patients receiving preoperative RT. There was an increased risk for surgical complication with greater haemorrhaging at the index surgery.

There was no significant difference in stage distribution or deaths within six months, or five years after index surgery between the blood loss quartiles analysed. Median blood-loss was 800 ml.

5.3.1 Surgery for ASBO and TSBO according to blood loss

There was no evidence that blood loss during index surgery increased the hazard for future surgery for ASBO. Blood loss \geq800 ml increased the hazard for future surgery for TSBO in both the uni- and multivariate Cox analysis. After adjustment for stage in a multivariate model, the increase in hazard for TSBO was (HR 10.52; 95% CI 1.36-81.51). The number of cases for each quartile are given in Table 9. The distribution of blood loss for ASBO and TSBO is shown in Figure 7.

<table>
<thead>
<tr>
<th>Blood Loss Quartile</th>
<th>ASBO (n)</th>
<th>TSBO (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td><450 ml</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>450- <800 ml</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>800- <1400 ml</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>\geq1400 ml</td>
<td>17</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 9. Number of patients in each quartile of blood loss in the Cox proportional hazard analysis of surgery for SBO.

Figure 7. Distribution of blood-loss (ml) for ASBO (green) and TSBO (red) in the Cox proportional hazard regression analysis of SBO. Y-axis indicates number of cases for each amount of blood loss (ml).
5.3.2 Admission to hospital for SBO without surgery according to blood loss

There was no association between blood loss at index surgery and the risk for future hospital admission for SBO not necessitating surgery. There was an increased hazard of future hospital admission for SBO not requiring surgery for those who had received RT (HR 1.34 95% CI 1.01-1.78).

5.3.3 Overall 5-year survival according to blood loss

There was no association between the volume of blood loss and overall 5-year survival in the univariate Cox proportional hazard regression analysis. Age, stage III disease, and those who had suffered from a surgical complication had an impaired 5-year survival in the multivariate model. Radiotherapy protected from death during the initial five years after index surgery but this protective effect disappeared when the variable age was introduced to the multivariate model (Table 10).

<table>
<thead>
<tr>
<th>Cox proportional hazard regression</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate</td>
</tr>
<tr>
<td>Stage III</td>
<td>2.31(1.97-2.69)</td>
</tr>
<tr>
<td>RT</td>
<td>0.73(0.62-0.86)</td>
</tr>
<tr>
<td>Surgical complication</td>
<td>1.23(1.04-1.46)</td>
</tr>
<tr>
<td>Age (continuous)</td>
<td>1.04(1.04-1.05)</td>
</tr>
</tbody>
</table>

Table 10. Results from multivariate Cox proportional hazard regression for overall 5-year survival.

5.3.4 Surgical complication according to blood loss

Blood loss ≥800 ml (median) (OR 1.46; 95% CI: 1.18–1.81), male gender and preoperative RT increased the risk for a surgical complication in a multivariate logistic regression analysis.

5.4 STUDY IV

Approximately 50% of the patients were anaemic before surgery. Fifty-eight % of anaemic patients received a blood transfusion in association with their
abdominal resection. The corresponding proportion for the non-anaemic group was 21%. Patient characteristics are shown in Table 11.

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>No anaemia</th>
<th>Anaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>No subjects, N (% of total)</td>
<td>239 (48)</td>
<td>257 (52)</td>
</tr>
<tr>
<td>Female</td>
<td>115 (48.1)</td>
<td>119 (46.3)</td>
</tr>
<tr>
<td>Male</td>
<td>124 (51.9)</td>
<td>138 (53.7)</td>
</tr>
<tr>
<td>Age at dx Median (IQR)</td>
<td>67 (61-74)</td>
<td>70 (62-79)</td>
</tr>
<tr>
<td>CRC, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>115 (48.1)</td>
<td>167 (65)</td>
</tr>
<tr>
<td>Rectum</td>
<td>124 (51.9)</td>
<td>90 (35)</td>
</tr>
<tr>
<td>Blood transfusion, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>49 (20.5)</td>
<td>150 (58.4)</td>
</tr>
<tr>
<td>ASA, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50 (20.9)</td>
<td>30 (11.7)</td>
</tr>
<tr>
<td>2</td>
<td>132 (55.2)</td>
<td>113 (44.0)</td>
</tr>
<tr>
<td>3</td>
<td>48 (20)</td>
<td>100 (38.9)</td>
</tr>
<tr>
<td>4</td>
<td>9 (3.8)</td>
<td>14 (5.5)</td>
</tr>
<tr>
<td>pTNM, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>91 (38)</td>
<td>34 (13.2)</td>
</tr>
<tr>
<td>2</td>
<td>82 (34.3)</td>
<td>144 (56.0)</td>
</tr>
<tr>
<td>3</td>
<td>66 (27.6)</td>
<td>79 (30.7)</td>
</tr>
<tr>
<td>pT, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>43 (18)</td>
<td>14 (5.5)</td>
</tr>
<tr>
<td>2</td>
<td>66 (27.6)</td>
<td>27 (10.5)</td>
</tr>
<tr>
<td>3</td>
<td>109 (45.6)</td>
<td>154 (60.0)</td>
</tr>
<tr>
<td>4</td>
<td>21 (8.8)</td>
<td>62 (24.1)</td>
</tr>
<tr>
<td>Type of resection, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonic</td>
<td>115 (48.1)</td>
<td>166 (64.6)</td>
</tr>
<tr>
<td>LAR + Hartmann</td>
<td>83 (34.7)</td>
<td>50 (19.5)</td>
</tr>
<tr>
<td>APR</td>
<td>41 (17.1)</td>
<td>41** (16.0)</td>
</tr>
<tr>
<td>Neoadjuvant treatment, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Chemo)radiotherapy†</td>
<td>99 (79.9)</td>
<td>73 (81.1)</td>
</tr>
<tr>
<td>Chemotherapy only</td>
<td>1 (0.8)</td>
<td>6 (2.4)</td>
</tr>
</tbody>
</table>

Table 11. Patient characteristics for the 496 abdominal resections of stage I-III CRC. Percentages are given for number of patients within group of anaemia/no anaemia unless stated otherwise. *Median age for colon cancer 71 years, median age rectal cancer 65 years. **Including one colon cancer. †Only patients with rectal cancer.
5.4.1 Risk of recurrent disease

The Log-Rank test revealed a significantly increased risk of recurrence in anaemic patients (Log Rank p=0.002) but not those given a transfusion (Log Rank p= 0.97).

Anaemia was close to significantly associated to greater risk for recurrent disease in the multivariate analyses for anaemia. When analysed as an independent variable in the combined analysis of anaemia and transfusion anaemia was a significant predictor for recurrent disease. No association was detected between risk of recurrent disease and transfusion (Table 12).

<table>
<thead>
<tr>
<th>Multivariate Cox proportional hazard regression</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (95% CI)*</td>
<td>Anaemia</td>
<td>Blood transfusion</td>
<td>Anaemia + Blood transfusion</td>
</tr>
<tr>
<td>Risk of recurrence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td>1.6 (0.99-2.6)</td>
<td>-</td>
<td>1.7 (1.1-2.8)</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>-</td>
<td>0.8 (0.4-1.3)</td>
<td>0.6 (0.4-1.1)</td>
</tr>
<tr>
<td>Overall mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td>2.2 (1.4-3.3)</td>
<td>-</td>
<td>2.4 (1.5-3.7)</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>-</td>
<td>1.0 (0.6-1.5)</td>
<td>0.7 (0.5-1.1)</td>
</tr>
</tbody>
</table>

Table 12. Multivariate analyses of anaemia, transfusion or both as independent variables. *All analyses are adjusted for sex, ASA-grade, pTNM, pT, type of resection and neoadjuvant treatment. Analyses are also adjusted for age and haemorrhage as restricted cubic splines, 3df.

5.4.2 Overall mortality

The Kaplan Maier curves and Log-Rank tests revealed a significant relationship between anaemia (Log Rank p<0.001) and transfusion (Log Rank p=0.003), and decreased overall survival. Also in the multivariate Cox analyses, anaemia was a significant predictor for increased overall mortality, both when analysed separately and in the same model as transfusion. Transfusion was not associated to an increase in overall mortality (Table 12).
6 METHODOLOGICAL DISCUSSION

Chapter 7 includes general discussion of the studies included.

This section will survey methodological difficulties in epidemiological research. A methodological discussion of the included studies (I-III) and IV follows an introduction to the subject.

6.1 STUDY DESIGN

There are, naturally, different angles to approach the difficult task of designing and reviewing a study. The structure below was presented by Professor Albert Hofman108. This chapter addresses the yellow, blue and green boxes in the tree structure (Figure 8). When designing a study, there are three main topics to address: Does this study add new knowledge? What is the relevant prior knowledge in the area? How do we secure the accuracy of the study? Accuracy is the measurement tool to establish the goodness of the study and can be divided into two sections – precision and validity – which can be divided into subgroups. (Figure 8).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{study_design.png}
\caption{Study design}
\end{figure}
6.1.1 Precision

The precision of a study depends on sample size. A larger sample size will result in lower standard error in calculations. One way to express precision is through confidence intervals. In this thesis, 95% CI are used. The inference here is that “we are 95% confident that the population value of X is between the ‘lower limit’ and the ‘upper limit’”. The wider the CI, the poorer the precision. Precision is also an important topic in order to establish reproducibility of the study. After adjusting for confounders and minimizing systematic errors (bias) in the study, this might still include random errors.

6.1.2 External validity

External validity is crucial in order to enable generalization of the results. Are the results of the study true outside the cohort studied?

6.1.3 Internal validity

Are the results ‘within’ the study really true? Does the study measure what it was intended to? In order to maximize internal validity, it is important to minimize systematic errors.

Internal validity can be divided into three main topics: confounding, information bias, and selection bias. Statistical analyses can be done to examine confounders but there are no analyses to detect or adjust for bias. Bias must be reflected upon in the study design. In the validity-section, there is a risk for systemic errors. A correct measurement of exposure and outcome makes it possible to draw inferences from the results.

6.1.3.1 Confounding

A confounder is a systematic error that can be adjusted for. The definition of a confounder is that it; 1) is associated with the exposure, 2) is associated with the outcome, and 3) is not an intermediate link between exposure and outcome (Figure 9).
There are various ways to handle confounding in a study, as with: restriction, stratification, randomisation, adjustment through regression analysis, and matching (primarily case-control studies). To be able to use data on confounders, it is important to collect data on possible confounding factors and to do so in an appropriate manner – otherwise, the analyses will have poor quality.

6.1.3.2 Information bias

Information in a study gathered in a systematically incorrect manner referred to as information bias. Information of a categorical nature (for example, blood pressure of all patients in a study on diet and blood pressure is measured with a broken device) is referred to as misclassification. Misclassification can be categorised as differential or non-differential\(^{109}\). It is not possible to adjust for information bias in statistical analyses.

6.1.3.2.1 Differential misclassification

This means that misclassification (the systematic error) is only present in one of the studied groups (exposed or unexposed), leading to under or overestimation of the risk. A common example is recall bias in retrospective studies. A person diagnosed with CRC might be more likely to recall the amount of red meat they ate five years ago compared to a person without that outcome (CRC). This might overestimate (or underestimate) the calculated risk of consuming red meat in the development of CRC\(^{109}\).
6.1.3.2.2 Non-differential misclassification

This misclassification is randomly distributed between the two groups (exposed and unexposed). This type of misclassification will lead to a dilution of a possible true increase in risk, the estimate will show a regression against zero109 (bias towards the null). This is true if the parameter is dichotomous. If the parameter has dependent or ordinal nature, the mathematical relationship is more complex110.

6.1.3.3 Selection bias

Which are the selection criteria for inclusion in the study? If the cases are selected in a systematically incorrect manner according to both exposure and outcome, the study suffers from a systematic error due to selection bias.

The result of selection bias will be a risk estimate calculated as higher or lower than the true level. Selection criteria must be contemplated when designing a study. Selection bias can occur at recruitment or when conducting the study. Who signed up for the study? Why are some subjects lost to follow up?

6.2 STUDIES I-III

6.2.1 Precision

The studies comprise a large number of cases with CRC which is a rare outcome in the Swedish population, though it is one of the most common cancers1. Study I includes a large number of cases (Table 5) and this large sample size provides good precision to the analyses. In studies II and III, there are small numbers of occurrences (surgery for SBO) (Table 4) collected using a well-defined algorithm (Figure 1). The data used from the NPR is collected annually from the Board. It seems easy to argue that the number of cases in papers II and III is too small. Even so, we were able to obtain the original patient records in 97% of the cases in study II and 98% in study III. The CI of TSBO in paper III is wide, most probably due to a low number of occurrences (Table 9). The low number of
occurrences thus (Table 4) contributes to less robust results, particularly in paper III. However, the results from study II are confirmed in study III, strengthening the argument that greater blood loss at index surgery increases the hazard of future surgery for SBO due to tumour recurrence. The low number of occurrences, rather, increases the risk of missing a true relationship (type II error) than falsely proving one (type I error).

Blood loss at index surgery was extracted from the ROC register. This provided us with the unique capability to investigate whether there is a relationship between surgical blood loss at index surgery for CRC and SBO, without tracing and assessing all patient records from the index surgery. Instead, focus could be kept upon identifying, assessing, and classifying the surgeries for SBO.

In both studies II and III, multivariate Cox regression analysis is performed with multiple adjustments. Due to the low number of occurrences, especially in paper III (Table 4, Table 9) these adjustments can pose a problem.

In paper II and III, random error is possible in the hospital diagnoses (although this ought to be very small). In order not to miss any of the surgeries for SBO, all surgeries for a wide range of ICD codes was requested for each hospital admission. This measure was taken to reduce possible errors due to misdiagnosis. It is highly unlikely that individuals who have had surgery during a hospital stay would not have the reason for this as one of his or her diagnoses. It is also very unlikely that individuals admitted for abdominal pain or small bowel obstruction of any kind would not have this registered as first or any secondary diagnoses. Since 1997, the NPR contains data on 1-8 diagnoses. In 2009 the NPR reached a completeness of 99% of all Swedish hospital admissions.

All register data used in the present studies are prospectively recorded to the registers. The registers held by ROC are continuously used for research projects. Should the researchers using the registers detect any errors, they are obligated to report this to the holder of the register for correction. This system further decreases the incidence of random errors in the register.
6.2.2 External validity

The studies include all persons with a CRC diagnosis, both men and women, from a large catchment area containing approximately 20% of the Swedish population. This region constitutes both larger cities (Uppsala being the fourth largest county in Sweden) and rural areas, assuring a representative cross section of the Swedish population.

6.2.3 Internal validity

6.2.3.1 Confounding

One drawback is that it was not possible to adjust for comorbidity (ASA grade) in the calculations. Comorbidity is a known confounder in the survival analyses since it can affect both the exposure (blood loss), and the outcome (survival).

In study I, the material was restricted to stage I-III disease. Statistical analyses were performed using Cox proportional hazard regression analyses with stratification for surgical procedure.

The cohorts in studies II and III were restricted using specified exclusion criteria (Table 3, Figure 2). The statistical analyses were adjusted using regression models (Cox, Logistic).

6.2.3.2 Information bias

Estimating perioperative haemorrhage is challenging and may convey uncertainty64,66.

Some patients were claimed to have a blood loss of 0 ml. Such a low volume of bleeding is considered improbable but can potentially have been registered when patients bleed very little or might be an erroneous registration. In paper I (colon cancer), patients indicated with blood loss of 0 ml were included (n=118), but in papers II and III, they were not. Fortunately, the studies include many patients and the proportion of patients claimed to have bled nil is low.
Stage is another parameter, which could possibly interfere with the results. Currently, pathologists are urged to examine ≥ 12 lymph nodes19,28,45 if possible. Earlier, the pathologist sometimes gave a diagnosis regarding regional disease based on the number of lymph nodes found without extra effort to extract more nodes. This might lead to underestimation of the proportion of lymph node positive patients. In study III, neoadjuvant RT might lead to down staging. The registry held only data on pTNM and therefore a proportion of patients may be included in the analyses with a lower stage than their true preoperative stage.

The autopsy rate in Sweden is generally low. For cancer diagnoses, it is difficult to get an appropriate registration of cause of death. Physicians tend to classify cause of death as ‘cancer-death’ if the patient has suffered from a malignant disease. This will lead to a differential misclassification. Because of this, survival analyses are performed for overall survival and not for cancer-specific survival.

In studies II and III, the surgeries were classified according to categories. With the slightest doubt when classifying a case, the record was later assessed in consensus between three of the authors.

6.2.3.3 Selection bias

All studies are population based and data were requested and gathered in a systematic manner. The ROC registers cover both colon and rectal cancers since 1997. Data are limited to that reported in the registers. The sources used (ROC, NPR) have a proven high validity92,97.

Initially, the material provided from ROC contained more than 7,047 surgeries for CRC. Some patients had had surgery more than once and some for both colon and rectal cancer. In those cases, we selected the episode with the most advanced cancer according to stage. Analogously, for patients having surgery for both rectal and colon cancer, the treatment episode for rectal cancer was selected.

Papers I and II emanate from the same cohort. Different exclusions were made, however, because of the different outcomes studied.
Exclusions and restrictions were made at the initial phase in all the studies. This strategy brings the possibility of skewed exclusions.

When making exclusions, one will lose power but on the other hand, the material will probably become more homogenous – resulting in narrower confidence intervals. One problem with exclusions is that it is impossible to adjust for qualities within the excluded material in the analysis. If an exclusion is made for a group of cases that withhold certain statistical qualities (not randomly distributed in the entire material), this can introduce uncertainty into the final study results. In papers I and III, stage IV disease is excluded, but not in paper II. In study II, the multivariate analyses are instead made with adjustment for stage IV. Stage IV cases differ considerably from stage III compared to the difference between stages I and II, for example in respect to 3-year survival. In study II, no analysis of survival is performed. The survival analysis for the colon cancer patients is made in paper I, where stage IV is excluded.

6.3 STUDY IV

6.3.1 Precision

Information on all consecutive abdominal resections stage 0-III during 2007-2010 at Karolinska University hospital was extracted from the Stockholm-Gotland ROC register. Exclusion criteria are specified in Figure 3. Since all patients were treated at the same hospital, it was possible to link the ROC data to the hospital’s laboratory results and to validate 100% of the patient records for recurrent disease.

6.3.2 External validity

The study comprises patients, both men and women, from one of the largest clinics in Sweden where modern techniques are used. The results are based on prospectively registered data where one of the outcomes (recurrence) has been validated in 100% of the cases. Calculations are performed after linkage of these different registers. Comprehensive attempts were made to keep the studied cohort of 496 patients as homogenous as possible.
6.3.3 Internal validity

6.3.3.1 Confounding

Analyses were restricted to a homogenous group of patients (Figure 3) and adjusted for possible confounders (sex, ASA-grade, pTNM, pT, type of surgery, neoadjuvant treatment, age and blood-loss) in a multivariate regression model. The reasoning behind adjusting for ASA grade, pTNM and pT as ordinal and not dichotomised variables was to minimise residual confounding.

Age and blood loss were adjusted for as restricted cubic splines with three degrees of freedom. These variables were calculated as continuous predictors and therefore, in this setting it did not seem appropriate to dichotomise any of the independent variables as above/below median. Furthermore, colon and rectal cancer are known to differ in volume of blood loss during surgical resection and thus this design seems more appropriate.

6.3.3.2 Information bias

Both the ROC register92 and the local blood transfusion database101 are validated with a well-renowned accuracy. Patient records were validated for recurrent disease in 100\% of the cases. Laboratory test results were extracted via a computerised system at the hospital (KarDa).

Patients were classified as anaemic or not based on Hb-values two months prior surgical resection. This classification is not based on other co-morbidities, intake of medicine, or other conditions, which may influence the Hb value. Therefore, it might be that some patients suffer from impaired renal function (for example) resulting in an elevated Hb value. Though this proportion of patients ought to be low. The value chosen for classification as anaemic or not was the lowest value observed during two months prior surgery. If a patient presents at a health care provider and receives treatment for anaemia and then another value is sampled, the lowest value would be chosen.
As discussed earlier, blood loss is difficult to measure. The value used is the amount prospectively reported to the register by the anaesthetic nurse immediately after surgery.

6.3.3.3 Selection bias

The study included prospectively registered data on all consecutive abdominal resections for stage I-III CRC at Karolinska University Hospital during a four-year period. There are other clinics in Stockholm performing CRC abdominal resections and patients living in the catchment area are free to choose the clinic of their preference. However, this proportion of patients is considered to be low.
7 GENERAL DISCUSSION

In this thesis, preoperative anaemia and blood loss during surgery for colorectal cancer are explored. The most important findings are:

- Preoperative anaemia is associated with impaired survival. The analyses also indicate a trend for increased risk of recurrence.

- Blood loss above median during surgery for colon cancer impairs overall survival. This effect was not seen after surgery for rectal cancer, probably due to a more complex and multifactorial situation where irradiation delivered preoperatively increased blood loss.

- Blood loss over the median at surgery for colon and rectal cancer increases the risk for later surgery for SBO due to cancer recurrence.

It can be admitted that it is difficult to differentiate the influences of anaemia, iron medication, blood transfusion, and major blood loss during surgery on the outcome of CRC-surgery. All four factors can potentially impair outcome. The first three studies focus on the importance of blood loss and the last on preoperative anaemia. Data on blood transfusion was available in studies I and IV, while data on preoperative anaemia were available only in study IV.

7.1 ANAEMIA, BLOOD TRANSFUSION AND RECURRENCE

Preoperative anaemia was associated with increased risk of recurrence (Table 12) in the Log-Rank test. No statistically significant association could be established in the multivariate model but the analyses revealed a trend towards an increased risk for recurrence for the patients with anaemia. Other factors increasing the risk of recurrence were advanced TNM and T stage. Also, type of surgery (low anterior resection and Hartmann and rectal surgery with APR) increased the risk of recurrence, APR carrying the highest hazard.

The association between preoperative anaemia in CRC and increased risk of recurrence has, to our knowledge, only been investigated in a study by Zhen on stage II colon cancers. It was concluded that disease free survival was impaired
for anaemic patients with T3N0M0 cancers but not in patients with T4N0M0 cancers86. In study IV, the multivariate analyses are adjusted for patient and tumour (pTNM and pT) characteristics, while in Zhen’s study, adjustments were made only for tumour characteristics86.

In the present study, blood transfusion was not a risk factor for cancer recurrence. Previous studies, summarised in a Cochrane report, have shown that patients receiving blood transfusion within one month before or after surgery for CRC have an increased risk of recurrence, independent of tumour stage87. There, it was not possible to adjust for type of surgery or haemorrhage during surgery87. Those adjustments were possible in the present study, and interestingly, no association was seen between transfusion and recurrence (Table 12). Blood transfusion might impair the immune response and defence against circulating tumour cells in close association with the resection resulting in an increased risk of cancer recurrence. Therefore, the time-span of one day before or after surgery was chosen. Analyses were also performed for transfusion during one month before and after the abdominal resection (data not shown) with virtually the same results.

7.2 ANAEMIA, BLOOD TRANSFUSION AND SURVIVAL

Anaemia was significantly associated with decreased overall survival in the multivariate model (Table 12). Stage, previously described as the strongest risk factor for impaired survival was significantly associated with survival in the univariate analysis but when adjusted for preoperative anaemia this association was no longer significant.

The relationship between preoperative anaemia and impaired survival has been described in two previous studies84, 85. Mild anaemia was shown to be associated with a more advanced stage and impaired overall survival. In spite of this, stage was not adjusted for in the subsequent multivariate analysis85. Qui, et. al. investigated the relationship between preoperative hematologic abnormalities and overall survival84. Their study included patients with both curative and
palliative surgery and the authors found that preoperative anaemia was a risk factor for impaired overall survival in a multivariate analysis84.

Blood transfusion did not influence overall survival in the present study. A negative effect of blood transfusion on survival for CRC patients has, however, been indicated by point estimates in a study by Khanbhai et. al88.

7.3 SURGICAL BLOOD LOSS AND OVERALL SURVIVAL

Study I shows that blood loss greater than median (\(\geq 250\) ml) in colon cancer surgery, impairs overall survival. Due to collinearity with the volume of blood lost, the effect of transfusion was calculated in a separate multivariate model and found not to be significant. Thus, it is concluded that greater volume of blood loss is the primary determinant for the increased hazard of overall mortality for patients with a blood loss above median (Table 6). 250 ml is a fairly small amount of blood loss and in most cases, it is possible to perform resection of a colon cancer with a lower blood loss. Trying to keep the volume of blood loss low might thus improve the chance for long-term survival.

The impaired survival was also confirmed when analysing blood loss as a continuous variable, indicating that the hazard increases continuously with greater blood loss106. Patients who died within 6 months of surgery were excluded in order to analyse only the long-term effect on survival.

The volume of blood loss during surgery for rectal cancer is usually larger than that for colon cancer. Hence, rectal cancer was analysed in a separate study (paper III) where no relationship was revealed between blood loss during surgery and 5-year overall survival. In study III, blood loss was divided in quartiles and classified as a volume above or below each quartile.

As described previously, treatment of rectal cancers is more complex and multimodal than for colonic cancer28. In the present study, RT was delivered to 69\% of the patients and those given RT bled more. On the other hand, RT is given to reduce the risk for local recurrence31. In the univariate analysis, there was a significantly better five-year overall survival among irradiated patients.
However, this was not confirmed in the multivariate analysis adjusted for stage, age, and the presence of a surgical complication. Since RT down-stages the tumour, increases the volume of blood loss and reduces the risk for local recurrence, the effect of blood loss per se on survival is difficult to analyse.

7.4 SURGICAL BLOOD LOSS AND SMALL BOWEL OBSTRUCTION

7.4.1 Surgery for SBO

The original hypothesis in study II – that a larger volume of blood loss at index surgery for CRC will increase the risk for future ASBO could not be confirmed. Analyses showed an increase in the risk for SBO at a volume of blood lost \(\geq 400 \) ml (Table 8). When separating the cause of SBO into ASBO and TSBO, it was obvious that increased blood loss increased the risk for TSBO, but not for ASBO, and this was evident at a blood loss of \(\geq 250 \) ml, which was the median for the entire cohort.

The multivariate analyses are adjusted for TNM stage. Data on T stage were not available. During surgery for locally advanced cancers, haemorrhage might increase since the bloodless embryonic planes are more difficult to respect since dissection has to be done outside the bloodless embryonic planes to ensure radicality. However, it might also be that a more advanced tumour burden will influence the immune response. Blood-loss will also contribute to an inflammatory response. A local recurrence is always caused by tumour cells left in the abdominal cavity during surgery. We do not, however, know if this is always caused by omission of lymph node metastases, tumour deposits, micro-metastases, or per continuum growth of the tumour or if it could be that tumour cells or micro-metastases are disseminated by the blood.

In paper II, the proportion of TSBO patients with stage III+IV disease is 35% higher than that of stage I+II disease. More advanced stage is a known risk factor for recurrence and was also a risk factor for TSBO. However, after adjustment for stage, blood loss was still an independent risk factor for TSBO. It is not known if the patients had a known recurrent disease from colon cancer at the
onset of symptoms. However, the original material constituted patients with a locally radical resection only (Table 3).

In study II, it was confirmed that the volume of blood lost during surgery correlated to the duration of surgery. However, the duration of surgery was not a significant determinant for SBO in the univariate analysis and did not affect the HRs when introduced in the multivariate model (also when dichotomised for duration over the median). It can thus be concluded that the haemorrhage rather than the duration of surgery is responsible for the increase in hazard for TSBO.

In paper III, the statistical results are less robust. However, in the light of the results in paper II, they point in the same direction. A blood loss above the median will lead to greater risk for future TSBO, but there is no association to an increased risk for ASBO. The fact that there is no increased risk for future TSBO for the patients in the highest quartile is probably due to too few occurrences (Table 9).

7.4.2 Hospital admission for SBO without surgery

It was possible to retrieve patient records from the surgeries for almost all cases with an operation for SBO. For the outcome hospital admission for SBO without surgery, the ICD code consistent with SBO for the hospital episode was used in the calculation. No patient records have been reviewed for validation of this outcome, leaving some uncertainty.

For the colon cancers in study II, an association between the risk for hospital admission for SBO without surgery and blood loss at index surgery was seen in a multivariate model at a blood loss of 250 ml or more at index surgery for CRC (Table 8). This association was not evident for the rectal cancer patients in study III.

In the study on colon cancer, 3% underwent surgery for SBO and 6% were admitted for SBO without surgery, while for rectal cancer, the corresponding numbers were 5% and 16%, respectively. Although admission for SBO was more common after rectal cancer, an association with blood loss was not evident
in the present study. The only potential risk factor that manifested as significant was irradiation. Radiotherapy has earlier been shown to increase the risk for in hospital episodes after surgery for rectal cancer113 and it might be that RT is one of the main reasons for the higher risk of hospital admission without surgery after resection of a rectal cancer.
8 CONCLUSION

This thesis on anaemia, blood loss and colorectal cancer shows clearly that preoperative anaemia but not perioperative transfusion is associated with impaired overall survival. The analyses also revealed a trend towards an increased risk for recurrence for patients with preoperative anaemia. Blood loss at index surgery of colon cancer above median (≥250 ml) was also shown to impair overall survival. Furthermore, a blood loss above median at the index surgery for colon and rectal cancer (≥250 ml for colon cancer and 800 ml for rectal cancer) is associated with increased risk for future surgery for SBO caused by cancer recurrence.

There are no clear guidelines for treatment of preoperative anaemia. In further research, the reason why anaemia constitutes such a strong risk for impaired outcome must be explored as well as the options for treatment. For many reasons, blood loss should be kept low during surgery for CRC. The results of this thesis show that a relatively small increase in blood loss can make a difference in cancer outcome.
9 SAMMANFATTNING PÅ SVENSKA

9.1 BAKGRUND

Ungefär hälften av patienterna har lågt blodvärde, s.k. ”anemi” när de får sin diagnos. Många patienter behöver blodtransfusion i samband med sin canceroperation. Antingen pga. lågt blodvärde eller stor blodförlust vid operationen. Tidigare forskningsresultat har visat att blodtransfusion ökar risken för canceråterfall hos patienter med kolorektal cancer oberoende av sjukdomens svårighetsgrad. Innan arbetet med denna avhandling påbörjades var det oklart om blödningsmängden under operation påverkar risken för återfall och död.

En sen komplikation till operation för kolorektal cancer är tarmvred (i denna sammanfattning avses mekaniskt stopp i tunntarmen). Tidigare forskningsrapporter har visat att upp emot 10 % av patienterna behöver en operation för tarmvred efter kolorektal kirurgi. Detta kan bero på t.ex. sammanväxningar eller återfall av cancer.

Syftet med avhandlingen var att undersöka huruvida

- Anemi före operation eller blodtransfusion vid operation för kolorektal cancer ökade risken för sjukdomsåterfall och död. Studien omfattade patienter som opererats i botande syfte.
- Blodförlusten vid operation hos patienter med tjocktarmscancer förkortar framtida överlevnad.
- Blodförlusten vid operation på patienter med tjocktarmscancer ökar risken för framtida tarmvred orsakade av sammanväxningar i buken.
• Blodförlusten vid operation på patienter med ändtarmscancer påverkar risken för framtida operationer för tarmvred orsakat av sammanväxningar, tumöråterfall och livslängd.

9.2 METOD

9.3 RESULTAT

Blodförlust över 250 ml (medianvärde för patientgruppen) påverkade överlevnaden negativt hos patienter med tjocktarmscancer. Blodförlust över medianvärdet ökade också risken för framtida operation för tarmvred hos patienter opererade för tjocktarmscancer. Dessa tarmvred berodde på tumöråterfall.
Blodförlust över 800 ml (medianvärdet för patientgruppen) ökade risken för tarmvred orsakat av tumöråterfall hos patienter med ändtarmscancer. Det fanns inget samband mellan blodförlust och överlevnad hos patienterna med ändtarmscancer.

9.4 SLUTSATS

Operationsblödningen påverkar risk för att få återfall efter operation för tjocktarmscancer och risken att få tumörorsakat tarmvred efter operation för cancer i tjock- och ändtarm. Blödningen bör därför hållas till ett minimum för att förbättra utfallet efter kirurgi för kolorektal cancer.
10 ACKNOWLEDGEMENTS

Monika Egenvall: Principal supervisor. Thank you for all your help and support. You always answered my e-mails and picked up the phone. You always, had my best in mind. Throughout my doctoral studies not only did I developed my scientific skills, but you did also. I envy your extraordinary memory and sense of details. Things that leave your hands are impeccable!

Ulf Gunnarsson: Co-supervisor. Thank you for always supporting my ideas and for never failing to keep every project running at a quick pace, in your kind and subtle way. An experienced researcher who forced me to turn every stone. I appreciate it! I also appreciate you always answering your phone, you have been great help to me.

Pia Jestin: Co-supervisor 2010-2013. Thank you for all your input working on my first projects. You supported me, and I especially remember how you made me feel welcome when I was in Uppsala, collecting information for studies II and III.

Lars Påhlman: Co-author project III. Thank you for your input during analysis and writing the script. Your sound knowledge regarding this patient group was of great help.

Gustaf Edgren: Co-author project IV. Thank you for answering my statistical questions and for pushing me to explore my data to get a sound understanding. Also, thank you for facilitating the database processing, no more than two hours later, abracadabra, everything was merged, correctly programmed, and ready to use.

Anna Martling: Co-author project IV: Thank you for putting so much thought, effort and time into the project. Your input was very valuable and improved the project immensely!

Andreas Pettersson: Director of studies for “Research school for clinicians in epidemiology”, generation 12. Thank you for your positive approach and invaluable help with certificates of my progress within the research school.
Eva Köhn: Secretary of the research group. Eva, what would I have done without you during work in projects II and III? No one else would have been persistent enough to get hold of all those patient records. Thank you!

Linda Olsson: Administrator for the research group. Thank you for all the technical support in transforming pictures to the strange .tiff format and for your fast, accurate administration.

Hélène Jansson: Administrator at CLINTEC. I would never have been able to get all the paperwork together without your help. Thank you!

Ursula Dahlstrand, Katarina Hellberg and Fredrik Brännström: My friends and supporters in the research group from the very beginning. Thank you for your help with statistical programs, all our discussions, and the laughs.

The research group: Thank you for all your input on my manuscripts, they would not have been as good without you.

Thyra Löwenmarck: Thank you Thyra for all your help with database processing in projects II and III. You were a great help.

Johan Permert, Magnus Nilsson and Annika Bergquist: Heads of the ‘Gastrocentrum’ department during my time as a research student. Thank you for facilitating my projects by approving them at your department.

Lisa Strömmer: Clinical supervisor. Never hesitating to encourage me to proceed with my research. Always happy for me when I progressed in my work, whether clinical or academic.

Ann Kjellin: My boss during doctoral studies. Thank you for helping me get the time for my research. You’re help in fitting my schedule between clinical work, research, and parental leave was irreplaceable.

Peter Cox: Thank you for your accurate language checks of my work. Always swift and on time.
Tongplaew “Toom” Signomklao: Administrator Regional Oncology Center Stockholm-Gotland. Thank you for your quick answers and your willingness to help.

Min familj och mina vänner: Tack för all hjälp och alla glada tillrop. Också, ett speciellt tack för er nyfikna uppsyn när jag berättat om mina studier.

Mamma: Tack för all hjälp och allt stöd under mina forskarstudier. Utan dig hade det varit svårt att få ihop små och stora snutar av tid till att arbeta ostört med avhandlingen, rensa huvudet i joggingspåret och sköta allt annat som snurrat runt mig och Jesper senaste åren.

11 REFERENCES

27. Arbetsgruppen för Cancergenetiska Mottagningar. Ärftlig kolorektalcancer - utredning, uppföljning och omhändertagande.

30. Sobin L. TNM Classification of Malignant Tumours. 7th ed; 2009.

