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ABSTRACT 

According to the latest National Health and Morbidity Survey reports in year 2011, the 

prevalence of type 2 diabetes (T2D) in Malaysia has risen to 20.8%, much faster than 

expected. Of concern, 57% of T2D patients in Malaysia had diabetic nephropathy (DN). 

T2D and DN are complex diseases, in which genetic and environmental factors have been 

reported to play an important role. In this thesis, we collected a total of 1142 blood samples 

from a cohort of Malaysian subjects, including normal glucose tolerance (NGT) subjects 

and T2D patients with or without DN and conducted genetic, epigenetic and protein 

analyses. The objectives of this thesis were to improve our knowledge for better 

understanding of the pathogenesis of T2D and DN, and to search for new biomarker of the 

disease.  

 

We investigated two members of solute carrier (SLC) family. SLC12A3 is a sodium/chloride 

transporter in kidneys. In Study I, we found that Arg913Gln polymorphism in the SLC12A3 

gene was associated with T2D and DN in a Malaysian cohort. The allele Arg913 conferred 

the susceptibility risk to the diseases. We also found that slc12a3 led to structural 

abnormality of kidney pronephric distal duct at 1-cell stage by knockdown of zebrafish 

ortholog. Slc12a3 mRNA and protein expression levels were upregulated in kidneys of 

db/db mice from 6, 12, and 26 weeks at the age. This study provided evidence suggesting 

that SLC12A3 may be a new biomarker for DN. To evaluate this biomarker, analyzing 

plasma or serum SLC12A3 levels with advanced protein analysis technique and prospective 

study in the patients with T2D and DN have been taken into our future research plan. 

SLC30A8 is a zinc efflux transporter and is highly expressed in the pancreas, particularly in 

alpha, beta and PP cells of the islets of Langerhans. In Study II, we replicated the genetic 

association of SLC30A8 polymorphisms with T2D and further analyzed DNA methylation 

of this gene. Results demonstrated that increased DNA methylation levels of this gene were 

associated with T2D but not with DN. This study thus provided evidence that SLC30A8 has 

epigenetic effects in T2D.  

 

Recent research has been implicated that the inflammation may be a key pathophysiological 

mechanism in DN. Intercellular adhesion molecule 1 (ICAM-1) is an acute phase marker of 

inflammation. In Study III, we found that the ICAM1 K469E(A/G) polymorphism was 

significantly associated with DN. The plasma ICAM-1 levels were increased in T2D 

patients with DN compared with the patients without DN. Among T2D patients with DN, 

the carriers with heterozygous genotype had higher plasma ICAM-1 levels than both 

homozygous carriers. Therefore, analyzing ICAM-1 protein according to the ICAM1 

K469E(A/G) polymorphism genotypes may be useful for predicting susceptibility to DN. 

Pentraxin 3 (PTX3) is an acute-phase glycoprotein and a soluble receptor acting as an 

opsonin. This protein is expressed in vascular endothelial cells and macrophages and its 

level may reflect more directly the inflammatory status of the vasculature. In Study IV, we 

investigated the plasma PTX3 levels and found that decreased plasma PTX3 levels were 

associated with T2D and DN in Malay men. 

 

Taking together, we have analyzed four candidate genes of SLC12A3, SLC30A8, ICAM1 and 

PTX3 in Malaysian subjects with T2D and DN. Results may provide useful information for 

better understanding of the pathogenesis of the diseases. We shall add our effort to analyze 

SLC12A3 protein variation in diabetes patients and to further evaluate this molecule as a new 

biomarker for DN. 
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1 BACKGROUND 

 

1.1 DIABETES AND DIABETIC NEPHROPATHY 

1.1.1 Type 2 Diabetes Mellitus in Malaysia 

Type 2 diabetes (T2D) is a complex disorder caused by the combined effects of genetic 

inheritance and environmental factors. T2D accounts for most cases of diabetes in Malaysia. It is 

characterized by chronic hyperglycaemia due to impaired insulin secretion by pancreatic beta 

cells as well as insulin resistance in the target tissues such as liver and skeletal muscle. 

Individuals can experience different signs and symptoms of diabetes. The common symptoms of 

diabetes include frequent urination, excessive thirst, weight loss, tiredness and tingling sensation 

or numbness in the hands or feet [1]. 

 

Diabetes is primarily diagnosed based on plasma glucose levels at fasting condition and/or 2 

hours after taking a 75g oral glucose tolerant test (OGTT). The individual is considered to have 

diabetes if fasting plasma glucose is ≥7.0 mmol/L or 2h-OGTT postload glucose is ≥11.1 

mmol/L [2]. Since year 2009, glycated haemoglobin (HbA1c) has been added into diabetes 

diagnostic criteria [3]. HbA1c is an indicator of average blood glucose level for approximately 

the past 120 days and individual with HbA1c ≥6.5% (48 mmol/mol) is having diabetes. Pre-

diabetes is a condition when individual can be said to have either impaired fasting glucose (IFG) 

and/or impaired glucose tolerance (IGT). Individual with IFG presents with fasting plasma 

glucose in the range between 6.1 to 6.9 mmol/L according to WHO definition [2] or between 5.6 

to 6.9 mmol/L according to ADA [4] while one is said to have impaired glucose tolerance (IGT) 

when 2h-OGTT postload glucose ranged between 7.8-11.0 mmol/L (WHO 2006) or HbA1c 

between 5.7-6.4% [5]. Pre-diabetes means that a person is at increased risk for developing T2D 

within a decade unless they adopt a healthier lifestyle that includes weight loss and more 

physical activity. 

 

According to the International Diabetes Federation (IDF) Diabetes Atlas, in 2013, 382 million 

people worldwide had diabetes. This number is expected to rise to 592 million by 2035 [6]. The 

data were represented 130 countries including Malaysia. T2D prevalence rate in Malaysia has 

risen much faster than expected. The first National Health and Morbidity Survey (NHMS) 
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conducted among adults aged above 30 years old in year 1986 reported a prevalence of T2D of 

6.3%. The prevalence had risen to 8.3% in the second NHMS 10 years later [7]. According to the 

latest NHMS reports in year 2011 [8], the prevalence of T2D in Malaysia was 20.8% compared 

to 14.9% in year 2006 (Figure 1). 

 

Figure 1 Prevalence of diabetes mellitus in Malaysia (>30 years age group) 

 Data from the National Health and Morbidity Surveys 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2 Diabetic Nephropathy in Malaysia 

Diabetic nephropathy (DN) is a syndrome characterized by abnormal urine albumin excretion 

(>30 µg/mg creatinine or >30 mg/24 hr or >20 µg/min) or diabetic glomerular lesions with loss 

of glomerular filtration rate (GFR) with and without albuminuria. The disease is the most 

common cause of end-stage renal disease (ESRD) and contributes to 57% of patients with T2D 

in Malaysia. Although T2D represents a preventable and treatable cause of ESRD, the number of 

ESRD cases caused by T2D has increased and accounts for more than 50% of incident dialysis 

patients [9],[10]. The increasing of DN patients in Malaysia are parallel with high prevalence of 

diabetes, hypertension, the poor glycemic and blood pressure control [11]. The public burden 
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from diabetes and DN in this nation is massive.  

 

Also in the United States, DN is the most common cause of ESRD, accounting for nearly 50% of 

the cases. The economic burden of ESRD has increased, reaching a current estimate of USD 17.9 

billion, an increase of 7.2% from 1998. Data from United States Renal Data Systems (USRDS) 

indicate that the incidence of ESRD attributed to diabetes mellitus has increased more than 10 

fold over the past two decades [12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DN is associated with increase morbidity and mortality in cardiovascular disease, already in the 

early phase of the disease, long before ESRD. While the pathophysiology of DN is incompletely 

understood, some factors contributing to the disease have been suggested and identified. Non-

modifiable risk factors such as ethnicity, family history and elevated GFR early after diagnosis 

of T2D have been proven in many studies. Risk factors for developing DN that can be modified 

are glycemia, hypertension, smoking status, obesity and dyslipidemia. Research has shown that if 

the patients take good care of the modified risk factors such as glycemic controls, the progress of 

Figure 2 Percentage of incident patients with ESRD due to diabetes, 2011  

according to US Renal Data Systems   Figure 12.4 (Volume 2) 
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developing DN could be delayed.  

 

1.2 BIOMARKERS IN DIABETIC NEPHROPATHY 

1.2.1 Biomarkers 

Biological markers or biomarkers are any biological features of a biological state. It can be any 

naturally molecule or gene associated with particular pathological or physiological features of 

the disease. Biomarkers can be measured or evaluated as an indicator of biological processes. In 

1998, the National Institutes of Health Biomarkers Definitions Working Group defined a 

biomarker as “a characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention.” [13]. A joint venture on chemical safety, the International Programme on 

Chemical Safety, led by the WHO in coordination with the United Nations and the International 

Labor Organization, has defined a biomarker as “any substance, structure, or process that can be 

measured in the body or its products and influence or predict the incidence of outcome or 

disease” [14].  

 

1.2.2 Current biomarkers of diabetic nephropathy 

DN tends to be a progressive disease that often leads to EASD. The clinical problem is that once 

the disease has become overt, a kidney damage has already occurred, and the opportunity for 

intervention is limited. The current biomarker used to detect DN is microalbuminuria, the 

presence of albumin in the urine. Microalbuminuria has been used for screening DN patients by 

albumin-to-creatinine ration (ACR) in a random spot collection, preferably in the first morning 

urin or by measurement of albumin in a timed urine collection (24 hours or less). Usually, the 

screening is performed in type 1 diabetic (T1D) patients with diabetes duration more than 5 years 

and in all T2D patients. This biomarker has been used clinically as it is less expensive, easy to 

perform and has been shown to be a good predictor of progressive DN. However, this biomarker 

is susceptible to false-negative and -positive determinations as a result of variation in urine 

concentration due to hydration and other factors such as diet or urinary tract infection.  
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With the presence of microalbuminuria, National Kidney Foundation [15] classification has 

suggested that the levels of glomerular filtration rate (GFR) may be used to stage chronic kidney 

disease (CKD). The GFR can be easily estimated using the modification of diet in renal disease 

(MDRD) equation by calculating it from the results of blood creatinine test, age, gender and race. 

The stage of CKD can be divided as Table 1. The eGFR is a good test to detect kidney disease. 

However, it may not be accurate for people younger than 18, pregnant women, very overweight 

and very muscular peoples.  

Table 1. Stages of chronic kidney disease. 

Stage Description (GFR) 

1 Kidney damage with normal kidney function 90 or above 

2 Kidney damage with mild loss of kidney function 89 to 60 

3a Mild to moderate loss of kidney function 59 to 44 

3b Moderate to severe loss of kidney function 44 to 30 

4 Severe loss of kidney function 29 to 15 

5 Kidney failure Less than 15 

 

1.2.2.1 Serum creatinine 

Serum creatinine is excreted unchanged by the kidneys and become one of the indicators for 

kidney health. Creatinine, majorly being produced by the muscles, is removed primarily by 

glomerular filtration but also by proximal tubular secretion. When the filtration in kidney is 

deficient, creatinine levels in the blood will be risen. Serum creatinine levels are also used to 

calculate the estimated GFR (eGFR). However, serum creatinine is unable to detect the kidney 

injury at the early stage as it is observed only with marked damage to functioning nephrons. 

Moreover, serum creatinine levels are influenced by the body muscles, make the creatinine levels 

different between men and women and false low in old people with decreasing muscle mass. 

Cystatin C is now recommended in the estimate of GFR. Golden standard is iohexol clearance. 

Furthermore, increased dietary intake of creatine or protein could increase daily creatinine 

excretion [16]. 

 

http://en.wikipedia.org/wiki/Nephron
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1.2.3 Potential new biomarkers of diabetic nephropathy 

Despite the current markers that have been used in the clinic, the development of more effective 

treatment strategies for DN could assist successful therapeutic interventions at the early stage. 

Sensitive and specific biomarkers need to be carefully considered and their usefulness validated. 

The ideal renal biomarker should be easy to measure and noninvasive; it should be accurate and 

highly reproducible; and it should demonstrate high sensitivity, high specificity, be cost-effective 

in its ability to predict the presence of disease, prognosis of the disorder and progression of the 

condition [17].  

 

Proteomic approaches have been proposed to offer potential tools for the identification of new 

biomarkers for the kidney disease. Characterization and validation of these proteomic signatures 

may represent an important step to the noninvasive early diagnosis of kidney diseases. 

Biomarkers that have been identified include specific collagen fragments, β2-microglobulin, 

ubiquitin, proinflammatory cytokines, RBP4, transthyretin, apolipoprotein A1, apolipoprotein 

C1, and cystatin C [18], [19]. 

 

1.3 GENETIC STUDIES OF TYPE 2 DIABETES AND DIABETIC NEPHROPATHY 

T2D and DN are complex diseases, which involve interaction between genetic and 

environmental factors. Many studies have shown that genetic susceptibility plays an important 

role in the pathogenesis of T2D and DN. Identification of the susceptibility genes and evaluation 

of their genetic effects will provide useful information for better understanding the pathogenesis 

and for further developing novel therapeutic approaches for the diseases. 

 

1.3.1 Human genome 

The human genome, which is the complete set of genetic information for humans, was 

completely sequenced in year 2012 by Human Genome Project. The total length of human 

genome is approximately 3 billion base pairs. Human body cells have 23 paired chromosomes, of 

which 2 of 46 chromosomes are sex chromosomes x and y, which determine an individual’s 

gender. Human genome content is divided into coding and non-coding DNA sequences. Those 

sequences that can be transcribed into mRNA and translated into protein were defined as coding 

DNA, which accounts a small fraction of the genome (<2%). Most of the human genome content 
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are made up of non-coding DNA that are not used to encode protein. Numerous classes of 

noncoding DNA have been identified, including genes for noncoding RNA (e.g. tRNA and 

rRNA), pseudogenes, introns, untranslated regions of mRNA, regulatory DNA sequences, 

repetitive DNA sequences, and sequences related to mobile genetic elements as well 

as  noncoding RNA (e.g. tRNA, rRNA), and untranslated components of protein-coding genes 

(e.g. introns, and 5' and 3' untranslated regions of mRNA). Although a major part of the human 

genome has been sequenced, the functions of the non-coding DNA are still not fully understood 

compared to the coding DNA. 

 

1.3.2 Single nucleotide polymorphisms 

A single nucleotide polymorphism (SNP) is a variation in a single base pair in a DNA sequence. 

They are the most common source of genetic variation in the human genome. Each SNP 

represents a difference of nucleotide. They are region, single-copy and repetitive sequences. 

They are highly abundant and widely distributed in the human genome [20]. SNPs have become 

standard genetic markers used to identify associated alleles in different diseases. SNPs are 

distributed across the whole genome including both coding and non-coding DNAs. Non-coding 

consists of tandem repeats and short and long interspersed elements (SINEs and LINEs). SNPs 

within the coding regions will not necessarily change the amino acid sequence of the protein that 

is produced. A SNP which does not change the polypeptide sequence is called synonymous 

(sometimes also called a silent mutation), and is called non-synonymous if a different 

polypeptide sequence is produced. 

 

1.4 GENETIC STUDY APPROACHES 

In the recent years, different genetic approaches and strategies have been effectively applied to 

identify risk loci in diabetes and DN. There are three approaches including candidate gene 

association study, family-based association study and genome-wide association study. Each of 

these approaches has its advantages, motivations and limitations and will be briefly described. 

 

1.4.1 Candidate gene population association study 

The candidate gene association study is the most commonly used approach in genetic study of 

diabetes and DN, and often based upon the design of population genetic association study (cases 
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and controls). A case-control study approach compares the frequency of SNP alleles in two well 

defined groups of individuals; cases that have been diagnosed with the disease under study and 

controls who are known to be non-disease are selected from the population. The candidate genes 

usually are selected from biological pathways that harbor other previously associated risk loci. In 

present, many genes have been predicted to be associated with diabetic nephropathy using this 

approaches such as SLC12A3 [21] and APOL1 [22].  

 

1.4.2 Family-based association study 

Family based approach can be used to avoid the ethnic variation. The variation of the gene 

among family members or sibling can be studied if we match each case with the unaffected 

family members in the family. This approach provides the best matching on ethnicity. However, 

there is a limitation to use this approach in DN. Compared to other disease like cancer, DN often 

occurs late in life after 20-30 years of duration; parents are often not available for genetic study. 

Because of the difficulty in sample collection, this approach with family-based design is rarely 

used in genetic study of DN. 

 

1.4.3 Genome wide association study 

Genome wide association (GWAS) study is a hypothesis free approach to investigate the 

association between common genetic markers and disease. In the recent years, GWAS has been 

successfully facilitated rapid progress in genetic study of T2D. Most of the genetic variants 

identified by GWAS are common variants with modest effects on T2D. These common genetic 

variants for T2D loci are shared among different ethnic groups. 

 

1.5 GENETIC STUDIES OF TYPE 2 DIABETES 

GWASs have identified about 70 loci that associated with T2D. Most of the identified variants 

are located in the non-coding regions of the genome, make it difficult to link disease-associated-

variants with the pathogenesis of T2D. Based on the result from twin studies, heritability of T2D 

is estimated to range between 30% to 70% depending on the age of diabetes onset and the 

glycemic status of cases [23]. Therefore, although GWASs have identified over 70 loci for T2D, 

the collective effect of those loci accounts only a small part of the heritability of T2D. Therefore, 
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it is common when genetic studies were conducted in a small samples sizes, detection of 

variants’s effects becomes difficult.  

 

In 2006, the strongest association of common intronic variants was identified as the genetic risk 

factor for T2D within the transcription factor 7-like 2 (TCF7L2) gene and has been replicated in 

many ethnicities [24]. A bundle of replication studies have approved that the TCF7L2 variants 

have a substantially stronger effect on T2D risk than those in PPARG and KCNJ11, with a per-

allele odds ratio of ∼1.4 [25]-[28]. TCF7L2 gene encodes a transcription factor that is active in 

the Wnt-signalling pathway and that had no ‘track-record’ as a candidate for T2D. Zhou et al. 

2014 reported that compelling evidence for strong involvement of TCF7L2 into pancreatic beta 

cell function including insulin production and processing [29]. However, some reports also 

suggested the possibility that the beta cell dysfunction related to TCF7L2 was indirect and was 

instead the consequence of disruptions in liver, brain, or gut [30],[31]. Saxena et al. 2010 

reported that in human, the T2D risk allele in TCF7L2 is markedly associated with a pancreatic 

phenotype evoking a primary islet dysfunction, and not with insulin resistance or with liver 

abnormalities as reported previously [32]. 

 

Besides the common variants that have been discussed, rare or low frequency variants have been 

identified. Recently, Majithia et al. 2014 have demonstrated that rare loss-of-function variants in 

the nuclear receptor encoded by PPARG increased T2D risk [33]. The authors identified a total 

of 52 rare non-synonymous PPARG variants that were not associated with T2D, even after 

variant stratification according to the in silico prediction of their putative functional effect. 

Another GWAS-identified T2D gene found to harbor rare mutations associated with T2D is 

SLC30A8. The meta-analysis of all these studies showed a significant protection of rare 

SLC30A8 variants against T2D with an OR of 0.34 [34].  

 

1.6 GENETIC STUDIES OF DIABETIC NEPHROPATHY 

Not every T2D patients develop DN (only 30-40%), suggesting that genetic factors play a role. 

Various risk factors like, diabetes duration, hyperglycemia, increased blood pressure, obesity, 

hyperlipidemia and genetic alterations may influence an individual to develop DN in the future. 

Recently, accumulative findings have been proven that apart from the above risk factors, there is 
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a strong association between an individual’s genetic make-ups in his predisposition to DN. The 

first genome wide study using linkage approach has used multigenerational families’ members or 

compared pairs of siblings to explore DN. This approach is suitable for study of small to 

moderate effect size as it is challenging to collect the subjects from a multiple generation 

because of the disease always appears at the late age. By using this approach, a few possible 

candidate genes/variants have been recognized. Furthermore, diabetic siblings of patients with 

ESRD due to diabetes are known to be at 5-fold higher risk of ESRD compared with those 

without family history [35], [36]. Other study on diabetic siblings of ESRD patients due to 

diabetes have a higher frequency of albuminuria (46%), suboptimal BP control (65%), 

suboptimal glycemic control (HbA1c >7.0%: 43%), smoking (26%), and failure to receive 

RAAS-modifying agents (42%) [37]. 

 

Although several candidate genes have been identified, replication of the genetic association in 

the different ethnic populations and functional analyses are tough. This is because many of the 

candidate genes reported earlier were based on the limited sample sizes. A large samples size is 

required to study the association between the studied genes and DN. 

 

1.7 EPIGENETIC STUDIES OF TYPE 2 DIABETES AND DIABETIC 

NEPHROPATHY 

1.7.1 Basics of epigenetics 

Genetic factors alone unable to explain the involvement of additional factors that contribute to 

the disease development. Recently, epigenetic effects have been introduced to explain the causal 

link between genetics and environmental exposures. It refers to heritable changes in gene 

expression that does not change the DNA sequence in the genome. The study of epigenetics 

focuses on the mechanisms by which the environment interacts with the genotype to produce a 

variety of phenotypes by either modified the chromatin structure or control the mRNA 

translation [38], [39]. At least three systems including DNA methylation, histone modification 

and non-coding RNA (ncRNA)-associated gene silencing are currently considered to initiate and 

sustain epigenetic changes.  
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The mechanisms on how epigenetic effects could regulate the gene expression are still not fully 

understood. However, increased methylation levels of DNA is generally associated with 

silencing of a gene whereas demethylation of DNA is associated transcriptional activation thus 

increased the gene expression. These mechanisms can be active during intrauterine and early 

postnatal development, as well as throughout adult life [40]. Epigenetic regulation could have 

both short-term (non-heritable) and long-term (heritable) effects. The short-term epigenetic 

mechanism enables cells to quickly respond to changing environmental factors [41]. Meanwhile, 

the long-term epigenetic effects are formed in response to long-acting environmental stimuli and 

can be transferred as memory to offspring cells [42]. 

 

1.7.2 DNA methylation alteration  

DNA methylation occurs at the cytosine bases of eukaryotic DNA, where cytosine bases are 

converted to 5-methylcytosine by DNA methyltransferase (DNMT) enzymes by adding a methyl 

(CH3) group. DNA methylation is conducted by the methyltransferase (DNMTs) family 

encompassing DNMT1, DNMT3A and DNTM3B [43]. In mammalian cells, DNMT1 is required 

to maintain methylation during replication, whereas DNMT3A and DNTM3B provide de novo 

methylation patterns [44]. 

 

It is the best-studied epigenetic modification and governs transcriptional regulation and silencing 

[45]. In mammals, DNA methylation is found distributed in definite CpG sequences throughout 

the entire genome, with the exception of CpG islands, or certain stretches (approximately 1 

kilobase in length) where high CpG contents are found. About 75% of human gene promoters are 

associated with CpG islands [45], [46] which are clusters of 500 bp to 2 kb length with a 

comparatively high frequency of CpG dinucleotides. 

 

1.7.3 DNA methylation analyses in type 2 diabetes and diabetic nephropathy 

Several studies have been performed in the specific tissues of pancreatic islets. Epigenome wide 

association study (EWAS) in T2D has been performed in human pancreatic islets by Dayeh et al. 

2013 [47]. They found low degrees of methylation in the genomic regions that located close to 

the transcription start site. Meanwhile higher degree of methylation was observed in the regions 

further away from the transcription start site such as the gene body, 3'-UTR and intergenic 
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regions. They also identified 1,649 CpG sites and 853 genes, including TCF7L2, FTO and 

KCNQ1, with differential DNA methylation levels in T2D islets after correction for multiple 

testing. Previously, Volkmar et al. 2012 uncovered 276 CpG loci affiliated to the promoters of 

254 genes displaying significant differential DNA methylation in diabetic islets [48].  

 

Using bisulfite pyrosequencing, our research group has conducted DNA methylation analyses in 

the IGFBP1 gene.  DNA methylation levels of the IGFBP1 gene were found to be increased in 

T2D patients compared to NGT controls. IGFBP-1 serum circulating levels were found to lower 

in T2D patients [49].  

 

A EWAS performed for CKD using blood DNA samples demonstrated that the differential 

methylations were associated with CKD in the cutlike homeobox 1, ELMO1, FK506-binding 

protein 5, protein tyrosine phosphatase receptor type N polypeptide 2, and PRKAG2 genes [50]. 

Studies of DNA methylation profiles in genomic DNA of diabetic patients with or without DN 

also revealed differential methylation changes in several genes, including UNC13B, which has 

been suggested to mediate apoptosis in glomerular cells as a result of hyperglycaemia [51]. 

Furthermore, global DNA hypermethylation of peripheral blood leukocytes from patients with 

CKD found to be associated with inflammation and increased mortality [52]. 

 

1.8 ETHNIC AND GENDER DIFFERENCES 

1.8.1 Ethnic difference  

Many studies have shown that different ethnic groups have different risks to develop T2D. In 

Malaysia, Malay, Chinese and Indians live together in one country. The prevalence of known 

T2D: Indians had the highest prevalence of 19.9% followed by Malay 11.9% and Chinese 11.4% 

[7]. Studies in young children showed that African Americans, Latino and Native Americans 

children had the highest rates of T2D compared to other ethnicities [53], [54]. Similar to African 

Americans, Native Americans adults have robust insulin in response to glucose, but produce 

lower insulin sensitivity [55]. These make them to have a higher risk for developing T2D.  

In USA, the risk for developing DN is much higher in African-American, Native American, and 

Hispanic compared with white population. The cumulative incidence of ESRD in Pima Indians 

http://www-ncbi-nlm-nih-gov.proxy.kib.ki.se/pubmed/?term=Volkmar%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22293752
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was 61%, at 15 years after the onset of proteinuria compared to 17% in Caucasian with T2D 

[12].  

Obesity is one of the risk factor for developing T2D. Increased subcutaneous abdominal adipose 

(SAT) and visceral adipose tissues (VAT) have been shown to have positive associations with 

fasting insulin levels and markers of insulin resistance [56]. Unfortunately, these do not explain 

why African Americans are more resistant to T2D compared with Caucasians and Latinos 

despite having the lowest levels of VAT [57]. Compared to Caucasian, African Americans and 

Latino adults, Asians have the largest accumulation of VAT and deep SAT with increasing 

adiposity, which is the risk factor for T2D, regardless the lowest BMI [58]. Cumulative studies 

have reported that for the same BMI, age and gender, Asians had a higher body fat percentage 

compared to Caucasians [59]-[61]. These may result in Asians to have a higher predisposition to 

insulin resistance at lower degree of obesity compared to Caucasians.  

 

1.8.2 Gender difference 

Gender has been identified as one of the risk factors for T2D and DN. Good glycemic control is 

one of the key to delay the development of T2D complications. Hormones for regulating 

glycemic control are affected by gender and body type. Sex hormones regulate not only sex 

characteristics and fertility, but also metabolism and adipose tissue [62]. In men, low testosterone 

levels have been reported to be associated with abdominal obesity and insulin resistance [63] 

which are independent risk factors for developing T2D [64]. Compared to men, women with 

increased androgen levels have higher insulin resistance [65] and increased risk of T2D [66] 

cause by reduced the glucose uptake [67] and increased lipolysis [62]. Low circulating levels of 

IGFBP-1 have been shown to be associated with insulin resistance, T2D and metabolic 

syndrome.  

 

In Malaysia, based on NHMS III report and several other studies [52], [9], [10] a higher 

prevalence of T2D and DN was found in males. DNA polymorphism in the genes of sex-

determining region Y-box 2, angiotensin II type 1, type 2 receptors also have reported to be 

associated with DN with gender-specific effects [68]-[70]. Nearly all degrees of nephropathy are 
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more common in men than women in many populations. One study found albuminuria as 

stronger risk factor for CVD among men with T2D compared with women [71]. 
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2 AIMS  

 

2.1 GENERAL HYPOTHESIS 

 

We hypothesized that genetic polymorphisms, epigenetic alterations as well as protein variations 

in the candidate genes (SLC12A3, SLC30A8. ICAM-1 and PTX3) may be associated with T2D 

and DN.  

 

2.2 AIMS 

The overall aim of this thesis is to search for new biomarkers for DN in Malaysian subjects with 

T2D.  

 

The specific aims for each study included in this thesis are as follows: 

i. To determine the genetic effects of solute carrier family 12 (sodium/chloride transporters) 

member 3 (SLC12A3) in Malay subjects with T2D and DN.  

 

ii. To investigate the epigenetic effects of solute carrier family 30 member 8 (SLC30A8) in 

Malay subjects with T2D. 

 

iii. To analyse the genetic polymorphism and protein of intercellular adhesion molecule 1 

(ICAM-1) in T2D and DN among the Malaysian population. 

 

iv. To evaluate the association of plasma pentraxin 3 (PTX3) levels in Malay subjects with 

T2D and DN. 
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3 MATERIALS AND METHODS 

3.1 SUBJECTS 

3.1.1 Human subjects- Collection of Malaysian cohort 

Malaysia is located in South East Asia and consists of two geographical regions divided by the 

South China Sea, with multi-ethnic populations. With the population 30 million, Malaysia 

consists 67.4% of bumiputera (Malay 63.1% and aborigines 4.3%), 24.6% Chinese, 7.3% Indians 

and 0.7% others [72]. 

 

The ethnic distribution of our studied subjects are 67.6% Malay, 15.3% Indians, 14.8% Chinese 

and 2.3% Indigenous Sabahans and Sarawakians. In this thesis, a total of 1142 (551 males/591 

females) blood samples were collected from Malay subjects with normal-glucose tolerance 

(NGT), patients with T2D with and without DN from collaborating centres all over Peninsular 

Malaysia. 

 

Diagnosis of T2D was done based on World Health Organization (WHO) criteria [2], while 

diagnosis of DN was based on urine albumin-to-creatinine ratio (ACR) suggested by ADA [4]. 

All subjects gave informed written consent prior to the study, answered a set of questionnaires 

and underwent clinical and physical examinations. Subjects fasted for 10-12 hours prior to study 

visit. For those subjects who claimed not to have diabetes at the start of study, the oral glucose 

tolerance test was done. Blood and urine samples were collected from all subjects and stored in -

70ºC or -20ºC freezers until used. 

 

3.1.2 Animal models 

Choosing the correct and suitable animal model is important, in order to understand the 

molecular basis of various factors that involved during the development of T2D and DN. In this 

thesis, we used db/db mice and zebrafish as a model for diabetic nephropathy. All animal 

experiments were approved by the local ethics committees. 

 

3.1.2.1 db/db mice 

The db/db mouse was identified initially in 1996 in Jackson Labs. It was an obese mouse that 

was hyperphagic soon on weaning [73]. The diabetic gene (db) is transmitted as an autosomal 
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recessive trait. The db gene is encodes for a G-to-T point mutations of the leptin receptor, 

leading to abnormal splicing and defective signaling of the adipocyte-derived hormone leptin 

[74]. Hyperinsulinemia is shown after 10 days of age and blood glucose levels are elevated at 1 

month old of age [75]. The phenotypes of db/db mice are similar to T2D in humans such as 

obesity, insulin resistance and diabetes. These mice have been used as DN model since it 

develops progressive renal histologic changes and functional derangements. The db/db mice 

showed renal hypertrophy, glomerular enlargement, albuminuria and mesangial matrix 

expansion, which are the similar characterizations of DN in human [76]. 

 

3.1.2.2 Zebrafish 

Zebrafish has been used as a model organism for several pathophysiological conditions which 

are related to human diseases. A part from that, zebrafish has also been used for drug screening, 

in tumor biology, systems biology and in infection research [77]. Recently, zebrafish genome has 

been sequenced which made zebrafish to be increasingly used as model human disease 

particularly in metabolic diseases. Zebrafish’s unique characteristics such as short generation 

intervals, transparent embryos offers unique imaging opportunities. For genetic study, zebrafish 

genome can be manipulated using morpholinos, mutant or transgenic fish lines, which made 

zebrafish becomes one of the most important models in developmental biology.  

 

In kidney disease research, the simple nature of the zebrafish pronephric kidney makes it as a 

suitable system to study the early developmental events compared to other complex kidneys. The 

molecular and segmental organization between human and zebrafish nephrons also was found to 

be similar.   

 

3.2 METHODS 

3.2.1 TaqMan allelic discrimination  

TaqMan allelic discrimination is an optimized method to genotype SNP. The 5' nuclease assay is 

used for amplifying and detecting specific SNP alleles in purified genomic DNA samples. Two 

TaqMan minor groove binder (MGB) probes are used to target two different alleles. Each probe 

has oligonucleotide with a 5’-reporter dye and a 3’-quencher dye. Exonuclease cleavage activity 
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of an allele-specific 5’-reporter dye during extension produced higher fluorescence intensity. The 

intensity of the fluorescence later is determined by laser detection.   

 

Genomic DNA extraction was isolated from fresh peripheral blood samples using a DNeasy 

Blood and Tissue Extraction Kit according to the manufacturer’s protocol (Qiagen, Hilden, 

Germany) and quantified using a spectrophotometry (Biophotometer Plus, Eppendorf, Germany). 

All SNP genotyping assays were designed and purchased from Life Technologies (Grand Island, 

USA). Genotyping experiments in the present study were performed in ABI 7300 sequence 

detector with a Taqman allelic discrimination protocol (Applied Biosystems, Foster City, USA). 

DNA samples were distributed randomly across plates with cases and controls for genotyping 

quality control. All PCR reactions were run in 20 µl volumes using 10-20 ng genomic DNA. 

Millipore water was used as negative controls (blanks) on each plate. 

 

3.2.2 Bisulfite pyrosequencing  

Bisulfite pyrosequencing is becoming a common technique to measure DNA methylation levels 

right down to the single base. Pyrosequencing methylation analysis of CpG sites is a sensitive 

and accurate protocol [78], [79]. This method is suitable for DNA methylation analysis of single 

gene loci and relatively cost- and time-effective. 

 

First, DNA sample was treated with sodium bisulfite using EpiTect Bisulfite kit (Qiagen). At this 

step, un-methylated cytosine was converted to uracil, whereas the methylated cytosine was 

remains unchanged. This generates a DNA strand that is differentiable upon following 

sequencing. 

 

Bisulfite converted DNA then was purified. The target DNA was amplified using PyroMark CpG 

assay purchased from Qiagen and PyroMark Gold Q96 Reagents kits (Qiagen) in a PyroMark 

Q96 system (Biotage AB, Uppsala Sweden). The size of the amplicon is between 150-250 bp. 

 

One of the primer (forward or reverse) is tagged at the 5’ end with a biotin label. During pre-

pyrosequencing preparation steps, streptavidin-coated sepharose beads are added to the PCR 

product to capture the biotin labeled product. The product was then released into the mixture of 
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annealing buffer with pyrosequencing primer for sequencing step. The DNA is denatured to 

produce single stranded molecule for sequencing.  

 

Methylation levels of these CpG sites were detected by using the PyroMark Q96 ID 

Pyrosequencing System (Biotage, Uppsala, Sweden). PyroQ-CpG software (Biotage) was used 

for methylation data analysis. The unmethylated and unconverted DNA samples from Qiagen 

were used for control of conversion efficiency in bisulfite treatment and accuracy in methylation 

analyses. 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

3.2.3 Real time RT-PCR  

To exact total mRNAs, homogenization of kidney tissues was prepared with a Mini Beadbeater 

according to the protocol that we developed in our laboratory. Total mRNAs from kidney tissues 

in each animal were extracted by using an RNeasy Mini Kit (Qiagen). The integrity and 

concentration of mRNA samples were assessed by 1.2% agarose gel electrophoresis and 

determined spectrophotometrically in using NanoDrop ND2000 (Thermo, Uckfield, UK). Based 

upon the templates of mRNA samples, cDNAs were synthesized with QuantiTect Reverse 

Transcription Kit (Qiagen). TaqMan real time RT-PCR experiments were performed with a 

Figure 3 The procedure of Bisulfite pyrosequencing DNA methylation 

 

Bisulfite conversion of genomic DNA 

PCR amplicon generation 

Single strand template preparation 

Template purification and 
Pyrosequencing analysis 



20 
 

 

standard protocol using the ABI7300 real-time PCR system (Applied Biosystems, Foster City, 

USA). The experiments were replicated on two or three occasions. 

 

3.2.4 Immunostaining  

To detect slc12a3 protein expression levels in kidneys of db/db and control mice, we used an 

immunostaining protocol. Freshly collected tissues/kidneys were embedded into OCT and stored 

at -80
o
C until sectioning. One hour prior to sectioning the tissue blocks were brought to -20

o
C 

and cut into (5-15 µm) cryosections placed on a frosted glass. After drying the sections for 30 

min at room temperature they were fixed with ice-cold aceton for 20 min. Aceton was 

evaporated and the sections were hydrated for 10 min with PBS after which they were blocked 

with 5 % goat serum in PBS for 30 min at room temperature. The sections were stained with 

rabbit anti-SLC12A3 Abcam (1:200); polyclonal antibodies for 1 h at +37°C in the blocking 

buffer. Goat anti-rabbit Alexa Fluor 488 -conjugates (Life technologies, Foster City, USA) were 

used as secondary antibodies (1:1000), and incubated with the sections together with a nuclear 

DAPI (1:2000) staining for 30 min at 37°C. The sections were mounted with (Dako) fluorescent 

mounting medium and analyzed with conventional fluorescence microscopy (Leica DM RB). 

 

3.2.5 Analysis of slc12a3 using zebrafish system 

Zebrafish model was used to study role of slc12a3 in the development of kidneys. Experiment 

was done in the core facility at Karolinska Institutet. The slc12a3 gene in zebrafish was knocked 

down using morpholino antisense oligonucleotide (MO) from Gene Tools (Philomath Oregon 

USA). The MO targeting the exon 3 of the slc12a3 gene. The MO with 350 µm was injected into 

the yolk of one- to two-cell embryos from Tg (cdh17:mCherry) line. The injected zebrafish was 

analysed using a fluorescence microscopy (Leica TCS SP8, Germany).  
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Figure 4 The procedures of slc12a3 analyses with zebrafish system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.6 ELISA  

Plasma PTX3 and ICAM-1 concentrations were determined using a commercial enzyme-linked 

immunosorbent assay kit (R&D Systems Inc., Minneapolis, USA). Experiments were carried out 

according to the manufacturer’s instructions. 

 

Briefly, 20 µl of standard and plasma samples were assayed duplicate in the micro-titer plate 

wells coated with a specific monoclonal antibody followed by incubation at room temperature 

for 2 hour. The wells were then washed four times with a buffered surfactant solution. Anti-

2. Day 1: Selection of zebrafish embryos 

1. Zebrafish embryos were maintain in the 

KI core facility 

3. Day 2: Injection of 350 µm MO into 

zebrafish’s yolk followed by 24 hour 

incubation 

4. Day 4: Imaging and analysing using 

fluorescence microscopy 
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protein of interest polyclonal antibody conjugated to alkaline phosphatase was added to each 

well and incubated for two hours at room temperature. After washing step, 200 µl of substrate 

solution was added to each well followed by incubation for 30 minutes at room temperature. The 

solution of 2N sulfuric acid was added to each well to stop the reaction. Absorbance was 

measured at 450 nm with corrections set at 540 nm using micro-plate reader. The values of 

plasma protein levels were extrapolated from a curve drawn using a standard. 

 

3.3 BIOINFORMATICS  

In medical research, bioinformatics is used to the management and analysis of biological data. 

Transcription Element Search System (TESS) and Protein Structure Prediction Server (PS 2) are 

automated homology modelling servers that can be used for conducting analyses of protein 

structures [80]. The methods were used in both template selection and target- template alignment 

[81].  A final three-dimensional structure of protein is built using the modeling package. In this 

thesis, these two programs were used to predict the possibly functional differences of SLC12A3 

protein caused by the Arg913Gln polymorphism. The SLC12A3 protein structures were analysed 

by adding amino acid sequences with either Arg or Gln at the position of 913 into the programs. 

Further analyses of clinical parameters including eGFR and serum creatinine according to the 

genotypes of SLC12A3 Arg913Gln polymorphism in NGT, T2D with and without DN were 

performed. 

 

3.4 STATISTICS 

Allele frequency and genotype distribution of the studied SNPs were tested for Hardy-Weinberg 

equilibrium (HWE). For differences between NGT subjects and T2D patients, two models were 

tested comparing either allele frequencies in 2x2 contingency tables (dominant) or genotypes in 

3X2 contingency tables (additive). Cochran Armitage test was used for detection of trends. Odd 

ratios (OD) and 95% confidence intervals (CI) were calculated to test the relative risk for 

association. Tests for association among genotypes and quantitative traits were performed by 

using ANOVA and Tukey’s HSD (Honestly Significant Difference) post-hoc test. Data were 

given as the means±SD. All p-values were two-tailed and the values less than 0.05 were 

considered significant. Statistical calculations were performed by using PASW Statistic Base 

22.2 (SPSS Inc, Chicago, Illinois, USA). 
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4 RESULTS 

4.1 STUDY I 

Genetic and Biological Effects of Sodium-Chloride Co-transporter (SLC12A3) in 

Diabetic Nephropathy 

 

Association of SLC12A3 Arg913Gln polymorphism with diabetic nephropathy 

The association of SLC12A3 Arg913Gln polymorphism with T2D and DN was studied in the 

Malaysian population. The frequency of 913Gln allele in SNP rs11643718 was 12.3% in the 

Malaysian population. This polymorphism was found to be associated with reduced risk in T2D 

(P = 0.028, OR = 0.772, 95% CI = 0.612–0.973) and DN (P = 0.038, OR = 0.547, 95% CI = 

0.308–0.973). Furthermore, meta-analysis of the present data (Malaysian) and previous genetic 

studies in Japanese, Koreans and Americans Caucasians populations showed an association with 

reduced risk for DN in T2D (Z-value = –1.992, P = 0.046, OR = 0.792, 95% CI = 0.629–0.996). 

 

Clinical Parameters in the patients according to the genotypes of SLC12A3 

Arg913Gln polymorphism   

SLC12A3 Arg913Gln polymorphism is a non-synonymous variant where the amino-acid change 

from Arginine to Glutamine. First, we analyzed the changes of SLC12A3 protein structures with 

bioinformatics tool [80], [81].  The images implicated that the protein structure of SLC12A3 was 

altered when the mutant allele 913Gln substituted the wild allele Arg913 in amino acid 

sequences, suggesting that this polymorphism might have a functional relevance. We further 

analyzed clinical parameters according to the genotypes of SLC12A3 Arg913Gln polymorphism. 

Data showed that among T2D patients, the carriers with Gln913Gln genotype had relatively low 

serum creatinine and high eGFR levels compared with the patients carrying the Arg913Arg 

genotype. However, the differences were not statistically significant mainly due to high standard 

deviations. 

Up-regulation of the slc12a3 gene expression in kidneys of db/db mice 

We used db/db mice as an animal model of DN to explore the functional role of SLC12A3 in DN 

by study the expression at both mRNA and protein levels in db/db mice at age 6, 12 and 26 
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weeks. The slc12a3 gene in kidneys of db/db mice at the ages of 6, 12 and 26 weeks was found 

significantly over-expressed at mRNA levels compared with the control mice at the same ages 

(Figure 5a, b and c). Figure 6a and b demonstrated that slc12a3 protein with the stained antibody 

was distributed in kidney distal convoluted tubule of db/db and control mice at the age of 6-

weeks. The signal intensity in kidneys of db/db mice was significantly higher than that in the 

control mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 The slc12a3 gene expression levels were higher in the kidney of db/db compared to 

control mice at age 6, 14 and 26 weeks. 

Figure 6 Higher intensities of slc12a3 protein was found  in the distal convoluted tubule  

kidney of db/db compared to control mice at the age of 6 weeks 
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Role of slc12a3 in zebrafish pronephric duct epithelium  

Because the slc12a3 gene expression at mRNA and protein levels in the kidneys of db/db mice at 

the age of 6-weeks was found to be significantly increased compared with the controls, we were 

interested to explore whether slc12a3 plays a role in kidney tubular epithelium. The zebrafish 

slc12a3 gene is conserved with 62% of amino acid identity compared with the human. We 

applied a specific MO-mediated antisense knockdown approach in zebrafish and found that 

knockdown of zebrafish slc12a3 did not lead to global alteration of embryonic development 

compared to the wild-type embryos. Under fluorescence microscopic analysis, however, 

pronephric duct epithelial structure defined by red signal (mCherry) in the cloacal portion was 

significantly altered at 4 dpf (Figure 7). The penetrance of this abnormal morphology was 35%. 

This implicated the importance of slc12a3 in zebrafish pronephric distal duct, particularly in the 

cloacal development. 

 

 

 

 

 

 

 

 

 

4.2 STUDY II 

Increased DNA methylation of the SLC30A8 gene promoter is associated with 

type 2 diabetes in a Malay population 

 

Association of SLC30A8 genetic polymorphisms with type 2 diabetes and diabetic 

nephropathy 

Figure 7 Zebrafish embryos were injected with 350µM slc12a3  

morpholino (MO) at the 1-cell stage. 
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In the study II, we first analyzed the association of rs11558471 (A/G) and rs13266634 (C/T) with 

T2D patients with and without DN. We found that the A allele frequencies of all T2D patients 

compared to NGT subjects were 0.552 vs. 0.620, P = 0.002, OR = 1.334, 95%CI = 1.110-1.602. 

The results indicated that the A allele of rs11558471 (A/G) was strongly associated with T2D. 

Moderate association was found when we compared DN subjects with T2D patients without DN 

0.593 vs. 0.671, P=0.041, OR=1.399, 95%CI = 1.013-1.932). The association of SNP 

rs13266634 (C/T) with T2D and DN was not significant (P = 0.053, OR = 1.200, 95%CI=0.997-

1.443; and P = 0.098, OR = 1.313, 95%CI = 0.950-1.815). 

 

Association of SLC30A8 DNA methylation with type 2 diabetes and diabetic 

nephropathy 

In the DNA methylation analyses, only the age-matched NGT subjects and T2D patients were 

included in order to avoid error caused by ages. We found that the average DNA methylation 

levels of all 6 CpG sites that located in the SLC30A8 promoter were high (~78.5%). DNA 

methylation levels at 5 CpG sites of the gene (except CpG2) in T2D patients were found to be 

higher than those in NGT subjects, respectively (CpG1 83.9 vs. 81.9%, P = 0.031; 82.1% vs. 

84.8% CpG3 vs. P = 0.003; CpG4 69.6 vs. 66.3%, P = 0.001; CpG5 86.2 vs. 83.7%, P = 0.004; 

and CpG6 79.8 vs. 78.1%, P = 0.001). Combining all 6 CpG sites together, total mean values of 

SLC30A8 DNA methylation levels were significantly increased in T2D patients compared with 

NGT subjects  (79.9%, 95% CI = 79.2-80.5% vs. 77.1%, 95% CI=75.4-78.6%, P = 0.002). No 

significant difference was found when we compared the SLC30A8 DNA methylation levels 

between T2D patient without and with DN. 

 

 

4.3 STUDY III 

Genetic, Epigenetic and Protein Analyses of Intercellular Adhesion Molecule 1 in 

Type 2 Diabetes and Diabetic Nephropathy among a Malay Population 

 

Genetic association of the ICAM1 K469E(A/G) polymorphism with type 2 diabetes 

and diabetic nephropathy in the Malay population 



27 
 

 

We found that the ICAM1 K469E (A/G) polymorphism was associated with T2D (P=0.038, 

OR=1.190 95% CI 1.009-1.404) and DN (P=0.039, OR=1.278 95% CI 1.012-1.614) in the 

Malay population when Chinese subjects were excluded for the analyses. This polymorphism 

showed a high heterozygous index in the Malay population but not in Chinese subjects and found 

to be significantly associated with T2D (P=3.0x10-5, OR=2.808 95% CI=1.703-4.630) and DN 

(P=1.7x10-6, OR=2.909, 95% CI=1.857-4.556) in the Malay population. 

 

Plasma ICAM-1 concentrations in Malay subjects with normal glucose tolerance, 

and with type 2 diabetes without and with diabetic nephropathy 

The plasma ICAM-1 levels were significantly increased from NGT (206.9±113.1 ng/ml) to T2D 

without DN (303.5±113.4) (P=0.001). T2D patients with DN had a higher plasma ICAM-1 

levels (352.6±156.7) (P<0.001) compared with T2D without DN. All T2D patients without and 

with DN had higher plasma ICAM-1 levels compared with NGT subjects (P <0.001 both). 

However, no statistical significance was found between T2D with and without DN. The plasma 

ICAM-1 levels were found to be elevated from NGT to T2D without and with DN in subjects 

with BMI <23 kg/m
2
. No significant difference of plasma ICAM-1 levels between T2D without 

and with DN was found (P=0.368). 

 

Plasma ICAM-1 concentrations in Malay subjects with normal glucose tolerance, 

and with type 2 diabetes without and with diabetic nephropathy according to the 

genotypes of the ICAM1 K469E(A/G) polymorphism 

The NGT subjects carrying K469(A/A) genotype were found to have higher plasma ICAM-1 

levels compared with the subjects carrying with K469E(A/G) (P=0.009) and 469E(G/G) 

(P=0.012) genotypes, respectively. However, there was no significant difference of plasma 

ICAM-1 levels among the patients without and with DN according to the genotypes of ICAM1 

K469E(A/G) polymorphism. 

 

Detection of the ICAM1 DNA methylation levels in Malay subjects with normal 

glucose tolerance and, with type 2 diabetes without and with diabetic 

nephropathy 
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We found that in all Malay subjects, the average DNA methylation levels of the ICAM1 gene 

including 7 CpG sites were low about 3.5%. The DNA methylation levels among these 7 CpG 

sites were varied between 0.9% and 8.4%. No significant difference was found among subjects 

with NGT (3.3%), T2D without (3.3%) and with DN (3.7) (P=0.398). 

 

 

4.4 STUDY IV 

Evaluation of the association of plasma pentraxin 3 levels with type 2 diabetes 

and diabetic nephropathy in a Malay population 

In this study, we measured plasma PTX3 levels in normal glucose tolerance (NGT) subjects, and 

T2D patients with and without DN. Plasma PTX3 levels were found to differ significantly 

between males and females. In males subjects, plasma PTX3 levels were found to be decreased 

gradually from NGT subjects to T2D patients to DN patients (3.98 vs 2.62 vs 1.63 ng/mL, P = 

0.008). No significant difference was found in female subjects.  

 

Furthermore, we analyzed plasma PTX3 levels according to body mass index (BMI). We found 

inverse correlation between plasma PTX3 levels and BMI only in male subjects with NGT (r = -

0.390, P = 0.012) but not in females. The correlation between PTX3 levels and BMI was not 

found in all male and female T2D patients with or without DN. However, in males with 

overweight, we found that plasma PTX3 levels were lower in DN patients compared to T2D 

patient without DN and NGT subjects (1.42 vs 2.60 vs 3.68 ng/mL, P = 0.044).  
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5 DISCUSSION AND FUTURE PERSPECTIVE 

In this thesis, we have performed the genetic and epigenetic studies together with protein 

analysis of SLC12A3, SLC30A8, ICAM1 and PTX3 in Malaysians subjects with T2D and DN. 

The results from our studies and further investigations are discussed and summarized as below.  

 

5.1 GENETIC AND BIOLOGICAL EFFECTS OF SLC12A3 IN DIABETIC 

NEPHROPATHY 

Cumulative epidemiological findings have shown that genetic susceptibility plays an important 

role in the pathogenesis of DN. GWAS identified SLC12A3 gene as the new candidates for DN 

[82]. The Arg913Gln polymorphism in this gene has been reported to be associated with DN in 

T2D in Japanese, Koreans and American Caucasians populations but with inconsistent 

conclusions [83], [21], [84]. We thus conducted a genetic study of the SLC12A3 gene in the 

Malaysian population (Study I). In 2003, Tanada et al. published the first genetic study of 

SLC12A3 and demonstrated that the SLC12A3 Arg913Gln polymorphism was associated with 

DN by a protective effect in a Japanese population [83]. Later, Ng et al. found the negative 

association of the SLC12A3 genetic polymorphisms with DN in a Caucasian population and 

thereby explained two possibilities [84]. First, there was a publication bias caused by “winner’s 

curse” in the report of Tanada et al. because there was no direct biological evidence in the 

literature. Second, the genetic effect of SLC12A3 may be population specific. In our study, we 

found that the SLC12A3 Arg913Gln polymorphism was associated with DN in the Malaysian 

population with a protective effect. We support the report from Tanada et al. and disagree with 

the so called “winner’s curse”. In the recent years, several GWAS of DN have been performed in 

the Caucasian populations. The results from these GWAS were inconsistent, and no association 

of SLC12A3 with DN was reported. Most likely, SLC12A3 genetic effects are population specific 

to Asian but not to the Caucasian populations. In addition, Kim et al. reported that the SLC12A3 

Arg913Gln polymorphism was significantly associated with ESRD in a Korean population. But 

the effect of the 913Gln allele was increased risk for DN [21]. The conclusion from Kim’s study 

is opposite to the data from Tanada’s. Kim et al. did not sufficiently explain how to understand 

the contradiction although they stated that the use of ESRD patients as cases might have led to 
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the strong survival bias. Whatever the selection that have caused the bias, it may not be sufficient 

to explain the opposite genetic effects of SLC12A3 in DN. Thus it is still difficult to understand 

the data from Kim’s report. 

 

There was no biological study of SLC12A3 in DN except our study. In our study, we found that 

the SLC12A3 Arg913Gln polymorphism was associated with reduced risk on T2D and DN in the 

Malaysian population. We also found that patients carrying the Gln913Gln genotype had a 

relatively low serum creatinine and higher eGFR levels compared with the Arg913Arg genotype 

carriers. Furthermore, our study in kidneys of the db/db mice demonstrated that slc12a3 protein 

was distributed in the kidney distal convoluted tubule of db/db mice at the age of 6-weeks with 

higher signal intensity compared to control mice. Using zebrafish model to study the role of 

slc12a3 in the kidney development, we found that slc12a3 may affect the pronephric distal duct 

structure when the slc12a3 gene activity was knocked down.  

The data from previous and our studies suggested that SLC12A3 is a susceptibility gene to DN in 

Malaysian population. This molecule may be a new biomarker for DN. Further investigation of 

plasma SLC12A3 analysis and prospective study in the Malaysian cohort with T2D and DN has 

been taken into our consideration. At present, however, there is no assay and/or protocol 

available for plasma or serum SLC12A3 analysis.    

 

5.1.1 Proximity ligation assay and method 

Solute carrier (SLC) family is large and there are many homologous members. This may be the 

main reason why it is difficult to analyze SLC12A3 in plasma and/or serum samples. In recent 

years, a new technique named as proximity ligation assay (PLA) has been developed to analyze 

the proteins and to validate biomarkers in plasma and/or serum samples. The attraction of plasma 

or serum biomarkers lies in their potential to reveal disease processes throughout the body and to 

guide selection of therapy and follow-up using minimally invasive blood sampling. We shall 

develop a single PLA assay to analyze plasma SLC12A3 levels in the Malaysian subjects with 

T2D and DN. 
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PLA was first described by Fredriksson et al. is an immunoassay for detection of protein 

molecules via DNA ligation and amplification, offering high specificity and sensitivity [85]. In 

PLA, pairs of affinity probes directed against the same target molecule are modified by attaching 

short single-stranded DNA molecules, creating so-called PLA probes. Upon proximal binding of 

a pair of PLA probes to a target molecule, the DNA strands are brought in close proximity and 

allowed to hybridize to a connector oligonucleotide. The DNA strands can then be joined by 

enzymatic ligation, forming a reporter DNA molecule. This new DNA sequence can be 

quantified by sensitive and specific nucleic acid detection techniques, such as quantitative real 

time PCR (q-PCR). The first form of PLA was a homogeneous-phase assay where the antigen 

was recognized by DNA aptamers in solution before ligation and amplification with real time 

detection. The assay has also been performed on solid supports by immobilizing antibodies 

directly on the walls of PCR tubes [85] or by immobilizing biotinylated antibodies on the surface 

of streptavidin-coated tubes [86]. The PLA technique has been implemented for a wide variety of 

applications to visualize proteins in situ [87], to reveal infectious agents [86] and protein-DNA 

interactions [88], and for biomarker detection in both singleplex [89], [90] and multiplex [91], 

[92]. 

The PLA approach is a great method to detect proteins present at low concentrations in highly 

complex mixture of protein. DNA ligation products that can be identified by real-time PCR make 

it available to measure many different proteins in many samples in a single run [93]. This 

technique has been applied to measure numerous potential diagnostic targets, such as Aβ 

protofibrils, suspected to contribute to Alzheimer's disease, in brain homogenates from mice 

transgenic for a human allele predisposing to Aβ aggregation [94], growth differentiation factor 

15 (GDF15) in plasma samples from colorectal cancer patients [95], parvovirus and intracellular 

bacteria in infected samples [86].  

 

5.1.2 Prospective study of SLC12A3 in diabetic nephropathy 

To evaluate SLC12A3 as a new biomarker in DN, it is necessary to perform a prospective study 

in the Malaysian population. The prospective study on the effect of SLC12A3 gene is important 

to further elucidate its efficiency as a new biomarker for T2D and DN. At the baseline, subjects 

http://www.sciencedirect.com.proxy.kib.ki.se/science/article/pii/S1570963913002884#bb0130
http://www.sciencedirect.com.proxy.kib.ki.se/science/article/pii/S1570963913002884#bb0135
http://www.sciencedirect.com.proxy.kib.ki.se/science/article/pii/S1570963913002884#bb0120
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will be grouped based on their SLC12A3 Arg913Gln polymorphism genotype. Over the certain 

time, subjects will be followed up to see their risk of developing T2D and DN. Furthermore, 

PLA method could be used to measure the plasma levels of SLC12A3 protein in the study 

subjects. This type of study allows us to understand whether duration is an independent factor for 

plasma SLC12A3. Combining all data from the genotyping together with the protein levels, 

SLC12A3 may be evaluated as a new biomarker for early diagnosis of DN.  

 

5.2 SLC30A8 DNA METHYLATION CHANGES IN TYPE 2 DIABETES 

T2D is a complex metabolic disorder influenced by genetic and environmental factors. In recent 

years, GWASs have identified a number of confirmed genetic susceptibility variants including 

SLC30A8 for T2D. However, GWAS findings can only explain ~10% of the overall heritable 

risk of T2D, which challenges our expectations to translate genetic information into clinical 

practice [96]-[98]. One of the reasons causing the missing information on heritability could be 

that epigenetic factors are involved in the complex interplay between genes and environment. 

The knowledge regarding epigenetic factors associated with T2D is still limited. Therefore, 

epigenetic studies may provide further information for better understanding of the pathogenesis 

of T2D [99]-[101].  

In study II, we demonstrated that SLC30A8 DNA methylation levels were increased in T2D 

patients compared to NGT subjects. The 6 CpG sites are located in the promoter region of the 

SLC30A8 gene. A study on palmitate-treated human islets using genome-wide DNA methylation 

showed differential SLC30A8 gene expression and an increased global DNA methylation [102]. 

Another study using human pancreatic islets suggests that interactions between genetic and 

epigenetic factors may affect T2D as several risk SNPs that influence islet function such as 

SLC30A8 by associated with alternative splicing events in the human islets [103]. In our study, 

we had no tissue sample of pancreatic islets available for analysis, which was a limitation. 

However, epigenetic study with blood samples is clinical accessible. A recent report has 

indicated that both approaches of whole-blood DNA methylation profiling and adipose tissue 

specific methylation analysis for study of epigenetic changes related to BMI and suggested that 
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the analysis of blood DNA methylation is worthwhile and can reflect changes in relevant tissues 

for a phenotype [104]. 

 

5.3 ICAM1 K469E (A/G) POLYMORPHISM GENOTYPE DISTRIBUTION IN THE 

MALAY POPULATION 

In study III, we investigated genetic association of the ICAM1 K469E(A/G) polymorphism with 

T2D and DN in the Malay subjects. The data indicated that the major allele A of this 

polymorphism conferred the risk susceptibility to diabetes and DN. A recent meta-analysis based 

upon our and other studies has confirmed that the ICAM1 K469E(A/G) polymorphism affects 

individual susceptibility to diabetes and diabetic microvascular complications [105]. Particularly, 

a high heterozygous index of the ICAM1 K469E(A/G) polymorphism is presented in the 

Malaysian, Swedish [106] but not in Chinese populations [107].  

 

ICAM-1 protein acts as ligands and the primary receptors for ICAM-1 are integrins, which 

mediate cell-cell interactions and allow signal transduction. Unlike most integrin-binding 

proteins, ICAM-1 does not contain an RGD (Arg-Gly-Asp) motif to promote integrin binding, 

but targets to leukocyte adhesion protein 1 (LFA-1) and Mac-1 [108]. The ICAM1 K469E(A/G) 

polymorphism resides in the 5th Ig-like domain of ICAM-1 protein. This domain is essential for 

dimerization, surface presentation and solubilization of the protein and subsequently plays a 

crucial role in the activity of ICAM-1 protein in the interaction with LFA-1 and the adhesion of 

B cells [109]. The ICAM1 polymorphism K469E(A/G) is non-synonymous and results in a 

change of the amino acid sequence (from glutamic acid to lysine). Therefore, it is necessary to 

analyze the circulating ICAM-1 levels according to the genotypes in order to better understand 

the biological effect of the ICAM1 K469E(A/G) polymorphism. Analyzing the ratio of the two 

forms of ICAM-1 protein according to the ICAM1 K469E(A/G) polymorphism genotypes may 

be useful for predicting susceptibility to diabetes and DN. 
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5.4 PLASMA PTX3 LEVELS IN TYPE 2 DIABETES AND DIABETIC NEPHROPATHY 

In study IV, we reported the gender difference of plasma PTX3 levels in a Malay cohort. Plasma 

PTX3 levels were found to be decreased in males with T2D and DN. An inverse correlation 

between PTX3 and body mass index was found in male subjects with NGT. Previously, a group 

in Japan reported that plasma PTX3 levels are different between males and females in a healthy 

Japanese population [110]. Conversely, plasma PTX 3 levels were found to be elevated in CKD 

patients [111]. They found that in CKD patients, plasma PTX3 was a significant predictor 

of PTX3 mRNA independent of age, sex and diabetes. They also reported no significant 

correlations between BMI and plasma PTX3 in both patients and control group. The same 

observation was found in the study conducted among CKD patients [112]. Therefore, we 

suggested that PTX3 may have different effects in DN and CKD. 

 

5.5 TISSUE SPECIFIC DNA METHYLATION ANALYSIS  

DNA methylation has been extensively studied in medical research and has become a potential 

biomarker due to its specificity and stability in human samples. They can reflect past 

environmental exposures, predict disease onset or course, or determine a patient’s response to 

therapy [113]. The analysis of DNA methylation biomarkers could be done in many types of 

tissue samples including cell-based samples such as blood and tumor cell material and cell-free 

DNA samples such as plasma. The homogeneity at cellular stage within a tissue samples is the 

most desired characteristic for a DNA methylation analysis. However, the samples such as blood 

or even blood fractions such as mononuclear cells which are clinical accessible exhibit cellular 

heterogeneity [114]-[116]. Fortunately, the variation in DNA methylation that occurs from the 

different cell-type can be assessed using either differential cell counts [117] or statistical 

adjustment in post hoc regression models [118]-[120]. 

In cancer research, DNA hypermethylation analysis of the SEPT9 promoter has been used in the 

clinic. The detection of DNA methylation levels in the v2 region of the SEPT9 promoter in the 

blood is sampled in the clinic and followed by analyzed in the laboratory [121]. Association 

study between DNA methylation and BMI has been performed recently by Dick and his 

colleagues. They reported the association of BMI and specific HIF3A methylation sites was the 
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same both in blood and adipose tissues [104]. Those reports support the possibility DNA 

methylation blood-based analysis to be used as a biomarker for prediction of the disease. 

In this thesis, we analyzed the blood DNA methylation levels of SLC30A8 and ICAM1 in T2D 

and DN subjects. Although SLC30A8 is mainly expressed in the pancreatic islets, based on the 

reports from other groups indicated that DNA methylation analyses using whole blood is still 

relevant [121], [104]. However, it will be interesting to measure the SLC30A8 DNA methylation 

levels both in the whole blood and pancreatic islets from the same subject. This will help us to 

further understand the DNA methylation role and the pathogenesis of the disease. 

In T2D, the previous reports have showed strong evidence that environmental exposure in early 

life would affect the progress of the disease later [122]. This opens opportunity for discovering 

DNA methylation as biomarkers to estimate and predict the risk of developing T2D. 
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6 CONCLUSIONS 

Overall, we have analyzed four candidate genes of SLC12A3, SLC30A8, ICAM1 and PTX3 in the 

Malaysian subjects with T2D and DN. Results may provide useful information for better 

understanding of the pathogenesis of the diseases.  

 

Study I provided the first biological and further genetic evidence that SLC12A3 has genetic 

susceptibility in the development of DN, while the minor 913Gln allele in this gene confers a 

protective effect in the disease. We shall add our effort to analyze SLC12A3 protein variation in 

diabetes patients and evaluate this molecule as a new biomarker in DN. 

 

Study II demonstrated that the average DNA methylation levels of the SLC30A8 gene in the 

Malay population were at the high levels (~81.4%) and provided the first evidence that increased 

DNA methylation of the SLC30A8 gene promoter is associated with T2D but not DN.  

 

Study III showed that the ICAM1 K469E(A/G) polymorphism in parallel with increased plasma 

ICAM-1 levels was associated with DN in the Malaysian population and suggested that 

analyzing ICAM-1 protein according to the ICAM1 K469E(A/G) polymorphism genotypes may 

be useful for predicting susceptibility to DN. 

 

Study IV indicated that plasma PTX3 variation had gender difference in the Malay population. 

The decreased plasma PTX3 levels were associated with T2D and DN in Malays men. 
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