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ABSTRACT

Function and survival of pancreatic islet insulin-producing beta-cells (β-cells) and glucagon-
producing alpha-cells (α-cells) were studied, and methods for this purpose were developed or 
refined.

Dynamic control of glucose metabolism is essential for β-cell stimulus-secretion coupling. ATP 
is an important metabolic parameter and therefore we set up a technique to monitor dynamic 
changes of ATP in insulin-producing cells using luciferase bioluminescence at the level of single 
cells or groups of cells. We could detect a decrease in ATP in response to the mitochondrial
uncoupler FCCP in HIT M2.2 cells and an increase in ATP in response to glucose in intact 
mouse islets.

The glucose-induced stimulus-secretion coupling was also studied in a mutant mouse model 
with β-cell specific depletion of mtDNA and consequently disruption of the mitochondrial 
respiratory chain. In this model we could observe disrupted response in mitochondrial
membrane potential (MMP), impaired response in the cytoplasmic free Ca2+ concentration 
([Ca2+]i) as well as disrupted insulin release.

The interrelation between [Ca2+]i and MMP was studied in response to glucose stimulation and 
to non-metabolic stimuli in mouse β-cells using a method for simultaneous detection of these 
two parameters. Our results indicate involvement of Ca2+-dependent activation of mitochondrial 
dehydrogenases, under low glucose conditions. MMP depolarization due to Ca2+-influx into 
mitochondria is consistent with effects under high glucose conditions. The latter phenomenon 
could also be observed subsequent to every peak of glucose-induced slow [Ca2+]i oscillations.

A method for on-line detection of apoptosis at single-cell level was established with a FRET-
based biosensor that was sensitive to caspase-3-like proteases, which act as executive caspases 
in several pathways of apoptotic cell-death. This was detected by two-photon laser scanning 
microscopy, a modality that is commonly used for in vivo microscopy. Therefore we conclude 
that the method has the potential to be used for in vivo detection of apoptosis.

Methods for enrichment of human and rat pancreatic α-cells were established or modified using 
fluorescence-activated cell sorting (FACS) based on only intrinsic cellular properties such as 
light scatter and autofluorescence. The sorted cells showed high purity, high viability and also 
demonstrated functional [Ca2+]i responses.

In conclusion, the methods that I have developed or refined are successfully used in studies of 
islet cell function and survival, and they will be useful also for future in vivo experiments. My 
results contribute to our understanding how islet cells function in physiology and how their 
function becomes compromised in diabetes.
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1 INTRODUCTION

Insulin is the main blood glucose lowering hormone and therefore it has a decisive role
in blood glucose homeostasis. This hormone is secreted from the pancreatic β-cell that 
is the predominant type of cell in the pancreatic islet. Another pancreatic islet cell type 
is the α-cell that secretes the hormone glucagon which serves to increase the blood 
glucose level. Insulin stimulates glucose uptake by skeletal muscle and fat. Glucagon 
mobilizes glucose from the liver into the circulation, whereas insulin inhibits this 
mobilization. Diabetes mellitus (DM), or simply diabetes, is a group of metabolic 
diseases that are characterized by elevated blood glucose, hyperglycemia. These disease 
states involve dysfunctional secretion of both insulin and glucagon. Type 1 diabetes 
mellitus (T1DM) results from autoimmune destruction of the pancreatic β-cells 
whereas Type 2 diabetes mellitus (T2DM) is associated with a gradual loss of β-cell 
function during the progression of the disease. Secretion of glucagon from α-cells is 
also often deranged both in T1DM and T2DM, where a paradoxical elevation of 
glucagon in hyperglycemic subjects exacerbates the disease.

Both the pancreatic β-cell and α-cell serve as metabolic glucose-sensors where glucose 
metabolism converts a glucose-concentration signal into a secretory response, a process 
referred to as the ‘stimulus-secretion coupling’. Metabolic sensing in these cells is 
dynamically mediated by glycolysis and mitochondrial respiration in response to
glucose. Stimulated metabolism leads to an increased free cytoplasmic ATP/ADP ratio
and polarization of mitochondrial membrane potential in addition to many other 
changes. A severe alteration of β-cell mitochondrial metabolism can lead to β-cell 
dysfunction, to β-cell death and consequently also to diabetes.

The cytoplasmic free Ca2+ concentration ([Ca2+]i) serves as an important coupling 
factor between metabolism and insulin release from the β-cell. Closure of ATP-
regulated K+ channels leads to depolarization of the β-cell and consequent opening of 
voltage-gated Ca2+ channels in the plasma membrane with resulting increase in [Ca2+]i.
High [Ca2+]i triggers exocytosis of insulin granules. Moreover [Ca2+]i can alter 
mitochondrial metabolism leading to possible feed-back loops.

The mechanism for auto-immune destruction of β-cells in the pathogenesis of T1DM 
can either be apoptosis or necrosis. Factors found in the serum from newly diagnosed 
T1DM patients can initiate β-cell apoptosis.

The metabolic status, as detected from cellular autofluorescence, can be used as a cell-
specific fingerprint to distinguish between and separate different cell types, like
β-cells and α-cells.

In the current thesis, the general aim has been to develop and use light microscopy 
techniques, based on fluorescence and luminescence, for functional assessment of 
pancreatic islet cells.
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2 BACKGROUND

2.1 THE PANCREATIC ISLET AND ISLET CELLS

Paul Langerhans, as a German medical student, discovered in 1869 discrete cell-
clusters dispersed in the rabbit pancreas [1]. These microorgans are now known as the 
‘islets of Langerhans’, or ‘pancreatic islets’. Their role for glucose homeostasis 
emerged from work in the late 19th century and onwards.

The pancreatic islets constitute approximately 1-2% of the mammalian pancreas. In 
humans this corresponds to 1-2 million islets [2], whereas the rat pancreas contains 
4000-5000 islets [3; 4] and mouse pancreas contains about 900-4500 islets [5; 6]. The 
islet consists of at least five types of endocrine cells; alpha (α) cells producing 
glucagon, beta (β) cells producing insulin, delta (δ) cells producing somatostatin,  PP 
cells (gamma cells) producing pancreatic polypeptide and epsilon (ε) cells producing
ghrelin [7]. Out of these cells, the most predominant cell type is the β-cell that 
represents 60-80% of the rodent endocrine islet cells, and around 50% of the adult 
human islet cells [8]. α-cells represent 15-20% of the rodent endocrine islet cells and 
around 40% of the human islet cells [8].

The islet cells are stimulated by nutrients, hormones and other factors via the islet 
vasculature network [9; 10]. The islet cells are also modulated by neural regulation
[11]. Intra-islet coordination of cells is carried out by intercellular [12], autocrine [13; 
14] and paracrine [15; 16] mechanisms leading to the islet output of hormones that 
serve as main systemic regulators of blood glucose concentration [17; 18].

2.2 GLUCOSE METABOLISM IN PANCREATIC BETA CELLS

Glucose is transported into cells via glucose transporters, a process that is normally not 
rate limiting in β-cells [19]. Thereafter glucose is oxidized through the regulated 
process of glycolysis to generate pyruvate or lactate. Pyruvate enters mitochondria and
converts into Acyl-CoA that is the main substrate for the mitochondrial Krebs cycle
that feeds high-energy electrons into the mitochondrial respiratory chain via the 
reduced coenzymes NADH and FADH2. Respiration is a key way for the cell to gain 
energy in the form of the phosphorylated molecule ATP.

The respiratory chain takes place within the inner mitochondrial membrane and 
consists of a number of steps, reactions within the complexes named I to V, where the 
reducing potential of NADH and FADH2 is eventually converted to ATP. O2 is the final 
electron acceptor when O2 and H+ form H2O by the electron transport chain complex 
IV. Protons (H+) are transported into the mitochondrial intermembrane space by 
complexes I, III and IV, which creates the so called proton motive force across the 
inner mitochondrial membrane. The proton motive force has two components, namely 
the mitochondrial membrane potential (MMP or Δψm) and the proton concentration
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gradient. The proton motive force drives complex V, also known as ATP synthase, 
where ADP is phosphorylated to ATP.

MMP can be monitored in intact cells with fluorescent indicators. The MMP becomes 
more negative (polarizes) as a consequence of enhanced respiration after addition of 
glucose.

Metabolism plays a central role for β-cell function and survival and therefore metabolic 
dysfunction (either glycolytic [20] or mitochondrial [21-25]) can act as a main or as a
contributing factor for T2DM.

In β-cells it has been shown that glucose metabolism can be regulated by feed-back
inhibition and stimulation whereby dynamic cyclic fluctuations, oscillations, of
metabolites are generated. In this context, most attention has been given to oscillations
in the glycolytic pathway [26; 27].

2.3 BETA CELL MEMBRANE POTENTIAL, Ca2+ AND EXOCYTOSIS

The resting β-cell membrane potential, at low glucose conditions, is around -60 to -70
mV. Stimulation of glucose metabolism increases the cytoplasmic ATP concentration 
that leads to closure of ATP-regulated K+ channels (KATP channels), resulting in
depolarization of the β-cell plasma membrane [28-30]. Depolarization to a threshold 
potential of -40 mV leads to activation of voltage gated L-type Ca2+ channels and 
thereby an increase in [Ca2+]i, that ultimately triggers exocytosis of insulin [31].

Figure 1. The main mechanism of glucose-stimulated insulin secretion (GSIS) 
in the pancreatic β-cell. Glucose that enters into the β-cell is metabolized to form 
ATP. The increased ATP/ADP ratio leads to the closure of ATP-sensitive K+

channels and subsequent depolarization of the plasma membrane. This in turn leads 
to opening of voltage-dependent L-type Ca2+ channels and influx of Ca2+, which 
triggers insulin exocytosis.
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Insulin release is known to be pulsatile, oscillating, both in vitro and in vivo in normal 
subjects [32-35]. Lack of oscillatory insulin secretion is one of the earliest defects 
observed in T2DM [36; 37]. These oscillations are associated with both bursting 
electrical activity and also with metabolic oscillations in β-cells [38]. Bursting electrical
activity [39] leads to oscillating [Ca2+]i [40] that induces oscillations in insulin
secretion [41-43].

The mechanism of islet β-cell bursting electrical activity and oscillating [Ca2+]i has 
been studied extensively, both experimentally [40; 44-46] and theoretically [38; 47; 
48]. The main components are known, but there are still some details that remain to be 
understood, in particular for other species than rodents. A constant glucose 
concentration of 10 mM given to intact islets typically evokes a slow wave electrical 
activity pattern on which action potentials, bursts, are superimposed [28]. After the 
depolarization phase of the burst, that is associated with Ca2+ influx through voltage-
gated L-type Ca2+ channels, there is a phase where action potentials are initiated from a 
plateau potential. During both these phases there is a substantial influx of Ca2+ that 
accumulates in the cytoplasm and in intracellular Ca2+ stores like endoplasmic 
reticulum (ER). Every burst is terminated by a rapid repolarization to slightly below the 
threshold potential. This repolarization is mediated by opening of Ca2+ activated K+

channels [49-52], where Ca2+ from ER plays an active role [53]. Repolarization also 
leads to closure of L-type Ca2+ channels whereby [Ca2+]i decreases. Oscillating [Ca2+]i

that is associated with islet β-cell bursting electrical activity, we denote as ‘fast 
oscillations’. Typical period for the fast oscillations is in the range 6-30 s, and this 
oscillatory pattern has been described to be disturbed in islets from DM models and in 
ageing [25; 54].

[Ca2+]i oscillations associated with metabolic oscillations are typically slower, with 
periods in the order of minutes. These slow oscillations can be observed both in single 
β-cells and in islets. The periods of slow oscillations coincide with the periods observed 
for insulin oscillations in man and rodents in vivo [34; 35].

2.4 INTERPLAY BETWEEN Ca2+ AND GLUCOSE METABOLISM

Mitochondrial metabolism and [Ca2+]i are both intimately involved in glucose-
stimulated insulin secretion (GSIS). In this context it is important to understand how 
these parameters are interrelated, a broad topic that has been studied both in general
[55-57] and specifically in β-cells [58-60]. Some direct or indirect mechanisms
identified until now are listed below.

Examples how mitochondrial metabolism can regulate β-cell [Ca2+]i:

Removal of Ca2+ from cytoplasm:
ATP stimulates Ca2+ ATPases that remove Ca2+ from cytoplasm over the 
plasma membrane or into organelles and thereby lowers [Ca2+]i [61; 62].
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Influx of Ca2+ from extracellular space:
ATP binds to KATP channels leading to depolarization of plasma membrane 
[28], opening of voltage-gated Ca2+ channels and influx of Ca2+.

[Ca2+]i modulation by mitochondria:
Dynamic Ca2+ responses can be modulated by mitochondrial MMP-dependent 
Ca2+ uptake [63] and Ca2+ extrusion.

[Ca2+]i modulation by other organelles:
Dynamic Ca2+ release from other organelles, like sarcoplasmic reticulum and 
ER, is modulated by ATP. Examples are the potentiating effect of ATP on the 
sarcoplasmic reticulum Ca2+ channel/ryanodine receptor [64] and enhancement 
of Ca2+ release through IP3 receptors [65].

Other ATP-dependent mechanisms: 
ATP can control formation of signaling molecules like cAMP [66; 67] that 
modulates [Ca2+]i.

Examples how [Ca2+]i can regulate β-cell mitochondrial metabolism:

Loss of proton motive force: 
MMP can depolarize in response to an increased influx of Ca2+ into 
mitochondria [68-70].

Stimulation of Krebs cycle: 
Ca2+ activates dehydrogenases in the Krebs cycle leading to increased 
respiration and MMP polarization [71].

Regulation through rate of glycolysis: 
Glycolysis can be partly regulated by Ca2+ and thereby regulate mitochondrial 
respiration [72].

Regulation of mitochondria by Ca2+-binding proteins: 
Signaling through calmodulin [73] or other Ca2+-binding proteins.

One should bear in mind that mechanisms differ in terms of kinetics, localization and 
substrate sensitivity. These factors determine when and how one particular mechanism
will be activated.

2.5 DIABETES MELLITUS AND BETA CELL APOPTOSIS

Apoptosis, programmed cell death, plays a critical role to maintain physiological 
homeostasis of cell turnover throughout the life of a multicellular organism [74; 75].
The β-cell mass is dynamic and regulated by neogenesis, proliferation, dedifferentiation
[76] and apoptosis in order to meet the long-term demand of insulin to maintain blood 
normoglycemia.

However, during a prolonged period of diet-induced hyperglycemia and hyperlipidemia 
the β-cell mass will eventually be reduced in diabetes prone gerbil ‘sand rat’
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Psammomys obesus [77-79]. Like in humans these animals with increased insulin 
resistance go through an initial phase of partial adaptation with increased insulin 
secretion. The reduction of β-cell mass is associated with apoptosis.

Reduction of β-cell mass is also observed in human T2DM, even if the values of human 
β-cell masses varies within an extraordinary wide range [80]. No study has reported 
increased β-cell mass in T2DM [81]. Also in humans the process of β-cell mass 
reduction in T2DM has been associated with increased apoptosis [82].

T1DM is caused by a selective autoimmune destruction of β-cells where the β-cell
mass can be reduced already by 70-80% at the time of diagnosis [83]. The process of β-
cell destruction is associated with inflammation caused by pro-inflammatory cytokines
that are released from activated macrophages and T-cells infiltrating the islets [84; 85].
In particular the three pro-inflammatory cytokines interleukin-1β (IL-1β), interferon-γ 
(IFNγ) and tumor necrosis factor-α (TNFα) have been extensively studied because of 
their induction of β-cell apoptosis or necrosis [83; 86-88]. IL-1β is able to promote β-
cell destruction on its own in isolated islets [89], but it is unlikely that any of these three 
cytokines will act alone in human diabetes. Their signaling pathways are complex but 
these converge at the final step of execution, namely the activation of caspase-3-like 
proteases [90-92]. Caspase-3 is the principal executor of apoptosis and caspase-3-
mediated β-cell apoptosis is a key initiating event in T1DM [93]. Caspase-3-like
proteases selectively cleave the amino acid sequence DEVD in a number of target
proteins leading to a controlled dismantling of intracellular components while avoiding 
inflammation. One early identified target protein for Caspase-3 was PARP1 [94].

Reduction of β-cell mass during the progression of T2DM appears to be associated with 
apoptosis through islet inflammatory mechanisms that were suggested to have common 
denominators with cell death in T1DM [88; 95-98]. However, this is possibly an
oversimplification due to the known differences between pathogenesis of T1DM and 
T2DM [83]. As a consequence, caspase-3 may not always be activated during reduction 
of β-cell mass in T2DM.

2.6 THE PANCREATIC ALPHA CELL

Glucose homeostasis is mainly controlled by the balance between glucagon and insulin
concentrations in the blood. Hypoglycemia stimulates glucagon secretion from the
pancreatic α-cells, which leads to increased hepatic glucose output and will therefore 
counteract the glucose lowering effect of insulin [99]. This balance is dysfunctional in 
both T1DM and T2DM where glucagon secretion response can be either too low to 
reverse hypoglycemia [100-102] or too high which aggravates hyperglycemia [103-
105]. The α-cell function under healthy and diabetic conditions has been studied over 
the last decades, but the understanding is still limited [99].

α-cells can be studied within the intact islet. However, under these conditions direct 
effects on the α-cells can be difficult to distinguish from effects due to indirect 
involvement of other islet cell types. To clearly reveal direct effects on α-cells they
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have to be studied in pure preparations. In order to separate one cell type from another
one need to identify the unique cellular characteristics of that cell, and these parameters 
must be measurable. The metabolic response of α-cells to glucose differs from that of
β-cells [106] and therefore it is not surprising that the levels of fluorescent oxidized 
flavin FAD, as well as the fluorescent reduced pyridine nucleotides NADH and 
NADPH, can be used to distinguish between these cell types. Other detectable 
parameters are forward and side scatter reflecting cell size and granularity that can also 
be expected to differ between the islet cell types. Additional cell specific criteria have 
been used, but these normally require staining of cell-specific surface receptors [107; 
108] or staining of intracellular targets [109].
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3 AIMS

The overall objective of this thesis was to develop and apply methods based on 
fluorescence and luminescence for functional assessment of islet cells.

The specific aims were to:

Develop and evaluate a method for on-line monitoring of intracellular ATP in 
single insulin-producing cells.

Characterize islet function in a mouse model with severe depletion of 
mitochondrial DNA.

Characterize the interrelation between changes in [Ca2+]i and MMP in 
pancreatic β-cells.

Develop and demonstrate a method for on-line monitoring of apoptosis based 
on a fluorescent protein sensitive to caspase-3 activation.

Develop, optimize and evaluate a new procedure to sort functional human and 
rat pancreatic α-cells.
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4 MATERIALS AND METHODS

4.1 MATERIALS

Materials used in the experiments reported in the work are described in detail in the 
papers (I-V).

4.2 CELLS

4.2.1 Mouse and rat primary cells
Adult obese non-diabetic mice (gene symbol ob/ob) were obtained from a local colony
[110]. Control heterozygous C57BL/KsJ-db/+ mice were obtained from a local colony.
Wistar rats were obtained either from Scanbur AB (Sollentuna, Sweden) or from 
Charles River (Germany).
Rodent pancreatic islets were isolated by collagenase digestion and hand-picked 
essentially as previously described [111]. The variation of isolation methodology
between the studies is described in papers I-V. Dissociation of islets into cell 
suspension was performed as described in papers III-V. Mouse islets were normally 
cultured in RPMI 1640 medium containing 10% (vol/vol) fetal calf serum (FCS), 2 mM 
L-glutamine, 50 IU/ml penicillin, and 50 µg/ml streptomycin unless otherwise stated.
Culture of rat islets is described in paper V.

4.2.2 Human islets
Human pancreata were obtained within the Nordic Network for Islet Transplantation 
from deceased donors with total brain infarction after appropriate consent. The islets 
were isolated at the Division of Clinical Immunology at the University of Uppsala, as
previously described [112].

4.2.3 Cell lines
The clonal rat β-cell line RINm5F [113; 114] was cultured in RPMI 1640 medium, 
supplemented with 10% FCS, 100 µg/ml streptomycin and 100 IU/ml penicillin.
The clonal hamster β-cell line HIT M2.2 [115; 116] used in paper I was cultured in 
DMEM medium supplemented with 2 mM L-glutamine, 10% FCS and 50 µg/ml 
gentamycin.
The clonal mouse β-cell line MIN6 [117] was cultured in DMEM medium containing 
25 mM glucose supplemented with 10% (vol/vol) FCS, 50 µM β-mercaptoethanol, 50 
U/ml penicillin and 50 µg/ml streptomycin.
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4.3 BIOLUMINESCENCE MICROSCOPY

Bioluminescence is light produced by a chemical reaction which originates in an 
organism [118-120]. Several types of bioluminescent reactions have been used for 
chemical analysis and instruments for this have evolved during the last few decades 
[119-122]. The most well-known bioluminescent assay is based on the firefly luciferase 
found in the light-emitting organ of the American firefly Photinus pyralis [123]. The 
reaction uses ATP and luciferin as substrates and this assay is considered to be one of 
the most sensitive analytical tools for detection of ATP. One challenge for detection is 
that bioluminescence generates much less light than fluorescence. However, there is no 
background signal in bioluminescence except for background (dark) signal from the 
detector or contaminating signal from ambient light in the room. We used (in paper I) a 
standard inverted fluorescence microscope (Zeiss Axiovert 135TV, Zeiss, Germany) 
for the task to detect bioluminescence signal from cells expressing luciferase. The 
luminescence signal was detected by either a photon-counting photomultiplier tube 
(PMT) or an intensified integrating CCD camera (Luminescence Imager, Photonic 
Science, EastSussex, UK). Special care had to be taken to reduce background signal by 
cooling the detector and to minimize light in the room. Since year 2008 there is one 
microscope model on the market that is optimized for single-cell bioluminescence 
microscopy [124] with more than 10x increase in light-collection efficiency, a fact that
illustrates the challenge to use standard microscopes for this purpose. This optimized
microscope was also used for single-cell detection in radioluminescence microscopy 
[125]. In this context it is also worth mentioning the term bioluminescence imaging
(BLI) that refers to the noninvasive technology developed over the past decade to study 
ongoing biological processes by bioluminescence in small animals [126; 127].

4.4 FLUORESCENCE MICROSCOPY AND CYTOMETRY

4.4.1 Live-cell fluorescence microscopy, indicators and sensors

Fluorescence is the emission of light by a substance that has absorbed light.
Fluorescence microscopy utilizes the wavelength difference between exciting and
emitted wavelengths to separate fluorescent emitted light from a non-fluorescent
background [128]. This technique can be used to study dynamic processes in living 
cells [129] using a variety of fluorescent probes [130; 131] and fluorescent proteins 
[132].

One commonly used fluorescent indicator for dynamic monitoring of [Ca2+]i is fura-2
[133] that was used in papers I, II, III and IV. Ca2+ binds selectively to fura-2 which
shifts its peak absorbance wavelength when bound. Therefore fura-2 fluorescence 
intensity, measured around 510 nm, increases in response to Ca2+ binding when excited 
at 340 nm, while fluorescence from 380 nm excitation will decrease. The ratio between 
these two signals (340/380) will reflect the level of [Ca2+] irrespective of the number of 
fura-2 molecules detected. This indicator is therefore called ‘ratiometric’ in contrast to
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‘non-ratiometric’ indicators. For overview of available Ca2+ sensitive chemical
indicators see [134]. In our studies we loaded cells with fura-2/AM, which is the
acetoxymethyl (AM) ester form of the hydrophilic fura-2 molecule. Fura-2/AM is
highly lipophilic and thereby membrane permeable. Once this molecule entered into a
cell, intracellular esterases cleave the AM ester group by hydrolysis, and the molecule
is trapped in the cytoplasm.

Changes in MMP were monitored in papers II and III using the fluorescent indicator
Rh123 [135-137]. Rh123 is a lipophilic cation dye that loads directly into mitochondria 
due to its charge. The Rh123 distribution between cytosol and mitochondria is 
determined by the MMP, where depolarization of MMP leads to redistribution from 
mitochondria to cytoplasm. Redistribution of Rh123 into mitochondria at 
hyperpolarized MMP leads to a concentration-dependent quenching of the dye. 
Therefore the Rh123 fluorescent signal decreases when MMP polarizes.

Cellular autofluorescence in mammalian cells is dominated by two distinct molecular 
species, one with fluorescence emission around 520 nm and the other one with 
emission around 440 nm [138]. The first species originates from naturally occurring 
oxidized flavins and flavin nucleotides based on the FAD cofactor, especially FMN, 
FAD and riboflavin [139]. We denote this species simply as FAD. FAD fluorescence 
was used in paper V. The second autofluorescent molecular species originates from the 
reduced pyridine dinucleotides NADH and NADPH [140]. We denote this species as 
NAD(P)H because NADH and NADPH have a significant spectral overlap, and are 
therefore difficult to separate. NAD(P)H fluorescence was used in papers III and V.

FRET is a non-radiative energy transfer mechanism that occurs when two fluorophores 
are in sufficient proximity (<100 Å). The efficiency of this energy transfer is inversely 
proportional to the sixth power of the distance between donor and acceptor, making 
FRET extremely sensitive to small changes in distance [141]. FRET efficiency can be 
measured in several ways, and we use the mode called ‘sensitized emission’ where the 
FRET donor is excited and fluorescence intensity is monitored both from the FRET 
donor and the FRET acceptor molecules. In this way an increased FRET efficiency will 
result in a stronger emission from the acceptor molecule and lower emission from the 
donor molecule, due to the transfer of energy from donor to acceptor.
The fluorescent proteins ECFP and EYFP can be spectrally separated. However, the
emission spectrum of ECFP overlaps with the excitation spectrum of EYFP which
implies that ECFP and EYFP are suitable to use as a ‘FRET pair’ [142]. This FRET
pair has been used in numerous studies, one early example being the Ca2+ sensor
Yellow Cameleon [143]. We utilized this protein construct as a basis for our
construction of C-DEVD-Y in paper IV.

4.4.2 Fluorescence microscopy

Epi-fluorescence microscopy [144] is the most commonly used setting for fluorescence 
microscopy. An epi-fluorescence microscope is configured to excite and detect 
fluorescence through the same objective, and the light from the excitation light path is 
separated from light to the emitted light path by a wavelength-specific dichroic mirror. 
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Additional filters are normally used both in the excitation and in the emission light 
paths in order to excite and detect only the specific fluorophore and to reduce non-
specific background signal.

The term ‘widefield microscope’ refers to an epi-fluorescence microscope with
simultaneous illumination of the whole sample where the detected fluorescence signal 
includes both in-focus and out-of-focus information. The dynamic experiments with 
fura-2 (in papers I, II, III and V) and Rh123 (in papers II and III), as well as some 
experiments with C-DEVD-Y (in paper IV) were performed on widefield microscopes
using either PMT detectors or CCD camera for fluorescence detection.

4.4.3 Confocal and two-photon laser scanning microscopy

Confocal laser scanning microscopy (CLSM) is another modality of fluorescence 
microscopy, where one single point of the specimen is illuminated at a time and out-of-
focus signal is rejected by a pinhole in front of the detector. The specimen is scanned 
point-by-point and the fluorescence image is reconstructed in the computer, which 
results in a confocal fluorescence image. The word confocal means that all points have 
the same focus. CLSM was used in paper III.

Two-photon laser scanning microscopy (TPLSM) is yet another modality of
fluorescence microscopy, which also results in confocal images [145-147]. This 
modality is based on the concept of two-photon excitation that was first described in
1931 [148] and verified experimentally in 1963. In normal fluorescence excitation, as 
used with CLSM, one photon is absorbed to excite one fluorophore molecule from a 
ground state to an excited state which thereafter emits one photon when the molecule 
relaxes down to the ground state. In two-photon excitation, a near-simultaneous 
absorption of two low-energy photons will result in excitation by the combined energy 
of these two photons. Based on this principle TPLSM was invented in 1990 [145]. 
Two-photon excitation has a quadratic dependence of absorption in light intensity 
which limits excitation to a small focal volume, thus avoiding excitation of out-of-focus 
structures. This means that all fluorescence emission will originate from the focal plane 
and that photobleaching and phototoxic effects will be limited to the focal plane. One 
advantage of TPLSM is the use of low-energy, long-wavelength, photons that can 
penetrate deeper into tissues thanks to lower absorbance and less scatter at these 
wavelengths. This is a main reason why TPLSM is now widely used as a modality for 
in vivo fluorescence imaging. TPLSM was used in paper IV.

4.4.4 Fluorescence-activated cell sorting
Cytometry is the measurement of physical/chemical characteristics of cells or other 
biological particles. Flow cytometry measures characteristics of cells in a flow system 
which delivers cells, one by one, past a point of measurement in an instrument called 
flow cytometer [149; 150]. These values can be used in order to define what cell that 
should be sorted or not, in a fluorescence-activated cell sorter (FACS) [151; 152]. We 
used a FACS system equipped with 5 lasers and 16 PMT detectors in total, including
fluorescence, forward scatter and side scatter detectors. FACS was used in paper V.
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5 RESULTS AND DISCUSSION

5.1 DEVELOPMENT AND EVALUATION OF A METHOD FOR ON-LINE 
MONITORING OF INTRACELLULAR ATP (PAPER I)

Dynamics of glucose metabolism play an essential role in the stimulus-secretion 
coupling of the pancreatic β-cell [153]. One important metabolic parameter required for 
insulin release is ATP. As a consequence, the intracellular ATP concentration was 
expected to change dynamically in the β-cells. In order to investigate this we wanted to
monitor ATP dynamics in β-cells in response to metabolic stimuli. One may note that at
the time when we performed this work, no other investigator had reported real-time
dynamic monitoring of ATP in intact insulin-producing cells. A report of our early
work in this context was published in 1995 [154].

A well-established and sensitive way to detect the ATP concentration is to use the 
protein luciferase to catalyze a reaction that generates luminescence using ATP,
D-luciferin and oxygen as substrates. When ATP is the limiting factor, the intensity of
light generated will be proportional to the ATP concentration.

With the aim to monitor intracellular ATP in single insulin-producing cells, we 
therefore set to express the luciferase protein in an insulin-producing cell line named 
HIT M2.2. A number of challenges had to be solved in order to accomplish this:

1. A plasmid had to be introduced into the cells in order to express luciferase.

2. A sensitive method to monitor single-cell luminescence had to be established.

3. A procedure had to be established that alters the cellular ATP such that we 
could detect a luminescence response.

4. We had to demonstrate that the detected response correlated with an
alternative readout method that also reflects dynamic ATP changes.

First: In order to transiently express luciferase we tried to transfect the HIT M2.2 cells
with the plasmid pRSVL in different ways including the methods of calcium phosphate
precipitation, Lipofectamin transfection and electroporation. Despite the massive cell 
death caused by the electroporation procedure, we found this method most useful 
because it produced the highest and most reproducible luciferase expression in the HIT
cells that survived the procedure.

Second: A microscope, which was primarily configured for epi-fluorescence, was used 
to detect luciferase luminescence in single cells or in clusters of cells. The signal from
luciferase bioluminescence is some orders of magnitude lower than a normal 
fluorescence signal. Therefore we made a cooling device for the PMT detector in order 
to reduce the dark count background signal from ~ 800 cps (counts per second) down to 
~ 3 cps. This was essential because the luminescence signal detected from the cells 
could be as low as a few tens of cps.

Third: The HIT M2.2 cells did not respond well to glucose stimulation, possibly due to 
a predominant low Km hexokinase I glucose phosphorylation and defective glucose 
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transport [155]. Therefore we used a non-physiological method to alter intracellular 
ATP in these cells, namely mitochondrial blockers that are expected to lower the 
intracellular ATP concentration. In a first series of experiments we used sodium azide 
(NaN3), but after performing a control titration experiment on cell extracts we 
concluded that azide had a direct effect on the luciferase luminescence at the 
concentration used in our experiments. A titration with FCCP showed that this 
compound did not affect the luciferase reaction in the preferred range of concentrations. 
Therefore we used FCCP, a mitochondrial uncoupler that resulted in a clear ATP-
dependent decrease in the luminescent signal.

Fourth: We wanted to use an alternative method to sense dynamic changes of 
intracellular ATP, in order to verify the method. Since the KATP channel closes in 
response to an increased intracellular ATP concentration, we could use single channel 
K+ currents as an alternative sensor for ATP. The responses of the KATP channel was 
therefore compared with the dynamics of luminescence signal in response to the same 
inhibition of ATP production by 1 µM FCCP.

In order to demonstrate this method in primary cells, we expressed luciferase in mouse 
islets. In these islets we could clearly detect increased luminescence signal in response 
to 20 mM glucose, thereby confirming that this method can be used to detect dynamics 
of ATP in response to physiological stimuli in primary pancreatic islets. This 
experiment also demonstrated that we could not only detect a decrease in ATP, in 
response to FCCP, but also an increase in ATP as we showed after glucose stimulation.

Other investigators have now published a number of studies on ATP dynamics in living 
pancreatic β-cells [156-158], as well as pancreatic acinar cells [159], using 
bioluminescence. Also an ATP sensitive fluorescent biosensor has been developed
[160] that has been used in β-cell studies [60; 161].

Figure 2. Effect of sodium azide and FCCP on luciferase luminescence.
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5.2 CHARACTERIZATION OF ISLET FUNCTION IN A MOUSE WITH 
MITOCHONDRIAL DIABETES (PAPER II)

Mitochondrial dysfunction in pancreatic β-cells is an important factor that can cause or
contribute to diseases like DM [23]. This is illustrated by the growing list of specific 
mtDNA point mutations that have been associated with DM [162-164]. In order to 
study this we used a mouse model that was generated by my co-authors with a 
pancreatic β-cell specific disruption in the mitochondrial respiratory chain. This mouse 
model had a tissue-specific mutation of the nuclear gene encoding for mitochondrial 
transcription factor A (TFAM). This leads to a β-cell specific severe depletion of 
mitochondrial DNA (mtDNA) that results in deficient expression of proteins encoded 
by mtDNA, including essential subunits within the respiratory chain complexes I, III, 
IV and V. This was confirmed by enzyme histochemical double staining for 
cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) activities. The 
staining showed that COX (complex IV) activity was deficient in mouse islets with 
mtDNA depletion as expected, since essential subunits of COX are encoded by 
mtDNA. In contrast, the SDH (complex II) activity appeared normal as expected, since 
this entire complex is encoded by nuclear DNA. Abnormally appearing mitochondria 
could also be observed with electron microscopy in these cells, which is a typical 
observation in tissues with severe respiratory chain dysfunction. Histochemical 
analyses showed a β-cell loss over time, which was still normal in 7-week old mutant 
mice but severe in 33-39-week old mutant mice.

Consistent with these characteristics, the mutant mouse showed an age-dependent
diabetic phenotype beginning from approximately the age of 5 weeks and progressing
up to older age, with decreased blood insulin concentrations and impaired glucose
tolerance. However, from 20 weeks of age the animals partly recover from the diabetic
phenotype as seen from the improved non-fasting glucose concentration and the
increased non-fasting insulin concentration. This recovery appears to correlate with an
expansion of β-cell mass, most likely originating from normal β-cells that did not
express cre and therefore escaped the mutation, as seen by the mosaic pattern of
normally appearing β-cells.

Based on these findings, we concluded that 7-8-week old mutant mice had normal β-
cell mass but these β-cells appeared to be dysfunctional. Therefore we performed three 
types of experiments to assess β-cell function in islets isolated from this age group, in 
comparison to islets from littermate control mice:

1. MMP in response to addition of glucose.

2. [Ca2+]i in response to addition of glucose.

3. Insulin release in response to addition of glucose.

These three types of experiments represent major sequential steps in the mechanism of 
glucose-stimulated insulin secretion, namely glucose metabolism, [Ca2+]i responses and 
insulin release. Addition of glucose in these experiments was performed as an increase 
from 3 mM to 11 mM glucose.
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First: MMP changes in response to addition of glucose were monitored with the 
fluorescent indicator Rh123 loaded to intact single islets. Rh123 fluorescence was 
plotted relative to the baseline signal prior to glucose stimulation and thereby the 
relative responses were visualized. We found decreased MMP polarization in mutant 
islets in response to glucose, an expected consequence of respiratory chain dysfunction.

Second: Changes in [Ca2+]i were monitored in response to addition of glucose. The
observed kinetics in mutant islets was slower and amplitude was lower for the initial 
response. An oscillatory pattern was observed in control islets, consistent with our 
observations in other normal mouse islets. These oscillations were almost completely 
absent in mutant islets, indicating a disturbed islet function. However, the response to 
stimulation with K+ appeared similar in control and mutant islets, indicating that [Ca2+]i

increase in response to depolarization was not disturbed. These observations are 
consistent with a disturbed mitochondrial function.

Third: Dynamic insulin release was measured in islet perifusion experiments both in 
response to addition of glucose and to arginine. Insulin release from mutant islets was 
lower, both under basal and stimulatory conditions, even if the total insulin content was 
not significantly altered in the mutant islets. This suggests that respiratory chain 
dysfunction is associated with dysfunctional insulin exocytosis. Stimulation with 20 
mM of the cationic amino acid arginine leads to sustained depolarization due to its 
positive charge [165-167] and therefore triggers insulin release from the total releasable 
pool of insulin granules. Arginine stimulation also resulted in lower insulin release 
from mutant islets.

This study thus confirms that a β-cell specific mitochondrial respiratory chain
dysfunction is associated with both a diabetes-like phenotype and disturbed β-cell
mitochondrial function, [Ca2+]i responses and insulin release. In a recent study, a 
similar phenotype was described in a mouse with β-cell specific loss of the 
mitochondrial transcription factor TFB1M, which was identified as a T2DM risk gene 
[168].

5.3 STUDY OF INTERRELATION BETWEEN INTRACELLULAR Ca2+ AND 
MITOCHONDRIAL MEMBRANE POTENTIAL (PAPER III)

The two parameters mitochondrial metabolism and [Ca2+]i have been shown to be 
closely interrelated [55-57]. We wanted to investigate this phenomenon in mouse 
pancreatic β-cells, using simultaneous detection of MMP and [Ca2+]i.

To accomplish this we first had to establish the method using Rh123 for MMP 
detection and Fura-2 for [Ca2+]i detection at the same time, even if both of these 
indicators had already been used separately for experiments in β-cells. We had to solve 
the following questions to establish the method:
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Loading of Rh123. 
Loading cells with Rh123 concentrations below 8 µM resulted in cellular and 
mitochondrial uptake of the dye, but the dye did not report changes in MMP 
under this condition. Therefore we used either 16 µM or 32 µM for the 
remaining experiments.

Possible toxic effects of Rh123.
Cells loaded with Rh123 need to have an intact response to glucose under the 
conditions used. Therefore we performed experiments to confirm that the 
glucose-induced membrane potential response was normal in cells loaded with 
32 µM Rh123.

Rh123 signal sensitivity to the plasma membrane potential.
In order to rule out that a minor part of the Rh123 signal changes originated 
from changes in the plasma membrane potential, we performed a control 
experiment. For this purpose we blocked MMP responses by FCCP and 
clamped membrane potential applying the perforated whole-cell configuration 
of the patch-clamp method.

Simultaneous detection with Rh123 and Fura-2.
Spectrally Rh123 and Fura-2 is a suitable combination of fluorophores because 
they are quite well separated by their excitation wavelengths whereas they have 
well overlapping emission spectra. However, we had to compensate for a minor
spectral bleed-through from Rh123 in order to monitor the true Fura-2 signal.

Thereafter we applied this method to study the dynamic glucose-stimulated response in 
the mouse pancreatic β-cell. In β-cells, both MMP and [Ca2+]i had been studied 
separately by other groups prior to our experiments. Glucose stimulation leads to 
glucose entry into the cell and formation of pyruvate via the glycolytic pathway. 
Pyruvate enters to mitochondria and activates Krebs cycle which increases respiration
and polarizes MMP. This elevates the ATP/ADP ratio that closes KATP channels which 
leads to depolarization of the cell and influx of Ca2+ through voltage-gated Ca2+

channels.

The main question in paper III is how MMP changes during glucose stimulation and 
how MMP is modulated by dynamic changes in [Ca2+]i. As already described in section 
2.4, there are some mechanisms whereby [Ca2+]i can modulate mitochondrial 
metabolism. Out of these, the following two mechanisms appear to play significant 
roles in our study.

Mechanism 1: Ca2+ activates dehydrogenases in the Krebs cycle leading to increased 
respiration and MMP polarization [71].

Mechanism 2: MMP becomes more positive (depolarizes) in response to an increased 
influx of Ca2+ into mitochondria [68-70].

We observed the following sequence of events for changes in MMP and [Ca2+]i in 
response to glucose, which mainly agrees with other studies:
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Increased respiration in response to glucose leads to MMP polarization. One 
may note that omission of extracellular Ca2+ resulted in a slower polarization of 
MMP, possibly due to less activation of mitochondrial dehydrogenases, i.e. 
mechanism 1.

Decrease in [Ca2+]i that is a result of increased ATP availability from respiration 
that drives removal of [Ca2+]i [169; 170]. This decrease is initiated on average 
6.5 2.4 s after MMP starts to polarize. MMP continues to polarize during this
phase.

Increase of [Ca2+]i that is due to influx of extracellular Ca2+ through voltage-
gated Ca2+ channels. This increase was followed by a slight depolarization of 
MMP, possibly due to mechanism 2.

When [Ca2+]i oscillates in the presence of 10 mM glucose we observe a slight 
MMP depolarization subsequent to every [Ca2+]i peak. That effect may also be 
attributed to mechanism 2.

Addition of non-metabolic [Ca2+]i-increasing stimuli at 10 mM glucose give the 
same result, namely a MMP depolarization. We believe that this observation
can also be attributed to mechanism 2.

At low glucose, the same type of addition of non-metabolic [Ca2+]i-increasing 
stimuli result in MMP polarization. We believe that this observation can be 
attributed to mechanism 1.

When we forced the cell to move from an oscillating [Ca2+]i pattern into a high
sustained level of [Ca2+]i, this resulted in the cessation of MMP oscillations. This is 
consistent with a model of oscillations dependent on a feedback-loop where [Ca2+]i

causes temporary inhibition of mitochondrial metabolism.

Later publications confirm a strong link between mitochondrial function and Ca2+

handling in pancreatic β-cells [58; 60; 171]. Dynamic measurements of NAD(P)H 
oscillations combined with [Ca2+]i and MMP dynamics in islets [172] fits with the 
conclusions in paper III. The link between [Ca2+]i and metabolic oscillations in β-cells 
was also discussed and applied in mathematical models [173-175].

5.4 DEVELOPMENT AND EVALUATION OF A METHOD FOR ON-LINE 
MONITORING OF APOPTOSIS (PAPER IV)

Apoptotic β-cell death plays an important role in the development of T1DM and also 
during the progression of T2DM [88]. Toxic agents that play an important role in the 
pathogenesis of T1DM are known to induce apoptosis, where the execution step is
carried out by caspase-3-like proteases. Therefore monitoring of caspase-3-like 
protease activation is of major interest, in particular with microscopy in real time both 
in vitro but also in vivo to resolve apoptosis with single cell spatial resolution and with 
sufficient temporal resolution. The aim of paper IV was to develop a fluorescent probe 
that eventually could be used in vivo.
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Caspase-3-like proteases selectively cleave the amino acid sequence DEVD in target
proteins like PARP1 [94]. This DEVD-specific proteolytic action can also be used as a 
sensor for selective detection of caspase-3 activity, as shown in some articles prior to 
our work [176; 177]. Our study demonstrated this type of technique for the first time in 
insulin-producing cells. In addition, we showed that this can be monitored with 
TPLSM, which is the preferred microscope modality for experiments when 
fluorescence should be visualized in deep tissues with single-cell resolution. Therefore 
our study paves the way to perform on-line single-cell monitoring of apoptosis in vivo.

We created a new fusion protein called C-DEVD-Y where C is short for ECFP and Y is
short for EYFP. The DEVD sequence was placed in the middle of a 24-amino acid
string that linked ECFP with EYFP. When C-DEVD-Y was intact, FRET between
ECFP and EYFP was clearly detectable. Cleavage of DEVD resulted in separation of
ECFP and EYFP, and thereby irreversible loss of FRET. When using a control
construct where DEVD was replaced by the sequence KEAF, the construct remained
intact and FRET was not lost during our experimental conditions. A modified variant,
called C-DEVD-Y2, was created at a later stage of the project. Y2 denotes another
brighter version of YPF, called Venus. Expression of C-DEVD-Y2 was driven by a β-
cell specific promoter, the rat insulin-2 promoter, such that it could be used for 
selective β-cell expression in islets and tissues.

First my co-authors made experiments to justify the use of caspase-3-like proteolytic
activity as a marker for pancreatic β-cell apoptosis. In these experiments they could
confirm that β-cell apoptosis induced by high glucose, cytokines or staurosporine was 
inhibited by an inhibitor for caspase-3-like proteases, called Z-DEVD-fmk [178-180].

Main experiments for apoptosis on-line detection in this study were performed with 
RINm5F cells transiently transfected with plasmids for expression of C-DEVD-Y,
C-KEAF-Y or C-DEVD-Y2. The initial temporal fluorescence characterization of these
constructs was performed on single cells detected with microfluorometry, after
stimulation with 6 µM staurosporine. Thereafter the same type of experiment was
performed with TPLSM in order to demonstrate that apoptosis can be monitored in 
multiple cells with single cell resolution.

Our experiments show that time from staurosporine addition to activation of caspase-3-
like proteases varies a lot, ranging from a few minutes up to almost 400 minutes. This 
protease activation results in loss of FRET within just a few minutes, reflecting a rapid
apoptotic execution signal. Thereafter cells rounded up, died and detached from their 
substrate, but time between loss of FRET and time for detachment appears to be less 
variable. This indicates that cell death after caspase-3-like protease activation follows a 
predestined irreversible route, but this may of course be different in vivo. Fortunately 
this technique has the potential to be applied also in vivo.

Other investigators have used similar techniques for on-line detection of apoptosis both 
in mammalian cells [181-183] and in plant cells [184]. It was demonstrated that FRET 
loss and MMP depolarization occur in parallel [183]. A recent study has reported the 
use of light sheet fluorescence microscopy to monitor apoptosis in 3-dimensional cell 
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cultures [185] using a similar FRET probe. Caspase-3/7 activation was also detected in 
vivo with a bioluminescence technique based on DEVD proteolysis [186].

5.5 DEVELOPMENT, OPTIMIZATION AND EVALUATION OF A 
PROCEDURE TO SORT FUNCTIONAL HUMAN AND RAT 
PANCREATIC ALPHA CELLS (PAPER V)

In order to assess function of one specific cell-type rather than the complex
combination of cells in an intact islet, there is an ultimate need for methods to enrich 
specific islet cells. FACS is a method that has been used since mid-1980th to separate β-
cells from α-cells and from other islet cells in rat islet cell suspensions [187]. The 
sorting criteria to separate cell types have been based mainly on measured parameters 
like scatter and autofluorescence. We used intrinsic cellular parameters because we 
wanted to have non-labelled cells suitable for experimental work following the sorting
procedure. These measured parameters reflect for example cell size, granularity and 
metabolic status. It turns out that at least some islet cell types can be separated based on 
these parameters, but their characteristics depend on the species and on environmental 
conditions like buffer and temperature.

Cell-type-specific separation of rat islet cells is more straightforward than the same
kind of separation of human islet cells. This is partly due to the size difference between 
α-cells and β-cells in rat [187; 188], whereas human α-cells and β-cells have a more 
similar size [189], meaning that cell size cannot be used alone as a parameter for 
separation of human islet cells. In this study we primarily wanted to enrich α-cells from 
both rat and human islets with FACS and characterize the α-cell purity, viability and 
function after enrichment. These parameters should all be maximized, and therefore our 
first goal was to renew and optimize the quality of islet cell preparation and the sorting 
procedure for rat islet cells. We also wanted to enrich β-cells that could be used for 
comparison.

The first goal was to identify optimal sorting criteria, a new gating strategy for sorting
and to generate best yield and purity of viable α-cells. In this process we started with all 
available excitation and emission combinations that we had in our FACS-system, and 
aimed to identify all cell populations that appear to be separable based on the plots. 
Thereafter cells from these populations were gated, sorted and characterized for their 
cell-type identity by PCR and/or immunostaining. The results were used to refine the 
sorting gates and then perform another round of sorting and characterization, a process 
that was iterated several times. The final iteration resulted in a new gating strategy for 
rat α-cells that is unique but also shares details with previously published strategies for 
rat islet α-cell sorting [187; 190-194]. However, we could achieve a high purity of α-
cells by using one single step of sorting instead of two, an improvement that resulted in 
higher yield and better quality of α-cells after sorting. One explanation for this 
improvement is that we used a combination of more parameters for the gating
compared with previous attempts. We used the four parameters side scatter (SSC), 
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forward scatter (FSC), FAD fluorescence and NAD(P)H fluorescence for the gating 
strategies as shown in paper V.

We had to make yet another main improvement of our protocol before reaching the 
goal of well functional rat α-cells, namely to change the type of culture medium from 
SMEM to Improved MEM Zn++ Option (Richter’s Modification). The latter medium 
has been reported to be used in some other studies for culture of rat pancreatic cells
[195], but the explanation for the functional improvement in comparison with SMEM is 
mainly unknown.

The same kind of procedure, with iterative refinement of sorting gates, was successfully 
used to find a novel gating strategy for enrichment of human α-cells. We managed to
get a quite high purity of human α-cells after sorting. But human islet quality and 
function is highly variable between batches and donors that may partly explain why the 
human α-cell enrichment gives a quite low and variable yield of cells. Therefore this 
procedure is mainly useful to prepare cells for experiments based on low numbers of 
human α-cells.

We assessed the enriched α-cell and β-cell purity, viability and function in a series of 
experiments. Our results confirm a good purity and viability after sorting. Kainate 
stimulation led more frequently to [Ca2+]i responses in human α-cells than in rat α-cells, 
whereas arginine stimulated most of the α-cells from both species. Increasing [Ca2+]i in 
response to arginine is expected because of its membrane depolarizing effect. The 
response to kainate in human α-cells is consistent with earlier studies [13], and a
reported low number of dispersed rat islet cells responding to kainate [196] is consistent
with our observation that only a subpopulation of rat α-cells responded to kainate.
However, further studies are required to fully explain why.

Figure 3. [Ca2+]i responses in human sorted α-cells stimulated 
with kainate and arginine.
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5.6 FUTURE PERSPECTIVES

The results in papers I-V all represent valuable progress in the fields of diabetes 
research and cell biology. In a future perspective these results and techniques, in 
combination with other studies, build a knowledge-base that we and others will use.

The ultimate goal will be to understand normal physiology and pathology of islet cells
in the intact living organism, in vivo. We have developed a technique for non-invasive 
optical in vivo microscopy on islets transplanted and engrafted in the anterior chamber 
of the eye using the cornea as a natural body window [197; 198]. In this setting we can 
monitor the in vivo function of islet cells that mirrors the normal function of islets in 
situ in the pancreas [199]. We will continue to develop this in vivo technique and
implement measurements of [Ca2+] in cytoplasm and other cellular locations as well as 
measurements of parameters associated with mitochondrial metabolism, like in papers 
I-III. One example of this is our recently published paper [200] where we measure 
NAD(P)H and FAD fluorescence in vivo using TPLSM. We will also study cell death 
in vivo, as a continuation of paper IV. FACS sorting and analysis will also be used to 
both enrich cell populations for further experiments and for end-point analysis in 
various experiment.

Figure 4. Non-invasive in vivo microscopy to monitor islets transplanted to the 
anterior chamber of the eye.
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6 CONCLUDING REMARKS

1. Dynamic changes in intracellular ATP were monitored in single insulin-
producing cells using luciferase luminescence as a biosensor. This worked both 
to monitor a decrease in ATP in HIT M2.2 cells in response to a mitochondrial 
uncoupler as well as an increase in ATP in mouse islets in response to glucose 
stimulation. However, the technique has a limited temporal resolution due to the 
limited output level of photons. The level for detection of small ATP changes
may also be limited due to the low signal to noise ratio.

2. The stimulus-secretion coupling was dysfunctional in pancreatic islets from a 
mutant mouse model with β-cell specific depletion of mtDNA and consequently 
disruption of the mitochondrial respiratory chain. Islets showed an impaired 
response to glucose when monitored dynamically. Readouts for this dysfunction 
were MMP, [Ca2+]i and insulin release. This dysfunctional pattern can be 
expected in mitochondrial diabetes.

3. MMP and [Ca2+]i were measured simultaneously in mouse β-cells in response to 
glucose and in response to non-metabolic [Ca2+]i-increasing stimuli. We 
observed effects consistent with Ca2+-dependent activation of mitochondrial 
dehydrogenases under low glucose conditions with depolarized MMP and low 
prevailing [Ca2+]i. In contrast, under high glucose conditions where MMP is 
polarized at high prevailing [Ca2+]i levels we observed effects consistent with 
MMP depolarization due to Ca2+-influx into mitochondria. During glucose-
induced slow [Ca2+]i oscillations MMP was depolarized subsequent to the 
[Ca2+]i peaks, showing that MMP follows [Ca2+]i under these conditions.

4. Apoptosis could be monitored on-line in single insulin-producing cells using a 
FRET-based biosensor sensitive to activation of caspase-3-like proteolytic 
activity. The loss of FRET appeared as a sign of sudden controlled cell-death 
activation in an individual cell. The FRET signal could be detected with 
TPLSM, which suggests that this technique can be successfully applied for in 
vivo imaging.

5. New procedures were developed to sort rat and human pancreatic α-cells with 
FACS, using a one-step sorting protocol. Parameters of purity, viability and 
function of the sorted cells were investigated after sorting. We could confirm a 
high purity and viability of α-cells as well as good [Ca2+]i responses to arginine 
as an indication of basic function. Kainate stimulation more frequently led to
responses in human α-cells as compared to rat α-cells.

6. Overall, the results in this thesis contribute to the understanding of metabolism 
and [Ca2+]i in the function and survival of pancreatic β-cells. The techniques 
that were developed or refined are at the present successfully used in vitro by us 
and other investigators. We are optimistic that the actual techniques will also be 
highly applicable for in vivo experiments within the near future. Cell-type-
specific cell-sorting of functional cells will continue to be a valuable 
complementary tool.
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