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“You can’t cross the sea merely by standing and staring at the water.” 

       —Rabindranath Tagore 

 

“The theory of probabilities is…nothing but common sense reduced to calculus.” 

—Pierre-Simon Laplace 

 

“All models are wrong, some are useful.” 

 —Box and Draper 

 

“There are three kinds of lies: lies, damned lies, and statistics.” 

   —Mark Twain 

 

“You’ve got to be kidding…” 

—Dawn Forsberg, my dear wife 

  



 

 ii 

Excerpts 

 

 

…successful treatment—and ultimately quality of life—depends on accurate survival 
estimates, derived not only by orthopaedic surgeons, but also by medical oncologists 

who facilitate orthopaedic referrals.  –p. 8 

 

 

The result of this work should not be viewed as a single tool, but a methodology that 
may be applied to any clinical question for which there is prior knowledge in the form 

of existing, quality data.  –p. 53 

 

 

By “crowd sourcing” data collection and automating the analytics, we ensure         
each model remains broadly applicable, clinically relevant, and can “evolve” over time. 

–p. 54 

 

 

When using an “app,” physicians should demand the same level of scrutiny and apply 
the same healthy skepticism as they do for the literature they read, the implants they 

select and the medications they prescribe.  –p. 56 
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Abstract  
Background:  The treatment of patients with skeletal metastases is predicated on 
each patient’s estimated survival.  In order to maximize function and quality of life, 
orthopaedic surgeons must carefully avoid over- or undertreatment of the disease.  
Unfortunately, physician estimates are notoriously inaccurate and there are no 
validated means by which to estimate patient survival in patients with long-bone 
skeletal metastases.  The purpose of this thesis is to apply machine learning (ML) 
approaches to (1) develop a clinical decision support (CDS) tool capable of estimating 
survival in patients with operable skeletal metastases, and (2) establish guidelines so 
that this approach may be used in other relevant topics within the field of orthopaedics.  
Methods: We first defined the scope of the problem using data from the Karolinska 
Skeletal Metastasis Registry.  We then developed objective criteria by which to 
estimate patient survival using data gleaned from the Memorial Sloan-Kettering 
Skeletal Metastasis Database (n=189).  We employed ML techniques to find patterns 
within the data associated with short- and long-term survival.  We chose three and 12 
months because they are widely accepted to guide orthopaedic surgical decision-
making.  We developed an Artificial Neural Network (ANN), a Bayesian Belief Network 
(BBN), and a traditional Logistic Regression (LR) model.  Each resulting model was 
internally validated and compared using Receiver Operator Characteristic (ROC) 
analysis.  In addition, we performed decision analysis to determine which model, if any, 
was suited for clinical use.  Next, we externally validated the models using 
Scandinavian Registry data (n=815), and again using data collected by the Società 
Italiana di Ortopedia e Traumatologia (SIOT) (n=287).  We then created a web-based 
CDS tool as well as the infrastructure to collect prospective data on a global scale, so 
the models could be improved over time.  Finally, we used BBN modeling to describe 
the hierarchical relationships between features associated with the treatment of high-
grade soft tissue sarcomas (STS), and codify this complex information into a graphical 
representation to promote a more thorough understanding of the disease process. 
Results:  We found that implant failures in patients with skeletal metastases remain 
relatively common—even in the revision setting—as patients outlive their implants. On 
the other hand, perioperative deaths are relatively common, indicating that an 
estimation of life expectancy should be part of the surgical decision making process.  
Using ML approaches, we found several criteria that can be used to estimate longevity 
in this patient population. When compared to other techniques, the ANN model was 
most accurate, and also resulted in highest net benefit on decision analysis, compared 
to the BBN and LR models.  However, the BBN is the best suited to accommodate 
missing data, which is common in the clinical setting.  The three- and 12-month BBN 
models were successfully externally validated using the SSMR database (Area under 
the ROC curve (AUC) of 0.79 and 0.76, respectively), and again using SIOT data 
(AUC 0.80 and 0.77).  In the setting of high-grade, completely excised STS, BBN 
Modeling identified the first-degree associates of disease-specific survival to be the 
size of the primary tumor, and the presence and timing of local and distant recurrence. 
Conclusions:  We successfully developed and validated a CDS tool designed to 
estimate survival in patients with operable skeletal metastases.  In addition, we made 
this tool available to orthopaedic surgeons, worldwide, at www.pathfx.org.  We also 
created an international skeletal metastasis registry to continue to collect data on 
patients with skeletal metastases.  Within this framework, prognostic models have the 
capacity to improve over time, as treatment philosophies evolve and more effective 
systemic therapies become available. These techniques may now be applied to other 
disciplines, in an effort to turn quality data into decision support tools.  
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Sammanfattning på Svenska 
 

Bakgrund: Behandlingen av skelettmetastaspatienter baseras på förväntad 
överlevnad. För att kunna maximera funktion och livskvalitet behöver ortopeden 
noggrant undvika över- eller underbehandling. Tyvärr är läkarens bedömning av 
prognosen oftast otillförlitlig och det finns ingen validerad metod att uppskatta 
överlevnadstiden för en patient med skelettmetastas. Målsättningen med den här 
avhandlingen är att skapa ett kliniskt beslutsstöd för prognostik av patienter med 
operabla skelettmetastaser oavsett lokalisation. Därigenom kommer vi också kunna 
utvärdera nyttan av maskininlärning (machine learning, ML) inom ortopedisk onkologi. 
Metoder: Vi började med att definiera storleken av det kliniska problemet genom 
analys av patientdata från det Karolinska Skelettmetastasregistret.  Därefter 
utvecklade vi objektiva kriterier för att prognostisera patientöverlevnad med hjälp av 
patientdata från Memorial Sloan Kettering Cancer Centers databas (n=189). Vi 
använde oss av ML-teknik för att hitta mönster i patientdata associerad till 
korttidsöverlevnad  (<3 månader), respektive långtidsöverlevnad (>12 månader). Vi 
valde dessa tidpunkter då de är allmänt använda inom ortopedisk onkologi.  Härefter 
skapade vi en artificiell neural nätverksmodell (Artificial Neural Network, ANN), en 
Bayesiansk nätverksmodell (Bayesian Belief Network, BBN) och slutligen en 
traditionell logistisk regressionsmodell (LR). Varje modell validerades internt och 
jämfördes med varandra med hjälp av ROC-analys (Receiver Operator Characteristic). 
Dessutom utfördes beslutsanalys (decision analysis) för att avgöra vilken av de tre 
modellerna som var bäst lämpad för kliniskt bruk. Modellerna validerades med hjälp av 
patientdata från det Skandinaviska Skelettmetastasregistret (n=815) och från Società 
Italiana di Ortopedia e Traumatologia (SIOT) (n= 287). Därefter konstruerade vi ett 
internetbaserat kliniskt beslutsstöd och dessutom infrastrukturen för att prospektivt och 
globalt kunna insamla patientdata för att kontinuerligt uppdatera och förbättra vårt 
beslutsstöd. Slutligen använde vi BBN för att beskriva de hierarkiska sambanden 
mellan de olika tumörspecifika variablerna som är viktiga vid behandlingen av 
mjukdelssarkom. Målet var att koda denna komplexa information till en tydlig grafisk 
bild som kan användas för att skapa nya hypoteser. 
Resultat: Haveri av skelettrekonstruktioner efter både primär- och reoperation av 
metastaspatienter med lång överlevnad var vanligt. Samtidigt fann vi att det även var 
vanligt med en mycket kort överlevnad efter operation. När vi använde ML 
identifierades flera användbara faktorer för att prognostisera överlevnad hos patienter 
med skelettmetastaser. Vid jämförelse av de olika modellerna visade det sig att ANN 
gav mer exakta resultat jämfört med BBN och LR. Däremot var BBN kliniskt mer 
användbar då den fungerade bäst även om viss patientdata saknades vilket ofta är 
fallet.  3- och 12-månadersmodellen av BBN validerades framgångsrikt med hjälp av 
patientdata från SSMR (area under receiver operator character curve, AUC, 0.79 resp. 
0.76) och från SIOT (AUC: 0.80 resp. 0.77). BBN visade att de viktigaste prognostiska 
faktorerna för patienter med mjukdelssarkom var primärtumörens storlek samt 
förekomst och tid till lokalt tumörrecidiv resp. fjärrmetastas.  
Slutsatser: Vi har framgångsrikt skapat och utvärderat ett kliniskt beslutsstöd avsett 
att prognostisera överlevnad hos patienter med operabla skelettmetastaser. Detta 
verktyg finns nu globalt tillgängligt på internetadressen www.pathfx.org. Vi har också 
skapat ett internationellt skelettmetastasregister för att fortsätta samla patientdata. 
Genom detta tillvägagångssätt har prognostiska beslutsstöd, så som det vi nu skapat, 
möjligheter att förändras över tid i takt med att nya effektivare behandlingar införs. Den 
här tekniken kan nu tillämpas inom andra dicipliner för att omvandla patientdata till 
kliniska beslutsstöd, t ex för primärtumörer inom ortopedisk onkologi. 
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List of Original Papers and Summaries 
 
This thesis is based on the following papers, referenced in the text by their Roman 
Numerals (I-VI) 

Study I 
Which Implant Is Best After Failed Treatment for Pathologic Femur Fractures?  
Forsberg, J. A., Wedin, R. & Bauer, H.  
Clin Orthop Relat Res 2013 Mar;471(3):735-40. doi: 10.1007/s11999-012-2558-2. 
 
The purpose of this study was to evaluate patients with femoral metastases in whom constructs failed to 
determine (1) the rate of reoperation for any reason; (2) the timing of and most common causes for 
failure; and (3) incidence of perioperative death and other complications, not requiring surgery.  In a 
cohort of 88 patients, we found that 17 (19%) required reoperation and that material failure was 
responsible for the overwhelming majority of these.  As expected, endoprostheses were more durable 
with very few treatment failures when compared to plate or intramedullary nail fixation; however, the 
procedures were associated with higher proportions of perioperative complications.  These findings 
reiterate that patient selection is important when choosing a reconstructive option, but most importantly, 
careful attention must be paid to each patient’s estimated life expectancy. 

Study II 
Estimating Survival in Patients with Operable Skeletal Metastases: An Application of a 
Bayesian Belief Network  
Forsberg, J. A., Eberhardt, J., Boland, P. J., Wedin, R. & Healey, J. H.  
PLoS ONE 2011 6: e19956. 
 
We determined the feasibility of developing Bayesian models for the purpose of estimating survival.  We 
chose a Bayesian approach because it can be used with missing input data, which is common in the 
clinical setting.  For this study, we collected information from 189 patients undergoing surgery for 
metastatic bone disease involving the axial and appendicular skeleton. We developed two models using 
fifteen candidate features theorized to be related to survival, each designed to estimate the likelihood of 
survival at three months and 12 months post surgery.  We chose these time points because they are 
useful for orthopaedic surgical decision-making.  For example, short-term survival helps surgeons 
decide whether to offer surgery, and long-term survival helps surgeons decide whether a more durable 
implant is necessary. Cross validation demonstrated an AUC of 0.85 and 0.83 for the three- and 12-
month models, respectively.   

Study III 
Treating Metastatic Disease: Which Survival Model Is Best Suited for the Clinic?  
Forsberg, J. A., Sjoberg, D., Chen, Q.-R., Vickers, A. & Healey, J. H.  
Clin Orthop Relat Res 2013 Mar;471(3):843-50. doi: 10.1007/s11999-012-2577-z. 
 
After the relative success of the BBN models described in Study II, we questioned whether other 
modeling techniques could be used.  To this end, we developed three models designed to estimate 
survival using similar data, an artificial neural network (ANN), a BBN and a logistic regression (LR) 
model.  We then asked: (1) Which model was most accurate on ROC analysis? And (2) which model 
performs best on decision curve analysis and is therefore most clinically useful?  In doing so, we 
introduced the orthopaedic community to the concept of Decision Curve Analysis (DCA), which is used 
to compare models by weighing the relative consequences of false positive or false negative 
classifications.  The results were interesting.  The ANN models were most accurate (0.89 and 0.93) for 
the three- and 12-month models, respectively.  In comparison, the BBN was slightly more accurate than 
the LR model with an AUC of 0.85 and 0.83.    In addition, the ANN model resulted in the highest net 
benefit throughout the entire range of threshold probabilities.  Nevertheless, the ANN may not be best 
suited for clinical use, since it requires complete input data to function.  For this reason, we concluded 
that the BBN model might be better suited for clinical use. 
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Study IV 
External Validation of the Bayesian Estimated Tools for Survival (BETS) Models in 
Patients with Surgically Treated Skeletal Metastases  
Forsberg, J. A., Wedin, R., Bauer, H., Weidenhielm, L., Hansen, B. H., Laitinen, M., 
Trovik, C., Keller J. Ø., Boland, P. J., Healey, J. H. 
BMC Cancer, 12(1), 493-51. 
 
The purpose of this study was to externally validate the BBN models using an independent, 
international skeletal metastasis registry.  In doing so, we demonstrated the utility of the Bayesian 
approach that retains functionality in the presence of missing input data.  In this study, several features 
were missing, including the surgeon’s estimate of survival, which was missing in all 815 records.  The 
BBN models, now referred to as PATHFx correctly estimated three- and 12-month survival in the 
majority of records, with an AUC of 0.79 and 0.76, respectively.   

Study V   
External Validation of a Tool for the Estimation of Life Expectancy in Patients with 
Skeletal Metastases—Decision Analysis and Comparison of Three Major International 
Patient Populations  
Piccioli, A., Spinelli, M.S., Forsberg, J.A., Wedin R., Healey, J.H. Ippolito, V., Daolio, P., 
Ruggieri, P., Maccauro G., Gabsarrini A., Biagini R., Piana R., Fazioli F., Luzzati, A., Di 
Martino, A., Nicolosi F., Camnasio F., Rosa, M.A., Campanacci, D.A., Denaro, V., 
Capanna R. 
(Submitted for publication) 
 
This study is similar to the previous external validation study, however, its purpose was to (1) externally 
validate the PATHFx tool in an Italian patient population and (2) compare the distributions of patients to 
both the training set (U.S.) and first external validation (Scandinavian) datasets, respectively.  Using the 
data from 287 records, PATHFx proved sufficiently accurate with an AUC of 0.80 and 0.77 for three and 
12 months, respectively.   There were missing data, which was similar to the previous external 
validation study.  However, both the patient demographics as well as the indications for surgery differed 
significantly between this patient population, and the training and first validation sets.  In addition to 
being useful in the presence of missing data, this suggests PATHFx has widespread applicability in 
cultures with differing treatment philosophies to those previously studied. 

Study VI 
A Probabilistic Analysis of Completely Excised High-Grade Soft Tissue Sarcomas of 
the Extremity: An Application of a Bayesian Belief Network  
Forsberg, J. A., Healey J. H., Brennan M. B.   
Ann Surg Oncol 2012; 19(9):2992-3001. 
 
We sought to demonstrate the applicability of Bayesian methodology to an entirely different oncologic 
scenario by describing the hierarchical relationships between features related to the treatment of soft 
tissue sarcomas.   For this study, we focused only on completely excised, localized high-grade soft 
tissue sarcomas of the extremity to determine which features were most highly associated with disease 
specific survival (DSS).  In doing so, we highlight BBN modeling as a tool to codify complex hierarchical 
relationships between features we believe to be representative of cancer biology into clear graphical 
representations.  The model structure revealed first-degree associates of DSS were the size category of 
the primary tumor; presence of and time to distant recurrence; and presence of and time to local 
recurrence.  We show that Bayesian modeling can be used to gain insight into the interrelationships 
between features in preparation for the development of clinical decision support tools using more 
restrictive Bayesian models or other modeling techniques.  
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Abbreviations 
 

ANN  Artificial Neural Network—a machine learning method used in Study III with powerful 
pattern recognition and discriminatory ability  

AUC Area under the receiver operator characteristic curve, used to assess accuracy of a 
model 

BBN  Bayesian Belief Network, a machine learning technique with a graphical output; retains 
functionality in the presence of missing input data 

CDS Clinical Decision Support, the process of basing clinical decisions on objective data 

DAG Directed Acyclic Graph 

DCA Decision Curve Analysis—a means to compare models and determine which is better 
suited for the clinical setting 

HTML   Hypertext Markup Language, used to create web pages and online content 

INCA Information Network for Cancer—A national IT platform for managing registries 

IQR Interquartile Range 

jPDF joint probability distribution function that defines conditional relationships between 
features in a BBN 

KUH Karolinska University Hospital, Stockholm, Sweden 

LR Logistic Regression 

ML Machine Learning—automates the discovery of conditional relationships as in BBN 
analysis, and pattern recognition as in ANN analysis 

MLP Multilayer Perceptron—the architecture of the artificial neural network used in Study III 

MSKCC Memorial Sloan-Kettering Cancer Center, New York, New York, USA, the source of 
data for Studies II, III and VI 

R®  Statistical Software, Version 3.0.2 (R Foundation for Statistical Computing, Vienna, 
Austria1)  

RF  Random Forest, a machine learning technique that constructs multiple Decision Trees.   

ROC Receiver Operator Characteristic, a curve used to measure accuracy of a model 

SD Standard Deviation 

SIOT Società Italiana di Ortopedia e Traumatologia, the Italian Society of Orthopaedics and 
Traumatology that facilitated data collection for Study V 

SRE Skeletal-Related Event—bone pain requiring palliative radiotherapy, pathologic fractures, 
spinal cord compression, and orthopaedic surgery in the context of metastatic bone disease. 

SSMR Scandinavian Skeletal Metastasis Registry—provided data for Study IV 
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Introduction 

 There is perhaps no better application of personalized medicine than in the 
treatment of cancer.  In addition to matching systemic therapy to cellular genotypes 
and/or phenotypes, we strive to derive personalized estimates of survival to help set 
patient, family and physician expectations.  Since no two tumors are the same, and no 
two patients present with exactly the same disease burden, these estimates are used 
to guide the medical, surgical, and sometimes palliative decision-making processes.  
Unfortunately, our ability as clinicians to answer the question, “Doc, how long have I 
got?” is generally inaccurate, and better means of prognostication are needed.2,3   
 Patients with skeletal metastases are terminal and estimations of longevity are 
therefore very important.  However, for many reasons, most physicians refuse to 
prognosticate whenever possible.  Dr. Elizabeth Lamont4 describes this phenomenon 
nicely.  In a study of 311 patients with terminal cancer, physicians were perfectly able 
to derive estimates of survival in nearly all (97%) cases.  However, they 
communicated their actual estimate to only 37%, knowingly misled patients by 
providing a different estimate to 40%, and withheld the information entirely from the 
remaining 23% of their patients.   For the group who were misled, estimates were 
almost always optimistic and the patient would then make decisions based on 
information twice-removed from reality (Figure 1).4 On one hand, optimistic survival 
estimates fuel each cancer patient’s need for optimism.  However, if overly optimistic, 
this information is likely to have unanticipated consequences.  

 
Figure 1.  This Kaplan-Meier survival curve demonstrates 
differences in actual, formulated and communicated survival in 
300 terminally ill cancer patients.  Reprinted with permission. 

 
 At the end of life, patients must balance the reality of dying with a sometimes 
overwhelming desire for self-preservation.  This paradox is important when one 
considers that maintaining dignity and control is among the top priorities for terminally 
ill patients.5,6 Receiving an overly optimistic prognosis from a treating physician (often 
viewed as an authority figure) can have a dramatic influence on treatment decisions.  
Patients in this setting are more likely to opt for more aggressive treatment, rather than 
perhaps more appropriate palliative measures.  This, in turn, leads to higher 
complication rates, specifically readmission to the hospital for >72 hours, at least one 
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resuscitation attempt, or death while on a ventilator.7 Clearly, better communication 
between patients and their physicians could lead to improved shared decision-making 
regarding end of life care.   
 For the orthopaedic surgeon, the question of life expectancy may be less 
philosophical but is certainly no less important.  In fact, the goals of orthopaedic 
surgery in terminally ill patients are to relieve pain and preserve function for the 
maximum amount of time.8,9 Surgical considerations in this setting are dependent on 
three things:  The location and physiology of the skeletal metastases, how long the 
patient is likely to live, and the desired mechanical properties of the implant.10 Though 
we often cannot control tumor-specific variables, such as its biomechanical impact, we 
do have the ability to influence the other two considerations.  First, by deriving 
accurate survival estimates, and thus deciding whether to operate at all, and second, 
choosing the most appropriate implant when doing so.  However, as mentioned above, 
our ability to accurately predict survival is dangerously inaccurate and becomes even 
more so at longer intervals.2 This topic is important since patients with advanced 
cancer are living longer, and a considerable number of them are living with metastatic 
bone disease.  Specifically, a recent analysis of skeletal metastases in Danish breast 
cancer patients11 demonstrated a one- and three-year cumulative survival of 59% and 
22%, respectively.  A similar study performed in prostate cancer patients12 observed 
one- and three-year cumulative survival of 47% and 9%, respectively. 
 In this setting, skeletal related events (SREs) are an important cause of 
mortality and disability, adversely affecting quality of life.13,14 By definition, SREs 
include radiotherapy to symptomatic lesions, pathologic fracture, spinal cord 
compression and/or surgical intervention.15-17 Large, population based studies 
characterizing the prevalence of SREs in patients with long-bone metastases found 
that 34-68% of breast cancer patients11,16,18-21 and 40-44% of men with prostate 
cancer12,22 had an SRE during the course of their treatment. Considering breast and 
prostate cancer account for the majority of skeletal metastases, this translates to 
millions of at-risk patients, worldwide, in which successful treatment—and ultimately 
quality of life—depends on accurate survival estimates, derived not only by 
orthopaedic surgeons,23  but also by medical oncologists who facilitate orthopaedic 
referrals.  
 As such, the economic impact of metastatic bone disease is 
enormous.11,12,16,22,24 In the United States alone, it is estimated that the 5.3% of cancer 
patients with skeletal metastases account for a disproportionate 17% of the $74 billion 
NIH estimated total direct medical cost for cancer.25 To compound this, we believe the 
prevalence of metastatic bone disease is underreported, so as the population ages 
over the coming decades, these estimates are likely to grow.26   
 Skeletal metastases also negatively impact survival, particularly when 
pathologic fractures occur.13,15,27 However, the value of surgical stabilization is well 
known for both impending and complete pathologic fractures.  Decreased pain, 
improved mobilization, ease of nursing care are among the most widely accepted 
benefits of surgery.28-39 Unfortunately, reoperation rates range from 3.1% to an 
astounding 42% for patients who survive more than 1 year after fixation for 
pathological fracture.10,40,41 As more patients with skeletal metastases live longer,25,26 
more implants are at risk for failure.23 As such, the causes of, and treatment options 
available for, failed constructs have received considerable attention in the 
literature.23,40,42,43 The general recommendation is that durable implants such as 
endoprostheses should be used more liberally.   Though the decision to proceed with, 
or forego, skeletal stabilization is based on the three major criteria listed above, 
estimating the life expectancy of the patient is arguably the most critical.44-46  
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 For example, surgical stabilization or reconstruction is generally not 
recommended for those patients in whom the recovery and rehabilitation time is longer 
than their estimated survival,47 though palliative procedures are sometimes indicated. 
Those patients with a longer life expectancy (3-12 months) may require less invasive 
stabilization, thereby minimizing pain and convalescence, to improve mobility and 
quality of life in their final months.  Patients with more favorable survival estimates 
(>12 months) require durable, but more complicated, reconstructive procedures that 
should be expected to last many years, in some cases. 
 Unfortunately, falsely optimistic or pessimistic estimates can have dramatic 
clinical implications.  Falsely optimistic survival estimates may influence patients and 
clinicians to pursue more aggressive therapies, rather than perhaps more appropriate 
conservative measures. This approach results in a higher proportion of both major 
perioperative complications as well as premature death during convalescence.7 
Conversely, falsely pessimistic survival estimates are problematic when surgeons 
choose a less invasive, less durable implant that lacks sufficient biomechanical 
durability to outlast the patient. In this setting, implant failures can occur, which require 
more complicated revision procedures, often at the end of life.23,40 
 
Early attempts at estimating survival 
 
 Several authors have identified independent predictors of survival in patients 
with bony metastases, operative or otherwise.27,45,48-51 These include the specific 
oncologic diagnosis, subjective Eastern Cooperative Oncology Group (ECOG) 
performance status,52 number of bone metastases, presence of visceral metastases,53 
serum hemoglobin,51 the senior surgeon’s estimate of survival,50 a diagnosis of lung 
cancer,51 appendicular bone metastases,27 the type of reconstructive procedure 
performed,49 and time from oncologic diagnosis to total hip arthroplasty (for proximal 
femoral metastases).45 Despite the large number of covariates that have been 
associated with survival in this patient population, there exists no consensus as to 
which ones should be routinely used.  As such, their ability to predict survival as part 
of a cohesive model is unacceptably inaccurate, at 5-15% in the best of the reported 
series.50 Nevertheless, this body of work demonstrated that it was possible to derive 
generalized estimations of survival based on an individual’s disease-related and 
laboratory parameters.  However, more accurate, personalized estimations were not 
yet possible. 
 In an attempt to develop a prognostic tool useful for surgical decision-making, 
Tokuhashi et al.54 developed a scoring system to categorize postoperative survival 
into one of three groups: survival < 6 months, > 6 months, or > 1 year. The group 
collected a series of prognostic variables including, for the first time, the Karnofsky 
score, a measure of performance status.55 The authors also documented the number 
of intra- and extraspinal bone metastases, the number and type of organ metastases, 
the primary oncologic diagnosis, and the Frankel classification that describes the 
degree of neurologic impairment. The group then applied their scoring system to 246 
additional patients and observed that survival greater than, or less than six months 
could be reliably estimated by this method.56 Independent validation produced similar 
results,57 however, Tokuhashi’s scoring system has limited valued for the orthopaedic 
community because it applies only to patients with symptomatic spine metastases. 
 Recognizing the value of a model that could be applied to all patients with 
skeletal metastases, Nathan and Healey50 constructed a sliding scale in an attempt to 
codify the independent predictors listed above. Variables included ECOG performance 
status, number of bone metastases, presence or absence of visceral metastases, and 
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serum hemoglobin.  Despite widespread interest in a prognostic tool, this particular 
model remains unvalidated.   
  Reasons for this are multifactorial.  First, by treating the outcome as a 
continuous variable, the model is designed to provide discrete survival estimates. This 
is problematic when wide confidence intervals are observed, such as those reported 
for several of the covariates.  These convey a high degree of uncertainty when used to 
derive a continuous outcome.  In addition, nomograms such as this one become less 
accurate in the setting of dischordant (rare presentations of disease) or incomplete 
input information.  As such, the model correctly estimated survival in a mere 18% of 
records on internal validation. The authors attempted to improve model performance 
by focusing on minimum survival estimates, which generated accurate estimates in 
61% of records, but only after applying a rather generous 20% margin of error.  
External validation in a five-patient test set failed, by producing accurate assessments 
in only two of the records.  The results prompted the authors to issue a “wake-up call” 
to the orthopaedic and oncologic communities, calling for more accurate means of 
deriving patient survival estimates.50,58 
 Nevertheless, Nathan’s data revealed something interesting about the 
surgeon’s estimate.  Not only did it account for a large portion of the variance, as 
evidenced by an R2 of 0.33, it was clearly superior to any other covariate studied.   For 
the surgeon, estimates of survival are made after reviewing the patient’s chart, the 
imaging studies and carefully examining the patient.  Some variables included in this 
assessment are quantifiable such as performance scores, laboratory analyses, and 
radiographic findings.  Some, however, are subjective, and include how ill the patient 
appears, the patient’s demeanor, and the “gut feeling” the surgeon has after the 
consultation.  In the traditional sense, subjective determinations such as this are 
unlikely to be useful as individual covariates because they are intangible and almost 
entirely dependent on the surgeon experience.  However, including them in the 
analyses may give us clues as to which objective clinical information may act as 
surrogates for this important, albeit subjective assessment. In turn, by applying 
advanced mathematical techniques, we may objectively analyze and adjust prognostic 
estimates based on seemingly intangible, subjective data that are otherwise difficult to 
interpret in a reliable and reproducible manner. 
 
 
Modeling survival 
 
 Recently, there has been a resurgence of interest in and application of machine 
learning (ML), a constellation of advanced analytical techniques that can be useful in 
the evaluation of complex relationships, such as those that may exist between 
oncologic variables.  Bayesian classification methodology, also referred to as 
Bayesian Belief Network (BBN) modeling, is being used with increasing frequency in 
medicine for several reasons.  First, BBN modeling can be used to analyze highly 
complex data containing nonlinear relationships. Second, this methodology effectively 
accounts for uncertainty within the data and unlike many statistical approaches, 
maintains predictive accuracy and robustness in the face of incomplete input 
information (i.e., missing data).46 Finally, the BBN codifies complex data into clear, 
predictive models by incorporating the outcome(s) and covariates into a single, 
graphical network.  In fact, Bayesian statistics have previously been used successfully 
to estimate the likelihood of survival in a wide variety of oncologic diagnoses.59-65    
 Despite the applicability of the Bayesian method to this problem, it is possible 
that other statistical techniques may accurately model survival.  For instance, artificial 
neural networks (ANNs), known for their exceptional discriminatory ability, have been 
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used to risk stratify patients and tumors using gene expression and other 
pathophysiologic data.66,67 In addition, regression-based techniques similar to those 
used to develop the highly successful MSKCC soft tissue sarcoma nomogram,68 
should also be explored.  Models using various techniques could be evaluated and 
compared directly to assess not only which is most accurate, but also to determine 
which is best suited for clinical use.   
 Traditionally, model comparisons focus solely on accuracy. In this manner, 
sensitivity and specificity may be assessed, and the area under the receiver operator 
characteristic (ROC) curve (AUC) calculated.69 However, an over-reliance on accuracy 
is problematic.  First, these metrics fail to address consequences associated with a 
falsely positive or negative result. These are often of unequal importance, particularly 
in the oncologic setting, in which the consequences of a missed diagnosis generally 
outweigh the risk of unnecessary testing and treatment. However, for complicated 
surgical interventions, the risks associated with overtreatment can be quite 
unacceptable in many cases.  As such, the consequences of wrong answers 
generated by would-be models must be evaluated by decision analysis70 to determine 
not only which model is superior but also whether the model(s) are likely to be useful 
in the clinical setting.71 Second, each model must remain broadly relevant, over time, 
a process that requires prospective validation in a variety of centers, with differing 
patient populations and treatment philosophies.  As medical and surgical treatments 
become more effective for certain diagnoses, survival is likely to improve and, thus, 
becomes a moving-target.  Existing models must then be re-fit, from time to time, to 
ensure both accuracy and precision are maintained in this changing environment.   
Each of these topics will be discussed in detail in the Statistical Considerations section, 
below.  
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Aims of the Thesis 

 
 Given that there were no validated means by which to estimate survival in 
patients with long bone skeletal metastases, we sought to apply ML techniques to 
create and compare models that could be validated in a variety of settings. In doing so, 
we acknowledged that the success of any tool designed for this purpose would 
depend on its applicability to diverse patient populations, its availability to clinicians 
and researchers worldwide, and its ability to evolve in the face of new therapies that 
may alter patient prognosis or outcomes.  
 

1. First, we sought to define the scope of treatment failures in patients undergoing 
surgical treatment for skeletal metastases, while describing how orthopaedic 
considerations fit within the context of the terminally ill. (Study I) 

 

2. Using a well-characterized metastatic disease registry, we explored ML 
approaches to modeling patient specific data in an effort to estimate the likelihood 
of postoperative survival. (Study II) 

 

3. We then asked which of the models was (1) more accurate using ROC analysis 
and (2) resulted in highest net benefit using DCA in an effort to determine which, if 
any, is best suited for clinical use. (Study III) 

 

4. After determining which models were most suitable for clinical use, we sought to 
externally validate them in other patient populations with differing healthcare 
systems and treatment philosophies from that represented by the MSKCC training 
set. (Studies IV and V) 

 

5. Finally, we asked whether BBN modeling could be used to codify complex 
information related to the treatment of patients with localized soft tissue sarcomas 
into clear, graphical models in an effort to stimulate understanding and develop 
future hypotheses, and thus demonstrate the applicability of this methodology to an 
entirely different oncologic scenario. (Study VI) 
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Ethical Considerations 
 
Study Source of Data Location Ethical 

Approval 
Required? 

Ethical Approval 
Granted 
/ Number 

I Swedish Registry Data Karolinska University 
Hospital, Stockholm  

Yes Yes 
Dnr 2012/272-31/4 

II Metastatic Disease 
Database 

Memorial Sloan-
Kettering Cancer 
Center, NY USA 

Yes Yes 
#WA0023-11 

III Metastatic Disease 
Database 

Memorial Sloan-
Kettering Cancer 
Center, NY 

Yes Yes 
#WA0023-11 

IV Scandinavian Registry 
Data 

Karolinska University 
Hospital Stockholm 

Yes Yes 
Dnr 2012/272-31/4 

V Prospectively Collected 
Clinical Data 

Rome, Italy Yes Prot: 15/13 OSS. 
ComEt CBM 

VI Soft Tissue Sarcoma 
Registry Data 

Memorial Sloan-
Kettering Cancer 
Center, NY USA 

Yes Yes 
WA0555-10 
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Patient Population and Methods 

 
Study I:  Which Implant Is Best After Failed Treatment for Pathologic Femur 
Fractures?  
 
 Previous data23,40 suggested that implant failures were common following the 
treatment of skeletal metastases.  In addition, estimations of survival could be used to 
help set patient and surgeon expectations, as well as help determine whether a more 
durable implant was necessary.  With this in mind, we asked whether these 
considerations were applicable to the revision setting, as well as the primary, or index 
surgical procedure.    
 We chose the Karolinska Skeletal Metastasis Registry for this purpose because 
it contains prospectively collected data on patients undergoing surgery for skeletal 
metastases.   In addition to demographic and surgical information, this registry 
contains detailed information regarding the intra- and postoperative complications for 
index and revision procedures, if applicable.  We then identified all 93 patients who 
underwent surgery for failed treatment of femoral metastases between 1990 and 2010. 
Five patients who underwent amputations were excluded, leaving 88 patients who 
underwent limb salvage procedures using one of three types of implants:  plate 
fixation (PLATE), intramedullary nailing (IMN) or endoprosthesis (EP). As per 
institutional guidelines, the indications for revision surgery were material failure, 
implant malposition, progression of disease including local recurrence, or a 
combination of these.   
 All salvage procedures were performed at the Karolinska University Hospital. 
From a treatment standpoint, skeletal metastases of the femur were approached in a 
manner(s) previously described.10 If en bloc resection was indicated, reconstruction 
was performed using a modular tumor prosthesis whenever possible. Lesions confined 
to the femoral neck were treated with standard or long-stem hemiarthroplasty 
components. In keeping with institutional treatment philosophy, most cases underwent 
intralesional curettage before stabilization. Antibiotic-impregnated 
polymethylmethacrylate cement was used whenever possible. It is important to note 
that despite the pervasive institutional philosophy mentioned above, implants and 
surgical techniques were not standardized and were chosen at the discretion of the 
treating surgeon. The following implants were used, due largely to availability.  
Unreamed, locked femoral nails or cephalomedullary devices (Synthes Stratec 
Medical, Oberdorf, Switzerland) were used (IMN group).  When plate fixation was 
used, a dynamic hip screw or limited contact dynamic compression plate (Synthes 
Stratec Medical) was chosen. For those who required prosthetic replacement, the 
Austin Moore hemiarthroplasty (Corin Medical, Cirencester, UK), Charnley (DePuy, 
Leeds, UK), and Spectron (Smith & Nephew, Memphis, TN, USA) hip prostheses were 
used (EP group). Modular tumor prostheses such as the Modular Implant System 
(METS) (Stanmore, Middlesex UK) and Global Modular Replacement System (GMRS) 
(Stryker Nordic, Malmö, Sweden) were implanted after en bloc resections of the distal 
femur.   Postoperative radiotherapy was not used following salvage procedure, since 
most patients had been treated following their index procedure.   
 As part of the registry, long-term follow-up was conducted at regular intervals in 
conjunction with the patient's regularly scheduled medical oncology visits. In addition, 
the research team performed chart reviews at regular intervals to determine if and 
when patients had complications or required a re-operation.  No patients were recalled 
specifically for this study; all data was obtained from medical records and radiographs 
via the registry. 
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 We classified surgical complications as described by Dindo et al.72   The 
primary outcome was reoperation after salvage treatment. Secondary outcomes were 
overall survival, perioperative death, defined as death within one month of surgery, 
and other minor complications that did not require surgery or general anesthesia.   
 
Study II: Estimating Survival in Patients with Operable Skeletal Metastases: An 
Application of a Bayesian Belief Network.  
 
 After institutional review board approval, we searched the MSKCC patient 
management database (Disease Management System, v.5.2, 1996) for all patients 
who underwent orthopaedic surgery for skeletal metastases of the spine and 
extremities between 1999 and 2003.  We then reviewed all medical records and 
imaging studies and used these data, along with several other features, to construct 
the BBN models.  All patients had adequate follow-up to determine 12-month survival.   

We selected fifteen candidate features based on their current or historical 
association with survival in this patient population—those undergoing surgery for 
skeletal metastases.  These included the following: age at the time of surgery, race, 
gender, calculated glomerular filtration rate (mL/min/1.73 m2), serum calcium 
concentration (mg/dL), serum albumin concentration (g/dL), type of fracture 
(impending or complete pathologic fracture), extent of bone metastases (solitary or 
multiple), senior surgeon’s estimate of survival (postoperatively, in months), presence 
or absence of visceral metastases, presence or absence of lymph node metastases, 
prior treatment with chemotherapy (yes or no), preoperative hemoglobin (g/dL, on 
admission), absolute lymphocyte count (K/µL), and the primary oncologic diagnosis.  
Diagnoses were classified into three groups in a similar fashion as described by 
Katagiri et al.,73 but with modifications. Specifically, we considered breast, renal cell, 
prostate and thyroid carcinoma, multiple myeloma, and lymphoma as Group 3; 
sarcomas and other carcinomas as Group 2; and gastric, hepatocellular carcinoma 
lung and melanoma as Group 1.  
 We used the following definitions during data curation:  An impending 
pathologic fracture was one in which the degree of bone and/or cortical disruption 
warranted prophylactic fixation to prevent fracture.  A pathologic fracture was one in 
which a cortical lesion resulted in a change in length, alignment, rotation, or loss of 
height for spine lesions, as determined by good-quality imaging.  The surgeon’s 
estimate of survival was made preoperatively after reviewing the patients’ medical 
records and imaging studies, obtaining a complete medical history, and performing a 
thorough physical examination.  Biopsy-proven or clinically obvious metastases to 
organs within the chest or abdomen were considered visceral metastases.  Only 
biopsy-proven metastases to the lymph nodes were considered indicative of lymph 
node involvement.  Finally, prior chemotherapy was listed if a patient received 
chemotherapy for the current, active oncologic diagnosis. A list of candidate features 
is shown in Table 1, below. 
 Using the features described above, we developed two BBN models trained to 
estimate the likelihood of survival at 3 and 12 months, respectively.  These time points 
were chosen because they are generally accepted to guide surgical decision-making.  
Briefly, we used commercially available software that automatically learns network 
structures and priors from the training data.  As such, expected prior distributions (the 
value or values each feature is likely to assume under various circumstances) were 
not specified a priori.74,75  This done, features that were redundant, or unrelated were 
pruned (removed) from the preliminary models to produce the final model.  The 
number of categories each node could assume was also varied in an effort to 
maximize the number of first and second-degree associates—those features that are 
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most closely associated with the outcome of interest, survival greater than three or 12 
months, respectively.  After model development, cross validation was performed to 
assess overall accuracy.  A more detailed description of the Bayesian modeling and 
cross validation process is described below in Statistical Considerations.     
 
Table 1.  This table depicts the candidate features for inclusion into the BBN models for Study II 

Continuous variables are represented as categorical variables.  ECOG = Eastern Cooperative 
Oncology Group Performance Status 
  

Feature Model Label Description Node 
States 

Survival > 12 months Survival > 12 
months 

Overall survival exceeding 12 months yes, no 

Survival > 3 months Survival > 3 
months 

Overall survival exceeding 3 months yes, no 

Surgeon’s estimate 
of survival 

Surgeon’s 
Estimate of 
Survival 

The senior surgeon’s estimate of 
survival (in months) after obtaining the 
patient’s history, reviewing his or her 
laboratory and imaging results, and 
performing a thorough physical 
examination 

<4, 4-9, 
9-18, 
>18 

Oncologic diagnosis 
group 

Diagnosis 
Group 

Primary oncologic diagnosis, grouped 
as follows: 
1: lung, hepatocellular, and gastric 
carcinoma; melanoma 
2: sarcoma and other carcinoma, not in 
Groups 1 or 3 
3: breast, prostate, thyroid, and renal 
cell carcinoma; myeloma; lymphoma 

1, 2, 3 

ECOG performance 
status 

ECOG 
Performance 
Status 

Eastern Cooperative Oncology Group 
performance status, assessed 
preoperatively by treating physician 

≤2, ≥3 

Pathologic fracture 
status 

Pathologic 
Fracture 

Indicates whether surgery was 
performed for an impending or complete 
pathologic fracture 

yes, no 

Number of bone 
metastases 

Number of Bone 
Metastases 

Indicates whether the patient had 
solitary, or multiple skeletal metastases  

solitary, 
multiple 

Organ metastases Visceral 
Metastases 

Presence of metastases to visceral 
organs, lungs, or brain  

yes, no 

Lymph node 
metastases 

Lymph Node 
Metastases 

Presence of lymph node metastases yes, no 

Sex Gender Patient sex male, 
female 

Hemoglobin 
concentration 

Hemoglobin Preoperative hemoglobin concentration 
(in g/dL), prior to blood transfusion, if 
applicable  
 

<10.1, 
10.1–
11.4, 
11.4–
12.9, 
>12.9  

Absolute lymphocyte 
count 

Absolute 
Lymphocyte 
Count 

Preoperative absolute lymphocyte count 
(K/µL) prior to transfusion, if applicable 

<0.6, 
0.6–1.1, 
1.1–1.6, 
>1.6 
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Study III:  Treating Metastatic Disease: Which Survival Model Is Best Suited for 
the Clinic? 
 
 For this study, we retrospectively reviewed our institution-owned patient 
management database (Disease Management System, v5.2, 1996).  From this 
database, we identified all 189 patients who underwent surgery for metastatic bone 
disease at Memorial Sloan-Kettering Cancer Center between 1999 and 2003. No 
records were excluded and each contained fifteen variables and sufficient follow-up 
information to establish survival at 12 months after surgery. Features were identical to 
those collected for Study II, as were the definitions and outcomes (the likelihood of 
survival at three and 12 months).  
 We developed BBN, ANN and logistic regression models for this study.  Each 
was constructed using the same data and trained to estimate postoperative survival at 
three and 12 months. There were no missing data. Each of the models was internally 
validated using the cross validation techniques then using decision curve analysis 
(DCA) to determine which model, if any, was best suited for clinical use.  Each of 
these statistical techniques is described briefly here, but in more detail in the Statistical 
Considerations section, below. 
 The BBN was developed in a manner similar to that described in Study II. 
Briefly, all 15 variables (features) were considered as candidate features for inclusion 
in the model. Again, prior distributions were estimated from the training set and not 
specified a priori. The BBN models were trained to discriminate between two possible 
outcomes (survival at three and 12 months: yes or no).  We then performed ten-fold 
cross validation to assess the accuracy of the models.  
 We developed the ANN models using the Oncogenomics Online Artificial 
Neural Network Analysis (OOANNA) system.76 First, principal component analysis 
was performed on all 15 candidate features to identify the top 10 linearly uncorrelated 
variables with the largest variance. The ANN was composed of three layers: an input 
layer consisting of the 10 principal components identified above, a hidden layer (which 
may change the relative emphasis placed on data from each of the inputs) with five 
nodes, and an output layer, which based on information from the hidden layer 
estimates the most likely outcomes (survival at three and 12 months: yes or no).  
Leave-one-out cross-validation was performed by training the model on n - 1 (188) 
records and then testing it on one independent test record.  
 Finally, for comparison to the two ML techniques described above, we 
developed a conventional logistic regression model using variables observed to be 
potentially significant on univariate analysis (oncologic diagnosis, presence of visceral 
metastasis, preoperative serum hemoglobin concentration, Eastern Cooperative 
Oncology Group performance status, and the surgeon’s estimate of postoperative 
survival). For this portion of the analysis, we used STATA® 11.0 statistical software 
(StataCorp LP, College Station, TX, USA). Ten-fold cross-validation was performed. 
 We then compared each model using a variety of methods. First, calibration 
curves were created that plotted predicted risk against actual risk to assess the 
accuracy of the model predictions. Second, we assessed accuracy by calculating the 
AUC. Third, decision curve analysis70 was performed in an effort to help quantify the 
consequences of over- or undertreatment and to determine which model, if any, was 
better suited for clinical use.  
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Study IV:  External Validation of the Bayesian Estimated Tools for Survival 
(BETS) Models in Patients with Surgically Treated Skeletal Metastases. 
 
 The purpose of this study was to externally validate the BBN model developed 
in Study II, using an independent, international skeletal metastasis registry.  For this, 
we chose the Scandinavian Skeletal Metastasis Registry (SSMR). The SSMR contains 
the records of patients with surgically treated metastatic bone disease, at one of eight 
major Scandinavian referral centers between 1999 and 2009. Each record contains 84 
demographic and clinical variables, including most of the preoperative features 
required to validate the BBN models. The likelihood of survival at three and 12 months 
was the outcome. Features and definitions were identical to those described in 
Studies II and III. Though initially called BETS-3 and BETS-12, the models are now 
collectively referred to as PATHFx.   
 Although missing data were acceptable, the validation process required that the 
variables present within the PATHFx models also be present within the validation set. 
To satisfy this requirement, we converted the Karnofsky performance score, recorded 
in the SSMR, to the ECOG performance score using a formula described elsewhere.77 
In addition, we converted hemoglobin concentrations, recorded in the SSMR in 
mmol/L or g/L, to g/dL prior to validation.  
 We compared the demographics and patient characteristics of the validation set 
to those of the test set.  Next, we applied data contained in the validation set to the 
PATHFx models using commercially available software (FasterAnalytics, DecisionQ 
Corp., Washington, DC, USA).  The likelihood of postoperative survival at both three 
and 12 months was estimated for each record, and we performed ROC analysis to 
assess accuracy. Validation was considered successful if the AUC was greater than 
0.70, and was determined a priori. Finally, we performed a detailed analysis of 
incorrect estimations to describe the misclassification rate, in an effort to characterize 
the potential clinical impact.  
 
 
Study V:  External Validation of a Tool for the Estimation of Life Expectancy in 
Patients with Skeletal Metastases—Decision Analysis and Comparison of Three 
Major International Patient Populations.   
 
 Following the first successful external validation study (Study IV), we sought to 
perform an additional external validation in Italian patients.  For this, we partnered with 
the Italian Society of Orthopaedic and Traumatology (Società Italiana di Ortopedia e 
Traumatologia or SIOT). Within this society, the Bone Metastasis Study Group 
identified 287 patients from 2010 to 2013 who underwent orthopaedic surgery for 
skeletal metastases of the spine and extremities. Each record contained 17 
demographic and clinical variables, including most of the preoperative features 
required to validate the PATHFx models, as well as adequate follow-up to determine 
postoperative survival at 12 months.  All definitions and outcomes (the likelihood of 
survival at three and 12 months) were similar to those described in the previous, 
Scandinavian, external validation study (Study IV).  
 External Validation was also performed as described in Study IV and validation 
was considered successful if the AUC, determined a priori, was greater than 0.70.  
Finally, decision analysis was performed as described in Study III to better 
characterize if and how the models should be implemented in both Italian and 
Scandinavian patient populations.     
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Study VI:  A Probabilistic Analysis of Completely Excised High-Grade Soft 
Tissue Sarcomas of the Extremity: An Application of a Bayesian Belief Network 

 
 The previous studies demonstrated that BBN methodology could be used to 
produce models designed to estimate the likelihood of survival in patients with 
metastatic bone disease requiring surgery, and thus guide appropriate surgical 
treatment.  In doing so, we were able to codify complex data into clear graphical 
models.    The purpose was to apply this approach to another, entirely different, area 
within orthopaedic oncology.  Study VI is designed to describe the hierarchical 
relationships between features related to the treatment of completely excised, 
localized, high-grade soft tissue sarcomas of the extremity.  The results could be used 
to bolster our understanding regarding the conditional relationships between important 
features, as well as serve as the basis for later hypothesis testing.   
 For this study, we turned to the Memorial Sloan-Kettering Cancer Center 
(MSKCC) Sarcoma Database.  This database contains prospectively collected clinical, 
pathologic, and treatment-related variables for all adult patients with primary and 
recurrent STS treated at MSKCC since 1982.  We extracted all patients with high-
grade, extremity STS, who had complete resections.  I.e. R0 margins. We chose this 
specific patient population to control for tumor grade and margin status prior to 
performing the initial probabilistic analysis. 
 We chose twenty-seven candidate features based on availability, as well as 
their current clinical or historical association with DSS in patients with high-grade STS. 
These included: age at the time of index surgery; gender; size, depth, and location of 
the primary tumor; histology and histologic variant, if applicable; any oncologic 
procedures done prior to referral; whether the sarcoma was radiation-induced; the 
patient’s home zip code at the time of referral; the surgical service and surgeon of 
record; need for re-excision following referral; type of surgical procedure performed; 
presence of bone, nerve, or vascular invasion; whether bone or nerve was resected 
with the tumor; adjuvant treatment and timing of chemotherapy or radiotherapy; 
presence of and time to local recurrence (LR); presence of and time to distant 
recurrence (DR); and death from disease. 
 Only extremity tumors were considered; that is, those distal to the axillary fold in 
the upper extremity or those distal to the inguinal ligament in the lower extremity. In 
addition, we used the following definitions. A sarcoma was considered radiation-
induced if it occurred within the radiated field, more than six-months after irradiation, 
and was histologically dissimilar from the original tumor. Bone adherence/invasion was 
considered present if, on radiographs or cross-sectional imaging, the tumor exhibited 
any effect on any bone, including periosteal reaction. Nerve and/or vascular invasion 
was determined by histology. The presence of and time to DR was determined by 
imaging.  Local recurrences were diagnosed on follow-up by physical examination 
and/or imaging, and were confirmed by histology. Time to both DR and LR were 
calculated from the date of initial operation.  The candidate features and descriptions 
of node states are listed in Table 2.   
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Table 2.  This table depicts the 27 candidate features considered for inclusion in the BBN model for 
Study VI 

Candidate 
Feature 

Label Description States 

Age* AGE Patient age, at the time of 
surgery 

CV 

Gender SEX  Male 
Female 

Size* PRIMARY SIZE 
CATEGORY 

Size category of tumor in 
maximum dimension 

≤5cm 
5-10cm 
>10cm 

Depth* DEPTH Depth of primary tumor 
compared to investing fascia of 
limb 

Superficial 
Deep 

Site* SITE  Upper extremity 
Lower extremity 

Subsite SUBSITE Extremity tumors distal to the 
vertical plane made by the 
axillary fold and horizontal 
plane made by the inguinal 
ligament were considered.   

Hand 
Forearm 
Elbow 
Arm 
Axilla 
Shoulder 
Groin 
Hip 
Thigh 
Knee 
Leg 
Ankle 
Foot 

Histology* HISTOLOGY Final histology following 
excision, review by three 
pathologists 

MFH/HGPS 
Synovial 
Liposarcoma 
Leiomyosarcoma 
MPNST 
Fibrosarcoma 
Other 

Variant* VARIANT Histologic variant, if applicable Monophasic 
Biphasic…etc. 

Presentation 
status* 

PRESENTATION 
STATUS 

Oncologic procedures 
performed prior to referral (if 
any) 

None 
Biopsy only 
Marginal excision 
Wide excision 

Radiation induced RT INDUCED Whether the sarcoma is 
considered radiation induced 

Yes 
No 
 

Referring zip 
code 

FIRST 3 DIGITS ZIP First three digits of patient’s 
home zip code at the time of 
referral 

CV 

Surgeon* SURGEON CODE Thirty-one surgeons, listed 
anonymously 

A-EE 

Service* SERVICE CODE Two surgical services  GMT 
Orthopaedic Surgery 

Re-excision* RE EXCISION Whether the patient, upon 
referral, required a tumor bed 
excision 

Yes 
No 
 

Procedure* PROCEDURE Type of procedure performed Limb sparing 
Amputation 

Bone invasion* BONE INVASION  Yes 
No 

Bone resection* BONE RESECTED  Yes 
No 
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Candidate 
Feature 

Label Description States 

Nerve invasion* NERVE INVASION  Yes 
No 

Nerve resection* NERVE RESECTED  Yes 
No 

Vascular invasion VASC INVASION  Yes 
No 

Chemotherapy 
  Pre-op* 
   
  Post-op* 

 
PREOP CHEMO 
 
POSTOP CHEMO 

 
 

 
Yes 
No 
Yes 
No 

Radiotherapy 
  Pre-op* 
  
  Post-op* 

 
PREOP RT 
 
POSTOP RT 

  
Yes 
No 
Yes 
No 

Time to local 
recurrence* 

TIME TO LR In months CV 
None 

Time to distant 
recurrence* 

TIME TO DR In months CV 
None 

Death from 
disease* 

DOD Whether the patient died of 
disease, a reflection of disease-
specific survival 

Yes 
No 

* Denotes those candidate features included in the final model.  CV=Continuous variable, 
MFH/HGPS=malignant fibrous histiocytoma/high-grade pleomorphic sarcoma, MPNST=Malignant 
peripheral nerve sheath tumor, LR=Local recurrence, DR=distant recurrence 
 
 The BBN models were developed in a manner similar to those developed for 
Studies II and III.  Briefly, all 27 features were considered as candidates for inclusion 
in the model. We imputed values for features in which missing data represented less 
than 30% of the entire field. This included six features within the training set: bone 
invasion (missing in 5.4%), bone resection (7.9% missing), nerve invasion (11.6% 
missing), nerve resection (12.2% missing), vascular invasion (12.4% missing), and 
repeat excision (27.5% missing). None of the features were pruned because of 
missing data. Since relatively few patients had LR (14.7%) and/or DR (31.7%), we 
defined a ‘‘missing’’ value for each of these features as no LR or DR. 
 We then trained the BBN model to evaluate prior probability distributions in 
order to develop a classifier to estimate the probability of DSS. The network structure 
was then portrayed graphically to illustrate the conditional interdependence and 
hierarchy of the features, and inference tables were calculated to describe the 
posterior estimates of probability for all possible permutations with respect to the 
outcome.  We then performed ten-fold cross-validation to assess the accuracy and 
robustness of the final model.  Model development and cross validation techniques 
are described in more detail in the Statistical Considerations section, below. 
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Statistical Considerations 

 This thesis focuses on applying Bayes’ theorem of conditional probability to 
develop clinical decision support tools.  In doing so, we show how this ML technique is 
used to understand important relationships between features, and how perturbations 
of each feature influence the probability of an outcome.  This is one of the most 
important qualities of Bayesian networks and allows us to infer the likelihood of 
“unobserved” outcomes, like the probability of survival, for instance, from information 
on other features in the network that have been observed.    
 This approach stands in contradistinction to classical, frequentist statistical 
analysis.  In the classical sense we focus on estimating and testing hypotheses by 
assessing parameters of a fixed distribution using a sampling of that distribution.  This 
approach is well suited for the analysis and comparison of most biomedical data and 
even allows one to calculate the likelihood of past and future events—as long as the 
experimental conditions do not change. However, if the goal is to describe a system in 
which the experimental conditions cannot, or should not, be replicated, then we should 
look beyond the frequentist approach in favor of probability theory. 
 In cancer, therapeutics and treatment philosophies evolve, and ideally improve, 
over time, and each patient’s burden of disease is arguably different than the last.  In 
addition, health care practice and policy differs between cultures, and is often isolated 
(not controlled for) by experimental design.  As such, there is no reason to believe that 
the conditions (patient and disease demographics, treatment protocols, etc.) present 
in a given cancer center would apply to patients in other centers, worldwide.  In this 
dynamic and variable landscape, we must choose an approach that can 
accommodate a range of experimental conditions and uncertainty within the data, 
while describing relevant relationships in a transparent, economical manner.  Though 
many ML techniques can be applied individually, or in combination, the focus of this 
thesis involved the use of Bayesian statistics. 
 
Bayes’ Theorem of Conditional Probability 
 
In the simplest form, Bayes’ theorem is represented by the following equation:   
 

𝑃 ℎ 𝐵 = ! ! !   ×  !(!)
! !

      (1) 

 
By definition,   P(h) represents the prior probability of hypothesis h and reflects any 
background knowledge regarding the likelihood that h is correct.  Although this can be 
derived from expert opinion or large-scale studies, unsupervised ML methods such as 
those used for this thesis derive h from the training data and were not specified a priori.  
P(B) represents the prior probability of B, which is the probability that the data, B,    will 
be observed.  Next, P(B|h) is the probability of observing B, given that h is true.  
Finally, P(h|B), the posterior probability of h reflects confidence that h remains true 
after B has been observed.  In the above equation P(B) is a normalization factor that 
will ensure the P(h|B)  is a number between 0 and 1. In essence, the formula allows us 
to estimate the likelihood of h based on the available data (or evidence), B.  The term 
P(h|B) is generally called the “posterior” estimate, and equation (1), when written in 
English becomes: 
 

          𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = !"#$"  ×  !"#$!"!!!"
!"#$!%&!  !"#$%  !"#$%&'(%)'"!  !"#$%&

     (2) 
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In other words, Equation (2) helps us understand that Bayes’ theorem is a tool that 
can be used to update beliefs (in the form of a hypothesis h), in response to the 
available evidence.  This may seem familiar to clinicians and scientists, who do the 
very same thing when processing information from the literature, conferences, and 
their clinical practice.  However, Bayes’ theorem generates the probability that h is true, 
and also provides us with a measure of confidence in that estimate.   This allows 
clinicians to weigh the results of each estimate, while assimilating it and other sources 
of clinical information when formulating a treatment plan. 
 When written in the context of this thesis, we can better understand how Bayes’ 
theorem applies to patients with metastatic bone disease.  For instance, if an outcome, 
phrased as a hypothesis, h, is that “this patient will survive longer than one year,” then 
P(h|B) represents the probability that “this patient will survive longer than one year,” 
given the body of knowledge we call “evidence,” B, which contains information about 
the patient’s disease, the extent of it,  laboratory values, functional status, and the 
physician’s own experience.   
 Complex probabilistic models may be represented as graphical networks to 
provide the user with an easy to understand visual representation of complex 
conditional relationships between variables.  These provide a convenient way to 
express assumptions, facilitate the concise representation of the relationships 
between features, and derive inference from observations.78 Graphical networks can 
then depict all of the relevant relationships between variables derived from equation 
(1) in an intuitive, transparent and comprehensive manner.  This is a major advantage 
over other non-graphical techniques and allows the physician to easily understand the 
hierarchy and relative importance of each feature.   
 The structure of the network depends solely on the probabilistic relationships 
between features.  First, conditional dependence for a group of features can be 
represented mathematically by a joint probability distribution function (jPDF). The 
resulting jPDF allows one to describe the hierarchical relationships between features 
in a graphical manner and then calculate the probability of a feature (e.g., three-month 
postoperative survival) assuming a particular value (yes/no), expressed in terms of the 
values of two or more features.   
 The resulting network is called a directed acyclic graph (DAG), wherein 
relationships between nodes shown in Equation (3) can be described as parent and/or 
child relationships, depending on which feature directly determines the value of the 
other.  In general, the value of the child node is dependent on the value of the parent 
node.  

𝑝𝑎𝑟𝑒𝑛𝑡 → 𝑐ℎ𝑖𝑙𝑑                      (3) 
  
By the same logic, two features can be considered conditionally independent, 
particularly in the setting of an intermediate feature.  In the following examples of 
simple Bayesian networks, DAGs are represented in Equations (4-6). Note there is a 
link, referred to as an “edge,” between A and B, and B and C, but not between A and C.  
Because independence is implied by the absence of an edge. Features A and C are 
thereby conditionally independent, if the value of B is known.  
 

𝐴   → 𝐵 → 𝐶       (4) 
 

𝐴   → 𝐵 ← 𝐶       (5) 
 

𝐴   ← 𝐵 ← 𝐶       (6) 
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 However, if B is the outcome of interest, its value is conditionally dependent on 
the values of both A and C.  Though directionality is important when inferring causality 
(a child node is dependent on the parent node), it is not a function of the jPDF, and 
therefore directionality is not used to estimate the likelihood of any feature.  As such, 
the jPDFs for any variables in the network depicted in Equations (4-6) are identical 
regardless of implied directionality.  
 For this thesis, we sought to estimate the likelihood of certain outcomes.  As the 
following DAG shown in Equation (7) depicts, features that share an edge with the 
outcome are First-­‐Degree   Associates.  Those that share an edge with First-­‐Degree  
Associates   are Second-­‐Degree   Associates, regardless of the direction of dependent 
relationships indicated by the arrows.   
 
 

  
  (7) 

 
 
 
 In general, knowledge of a Second-­‐Degree  Associate  does not improve estimates 
of the outcome, provided the value of the shared First-­‐Degree  Associate   is known (i.e., 
as long as the value of the First-­‐Degree  Associate   is present in the evidence).  In the 
context of soft tissue sarcomas described in Study VI, we observed these conditional 
relationships, represented in the following DAG: 
 

 
          (8) 

 
 
 In this Bayesian network, both Size   and Distant   Metastases are first-degree 
associates of Died   of   Disease. Based on the direction of the edges, this model 
suggests that both disease-specific survival and metastases are dependent on the 
size of the tumor at diagnosis.  However, because the jPDF does not consider 
causality, the network structure allows one to infer the probability of [death   from]  
Disease, if either the Size  of the tumor or the presence of Distant  Metastases are known.  
In addition, the model structure informs us that the Depth  of the tumor is conditionally 
independent of [death  from]  Disease, if the Size  of the tumor is known.  In other words, 
if our goal is to estimate the likelihood of [death   from]  Disease, knowing the Depth  of 
the tumor (a second-degree associate) does not improve this estimate, as long as we 
are able to measure its Size   (the shared first-degree associate). One useful 
characteristic of a Bayesian approach is its ability to predict outcomes even when 
values for some variables are not provided in the evidence.  For example, if a first-
degree associate is missing (Size) but a second-degree associate is provided (Depth), 
then tumor size can be estimated and the best estimate for the outcome, given the 
available evidence, can still be calculated. In fact, once the jPDF for a given system is 
known, one can instantaneously investigate all nodes as potential outcomes of interest. 
This is helpful, not only when imputing missing data, but also to develop and test 
additional hypotheses, such as those described in Study VI, wherein we evaluated the 
effects of tumor size, and timing of local recurrence on disease-specific survival. 
 For some data, a “Naïve Bayes classifier” may be used.  Given a set of clinical 
data B containing several features (F1,  F2…Fn), and outcome, Z, naïve Bayes learning 
assumes each feature is unrelated to all others, except Z.  In other words, the 
influence of each feature on Z is independent of the presence or value of one or more 
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other features.  In addition, this simple Bayes classifier considers each feature to 
contribute independently to the probability of Z.  The following example of a naïve 
Bayes network shown in Equation (9) assumes each of the features inherent to the 
treatment of high-grade soft tissue sarcomas contributes to the probability of the 
outcome: Died  of  Disease. 
 Though useful in small datasets, the naïve Bayes classifier seems rather ill 
suited for use in living systems, since most biologic and physiologic processes are 
interrelated.  In Equation (9), features such as Size and Depth are nearly always 
related (larger tumors are more commonly deep), and some features like Distant  
Recurrence are typically much more influential than others in terms of disease specific 
survival.  Nevertheless, Naïve Bayes modeling is an efficient screening technique and 
is commonly used to determine if more thorough modeling is necessary. 
 
 
 
 
 
 

   (9) 
 
 
 
 

 
 
 
Bayesian Belief Model Development 
 
 To mitigate the problems with assuming each feature is independent of the 
others, the BBN models developed for this thesis were created using a method that 
makes no assumptions regarding independence. We used commercially available ML 
algorithms (FasterAnalytics; DecisionQ, Washington, DC) that automatically learn 
network structures and priors from the training data.  By this method, priors—how and 
under what circumstances the value assumed by one feature depends on the value(s) 
of other features—were not specified a priori.74,75 Rather, FasterAnalytics assigns a 
network configuration or structure, computes the strength of the networks robustness 
or predictive ability, then perturbs the network repeatedly until a maximum is achieved.  
In this fashion, robustness (r),  depicted in Equation (10), is maximized by generating a 
series of network structures S=(s1,  s2…  sn), across a continuum.  Random starts and 
stops ensure the true maximum, and not local maxima are achieved. 
 
 

𝑓! 𝑟! = 0         (10) 
 
 
 It is important to note that the most robust network is a compromise, balancing 
accuracy with the degree of model complexity that is defined by the user.  This 
subjective input helps prevent undue model complexity that would limit clinical 
applicability.   End users may find models containing scores of features tedious; 
however, even large models may be useful in cases where inputs are automated, e.g. 
following genetic sequencing, multiplex assays or if nested within an electronic 
medical record. By the same token, one must also avoid overfitting the model to the 
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training data, thereby limiting applicability in other settings.   
 Overfitting occurs when a modeling process describes the noise (random 
variation for a variable) within a set of observations, rather than the signal (the 
features that actually influence the outcome).  Overfitting is usually revealed during 
external validation, when independent data is used to validate the model.  If overfit, 
the model’s accuracy, or predictability will be rather poor, in most cases no better than 
a random guess.  We used various techniques to mitigate the risk of overfitting the 
models generated for this thesis, which will be discussed in more detail, below.   
 
Data Curation and Model Development 
 
 First, we accounted for missing data using a passive, truncation-based 
imputation algorithm.79 We typically imputed values for features in which missing data 
comparised less than 30% of the total records. Next, continuous features were 
converted to categorical ones using an equal-area binning process based on prior 
distributions learned from the training set.78 In an effort to balance goodness-of-fit 
against robustness, we applied a parsimony metric designed to reduce the risk of 
overfitting.79 Using an iterated process, unrelated and redundant features were pruned, 
and thereby removed from the preliminary models to produce the final model.  The 
number of categories each node could assume was also varied systematically in an 
effort to maximize the number of First-­‐ and Second-­‐Degree  Associates.  
 For the estimation of survival, two models were generated, one for each 
survival time period (outcome).  It is easy to see that different variables could influence 
survival over a three-month period versus a 12-month period.  If both survival periods 
were included in the same model, different survival estimates could serve as 
confounders in the same model.  Second, by estimating the likelihood of three-month 
and 12-month survival, we effectively classify patients into three survival estimates:  
<3 months, 3-12 months, and >12 months.  These time points were chosen because 
they are useful for orthopaedic surgical decision-making, as discussed previously.   
 
Artificial Neural Network Development 
 
 We developed the ANN models using the Oncogenomics Online Artificial 
Neural Network Analysis (OOANNA) system,76 which uses feed-forward multilayer 
perceptron (MLP) ANNs. We performed principal component analysis on all fifteen-
candidate features to identify the top 10 linearly uncorrelated variables with the largest 
variance. This was done in an effort to simplify, as well as mitigate overfitting of the 
model to the training data.  
 This MLP network was composed of three layers: an input layer consisting of 
the 10 principal components identified above, a hidden layer (which may change the 
relative emphasis placed on data from each of the inputs) with five nodes, and an 
output layer, which based on information from the hidden layer estimates the most 
likely outcomes (survival at three and 12 months: yes or no). Briefly, data from all 189 
study subjects were uploaded into the OOANNA system, which automatically selected 
the top 10 principal components, for inclusion in the ANN model.  
 
Target Shuffling 
 
 In order to ensure the relationships identified by the modeling methods 
described above are real, and not due to chance alone, target shuffling should be 
used.80 For this evaluation, outcomes in the training data are shuffled randomly among 
each of the records. This process is repeated for 1000 iterations and the modeling 
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methods are applied to each of these “permuted null distributions.”  By this method, 
the random association(s) between survival outcomes, and features contained within 
the training set are expected to be weak.   Iterated cross-validation is then used to 
evaluate the likelihood of sample bias resulting from a single round of k-fold cross-
validation.  Each model for each of the 1000 iterations undergoes 10-fold cross 
validation as described in detail, in Validation Techniques, below.  The mean AUC for 
all 1000 iterations is reported.  This allows one to calculate the probability that one or 
more of the modeling techniques described above resulted from chance alone.   
 
Decision Analysis 
 
 We performed decision curve analysis70 in the following manner. In contrast to 
decision tree analysis, which weighs the possible consequences of several decisions, 
decision curve analysis helps quantify the consequences of over- or undertreatment of 
a disease process. When constructing the decision curves, we assumed clinical 
decisions would be based strictly on the output of each model. For instance, the 
decision to offer surgery would be based on the likelihood of survival at three months, 
whereas the choice of implant (more durable or less durable) would be based on the 
likelihood of survival at 12 months. Each model generates a survival probability p at 
specific time points after surgery. If the probability is near 1, surgeons may choose to 
recommend surgery in the case of the three-month model and a more durable implant 
in the case of the 12-month model. If the probability is near 0, nonsurgical treatment 
may be recommended in the case of the three-month model or a less invasive/less 
durable implant in the case of the 12-month model. At some probability between 1 and 
0, however, surgeons may have difficulty choosing a treatment method. For this study, 
we defined the point at which surgeons become indecisive as the threshold probability 
pt, where the expected benefit of treatment is equal to the expected benefit of no 
treatment. The treatment decision trees are depicted for three-month survival in 
Equation (11), and 12-month survival in Equation (12); in which a,  b,  c, and d represent 
values associated with each possible outcome (Reprinted with kind permission from 
Springer Sciences + Business Media) (Study III). 

  
 
 
 
 
 
 
 
 
 
 

(11) 
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(12) 
 
 
 
 
 
 
 
 
 

 
 
For instance, for the three-month models, a   -­‐   c is defined as the consequence of a 
false-negative result, withholding surgery in someone who actually survives long 
enough to benefit (ie, > 3 months, in this case). Similarly, d   -­‐   b is defined as the 
consequence of a false-positive result, performing surgery in someone who does not 
live long enough to benefit (< 3 months). For the 12-month models, the definitions 
remain the same; however, the clinical impact changes. For 12-month survival, a   -­‐   c 
remains the consequence of a false-negative result, but in this case, a less durable 
implant is inappropriately chosen in a patient who outlives his/her implant and 
subsequently requires a revision procedure. Similarly, d  -­‐  b remains the consequence 
of a false-positive result; however, this time it results in unnecessarily aggressive 
surgery in a patient who does not live long enough to benefit. 
 From the decision trees, we derive the following formula as previously 
described:70 
 

!!!
!!!

= !!!𝑡
!𝑡

                                    (13) 

 
Simply stated, the threshold probability of survival pt in which a surgeon decides (a) 
whether to offer surgery and/or (b) whether a more durable implant is necessary is 
related to how he/ she weighs the consequences of overtreating or undertreating the 
patient. By letting the value of a true-positive result be 1, we arrive at the following 
formula: 81 
 

𝑁𝑒𝑡  𝑏𝑒𝑛𝑒𝑓𝑖𝑡 = !"#$  !"#$%$&'  !"#$%
!

− !"#$%  !"#$%$&'  !"#$%
!

× !𝑡
!!!𝑡

          (14) 
 
In this fashion, each model’s net benefit, defined as a three- or 12-month survivor who 
duly receives an operation and implant commensurate with his/her estimated survival, 
can be plotted against the entire range of threshold probabilities, acknowledging that 
clinically-relevant ranges comprise a smaller interval. 
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Validation Techniques 
 
Cross Validation 
 
 In smaller datasets without external validation data (Studies II, III, VI), we used 
cross validation methods to assess the accuracy of the models and help mitigate the 
risk of overfitting to the training data.  For ten-fold cross validation, we first randomized 
the data into 10 matching train-and-test sets using R© Version 3.0.2.1  Each set 
consisted of a training set composed of 90% of patient records and a test set 
composed of the remaining 10% of records. Each matching set was unique to ensure 
there was no overlapping information between sets. Ten models were developed 
using each training set, and then tested on the unknowns contained within the 
corresponding test set.   The ANN code used for Study III could not be configured for 
ten-fold cross validation.  Instead, we used leave-one-out cross validation, which was 
accomplished by training the model on n - 1 (188) records and then testing it on one 
independent test record. In this fashion, the ANN, using the 10 principal components, 
estimated the likelihood of three- and 12-month survival for each independent test 
record. 
 
“Holdout” Validation 
 
 For larger datasets, it is possible to create a “holdout” set using R© Version 
3.0.2.1  This technique produces training and test sets that are both relatively large.  
Prior to model development, 25% of records are typically “held out” for later testing, 
although this proportion may be varied.  Models would then developed using the 
training set, comprised of 75% of the original records.  Importantly, the distribution of 
outcomes should be held constant between the training and test sets, whenever 
possible. 
 
External Validation 
 
 Because cross validation techniques typically overestimate model accuracy, 
external validation is necessary prior to widespread clinical use.  This ensures models 
are tested in a variety of cultures and settings, with varying patient demographics and 
treatment philosophies.  We were fortunate to have two international external 
validation studies to support this thesis (Studies IV and V).  To perform external 
validation, data from the independent sources were applied to each model.  There 
were large amounts of missing data, including the surgeon’s estimate, as well as the 
absolute lymphocyte count that were missing in the majority of records.   This 
highlights one of the strengths of the Bayesian method, which retains functionality in 
the presence of missing input data. 
 
Frequentist analysis 
 
 For frequentist analysis, (all studies) we used the following approach.  
Continuous variables were tabulated and presented as mean (standard deviation), 
median (interquartile range—IQR) and categorical variables as number (%). The 
distribution of each continuous variable was compared with the normal distribution 
using the Shapiro-Wilk test. Equality of variance for continuous variables was 
determined using the Brown-Forsythe and Levene test. Statistical differences between 
continuous variables versus the bivariate outcome variables were evaluated using the 
Mann-Whitney U-test and the post hoc Tukey-Kramer assessment. Categorical 



 

 30 

variables were also tabulated and associations compared using Fisher’s exact test or 
chi-square analysis, depending on the number of expected values in the contingency 
matrix. A two-tailed α of 0.05 was considered statistically significant. We used JMP® 
Version 9.0.2 (SAS Institute, Inc., Cary, NC, USA), R© Version 3.0.21 and STATA® 
11.0 statistical software (StataCorp LP, College Station, TX, USA) for statistical 
estimations.   
 
Figures, Illustrations, and Equations 
 
For figures and illustrations, we used GraphPad Prism® Version 5.0, or Adobe® 
Illustrator® CS6 Version 16.0.4.  We adjusted image size and resolution for some 
figures using Adobe® Photoshop® CS6 Version 13.0x64.  All equations were 
generated using OmniGraffle Version 5.4.4, or the Equation Editor nested within 
Microsoft® Word for Mac 2011, Version 14.4.6.   
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Results 
 

Study I:  Which Implant Is Best After Failed Treatment for Pathologic Femur 
Fractures?  
 
 Follow-up was complete for all patients at a median of 8 months (IQR 3, 22).  At 
the time of last follow-up, six patients remained alive with disease; however, most (82) 
patients had died.  Five patients died within the perioperative period, defined as within 
four weeks of surgery, but there were no intraoperative deaths. 
 We compared age, sex, location within the femur, the type of initial and final 
implant used (Table 3).  The most common oncologic diagnoses were breast, kidney 
and myeloma, and the majority of patients had generalized skeletal metastases (Table 
4).   There were 16 PLATE, 11 IMN, 61 EP implants used.  
 
Table 3. Patient characteristics by treatment group are depicted for 88 patients in whom primary 
constructs failed.   

Patient characteristic Entire cohort 
(n = 88) 

EP 
(n = 61) 

PLATE 
(n = 16)  

IMN 
(N = 11) 

95% C.I. 
or prob. 

Follow-up (months) 8 (3, 22) 7 (3, 17) 13 (3-30) 15 (1-56) -2.1, 38.0 
-10.6, 36.2 
-22.9, 33.1 

Age (years) 65 (58,74) 65 (58,74) 68 (61,74) 70 (58-73) -4.9, 10.2 
-8.6, 9.0 
-7.6, 13.3 
 

Male 37 (42) 28 (46) 6  3  p=0.47 
Location      p<0.001 
    Femoral neck 10 (11) 8 (13) 2  0  
    Peritrochanteric 23 (26) 21 (34) 1  1   
    Subtrochanteric 31 (35) 25 (41) 2  4   
    Diaphyseal 13 (15) 4 (7) 5  4   
    Distal 11 (13) 3 (5) 6  2   
Initial fixation method     p=0.02 
    Plate 37 (42) 26 (43) 9  2  
    Intramedullary nail 26 (30) 17 (28) 3  6   
    Endoprosthesis 22 (25) 18 (29) 3  1   
    Cement with or 
without pin  
    Fixation 

3 (3) 0 1  2   

Salvage procedures 
requiring reoperation  

17 (19) 4 (7) 8  5  p<0.001 

Time to failure of 
salvage implant 
(months) 

10 (2,14) 7 (3,14) 6(4,12) 12 (10,35) p<0.001 

All values are presented as median (interquartile range) or frequency (percent); EP = 
endoprosthesis; IMN = intramedullary nail. 
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Table 4. This table describes the oncologic diagnosis by median survival and treatment group.  

Cancer diagnosis Median survival in 
months (IQR) 

Overall EP PLATE IMN 

    Breast 11 (5,20) 27 18 5 4 
    Kidney 7 (3,38) 21 13 6 2 
    Myeloma 18 (5,43) 16 11 1 4 
    Prostate 7 (4,9) 9 6 2 1 
    Lung 3 (2,6) 8 7 1 0 
    Other 3 (2,22) 7 6 1 0 
Diagnosis category      
    I 3 (2,6) 8 7 1 0 
    II 3 (2,22) 5 4 1 0 
    III 11 (4,30) 75 50 14 11 
Extent of metastases      
   Solitary skeletal 13 (5,39) 27 18 4 5 
   Multiple skeletal 9 (4,22) 41 33 4 4 
   Generalized 5 (2,22) 20 10 8 2 

IQR= interquartile range   EP = endoprosthesis; IMN = intramedullary nail; Diagnosis category 
I=lung; II=other; III=Breast, Kidney, Myeloma, Prostate 

 Of the 88 patients requiring salvage treatment after failed reconstructions, 17 
required reoperation (Table 3). The demographic information including median age, 
duration of follow-up, gender distribution and the proportion of perioperative deaths 
were similar between groups. As expected, EPs were performed most commonly for 
proximal (neck, peri- and subtrochanteric) lesions; plate fixation for distal femoral 
(metaphyseal and diaphyseal) lesions; and IMNs were for those in the diaphyseal and 
subtrochanteric regions. We observed a difference (p < 0.001) in the proportion of 
failures across treatment groups: EP (7%), IMN, (45%), and PLATE (50%) (Figure 2). 
Using logistic regression, we were able to discern the effect of the salvage implant on 
treatment failure after controlling for age, diagnosis, and location (chi-square = 7.92, 
DF = 2, p = 0.019) Specifically, the EP group had a lower chance of treatment failure 
than the PLATE (OR, 0.10; 95% CI, < 0.001 to 0.27) group. The observed odds ratios 
between EP and IMN and between IMN and PLATE with regard to treatment failure 
were 0.08 (0.01–1.11) and 0.13 (0.006–2.17), respectively. 
 Failure of salvaged implants, requiring reoperation (grade III complication72) 
occurred at a median time of 10 months (IQR 2, 14). The most common cause was 
material failure (n = 15) followed by progression of disease (n = 1) or a combination of 
these (n = 1). Considering the location of the tumor, failures in the diaphyseal region 
were most common (n = 8) followed by subtrochanteric (n = 5), peritrochanteric (n = 2), 
and distal femoral (n = 2). There were no failures after salvage in the femoral neck 
region, ostensibly since these were routinely excised and reconstructed with an EP. 
There were no reoperations for dislocations or infections and no pathologic fractures. 
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Figure 2.  This Kaplan-Meier survival curve depicts the time to 
reoperation after salvage treatment, grouped by the type of 
implant. EP = endoprosthesis; IMN = intramedullary nail; 
PLATE = plate fixation including screw and side-plate devices. 
95% C.I. boundaries are reported for each group. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  This Kaplan-Meier survival curve illustrates overall 
survival (OS) of the entire cohort after salvage treatment for 
failed femoral implants.  Note that the median OS is 
approximately eight months (IQR 3-22). 

 Seventeen patients had perioperative complications that did not require surgery. 
These included prosthetic dislocations (grade IIIa, n = 6), superficial wound infections 
(grade I, n = 8) as well as systemic (medical) illness (grade II, n = 2) or a combination 
of these (n = 1). Though implant survival was clearly superior compared to the IMN or 
PLATE groups, the proportion of perioperative complications was higher (p = 0.04) in 
the EP group. The overall survival for the entire patient population is shown in Figure 3. 
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Study II: Estimating Survival in Patients with Operable Skeletal Metastases: An 
Application of a Bayesian Belief Network.  
 
 We identified the records of 189 consecutive patients suitable for analysis. 
Median follow-up was 8 months (IQR 2, 22).  This was adequate to determining overall 
survival at 12 months after surgery.  Median patient age was 62 years (IQR 54, 72). 
Most patients were women (55%), and white, non-Hispanic (85%).  Most also had 
visceral metastases (60%), multiple skeletal metastases (71%), and prior systemic 
therapy (56%). Most patients were in oncologic Group 3 with more favorable 
diagnoses (55%), followed by Group 1 (27%), the least favorable diagnoses and then 
Group 2 (18%). As shown in Figure 4, 58 patients (31%) survived less than three 
months, 53 (28%) survived 3-12 months, and 78 (41%) survived more than 12 months. 
 

 
Figure 4.  This Kaplan-Meier curves illustrates overall survival (OS) for each patient, by diagnosis 
group. The OS in Group 1 was significantly lower than that that in Groups 2 and 3 at the three-
month time point∞(p<0.0001, log-rank test). Overall survival was also significantly different 
between all groups at the 12-month time point* (p<0.0001, log-rank test). 

 
 First-degree associates differed between the two models. In the three-month 
model (Figure 5), the Surgeon’s Estimate of Survival, preoperative Hemoglobin 
concentration, preoperative Absolute Lymphocyte Count, complete Pathologic 
Fracture, and ECOG Performance Status were first-degree associates of survival. In 
the 12-month model (Figure 6), only the Surgeon’s Estimate of Survival, preoperative 
Hemoglobin concentration, Number of Bone Metastases, and the oncologic Diagnosis 
Group were first-degree associates of survival. In the three-month model, the 
oncologic Diagnosis Group and the presence of Visceral Metastases were first-degree 
associates of the Surgeon’s Estimate of Survival.  This indicates that if the Surgeon’s 
Estimate of Survival is unknown, knowledge of the oncologic Diagnosis Group and 
whether the patient has Visceral Metastases can serve as acceptable surrogates. In 
the 12-month model, however, ECOG Performance Status and presence of Visceral 
Metastases were first-degree associates of the Surgeon’s Estimate of Survival, and 
represent acceptable surrogates in this setting. 



 

 35 

 
Figure 5.  This is a BBN model depicting the relationships between features associated 
with three-month survival. As shown, there are five first-degree associates of three-month 
survival.  These include the Surgeon’s Estimate of Survival, preoperative Hemoglobin 
concentration, preoperative Absolute Lymphocyte Count, ECOG Performance Status, and 
the presence of a Pathologic Fracture. The network structure indicates that the primary 
oncologic Diagnosis Group and the presence of Visceral Metastases are both first-degree 
associates of the Surgeon’s Estimate of Survival. 

 

 
 

 

 

 

 

 

 

 

 

Figure 6.  This is a BBN model depicting the relationships between features associated with 12-
month survival.  There are four first-degree associates of 12-month survival.  These include the 
Surgeon’s Estimate of Survival, preoperative Hemoglobin concentration, the Number of Bone 
Metastases, and the primary oncologic Diagnosis Group. In contradistinction to the three-month 
model, ECOG performance status and the presence of Visceral Metastases are first-degree 
associates of the Surgeon’s Estimate of Survival. 

 
 Cross-validation produced a mean AUC of 0.85 (95% CI: 0.80–0.93), and 0.83 
(95% CI: 0.77–0.90) for estimating the probability of postoperative survival at three 
and 12 months, respectively. We generated inference tables for the ten most likely 
combinations (Tables 5 and 6). The probability of three-month survival for the ten-most 
common scenarios ranged from 3.3– 99.2%, while the probability of 12-month survival 
varied from 0.8–93.6%. In all, there were 256 and 128 potential permutations for the 
three- and 12-month models respectively. 
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Table 5. Posterior estimates of survival at three months, ten most frequent cases 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Posterior estimates of survival at twelve months, ten most frequent cases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Study III:  Treating Metastatic Disease: Which Survival Model Is Best Suited for 
the Clinic? 
 
 The ANN models were the most accurate, with AUCs of 0.89 (95% CI, 0.84–
0.94) and 0.93 (95% CI, 0.89–0.96), for the three- and 12-month models, respectively. 
The BBN and logistic regression models performed similarly, with AUCs of 0.85 (95% 
CI, 0.79–0.91) and 0.83 (95% CI, 0.77–0.89); and 0.84 (95% CI, 0.77–0.90) and 0.83 
(95% CI, 0.78–0.89), respectively. The results of accuracy metrics are listed in Table 7. 
 On decision curve analysis, all models demonstrated a net benefit, indicating 
each could be used clinically, rather than assume all patients or no patients will 
survive longer than three or 12 months, respectively. All three-month models 
performed similarly; however, there were subtle differences among them (Figure 7). 
Any differences noted by this method are thought to be clinically important.  
 

  

  First-Degree Associates Outcome 

Expected 
Frequency ECOG 

Absolute 
lymphocyte 
count (K/µL) 

Completed 
Pathologic 

Fracture 
Hemoglobin 

(g/dL) 

Surgeon’s 
estimate of 

survival 
(months) 

Probability 
of Survival 
>3 months 

 No Yes 
2.0% ≥ 3 < 0.6 Yes < 10.1 < 4 96.7 3.3 
1.3% ≥ 3 < 0.6 No < 10.1 < 4 91.1 8.9 
1.7% ≥ 3 < 0.6 Yes 10.1–11.4 < 4 95.3 4.7 
1.2% 

 ≥ 3 < 0.6 No 10.1–11.4 < 4 87.6 12.4 

1.1% ≥ 3 0.6–1.1 Yes < 10.1 < 4 94.8 5.2 
1.0% ≥ 3 0.6–1.1 Yes 10.1–11.4 < 4 92.7 7.3 
0.9% ≤ 2 < 0.6 Yes < 10.1 < 4 89.5 10.5 
0.9% ≥ 3 < 0.6 Yes 11.4–12.9 < 4 86.5 13.5 
0.8% ≤ 2 1.1–1.6 No > 12.9 4–9 0.8 99.2 
0.8% ≤ 2 < 0.6 Yes 10.1–11.4 < 4 85.6 14.4 

  First-Degree Associates Outcome 

Expected 
Frequency 

Number of bone 
metastases 

Diagnosis 
Group 

Hemoglobin 
(g/dL) 

Surgeon’s 
estimate of 

survival 
(months) 

Probability 
of Survival 
>12 months 

     No Yes 
3.1% Multiple 3 < 10.1 < 4 94.4 5.6 
3.1% Multiple 3 10.1-11.4 < 4 93.3 6.7 
3.0% Multiple 1 < 10.1 < 4 99.2 0.8 
2.9% Multiple 3 >12.9 9-18 16.2 83.8 
2.9% Multiple 1 10.1-11.4 < 4 99.1 0.9 
2.5% Multiple 3 10.1-11.4 4-9 75.0 25.0 
2.4% Multiple 3 < 10.1 4-9 78.4 21.6 
2.2% Multiple 3 11.4-12.9 < 4 80.7 19.3 
2.1% Multiple 3 10.1-11.4 9-18 49.3 50.7 
2.0% Solitary 3 11.4-12.9 9-18 6.4 93.6 
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Table 7.  This table depicts the accuracy metric of each of the models generated for Study III 
 
 
 

 

 

 

 

 

AUC= Area Under the Receiver Operator Characteristic Curve.  Sensitivity and specificity were 
generated using clinically-relevant cut-points of 0.1† and 0.4‡ 

 

Figure 7.  This graph represents Decision Curve Analysis of the three-month models, plotting net 
benefit versus threshold probability of three-month survival.  Net benefit is defined as a three-
month survivor who duly receives an operation commensurate with his/her estimated survival.  
The y-axis and the maximum value of the net benefit is dependent on the proportion of patients 
that survive at least three months after surgery.  All models (ANN, BBN, logistic regression 
[LOGIT]) performed similarly and could be used clinically rather than assume all patients (or no 
patients) will survive longer than three months after surgery. 

 Regarding the 12-month models (Figure 8), the ANN produced the highest net 
benefit across all threshold probabilities. The BBN and logistic regression models 
performed similarly. At both three- and 12-month time points, the ANN performed best 
at or near the threshold probability of 0.5, corresponding to a 50% probability of 
survival at each time point. 
 

Model AUC (95%C.I.) Sensitivity 
(%) 

Specificity 
(%) 

Positive 
Predictive 
Value (%) 

Negative 
Predictive 
Value (%) 

3-Month †      
ANN 0.89 (0.84-0.94) 100 5 70 100 
BBN 0.85 (0.79-0.91) 97 24 74 78 

LOGIT 0.83 (0.77-0.89) 98 17 73 83 
12-Month ‡      

ANN 0.93 (0.89-0.96) 60 60 88 92 
BBN 0.84 (0.77-0.90) 63 63 83 89 

LOGIT 0.83 (0.78-0.89) 57 59 83 89 
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Figure 8.  This graph represents Decision Curve Analysis of the 12-month models, plotting net benefit 
versus threshold probability of 12-month survival.  Net benefit is defined as a 12-month survivor who 
duly receives an implant commensurate with his/her estimated survival.  The y-axis and the maximum 
value of the net benefit is dependent on the proportion of patients that survive at least 12 months after 
surgery.  All models (ANN, BBN, logistic regression [LOGIT]) resulted in positive net benefit, indicating 
they could be used clinically rather than assume all patients (or no patients) will survive longer than 12 
months after surgery. Note the ANN outperformed the other models across all threshold probabilities, 
including the clinically useful threshold probability of 50% estimated survival at 12 months.  
 
Study IV:  External Validation of the Bayesian Estimated Tools for Survival 
(BETS) Models in Patients with Surgically Treated Skeletal Metastases. 
 
 The external validation set contained eight-hundred fifteen (815) records, each 
with follow-up information to determine survival at three and 12 months 
postoperatively. The demographic and clinical features differed from those described 
in the training set (Tables 8 and 9). Specifically, we observed significant differences (p 
< 0.05) in the following features:  Age at surgery, oncologic diagnosis group, presence 
of visceral and lymph node metastases, number of bone metastases, presence of a 
complete pathologic fracture, ECOG performance status, and 12-month mortality. We 
observed non-significant differences in gender, preoperative hemoglobin 
concentration, absolute lymphocyte count, and three-month mortality. Most of the 
features contained missing data, including the surgeon’s estimate of survival (missing 
in 100% of records) absolute lymphocyte count (84.8% missing), and lymph node 
metastases (61.7% missing).  Each of these is a first- or second-degree associate of 
survival. 
 
  



 

 39 

Table 8. This table summarizes the comparison of categorical features between the training and 
validation sets 
Feature  Training set 

(n = 189) 
Validation set 
(n = 815) 

p 

  No. of 
patients 

% No. of 
patients 

% % Missing   

Gender male 
female 

85 
104 

45 
55 

369 
446 

45.3 
54.7 

0 0.91 

Diagnosis group 1.0 
2.0 
3.0 

52 
34 
103 

27 
18 
55 

173 
74 
567 

21.3 
9.2 
69.1 

0.4 0.001* 

Visceral metastases yes 
no 

114 
75 

60 
40 

325 
441 

39.8 
54.1 

6.1 <0.0001* 

Lymph node 
metastases 

yes 
no 

36 
153 

19 
81 

169 
143 

20.7 
17.5 

61.8 <0.0001* 

Number of bone 
metastases 

solitary 
multiple 

55 
134 

29 
71 

123 
666 

15.1 
81.7 

3.2 <0.0001* 

Pathologic fracture complete 
impending 

84 
105 

44 
56 

614 
196 

75.3 
24.0 

0.7 <0.0001* 

ECOG performance 
status 

0,1,2 
3,4 

93 
96 

49 
51 

558 
257 

68.5 
31.5 

0 <0.0001* 

Survival > 3 months yes 
no 

129 
60 

68 
32 

557 
258 

68.3 
31.7 

0 
 

0.78 

Survival > 12 months yes 
no 

79 
110 

42 
58 

241 
574 

29.6 
70.4 

0 0.002* 

ECOG=Eastern Cooperative Oncology Group; % Missing=the proportion of unknown or missing data 
within the validation set.  
*Distributions are significantly different between the training and validation sets by the chi-square 
 method. 
 
 
 
Table 9. This table summarizes the comparison of continuous features between the training and 
validation sets 
Feature  Training set  

(n = 189) 
Validation set 
(n = 815) 

% Missing  p 

Age at surgery (years) Mean 
SD 
Median 
IQR 

62.4 
13.7 
62.7 
54.4, 72.2 

66.3 
12.8 
67.0 
58.0, 76.0 

0 0.0002* 

Hemoglobin (mg/dL) Mean 
SD 
Median 
IQR 

11.5 
1.9 
11.4 
10.1, 12.9 

11.5 
3.5 
11.3 
10.3, 12.6 

0.6 1.0 

Absolute lymphocyte 
count (K/µL) 

Mean 
SD 
Median 
IQR 

1.2 
1.3 
1.0 
0.6, 1.5 

1.2 
0.74 
1.2 
0.8, 1.6 

83.8 0.48 

Surgeon’s estimate of 
survival (months) 
 

Mean 
SD 
Median 
IQR 

10.3 
8.6 
6.0 
4.0, 12.0 

N/A 100 N/A 

SD=standard deviation; IQR=interquartile range; N/A=not applicable; % Missing=the proportion of 
unknown or missing data within the validation set.  
*Distributions are significantly different between training and validation sets by two-tailed Student’s t-test. 
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 For the accuracy assessment, we used a cut point of 0.5, representing a 50% 
probability of survival.  In turn, we correctly classified three-month survival in 633 of 
815 (77.7%) patients, and 12-month survival in 555 of 815 (68.1%) records. On ROC 
curve analysis, the AUCs were 0.79 and 0.76 for the three-month and 12-month 
models, respectively. When compared with the cross-validation AUCs of 0.86 and 0.83, 
presented in Study II, we observe a 0.07-point degradation in each model. Though 
nontrivial, we believe this reduction in accuracy to be acceptable in an external 
validation setting, particularly in the presence of considerable amounts of missing data. 
 The majority of incorrect, or misclassifications were optimistic, by 
overestimating survival in most cases. Specifically, the three- and 12-month models 
misclassified a total of 182 (22.3%) and 260, (31.9%) records, respectively, as shown 
in Figures 9 and 10. Of the 182 records misclassified by the three-month model, 57 
(31%) were underestimates (patients lived longer than predicted) and 125 (69%) were 
overestimates (patients did not live as long as predicted). It is important to note that 
the models are not designed to differentiate between patients who die of disease from 
those who succumb to other unrelated perioperative complications.  However, the 
majority (70%) of patients in which three-month survival was overestimated lived 
longer than 1 month after surgery (Table 10). As such, surgery may have still been 
appropriate for most patients for whom survival was overestimated.  Therefore, 125, or 
15.3% of the entire validation set, represent the theoretical maximum proportion of 
patients that may have otherwise been treated non-operatively at the end of life.  Of 
the 260 records incorrectly classified by the 12-month model, 198 (76%) were 
overestimates and 62 (24%) were underestimates. In this latter case, implants may 
lack sufficient durability to out last the patient.  Thus, 62, or 7.6% represents the 
theoretical maximum proportion of implants at risk for failure.  However, the majority 
(69%) of patients in whom 12-month survival was underestimated survived less than 
two years after surgery with even fewer (<10%) living longer than three years after 
surgery (Table 11).   

Figure 9. This plot characterizes all misclassifications made by the three-month model in 
study IV. As shown, 69% of misclassifications (15.3% of the total validation set) were 
optimistic, and three-month survival overestimated. These patients did not live as long as the 
model predicted, and 15.3% represents the theoretical maximum proportion of patients for 
whom surgery may have been unnecessary. 

Overestimates 
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Figure 10. This plot characterizes all misclassifications made by the 12-month model in study 
IV.  Though most were optimistic, 24% of misclassifications (7.6% of the total validation set) 
were underestimates. These patients lived longer than the model predicted, and 7.6% 
represents the maximum proportion of cases at risk for implant failure if less durable 
constructs were used. 
 

 

 

Table 10.  An analysis of overestimates by the three-month model indicates the theoretical number of 
patients who may have been spared surgery at the end of life. However, a minority of patients in whom 
survival was overestimated lived less than one month following surgery. 

Actual Survival Number of patients Proportion of 
overestimates n=125 

(%) 

Proportion of total 
validation set n=815 

(%) 
<1 month 38 30 4.7 

1-2 months 44 35 5.4 
2-3 months 43 34 5.3 

 

 

Table 11.  An analysis of underestimates by the 12-month model indicates the theoretical number of 
patients at risk for implant failure, if less durable implants were used. As expected, the number of 
patients (or implants) at risk diminishes considerably over time. 

Actual Survival Number of patients Proportion of 
underestimates n=62 

(%) 

Proportion of total 
validation set n=815 

(%) 
1-2 years 43 69 5.3 
2-3 years 14 23 1.7 
>3 years 5 8 0.6 

 

 

Underestimates 
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Study V:  External Validation of a Tool for the Estimation of Life Expectancy in 
Patients with Skeletal Metastases—Decision Analysis and Comparison of Three 
Major International Patient Populations.   

 This external validation set contained two hundred eighty seven (287) records 
with adequate follow-up information to establish survival at three and 12 months 
postoperatively.  None of the records were excluded.  
 Using a cut point of 0.5, representing a 50% probability of survival, PATHFx 
correctly classified three-month survival in 253 of 287 (88%) patients, and 12-month 
survival in 199 of 287 (69%) patients. On ROC curve analysis, the AUCs were 0.80 
and 0.77, respectively, for the three- and 12-month models, respectively.  Incorrect 
classifications by PATHFx were more likely optimistic, than pessimistic. 
 On Kaplan-Meier analysis, the median survival of patients in the Italian 
validation set was longer at 12 months (95% C.I. 9-14 p=0.005) compared to 8 months 
(95% C.I. 6-11) and 7 months (95% C.I. 6-8) for the training set and first validation set, 
respectively. 
 As expected, the demographic and clinical features of patients in the Italian 
validation set differed from those observed in the training set (U.S.), and previous 
external validation set as shown in Tables 12 and 13. Several features differed 
significantly (p < 0.05) including, presence of visceral and lymph node metastases, 
number of bone metastases, and three- and 12-month survival. Nonsignificant 
differences were observed in age at surgery, gender, preoperative hemoglobin 
concentration, absolute lymphocyte count, oncologic diagnosis group, pathologic 
fracture status, ECOG performance status, and the surgeon’s estimate of survival.   
 
Table 12.  This table summarizes the comparison of categorical features between the training (U.S.), 
first validation (Scandinavian) and second validation (Italian) datasets.  

Feature  Training 
set 
n=189 

Scandinavian set  
n=815 

Italian set  
n=287 

  No. % No. % % 
Missing 

No. % % 
Missing 

vs. 
training 
set 
p. 

vs. 
Scandinavian 
set 
p. 

Gender male 
female 

85 
104 

45 
55 

369 
446 

45.3 
54.7 

0 120 
167 

42 
58 

0 0.50 0.31 

Oncologic 
diagnosis 
group 

1.0 
2.0 
3.0 

52 
34 
103 

27 
18 
55 

173 
74 
567 

21.3 
9.2 
69.1 

0.4 63 
44 
173 

23 
16 
62 

2 0.42 0.007* 

Organ 
metastases 

yes 
no 

114 
75 

60 
40 

325 
441 

39.8 
53.9 

6.3 91 
161 

36 
64 

12 0.0001* 0.08 

Lymph node 
metastases 

yes 
no 

36 
153 

19 
81 

169 
143 

20.8 
17.6 

61.6 96 
146 

40 
60 

16 0.0001* 0.0007* 

Number of 
bone 
metastases 

solitary 
multiple 

55 
134 

29 
71 

123 
666 

15.2 
81.4 

3.4 139 
144 

49 
51 

1 0.0001* 0.0001* 

Pathologic 
fracture 

yes 
no 

84 
105 

44 
56 

614 
196 

75 
24.1 

0.9 143 
131 

52 
48 

5 0.08 0.0001* 

ECOG 
performance 
status 

0,1,2 
3,4 

93 
96 

49 
51 

558 
257 

68.3 
31.7 

0 123 
106 

54 
46 

20 0.39 0.0001* 

Survival > 3 
months 

yes 
no 

129 
60 

68 
32 

557 
258 

68.2 
31.8 

0 
 

267 
20 

93 
7 

0 0.0001* 0.0001* 

Survival > 12 
months 

yes 
no 

79 
110 

42 
58 

241 
574 

29.8 
70.2 

0 181 
106 

63 
37 

0 0.0001* 0.0001* 

Abbreviations:  ECOG, Eastern Cooperative Oncology Group; % Missing, the proportion of unknown or 
missing data within the validation set;  
* Proportions are significantly different between training and validation sets by the Chi-square method. 
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When compared to the previous validation set, most features differed significantly (p < 
0.05), except gender, preoperative hemoglobin concentration, absolute lymphocyte 
count and the presence of visceral metastases.  Similar to the previous external 
validation set, most features contained missing data, also summarized in Tables 12 
and 13. Notable features included the surgeon’s estimate of survival (missing in 87%), 
absolute lymphocyte count (missing in 23%), and ECOG performance status (missing 
in 20%), all of which are important first- or second-degree associates of survival. 
 The present study demonstrated that 34 (12%) records were misclassified by 
the three-month model.  Of these, survival was overestimated in 13 records, 
representing the theoretical maximum number of patients who may have been spared 
surgery at the end of life.   Of the 88 (31%) records misclassified by the 12-month 
model, survival was underestimated in 44 cases.  This too represents the theoretical 
maximum proportion of patients at risk for implant failure if a less durable implant were 
used.  Decision Curve Analysis indicated that for the Scandinavian set, PATHFx may 
be used, rather than assume all patients or no patients survive greater than three or 
twelve months, respectively (Figure 11).  For the Italian set, use of the 12-month 
model is likely to improve outcomes, rather than assume all patients or no patients 
survive 12 months.  However, because of the exceptionally high proportion of patients 
who survive three months, DCA revealed that it is better for an Italian orthopaedic 
surgeon to assume all patients will survive more than three months, rather than use 
the three-month model (Figure 12). 
 

Table 13. This table summarizes the comparison of continuous features between the training (U.S.), 
first validation (Scandinavian) and second validation (Italian) datasets.  
  Training 

set 
n=189 

Scandinavian set 
n=815 

Italian set 
n=287 

Feature    % 
Missing  

 % 
Missing 

vs.  
Training 
set 
p. 

vs.  
Scandinavian 
set 
p. 

Age at 
surgery 
(years) 

Mean 
SD 
Median 
IQR 

62.4 
13.7 
62.7 
54.4, 72.2 

66.3 
12.8 
67 
58, 76 

0 63.1 
11.7 
64 
56, 72 

0 0.54 <0.005* 

Hemoglobin 
(mg/dL) 

Mean 
SD 
Median 
IQR 

11.5 
1.9 
11.4 
10.1, 12.9 

11.5 
3.5 
11.3 
10.3, 12.6 

0.6 11.5 
1.4 
12 
11,13 

10 0.83 0.90 

Absolute 
lymphocyte 
count (K/µL) 

Mean 
SD 
Median 
IQR 

1.2 
1.3 
1.0 
0.6, 1.5 

1.2 
0.74 
1.2 
0.8, 1.6 

83.8 1.3 
0.50 
1.5 
1.0, 2.0 

23 0.59 0.40 

Senior 
surgeon’s 
estimate of 
survival 
(months) 

Mean 
SD 
Median 
IQR 

10.3 
8.6 
6.0 
4.0, 12.0 

N/A 100 11.2 
7.0 
10 
5, 20 

87 0.56 N/A 

SD=standard deviation; IQR=interquartile range; N/A=not applicable. 
*Distributions are significantly different between training and validation sets by two-tailed Student’s t-test. 
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Figure 11.  These decision curves depict the net benefit of the three-month (A) and 12-month (B) 
models, when applied to the Scandinavian external validation set.  Net benefit is defined as a three- or 
12-month survivor who duly receives an operation and implant commensurate with his/her estimated 
survival.  As shown, each of the models should be used; rather than assume all patients, or none of the 
patients will survive greater than three or 12 months, respectively. 

 
Figure 12.  These decision curves depict the net benefit of the three-month (A) and 12-month (B) 
models, when applied to the Italian external validation set.  Net benefit is defined as a three- or 12-
month survivor who duly receives an operation and implant commensurate with his/her estimated 
survival.  It is important to note that nearly all (93%) patients referred for orthopaedic intervention 
survived longer than three months.  As a result, DCA of the 3-month model (A) indicates that one could 
achieve better outcomes by assuming all patients will survive greater than 3 months rather than using 
the three-month model.  This highlights the importance of decision analysis, even for relatively accurate 
models such as this one, with an AUC of 0.80 on external validation.  The results of DCA of the 12-
month model (B) indicate it should be used, rather than assume all patients, or none of the patients will 
survive greater than 12 months.   

Study VI:  A Probabilistic Analysis of Completely Excised High-Grade Soft 
Tissue Sarcomas of the Extremity: An Application of a Bayesian Belief Network 

 We identified the records of 1318 patients meeting the inclusion criteria. No 
records were excluded. The clinical characteristics and demographics of the patients 
are shown in Table 14. Briefly, the median age was 54 years (IQR 38, 58).  Most 
patients were male (55.2%), and lower-extremity lesions (73.1%) predominated. 
Tumor size was divided relatively equally, with those less than 5 cm in 35.5%, 5–10 
cm in 32.5%, and greater than 10 cm in 31.6% of cases. The distribution of histologic 
subtypes included malignant fibrous histiocytoma or high-grade pleomorphic sarcoma 
(39.6%), synovial sarcoma (15.8%), liposarcoma (12.7%), leiomyosarcoma (10.8%), 
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malignant peripheral nerve sheath tumor (3.9%), and fibrosarcoma (2.6%).  DR 
occurred in 31.8% of patients, at a median of 11 months (IQR 5.0, 24.0). Overall 
survival for the entire cohort was 54.4%, and DSS was 73.5%, at a median follow-up 
of 39.9 months (IQR 14.6, 96.8).  
 
 
Table 14.  Patient characteristics and demographics are depicted from 1318 patients with completely 
excised, high-grade, extremity soft tissue sarcomas. 

Feature No % Median IQR 
Age   54 38, 58 
Gender 
   Male 
   Female 

 
728 
590 

 
55.2 
44.8 

  

Size category 
   ≤ 5 cm 
   5-10 cm 
   > 10 cm 
    unknown 

 
468 
428 
416 
6 

 
35.5 
32.5 
31.6 
0.5 

  

Depth 
  Superficial 
  Deep 

 
265 
1053 

 
20.1 
79.9 

  

Site 
   Upper extremity 
   Lower extremity 

 
354 
964 

 
26.9 
73.1 

  

Subsite 
  Hand 
  Forearm 
  Elbow 
  Arm 
  Axilla 
  Shoulder 
  Groin 
  Hip 
  Thigh 
  Knee 
  Leg 
  Ankle 
  Foot 

 
37 
99 
26 
91 
33 
68 
43 
12 
607 
73 
149 
22 
58 

 
2.8 
7.5 
2.0 
6.9 
2.5 
5.2 
3.3 
0.9 
46.0 
5.5 
11.3 
1.7 
4.4 

  

Histology, variant 
  MFH/HGPS 
     Pleomorphic 
     Myxofibrosarcomatous 
     Giant Cell 
     Inflammatory  
     NOS 
  Synovial sarcoma 
     Monophasic   
     Biphasic 
      NOS 
  Liposarcoma 
    Myxoid/round cell 
     Pleomorphic 
     Dedifferentiated 
     NOS 
  Leiomyosarcoma 
  MPNST 
  Fibrosarcoma 
  Other 

 
522 
200 
171 
10 
2 
139 
208 
136 
70 
2 
168 
83 
57 
21 
7 
142 
51 
34 
193 

 
39.6 
38.3 
32.8 
1.9 
0.4 
26.6 
15.8 
65.4 
33.7 
0.9 
12.7 
49.4 
33.9 
12.5 
4.2 
10.8 
3.9 
2.6 
14.6 

  

Presentation status 
  No prior treatment 
  Biopsy only 
  Marginal excision 
  Wide excision 

 
260 
555 
371 
132 

 
19.7 
42.1 
28.1 
10.0 

  

Radiation induced 
   Yes 
   No 

 
19 
1299 

 
1.4 
98.6 

  

Zip code upon referral 
  First three digits 

   
112 

 
087, 125 
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Feature No % Median IQR 
Surgeon 
   A 
   B 
   C 
   D 
   E 
   F 
   G 
   Other 

 
318 
245 
146 
123 
116 
103 
102 
165 

 
24.2 
18.6 
11.1 
9.3 
8.8 
7.8 
7.8 
12.4 

  

Surgical service  
   GMT 
   Orthopaedic surgery 
   Other 

 
798 
512 
8 

 
60.6 
38.8 
0.6 

  

Tumor bed excision 
  Yes 
  No  
  Missing 

 
457 
498 
363 

 
34.7 
37.8 
27.5 

  

Procedure 
  Amputation 
  Limb-sparing surgery 

 
106 
1212 

 
8.0 
92.0 

  

Bone invasion 
  Yes 
  No  
  Missing 

 
51 
1196 
71 

 
3.9 
90.7 
5.4 

  

Bone resected 
  Yes 
  No  
  Missing 

 
183 
1031 
104 

 
13.9 
78.2 
7.9 

  

Nerve invasion 
  Yes 
  No  
  Missing 

 
27 
1137 
154 

 
2.1 
86.3 
11.6 

  

Nerve resected 
  Yes 
  No 
  Missing 

 
156 
1001 
161 

 
11.8 
78.0 
12.2 

  

Vascular invasion 
  Yes 
  No 
  Missing 

 
73 
1081 
164 

 
5.5 
82.0 
12.4 

  

Chemotherapy 
  Preop 
  Postop 
  None 

 
164 
202 
952 

 
12.4 
15.3 
72.2 

  

Radiotherapy 
  Preop 
  Postop 
  None 

 
51 
579 
688 

 
3.9 
43.9 
52.2 

  

Local recurrence 194 14.7   
Time to LR   15 6, 29.5 
Distant recurrence 419 31.8   
Time to DR   11 5, 24 
Death from disease 349 26.5   
Follow-up (months)   39 14.6, 96.8 

MFH/HGPS=malignant fibrous histiocytoma/high-grade pleomorphic sarcoma, 
MPNST=Malignant peripheral nerve sheath tumor LR=Local recurrence, DR=distant 
recurrence 
  
 Bayesian analysis revealed hierarchical associations between several features. 
As Figure 13 demonstrates, there are three first-degree associates of the outcome of 
interest, labeled “DOD” (Died of Disease).  They are, the size category of the primary 
tumor, time to- and presence of DR, and time to- and presence of LR. The second-
degree associates of DSS are, the anatomic site and depth of the tumor, any 
oncologic (surgical) treatment prior to referral, and whether the patient received 
neoadjuvant chemotherapy. 
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Figure 13. This is a BBN model depicting a comprehensive list of features, and their relationships.  
There are three first-degree associates with the outcome, Died of Disease (DOD) including presence of-, 
and time to distant recurrence (TIME TO DR); presence of- and time to local recurrence (TIME TO LR), 
and size of the tumor (PRIMARY SIZE CATEGORY) 

 On cross-validation, considering DSS as the outcome, ROC curve analysis 
demonstrated an AUC was 0.94 (95% C.I. 0.93–0.96). We generated inference tables 
based on the three first-degree associates, and the fifteen most common clinical 
scenarios are shown in Table 15, out of 144 total potential permutations.   
 
Table 15.  This table summarizes the probability of death from disease for the 15 most common clinical 
scenarios, out of 144 total potential permutations. 

Probability of case 
based on training 

data (%) 

Primary size 
category (cm) 

Time to 
LR (mo) 

Time to 
DR (mo) 

Predicted probability of 
death from disease (%) 

24.5 ≤5  No LR No DR 0.1 
18.6 5-10  No LR No DR 0.4 
14.6 >10  No LR No DR 0.7 
2.4 >10  No LR ≤4 83.3 
2.3 >10  No LR 14-28 83.9 
2.3 >10  No LR 9-14 85.3 
2.2 >10  No LR >28 75.0 
2.1 >10  No LR 4-9 84.1 
1.9 5-10  No LR ≤4 72.4 
1.8 5-10  No LR >28 61.2 
1.8 5-10  No LR 14-28 73.3 
1.8 5-10  No LR 9-14 75.4 
1.6 5-10  No LR 4-9 73.5 
1.4 ≤5  No LR >28 35.8 
1.3 ≤5  No LR ≤4 48.1 

Abbreviations: LR, local recurrence; DR, distant recurrence. 

 
 For patients in which tumors recurred locally, BBN model demonstrated a 
difference in survival based on the size of the primary tumor. We then generated case-
specific examples of LR for each of the three size categories, which are summarized 
in Table 16. Importantly, the probability of death from disease was 28.6% for tumors 
less than 5 cm, but increased to 52.5% and 67.9% for tumors 5–10 cm and greater 
than 10 cm, respectively.  
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Table 16.  This table depicts the association between the size category of the primary 
tumor and disease- specific survival, in locally recurrent cases. 

LR Size category of 
primary tumor 

Predicted probability of 
death from disease (%) 

Change in probability 
above baseline (%) 

N/A N/A 26.8 0 
Yes ≤ 5 cm 28.6 +1.9 
Yes 5-10 cm 52.5 +25.7 
Yes > 10 cm 67.9 +41.2 

 
 We also demonstrated an association between timing of LR and DSS For this, 
we also generated five case-specific examples in which LR occurred prior to and after 
18 months.  As shown in Table 17, if LR occurred prior to 18 months after surgery, the 
probability of DR was 59.6–68.2% and the likelihood of death from disease was 55.8–
65.9%. However, if LR occurred 18 months after surgery, the likelihood of DR and 
death from disease was substantially less at 37.4–39.8% and 29.7–32.4%, 
respectively. 
 
 
Table 17.  This table depicts the time-dependent association between local recurrence 
and disease-specific survival.  

LR Time to LR Predicted probability of 
death from disease (%) 

Change in probability 
above baseline (%) 

N/A N/A 27.5 0 
Yes ≤ 5 months 55.8 29.1 
Yes 5-11 months 67.5 40.8 
Yes 11-18 months 65.9 39.2 
Yes 18-37 months 32.4 5.8 
Yes > 37 months 29.7 3.0 
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Discussion 

 We successfully developed a reliable, objective, clinical decision support tool by 
applying advanced ML techniques.  In addition, we demonstrated how ML techniques 
such as Bayesian Networks may be used to represent the complex relationships 
germane to the treatment of patients with cancer.  In the process of developing and 
vetting these tools within the oncologic community, we emphasize the importance of 
rigorous data curation, external validation in a variety of settings, and decision 
analysis to define whether, and how each prospective model should be used in clinical 
practice.  The process of turning data into decisions, as we have done, can be now be 
applied to other areas within oncology—and medicine in general—for the purpose of 
improving outcomes while containing costs.  Importantly, is not sufficient to identify 
whether a particular treatment or technology should be used, but rather, to whom it 
should be prescribed.82 Decision support tools designed to provide answers to this 
question must therefore be developed. 
 We showed that Bayesian belief network models enable the clinician to 
assimilate complex high-dimensionality data sets into usable and individualized 
prognostic information.83 In the papers that comprise this thesis, we demonstrate this 
approach is well suited for the purpose of estimating survival in patients with operative 
skeletal metastases using common demographics and laboratory information (Study 
II). We then proved them to be widely applicable, by externally validating them in two 
international patient populations (Studies IV and V). In addition, we explored 
techniques designed to assess accuracy, as well as clinical utility (Studies III and V). 
In doing so, we highlight the importance of decision analysis prior to recommending if 
and how the models should be deployed in a given population.  Finally, we showed 
that ML techniques can be useful to describe important relationships between features 
in other settings, by focusing on patients with completely excised high-grade soft 
tissue sarcomas (Study VI).   
 As we become accustomed to smartphones and continuous Internet 
connectivity, applications known as “apps” take center stage.  The medical community 
is inundated with “apps” designed to make life easier by providing reference and 
anatomical information on devices such as computers, tablets and smartphones.  
Unfortunately, “apps” often convey an air of sophistication, which is undeserved in 
many cases.   “Apps” are not necessarily clinical decision support (CDS) tools.  In fact, 
those that have not undergone the rigorous evaluation described in this thesis should 
be used with extreme caution and skepticism. Our ability to adequately and accurately 
apply personalized medicine depends on judicious use of CDS tools, which is the next 
most logical step toward optimizing outcomes.  Doing so helps avoid complications 
associated with over- or undertreatment, provided that the tools we use have been 
developed and vetted properly. 
 We chose to use Bayesian modeling for three reasons.  First, the technique 
generates a graphical depiction of all features, including the outcome(s), in a single 
model.   In this fashion, even the most complex hierarchical relationships can be 
represented clearly and transparently.  Second, because Bayesian networks encode 
information about the relationships between features in a jPDF, resulting models 
remain functional in the presence of missing data.  This is a major advantage over 
other modeling techniques, in which correlations between input variables are not 
encoded.   The ability to function in the presence of missing input data is an 
advantage in the clinical setting, because treatment decisions are often based upon 
incomplete information.  Finally, the BBN method generates not only an estimation of 
likelihood, but also provides the user with a quantitative assessment of the quality of 
evidence supporting each estimation.  This allows clinicians to weigh the results 
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provided by BBN models like PATHFx—just as they do for other diagnostic tests—
while assimilating them and other sources of information to make personalized, 
evidenced-based, decisions.   
 In the process of developing PATHFx, we better characterized the role of the 
physician’s input.  The BBN revealed that the oncologic diagnosis, ECOG 
performance status and the presence of visceral metastases were first-degree 
associates of the surgeon’s estimate, which remained the single best predictor of 
outcome (Study II, Figures 5 and 6). The inclusion of the surgeon’s estimate in a 
cohesive model is controversial.  However, it seems to carry a great deal of 
importance, as noted by our results and others84,85 including Glare et. al,2 who 
systematically reviewed physician survival estimates and called for their inclusion in 
subsequent prognostic models.   
 Critics of the surgeon’s estimate cite the potential lack of reproducibility and 
generalizability of this variable between surgeons and institutions, particularly in those 
less experienced in the treatment of metastatic disease.  To address this concern, we 
externally validated PATHFx using an 815-patient test-set from an international 
registry (Study IV).  Importantly, this test-set did not contain the surgeon’s estimate 
among the list of covariates.  I.e. it was missing from 100% of records.  PATHFx, 
nevertheless, performed accurately despite the missing data.  This illustrates the 
flexibility and sophistication of the Bayesian modeling approach by encoding the 
experience of orthopaedic oncologists (Drs. Healey, Boland, Morris and Athanasian) 
who provided data for the training set within the jPDF (Study II).  This allows end-users 
who may be less experienced than those listed above to derive accurate survival 
estimates simply by including the relevant and objective second-degree associates of 
survival (oncologic diagnosis, ECOG performance status and the presence of visceral 
metastases).  The Bayesian framework accommodates this approach even though the 
most important first-degree associate, the surgeon’s estimate, is not specified.    
 The nature of misclassifications by each model observed on external validation 
deserves discussion.  For Study IV, the three-month models misclassified 182 (22.3%) 
of Scandinavian records. Of these, 57 (31%) were underestimates (patients lived 
longer than predicted) and 125 (69%) were overestimates (patients did not live as long 
as predicted). As noted above, the clinical impact of each of these cases is not 
equivalent, which highlights the importance of decision analysis prior to 
recommending if and how the models are to be used clinically.   Still, these metrics do 
not discern which patients succumb prematurely to unrelated perioperative 
complications. Therefore, 125, or 15.3% of the entire validation set may seem high, 
since these patients may have been treated non-operatively at the end of life.  
However, if we consider an acceptable margin of error, as Nathan and Healey did,50 
we note the majority (70%) of patients in which three-month survival was 
overestimated lived longer than 1 month after surgery. If we then consider survival 
between 2 and 3 months, as “acceptable”, the proportion of clinically significant 
overestimates made by the three-month model shrinks to 82 of 815 or 10%.  It is 
important to mention that a fraction of these patients for whom surgery was the best 
option, succumbed to unrelated perioperative complication(s). If we consider that 
between 6 and 23% of patients as reported herein (Studies I and III) and 
elsewhere8,86,87 die within six weeks of surgery, then the clinical impact of such 
overestimates may fall decidedly within the acceptable norm.   In fact, decision 
analysis (Study V, Figure 11A) supported this finding by demonstrating that the use of 
the three-month model would result in better outcomes, rather than assume all 
Scandinavian patients would survive 3 months.  
 However, efforts to improve very short-term survival estimates are underway.   
In fact, there is a growing body of evidence suggesting systemic inflammatory 
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mediators may provide useful prognostic information in patients with metastatic 
disease.  In a general sense, a number of circulating cytokines and chemokines are 
associated with either favorable or unfavorable88-92 outcomes in several oncologic 
diagnoses.  For instance, elevated tumor necrosis factor-alpha (TNF-α) and 
interleukin-10 have been associated with unfavorable survival in patients with 
metastatic breast and lung cancer respectively.93,94 Likewise, procalcitonin, an 
important inflammatory protein and precursor to TNF-α has been correlated with 
progression of liver metastases, as has C-reactive protein and interleukin-6 (IL-6).95   
In fact, elevated IL-6, a strong indicator of systemic inflammation has been implicated 
in the metastatic progression of several diagnoses including carcinoma of the breast, 
stomach, lung, colon, renal cell, prostate, and melanoma.88,91-93,95-98 This information 
suggests that systemic inflammation may be relevant in many forms of advanced 
cancer. In the same manner that basic demographics and laboratory information may 
be used to discriminate short from long-term survivors, an inflammatory profile may be 
useful to discriminate between short (three-month) and very short-term (<1 month) 
survivors.  With this in mind, we may further improve the accuracy of PATHFx in short-
term survivors by including one or more inflammatory proteins.  
 The considerations regarding misclassifications in long-term survivors are 
complementary.  Of the 260 records incorrectly classified by the 12-month model, 198 
(76%) were overestimates and 62 (24%) were underestimates. In the latter case, 
patients live longer than expected, and implants may lack sufficient durability to out 
last the patient.  Thus, 62, or 7.6% represents the theoretical maximum proportion of 
implants at risk for failure.  However, the majority (69%) of patients in whom 12-month 
survival was underestimated survived less than two years after surgery with very few 
(<10%) surviving more than three years. If we apply a margin of error and consider 
those surviving 1-2 years as “acceptable, then 19 of 815 patients, or 2.3% of the entire 
validation set, may be considered the theoretical maximum proportion of implants that 
would be at risk of failure, if less durable constructs were used.  Further, DCA 
highlights the clinical utility of the 12-month model in Scandinavian patients over a 
broad range of threshold probabilities (Study V, Figure 11B) 
 In order to improve long-term estimates, a new approach to data collection may 
be used.  Current models focus on estimating the likelihood of survival using a single 
time-point—the preoperative evaluation.  However, risk profiles change over time, 
particularly for those with metastatic disease.  Models designed to provide long-term 
estimates should be designed generate conditional estimates of survival.99,100 That is, 
those that can be used at various time-points throughout treatment.  An analysis of 
this kind accommodates the changing risk profile associated with the natural history of 
the disease; however, more data points over years of follow-up must be obtained.  It 
would also be useful to include not only patients with operable skeletal metastases, 
but also those in which lesions are to be treated non-operatively.     
  In order to be widely accepted, however, prognostic models must be 
applicable to patients in a variety of settings and cultures.  To test this, we evaluated 
PATHFx in a second external validation study (Study V), performed in thirteen Italian 
referral centers.  The results demonstrated that the models are indeed generalizable, 
not only to the Scandinavian external validation and the U.S. model development 
populations, but to an Italian one, as well.  This is particularly noteworthy given the 
significant differences in treatment philosophies between the institutions that provided 
data for each portion of the study. 
 Though access to care is similar between Scandinavians and Italians, the 
distribution of patients undergoing surgery for metastatic bone disease was quite 
different.  In fact, over 93% of Italian patients survived more than three months, and 
63% survived longer than one year.  These proportions are considerably greater than 
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those represented in either the Scandinavian or training set, and likely indicates key 
differences in patient selection between cultures.  These differences are unexpected 
given the similar proportions of patients with pathologic fractures, favorable diagnoses, 
and good performance when compared to the training set.  Still these observed 
differences might be explained by referral patterns among the Italian centers.  In 
general, Italian oncologists refer patients with excellent prognoses for orthopaedic 
consultation.  In patients with more extensive disease or otherwise less favorable 
prognoses, surgery may be deemed unsuitable in the eyes of the oncologist, which 
obviates the need for an orthopaedic opinion.  However, this practice may exclude 
patients with relatively short survival estimates that may benefit from less invasive 
stabilization or palliative procedures.29,32,34 In addition, nearly half of Italian patients 
included in this study presented with a solitary skeletal metastasis.  This was also 
unexpected, given that this proportion is much higher than both the training and 
previous validation sets.  Though it could represent more effective disease 
surveillance practices than those in Scandinavia or the U.S., given the differences in 
referral patterns discussed above, it is more likely that Italian patients with less 
favorable prognoses were not referred for surgical management.  This is likely to be 
true, especially in the setting of impending pathologic fractures.  Finally, the Italian 
external validation study was designed to provide a cross section of treatment 
practices across all of Italy.  Had we sampled only tertiary referral centers such as the 
Rizzoli Institute, or the Campus Bio-Medico University Hospital, the proportion of 
cases done in the palliative setting would have arguably been higher.   Nevertheless, 
despite major differences in the US and Italian patient populations, PATHFx remained 
quite accurate with AUC of 0.8 and 0.77 for the three- and 12-month models, 
respectively.  This suggests that as a CDS tool, PATHFx may be broadly applicable to 
the European, as well as the U.S. model development, populations.  
 However, measures of accuracy are not alone sufficient to ensure models are 
applicable and beneficial to specific patient populations. Though one may consider an 
AUC of 0.8 to be sufficiently accurate, decision analysis helps illustrate the clinical 
impact of applying the three-month model to an Italian patient population in which 
virtually every patient survives three months.  Following DCA, we observe that at 
threshold probabilities less than 15%, the model is equivalent to one in which all 
patients are expected to survive greater than three months. At thresholds > 90%, the 
three-month model should result in better outcomes.   However, at thresholds between 
15% and 90%, an Italian orthopaedic surgeon is better off treating patients as if all will 
survive more than three months, rather than use the three-month model.  In the latter 
case, using 50% threshold probability as an example, an erroneous underestimate 
may prompt the surgeon to withhold surgery from one in ten patients in whom it was 
otherwise indicated.  
 This paradoxical effect is directly related to the proportion of three-month 
survivors in the Italian validation set. Approximately 68% of patients in the U.S. and 
Scandinavian populations were alive three months after surgery.  In these patients, 
DCA demonstrated that the three-month model should be used, rather than assume 
all patients or no patients would survive three months.  Importantly, the model was 
trained and tested on populations of which 68% survived three months, then applied to 
an Italian one in which 93% survived.  With this relatively “healthy” terminally ill 
population in mind, one may question the need for a three-month model, entirely.  
Stated another way, a model designed to estimate the likelihood of three-month 
survival may be of limited utility when nearly every patient survives three months.  
However, measures of accuracy such as ROC analysis do not characterize this effect, 
and only after performing DCA are we able to provide specific recommendations as to 
how the models should be used clinically.  By including thirteen Italian centers, we 



 

 53 

expect this to be an accurate sampling of the Italian patient population.  Still, it is 
possible that a sampling bias occurred and centers specializing in palliative 
orthopaedic treatment were underrepresented in this analysis.  In addition, referral 
patterns and treatment philosophies are known to change over time.   We expect this 
to be the case in Italy, given the accepted benefits of surgical intervention for 
metastatic bone disease, even in the palliative setting.  Thus, these analyses should 
be repeated, particularly if the proportion of three-month survivors approaches that 
observed in the US or Scandinavian patient populations.     
 
The methodology of turning data into decisions 
 
 As patients, physicians and health care payers demand more accuracy and 
efficiency, we must make use of existing data.  Turning these data into viable CDS 
tools requires a rigorous series of assessments, comparisons and analyses that have 
been outlined in this thesis.  The result of this work should not be viewed as a single 
tool, but a methodology that may be applied to any clinical question for which there is 
prior knowledge in the form of existing, quality data.   
 Population-based registries have long been the source of big data for 
orthopaedic surgeons.  These databases are being queried in increasing frequency 
and are used largely to track failures, make comparisons, and evaluate various 
associations.  In this fashion, clinical questions can be answered using traditional 
frequentist statistics.  However, if the goal is to make better decisions based on the 
available data, one must employ a variety of statistical modeling methods.  That is not 
to say that one should abandon traditional frequentist methods such as regression 
models.   We know that regression-based techniques may be perfectly capable of 
codifying data into successful CDS tools.68 Rather, traditional statistical techniques, 
which remain familiar to most clinicians and scientists, may be developed along side 
and compared to other, more computer-intensive methods such as BBN, ANN and RF 
modeling.  
 The ability to function in the presence of missing data is critical to widespread 
acceptance of CDS tools.  This is especially important because the increasing amount 
of diagnostic information available to clinicians is at odds with cost containment 
desired by managed care systems.101 Furthermore, diagnostic and treatment 
philosophies vary by country and by region, outcome and functional assessments are 
not translated into all languages, and there is no consensus as to which outcome 
assessments should be used for many oncologic conditions.   As a result, we must 
balance comprehensive variable collection with swift usability if the goal is to design a 
CDS tool for worldwide clinical use.  In order to do that, clinical information must first 
be collected from a variety of international centers with differing diagnostic and 
treatment philosophies.  Once collected, the truly beneficial diagnostic information can 
then be filtered using most efficient means from the (often extensive and expensive) 
noise using the data analytic techniques described above.  
 This process has proven to be useful in the setting of orthopaedic oncology.  As 
with any statistical methods, applicability in other settings may be limited.  As such, it 
is critically important when applying ML approaches to other clinical problems, that we 
choose relevant features with proven, or theoretical associations with the outcomes of 
interest.  Once this is done, data can be explored in an effort to describe the 
relationships between features, as we have done in Studies II and VI.  Omitting this 
process risks generating models that do not contain the conditional information 
needed for the models to be useful in the presence of missing information.102  
 As we have shown, ML techniques such as BBN and ANN modeling can be 
very useful in codifying large amounts of data.  However, it is vitally important that 
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these algorithms are not left to perform their duties purely unsupervised.  To ensure 
the information remains clinically relevant, clinicians and scientists must spend a 
considerable amount of time identifying relevant data that can be organized and 
curated prior to applying ML techniques.  This is necessary since the largest volumes 
of clinical data exist within institutional, regional or national registries.103 However, 
most were created decades ago, without the infrastructure to support built-in analytics 
necessary to perform unsupervised ML. 
 One exception is the Information Network for Cancer (INCA) that provides a 
common, platform for several current registries.  The INCA framework allows for web-
based access from a variety of centers, while also accommodating an investigator-
supervised quality control step, critical to the success of any registry.  In addition, 
structured data from other registries may be used to “cross populate” fields, that 
speeds data collection and standardizes quality.  Importantly, INCA interfaces well 
with R®, and HTML which allows for real time analytics such as traditional frequentist 
statistics, survival analysis without the need for data export(s).   
 We designed an international skeletal metastasis registry within INCA, to be 
used by participating cancer centers around the world.  Because the data curation and 
quality control are performed up front, we ensure that all data contained within the 
registry are suitable for analysis.  This, in turn, enables one to embed analytic tools to 
process information in real time.  
 The process begins with any clinical question that can be posed in the context 
of probabilities.  For instance, one may seek to estimate the probability of venous 
thromboembolism, wound infection, aseptic loosening, or even a major complication 
after a hip arthroplasty.  Variables such as clinical and laboratory information are 
collected and deposited into a central, secure, web-enabled registry.  A quality control 
step is performed first to ensure all data contained within the registry is suitable for 
analysis.  Modern analytical techniques using R® Statistical Software1 and Shiny104 by 
RStudio provide investigators with a “dashboard” containing automated, customizable, 
metrics.  In addition to reporting enrollment figures, one may assess distributions and 
comparisons of each feature—including, but not limited to univariate, multivariate and 
Kaplan-Meier survival analysis—between institutions, in real time.  Next, a variety of 
modeling techniques can be employed in parallel to classify individual outcomes of 
interest, and followed by direct comparisons of model accuracy and net benefit by 
decision analysis.  In order to ensure the relationships identified by the modeling 
methods are real and not due to chance alone, a target shuffling technique is used. 
This allows one to calculate the probability that one or more of the models resulted 
from chance alone.  At this point, users are presented with the most appropriate 
model(s) based on the results of target shuffling, as well as decision analysis.  The 
clinician completes the process by considering the threshold probability associated 
with an individual clinical scenario.   
 This registry will eventually be available to cancer centers worldwide.  By 
“crowd sourcing” data collection and automating the analytics, we ensure each model 
remains broadly applicable, clinically relevant, and can “evolve” over time.  This 
framework also allows for the inclusion of newer or otherwise additional features, 
theorized to be related to a particular outcome of interest.  The effect of each can then 
be evaluated in terms of model accuracy and clinical utility using ROC and DCA, 
respectively.  
 
  



 

 55 

Conclusions 

1. Treatment failures in patients undergoing surgical treatment for skeletal 
metastases are relatively common.  This reiterates the importance of considering 
each patient’s estimated survival not only during the index procedure, but also in 
subsequent revision procedures, where the risk of medical complications is higher. 

2. We successfully developed BBN and ANN models capable of estimating the 
likelihood of survival at two time-points useful for orthopaedic surgical decision-
making (three months and 12 months post surgery). 

3. Receiver Operating Characteristic analysis demonstrated the ANN was more 
accurate than the BBN and LR models.  Similarly, DCA suggested the ANN 
resulted in higher net benefit across the broadest range of threshold probabilities.  
However, because the ANN functions only in the presence of complete input 
data—something that is not always present in the clinical setting, or in external 
validation sets—the BBN models may actually be better suited for clinical use.   

4. We successfully externally validated the BBN models in two separate patient 
populations using data collected from Scandinavia and Italy.  In addition, decision 
analysis indicated that PATHFx could improve outcomes in Scandinavia, and the 
12-month model could improve outcomes in Italy.  However, even the most 
accurate three-month model may not result in better outcomes in the Italian patient 
population. 

5. Finally, using registry data from Memorial Sloan-Kettering Cancer Center, we 
demonstrated how the Bayesian Belief Network could be used to codify complex 
information related to the treatment of patients with localized soft tissue sarcomas.  
In doing so, we produced a clear, graphical model of relevant features and 
described the relationships between them.  Importantly, the study demonstrated 
the applicability of Bayesian methodology to an entirely different oncologic 
scenario. 

 This thesis describes the process of turning clinical and registry data into 
decisions.  We successfully developed a clinically useful decision support tool, 
externally validated it in two separate patient populations, and made it available to 
surgeons, worldwide on www.pathfx.org.  In doing so, we highlight the importance of 
data curation, model development, external validation and decision analysis, prior to 
widespread clinical use. We also demonstrated the utility of the Bayesian statistics in 
describing the complex relationships between variables inherent to the treatment of 
soft tissue sarcoma patients.   
 After completing the work described above, we created the infrastructure for a 
worldwide registry to ensure these models remain both current and applicable to a 
variety of cultures and centers. As such, the knowledge and experience gained from 
this thesis may have a direct benefit on future orthopaedic oncology patients by 
generating the data necessary to both improve these existing clinical decision support 
tools and develop new ones.  Though we limited the scope of this work to orthopaedic 
oncology, we expect the process of turning data into decisions to be applicable to 
other topics in orthopaedics surgery and medicine, in general. 
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Suggested Guidelines 

A word of caution:  “Apps” are not necessarily clinical decision support tools. 
We are in the middle of a health care revolution.  Big data including demographics, 
molecular markers, and physiologic indicators are being codified by advanced 
techniques in information technology.  The result is an explosion in the number of 
prognostic models that have been applied to a variety of clinical problems.105 Given 
that mobile or otherwise interconnected applications are ubiquitous in modern society, 
physicians may be tempted to confuse finger-tip availability and relative ease of use 
with a tool that has been properly vetted for clinical use.   It would seem that tech-
savvy doctors are abandoning their healthy skepticism that has been ingrained by 
years of journal clubs, academic medicine and/or clinical practice.  However, this 
should not be the case.  When using an “app,” physicians should demand the same 
level of scrutiny and apply the same healthy skepticism as they do for the literature 
they read, the implants they select and the medications they prescribe.   
 
Specific Recommendations 

1. Each prospective CDS tool must undergo the following, prior to being 
recommended for clinical use:  In addition to measures of accuracy, 
prospective models must also undergo decision analysis to ensure net benefit 
is conferred, and the model is suitable for clinical use in the intended patient 
population.  Each model should then undergo external validation in a variety 
of centers with differing cultures, patient populations, and treatment 
philosophies.  In settings where these considerations remain stable over time, 
validation studies may be done retrospectively.  However, if the goal is to 
evaluate new features or improve the model(s), over time, prospective studies 
will be necessary.   

2. Clinical decision support tools should be designed to accommodate uncertainty, 
whenever possible. Clinicians are often faced with making decisions based on 
incomplete information.  As such, models that require all input features to be 
present in order to function properly may be of limited value.  This is the 
fundamental reason we chose a method based on Bayes’ theorem of 
conditional probabilities, however, other methods and imputation algorithms 
could function in this setting.  As such, there are exceptions to this 
recommendation.  Some decision support tools are designed to be used with 
the output of multiplex assays or microarrays,66,67 which usually result in 
complete datasets.   

3. Mature CDS tools should be incorporated into the electronic medical record.  As 
we maximize efficiency, the objective is to improve outcomes, while containing 
costs.  Redundant processes that require time and energy are under scrutiny, in 
part because they are unpopular with the clinical staff and are prone to error.  
An example of this is re-entering clinical data into a stand-alone CDS tool or 
web page.  Stand-alone tools detract from efficiency and must be eliminated if 
they do not support the objective of improving outcomes and containing costs, 
or automated if they do.  As such, incorporating mature CDS tools into the 
electronic medical record is absolutely essential for the healthcare enterprise 
interested in increasing efficiency by basing decisions on objective, quality, data. 
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4. Clinical decision support tools are no substitute for good clinical judgment and 
experience.  As the name suggests, decision support models are designed to 
provide objective data on which an independent practitioner may base a 
decision.  Similar to laboratory and imaging tests, clinicians may vary the 
degree of emphasis he or she places on each result based on a pre-test 
probability,106 derived largely on his/her clinical suspicion and level of 
experience. 

5. Caution should be used when entering the Surgeon’s Estimate into PATHFx.  
Although it contains many important subjective features that cannot be 
quantified, this assessment demands a certain level of experience.  If surgeons 
are unsure about whether an estimate is appropriate, he/she should 
select ”unknown.”  Doing so will maintain accuracy of the model, while not 
introducing undue bias, as demonstrated in both external validation studies 
used to support this thesis. (Studies IV and V) 

 
Future Directions 

 
 The worldwide registry developed as part of this thesis allows us to evaluate 
other features theorized to be associated with short and long term survival.   By 
adhering to the recommendations listed above, our goal is to develop timely, useful, 
clinical decision support tools for use in a variety of settings.   
 The first project, entitled “Improving a Bayesian Model's Survival Estimates in 
Patients Needing Surgery for Bone Metastases” will evaluate whether SF-36 data 
and/or serum inflammatory cytokines and chemokines are capable of estimating 
survival in patients with skeletal metastases.  The systemic inflammatory response 
may be helpful in identifying patients with very short life expectancies.  Models 
containing SF-36, cytokine and/or chemokine information will be compared to existing 
models using ROC and DCA to determine which approach is better suited for clinical 
use.  This study is currently underway at Memorial Sloan-Kettering Cancer Center and 
the Murtha Cancer Center in Maryland (www.ClinicalTrials.gov identifier: 
NCT01470105).  In addition, we plan to extend this project to include all patients with 
skeletal metastases, not simply those undergoing orthopaedic surgery.  However, 
funding to support this work is pending. 
 We believe it is important to better characterize the surgeon’s estimate.  Clearly, 
a certain amount of experience is necessary to produce accurate decisions; however, 
the requisite level of experience has not been elucidated.  Current work focuses on 
assessing the relative contributions to model accuracy for differing levels of training in 
order to determine the effect of clinical experience on this important, but subjective 
determination. 
 As mentioned above, this methodology may be applied to any clinical question 
for which there is prior knowledge in the form of existing, quality data.  Other studies 
are underway to determine whether it is feasible to estimate the likelihood of other 
untoward outcomes in orthopaedic surgery, such as prosthetic joint infection, 
reoperations after hip arthroplasty, and mortality after hip fracture surgery.     
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