Puberty and asthma in a cohort of Swedish children

Protudjer, Jennifer; Lundholm, Cecilia; Bergström, Anna; Kull, Inger; Almqvist, Catarina

http://doi.org/10.1016/j.anai.2013.10.015
http://hdl.handle.net/10616/41959

If not otherwise stated by the Publisher’s Terms and conditions, the manuscript is deposited under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
Puberty and asthma in a cohort of Swedish children

Protudjer, Jennifer; Lundholm, Cecilia; Bergström, Anna; Kull, Inger; Almqvist, Catarina

DOI: 10.1016/j.anai.2013.10.015

Access to the published version may require subscription. Published with permission from: Elsevier
Title

Puberty and asthma in a cohort of Swedish children

Contributing authors

Jennifer Lisa Penner Protudjer, PhD (corresponding author)
Cecilia Lundholm, MSc
Anna Bergström, PhD
Inger Kull, PhD RN
Catarina Almqvist, MD PhD

1Department of Medical Epidemiology and Biostatistics; Karolinska Institutet, Stockholm, Sweden
2Institute of Environmental Medicine; Karolinska Institutet, Stockholm, Sweden
3Lung and Allergy Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden

Corresponding author’s contact details

Jennifer L P Protudjer, PhD
Department of Medical Epidemiology and Biostatistics
Box 281, Stockholm SE-171 77, Sweden
Phone no: +46 (8) 524 824 23; Fax no. +46 (8) 31 49 75
Email: jennifer.protudjer@ki.se

Funding

The BAMSE study was supported by Stockholm County Council, the Swedish Research Council, the Swedish Council for Working Life and Social Research, the Swedish Heart and Lung Foundation, the Swedish Asthma and Allergy Association, and the Swedish Foundation for Health Care Science and Allergy
Research. Financial support was also provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, grants 80748301 and 2011-3060 from the Swedish Research Council grant numbers and the Strategic Research Program in Epidemiology at Karolinska Institutet. JLP Protudjer was supported by European Respiratory Society Long Term Research Fellowship n°117-2011 during this project. Jennifer Protudjer and Cecilia Lundholm had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Word count for letter: (maximum 1000 word; word count as of 130912: 978)

Number of tables: 1 (maximum 1: table count as of 130813: 1)

Number of references: 10 as of 130823 (maximum 10).
The shift in asthma prevalence from male to female predominance during the pubertal years is believed to result from an increased incidence amongst girls, rather than remission amongst boys [1,2]. Moreover, from the pubertal years onward, airway hyperresponsiveness, a classic feature of asthma, also worsens amongst girls but improves in boys [3]. Asthma medication use, a proxy for asthma severity, follows a similar pattern, with females requiring greater medication from puberty onward [2,4].

These observations support the potential involvement of sex-specific factors with asthma during this period. But, all physical changes of pubertal development cannot be considered equally in relation to asthma, particularly amongst girls. Menarche appears to play a substantial role in asthma presence and timing of onset. Early menarche predicts poorer lung function [5] and higher post-menarchal asthma incidence [6] compared to average/late menarchal age.

To better understand the associations between puberty and asthma, we aimed to assess associations between pubertal staging and asthma symptoms and treatment in a longitudinal, population-based cohort of Swedish children (‘BAMSE’) born in 1994-96 [7]. The original cohort of 4089 infants was representative of the study catchment area, except higher rates of parental smoking amongst non-responders [7]. Participant characteristics did not differ between those followed through Year 12 and those lost to attrition [8]. At Years 8 and 12, parents completed questionnaires on wheeze frequency in the previous 12 months and asthma medication. Subjects were deemed to have asthma based on parental reports of ≥4 episodes of wheeze or ≥1 episode of wheeze in combination with inhaled corticosteroid use in the past 12 months. Pubertal incidence of asthma was defined as no asthma at Year 8, but asthma at Year 12. At Year 12, children completed pubertal development questions, based on the composite pubertal scoring system the Peterson index [9, unpublished information from AC Peterson]. Data were collected on 3 measures for both boys and girls (skin changes, linear
growth spurt, pubic hair growth), 2 measures for boys (voice change, beard growth) and 2
measures for girls (breast development, menarche). This scoring system permits for the
inclusion of the multiple characteristics of pubertal development along a continuum. For
boys, all characteristics contributed equally. Girls reporting menarche by Year 12 were
considered to be in late- or post puberty, regardless of other characteristics. Participants were
then categorized into one of five mutually exclusive categories: pre-, early-, mid-, late- or
post puberty. We further considered menarche independent of pubertal staging.

We used binomial logistic regression to analyse these data and report odds ratios
(OR) and corresponding 95% confidence intervals (CI) for unadjusted analyses and models
adjusted for confounding by age at Year 12. Analyses were performed with STATA 11.0
(StatCorp LP, College Station, TX, USA). Permission for this study was obtained from the
Regional Ethical Review Board of the Karolinska Institutet, Stockholm, Sweden.

At Year 12, the response rate was 82% (3366/4089), with asthma status available for
99% (3339/3366). We excluded those for whom pubertal data were unavailable. This
yielded a sample of 2721 (67% of the original cohort), of whom 50.2% were boys. Nearly
all boys (1347/1378; 97.8%) were in pre-, early- or mid-puberty. Nearly half of girls
(651/1368; 47.6%) were in late- or post-puberty. Thus, we created sex-specific pubertal
staging categories. Boys were trichotomized into pre-, early- or mid/late puberty (none
reported post puberty). Girls were trichotomized as pre/early-, mid- or late/post puberty.

Approximately half (47.6%) of girls reported menarche by Year 12. Compared to boys, girls
had a lower odds of asthma at each assessment (e.g. Year 8: OR 0.66; 95%CI 0.47-0.92; Year
12: OR 0.57; 95% CI 0.42-0.78).

Pubertal staging was not found to be associated with asthma presence vs. absence in
boys (Table). In contrast, girls being late/post puberty was inversely associated with asthma
at Year 12 (OR 0.35; 95% CI 0.16-0.78). Amongst girls only, the odds of pubertal incidence
of asthma vs. asthma at neither Year 8 nor Year 12 decreased with more advanced pubertal staging (mid-puberty: OR 0.36; 95% CI 0.15-0.88; late/post puberty: OR 0.25; 95% CI 0.09-0.68). Menarche and asthma presence at Year 12 (OR 0.58; 95% CI 0.33-1.02), and menarche and pubertal incidence of asthma (OR 0.56; 95% CI 0.26-1.19) followed a similar trend, although these results did not reach statistical significance. In neither sex was pubertal staging associated with asthma medication use at Yr12.

The widely accepted sex shift in asthma prevalence during adolescence [1,2] was not noted in BAMSE through Year 12. Rather, pubertal incidence of asthma was lower amongst girls than boys (3.0% vs. 5.2%, p<0.01), and indeed lower in girls in late/post puberty vs. early puberty. Our results are contrary to others’ findings, including a report of a null association between pubertal staging and asthma remission or incidence amongst similar-aged youth [10]. However, their null findings may be partly explained by the low number of participants in late puberty at baseline [10].

We are the first to report on the association between pubertal staging and asthma using a composite and validated measure of puberty classified into one of three mutually exclusive categories. Others have reported on puberty [1] and timing of menarche [5,6] and asthma. One other group has considered multiple pubertal characteristics in their classification of pubertal staging [10]. However, they considered puberty as a binary outcome: early vs. late puberty [10]. Inclusion of a third category in our establishment of pubertal staging gleans further insight into the understanding of the progression through puberty on asthma presence and incidence during the pubertal years. This provided the opportunity to better elucidate the associations between asthma and puberty than earlier studies.
In conclusion, we found an inverse association between puberty and asthma prevalence and incidence for girls only. Follow-up at Year 16 will glean further insight into these associations as more children reach late- and post-puberty.
References

Table. Logistic Regression of Cross-Sectional Associations between Pubertal Staging and Asthma Presence and Pubertal Incidence at Year 12

<table>
<thead>
<tr>
<th>Pubertal Stage</th>
<th>Asthma Presence vs. Absence at Yr12</th>
<th>Pubertal Incidence of Asthma*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Presence vs. Absence</td>
<td>Unadjusted</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Boys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-puberty</td>
<td>28</td>
<td>321</td>
</tr>
<tr>
<td>Early puberty</td>
<td>59</td>
<td>535</td>
</tr>
<tr>
<td>Mid/late puberty</td>
<td>28</td>
<td>395</td>
</tr>
<tr>
<td>Girls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre/early puberty</td>
<td>13</td>
<td>148</td>
</tr>
<tr>
<td>Mid-puberty</td>
<td>28</td>
<td>523</td>
</tr>
<tr>
<td>Late/post puberty</td>
<td>26</td>
<td>617</td>
</tr>
<tr>
<td>Menarche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>41</td>
<td>671</td>
</tr>
<tr>
<td>Yes</td>
<td>26</td>
<td>617</td>
</tr>
</tbody>
</table>

* Asthma incidence from Yr8 to Yr12 vs. no asthma at either Yr8 or Yr12
† Adjusted for age at Yr12
‡ p<0.05
§ p<0.01