
 

Division of Molecular Structural Biology 
Department of Medical Biochemistry and Biophysics 

Karolinska Institutet, Stockholm, Sweden 

 

Structural Basis of Cysteine 
Biosynthesis and 

Peptidoglycan Remodelling 
in Mycobacterium 

tuberculosis 

Dominic Böth 

 

 
Stockholm 2014 

 
 
 



All previously published papers were reproduced with permission from the publisher. 
 
Published by Karolinska Institutet. Printed by Åtta.45 Tryckeri AB 
 
© Dominic Böth, 2013 
ISBN 978-91-7549-388-6



 

 

ABSTRACT 
 
Mycobacterium tuberculosis is the causative agent of tuberculosis, which is responsible 
for 1.3 million deaths annually. Treatment is difficult due to an elaborate defense 
machinery, which includes specific metabolic changes of the bacilli upon exposure to 
antibiotics and the immune response of the host. The emergence of multi-drug-resistant 
and extremely drug-resistant strains further complicates the treatment. Therefore the 
development of novel antibiotics and the investigation of new unexploited targets are of 
high importance. In the scope of this work, potential drug targets from the L-cysteine 
biosynthesis and the mycobacterial cell envelope maintenance were investigated. 
 
Cysteine biosynthesis provides promising drug targets due to a direct connection 
between L-cysteine availability and redox homeostasis of the bacilli. Disruption of the 
mycobacterial redox defense leads to attenuated growth. Three cysteine synthases are 
encoded in the mycobacterial genome of which CysK1 and CysM have been 
characterized previously. In this work CysK2 has been enzymatically characterized, 
catalyzing the formation of L-cysteine from O-phosphoserine and sulfide in a 
pyridoxal-5-phosphate-dependent reaction.  
 
The importance of the cell wall integrity makes it a well exploited target of a broad 
range of antibiotics. Potent inhibitors and first-line antibiotics are currently in clinical 
use such as isoniazid and ethambutol, which target biosynthetic pathways of the 
mycobacterial cell wall. RipA, a protein of the NlpC/p60 family was previously 
validated as essential for infectivity. The characterized NlpC/p60 proteins are 
peptidoglycan hydrolases and are involved in cell division and peptidoglycan recycling. 
In M. tuberculosis, four proteins represent this family: RipA, RipB, RipC and RipD. 
Here we report the biochemical and biophysical characterization of RipA, RipB and 
RipD as well as their high resolution structures. The detailed understanding of these 
enzymes prepares the ground for structure-based inhibitor development targeting this 
enzyme family. RipA and RipB hydrolyze the peptidoglycan peptide stem between D-
glutamyl- and meso-diaminopimelic acid residues. RipD is the first NlpC/p60 protein, 
which adapted to a non-catalytic peptidoglycan-binding function and most likely acts as 
a scaffold or regulatory protein. 
 
The integrity and stability of the peptidoglycan layer is vital for intracellular survival of 
M. tuberculosis. L,D- and D,D-transpeptidases strengthen the peptidoglycan layer to 
withstand chemical and physical stress by the formation of 3-3 and 3-4 cross-links, 
respectively. The genome of M. tuberculosis encodes five orthologues, the L,D-
transpeptidases LdtMt1-5. The three-dimensional structure of LdtMt2 consists of three 
domains: two smaller domains of the Ig-fold-type segments of the protein (A and B 
domain) and the transpeptidase domain (C domain). The structure of the two fragments 
AB domain and BC domain, which are comprising the entire periplasmic part of the 
enzyme, gives insights to the arrangement of the peptidoglycan layers in the 
mycobacterial cell wall. Additionally, LdtMt2 has been identified as an off-target for β-
lactam antibiotics by the formation of acyl-enzyme complexes with penam and penem 
class β-lactams. 
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1. MYCOBACTERIUM TUBERCULOSIS 
 
During the last two decades, tuberculosis (TB) has been recognized as a major global 

health problem since it is one of the leading causes of death among infectious diseases 

worldwide. The WHO estimated the total number of new infections with 8.7 million 

and recorded 1.3 million reported deaths of which about 300.000 have been HIV-

associated TB deaths in 2012. In 1993, the WHO implemented a five component 

package as a strategy to contain TB comprising political commitment, proper 

diagnostics, supply of first line antibiotics, pursuit of communication and social 

mobilization to facilitate the report within the national TB control programs (NTPs) and 

program-based operation research. Geographically, the highest incidence rates are 

reported and estimated in Africa and Asia (Figure 1). About 40% of all TB cases can be 

located to China and India; however, the highest rates of cases and deaths per capita are 

in sub-Saharan Africa. About 0.5 million cases and 74.000 deaths are extrapolated in 

the group of children younger than age of 15. In 2011, 5.8 million newly diagnosed 

cases were reported to the NTPs. After administration of first line medication, a 

treatment success in 85% of the patients has been documented globally1. Worldwide, 

about 20% of TB-positive patients are estimated to be infected with multi-drug-

resistant TB (MDR-TB). 

 

 
 

Figure 1: Map indicating the estimated number of new TB cases worldwide according to the Global 

Tuberculosis Report 20131 
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1.1 ACTIVE AND LATENT FORM OF THE TUBERCULOSIS DISEASE 

 
Mycobacterium tuberculosis has been first discovered by Robert Koch as the causative 

agent of TB, which typically affects the lungs, but also other organs. The expulsion of 

bacteria from TB-positive patients spread the disease; however only a smaller number 

of patients infected with M. tuberculosis is developing active TB. 

Primary TB is pulmonary, but the bacilli can disseminate within the host when left 

untreated. The common way of transmission of mycobacteria is airborne, to date the 

exact dose for a spread resulting in disease development is unclear2,3. Active TB is 

usually characterized by an initial lung inflammation followed by the phagocytosis of 

the bacilli by alveolar macrophages. If no treatment is administered, the disease leads to 

death. Commonly, a cluster of infected macrophages start to form multi-nucleated 

Langerhans cells in the lung parenchyma followed by a specific immune response, 

which initiates the formation of granuloma coinciding with a self-destructive formation 

of lesions in the lung4,5. In terminal stages of the active infection, tissue damage 

aggravates and leads to expulsion of bacilli by coughing. 

A M. tuberculosis-specific immune response in absence of a clinical manifestation of 

the disease defines the state of a latent TB infection (LTBI)6. M. tuberculosis enters 

lung tissue and persists in primary phagosomes of alveolar macrophages by arresting 

phagosome maturation7. During LTBI, the immune system of the host is able to contain 

the bacilli by rendering them in a non-replicative state, but the host is unable to clear 

the infection. The formation of productive granulomas follows, which is common in 

LTBI. They are originating from interaction of naïve T cells with infected 

macrophages8,9. Antigens from M. tuberculosis are processed by antigen-presenting 

cells, which in turn lead to a specific immune response, but not to a complete clearance. 

Recommended standard for the reliable diagnosis of TB are the sputum microscopy and 

the culture in liquid medium. Commonly, drug susceptibility tests are conducted in 

parallel. As a more cost-effective method, solid culture media are suggested and 

frequently used in resource poor countries10. PCR screening, imaging and 

immunohistochemical examination of biopsy samples support the diagnosis of active 

TB11. An estimate of 30% of TB-positive patients and about 90% of MDR-TB-positive 

patients remain undiagnosed in low income countries1. 
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1.2 FIRST LINE DEFENSE – MACROPHAGES AND NEUTROPHILS 

 
It could be experimentally shown that the fort mechanism of immune response 

following an infection of the airways is the diapedesis of phagocytic cells including 

alveolar macrophages, dendritic cells and neutrophils. The phagocytes engulf the bacilli 

and contribute to the first line of defense by the expression of antimicrobial peptides 

(Figure 2)12–16. The phagocytes orchestrate the action of the other components of the 

immune system via cytokine production. Macrophage and neutrophil response is 

therefore critical for the outcome of the immune response to mycobacteria, which could 

either promote bacterial clearance or containment, the latter resulting in the 

development of LTBI17,18. 

M. tuberculosis mediates macrophage signaling via scavenger receptors, complement 

receptors and mannose receptors, leading to the formation of the phagosome19. In the 

case of nonviable mycobacteria, phagolysosomal fusion occurs (e.g. upon IFN-γ 

signaling) and the bacilli are lysed. On the contrary, viable and virulent M. tuberculosis 

prevents the phagosome from maturation: a fusion of the phagosomal and the 

lysosomal compartment is impeded and bacterial clearance fails8,13. Dissemination of 

bacteria thereafter results in the activation of a T cell response in the lung-draining 

mediastinal lymph nodes (Figure 3). 

M. tuberculosis can induce necrotic cell death within the macrophages, which allows 

the bacilli to be released from the cell and spread (Figure 2). A very potent alternative 

protective mechanism of the macrophage is the single cell apoptosis as well as contact-

dependent apoptosis leading to the delivery of the compartmentalized bacilli along with 

the apoptotic debris to the lysosome in which the bacteria are killed; a process called 

efferocytosis20,21. Efferocytosis further supports the process of sequestration of 

compartmentalized bacteria and subsequent clearance22 (Figure 2). Mycobacteria 

however display virulence mechanisms which inhibit the induction of apoptosis23,24. 

SecA2 has been identified as a key player in the inhibition of apoptosis. The gene 

encodes for a component of a virulence-associated protein secretion system. Deletion of 

secA2 results in enhanced apoptosis and increased priming of antigen-specific CD8+ 

and CD4+ T ells24. 
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Figure 2: Schematic representation of the cellular defense mechanisms of the host within the lung tissue. 

M. tuberculosis is engulfed by dendritic cells (DCs), macrophages (MΦ) and neutrophils. DCs activate 

naïve T cells upon IL-12 signaling, which do enter the site of infection thereafter to induce inflammation. 

The fate of MΦ is dependent on the signaling of PEG2, which promotes apoptosis, which in turn leads to 

efferocytosis and a subsequent killing of bacilli. MΦ necrosis leads to the dissemination of the bacilli. 

Neutrophils can also undergo apoptosis and necrosis, the exact signaling however remains elusive. 

Infected MΦ and neutrophils activate the synthesis of antimicrobial peptides as well as various cytokines. 

 

The type of cell death of macrophages, apoptosis or necrosis, is regulated by 

eicosanoids, prostaglandin E2 (PGE2) and lipoxin A4 (LXA4). By induction of LXA4 

and repression of PGE2, mycobacteria evoke necrosis and apoptosis is avoided, 

resulting in cell-to-cell spread of bacteria (Figure 2). Alveolar macrophages of Alox5-/- 

mice infected with M. tuberculosis display the tendency to undergo apoptosis25,26. In 

parallel to the antimicrobial action of macrophages, neutrophils fulfill a detrimental role 

in pathogenesis of TB. They facilitate activation of naïve antigen-specific CD4+ T cells 

during the course of infection and promote the adaptive immune system by direct 

interaction with DCs, which in turn are more effective activators of CD4+ T cells. 

Neutrophils activate immune signaling via IL-6 and IL-17; the IFN-γ signaling 

however remains unaffected27. 
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1.3 FORMATION OF GRANULOMAS AS A RESULT OF HUMAN IMMUNE 

RESPONSE 

 
The exact role of granuloma formation during an infection with M. tuberculosis is not 

known. It is suggested that granulomas participate in the protection of the host against 

an uncontrolled spread of bacilli, on the other hand their contribution to tissue 

pathology is discussed and even the promotion of infection has been imputed27. 

However, the different stages of the granuloma seem to depend on the progression of 

disease and immune response. Innate and adaptive immunity control the morphology of 

granulomas8,9,28. 

The tubercular granulomas contain infected macrophages in their center, which have 

differentiated into multi-nucleated giant cells, epithelioid cells, foamy macrophages 

harboring lipid droplets and neutrophils29. This core is surrounded by lymphocytes 

(CD4+ and CD8+ T cells and B cells) and fibroblasts, which produce the peripheral 

fibrotic capsule. Proinflammatory and inhibitory cytokines play a key role in the 

formation of granulomas27,30. 

The presence of the necrotic core appears as a secondary result to cell lysis and creates 

a hypoxic hostile environment. The same types of granulomas have also been found in 

infected guinea pigs and nonhuman primates used as model organisms, but not in 

mice31. In LTBI, bacilli reside within the central hypoxic environment where they 

undergo drastic metabolic changes. In the situation of an active infection, replication of 

the bacilli occurs mainly in the oxygenated areas28. It has been proposed that 

mycobacteria create a supportive environment within the granuloma e.g. through 

manipulation of the macrophage lipid metabolism29.  

 

1.4 ANTIBIOTIC TREATMENT AND DRUG RESISTANCE 

 

Despite evolutionary pressure, aggravation of drug-resistant TB is to a large extent the 

result of interrupted or inadequate TB therapy. It threatens global efforts to control the 

global TB epidemic and is a major concern of public health in several countries. MDR-

TB is defined by resistance against two of the most commonly administered antibiotics, 

isoniazid (INH) and rifampicin (RIF). According to the WHO, the rates of new MDR-

TB cases are highest in Eastern Europe and Russia. About 20% of the new cases are 

diagnosed as MDR-TB. The total number of MDR-TB cases however is estimated for 

India and China, which account for almost 40% of all MDR-TB cases worldwide. 
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Extensively drug-resistant TB (XDR-TB) displays resistance against all members of the 

fluoroquinolones and at least one of the three injectable second line drugs in addition to 

INH and RIF1,32,33. 

 

 

 

 

Figure 3: First-line antibiotics used for short course treatments. (a) Isonicotinylhydrazine (Isoniazid, 

INH), (b) Pyrazinamide (PZA), (c) Ethambutol (EMB), (d) Rifampicin (RIF) 

 

In general, drug-resistance occurs due to chromosomal mutations in a low proportion of 

M. tuberculosis in pan-sensitive strains. Combined drug treatment is meant to prevent 

the emergence of drug-resistant bacteria. The first positive effect of combined drug 

administration has been seen in combination therapy of M. tuberculosis with 

streptomycin and p-aminosalicylic acid (PAS). Emergence of streptomycin-resistance 

could be largely prevented in presence of PAS34,35. After the introduction of INH, PAS 
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has quickly been replaced, followed by regimens of INH and streptomycin. In 1960, 

after emergence of drug-resistance against INH, PAS or streptomycin, a triple therapy 

for at least 12 months with all three became standard treatment in Europe. Almost half 

of the patients failed to complete the treatment36. Modern short course treatments were 

possible after the development of RIF and PZA. This regimen gives four drugs: INH, 

RIF, PZA and EMB37,38 (Figure 3). The simultaneous use of several drugs in 

combination contained drug-resistance remarkably. Non-continuous drug 

administration, treatment interruptions as well as changes in treatment based on side 

effects, pharmacokinetic interactions and inconstancy in compliance result in 

mechanisms, which allow the emergence of drug resistance39. Recently, also totally 

drug-resistant TB has been described1,40,41. To meet this problem, new effective drugs 

and the identification of potent drug targets are required42.  

In view of this alarming situation, much of the current research about M. tuberculosis is 

focused on host-pathogen interaction including the complex immune answer upon 

mycobacterial infection as well as the development of vaccines and potent novel drugs 

to contain the bacilli from an epidemic spread. The identification of new target proteins 

or essential genes, which in turn can be targeted with potent antibiotics exhibiting new 

mechanisms of action, is of high relevance. Structure-based drug discovery, phenotypic 

screening and detailed biochemical understanding will aid on this route. 
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2. OXIDATIVE STRESS – SMALL MOLECULES AS 

POTENT ROI/RNI SCAVENGERS 
 
During infection and transmission, M. tuberculosis encounters oxidative stress. During 

LTBI, bacilli are residing in granulomas of alveolar macrophages, where they are 

confronted with hypoxic stress and nutritional deprivation31,43. 

 

2.1 REDOX HOMEOSTASIS 

 
Maintenance of a redox balance is crucial for every organism; catabolic and anabolic 

processes need to effectively be separated from each other. Elaborate machineries 

counteracting redox stress imposed by macrophages are necessary to maintain redox 

homeostasis. Five well characterized redox couples play a key role: NADH/NAD+, 

NADPH/NADP+, mycothiol, thioredoxins and peroxiredoxins. Under normoxic 

conditions, the NADH/NAD+ ratio is favoring high levels of NAD+ for efficient 

electron extraction through catabolic reactions44. Under hypoxic conditions however, 

the ratio changes by an accumulation of NADH, suggesting reductive stress during 

pathogenesis44, which also leads to resistance against INH45. Inhibition of reoxidation 

of NADH/FADH2 results in a disruption of redox homeostasis and inhibits bacterial 

growth. 

One can distinguish two sources of oxidative stress M. tuberculosis encounters: 

endogenous and exogenous stress. Endogenous stress is characterized by endoxidation 

of carbon chains using O2 as the final electron acceptor involving one-electron transfer 

in the respiratory chain as well as stress induced by bactericidal drugs. Exogenous 

stress is generated by the immune response of the host. Macrophages and neutrophils 

are producing ROI and RNI. The formation of a superoxide radical (O2
-∙) can serve as a 

precursor of RNI46,47. The generation of O2
-· is catalyzed by a single electron reduction 

of O2 by the NADPH oxidase e.g. in macrophages and neutrophils. H2O2 is produced 

by a reaction of two O2
-· catalyzed by superoxide dismutase, which in turn can react to 

highly reactive hydroxyl radicals (HO·) through a Fenton reaction48. It has been 

suggested that a number of bactericidal antibiotics act along the formation of HO·49, 

this however has been questioned recently by experimental data excluding a correlation 

of antibiotic treatment and ROI production5051.  
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ROI and RNI have been shown to potently kill several pathogenic species, including 

various mycobacterial strains, where H2O2 and O2
-· are the most abundant ROI. 

However, the exact role of ROI in M. tuberculosis remains elusive52–54. On the other 

hand, the role of RNI in TB is more defined by effectively killing M. tuberculosis in 

vitro55. Murine macrophages and epithelial alveolar lung cells express iNOS and 

produce significant levels of nitric oxide (NO) capable of killing mycobacteria56–58. 

Interestingly, NO is also a signal for the bacterium to enter dormancy, by inhibiting 

respiration and growth59. 

M. tuberculosis exhibits a sophisticated mechanism of sensing redox stress. In place of 

classical sensors like FNR, OxyR or SoxR, which are absent in the mycobacterial 

genome, it encodes for DosRST. The DosRST genes have been shown to be 

approximately 50-fold up-regulated in hypoxic conditions60–62. Besides oxygen 

depletion, the regulon is also activated by NO and carbon monoxide (CO) inside host 

lesions59,63,64. DosR has been characterized further as the transcriptional master 

regulator for dormancy and is controlled by the two histidine kinases DosS and DosT, 

which in turn are detectors of the impairment of respiration62,65,66. The transcription 

factor WhiB has been identified as a potent redox sensor. WhiB harbors an O2
-∙‐ and 

NO-responsive iron/sulfur cluster and is a major player in coordinating the metabolic 

response of M. tuberculosis upon changes in redox homeostasis67,68. 

 

2.2 SUSTAINING THE THIOL-REDOX STATUS IN M. TUBERCULOSIS 

 
Thiol compounds are providing the redox control in all living organisms. A balanced 

thiol pool is also vital for M. tuberculosis to survive within the host. The reductive 

milieu of the cytosol of the bacilli is maintained by multiple thiol buffers, which can 

occur in millimolar concentration69. The primary reducing systems are based on 

mycothiol (MSH), a disaccharide, which is equivalent to glutathione (GSH), and the 

thioredoxin (Trx) system. 

 

2.2.1 MSH 

 
In nature, GSH is the most abundant low-molecular-weight thiol compound (Figure 4). 

Most actinobacteria however deploy MSH instead of GSH. MSH consists of 

glucosamine, myo-inositol and N-acetylcysteine and is the major low molecular weight 

thiol compound in M. tuberculosis (Figure 4). MSH biosynthesis is therefore dependent 
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of L-cysteine synthesis70. Under ROI and RNI stress, MSH is necessary to maintain 

survival of M. tuberculosis71,72. MSH funnels the reaction cycle by reducing a reaction 

partner under formation of a mixed disulfide. Oxidized MSH is thereafter reduced by 

mycothiol reductase in a NADPH-dependent reaction. Only recently, mycoredoxins 

catalyzing the reduction of oxidized MSH have been found in mycobacteria and 

subsequently in other actinobacteria73. The de novo synthesis of MSH requires 5 steps: 

The initial reaction is the formation of the glycoside bond between N-

acetylglucopyranosyl-inositol phosphate, which is subsequently dephosphorylated and 

deacetylated, followed by the condensation of L-cysteine and the subsequent 

acetylation of the L-cysteine to form active MSH74 (Figure 4). The MSH biosynthetic 

pathway has been recognized as a promising drug target, since it is unique for 

actinobacteria and essential for growth and survival of M. tuberculosis71,72. First 

inhibitors have been developed following a structure-based approach against the 

enzyme MshC, which catalyzes the condensation of L-cysteine to the disaccharide75,76. 

In M. tuberculosis, MSH is present at millimolar concentrations. Interestingly, bacilli 

void of MSH after knock-out of MshC upregulate the biosynthesis of the thiourea 

derivative ergothioneine, which is involved in the redox balance77,78. 

 

 
 

Figure 4: Mycothiol as a potent radical scavenger in M. tuberculosis. It consists of a disaccharide 

condensed to an acetylated L-cysteine residue. The thiol group of the cysteine represents a reduced sulfur 

species important for redox homeostasis. 
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2.2.2 Thioredoxin 

 
Thioredoxins (Trxs) have been characterized as systemic disulfide reductases 

sustaining a reductive environment. Trxs cycle between a reduced and an oxidized state 

and show a conserved  WCXXC motif79,80. Oxidized Trxs are reduced by thioredoxin 

reductase (TrxR) in a FAD- and NADPH-dependent reaction81. M. tuberculosis codes 

for TrxA, TrxB and TrxC82, which have been shown to be non-essential83, indicating 

the redundancy of the system. In contrast, TrxR is essential and distinct from the 

mammalian enzyme and could therefore be an important drug target84. Peroxiredoxins 

(Prxs) have been linked to the electron transfer from Trxs85,86 and function as 

scavengers for hydroperoxides and peroxynitrites. 

 

2.3 SULFUR METABOLISM IN M. TUBERCULOSIS 

 
Bacteria of the Actinomycetales group produce mycothiol, a L-cysteine containing 

disaccharide as a potent radical scavenger for maintenance of redox homeostasis70. This 

links the availability of cysteine and therefore reduced sulfur species directly to the 

redox defense of M. tuberculosis. As a response to redox stress during LTBI, genes 

involved in sulfur and cysteine metabolism have been shown to be upregulated87–89, 

which could be validated by a mutagenesis screen based on transposon insertions into 

genes related to cysteine metabolism leading to phenotypes more susceptible to defense 

mechanisms of the host cell83,90. 

The biosynthesis of sulfur-containing compounds is tightly connected to the sulfur 

assimilation pathway91, which is a pathway catalyzing the uptake and the metabolism 

of sulfate from the host92. Sulfate ,which enters the bacterial cell via an active transport 

is subsequently adenylated by the ATP sulfurylase CysD (Rv1285) / CysN (Rv1286), 

resulting in the formation of adenosine 5’-phosphosulfate (APS), which can either be 

directly reduced leading to sulfite (SO3
2-) and AMP by the APS reductase CysH 

(Rv2391)93 or phosphorylated by the APS kinase (Rv1286; C-terminal domain) to form 

3’-phosphoadenosine-5’-phosphosulfate (PAPS). PAPS is an abundant sulfate donor of 

sulfotransferases that produce metabolites like sulfolipid-194. The sulfite derived from 

the reductive branch of the APS/PAPS pathway is further reduced by SirA (NirA, 

Rv2391) to hydrogen sulfide (H2S) representing the sulfur source for reduced sulfur 

metabolites. Key enzymes involved in the cysteine biosynthetic pathways are SirA, a 

ferredoxin-dependent sulfite reductase, CysK1 (OASS-A; Rv2334)95, a pyridoxal-5-
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phosphate (PLP)-dependent O-acetylserine (OAS) sulfhydrylase96, CysM (Rv1336)97 

and CysK2 (Rv0848), both O-phospho-L-serine (OPS)-dependent cysteine synthases 

(Figure 5), CysE (Rv2335), which catalyzes the formation of OAS, substrate for CysK1 

from serine in a CoA-SH-dependent reaction98 and CysO as sulfur donor for the CysM-

catalyzed reaction97,99 (Figure 5). 

 

2.3.1 SirA (Rv2391) 

 
SirA catalyzes a six-electron reduction of sulfite to sulfide (S2-) providing the reduced 

sulfur for sulfur-containing amino acids95. Thus, SirA allocates the necessary sulfide 

derived from the sulfur assimilation pathway for the OAS-dependent cysteine de novo 

synthesis. The enzyme was annotated as a ferredoxin-dependent sulfite/nitrite 

reductase; both substrates are accepted by the enzyme depending on the metabolic state 

of M. tuberculosis. Enzymes of this family contain a combination of a [Fe4-S4] 

iron/sulfur cluster and a siroheme and exhibit ~20% sequence identity to NADPH-

dependent sulfite reductases, e.g. found in E. coli and are usually monomeric, while the 

E. coli homologue forms an oligomeric complex95. 

 

 
Figure 5: The biosynthetic pathways for the de novo cysteine synthesis in M. tuberculosis. The canonical 

pathway is dependent on CysE and CysK1, which catalyze the synthesis of cysteine from serine via OAS 

and sulfide. The alternative pathway is catalyzed by CysM. This pathway requires the availability of OPS 

as acceptor substrate and thiocarboxylated CysO-SH as sulfur donor. The third pathway is based on 

CysK2, characterized in this work. The substrate preference reflects a combination of CysK1 and CysM. 

CysK2 utilizes OPS as acceptor and sulfide as donor substrate. 
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2.3.2 Three cysteine synthases in the mycobacterial genome 

 

Three genes in the genome of M. tuberculosis are annotated to encode for the cysteine 

synthases CysK1 (Rv2334), CysM (Rv1336) and CysK2 (Rv0848). CysK1 shares 

~37% sequence identity with CysM and ~26% with CysK2. CysM and CysK2 have 

about 27% identity (Figure 6). The overall fold of CysK1 and CysM is similar to type II 

family of PLP-dependent enzymes. However, functional studies revealed distinct 

differences in substrate specificity. The acceptor substrate of CysK1 is OAS, which 

reacts with sulfide as a sulfur source96. CysM is dependent on OPS and 

thiocarboxylated CysO as sulfur donor97,100. CysK2 is characterized by a utilization of 

OPS and sulfide as shown in this work (paper I). In this sense CysK2 is a combination 

of CysK1 and CysM regarding substrate specificity. 

 

 

 

Figure 6: L-Cysteine synthases in M. tuberculosis. Respective substrates are indicated as well as 

sequence identity between the three enzymes. 
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2.3.3 CysK1 (Rv2334) – the classical pathway for L-cysteine 

 
De novo synthesis of cysteine in plants, archaea and many eubacteria starts with the 

acetylation of serine, catalyzed by an L-serine acetyl transferase (CysE; Rv2333). The 

product O-acetylserine is then further converted to L-cysteine in a PLP-dependent 

reaction. This step involves the elimination of acetate and the addition of H2S obtained 

during the reductive branch of the sulfur assimilation pathway by the enzyme O-

acetylserine sulfhydrylase, denoted as CysK1 (Rv2334) in M. tuberculosis96. 

The crystal structure of CysK1 has been solved and used to elucidate the structural 

basis of catalysis by this enzyme96. Similar to other PLP-dependent reactions, the 

mechanism of CysK1 follows a reaction mechanism divided into two half reactions. 

Once OAS enters the active site of the enzyme, the formation of the external aldimine 

releases the invariant lysine residue, which formed the internal aldimine in the ground 

state of the enzyme (Figure 7). 

 

 
 

Figure 7: Summarized catalytic mechanisms of CysK1, CysM and CysK2. The α-amino group of the 

acceptor substrate OPS/OAS displaces the ε-amino group of the active site lysine residue resulting in the 

formation of an external aldimine. Elimination of the OAS acetate or OPS β-phosphate leads to the 

formation of the aminoacrylate intermediate. Nucleophilic attack at the Cβ of this intermediate by sulfide 

or CysO-SH results in the formation of L-cysteine or L-cyteinyl-CysO, which is released, returning the 

enzyme to the ground state. 
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After formation of the external aldimine, a proton is abstracted by an acid-base reaction 

catalyzed by the active site lysine, which acts as base and the acetate group of OAS is 

eliminated to conclude the first half reaction with the formation of the aminoacrylate 

intermediate (Figure 7). The second half reaction is initiated by the nucleophilic anti-

addition of the incoming sulfide at the β-carbon and results in an L-cysteine-PLP 

external aldimine. Upon reprotonation of the C-α-atom by the invariant lysine, L-

cysteine is released and the internal aldimine is restored (Figure 7). The correct stereo-

specificity is ensured by the specific orientation of the aminoacrylate in the active site 

pocket, the mode of reprotonation by the invariant lysine residue and a rearrangement 

of the enzyme allowing the nucleophile to react96. 

The catalytic activity of CysK1 is competitively inhibited by the regulatory nature of a 

C-terminal tetrapeptide stretch (DFSI) of CysE suggesting the formation of a bi-

enzyme complex101. This regulatory function of the tetrapeptide stretch of CysM has 

also been observed for the bi-enzyme complex of homologues in H. influenza and A. 

thaliana102–104. Co-crystallization of CysK1 with the tetrapeptide revealed the binding 

mode of this inhibitory ligand. DFSI binds at the active site cleft between the two 

domains of CysK1 and extends to the enzyme surface. 

On basis of the CysK1-DFSI complex, high-throughput virtual screening and energy-

based pharmacophore modeling has been conducted leading to the identification of 

more potent inhibitors105,106. The binding mode of one of the strong hits was elucidated 

by X-ray crystallography. Based on the 2.0 Å structure of this enzyme-ligand complex, 

improved inhibitors in the low nM range have been developed. 

 

2.3.4 CysM (Rv1336) – an alternative cysteine synthase 

 
CysM has been identified as a phospho-L-serine sulfhydrylase in M. tuberculosis 

utilizing thiocarboxylated CysO as a sulfur donor for the subsequent de novo 

biosynthesis of L-cysteine, which clearly separates this pathway from the OAS-

dependent one (Figure 5)97,107. 

The reaction cycle of CysM, as a type II family of PLP-containing enzyme, is similar to 

that of CysK1108. The resting state of the enzyme forms an internal aldimine between 

the invariant lysine and PLP. Binding of OPS leads to the formation of the external 

aldimine, which eventually eliminates the β-phosphate from OPS resulting in the same 

aminoacrylate intermediate common in type II PLP enzymes. Burns et al. showed in 

functional studies that CysM uses a novel mode of sulfur delivery109. CysO, a small 
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thiocarboxylated protein, binds and reacts with the aminoacrylate intermediate leading 

to the formation of a covalent cysteinyl-CysO adduct in an external aldimine with the 

PLP (Figure 7). Re-protonation of the α-carbon releases the cysteinyl-CysO from the 

enzyme and the internal aldimine-ground state is restored. Cysteinyl-CysO is then 

hydrolyzed by a zinc-dependent metalloprotease (Rv1334)109. 

It is noteworthy that the oxidation-sensitive aminoacrylate intermediate in CysM is not 

prone to unspecific nucleophilic attack97. Active site closure protects the reaction 

intermediate from unspecific side reactions by maintaining a closed conformation of 

the active site providing a safe cysteine synthesis under conditions of oxidative stress, 

relevant during LTBI. The C-terminal pentapeptide of CysM (GQLWA) is instrumental 

for this conformational change, which also contributes to sulfur donor selectivity 

towards CysO100. 

Biochemical characterization of CysM and CysO revealed an alternative pathway for 

the de novo biosynthesis of L-cysteine, which by the dependence of OPS and 

thiocarboxylated CysO differs from the OAS-dependent L-cysteine synthesis. 

 

2.3.5 CysK2 (Rv0848) – paper I 

 
Besides the two previously described cysteine synthases the genome of M. tuberculosis 

encodes cysk2 (Rv0848), a third gene related to OASS sulfhydrylases, which is induced 

under oxidative stress and hypoxia59, suggesting a link of its expression to LTBI. On 

the protein sequence level, CysK2 shares about 28% sequence identity with 

mycobacterial CysK1 and CysM, respectively. 

We cloned, expressed, purified and characterized CysK2 as the third L-cysteine 

synthase in the mycobacterial genome (paper I). CysK2 uses OPS as acceptor substrate 

and sulfide as sulfur donor in a PLP-dependent reaction. The reaction mechanism of 

CysK2 resembles that of a type II family PLP-dependent enzyme and can therefore be 

subdivided into two half-reactions. The first half-reaction concludes in the formation of 

the aminoacrylate reaction intermediate after formation of the external aldimine with 

the acceptor substrate OPS (Figure 7). Thereafter L-cysteine is produced by the 

elimination of the phosphate group of OPS and the reaction of sulfide with the 

aminoacrylate. Subsequently, the internal aldimine with the invariant Lys65 is restored, 

returning the enzyme to the ground state. 

Solution studies of recombinant CysK2 by circular dichroism (CD) spectroscopy 

revealed a mixed α/β secondary structure, which compares well to that of the two 
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homologues in M. tuberculosis, CysK1 and CysM. The sequence identity between 

CysK2, CysK1 and CysM is ~28%. Distinctive motifs of PLP-dependent enzymes are 

highly conserved between the three homologues including the invariant Lys65 in 

CysK2 and the sequence stretch 201GTGGT205, which is coordinating the co-factor. 

Smaller alterations in the amino acid sequence coordinating the carboxyl group of the 

incoming substrate are manifest in CysK2 (90ESTGGTLG97) compared to CysK1 and 

CysM. Interestingly, CysK2 shows also differences at the N-terminal and C-terminal 

ends, which are missing in the two homologues (Figure 9). The characteristic 

absorption spectrum typical for class II family PLP enzymes could be observed, 

confirming the presence of PLP in CysK2 (Figure 10). 

 

 
 

Figure 8: Structure-based multiple sequence alignment of three homologue cysteine synthases in M. 

tuberculosis. 

 

After testing various putative substrates, a similar reaction to that of CysM revealed 

OPS as acceptor substrate for CysK2, which has been confirmed 

spectrophotometrically by a significant shift of the absorbance from 412 nm resembling 

the internal aldimine state110 to 465-470 nm characteristic for the aminoacrylate 

intermediate. These changes during the reaction cycle are common for PLP-dependent 

enzymes96,97,111 (Figure 9). Unlike in the case of CysM, the aminoacrylate intermediate 

is not very stable, indicating a different role of the C-terminal extension compared to 

the stabilizing role of the C-terminal residues of CysM100. 

 



 

18 

 
 

Figure 9: UV/Vis spectra of CysK2. The UV/Vis spectrum of CysK2 shows the specific internal 

aldimine related maximum at 412 nm (black line). Addition of 2 mM OPS results in fast enzyme-

aminoacrylate intermediate formation. Spontaneous decay of the aminoacrylate intermediate is 

demonstrated by the set of spectra recorded after 3, 6, 9, 14, 20, 30, 40 and 55 minutes following addition 

of the substrate (gray). 

 

The fast formation of the aminoacrylate could be assessed by stopped-flow 

spectrophotometry by monitoring the specific absorbance maximum at 475 nm and the 

second-order rate constant was determined to be ~ 2.5∙103 M-1s-1 that compares well 

with CysM. The phosphate release upon formation of the aminoacrylate could be 

measured in a malachite-green-based assay and revealed that CysK2 dephosphorylates 

OPS in a multiple turnover with a KM(OPS) of 233 µM and a Vmax(OPS) of 1.3 U mg-1 

at 22°C, where 1 U is defined as 1 µmol min-1. The abundance of hydroxyl ions in the 

reaction buffer leads to unspecific hydrolysis of the aminoacrylate in absence of a 

sulfur donor. This explains a higher turnover rate at higher pH111. 

This unspecific hydrolysis of the aminoacrylate has been investigated by stopped flow 

photometry and compared to the reaction in presence of the sulfur source. The presence 

of 2 mM sulfide increased the consumption of the aminoacrylate 60-times. The reaction 

product  L-cysteine has been verified by the acid-ninhydrin assay112, which allows the 

specific spectrophotometric detection of L-cysteine. Kinetic parameters have been 

determined for the sulfide driven reaction resulting in a Vmax(Na2S) of 0.5 U mg-1; 

KM(Na2S) of 374 µM and a Vmax(OPS) of 1.0 U mg-1 and KM(OPS) of 135 µM, the 

latter compare well with those obtained from the malachite green assay. 
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Arg243 in CysK2 corresponds to Arg220 of CysM (Figure 8), which was shown to be 

responsible for OPS specificity in CysM97. We have shown that Arg243 is important 

for OPS specificity for the reaction cycle in CysK2. Kinetic analysis of the 

CysK2(R243A) mutant revealed a decreased pseudo first-order rate constant in the OPS 

specific first half-reaction and a residual activity of 12% measured by determination of 

the released phosphate by the malachite green assay and about 17% in the acid-

ninhydrin assay for cysteine production. 

In conclusion, we have characterized CysK2 as a third PLP-dependent L-cysteine 

synthase in M. tuberculosis. The reaction cycle is dependent on OPS as acceptor 

substrate and sulfide as sulfur source, which is derived from the sulfur assimilation 

pathway. The substrate specificity is distinct from the two isoenzymes CysK1 and 

CysM and positions CysK2 in between the well-established routes for cysteine de novo 

synthesis. This could play a role in LTBI during which the availability of the invariant 

substrates due to redox stress is limited. OPS as acceptor substrate of CysK2 requires 

the availability of 3-phosphoglycerate, which can be allocated during hypoxia and 

oxidative stress within the alveolar macrophage by lipolysis and the subsequent release 

of glycerol, which can be phosphorylated by the glycerol kinase. These findings shed 

some light on the function of this enzyme, which so far has been elusive92. 

 

2.3.6 Targeting the cysteine biosynthesis of M. tuberculosis 

 

Mutants of M. tuberculosis depleted in CysM that are residing in alveolar macrophages 

are only attenuated in growth90 (Figure 5), hence the inhibition of only one cysteine 

biosynthetic pathways will probably not be sufficient to clear an infection. A complete 

inhibition of the L-cysteine de novo synthesis could rather be achieved by inhibiting 

three independent enzymes CysK1, CysM and CysK2 in M. tuberculosis during 

different stages of infection. 
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3. THE MYCOBACTERIAL CELL ENVELOPE 
 
The mycobacterial cell envelope displays a unique architecture, which distinguishes it 

from those of other bacterial genera. It consists of a plasma membrane, the cell wall 

core, the outer membrane and capsular polysaccharides (Figure 10). The cell wall core 

is built by peptidoglycan (PG), which is covalently attached to arabinogalactan by a 

glycosidic bond via a phosphoryl-N-acetyl glucosaminosylramnose113. Arabinogalactan 

connects via an ester bond to mycolic acids, which are one dominant component of the 

outer membrane. It harbors further non-covalently bound glycolipids, polysaccharides 

and lipoglycans, which also form the surface exposed capsule114–117. 

 

 
 

Figure 10: Schematic representation of the mycobacterial cell envelope. 
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3.1 THE CAPSULAR POLYSACCHARIDES 

 
The outer surface-exposed part of the cell envelope of mycobacteria is the capsule118, it 

coats bacteria and consists mainly of proteins and polysaccharides119–121. Three types of 

polysaccharides have been identified contributing to the capsular material: α-D-glucans 

of high molecular weight (>100 kDa) built of a core of α-1,4-glycosidic D-glucose 

polymers branching in oligoglucosides of D-arabino-D-mannan (AM) or D-mannan 

nature122. All sugars are devoid of charged modification such as acetylation and 

sulfonation. The structure of the AM is identical to that of the lipoarabinomannan 

(LAM), however deployed of the phosphatidyl-myo-inositol core. α-D-glucans 

constitute the major component of the capsule123. 

 

3.2 PIMS, LIPOMANNAN AND LIPOARABINOMANNAN 

 
Mycobacteria possess amphipathic lipoglycans, LAM, lipomannan (LM) and phospho-

myo-inositol mannosides (PIMs). They all share a phosphatidylinositol (PI) anchor 

with mannosylation extension at the 6- and 2-OH of the myo-inositol. PIMs are 

glycolipids composed of fatty acids esterified to a glycerol, which form a 

phosphodiester  with a myo-inositol124,125 (Figure 11). This phospho-myo-inositol is 

further substituted at C6 and C2-OH with α-D-mannopyranosyl (Manp) moieties to 

form PIM2, the mannosyl phosphate inositol (MPI) anchor. 

The lipid composition of the anchor is heterogeneous, with respect to number, location 

and nature of fatty acids. Four sites can be acylated at 1-OH and 2-OH of the glycerol 

unit, the 3-OH of the myo-inositol and the 6-OH of the mannose126,127. In M. 

tuberculosis, palmitic and tuberculostearic acids are the most abundant acylations. To a 

lesser extend myristic and ricinoleic acids are occurring125 (Figure 11). Intermediates of 

differently acylated PIMs accumulate in the membrane for the synthesis of higher-order 

PIMs. 

LM and LAM share both the same mannan core128, which is covalently linked to PIMs. 

The mannan backbone is composed of α-1,6-glycosidically bound Manp residues and 

flanked by α-1,2-glycosidically bound Manp (Figure 11). The core is extended by the 

condensation of a arabinan domain consisting of linear α-1,5-glycosidic 

arabinofuranose (Araf) residues, which branches in a α-3,5-glycosidic manner  to form 

two types of sugar decoration: first, linear tetra-arabinose and secondly branched hexa-

arabinose motifs129, both of which are capped by Manp in M. tuberculosis and M. 
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bovis130. PIMs, LM and LAM play a key role in arresting lysosomal fusion and 

endosomal fusion with the phagosome131. 

 

 
 

Figure 11: Cell wall components based on phospho-myo-inositol mannosides (PIMs) (a) schematic 

representation of the polysaccharides linked to the PIM to form various lipoglycans of the cell wall (b) 

fatty acids (R1-4), which anchor the PIM in plasma membrane. 

 

3.3 ARABINOGALACTAN 

 
Arabinogalactan is exclusively built of furanose sugars and tethers the mycolic acids to 

the PG layer. The galactan domain is composed of 30 Galactofuranose (Galf) residues 

in β-1,5- and β-1,6-glycosidic bonds, three arabinan domains containing ~30 Araf 

residues α-1,3-, α-1,5- and β-1,2-glycosidically branching from the galactan at sugar 

positions 8, 10 and 12 and a spacer at the reducing end covalently linked to the PG via 

5-D-Galf-1,4-L-Rhap-1,3-D-GlcNAc129,132. 

 

3.4 PEPTIDOGLYCAN 

 
Peptidoglycan (PG) is a complex polymer forming the rigid layer of the cell wall, 

providing cell shape and protection against shere stress and osmotic pressure117,133,134. 

Together with the arabinogalactan layer it forms the cell wall core. To date, the 

orientation of the glycans of the PG layer is controversal. Most of the experimental data 
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suggest the glycan strands to be oriented in parallel to the cell surface, however,  a 

second model proposed a perpendicular orientation of the glycan strands to the cell 

surface134–136. The PG of M. tuberculosis belongs to the classification A1γ similar to 

that of E. coli and B. subtilis137. It is composed of a backbone of alternating N-acetyl-α-

D-glucosamine (GlcNAc) and muramic acids (Mur), which can be modified in various 

ways, however they are acylated by glycolic acid rather than acetylated138–140. Mur 

connects via the 6-OH to the arabinogalactan layer129,134,141. The linar polysaccharides 

formed by alternating units of Mur and GlcNAc are dispersed by peptide side chains of 

L-alanyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine. The peptide stems are in 

turn covalently linked to the Mur. Two peptide stems from adjacent saccharide back-

bones can be heavyly cross-linked. Up to 80% of the PG peptide stems are cross-linked 

in M. tuberculosis142, whereas in E. coli only 50% of the PG peptide stems display the 

same feature135. The amino acids of the peptide stem can be further modified by 

amidation of the glutamyl and diaminopimelinyl residues134. Two different types of 

cross-links have been characterized, which are catalyzed by different transpeptidases: 

3-4 cross-links, containing a D-alanyl-D-aminopimelinyl peptide bond formed by 

penicillin-binding proteins (PBPs) and 3-3-cross-links with different chirality between 

the L- and D-center of two adjacent diaminopimelic acids that are catalyzed by L,D-

transpeptidases143 (Figure 12). 

 
Figure 12: Chemical structure of a PG unit. MurNAc is condensed via a lactoyl linker to the tripeptide L-

alanyl-D-isoglutaminyl-meso-diaminopimelic acid, which in turn is involved in cross-linking to the 

neigbouring peptide stem of the adjacent sugar-backbone. 
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3.4.1 Synthesis and remodelling of peptidoglycan 

 
The initial step of PG synthesis is cytoplasmatic and requires the activation of N-

acetylglucosamine and muramic acid to form their respective UDP-forms144,145 (Figure 

13). Thereafter the pentapeptide stem is built up on the UDP-MurNAc by sequential 

steps. This process is ATP-driven and involves the proteins of the Mur operon. The 

resulting UDP-MurNAc-pentapeptide is therafter decaprenylated (lipid I) and 

condensed with UDP-GlcNAc by MurG to form the membrane-anchored lipid II 

intermediate. Lipid II is flipped across the membrane and upon insertion in the growing 

glycan chain of the sacculus, the decaprenyl anchor is released146,147 (Figure 13). 

The cross-link formation within the PG sacculus subunits is catalysed by D,D-

transpeptidation, forming 3-4-connections (DAP-D-Ala) and L,D-transpeptidases 

forming 3-3-cross-links148 that stabilize the PG layer of the bacilli149 (Figure 13). PBPs 

are globular proteins located on the exterior of the plasma membrane. They are grouped 

into high- and low- molecular weight PBPs. Four PBPs have been characterized as β-

lactam targets in M. tuberculosis150. The M. tuberculosis genome encodes for five 

isoenzymes of L,D-transpeptidases, all of which have been identified as off-targets for 

β-lactam treatment151,152. 

During cell division and bacterial growth, PG remodelling requires the cleavage of 

covalent bonds to allow the sacculus to grow without only thickening it144. This follows 

a concerted mechanism of hydrolases of different nature including D,D- and L,D-

endopeptidases (D,D-EPases, L,D-EPases), transglycosylases (RpfBs)153, amidases154 

and NlpC/p60 proteins155–157. 

The release of PG cleavage products, also referred to as muropeptides, has been known 

for some time to result in the activation of immune response. NOD1 and NOD2 

receptors have been shown to interact with PG fragments. Their leucine-rich repeat 

domain is responsible for ligand recognition. The smallest fragment recognized by 

NOD1 is iE-Dap, whereas NOD2-mediated signaling is activated by muramyl 

peptides158. 
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Figure 13: The synthesis and condensation of a new PG strand into the existing network. PG building blocks are 

synthesized in the cytoplasm, and subsequently linked to undecaprenyl phosphate and flipped across the plasma membrane. 

A glycosyltransferase (GTase) catalyzes the polymerization of the PG. Thereafter, the building unit is attached to the 

sacculus by a D,D-transpeptidase (D,D-TPase). Peptides are trimmed by D,D-, L,D-and D,L-carboxypeptidases (CPases). 

Cross-links are cleaved by the D,D-and L,D-endopeptidases (EPases). L,D-transpeptidases (L,D-TPases) are required for the 

formation of L,D-cross-links (3-3). 
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3.4.2 The Rip-family 

 
In the Mycobacterium marinum-zebrafish model system two genes denoted as iipA 

(ripA) and iipB (ripB), which show partial homology, have been identified to be 

involved in invasion of host macrophages and intracellular persistence. Upon deletion 

of the iipA locus, the pathogen loses virulence and shows decreased survival within the 

host macrophages. Additionally, increased sensitivity to ciprofloxacin, erythromycin 

and the first-line drug RIF and atypical septum formation has also been observed. 

Interestingly, this distinct phenotype could be rescued by complementing with the M. 

tuberculosis gene Rv1477 (RipA), suggesting a similar function of the Rv1477-

Rv1478-operon155. 

RipA and RipB contain a NlpC/p60 domain156,157. Two additional NlpC/p60 proteins 

are encoded in the mycobacterial genome, RipC (Rv2190c) and RipD (Rv1566c) 

(Figure 14 and 15). NlpC/p60 hydrolases are characterized as specific PG hydrolases 

involved in PG remodelling and cell division. NlpC/p60 proteins were characterized 

first as autolysins LytE and LytF of L. monocytogenes proteins p60 and p45. This 

family also includes the E. coli membrane-associated lipoprotein NlpC (termed as 

NlpC/p60 proteins), which possesses a conserved amino-terminal cysteine. Members of 

this family are characterized as endopeptidases hydrolysing the D-glutamyl meso-

diaminopimelate linkage in the PG159. Multiple paralogues have been identified in most 

bacteria, which underlines their importance in PG remodelling and cell division160. 

 

 

 

Figure 14: The four proteins of the Rip-family in M. tuberculosis. Sequence identities based on the 

NlpC/p60 core domain are indicated. 
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3.4.3 RipA (Rv1477) and RipB (Rv1478) – paper II 

 

RipA (Rv1477) identified as a binding partner of RpfB and RpfE (resuscitation-

promoting factors B and E) localizes at the septum region of dividing bacteria together 

with RpfB116. RipA and RipB proteins belong to the superfamily of NlpC/p60 

hydrolases (Figure 14 and 15). 

 
Figure 15: (a) modular organization of NlpC/p60 homologues in M. tuberculosis. RipA and RipC contain 

an additional N-terminal domain. (b) Structure-based multiple sequence alignment. RipA (PDB:3PBC) 

was used as a reference structure; secondary structure is indicated: β-sheet ( ), helix ( ). 
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Since RpfB and RpfB homologues in M. tuberculosis contain a lysozyme-homologue 

domain161 and RipA contains a catalytically active peptidase domain, the RipA-RpfB 

complex can be considered as a putative PG degradation machinery combining the 

proposed glycosidase activity of RpfB with the peptidase activity of RipA. PBP1 

(Rv0050) also interacts with the C-terminal NlpC/p60 domain of RipA, hence the 

formation of a PG-remodelling machinery of hydrolases, transglycosylases and 

transpeptidases were suggested, coordinating the cell wall remodelling162. 

RipA and RipB are encoded in the same operon and most likely expressed 

simultaneously. RipA is composed of two distinct domains: a so far uncharacterized N-

terminal domain and the C-terminal NlpC/p60 domain. RipB is an NlpC/p60 domain 

protein without larger additional domains. Both proteins display a signal sequence at 

the N-terminus, which allows them to be transported to the periplasmic space. 

Our interaction studies between RipA, RipB and their suggested substrate clearly 

strengthened their proposed localisation in the PG meshwork (Figure 16). Purified 

proteins have been tested for binding HMW-PG in a binding assay154. RipA and RipB 

accumulate in the insoluble HMW-PG. 

 

 

Figure 16: PG-binding experiment. (a) Fractions from the binding assay using RipAc (RipA-NlpC/p60; 

residues 260–472) and RipB proteins. (b) RipAc(Cys383Ala) mutant binding to HMWPG. (c) Truncated 

proteins RipActr and RipBtr. (d) BSA binding to HMWPG. (e) Lysozyme binding to HMWPG. 

 

Both proteins show catalytic activity in cleaving defined soluble PG fragments e.g. γ-

D-glutamyl-meso-diaminopimelic acid (iE-Dap) or L-alanyl-γ-D-glutamyl-meso-

diaminopimelic acid (tri-Dap) (shown in paper II). The exact cleavage position could 
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be determined to be the peptide bond between iE-Dap. A more detailed proposal for the 

enzymatic mechanism has been described157 (Figure 17). 

 

 

 

Figure 17: Reaction scheme following the formation of isoindole derivatives based on the catalytic 

activity of RipA and RipB. The enzymatic reaction is performed prior to the o-phthalaldehyde 

derivatization. 

 

Full-length RipA and RipB were active on PG fragments as substrates in vitro. 

Similarly, RipA-NlpC/p60 (residues 260–472) showed activity on the PG fragments.  

After the assays were completed, full-length RipA, RipA-NlpC/p60 domain (residues 

260–472) and RipB proteins were retained and tested for integrity by SDS-PAGE. No 

proteolytic cleavage of the proteins occurred during incubation and assays. These 
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findings suggest that the proteolytic removal of the N-terminal segment of RipA-

NlpC/p60 (residues 263–283) suggested by others157 is not necessary for catalytic 

activity and thus argues against an inhibitory role of this particular fragment. 

The assay is based on a coupled reaction combining the enzymatic reaction to the 

synthesis of isoindole derivatives upon the reaction of o-phthalaldehyde with the 

primary amines of the product. This reaction can be monitored photometrically by 

which the readout can be directly related to the amount of primary amines in the 

sample. 

High-molecular-weight (HMW) PG from B. subtilis has been used to further assess the 

hydrolase activity on the insoluble polymer. Interestingly, only RipA (C domain) 

showed a defined activity in the conditions tested in the experiment. HMW-PG from 

Staphylococcus aureus is not cleaved by the substrate-specific hydrolases of the 

NlpC/p60 protein RipA demonstrating substrate specificity towards PG similar to the 

mycobacterial substrate. 

The 3D-structures of RipA (C-terminal domain; residues 260–472) and RipB (30–241) 

have been determined to 1.38 Å and 1.6 Å, respectively (Figure 18) (paper II). Both 

structures display the classical fold of NlpC/p60 proteins by a six stranded anti-parallel 

β-sheet packed against 3 α-helices. Both proteins show significant differences in the N-

terminal segment of the respective protein construct (Figure 18 and 19). In RipB, this 

segment (residues 30–97) forms two α-helices, which clasp around the core. RipA 

displays a different feature, where the N-terminal segment forms in contrast a β-hairpin 

followed by a helical stretch (residues 260–321). 
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Figure 18: Stereo image of RipA (a) and RipB (b). Shown is the overall structure in cartoon 

representation. The catalytic NlpC/p60 domain is displayed in gray colour, the N-terminal segment in 

black. 

 

The catalytic residues of the papain-like cysteine proteases are retained in RipA and 

RipB in similar 3D arrangement. Corresponding to Cys25, His159 and Asn175 in 

papain, RipB displays Cys152, His201 and Glu213 and RipA Cys383, His432 and 

Glu444. The active sites of RipA and RipB are shielded by the N-terminal segment, 

which falls back into the active site cleft. In the crystal structure, about 25 residues 

shield the binding groove for the incoming substrate (Figure 18). Probably, this 

segment adopts a different orientation in solution. Structural differences between RipA 

and RipB with respect to their N-terminal segments and surrounding of the binding 

groove could explain the differences in activity on HMW-PG. 

Other members of the NlpC/p60 family display only 10-12% similarity to RipA and 

RipB. This is explained by the high variance in the N-terminal modules of the 

homologue proteins, which are often occurring. These N-terminal domains may direct 

their specific interaction with PG and possibly other cell wall components160 
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(Figure19). The E. coli enzyme Spr was the first which has been characterized as a 

NlpC/p60 protein, revealing the similarity to papain-type cysteine proteases163. Spr and 

RipD are the only available high resolution structures of NlpC/p60 proteins, which do 

not carry additional N-terminal extensions (Figure 19). The N-terminal segments of 

RipA and RipB are unique in the family of NlpC/p60 proteins. So far, only one 

structure of the Bacillus cereus YkfC NlpC/p60 family protein has been determined in 

complex with the PG-derived dipeptide L-alanyl-D-glutamic acid164. 

 

 
 

Figure 19: Domain organization of NlpC/p60 like proteins. The catalytic core is coloured in black, the 

variable N-terminal domains or smaller extensions are shown in gray. 

 

3.4.4 RipD (Rv1566c), an NlpC/p60-like protein – paper III 

 
RipD is an NlpC/p60 family protein encoded by the gene Rv1566c with about ~50% 

sequence similarity (residues 38–169) to the respective domains of RipA and RipB. In 

contrast to these NlpC/p60 proteases, the active site residues Cys383 and His432 are 

replaced in RipD by an alanine and a serine, respectively. A distinct C-terminal 
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pentapeptide (PVQQA)-repetitive extension protrudes from the NlpC/p60 core, which 

is unique for RipD homologues. 

We determined the crystal structures of the core domain of RipD  (residues 38–167) to 

1.54 Å and a variant containing two pentarepeats to 1.2 Å resolution by molecular 

replacement using the homologue from M. avium as search model (PDB-ID:3GT2) 

(Figure 20). 

 

 
 

Figure 20: (a) Stereo-cartoon representation of RipD depicting the antiparallel β-sheet packed against 3 

shorter α-helices common for NlpC/p60 proteins. (b) Superposition of RipA and RipD. Active site 

residues as well as surrounding residues are shown as gray (RipD) and black (RipA) sticks. The core 

domain in light gray shown in the background represents a cartoon of RipD. 

 

Similarly to the homologues RipA and RipB in M. tuberculosis, the core domain of 

RipD folds in a five stranded anti-parallel β-sheet packed against three shorter α-

helices. The structure of a related protein from M. avium has also been solved 

(PDB:3GT2, Ramyar et al., unpublished). The PG-binding in RipD is proposed to take 

place in an elongated groove similar to those found in RipA and RipB. Direct 

comparison of the full-length RipD (residues 38–230) comprising the pentapeptide 

repeat segment and the RipD core domain (residues 38–167) in solution by CD resulted 
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in an increase of random coil content, suggesting that the repeat does not adopt a 

defined secondary structure, which is a common property of perfect repeats. 

In contrast to RipA and RipB, RipD does not show activity on PG fragments. However, 

the NlpC/p60 core domain retains the ability to bind PG as shown in paper III. This 

interaction is altered by the presence of the C-terminal pentapeptide repeat, rendering 

the full-length RipD less potent in binding to PG. In a binding experiment with isolated 

cell wall complex containing PG and arabinogalactan, the interaction was not altered 

suggesting no direct interaction with the arabinogalactan. 

RipD-like proteins with amino acid replacements in the active site incompatible with 

catalysis are not very common. They are only found in mycobacterial genomes and 

closely related Segniliparus ssp. Interestingly, the occurrence of changes in the active 

site and C-terminal repeat is exceptional for mycobacterial species. In M. smegmatis, 

M. abcessus, M gilvium and M. vanbaalenii RipD-like proteins do not contain C-

terminal repeats. Other cell envelope resident proteins have also been characterized 

carrying a proline-rich repeat e.g. the flagellar assembly protein of Thiorhodococcus 

drewsii or the heme exporter protein of Yersinia spp. Surprisingly, a 

mycobacteriophage protein also displaying a PVQXX repeat has been found165. 

We described RipD as an NlpC/p60 domain containing protein, which lost the catalytic 

activity to cleave the peptide stem of mycobacterial PG. The PG-binding however is 

retained and modulated by the presence of the C-terminal pentarepeat segment. RipD is 

the first example of an NlpC/p60 domain that evolved to a non-catalytic PG-binding 

protein. The 61 residue-long unstructured C-terminal pentapeptide repeat results in 

weaker interaction with PG in vitro, suggesting that the repeat segment modulates the 

RipD cell wall interaction. Possibly, the pentarepeat domain is involved in protein 

interaction between RipD and other periplasmic proteins or with other cell wall 

components166. 

 

 

 

 

 

 

 

 

 



 

  35 

Table 1: Occurrence of pentapeptide repeats in mycobacterial species and closely related Segniliparus 

ssp. The nature of the respective repeat domain is explicitly given. 

Species (Strain) Functional Annotation Uniprot ID 
Length 

(aa) 

Repeat 
character 

N/L¤ 

M. tuberculosis (H37Rv) invasion-associated protein O06624 230 10/5 

M. tuberculosis (H37Ra)# putative invasion protein A5U2S3 230 10/5 

M. bovis (BCG and AF2122/97) putative invasion protein Q7VEY5 230 10/5 

M. ulcerans (Agy99) invasion protein A0PNZ9 259 16/5 

M. marinum (ATCC BAA-535) invasion protein B2HQ87 259 16/5 

M. avium (k10) hypothetical protein Q740S0 316 19/5+3/4 

M. avium (104) NlpC/p60 protein A0QHK2 289 21/5+3/4 

M. leprae (TN) secreted p60 protein Q9CC67 212 1/5 

M. abscessus (ATCC 19977) hypothetical protein B1MBD4 184 none 

M. sp. (KMS and MCS) NlpC/p60 protein Q1B8K4 204 none 

M. smegmatis (MC2 155) putative invasion protein A0QXZ3 220 none 

M. gilvum (PYR-GCK) NlpC/p60 protein A4TAN6 214 none 

M. vanbaalenii (PYR-1) NlpC/p60 protein A1T9C5 208 none 

Segniliparus rotundus (DSM 44985) NlpC/p60 protein D6ZAC6 164 none 

Segniliparus rugosus (ATCC BAA974) NlpC/p60 protein E5XV46 164 none 

#… and other M. tuberculosis strains; RGTB327; RGTB423; F11; CDC1551; Haarlem (draft); strain C. 

¤… N, number of repeats; L, length of one repeat unit 

 

3.5 L,D-TRANSPEPTIDASES IN M. TUBERCULOSIS 

 
Since M. tuberculosis expresses a significant number of class A lactamases167, β-

lactams were not considered as a promising medication against TB. However, a success 

in treatment of TB has revived the interest in a combination therapy with potent 

lactamase inhibitors of the clavulanate family and carbapenem-type β-lactams. A 

bactericidal effect has been proven, not only against growing M. tuberculosis, but also 

against the non-replicating forms168. Additionally, several of those combinations have 

shown to be active against XDR strains167,168. 

Carbapenem class β-lactams are active on transpeptidases necessary for the assembly of 

PG in the periplasmic space of M. tuberculosis and other species152.  Two classes of 

transpeptidases have been described. D,D-transpeptidases of the penicillin-binding 

protein class necessary for the formation of 3-4 cross-links and L,D-transpeptidases, 

which link the peptide stems between the two adjacent Dap residues (3-3 cross-links). 

The 3-3 cross-link is the predominant form during the persistent state of M. 

tuberculosis142,152. L,D- and D,D-transpeptidases are structurally not related and 

function via a different catalytic mechanism148,169. 
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The mycobacterial genome H37Rv encodes for the five homologs LdtMt1 to LdtMt5 of 

which LdtMt2 (Rv2518c) has been reported to be essential for virulence. Inactivation of 

the LdtMt2 gene leads to attenuation and increased susceptibility to clavulanate/lactam 

treatment in vitro and in mice152. All homologues of M. tuberculosis transpeptidases are 

susceptible to penem class β-lactams and these findings have triggered an interest in 

these enzymes in recent years. This is also reflected in crystal and NMR structures for 

L,D-transpeptidase from M. tuberculosis and other species being published by 5 

different groups within a six months period170–175. Crystal structures of the enzyme with 

bound antibiotics are expected to open up the route for improved TB therapy176 by 

providing templates for design of new inhibitors. 

 

3.5.1 The structure of LdtMt2 – paper IV 

 

LdtMt2 is a protein composed of a small intracellular segment (residues 1–17) followed 

by a transmembrane domain (residues 18–34) and a periplasmic part (residues 35–

408). The catalytic domain (residues 250–408) could be well predicted from sequence 

alignment with homologues in M. tuberculosis and Corynebacterineae that also contain 

L,D-transpeptidases. We assessed the domain border of the residues 34(55)–250 by 

sequence comparisons to homologues, domain border prediction177 and secondary 

structure prediction using Jpred178 resulting in a predicted three domain organization, 

hereafter referred to as domain A, B and C (Figure 21). We cloned 13 and purified 10 

constructs and were able to solve the crystal structure of the construct comprising the 

BC domain by Se-SAD phasing to 1.86 Å and subsequently the structure of the AB 

module by molecular replacement using the B domain of the BC module structure as a 

search model as described in paper IV (Figure 21). The BC module comprises the 

catalytic domain of the well characterized ErfK/YbiS/YhnG fold and an 

immunoglobulin (Ig)-like domain. The core of the transpeptidase domain folds into a β-

sandwich formed by two anti-parallel β-sheets, which compares well to structure of the 

corresponding enzymes in E. faecium (PDB:1ZAT)169 and B. subtilis (PDB:1Y7M)179 

with r.s.m.d. of 1.9 Å and 1.6 Å, respectively. The active site residues of LdtMt2 are 

Cys354 and His336 and correspond to Cys442 and His421 in the E. faecium 

homologue. A lid-like structure comprised of two anti-parallel β-strands closing the 

active site cleft by large aromatic residues of the lid (Tyr298, Tyr308, Tyr318) and of 

the core domain (Tyr330, Phe334 and Trp340). 
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Figure 21: (a) Modular organization of LdtMt2 (Rv2518c). (b) Cartoon representation of the BC and the 

AB domain. (c) Reconstruction of the complete periplasmic part. Active site lid is indicated. 

 

Both the A domain and the B domain have the same topology, corresponding to the c-

type Ig fold. A structural alignment using the DALI algorithm revealed the closest 

structural homologous to be the periplasmic copper-resistance protein from P. syringae 

(PDB:2C9R)180, the N-terminal domain of a amylase of Halothermothrix orenii 

(PDB:3BC9)181 and a mannanase from Cellolumonas fimi (PDB:2X2Y)182. Functional 

relation to the copper-resistance protein is excluded since the copper-coordinating 

residues are missing. A relation to the other two proteins being involved in 

polysaccharide metabolism could be relevant due to the presence of glycans in the cell 

envelope of M. tuberculosis suggesting LdtMt2 is interacting with the glycan chains via 

the A and B domain. There are four surface-located threonine residues that are 

conserved between the amylase and the A domain of the LdtMt2
181. 

The extramembrane part of the LdtMt2 shows a three domain organization which we 

were able to reconstruct (Figure 21), whereas others missed one of the Ig domains168. 
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Our model of the entire extramembrane part of the enzyme was confirmed by the 

structure determination of a three-domain construct comprising the A, B and C 

domains174. The three domain structure of LdtMt2 extends about 80 Å from the plasma 

membrane excluding a stretch of 20 missing amino acids at the N-terminus. This places 

the catalytic domain in a defined vicinity to the membrane. Interestingly, among the 

remaining four L,D-transpeptidases encoded in the mycobacterial genome Rv0116c 

LdtMt1 and Rv1433 contain only two domains, the C-terminal catalytic domain and the 

N-terminal Ig-like domain183. Both proteins show significant sequence identity to the 

BC domain of LdtMt2. Rv0483 and Rv0192 have a three domain organization. They do 

not only show sequence identity to the BC domain, but also to the A domain (35% for 

Rv0483 and 18% for Rv0192).  

Thus, two groups of L,D-transpeptidases are present in M. tuberculosis, those 

comprising three domains and those with two domains. Differences in the number of 

domains position the catalytically active C-terminal domains at different distances from 

the membrane and thereby follow the multilayered architecture of PG. 

 

3.5.2 LdtMt2-complex with β-lactam antibiotics 

 

The formation of an acyl-enzyme complex between L,D-transpeptidases and β-lactams 

has been demonstrated with the homologue from B. subtilis172.  We and others showed 

that LdtMt2 clearly interacts with penam and penem, cephalosporin class β-

lactams167,171.  

 

Table 2: Covalent adducts formed with β-lactam type antibiotics imipenem and ampicillin. 

Protein construct, 
MW (Da) 

-lactam, MW (Da) Detected mass (Da) Mass difference (Da) 

LdtMt2 periplasmic 
segment (34-408) 

40073.8 

Imipenem, 299.3 40372.6 298.8 

LdtMt2 BC-module 

(149-408), 

28481.7 

Imipenem, 299.3 28780.1 298.4 

Ampicillin, 349.4 28831.7 350.0 

 

Development of carbapenems (penem class) for TB treatment has recently raised 

considerable interest since these drugs are uniformly active against MDR-TB and 

XDR-TB and kill both exponentially growing and dormant forms of the bacilli, in 
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association with the lactamase inhibitor clavulanic acid168. All five L,D-transpeptidases 

of M. tuberculosis have been tested for their activity in cross-linking PG peptide stems 

and for β-lactam acylation. The formation of the acyl-enzyme complex has been seen 

for all mycobacterial homologues LdtMt1-5
171,176,184. Crystal structures of LdtMt1 and 

LdtMt2 in complex with imipenem and meropenem, both members of the penem class of 

β-lactams, i.e. as the enzyme-acyl adduct, have been obtained. However, none of the 

adducts could be modeled completely due to missing electron density suggesting that 

large parts of the drugs are disordered in the binding site. This indicates that residues of 

the binding site do not significantly contribute to β-lactam selectivity. This conclusion 

is also strengthened by the formation of acyl-enzyme adducts with antibiotics of 

various β-lactam classes. In all these cases almost no interactions with the surrounding 

residues are present173,183. Nevertheless, based on the structural and biochemical 

information new lead compounds might be developed based on the core β-lactam 

scaffold. 

 

3.6 TRAGETING THE CELL WALL – AN OUTLOOK 

 

The importance of the cell wall makes it a well exploited target of a broad range of 

antibiotics. Potent inhibitors and first-line antibiotics have been developed such as INH, 

EMB, RIF and PYR, which target biosynthetic pathways of the mycobacterial cell wall. 

Currently, an emphasis is on the development for new alternatives of INH, an InhA 

inhibitor, which arrests mycolic acid synthesis. Recently, substituted triclosan 

derivatives  have been shown to potently inhibit bacterial growth tested against INH-

resistant strains of M. tuberculosis185. 

A second group of antimycobacterial drugs targeting the cell envelope are the 

arabinofuranosyltransferase inhibitors e.g. EMB. They disrupt the biosynthesis of AG 

and LAM and evoke an accumulation of β-D-arabinofuranosyl-P-decaprenol186,187. 

Here, EMB has also been used as a scaffold for the development of new anti-

mycobacterial therapeutics. SQ09 has been synthesized as an analogue which displays 

promising pharmacokinetics, even in EMB-resistant strains188. Surprisingly, SQ09 does 

not inhibit the arabinosyltransferase, but rather a membrane transporter of TMM, 

MmpL3, preventing the incorporation of mycolic acids into the mycobacterial cell 

wall189. 

β-lactam antibiotics are probably the oldest group of antimicrobial drugs which have 

been administered during TB infection. Their prime target is the transpeptidase module 
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of penicillin binding proteins (PBPs), that cross-link PG subunits by D,D-

transpeptidation, forming 3-4 linkages (DAP-D-Ala) that stabilise PG layer of the 

bacilli149,190. β-lactams mimic the newly formed peptide bond and are potent inhibitors 

counteracting the cross-link formation. This mechanism of attacking a key step in 

bacterial cell wall synthesis renders β-lactams a versatile class of antibiotics whose 

numerous members with various chemical and pharmacological properties exert 

bactericidal effects on a broad spectrum of bacterial pathogens. 

However, there are two main reasons why β-lactam antibiotics have not been 

considered to be appropriate for the treatment of TB: M. tuberculosis produces a 

chromosomally encoded β-lactamase167,191 and secondly, it has been shown that cross-

links through 3,3-linkages (DAP-DAP) are of vast importance in mycobacterial 

PG142,143. These DAP-DAP linkages are produced by L,D-transpeptidases (LdtMt1 and 

LdtMt2) rather than classical PBPs – a very different class of enzyme with a catalytic 

cysteine instead of a serine in the active site152,171. However the formation of the β-

lactam acyl-enzyme complex has been shown for all mycobacterial homologues LdtMt1-

5
171,176,184. Since the interaction is mainly driven by the covalent bond between drug and 

enzyme and not by the residues forming the surrounding of the active site, the rational 

design of new leads based on the β-lactam scaffold specific for L,D-transpeptidases is 

of high interest. 

RipA has been identified as a potential drug target. A RipA knock-out showed a 

distinct phenotype rendering the bacilli with impaired growth and increased 

susceptibility towards ciprofloxacin, erythromycin and the first-line drug RIF155. 

According to the gene knock-out data, a potential inhibitor would probably be 

administered in a combination therapy regimen i.e. with RIF to successfully achieve 

bacterial clearance. The biochemical and biophysical characterization will guide the 

path towards the development of new inhibitors targeting RipA. 

Taken together the efforts in characterizing new potential drug targets provide 

frameworks for a structure-based approach towards new leads against M. tuberculosis, 

which might be developed into new drug candidates. 



 

  41 

4. ACKNOWLEDGEMENTS 
 
My first word of gratitude goes to my main supervisor. Gunter, it was a great pleasure 

to have had you as a Doktorvater and I thank you that enough trust in me to take you 

into your group. You always guided me through these 4 years with excellent advice, 

both scientifically and personally. I am grateful that you always inspired me with your 

commitment to science. You are a source of great knowledge and I hope there are 

others to come to profit from your wisdom and mentorship. 

 

Robert! What should I say? Micha sometimes called you “The Dark Lord”, whose 

name shall not be mentioned … at home. You always kept me busy. And one thing I 

can tell you: you are the most German non-German I have ever come across – your 

drive for perfectionism and your pedagogical skills are remarkable. Your vast 

competence in many scientific disciplines is impressive. I learned so much from you 

and I could not have gotten a better co-supervisor. You even showed me the nicest 

castle in Sweden, what other boss would do that? 

 

Ylva, you are my unofficial Doktormutter. You helped to provide a wonderful 

atmosphere in the lab and your competent input in crystallography was always valuable 

to me. I really admire your patience and ways of thinking. I am looking forward to have 

you as the chair of my defense. 

 

I would like to express my deep gratitude to all the other members of the Molekylär 

strukturbiologi. Ahmad, you are a dear friend and the best lab manager one could 

imagine – I wish I could steal you away from Gunter and take you with me to Germany 

… shall we? ;) You organizational skills were invaluable for me and I doubt that I 

would have made it without your caring help. Good wishes also to your family. Eva 

and Katharina, you are my angels and my greatest source of support – our time together 

was something unique and it will forever have a special place in my heart – visit me as 

often as you can in Germany; I will miss you so much. Bernie and Doreen, my German 

anchors that always reminded me of what I missed so much in the last years: I thank 

you for the many hours in Hjulet that helped me to pass the lonely time at the 

beginning, all the invitations to your lovely home, the fantastic (!) food you prepared 

and all the help I got from you – both crystallographically as well as in private life! 



 

42 

Thank you for taking Micha as a student, you made my life more livable here. Ming 

Wei, I will always remember you for the following things: perfect body, war heads and 

a timeless sense of humor – I will visit you in Asia for sure. I wished we had had the 

time to also make me a body of steel. Jodie and Magnus, you are a dream team: I loved 

your helpful attitude, Jodie and I enjoyed the fruitful trips to ESRF together with you. I 

learned so much from you. Magnus – you will always be my office neighbor, thank you 

for three wonderful years. Edvard, I wished all Swedes could be like you – I remember 

you as one of the most helpful and kind persons I have encountered at KI. Maria, I 

admire your singing talents and it was a pleasure to be at your concerts. Domink, my 

namesake with a K, we started together and we had a great time in Fogdevreten, I wish 

you continued success. Ömer, I wish you all the best – you will have a great career. 

 

Thanks to all the past members of MSB and the many other persons at MBB that made 

my life easier. Essam, your absence from Egypt is a loss for that country – thank you 

for letting me use the HPLC. I also thank all my other friends I made here such as 

Luise, Michael and Ylva! Rajesh, enjoy the beaches of Portugal! 

 

A special thanks to all the friends I made outside KI that supported me so greatly, here 

this list should definitely be headed by Jenny, Laura and Håkan. You together with Eva 

and Katharina are very dear friends and I would not have survived the wilderness of 

Sweden without your loving help, your hospitality and the great great great time we 

spent together. We will forever stay in contact that is for sure and please, visit me often. 

 

Ich danke meiner Familie, insbesondere meiner Mama und meinem Papa sowie meinen 

Geschwistern Daniel und Jannik für die Liebe und stete Unterstützung. 



 

  43 

5. REFERENCES 

1. Global Tuberculosis Report 2013. 1–97 (2013). 

2. Fennelly, K. P. et al. Variability of infectious aerosols produced during 
coughing by patients with pulmonary tuberculosis. Am. J. Respir. Crit. Care 
Med. 186, 450–7 (2012). 

3. Garton, N. J. et al. Cytological and transcript analyses reveal fat and lazy 
persister-like bacilli in tuberculous sputum. PLoS Med. 5, e75 (2008). 

4. Pieters, J. Mycobacterium tuberculosis and the macrophage: maintaining a 
balance. Cell Host Microbe 3, 399–407 (2008). 

5. Grosset, J. Mycobacterium tuberculosis in the Extracellular Compartment: an 
Underestimated Adversary. Antimicrob Agents Chemother 47, 833–836 
(2003). 

6. Chee, C. B.-E., Sester, M., Zhang, W. & Lange, C. Diagnosis and treatment of 
latent infection with Mycobacterium tuberculosis. Respirology 18, 205–16 
(2013). 

7. Hernandez-Pando, R., Orozco, H. & Aguilar, D. Factors that deregulate the 
protective immune response in tuberculosis. Arch. Immunol. Ther. Exp. 
(Warsz). 57, 355–67 (2009). 

8. Gengenbacher, M. & Kaufmann, S. H. E. Mycobacterium tuberculosis: success 
through dormancy. FEMS Microbiol. Rev. 36, 514–32 (2012). 

9. Reece, S. T. & Kaufmann, S. H. E. Floating between the poles of pathology 
and protection: can we pin down the granuloma in tuberculosis? Curr. Opin. 
Microbiol. 15, 63–70 (2012). 

10. Rutledge, T. F. & Boyd, M. F. Updated Guidelines for Using Interferon 
Gamma Release Assays to Detect Mycobacterium tuberculosis Infection - 
United States , 2010. Morb. Mortal. Wkly. Rep. 59, 1–25 (2010). 

11. Zumla, A., Raviglione, M., Hafner, R. & von Reyn, C. F. Current Concepts - 
Tuberculosis. N. Engl. J. Med. 368, 745–55 (2013). 

12. Schlesinger, L. S., Azad, A. K., Torrelles, J. B. & Roberts, E. Determinants of 
Phagocytosis, Phagosome Biogenesis and Autophagy for Mycobacterium 
tuberculosis. Handb. Tuberc. Immunol. Cell Biol. 1–22 (2008). 

13. Sturgill-Koszycki, S. et al. Lack of Acidification in Mycobacterium 
Phagosomes Produced by Exclusion of the Vesicular Proton-ATPase. Science 
(80-. ). 263, 678–681 (1994). 



 

44 

14. Eruslanov, E. B. et al. Neutrophil Responses to Mycobacterium tuberculosis 
Infection in Genetically Susceptible and Resistant Mice. Infection 73, 1744–
1753 (2005). 

15. Wolf, A. J. et al. Mycobacterium tuberculosis Infects Dendritic Cells with 
High Frequency and Impairs Their Function In Vivo. J. Immunol. 179, 2509–
2519 (2007). 

16. Lowe, D. M., Redford, P. S., Wilkinson, R. J., O’Garra, A. & Martineau, A. R. 
Neutrophils in tuberculosis: friend or foe? Trends Immunol. 33, 14–25 (2012). 

17. Fabri, M. et al. Vitamin D is required for IFN-gamma-mediated antimicrobial 
activity of human macrophages. Sci. Transl. Med. 3, 104ra102 (2011). 

18. Frieden, T. R., Sterling, T. R., Munsiff, S. S., Watt, C. J. & Dye, C. 
Tuberculosis. Lancet 362, 887–99 (2003). 

19. Kleinnijenhuis, J., Oosting, M., Joosten, L. a B., Netea, M. G. & Van Crevel, 
R. Innate immune recognition of Mycobacterium tuberculosis. Clin. Dev. 
Immunol. 2011, 405310 (2011). 

20. Keane, J., Remold, H. G. & Kornfeld, H. Virulent Mycobacterium tuberculosis 
strains evade apoptosis of infected alveolar macrophages. J. Immunol. 164, 
2016–20 (2000). 

21. Kelly, D. M., ten Bokum, A. M. C., O’Leary, S. M., O’Sullivan, M. P. & 
Keane, J. Bystander macrophage apoptosis after Mycobacterium tuberculosis 
H37Ra infection. Infect. Immun. 76, 351–60 (2008). 

22. Liao, X. et al. Macrophage autophagy plays a protective role in advanced 
atherosclerosis. Cell Metab. 15, 545–53 (2012). 

23. Velmurugan, K. et al. Mycobacterium tuberculosis nuoG is a virulence gene 
that inhibits apoptosis of infected host cells. PLoS Pathog. 3, e110 (2007). 

24. Hinchey, J. et al. Enhanced priming of adaptive immunity by a proapoptotic 
mutant of Mycobacterium tuberculosis. J. Clin. Invest. 117, 2279–2288 (2007). 

25. Chen, M. et al. Lipid mediators in innate immunity against tuberculosis: 
opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. 
Exp. Med. 205, 2791–801 (2008). 

26. Divangahi, M., Desjardins, D., Nunes-Alves, C., Remold, H. G. & Behar, S. 
M. Eicosanoid pathways regulate adaptive immunity to Mycobacterium 
tuberculosis. Nat. Immunol. 11, 751–8 (2010). 

27. O’Garra, A. et al. The immune response in tuberculosis. Annu. Rev. Immunol. 
31, 475–527 (2013). 

28. Barry, C. E. et al. The spectrum of latent tuberculosis: rethinking the biology 
and intervention strategies. Nat. Rev. Microbiol. 7, 845–55 (2009). 



 

  45 

29. Russell, D. G., Cardona, P.-J., Kim, M.-J., Allain, S. & Altare, F. Foamy 
macrophages and the progression of the human tuberculosis granuloma. Nat. 
Immunol. 10, 943–8 (2009). 

30. Peters, W. & Ernst, J. D. Mechanisms of cell recruitment in the immune 
response to Mycobacterium tuberculosis. Microbes Infect. 5, 151–8 (2003). 

31. Tsai, M. C. et al. Characterization of the tuberculous granuloma in murine and 
human lungs: cellular composition and relative tissue oxygen tension. Cell. 
Microbiol. 8, 218–32 (2006). 

32. Warner, D. F. & Mizrahi, V. Complex genetics of drug resistance in 
Mycobacterium tuberculosis. Nat. Genet. 45, 1107–8 (2013). 

33. Zhang, H. et al. Genome sequencing of 161 Mycobacterium tuberculosis 
isolates from China identifies genes and intergenic regions associated with 
drug resistance. Nat. Genet. 45, 1255–60 (2013). 

34. Fox, W., Hutton, P. W., Sutherland, I. & Williams, a. W. A comparison of 
acute extensive pulmonary tuberculosis and its response to chemotherapy in 
Britain and Uganda. Tubercle 37, 435–450 (1956). 

35. Council, T. M. R. & Committee, T. B. T. A. R. Treatment of pulmonary 
tuberculosis with streptomycin and para-aminosalicylic acid. Br Med 2, 1073–
1085 (1950). 

36. Mitchison, D. a. The diagnosis and therapy of tuberculosis during the past 100 
years. Am. J. Respir. Crit. Care Med. 171, 699–706 (2005). 

37. Fox, W., Ellard, G. A. & Mitchison, D. A. Studies on the treatment of 
tuberculosis undertaken by the British Medical Research Council Tuberculosis 
Units, 1946-1986, with relevant subsequent publications. Int. J. Tuberc. Lung 
Dis. 3, 231–279 (1999). 

38. Mitchison, D. A. Prevention of Drug Resistance by Combined Drug Treatment 
of Tuberculosis. Antibiot. Resist. Handb. Exp. Pharmacol. 211, 87–98 (2012). 

39. Mitchison, D. A. How drug resistance emerges as a result of poor compliance 
during short course chemotherapy for tuberculosis Counterpoint. Int. J. Tuberc. 
Lung Dis. 2, 10–15 (1998). 

40. Vincent, V. et al. The TDR Tuberculosis Strain Bank: a resource for basic 
science, tool development and diagnostic services. Int. J. Tuberc. Lung Dis. 16, 
24–31 (2012). 

41. Nathanson, C.-M. et al. The TDR Tuberculosis Specimen Bank: a resource for 
diagnostic test developers. Int. J. Tuberc. Lung Dis. 14, 1461–7 (2010). 

42. Jindani, A. & Griffin, G. E. Challenges to the development of new drugs and 
regimens for tuberculosis. Tuberculosis (Edinb). 90, 168–70 (2010). 



 

46 

43. Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, 
and nonhuman primates. Infect. Immun. 76, 2333–40 (2008). 

44. Boshoff, H. I. M. et al. Biosynthesis and recycling of nicotinamide cofactors in 
mycobacterium tuberculosis. An essential role for NAD in nonreplicating 
bacilli. J. Biol. Chem. 283, 19329–41 (2008). 

45. Vilchèze, C. et al. Altered NADH/NAD+ Ratio Mediates Coresistance to 
Isoniazid and Ethionamide in Mycobacteria. Antimicrob. Agents Chemother. 
49, 708–720 (2005). 

46. Trivedi, A., Singh, N., Bhat, S. A., Gupta, P. & Kumar, A. Redox biology of 
tuberculosis pathogenesis. Adv. Microb. Physiol. 60, 263–324 (Elsevier Ltd., 
2012). 

47. Chan, E. D., Chan, J. & Schluger, N. W. What is the role of nitric oxide in 
murine and human host defense against tuberculosis? Am. J. Respir. Cell Mol. 
Biol. 25, 606–12 (2001). 

48. Winterbourn, C. C. The biological chemistry of hydrogen peroxide. Methods 
Enzymol. 528, 3–25 (2013). 

49. Kohanski, M. a, Dwyer, D. J., Hayete, B., Lawrence, C. a & Collins, J. J. A 
common mechanism of cellular death induced by bactericidal antibiotics. Cell 
130, 797–810 (2007). 

50. Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R. & Lewis, K. Killing by 
bactericidal antibiotics does not depend on reactive oxygen species. Science 
339, 1213–6 (2013). 

51. Liu, Y. & Imlay, J. A. Cell death from antibiotics without the involvement of 
reactive oxygen species. Science 75, 5–19 (2013). 

52. Cooper, A. M., Pearl, J. E., Brooks, J. V, Orme, I. M. & Ehlers, S. Expression 
of the Nitric Oxide Synthase 2 Gene Is Not Essential for Early Control of 
Mycobacterium tuberculosis in the Murine Lung. Infect. Immun. 68, 6879–
6882 (2000). 

53. Adams, L. B., Dinauer, M. C., Morgenstern, D. E. & Krahenbuhl, J. L. 
Comparison of the roles of reactive oxygen and nitrogen intermediates in the 
host response to Mycobacterium tuberculosis using transgenic mice. Tuber. 
Lung Dis. 78, 237–46 (1997). 

54. Jung, Y.-J., LaCourse, R., Ryan, L. & North, R. J. Virulent but not Avirulent 
Mycobacterium tuberculosis Can Evade the Growth Inhibitory Action of a T 
Helper 1-dependent, Nitric Oxide Synthase 2-independent Defense in Mice. J. 
Exp. Med. 196, 991–998 (2002). 

55. Firmani, M. A. & Riley, L. W. Reactive Nitrogen Intermediates Have a 
Bacteriostatic Effect on Mycobacterium tuberculosis In Vitro. J. Clin. 
Microbiol. 40, 1–6 (2002). 



 

  47 

56. Chan, B. J., Xing, Y., Magliozzo, R. S. & Bloom, B. R. Killing of Virulent 
Mycobacterium tuberculosis by Reactive Nitrogen Intermediates Produced by 
Activated Murine Macrophages. J. Exp. Med. 175, 1111–1122 (1992). 

57. Nicholson, B. S. et al. Inducible Nitric Oxide Synthase in Pulmonary Alveolar 
Macrophages from Patients with Tuberculosis. J. Exp. Med. 183, 2293–2302 
(1996). 

58. Roy, S., Sharma, S., Sharma, M., Aggarwal, R. & Bose, M. Induction of nitric 
oxide release from the human alveolar epithelial cell line A549: an in vitro 
correlate of innate immune response to Mycobacterium tuberculosis. 
Immunology 112, 471–80 (2004). 

59. Voskuil, M. I. et al. Inhibition of respiration by nitric oxide induces a 
Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705–13 
(2003). 

60. Sherman, D. R. et al. Regulation of the Mycobacterium tuberculosis hypoxic 
response gene encoding alpha-crystallin. Proc. Natl. Acad. Sci. U. S. A. 98, 
7534–7539 (2001). 

61. Boon, C. & Dick, T. Mycobacterium bovis BCG Response Regulator Essential 
for Hypoxic Dormancy. J. Bacteriol. 184, 6760–6767 (2002). 

62. Boon, C. & Dick, T. How Mycobacterium tuberculosis goes to sleep: the 
dormancy survival regulator DosR a decade later. Futur. Microbiol. 7, 513–
518 (2012). 

63. Kumar, A. et al. Heme oxygenase-1-derived carbon monoxide induces the 
Mycobacterium tuberculosis dormancy regulon. J. Biol. Chem. 283, 18032–9 
(2008). 

64. Shiloh, M. U., Manzanillo, P. & Cox, J. S. Mycobacterium tuberculosis senses 
host-derived carbon monoxide during macrophage infection. Cell Host 
Microbe 3, 323–30 (2008). 

65. Kumar, A., Toledo, J. C., Patel, R. P., Lancaster, J. R. & Steyn, A. J. C. 
Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia 
sensor. Proc. Natl. Acad. Sci. U. S. A. 104, 11568–73 (2007). 

66. Honaker, R. W., Dhiman, R. K., Narayanasamy, P., Crick, D. C. & Voskuil, 
M. I. DosS responds to a reduced electron transport system to induce the 
Mycobacterium tuberculosis DosR regulon. J. Bacteriol. 192, 6447–55 (2010). 

67. Jakimowicz, P. et al. Evidence that the Streptomyces developmental protein 
WhiD, a member of the WhiB family, binds a [4Fe-4S] cluster. J. Biol. Chem. 
280, 8309–15 (2005). 

68. Singh, A. et al. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric 
oxide via its [4Fe-4S] cluster and is essential for nutrient starvation survival. 
Proc. Natl. Acad. Sci. U. S. A. 104, 11562–7 (2007). 



 

48 

69. Paget, M. S. B. & Buttner, M. J. Thiol-based regulatory switches. Annu. Rev. 
Genet. 37, 91–121 (2003). 

70. Bornemann, C., Jardine, M. A., Spies, H. S. C. & Steenkamp, D. J. 
Biosynthesis of mycothiol: elucidation of the sequence of steps in 
Mycobacterium smegmatis. Biochem J. 325, 623–629 (1997). 

71. Rawat, M. et al. Mycothiol-Deficient Mycobacterium smegmatis Mutants Are 
Hypersensitive to Alkylating Agents, Free Radicals, and Antibiotics. 
Antimicrob. Agents Chemother. 46, 3348–3355 (2002). 

72. Ung, K. S. E. & Av-Gay, Y. Mycothiol-dependent mycobacterial response to 
oxidative stress. FEBS Lett. 580, 2712–6 (2006). 

73. Ordóñez, E. et al. Arsenate reductase, mycothiol, and mycoredoxin concert 
thiol/disulfide exchange. J. Biol. Chem. 284, 15107–16 (2009). 

74. Koledin, T., Newton, G. L. & Fahey, R. C. Identification of the mycothiol 
synthase gene (mshD) encoding the acetyltransferase producing mycothiol in 
actinomycetes. Arch. Microbiol. 178, 331–7 (2002). 

75. Gutierrez-Lugo, M.-T., Baker, H., Shiloach, J., Boshoff, H. & Bewley, C. a. 
Dequalinium, a new inhibitor of Mycobacterium tuberculosis mycothiol ligase 
identified by high-throughput screening. J. Biomol. Screen. 14, 643–52 (2009). 

76. Newton, G. L., Buchmeier, N., La Clair, J. J. & Fahey, R. C. Evaluation of 
NTF1836 as an inhibitor of the mycothiol biosynthetic enzyme MshC in 
growing and non-replicating Mycobacterium tuberculosis. Bioorg. Med. Chem. 
19, 3956–64 (2011). 

77. Seebeck, F. P. In vitro reconstitution of Mycobacterial ergothioneine 
biosynthesis. J. Am. Chem. Soc. 132, 6632–3 (2010). 

78. Ta, P., Buchmeier, N., Newton, G. L., Rawat, M. & Fahey, R. C. Organic 
hydroperoxide resistance protein and ergothioneine compensate for loss of 
mycothiol in Mycobacterium smegmatis mutants. J. Bacteriol. 193, 1981–90 
(2011). 

79. Kadokura, H., Katzen, F. & Beckwith, J. Protein disulfide bond formation in 
prokaryotes. Annu. Rev. Biochem. 72, 111–35 (2003). 

80. Martin, J. L. Thioredoxin - a fold for all reasons. Structure 3, 245–50 (1995). 

81. Williams, C. H. Mechanism and structure of thioredoxin reductase from 
Escherichia coli. FASEB J. 9, 1267–1276 (1995). 

82. Akif, M., Khare, G., Tyagi, A. K., Mande, S. C. & Sardesai, A. a. Functional 
studies of multiple thioredoxins from Mycobacterium tuberculosis. J. 
Bacteriol. 190, 7087–95 (2008). 



 

  49 

83. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Genes required for mycobacterial 
growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 
(2003). 

84. Akif, M., Suhre, K., Verma, C. & Mande, S. C. Conformational flexibility of 
Mycobacterium tuberculosis thioredoxin reductase: crystal structure and 
normal-mode analysis. Acta Crystallogr. D. Biol. Crystallogr. 61, 1603–11 
(2005). 

85. Rhee, S. G., Chae, H. Z. & Kim, K. Peroxiredoxins: a historical overview and 
speculative preview of novel mechanisms and emerging concepts in cell 
signaling. Free Radic. Biol. Med. 38, 1543–52 (2005). 

86. Kalinina, E. V, Chernov, N. N. & Saprin, a N. Involvement of thio-, peroxi-, 
and glutaredoxins in cellular redox-dependent processes. Biochem. Biokhimii͡ a 
73, 1493–510 (2008). 

87. Hu, Y. & Coates, A. R. M. Increased levels of sigJ mRNA in late stationary 
phase cultures of Mycobacterium tuberculosis detected by DNA array 
hybridisation. FEMS Microbiol. Lett. 202, 59–65 (2001). 

88. Schnappinger, D. et al. Transcriptional Adaptation of Mycobacterium 
tuberculosis within Macrophages: Insights into the Phagosomal Environment. 
J. Exp. Med. 198, 693–704 (2003). 

89. Hampshire, T. et al. Stationary phase gene expression of Mycobacterium 
tuberculosis following a progressive nutrient depletion: a model for persistent 
organisms? Tuberculosis (Edinb). 84, 228–38 (2004). 

90. Rengarajan, J., Bloom, B. R. & Rubin, E. J. Genome-wide requirements for 
Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. 
Natl. Acad. Sci. U. S. A. 102, 8327–32 (2005). 

91. Hatzios, S. K. & Bertozzi, C. R. The regulation of sulfur metabolism in 
Mycobacterium tuberculosis. PLoS Pathog. 7, e1002036 (2011). 

92. Schelle, M. W. & Bertozzi, C. R. Sulfate metabolism in mycobacteria. 
Chembiochem 7, 1516–24 (2006). 

93. Carroll, K. S. et al. A conserved mechanism for sulfonucleotide reduction. 
PLoS Biol. 3, e250 (2005). 

94. Mougous, J. D. et al. A sulfated metabolite produced by stf3 negatively 
regulates the virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. 
U. S. A. 103, 4258–63 (2006). 

95. Schnell, R., Sandalova, T., Hellman, U., Lindqvist, Y. & Schneider, G. 
Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis is 
a sulfite reductase with a covalent Cys-Tyr bond in the active site. J. Biol. 
Chem. 280, 27319–28 (2005). 



 

50 

96. Schnell, R., Oehlmann, W., Singh, M. & Schneider, G. Structural insights into 
catalysis and inhibition of O-acetylserine sulfhydrylase from Mycobacterium 
tuberculosis. Crystal structures of the enzyme alpha-aminoacrylate 
intermediate and an enzyme-inhibitor complex. J. Biol. Chem. 282, 23473–81 
(2007). 

97. Agren, D., Schnell, R., Oehlmann, W., Singh, M. & Schneider, G. Cysteine 
synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine 
sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in 
mycobacteria. J. Biol. Chem. 283, 31567–74 (2008). 

98. Qiu, J., Wang, D., Ma, Y., Jiang, T. & Xin, Y. Identification and 
characterization of serine acetyltransferase encoded by the Mycobacterium 
tuberculosis Rv2335 gene. Int. J. Mol. Med. 31, 1229–33 (2013). 

99. O’Leary, S. E., Jurgenson, C. T., Ealick, S. E. & Begley, T. P. O-phospho-L-
serine and the thiocarboxylated sulfur carrier protein CysO-COSH are 
substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. 
Biochemistry 47, 11606–15 (2008). 

100. Agren, D., Schnell, R. & Schneider, G. The C-terminal of CysM from 
Mycobacterium tuberculosis protects the aminoacrylate intermediate and is 
involved in sulfur donor selectivity. FEBS Lett. 583, 330–6 (2009). 

101. Schnell, R. & Schneider, G. Structural enzymology of sulphur metabolism in 
Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 396, 33–8 
(2010). 

102. Huang, B., Vetting, M. W. & Roderick, S. L. The Active Site of O- 
Acetylserine Sulfhydrylase Is the Anchor Point for Bienzyme Complex 
Formation with Serine Acetyltransferase. J. Bacteriol. 187, 3201–3205 (2005). 

103. Bonner, E. R., Cahoon, R. E., Knapke, S. M. & Jez, J. M. Molecular basis of 
cysteine biosynthesis in plants: structural and functional analysis of O-
acetylserine sulfhydrylase from Arabidopsis thaliana. J. Biol. Chem. 280, 
38803–13 (2005). 

104. Mino, K. et al. Characteristics of Serine Acetyltransferase from Escherichia 
coli Deleting Different Lengths of Amino Acid Residues from the C-Terminus. 
Biosci. Biotechnol. Biochem. 64, 1874–1880 (2000). 

105. Jean Kumar, V. U. et al. Discovery of novel inhibitors targeting the 
Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using 
virtual high-throughput screening. Bioorg. Med. Chem. Lett. 23, 1182–6 
(2013). 

106. Poyraz, O. et al. Structure-guided design of novel thiazolidine inhibitors of O-
acetyl serine sulfhydrylase from Mycobacterium tuberculosis. J. Med. Chem. 
56, 6457–66 (2013). 



 

  51 

107. Jurgenson, C. T., Burns, K. E., Begley, T. P. & Ealick, S. E. Crystal structure 
of a sulfur carrier protein complex found in the cysteine biosynthetic pathway 
of Mycobacterium tuberculosis. Biochemistry 47, 10354–64 (2008). 

108. Schneider, G., Käck, H. & Lindqvist, Y. The manifold of vitamin B6 
dependent enzymes. Structure 8, R1–6 (2000). 

109. Burns, K. E. et al. Reconstitution of a new cysteine biosynthetic pathway in 
Mycobacterium tuberculosis. J. Am. Chem. Soc. 127, 11602–3 (2005). 

110. Karsten, W. E. & Cook, P. F. Detection of intermediates in reactions catalyzed 
by PLP-dependent enzymes: O-acetylserine sulfhydrylase and serine-
glyoxalate aminotransferase. Methods Enzymol. 354, 223–237 (2002). 

111. Schnackerz, K. D., Ehrlich, J. H., Giesemann, W. & Reed, T. a. Mechanism of 
action of D-serine dehydratase. Identification of a transient intermediate. 
Biochemistry 18, 3557–63 (1979). 

112. Gaitonde, M. K. A spectrophotometric method for the direct determination of 
cysteine in the presence of other naturally occurring amino acids. Biochem. J. 
104, 627–33 (1967). 

113. Kaur, D., Guerin, M. E., Skovierová, H., Brennan, P. J. & Jackson, M. Chapter 
2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium 
tuberculosis. Adv. Appl. Microbiol. 69, 23–78 (2009). 

114. Zuber, B. et al. Direct visualization of the outer membrane of mycobacteria 
and corynebacteria in their native state. J. Bacteriol. 190, 5672–80 (2008). 

115. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. 
Disclosure of the mycobacterial outer membrane: cryo-electron tomography 
and vitreous sections reveal the lipid bilayer structure. Proc. Natl. Acad. Sci. U. 
S. A. 105, 3963–7 (2008). 

116. Hett, E. C., Chao, M. C., Deng, L. L. & Rubin, E. J. A Mycobacterial Enzyme 
Essential for Cell Division Synergizes with Resuscitation-Promoting Factor. 
PLoS Pathog 4, (2008). 

117. Hett, E. C. & Rubin, E. J. Bacterial growth and cell division: a mycobacterial 
perspective. Microbiol. Mol. Biol. Rev. 72, 126–56, table of contents (2008). 

118. Chapman, G. B., Hanks, J. H. & Wallace, J. H. An electron microscope study 
of the disposition and fine structure of Mycobacterium lepraemurium in mouse 
spleen. J. Bacteriol. 77, 205–11 (1959). 

119. Schwebach, J. R. et al. Glucan Is a Component of the Mycobacterium 
tuberculosis Surface That Is Expressed In Vitro and In Vivo Glucan Is a 
Component of the Mycobacterium tuberculosis Surface That Is Expressed In 
Vitro and In Vivo. Infect. Immun. 70, 2566–2575 (2002). 

120. Lemassu, A. & Daffé, M. Structural features of the exocellular polysaccharides 
of Mycobacterium tuberculosis. Biochem. J. 297, 351–7 (1994). 



 

52 

121. Ortalo-Magné, A. et al. Molecular composition of the outermost capsular 
material of the tubercle bacillus. Microbiology 141, 1609–20 (1995). 

122. Dinadayala, P. et al. Revisiting the structure of the anti-neoplastic glucans of 
Mycobacterium bovis Bacille Calmette-Guerin. Structural analysis of the 
extracellular and boiling water extract-derived glucans of the vaccine 
substrains. J. Biol. Chem. 279, 12369–78 (2004). 

123. Sambou, T. et al. Capsular glucan and intracellular glycogen of 
Mycobacterium tuberculosis: biosynthesis and impact on the persistence in 
mice. Mol. Microbiol. 70, 762–74 (2008). 

124. Mishra, A. K., Driessen, N. N., Appelmelk, B. J. & Besra, G. S. 
Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role 
in Mycobacterium tuberculosis physiology and host-pathogen interaction. 
FEMS Microbiol. Rev. 35, 1126–57 (2011). 

125. Ballou, C. E. & Lee, Y. C. The Structure of a Myoinositol Mannoside from 
Mycobacterium tuberculosis Glycolipid. Biochemistry 3, 682–685 (1964). 

126. Chatterjee, D. & Khoo, K. H. Mycobacterial lipoarabinomannan: an 
extraordinary lipoheteroglycan with profound physiological effects. 
Glycobiology 8, 113–20 (1998). 

127. Nigou, J. & Besra, G. S. Cytidine diphosphate-diacylglycerol synthesis in 
Mycobacterium smegmatis. Biochem. J. 367, 157–62 (2002). 

128. Hunter, S. W., Gaylord, H. & Brennan, P. J. Structure and antigenicity of the 
phosphorylated lipopolysaccharide antigens from the leprosy and tubercle 
bacilli. J. Biol. Chem. 261, 12345–51 (1986). 

129. Chatterjee, D., Bozic, C. M., McNeil, M. & Brennan, P. J. Structural features 
of the arabinan component of the lipoarabinomannan of Mycobacterium 
tuberculosis. J. Biol. Chem. 266, 9652–60 (1991). 

130. Khoo, K.-H., Dell, A., Morris, H. R., Brennan, P. J. & Chatterjee, D. Inositol 
Phosphate Capping of the Nonreducing Termini of Lipoarabinomannan from 
Rapidly Growing Strains of Mycobacterium. J. Biol. Chem. 270, 12380–12389 
(1995). 

131. Vergne, I., Chua, J., Singh, S. B. & Deretic, V. Cell biology of mycobacterium 
tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20, 367–94 (2004). 

132. Peng, W., Zou, L., Bhamidi, S., McNeil, M. R. & Lowary, T. L. The 
galactosamine residue in mycobacterial arabinogalactan is α-linked. J. Org. 
Chem. 77, 9826–32 (2012). 

133. Crick, D. C., Mahapatra, S. & Brennan, P. J. Biosynthesis of the 
arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. 
Glycobiology 11, 107R–118R (2001). 



 

  53 

134. Vollmer, W., Blanot, D. & Pedro, M. A. De. Peptidoglycan structure and 
architecture. FEMS Microbiol. Rev. 32, 149–167 (2008). 

135. Vollmer, W., Höltje, J. & Ho, J. The Architecture of the Murein 
(Peptidoglycan) in Gram-Negative Bacteria: Vertical Scaffold or Horizontal 
Layer(s)? J. Bacteriol. 186, 5978–5987 (2004). 

136. Meroueh, S. O. et al. Three-dimensional structure of the bacterial cell wall 
peptidoglycan. Proc. Natl. Acad. Sci. U. S. A. 103, 4404–9 (2006). 

137. Schleifer, K. H. & Kandler, O. Peptidoglycan types of bacterial cell walls and 
their taxonomic implications. Bacteriol. Rev. 36, 407–77 (1972). 

138. Mahapatra, S., Scherman, H., Patrick, J., Crick, D. C. & Brennan, P. J. N-
Glycolylation of the Nucleotide Precursors of Peptidoglycan Biosynthesis of 
Mycobacterium spp. Is Altered by Drug Treatment. J. Bacteriol. 187, 2341–
2347 (2005). 

139. Raymond, J. B., Mahapatra, S., Crick, C., Pavelka, M. S. & Crick, D. C. 
Glycobiology and Extracellular Matrices: Identification of the namH Gene, 
Encoding the Hydroxylase Responsible for the N-Glycolylation of the 
Mycobacterial Peptidoglycan. J. Biol. Chem. 280, 326–333 (2005). 

140. Raymond, J. B., Mahapatra, S., Crick, D. C. & Pavelka, M. S. Identification of 
the namH gene, encoding the hydroxylase responsible for the N-glycolylation 
of the mycobacterial peptidoglycan. J. Biol. Chem. 280, 326–33 (2005). 

141. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan 
(murein) hydrolases. 32, 259–86 (2008). 

142. Lavollay, M. et al. The peptidoglycan of stationary-phase Mycobacterium 
tuberculosis predominantly contains cross-links generated by L,D-
transpeptidation. J. Bacteriol. 190, 4360–6 (2008). 

143. Wietzerbin, J. et al. Occurrence of D-Alanyl-(D)-meso-diaminopimelic Acid 
and meso-Diaminopimelyl-meso-diaminopimelic Acid Interpeptide Linkages 
in the Peptidoglycan of Mycobacteria. Biochemistry 13, 3471–3476 (1984). 

144. Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of 
peptidoglycan synthesis to bacterial growth and morphology. Nat. Publ. Gr. 
10, 123–136 (2011). 

145. Barreteau, H. et al. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS 
Microbiol. Rev. 32, 168–207 (2008). 

146. Bouhss, A., Trunkfield, A. E., Bugg, T. D. H. & Mengin-lecreulx, D. The 
biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. 
Rev. 32, 208–233 (2008). 

147. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid- linked 
cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011). 



 

54 

148. Mainardi, J. et al. A Novel Peptidoglycan Cross-linking Enzyme for β-Lactam-
resistant Transpeptidation Pathway. J. Biol. Chem. 280, 38146–38152 (2005). 

149. Goffin, C. & Ghuysen, J. Multimodular Penicillin-Binding Proteins: An 
Enigmatic Family of Orthologs and Paralogs. Microbiol. Mol. Biol. Rev. 62, 
1079–1093 (1998). 

150. Chambers, H. F. et al. Can penicillins and other β-lactam antibiotics be used to 
treat tuberculosis? Antimicrob. Agents Chemother. 39, 2620–2624 (1995). 

151. Triboulet, S. et al. Inactivation Kinetics of a New Target of β-Lactam 
Antibiotics. J. Biol. Chem. 286, 22777–22784 (2011). 

152. Gupta, R. et al. The Mycobacterium tuberculosis protein Ldt Mt2 is a 
nonclassical transpeptidase required for virulence and resistance to amoxicillin. 
Nat. Med. 16, 466–469 (2010). 

153. Kana, B. D. et al. The resuscitation-promoting factors of Mycobacterium 
tuberculosis are required for virulence and resuscitation from dormancy but are 
collectively dispensable for growth in vitro. Mol. Microbiol. 67, 672–84 
(2008). 

154. Mellroth, P., Karlsson, J. & Steiner, H. A scavenger function for a Drosophila 
peptidoglycan recognition protein. J. Biol. Chem. 278, 7059–64 (2003). 

155. Gao, L., Pak, M., Kish, R., Kajihara, K. & Brown, E. J. A Mycobacterial 
Operon Essential for Virulence In Vivo and Invasion and Intracellular 
Persistence in Macrophages A Mycobacterial Operon Essential for Virulence 
In Vivo and Invasion and Intracellular Persistence in Macrophages. Infect. 
Immun. 74, 1757–1767 (2006). 

156. Böth, D., Schneider, G. & Schnell, R. Peptidoglycan remodeling in 
Mycobacterium tuberculosis: comparison of structures and catalytic activities 
of RipA and RipB. J. Mol. Biol. 413, 247–260 (2011). 

157. Ruggiero, A. et al. Structure and functional regulation of RipA, a 
mycobacterial enzyme essential for daughter cell separation. Structure 18, 
1184–1190 (2010). 

158. Boudreau, M. A., Fisher, J. F. & Mobashery, S. Messenger Functions of the 
Bacterial Cell Wall-derived Muropeptides. Biochemistry 51, 2974−2990 
(2012). 

159. Ohnishi, R., Ishikawa, S. & Sekiguchi, J. Peptidoglycan Hydrolase LytF Plays 
a Role in Cell Separation with CwlF during Vegetative Growth of Bacillus 
subtilis These include : Peptidoglycan Hydrolase LytF Plays a Role in Cell 
Separation with CwlF during Vegetative Growth of Bacillus subtilis. J. 
Bacteriol. 181, 1–8 (1999). 

160. Anantharaman, V. & Aravind, L. Evolutionary history, structural features and 
biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol. 
4, R11 (2003). 



 

  55 

161. Kana, B. D. & Mizrahi, V. Resuscitation-promoting factors as lytic enzymes 
for bacterial growth and signaling. FEMS Immunol Med Microbiol 58, 39–50 
(2010). 

162. Hett, E. C., Chao, M. C. & Rubin, E. J. Interaction and Modulation of Two 
Antagonistic Cell Wall Enzymes of Mycobacteria. PLoS Pathog. 6, 1–14 
(2010). 

163. Aramini, J. M. et al. Solution NMR structure of the NlpC/P60 domain of 
lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine 
peptidase catalytic triad. Biochemistry 47, 9715–7 (2008). 

164. Xu, Q. & Abdubeck, P. Structure of the c-D-glutamyl-L-diamino acid 
endopeptidase YkfC from Bacillus cereus in complex with L-Ala-c-D-Glu: 
insights into substrate recognition by NlpC/P60 cysteine peptidases. Acta 
Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. F66, 1354–1364 (2010). 

165. Pope, W. H. et al. Cluster K mycobacteriophages: insights into the 
evolutionary origins of mycobacteriophage TM4. PLoS One 6, e26750 (2011). 

166. Böth, D., Steiner, E. M., Izumi, A., Schneider, G. & Schnell, R. RipD 
(Rv1566c) from Mycobacterium tuberculosis: adaptation of an NlpC/p60 
domain to a non-catalytic peptidoglycan-binding function. Biochem J. 1–21 
(2013). 

167. Hugonnet, J. & Blanchard, J. S. Irreversible Inhibition of the Mycobacterium 
tuberculosis -Lactamase by Clavulanate. Biochemistry 46, 11998–12004 
(2007). 

168. Hugonnet, J.-E., Tremblay, L. W., Boshoff, H. I., Barry, C. E. & Blanchard, J. 
S. Meropenem-Clavulanate Is Effective Against Extensively Drug-Resistant 
Mycobacterium tuberculosis. Science (80-. ). 33, 1215–1218 (2009). 

169. Biarrotte-sorin, S. et al. Crystal Structure of a Novel β-Lactam-insensitive 
Peptidoglycan Transpeptidase. J. Mol. Biol. 359, 533–538 (2006). 

170. Erdemli, S. B. et al. Targeting the cell wall of Mycobacterium tuberculosis: 
structure and mechanism of L,D-transpeptidase 2. Structure 20, 2103–15 
(2012). 

171. Böth, D. et al. Structure of LdtMt2, an L,D-transpeptidase from 
Mycobacterium tuberculosis. Acta Crystallogr. D. Biol. Crystallogr. 69, 432–
41 (2013). 

172. Lecoq, L. et al. Dynamics Induced by β-Lactam Antibiotics in the Active Site 
of Bacillus subtilis L,D-Transpeptidase. Structure 20, 850–861 (2012). 

173. Kim, H. S. et al. Structural basis for the inhibition of Mycobacterium 
tuberculosis L,D-transpeptidase by meropenem, a drug effective against 
extensively drug-resistant strains. Acta Crystallogr. D. Biol. Crystallogr. 69, 
420–31 (2013). 



 

56 

174. Li, W.-J. et al. Crystal structure of L,D-transpeptidase LdtMt2 in complex with 
meropenem reveals the mechanism of carbapenem against Mycobacterium 
tuberculosis. Cell Res. 23, 728–31 (2013). 

175. Lecoq, L., Bougault, C., Hugonnet, J.-E., Arthur, M. & Jean-Pierre, S. 
Structure of Enterococcus faecium L,D-Transpeptidase Acylated by Ertapenem 
Provides Insight into the Inactivation Mechanism. ACS Chem. Biol. 8, 1140–
1146 (2013). 

176. Cordillot, M. et al. In Vitro Cross-Linking of Mycobacterium tuberculosis 
Peptidoglycan by L,D-Transpeptidases and Inactivation of These Enzymes by 
Carbapenems. Antimicrob. Agents Chemother. 57, 5940–5 (2013). 

177. Ebina, T., Toh, H. & Kuroda, Y. Loop-length-dependent SVM prediction of 
domain linkers for high-throughput structural proteomics. Biopolymers 92, 1–8 
(2009). 

178. Cole, C., Barber, J. D. & Barton, G. J. The Jpred 3 secondary structure 
prediction server. Nucleic Acids Res. 36, W197–201 (2008). 

179. Bielnicki, J. et al. B. subtilis ykuD Protein at 2.0 Å Resolution: Insights into 
the Structure and Function of a Novel, Ubiquitous Family of Bacterial 
Enzymes. Proteins Struct. Funct. Bioinforma. 151, 144–151 (2006). 

180. Djoko, K. Y. et al. Conserved Mechanism of Copper Binding and Transfer . A 
Comparison of the Copper-Resistance Proteins PcoC from Escherichia coli and 
CopC from Pseudomonas syringae. Inorg. Chem. 46, 4560–4568 (2007). 

181. Tan, T., Mijts, B. N., Swaminathan, K., Patel, B. K. C. & Divne, C. Crystal 
Structure of the Polyextremophilic α -Amylase AmyB from Halothermothrix 
orenii : Details of a Productive Enzyme – Substrate Complex and an N Domain 
with a Role in Binding Raw Starch. J. Mol. Biol. 378, 852–870 (2008). 

182. Hekmat, O., Leggio, L. Lo, Rosengren, A., Kamarauskaite, J. & Stalbrand, H. 
Rational Engineering of Mannosyl Binding in the Distal Glycone Subsites of 
Cellulomonas fimi Endo-β-1 , 4-mannanase: Mannosyl Binding Promoted at 
Subsite - 2 and Demoted at Subsite - 3. Biochemistry 49, 4884–4896 (2010). 

183. Correale, S., Ruggiero, A., Capparelli, R., Pedone, E. & Berisio, R. Structures 
of free and inhibited forms of the L,D-transpeptidase LdtMt1 from 
Mycobacterium tuberculosis. Acta Crystallogr. D. Biol. Crystallogr. 69, 1697–
706 (2013). 

184. Dubée, V. et al. Inactivation of Mycobacterium tuberculosis L,D-
Transpeptidase Ldt Mt1 by Carbapenems and Cephalosporins. Antimicrob. 
Agents Chemother. 56, 4189–4195 (2012). 

185. Freundlich, J. S. et al. Triclosan Derivatives : Towards Potent Inhibitors of 
Drug- Sensitive and Drug-Resistant Mycobacterium tuberculosis. 
ChemMedChem 4, 241–248 (2009). 



 

  57 

186. Wolucka, B. A., McNeil, M. R., de Hoffmann, E., Chojnacki, T. & Brennan, P. 
J. Recognition of the Lipid Intermediate for Arabinogalactadkabinomannan 
Biosynthesis and Its Relation to the Mode of Action of Ethambutol on 
Mycobacteria. J. Biol. Chem. 269, 23328–23335 (1994). 

187. Mikusová, K., Slayden, R. A., Besra, G. S. & Brennan, P. J. Biogenesis of the 
mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents 
Chemother 56, 1797–1809 (2012). 

188. Jia, L. et al. Interspecies pharmacokinetics and in vitro metabolism of SQ109. 
Br. J. Pharmacol. 147, 476–485 (2006). 

189. Tahlan, K. et al. SQ109 targets MmpL3, a membrane transporter of trehalose 
monomycolate involved in mycolic acid donation to the cell wall core of 
Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 1797–809 
(2012). 

190. Kluge, A. F. & Petter, R. C. Acylating drugs : redesigning natural covalent 
inhibitors. Curr. Opin. Chem. Biol. 14, 421–427 

191. Nampoothiri, K. M. et al. Molecular cloning , overexpression and biochemical 
characterization of hypothetical b -lactamases of Mycobacterium tuberculosis 
H37Rv. J. Appl. Microbiol. 105, 59–67 (2008).  

 


