Quantitative Influence of Exogenous Androgens on Serum Lipid Profile and Endocrine Functions.

AKADEMISK AVHANDLING
som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i föreläsningssal 9Q Månen, Alfred Nobels Allé 8

Onsdagen 17 april 2013 kl, 09.00

Av

Nina Gårevik

leg. sjuksköterska

Huvudhandledare: Professor Anders Rane
Karolinska Institutet
Institutionen för laboratoriemedicin

Bihandledare: Docent Lena Ekström
Karolinska Institutet
Institutionen för laboratoriemedicin

Bihandledare: Professor Lars-Olof Wahlund
Karolinska Institutet
Institutionen för neurobiologi, vårdvetenskap och samhälle

Fakultetsopponent: Professor Ingemar Thiblin
Uppsala Universitet
Institutionen för kirurgiska vetenskaper

Betygsnämnd: Professor Gudmundur Johannsson
Göteborgs Universitet
Institutionen för medicin

Professor Magnus Axelsson
Karolinska Institutet
Institutionen för molekylär medicin och kirurgi

Docent Pia Steensland
Karolinska Institutet
Institutionen för klinisk neurovetenskap

Stockholm 2013
ABSTRACT

Anabolic androgenic steroids (AAS) in doping have been a concern predominantly in sports. The focus has now switched to the doping in the society which is a significant problem for the public health. The abuse of AAS is associated with mental and somatic side effects and with the use of several other drugs including narcotics. This thesis focuses on the effects of AAS, particularly nandrolone and testosterone, on the serum lipid profile and endocrine functions.

We found a frequent co-abuse of AAS and narcotics among young people taken into custody for criminal activity. The two most common abused AAS were nandrolone and testosterone. We found a sustained suppression of LH and FSH for several months, sometimes 1 year. The suppression correlated significantly with the 19-norandrosterone (19-NA) metabolite of nandrolone in urine in individuals without co-abuse of narcotics. In healthy volunteers LH remained suppressed up to 6 weeks after a dose of 500 mg and even suppressed below lower limit of reference range for two individuals. These results indicate that AAS have a more profound endocrine effect on the hypothalamic-pituitary-adrenal axis than previously known. Altered blood-lipids profile was normalized within 6 months after cessation of AAS abuse. We found an early effect on the blood-lipid profile after a single dose of testosterone enanthate. Two days after testosterone injection, total cholesterol was increased and followed by a decrease in HDL and ApoA1 four and fourteen days after dose. The minimal dose for these alterations in the blood lipids, and for increased serum testosterone concentrations was 250 mg. The impact on the cholesterol homeostasis may be mediated by an increase of the HMGCR expression.

There was a marked impact of the uridine glucuronosyl transferase 2B17 (UGT2B17) polymorphism on the T/E ratio in AAS abusers and some of the testosterone abusers did not test positive due to a genetic deletion polymorphism of the UGT2B17.

Increased knowledge and understanding of side-effects induced by AAS is important in order to find measures for treatment and care of these abusers.