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Common variation at 6p21.2 (CDKN1A), 11q13.4 (POLD3) and Xp22.2 

influences colorectal cancer risk 
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We performed a meta-analysis of multiple genome-wide association studies 

to enhance power to identify common variants modestly influencing 

colorectal cancer (CRC) risk. GWAS datasets comprised 9,498 cases and 

10,456 controls, with replication in 9 case-control series, totalling 41,485 

subjects. We identified three novel CRC risk loci at 6p21.2 (rs1321312; near 

CDKN1A; P=2.32x10−10), 11q13.4 (rs3824999, intronic to POLD3; P=1.29x 

10−10), and Xp22.2 (rs5934683;  P=3.16x10-9) near SHROOM2 This brings to 

20 the number of independent loci associated with CRC risk, and provides 

further insight into the genetic architecture of inherited susceptibility to CRC. 

Many colorectal cancers (CRC) develop in genetically susceptible individuals; most of 

whom are not carriers of germ-line mismatch repair or APC mutations1-3. Genome-

wide association studies (GWASs) have validated the hypothesis that part of the 

heritable risk of CRC is attributable to common, low-risk variants identifying CRC 

susceptibility loci at 1q41, 3q26.2, 8q23.3, 8q24.21, 10p14, 11q23.1, 12q13.13, 

14q22.2 (x2), 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12.3 (x2)  and 20q13.334-10.  

The modest effect sizes of individual variants thus far identified and the need for 

stringent thresholds for establishing statistical significance, coupled with financial 

constraints on numbers of variants that can be followed up, have constrained the 

statistical power of individual GWASs. Meta-analysis of existing GWAS data offers the 

opportunity to discover additional loci based on current projections for the number of 

independent regions harbouring common variants associated with CRC risk. In this 

study, we conducted a meta-analysis of GWAS data, followed by validation in multiple 
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independent case-control series, enabling us to identify three novel susceptibility loci 

for CRC.  

Two of the UK GWASs were conducted by centres in London and Edinburgh, and were 

based on a two-phase strategy, using samples from UK populations (Supplementary 

Table 1). The London phase 1 (UK1) was based on genotyping 940 cases with familial 

colorectal neoplasia and 965 controls ascertained through the Colorectal Tumour Gene 

Identification (CoRGI) consortium using Illumina HumanHap550 BeadChip Arrays. 

Phase 1 in the Edinburgh study (Scotland1) consisted of genotyping 1,012 early-onset 

(aged ≤55 years) Scottish CRC cases and 1,012 controls using the Illumina 

HumanHap300 and HumanHap240S arrays (COGS Study). London phase 2 (UK2) 

samples comprised 2,873 CRC cases and 2,871 controls ascertained through the 

National Study of Colorectal Cancer Genetics (NSCCG). The Edinburgh phase 2 

(Scotland2) was based on 2,057 cases and 2,111 controls (SOCCS Study). For phase 

2, the London and Edinburgh samples were genotyped for a common set of SNPs: the 

14,982 SNPs most strongly associated with colorectal neoplasia from London phase 1; 

the 14,972 most strongly associated SNPs from Edinburgh phase 1 (432 of these SNPs 

were common to both the London and Edinburgh lists of most strongly associated 

SNPs); and 13,186 SNPs showing the strongest association with CRC risk from a joint 

analysis of all CRC cases and controls from both phase 1 data sets (that were not 

already included in any of the preceding categories). Therefore, phase 2 was based on 

genotyping 43,140 SNPs in total. 

The third UK GWAS (VQ58) comprised 1,800 CRC cases from the UK-based VICTOR 

and QUASAR2 adjuvant chemotherapy clinical trials. The CRC cases from the VQ58 

study were genotyped in-house using the Illumina Hap300 and Hap370 arrays. The 

2,697 controls, typed on the Illumina Human 1.2M-Duo Custom_v1 Array BeadChips, 

were from the UK population-based 1958 Birth Cohort, for which genotype data are 

publicly available from the Wellcome Trust Case-Control Consortium 2.  

Prior to undertaking the meta-analysis of all GWAS datasets, we searched for potential 

errors and biases in data from each case-control series (Supplementary Figure 1). 

Comparison of the observed and expected distributions showed little evidence for an 

inflation of the test statistics in any of the data sets (Supplementary Figure 2), 

thereby excluding the possibility of significant hidden population substructure, cryptic 

relatedness among subjects or differential genotype calling. Principal component 
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analysis showed that the cases and controls were genetically well matched 

(Supplementary Figure 3). Any outliers or individuals identified as related were 

excluded (Supplementary Methods; Supplementary Figure 1).   

 

We also made use of data on 260 SNPs on 2,151 cases and 2,501 controls which had 

been genotyped as part of the COINNBS series and which had been selected on the 

basis of a previous meta-analysis (Supplementary Table 1; Supplementary Methods). 

 

Using data on all CRC cases and controls from these six series we derived joint odds 

ratios (ORs) and confidence intervals (CIs) under a fixed-effects model for each SNP, 

and associated P-values.  Through these analyses we identified two SNPs, rs1321311 

and rs3824999 which showed good evidence of association (P<5.0x10−5) and mapped 

to distinct loci that had not previously been associated with CRC risk. This threshold 

for follow-up did not exclude the possibility that other SNPs represented genuine 

association signals, but was simply a pragmatic strategy for prioritizing replication. 

 

To validate our findings, we conducted a replication study of rs1321311 and 

rs3824999 based on eight additional case-control series: UK NSCCG replication 

(UK2/3), Edinburgh replication (Scotland3), UK CORGI replication (UK4), Cambridge 

replication (Cambridge), Croatian replication (Croatia), Finnish Colorectal Cancer 

Predisposition Study (Helsinki), Swedish replication (Sweden), Colon Cancer Family 

Registry (CCFR1) and the Japanese replication (Japan) totalling 47,278 subjects 

(Table 1, Supplementary Table 1). In the combined analysis, both rs1321311 

(P=2.32x10−10; Phet=0.99, I2=0%) and rs3824999 (P=1.29x 10−10; Phet=0.99, I2=0%) 

showed evidence for an association with CRC at genome-wide significance (i.e., 

P<5.0x10−8) (Table 1).  

 

rs3824999 maps to 11q13.4 at 74,345,550bps, within intron 9 of the  POLD3 gene 

(polymerase DNA-directed delta 3;  MIM 611415; Figure 1). POLD3 is a component of 

the DNA polymerase- complex which comprises proliferating cell nuclear antigen 

(PCNA), the multisubunit replication factor C and the 4-subunit polymerase complex: 

POLD1, POLD2, POLD3 and POLD4. As well as being involved in suppression of 

homologous recombination, the DNA polymerase- complex participates in DNA 

mismatch repair and base excision repair, key repair processes previously shown to 

be defective in germline CRC susceptibility disorders11.  
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rs1321312 maps to 6p21.2 at 36,622,874bps within a region of linkage disequilibrium 

(LD) encompassing the CDKN1A gene (cyclin-dependent kinase inhibitor 1A; MIM 

116899; Figure 1). Intriguingly, rs13211311 has been previously associated with 

electrocardiographic QRS duration12. CDKN1A encodes p21WAF1/Cip1 which mediates 

p53-dependent G1 growth arrest13. Moreover, p21 acts as a master effector of 

multiple tumour suppressor pathways which are independent of classical p53 tumour 

suppression. In addition, by binding to PCNA, p21 interferes with PCNA-dependent 

DNA polymerase activity, thereby inhibiting DNA replication and modulating PCNA-

dependent DNA repair13. Through binding to PCNA, p21 also competes for PCNA 

binding with DNA polymerase- and several other proteins involved in DNA synthesis, 

thus directly inhibiting DNA synthesis13. Similarly, p21 represses MYC-dependent 

transcription and in turn, MYC disrupts the PCNA–p21 interaction, thus alleviating 

p21-dependent inhibition of PCNA and DNA synthesis13. Decreased p21 expression has 

been reported to be a feature of dysplastic aberrant crypt foci in colonic mucosa and 

adenomas, and lymph node involvement and liver metastasis from CRC. The finding 

that p21 down-regulation inversely correlates with MSI status in CRC, irrespective of 

p53 status, again invokes a relationship with defective DNA repair and genomic 

instability. 

 

To date all of the risk SNPs for CRC which have been identified map to autosomal 

regions of the genome and analysis of the X and Y chromosomes has been limited to 

the pseudo-autosomal regions. The risk of sporadic CRC is higher for males in both 

economically developed and less-developed countries. Furthermore, males are at 

greater overall CRC risk and earlier age at onset in Lynch Syndrome14-16. It is possible 

that some of these differences in risk may be attributable to sex chromosome genetic 

variation. To explore this hypothesis, we studied the relationship between SNPs 

mapping to the sex-specific region of the X-chromosome and CRC risk. Due to limited 

coverage of the X chromosome by UK2 and Scotland2, we made use of data provided 

by CCFR1 (Supplementary Table 1) in this meta-analysis. X-chromosome genotypes 

were analysed using an extension to the standard Cochran-Armitage test for trend as 

proposed by Clayton 17 (Supplementary Methods).  

 

The SNPs showing the strongest association in meta-analysis of UK1, UK2, Scotland1, 

Scotland2, VQ58 and CCFR1 with support in each of these studies (Combined 

P<5.0x10−5) was genotyped in UK2/3, Scotland3, UK4, Cambridge, Croatia, Helsinki, 

Sweden and COINNBS, totalling xxx subjects. In the combined analysis rs5934683 



5 
 

showed evidence for an association with CRC at genome-wide significance 

(P=3.16x10-9, Phet=0.98, I2=0%; Table 1; Supplementary Table 1).  

 

rs5934683 maps to Xp22.2 within a 43Kb region of LD (Figure 1). Two genes map to 

this region, GPR143 (G protein-coupled receptor 143; MIM300808) which is expressed 

by melanocytes and retinal pigment epithelium and SHROOM2 (shroom family 

member 2; MIM 300103) a human homolog of the Xenopus laevis APX gene. While 

there is currently no evidence for a role of SHROOM2 in CRC, its expression is 

implicated in the regulation of cellular contractility controlling endothelial 

morphogenesis18  thereby representing a candidate gene for determining metastatic 

potential of cancers a priori. Like GPR143, SHROOM2 regulates melanosome 

biogenesis and localisation in the retinal pigment epithelium19. Intriguingly, abnormal 

retinal pigmentation, similar to the congenital hypertrophy of retinal pigment 

epithelium (CHRPE) lesions that are a component of the familial adenomatous 

polyposis syndrome, has been previously been shown to be an extra-colonic feature of 

non-FAP CRC20,21. To our knowledge, the relationship between Xp22.2 and CRC risk 

represents the first evidence for the role of X-chromosome variation in predisposition 

to a non-sex-specific cancer. 

 

We assessed associations between clinico-pathological variables and genotype through 

case-only logistic regression. The association of rs5934683 and CRC was significantly 

stronger in cases with colonic disease compared to rectal disease (P=7.49x10-5; based 

on 16,284 cases from seven data sets; Supplementary Table 2). Adjusting for multiple 

testing we did not find any other significant associations between SNP genotype and 

clinic-pathological data (specifically, sex, age at diagnosis, family history of CRC or 

microsatellite instability [MSI]; Supplementary Table 2). 

To comprehensively analyse associations at 6p21.2, 11q13.4 and Xp22.2, we imputed 

unobserved genotypes in GWAS and controls using HapMap3 and 1000genomes data 

for the autosomal regions and HapMap release21 for Xp22.2 (Supplementary 

Methods; Figure 1). We did not find substantive evidence of stronger associations at 

the 6p21.2 and Xp22.2 risk loci. However, at the 11q13.4 locus, rs72977282, 

mapping 3,188bps 5’ to POLD3, was more strongly associated with CRC than the 

original tagSNP rs3824999 (Figure 1; Supplementary Table 3). No non-synonymous 

SNPs showing strong LD (i.e. r2>0.4/D’>0.8) with rs1321311, rs3824999 or 

rs5934683 at 6p21.2, 11q13.4 and Xp22.2 loci were identified. These data make it 
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likely that the associations we have identified between 6p21.2, 11q13.4 and Xp22.2 

and CRC risk are mediated through changes that influence gene expression rather 

than impacting on protein sequence. 

 

To examine if any directly typed or imputed SNPs lie within or very close to a putative 

transcription factor binding/enhancer element, we conducted a bioinformatic search of 

the region of association using Transfac Matrix Database22, Encode Chipseq and 

DNAase I hypersensitivity data. These analyses did not provide evidence that 

rs4355419, rs3824999 and rs5934683 or closely correlated SNP maps with a known 

or predicted transcription regulatory region (Supplementary Table 3).  

 

To explore whether the rs4355419, rs3824999 and rs5934683 associations (or SNP 

proxies) reflect cis-acting regulatory effects on POLD3, CDKN1A, GPR143 or 

SHROOM2, we conducted expression studies using Illumina HT-12 arrays using RNA 

extracted from 42 samples of normal colonic epithelium (Supplementary Table 4). We 

also analyzed publicly-available mRNA expression data from fibroblasts, 

lymphoblastoid cell lines (LCL), T-cells, adipose tissue and CRC 23,24 (Supplementary 

Table 4). In silico analysis revealed a statistically significant relationship between 

rs1321311 genotype and expression of one of the transcripts of CDKN1A. However, 

this was observed only in LCLs and no effect was observed in data from normal large 

bowel epithelium (Supplementary Table 4). There was no relationship between 

rs3824999 and POLD3 expression from the in silico analysis or colonic epithelium 

expression studies. These exploratory analyses can only detect >5% difference in 

expression by genotype with 80% power and levels of mRNA at a single time point 

hence may not adequately capture the total impact of differential expression on CRC. 

There was, however, a striking relationship between SHROOM2 expression in normal 

colonic epithelium and rs5934693 genotype, and this was supported by in silico 

analysis CRC expression data (Supplementary Table 4). The risk allele at rs5934693 

was associated with rs5934693 risk genotype in both normal colonic epithelium and 

CRC tissue. The relationship between SHROOM2 expression in normal colonic 

epithelium and rs5934693 genotype is very strong (P=2.7x10-6) and was significant 

even accounting for all genes tested. Indeed, rs5934693 genotype accounted for 48% 

of the variation in SHROOM2 expression. Exploring the relationship between 

SHROOM2 expression, rs5934693 risk genotype and CRC causation will be of 

considerable interest, not least because of the observations of the association 

between excess pigmented lesions in the retinal pigment epithelium previously and 
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CRC20,21. Favored skewed X-inactivation producing a normal phenotype has been 

documented in X-linked dominant disease25 and skewed X-inactivation has been 

implicated as a risk factor for breast cancer26. However, the dose-dependent 

relationship between rs5934693 genotype and SHROOM2 expression argues against 

X-inactivation as the basis for the Xp22.2 association.  

 

By pooling GWAS data and conducting extensive replication analyses, we have 

identified three previously unreported loci influencing CRC susceptibility in addition to 

the 17 loci we have previously shown to be associated with CRC risk. The new loci 

identified are of modest effect size, which is unsurprising given that those with a 

larger impact on CRC were discovered in previous reports. While additional studies are 

required to determine the functional consequences that lead to CRC, our findings 

highlight the importance of variation in genes encoding components of the p21WAF1/Cip1 

signalling pathway in CRC. Moreover, this pathway, elucidated through the extended 

interaction network of CDKN1A, incorporates POLD3 and MYC and other genes 

(including SMADs and other TGF- pathway genes) that we have previously identified 

as risk factors for CRC. 

 

Note: Supplementary information is available on the Nature Genetics website 

 

URLs 

The R suite can be found at http://www.r-project.org/ 

Detailed information on the tag SNP panel can be found at http://www.illumina.com/ 

dbSNP: http://www.ncbi.nlm.nih.gov/projects/SNP/ 

HapMap: http://www.hapmap.org/ 

1000Genomes: http://www.1000genomes.org/ 

SNAP http://www.broadinstitute.org/mpg/snap/ 

IMPUTE: https://mathgen.stats.ox.ac.uk/impute/impute.html 

SNPTEST: http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html 

Transfac Matrix Database: http://www.biobase-

international.com/pages/index.php?id=transfac 

JASPAR2 database: http://jaspar.cgb.ki.se/ 

Wellcome Trust Case Control Consortium: www.wtccc.org.uk 

Mendelian Inheritance In Man: http://www.ncbi.nlm.nih.gov/omim 

SIFT: http://sift.jcvi.org/ 

PolyPhen: http://genetics.bwh.harvard.edu/pph/ 
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Globocan: http://globocan.iarc.fr/ 

Cancer Genome Atlas project: http://cancergenome.nih.gov 

The ENCODE Project: ENCyclopedia Of DNA Elements: http://www.genome.gov 

Genevar (GENe Expression VARiation:  http://www.sanger.ac.uk/resources 
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METHODS 

 

Ethics statement 

Collection of blood samples and clinico-pathological information from subjects was 

undertaken with informed consent and ethical review board approval at all sites in 

accordance with the tenets of the Declaration of Helsinki. 

 

Subjects 

In all cases CRC was defined according to the ninth revision of the International 

Classification of Diseases (ICD) by codes 153–154 and all cases had pathologically 

proven adenocarcinomas. 

 

Discovery screen data sets 

UK1 (CORGI)8 comprised 922 cases with colorectal neoplasia (47% male) ascertained 

through the Colorectal Tumour Gene Identification (CoRGI) consortium. All had at 

least one first-degree relative affected by CRC and one or more of the following 

phenotypes: CRC at age 75 or less; any colorectal adenoma (CRAd) at age 45 or less; 

≥3 colorectal adenomas at age 75 or less; or a large (>1 cm diameter) or aggressive 

(villous and/or severely dysplastic) adenoma at age 75 or less. The 929 controls (45% 

males) were spouses or partners unaffected by cancer and without a personal family 

history (to 2nd degree relative level) of colorectal neoplasia. Known dominant 

polyposis syndromes, HNPCC/Lynch syndrome or bi-allelic MYH mutation carriers were 

excluded. All cases and controls were of white UK ethnic origin. 

 

Scotland1 (COGS)8  included 980 CRC cases (51% male; mean age at diagnosis 49.6 

years, SD±6.1) and 1,002 cancer-free population controls (51% male; mean age 51.0 

years; SD±5.9). Cases were for early age at onset (age ≤55 years). Known dominant 

polyposis syndromes, HNPCC/Lynch syndrome or bi-allelic MYH mutation carriers were 

excluded. Control subjects were sampled from the Scottish population NHS registers, 

matched by age (±5 years), gender and area of residence within Scotland. 

VQ58 comprised 1,832 CRC cases (1,099 males, mean age of diagnosis 62.5 years; 

SD±10.9) from the VICTOR27 and QUASAR2 (www.octo-

oxford.org.uk/alltrials/trials/q2.html) trials. There were 2,720 population control 

genotypes (1,391 males,) from the Wellcome Trust Case-Control Consortium 2 

(WTCCC2) 1958 birth cohort (also known as the National Child Development Study), 
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which included all births in England, Wales and Scotland during a single week in 

195828. 

 

UK2 (NSCCG)8  consisted of 2,854 CRC cases (58% male, mean age at diagnosis 59.3 

years; SD±8.7) ascertained through two ongoing initiatives at the Institute of Cancer 

Research/Royal Marsden Hospital NHS Trust (RMHNHST) from 1999 onwards - The 

National Study of Colorectal Cancer Genetics (NSCCG)29 and the Royal Marsden 

Hospital Trust/Institute of Cancer Research Family History and DNA Registry. The 

2,822 controls (41% males; mean age 59.8 years; SD±10.8) were the spouses or 

unrelated friends of patients with malignancies. None had a personal history of 

malignancy at time of ascertainment. All cases and controls had self-reported 

European ancestry, and there were no obvious differences in the demography of cases 

and controls in terms of place of residence within the UK. 

 

Scotland2 (SOCCS)8  comprised 2,024 CRC cases (61% male; mean age at diagnosis 

65.8 years, SD±8.4) and 2,092 population controls (60% males; mean age 67.9 

years, SD±9.0) ascertained in Scotland. Cases were taken from an independent, 

prospective, incident CRC case series and aged <80 years at diagnosis. Control 

subjects were population controls matched by age (±5 years), gender and area of 

residence within Scotland. 

 

The Colon Cancer Family Registry (CCFR) data set comprised 1,332 familial CRC cases 

and 1,084 controls Colon Cancer Family Registry (Colon-CFR) 

(http://epi.grants.cancer.gov/CFR/about_colon.html)30. The cases were recently 

diagnosed CRC cases reported to population complete cancer registries in the USA 

(Puget Sound, Washington State) who were recruited by the Seattle Familial 

Colorectal Cancer Registry; in Canada (Ontario) who were recruited by the Ontario 

Familial Cancer Registry; and in Australia (Melbourne, Victoria) who were recruited by 

the Australasian Colorectal Cancer Family Study. Controls were population-based and 

for this analysis were restricted to those without a family history of colorectal cancer. 

 

The COIN samples were 2,151 cases derived from the COIN and COIN-B clinical trials 

of metastatic CRC31. Median age was 63 years. COIN cases were compared against 

genotypes from 2,501 population controls (1,237 males,) from the WTCCC2 National 

Blood Service (NBS) cohort (50% male; mean age at diagnosis 53.2 years, SD±15.4). 
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Replication data sets 

UK3 (NSCCG)8  comprised 7,912 CRC cases (65% male; mean age at diagnosis 59 

years, SD±8.2) and 4,398 controls (40% male; mean age 62 years, SD±11.5) 

ascertained through NSCCG post-200529. 

 

Scotland3 (SOCCS)8 comprised 1,145 CRC cases (50% male; mean age at diagnosis 

53.2 years, SD±15.4) and 2,203 cancer-free population controls (47% male; mean 

age 51.8 years, SD±11.5). Controls comprised cancer-free participants in the Lothian 

Birth Cohort 1921 and Lothian Birth Cohort 1936.   

 

UK4 (CORGI2BCD)8 consisted of 621 CRC cases (46% male; mean age at diagnosis 

58.3 years; SD±14.1) and 1,121 cancer-free population or spouse controls (45% 

male; mean age 45.1 years, SD±15.9). 

 

Cambridge/SEARCH consisted of 2,248 CRC cases (56% male; mean age at diagnosis 

59.2 years, SD±8.1) and 2,209 controls (42% males; mean age 57.6 years; 

SD±15.1. Samples were ascertained through the SEARCH (Studies of Epidemiology 

and Risk Factors in Cancer Heredity, http://www.cancerhelp.org.uk/trials/a-study-

looking-at-genetic-causes-of-cancer) study based in Cambridge, UK. Recruitment 

started in 2000; initial patient contact was though the general practitioner. Control 

samples were collected post-2003. Eligible individuals were sex- and frequency-

matched in five-year age bands to cases. 

 

The Helsinki (FCCPS) study (http://research.med.helsinki.fi/gsb/aaltonen/) comprised 

988 cases from a population-based collection centred on south-eastern Finland and 

864 population controls from the same collection. 

 

The Swedish study comprised CRC patients were recruited within a Swedish national 

study conducted by the Swedish Low-Risk Colorectal Cancer Study Group. Samples 

were obtained during 2004-2009 from 14 different surgical clinics in central Sweden. 

All CRC patients during the study period were eligible for recruitment and were invited 

to participate. Only those too ill or too frail to consent were excluded. Controls 

comprised blood donors from Stockholm and Uppsala. Fully informed consent was 

obtained in accordance with the Swedish law concerning ethical approval of research 

on human subjects (2002:489,2003:198,2010:1213-31/4). 
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The Croatian study subjects were recruited from surgical hospitals in Zagreb. Controls 

were healthy volunteers from a similar urban population (Split). 

 

The Japanese study comprised 1583 colorectal cancer cases and 1897 control subjects 

as describe previously32. All cases and controls were obtained from Biobank Japan. 

These samples were genotyped using the Illumina Human610-QuadBeadChip in cases 

and the Illumina HumanHap550v3 BeadChip in controls. Exclusion criteria: Samples 

with a call rate of < 0.98, SNP quality call rates <0.95, Hardy-Weinberg P<1.0×10-7 in 

controls. 

 

Sample preparation and genotyping 

DNA was extracted from samples using conventional methods and quantified using 

PicoGreen (Invitrogen). The VQ, UK1, and Scotland1 GWA cohorts were genotyped 

using Illumina Hap300, Hap370, or Hap550 arrays. 1958BC and NBS genotyping was 

performed as part of the WTCCC2 study on Hap1.2M-Duo Custom arrays. The CCFR 

samples were genotyped using Illumina Hap1M or Hap1M-Duo arrays. In UK2 and 

Scotland2, genotyping was conducted using custom Illumina Infinium arrays according 

to the manufacturer's protocols. Some COIN SNPs were typed on custom Illumina 

Goldengate arrays. To ensure quality of genotyping, a series of duplicate samples was 

genotyped, resulting in 99.9% concordant calls in all cases. Other genotyping was 

conducted using competitive allele-specific PCR KASPar chemistry (KBiosciences Ltd, 

Hertfordshire, UK), Taqman (Life Sciences, Carlsbad, California) or MassARRAY 

(Sequenom Inc., San Diego, USA). All primers, probes and conditions used are 

available on request. Genotyping quality control was tested using duplicate DNA 

samples within studies and SNP assays, together with direct sequencing of subsets of 

samples to confirm genotyping accuracy. For all SNPs, >99% concordant results were 

obtained. 

 

Quality control and sample exclusion 

We excluded SNPs from analysis if they failed one or more of the following thresholds: 

GenCall scores <0.25; overall call rates <95%; MAF<0.01; departure from Hardy-

Weinberg equilibrium (HWE) in controls at P<10−4 or in cases at P<10−6; outlying in 

terms of signal intensity or X:Y ratio; discordance between duplicate samples; and, for 

SNPs with evidence of association, poor clustering on inspection of X:Y plots. We 

excluded individuals from analysis if they failed one or more of the following 

thresholds: duplication or cryptic relatedness to estimated identity by descent (IBD) 
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>6.25%; overall successfully genotyped SNPs<95%; mismatch between predicted 

and reported gender; outliers in a plot of heterozygosity versus missingness; and 

evidence of non-white European ancestry by PCA-based analysis in comparison with 

HapMap samples (http://hapmap.ncbi.nlm.nih.gov). Details of all sample exclusions 

are provided in Supplementary Table 2. 

 

To identify individuals who might have non-northern European ancestry, we merged 

our case and control data from all sample sets with the 60 European (CEU), 60 

Nigerian (YRI), and 90 Japanese (JPT) and 90 Han Chinese (CHB) individuals from the 

International HapMap Project. For each pair of individuals, we calculated genome-wide 

identity-by-state distances based on markers shared between HapMap2 and our SNP 

panel, and used these as dissimilarity measures upon which to perform principal 

components analysis. Principal components analysis was performed in R using CEU, 

YRI and HCB HapMap samples as reference. The first two principal components for 

each individual were plotted and any individual not present in the main CEU cluster 

(that is, >5% of the PC distance from HapMap CEU cluster centroid) was excluded 

from subsequent analyses (Supplementary Table 2). 

 

We had previously shown the adequacy of the case-control matching and possibility of 

differential genotyping of cases and controls using Q-Q plots of test statistics. The 

inflation factor λGC was calculated by dividing the mean of the lower 90% of the test 

statistics by the mean of the lower 90% of the expected values from a 2 distribution 

with 1 d.f. Deviation of the genotype frequencies in the controls from those expected 

under HWE was assessed by 2 test (1 d.f.), or Fisher's exact test where an expected 

cell count was <5. 

 

Statistical and bioinformatic analysis 

Main analyses were undertaken using R (v2.6), Stata v.11 (State College, Texas, US) 

and PLINK (v1.06) software33. The association between each SNP and risk of CRC was 

assessed by the Cochran-Armitage trend test. Odds ratios (ORs) and associated 95% 

confidence intervals (CIs) were calculated by unconditional logistic regression. Meta-

analysis was conducted using standard methods34. Cochran’s Q statistic to test for 

heterogeneity34 and the I2 statistic to quantify the proportion of the total variation due 

to heterogeneity were calculated35. I2 values ≥75% are considered characteristic of 

large heterogeneity35,36. Associations by sex, age and clinic-pathological phenotypes 

were examined by logistic regression in case-only analyses. 
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For SNPs on the non-pseudoautosomal region of X chromosome males carry only one 

copy and in females most loci are subject to X inactivation37. To test for X 

chromosome associations we used an extension to the standard, 1df Cochran-

Armitage test for trend, proposed by Clayton (2008)17 whereby males can be regarded 

as homozygous females. This 1df trend test adjusts for the different variances for 

males and females.  

Prediction of the untyped SNPs was carried out using IMPUTEv2, based on HapMap 

Phase III haplotypes release 2 (HapMap Data Release 27/phase III Feb 2009 on NCBI 

B36 assembly, dbSNP26) and 1000genomes. Imputation of the X chromosome loci 

was only possible using IMPUTEv1 with HapMap Data Release 21 on NCBI Build 35. 

Imputed data were analysed using SNPTEST v2 to account for uncertainties in SNP 

prediction.  An imputation info score of 0.95 was used to remove SNPs with poor 

imputation quality. LD metrics between HapMap SNPs were based on Data Release 

27/phase III (Feb 2009) on NCBI B36 assembly, dbSNP26, viewed using Haploview 

software (v4.2) and plotted using SNAP. LD blocks were defined on the basis of 

HapMap recombination rate (cM/Mb) as defined using the Oxford recombination 

hotspots38 and on the basis of distribution of confidence intervals defined by Gabriel et 

al 39. To annotate potential regulatory sequences within disease loci we implemented 

in silico searches using Transfac Matrix Database v7.29 22, and PReMod1040 
40software. We used the in silico algorithms SIFT and PolyPhen to predict the impact 

of amino acid substitutions. 

 

Relationship between SNP genotype and mRNA expression  

 

Expression studies in colonic epithelium 

To examine for a relationship between SNP genotype and mRNA expression in colonic 

epithelium, 42 samples were collected fresh immediately after surgical resection of 

specimens for colorectal cancer (n=34), solitary adenoma (n=5) or benign conditions 

(not inflammatory bowel disease) (n=3). Normal epithelium was dissected from 

muscularis propria, and samples snap frozen and placed in RNAlater (Applied 

Biosystems) and kept at 4°C overnight before storage at -80°C. Tissue was disrupted 

and homogenised using TissueLyser LT (Qiagen), and RNA extracted using Ribopure 

kit (Applied Biosystems). RNA integrity and concentration was assessed on an Agilent 

Bioanalyzer, RNA purity (A260/A280 and A260/A230) on Nanodrop. RT PCR products 
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were analysed on HumanHT-12 Expression BeadChip which were scanned using the 

Illumina HiScan. Array data processing and analysis was performed using Illumina 

GenomeStudio software (version 2011.1). Microarray data were exported from 

Illumina Beadstudio software, processed and normalized using the R, Bioconductor 

beadarray and limma packages. Prior to normalization probes that were not detected 

(detection P-value>0.01) on the microarrays were removed. Microarrays were 

Quantile normalized to remove technical variation. The average signal of the replicates 

patients samples were used for further analysis. The limma package was used to find 

differential expressed genes, using the functions lmFit, eBayes and topTable. The 

spearman rank correlation of probe signals to risk SNPs, and associated significance 

value, was calculated using the 0-1-2 model. P values were corrected for multiple 

testing using the Benjamini & Hochberg method from the p.adjust R function. 

 

In silico analysis of publicly available expression data 

We analysed expression data generated from: (1) Fibroblast, LCL and T-cells derived 

from the umbilical cords of 75 Geneva GenCord individuals23; (2) 166 adipose, 156 

LCL and 160 skin samples derived from a subset of healthy female twins of the 

MuTHER resource24 using Sentrix Human-6 Expression BeadChips (Illumina, San 

Diego, USA)41,42 (3)  AgilentG4502A_07_3 custom gene expression data on 154 CRCs 

as part of the Cancer Genome Atlas project: http://cancergenome.nih.gov. Power of 

assays to establish a relationship between genotype and expression we made using 

STATA software (Version 10, Station College Tx, USA) assuming allele-based test of 

difference in normalized expression (imposing a Bonferroni correction to address 

multiple testing).  

 

Assignment of microsatellite instability (MSI) in colorectal cancers 

Tumour MSI status in CRCs was determined using the mononucleotide microsatellite 

loci BAT25 and BAT26, which are highly sensitive MSI markers. Briefly, 10 mm 

sections were cut from formalin-fixed paraffin-embedded CRC tumours, lightly stained 

with toluidine blue and regions containing at least 60% tumour microdissected. 

Tumour DNA was extracted using the QIAamp DNA Mini kit (Qiagen, Crawley, UK) 

according to the manufacturer’s instructions and genotyped for the BAT25 and BAT26 

loci using either 32P–labelled or fluorescently-labelled oligonucleotide primers (UK2/3 

and COINNBS studies respectively). Samples showing more than or equal to five novel 

alleles, when compared with normal DNA, at either or both markers were assigned as 

MSI-H (corresponding to MSI-high)43.  
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TABLE AND FIGURE LEGENDS 

 

TABLES 

 

Table 1: Summary results for rs1321311 (6p21.31), rs3824999 (11q13.4) 

and rs5934683 (Xp22.2) SNPs associated with CRC risk. aRisk allele frequency 

(RAF). bOdds ratio. c95% Confidence Interval.  

 

FIGURES 

 

Figure 1:  Regional plots of association results and recombination rates for 

the 6p21.2, 11q13.4, Xp22.2 susceptibility loci. (a-d) Association results of both 

genotyped (triangles) and imputed (circles) SNPs in the GWAS samples and 

recombination rates within the loci: (a) 6p21.2, (b), 11q13.4, (c) Xp22.2.  For each 

plot, −log10 P values (y axis) of the SNPs are shown according to their chromosomal 

positions (x axis). The top genotyped SNP in each combined analysis is a large 

triangle and is labelled by its rsID. The colour intensity of each symbol reflects the 

extent of LD with the top genotyped SNP: white (r2=0) through to dark red (r2=1.0). 

Genetic recombination rates (cM/Mb), estimated using HapMap CEU samples, are 

shown with a light blue line. Physical positions are based on NCBI build 36 of the 

human genome. Also shown are the relative positions of genes and transcripts 

mapping to each region of association. Genes have been redrawn to show the relative 

positions; therefore, maps are not to physical scale. 
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SUPPLEMENTARY FIGURES AND TABLES 

 

Supplementary Figure 1: Details of the quality control filters applied to each 

GWAS. Samples were excluded due to call rate (<95% or failed genotyping), PCA 

(principle components analysis or other samples reported to be not of white, European 

descent), IBS (any individuals found to be duplicated or related within or between 

data sets), SEX (sex discrepancies) or others (cases found to contain a previously 

reported susceptibility allele, controls with a 1st degree relative with CRC, low 

concordance of genotyping in duplicates or samples which have been subsequently 

withdrawn from a study).  

 

Supplementary Figure 2: Quantile-Quantile (Q-Q) plots of observed and 

expected 2 values of association between SNP genotype and colorectal 

cancer risk. (a) UK1, (b) Scotland1, (c) UK2, (d) Scotland2, (e) VQ58 and (f) CCFR1. 

 

Supplementary Figure 3: Identification of individuals in the GWAS of non-

European ancestry in cases and controls. The first two principal components of 

the analysis are plotted. (a) UK1, (b) UK2, (c) Scotland1, (d) Scotland2, (e) VQ58, (f) 

CCFR1 and (g) All cases and controls. HapMap CEU individuals are plotted in blue; 

CHB+JPT individuals are plotted in green; YRI individuals are plotted in red; Cases are 

plotted as circles and controls as triangles.  

 

Supplementary Table 1: Summary of the sample sets used in the study.  The 

numbers shown are before stringent QC measures (Supplementary Figure 1). 

(References for this Table are provided in: Tomlinson, I et al. COGENT (COlorectal 

cancer GENeTics): an international consortium to study the role of polymorphic 

variation on the risk of colorectal cancer44.  

 

Supplementary Table 2: Relationship between rs4355419 (4q13.1), 

rs1321312 (6p21.2), 3824999 (11q13.4), and rs5934683 (Xp22.2) 

genotypes and sex, age, tumor site, family history and MSI status.  

Supplementary Table 3: Details of transcription factor binding sites 

(TFBSs) as predicted by Transfac Matrix Database (using binding profiles 
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from the JASPAR2 database) and Encode ChiSeq and DNAase I data. "Score" 

refers to the confidence value assigned to each predicted binding region by the 

three different programs. For comparison, the observed and imputed SNPs and 

associated P-values are shown. The genotyped SNP with the most significant 

association is highlighted in yellow; imputed SNPs showing a more significant 

association are highlighted in red. 

Supplementary Table 4: Relationship between genotype and SNP genotype in 

lymphoblastoid cell lines, fibroblasts, T-cells, adipocytes, colonic tissue and 

CRC. Box plots shown only for selected associations.  

 

 



23 
 

 
 
REFERENCES 

1. Lichtenstein, P. et al. Environmental and heritable factors in the causation of 
cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N 
Engl J Med 343, 78-85 (2000). 

2. Aaltonen, L., Johns, L., Jarvinen, H., Mecklin, J.P. & Houlston, R. Explaining the 
familial colorectal cancer risk associated with mismatch repair (MMR)-deficient 
and MMR-stable tumors. Clin Cancer Res 13, 356-61 (2007). 

3. Lubbe, S.J., Webb, E.L., Chandler, I.P. & Houlston, R.S. Implications of familial 
colorectal cancer risk profiles and microsatellite instability status. J Clin Oncol 
27, 2238-44 (2009). 

4. Tomlinson, I.P. et al. A genome-wide association study identifies colorectal 
cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 40, 
623-30 (2008). 

5. Tomlinson, I.P. et al. Multiple common susceptibility variants near BMP pathway 
loci GREM1, BMP4, and BMP2 explain part of the missing heritability of 
colorectal cancer. PLoS Genet 7, e1002105 (2011). 

6. Tenesa, A. et al. Genome-wide association scan identifies a colorectal cancer 
susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat 
Genet 40, 631-7 (2008). 

7. Houlston, R.S. et al. Meta-analysis of genome-wide association data identifies 
four new susceptibility loci for colorectal cancer. Nat Genet 40, 1426-35 
(2008). 

8. Houlston, R.S. et al. Meta-analysis of three genome-wide association studies 
identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 
20q13.33. Nat Genet 42, 973-7 (2010). 

9. Broderick, P. et al. A genome-wide association study shows that common 
alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39, 1315-7 (2007). 

10. Jaeger, E. et al. Common genetic variants at the CRAC1 (HMPS) locus on 
chromosome 15q13.3 influence colorectal cancer risk. Nat Genet 40, 26-8 
(2008). 

11. Miquel, C. et al. Frequent alteration of DNA damage signalling and repair 
pathways in human colorectal cancers with microsatellite instability. Oncogene 
26, 5919-26 (2007). 

12. Holm, H. et al. Several common variants modulate heart rate, PR interval and 
QRS duration. Nat Genet 42, 117-22 (2010). 

13. Abbas, T. & Dutta, A. p21 in cancer: intricate networks and multiple activities. 
Nat Rev Cancer 9, 400-14 (2009). 

14. Dunlop, M.G. et al. Cancer risk associated with germline DNA mismatch repair 
gene mutations. Hum Mol Genet 6, 105-10 (1997). 

15. Quehenberger, F., Vasen, H.F. & van Houwelingen, H.C. Risk of colorectal and 
endometrial cancer for carriers of mutations of the hMLH1 and hMSH2 gene: 
correction for ascertainment. J Med Genet 42, 491-6 (2005). 

16. Baglietto, L. et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. 
J Natl Cancer Inst 102, 193-201 (2010). 

17. Clayton, D.G. Testing for association on the X chromosome. Biostatistics, 593-
600 (2008). 

18. Farber, M.J., Rizaldy, R. & Hildebrand, J.D. Shroom2 regulates contractility to 
control endothelial morphogenesis. Mol Biol Cell 22, 795-805. 

19. Fairbank, P.D. et al. Shroom2 (APXL) regulates melanosome biogenesis and 
localization in the retinal pigment epithelium. Development 133, 4109-18 
(2006). 



24 
 

20. Houlston, R.S. et al. Congenital hypertrophy of retinal pigment epithelium in 
patients with colonic polyps associated with cancer family syndrome. Clin Genet 
42, 16-8 (1992). 

21. Dunlop, M.G. et al. Extracolonic features of familial adenomatous polyposis in 
patients with sporadic colorectal cancer. Br J Cancer 74, 1789-95 (1996). 

22. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene 
regulation in eukaryotes. Nucleic Acids Res 34, D108-10 (2006). 

23. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a 
cell type-dependent manner. Science 325, 1246-50 (2009). 

24. Nica, A.C. et al. The architecture of gene regulatory variation across multiple 
human tissues: the MuTHER study. PLoS Genet 7, e1002003 (2011). 

25. Levin, J.H. & Kaler, S.G. Non-random maternal X-chromosome inactivation 
associated with PHACES. Clin Genet 72, 345-50 (2007). 

26. Kristiansen, M. et al. High incidence of skewed X chromosome inactivation in 
young patients with familial non-BRCA1/BRCA2 breast cancer. J Med Genet 42, 
877-80 (2005). 

27. Midgley, R.S. et al. Phase III randomized trial assessing rofecoxib in the 
adjuvant setting of colorectal cancer: final results of the VICTOR trial. J Clin 
Oncol 28, 4575-80 (2010). 

28. Power, C. & Elliott, J. Cohort profile: 1958 British birth cohort (National Child 
Development Study). Int J Epidemiol 35, 34-41 (2006). 

29. Penegar, S. et al. National study of colorectal cancer genetics. Br J Cancer 97, 
1305-9 (2007). 

30. Newcomb, P.A. et al. Colon Cancer Family Registry: an international resource 
for studies of the genetic epidemiology of colon cancer. Cancer Epidemiol 
Biomarkers Prev 16, 2331-43 (2007). 

31. Adams, R., Meade, A., Wasan, H., Griffiths, G. & Maughan, T. Cetuximab 
therapy in first-line metastatic colorectal cancer and intermittent palliative 
chemotherapy: review of the COIN trial. Expert Rev Anticancer Ther 8, 1237-45 
(2008). 

32. Cui, R. et al. Common variant in 6q26-q27 is associated with distal colon cancer 
in an Asian population. Gut 60, 799-805 (2010). 

33. Purcell, S. et al. PLINK: a tool set for whole-genome association and 
population-based linkage analyses. Am J Hum Genet 81, 559-75 (2007). 

34. Pettiti, D. Meta-analysis decision analysis and cost-effectiveness analysis. . 
Oxford University Press (1994). 

35. Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. 
Stat Med 21, 1539-58 (2002). 

36. Ioannidis, J.P., Ntzani, E.E. & Trikalinos, T.A. 'Racial' differences in genetic 
effects for complex diseases. Nat Genet 36, 1312-8 (2004). 

37. Chow, J.C., Yen, Z., Ziesche, S.M. & Brown, C.J. Silencing of the mammalian X 
chromosome. Annu Rev Genomics Hum Genet 6, 69-92 (2005). 

38. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map 
of recombination rates and hotspots across the human genome. Science 310, 
321-4 (2005). 

39. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. 
Science 296, 2225-9 (2002). 

40. Ferretti, V. et al. PReMod: a database of genome-wide mammalian cis-
regulatory module predictions. Nucleic Acids Res 35, D122-6 (2007). 

41. Stranger, B.E. et al. Genome-wide associations of gene expression variation in 
humans. PLoS Genet 1, e78 (2005). 

42. Stranger, B.E. et al. Relative impact of nucleotide and copy number variation on 
gene expression phenotypes. Science 315, 848-53 (2007). 



25 
 

43. Boland, C.R. et al. A National Cancer Institute Workshop on Microsatellite 
Instability for cancer detection and familial predisposition: development of 
international criteria for the determination of microsatellite instability in 
colorectal cancer. Cancer Res 58, 5248-57 (1998). 

44. Tomlinson, I.P. et al. COGENT (COlorectal cancer GENeTics): an international 
consortium to study the role of polymorphic variation on the risk of colorectal 
cancer. Br J Cancer 102, 447-54. 

 
 



Figure 1:  Regional plots of association results and recombination rates for the 6p21.2, 11q13.4, Xp22.2 

susceptibility loci. (a-d) Association results of both genotyped (triangles) and imputed (circles) SNPs in the GWAS samples 

and recombination rates within the loci: (a) 6p21.2, (b), 11q13.4, (c) Xp22.2.  For each plot, −log10 P values (y axis) of the 

SNPs are shown according to their chromosomal positions (x axis). The top genotyped SNP in each combined analysis is a 

large triangle and is labelled by its rsID. The colour intensity of each symbol reflects the extent of LD with the top genotyped 

SNP: white (r2=0) through to dark red (r2=1.0). Genetic recombination rates (cM/Mb), estimated using HapMap CEU 

samples, are shown with a light blue line. Physical positions are based on NCBI build 36 of the human genome. Also shown 

are the relative positions of genes and transcripts mapping to each region of association. Genes have been redrawn to show 

the relative positions; therefore, maps are not to physical scale. 
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Table 1: Summary results for the SNPS: rs1321311 (6p21.31), rs3824999 (11q13.4) and rs5934683 (Xp22.2) 

associated with CRC risk. aRisk allele frequency (RAF). bOdds ratio. c95% Confidence Interval.  

 
rs1321311 (6p21.31) 

 
 

Cases    Controls 
STUDY 

RAFa  AA  AC  CC    RAF  AA  AC  CC 
ORb  95% CIc  P‐value 

               
UK1  0.26  53  363 473  0.23 49 317 534  0.83  0.71‐0.97  2.00x10‐2 
SCOTLAND1  0.25  65  356 552  0.22 53 331 614  0.85  0.73‐0.98  2.45x10‐2 
SCOTLAND2  0.24  109  741 1157  0.23 110 736 1229  0.95  0.86‐1.06  3.60x10‐1 
VQ58  0.24  108  634 1052  0.23 141 955 1588  0.96  0.87‐1.07  4.80x10‐1 
CCFR1  0.26  11  68 91  0.23 9 66 110  0.81  0.57‐1.15  2.40x10‐1 
COINNBS  0.25  135  810 1201  0.23 128 892 1481  0.89  0.80‐0.97  1.26x10‐2 
UK2/3  0.24  616  3798 5862  0.23 369 2494 4133  0.93  0.88‐0.97  3.25x10‐3 
UK4  0.23  29  217 343  0.24 35 264 397  1.04  0.86‐1.25  6.94x10‐1 
SCOTLAND3  0.25  49  267 404  0.23 82 535 905  0.88  0.76‐1.02  8.17x10‐2 
CAMBRIDGE  0.25  143  826 1279  0.23 116 789 1338  0.90  0.81‐0.99  2.86x10‐2 
CROATIA  0.27  25  156 194  0.25 67 374 594  0.86  0.71‐1.04  1.16x10‐1 
HELSINKI  0.21  44  334 621  0.17 20 245 550  0.79  0.67‐0.93  5.63x10‐3 
SWEDEN  0.22  132  1092

 
1900

 
 0.21 128 872 1705  0.95  0.87‐1.04  2.61x10‐1 

   

                   

   0.91  0.89‐0.94   2.29x10‐9 
JAPAN  0.14  26  390 1167  0.12 38 380 1479  0.84  0.73‐0.97  1.71x10‐2 

             
Combined 0.91  0.89‐0.94  2.32x10‐10 

 



 
rs3824999 (11q13.4) 
 
STUDY  Cases    Controls 
  RAFa  AA  AC  CC    RAF  AA  AC  CC 

ORb  95% CIc  P‐value 

            
UK1  0.53  194  443 253  0.50 231 438 231 1.14  1.00‐1.30  4.90x10‐2 
SCOTLAND1  0.53  216  489 268  0.50 244 516 238 1.13  1.00‐1.28  5.94x10‐2 
SCOTLAND2  0.50  505  998 504  0.51 486 1045 544 0.94  0.87‐1.03  1.99x10‐1 
VQ58  0.53  376  920 498  0.49 704 1318 653 1.19  1.09‐1.30  5.48x10‐5 
CCFR1  0.54  241  606 326  0.50 242 510 247 1.15  1.02‐1.30  2.45x10‐2 
COINNBS  0.52  519  1063 601  0.50 627 1241 633 1.07  0.99‐1.16  9.21x10‐2 
UK2/3  0.52  2405  5149 2717  0.50 1745 3582 1758 1.06  1.01‐1.11  8.74x10‐3 
UK4  0.52  133  288 156  0.50 259 540 252 1.10  0.95‐1.27  2.00x10‐1 
SCOTLAND3  0.52  162  373 195  0.49 385 774 361 1.13  1.00‐1.29  5.32x10‐2 
CAMBRIDGE  0.52  499  1121 584  0.51 523 1074 560 1.04  0.96‐1.14  3.15x10‐1 
CROATIA  0.53  80  188 101  0.52 239 536 276 1.05  0.88‐1.24  6.08x10‐1 
HELSINKI  0.48  261  460 228  0.48 235 395 196 1.02  0.90‐1.17  7.16x10‐1 
SWEDEN  0.53  741  1546 904  0.49 713 1509 673 1.14  1.06‐1.22  3.41x10‐4 
     1.08  1.05‐1.11  5.89x10‐10 
JAPAN  0.45  490  761 331   0.43 630 908 360 1.09  0.99‐1.19  8.46x10‐2 

             
Combined                   1.08  1.06‐1.11  1.29x10‐10 

 
 
 
 
 
 
 
 
 
 



 
 
 
c) rs5934683 (Xp22.2) 
 
 

Cases RAFa    Controls RAF 
  M  F    M  F 

  ORb  95% CIc  P‐value 

 
UK1  0.37  0.38    0.30  0.31 

1.23 
1.10‐1.38  3.32x10‐4 

SCOTLAND1  0.36  0.35   
   
   
   
   
   
   
   
   
   
   

     

   

         

0.35  0.34  1.03  0.93‐1.15  5.75x10‐1 
SCOTLAND2  0.38  0.35 0.34  0.35  1.07  1.00‐1.15  6.44x10‐2 
VQ58  0.34  0.35 0.31  0.33  1.07  0.99‐1.16  8.31x10‐2 
CCFR1  0.36  0.37 0.33  0.33  1.11  1.00‐1.23  4.66x10‐2 
NSCCG3  0.36  0.35 0.33  0.33  1.09  1.05‐1.13  1.12x10‐5 
UK4  0.39  0.34 0.35  0.32  1.10  0.97‐1.25  1.38x10‐1 
SCOTLAND3  0.33  0.33 0.33  0.35  0.98  0.88‐1.09  7.01x10‐1 
CAMBRIDGE  0.39  0.36 0.41  0.34  1.01  0.94‐1.08  8.23x10‐1 
CROATIA  0.42  0.40 0.38  0.40  1.04  0.89‐1.21  6.48x10‐1 
HELSINKI  0.34  0.35 0.32  0.33  1.05  0.97‐1.15  1.19x10‐1 
SWEDEN  0.37  0.38

 
0.30 

 
0.31 

 
1.07  1.00‐1.13  4.67x10‐2 
1.07  1.05‐1.09  7.43x10‐10 

JAPAN  0.88  0.87 0.87  0.87  0.97  0.86‐1.08  5.38x10‐1 
Combined   1.07  1.04‐1.09  3.16x10‐9 
 
 



Supplementary Table 1: Summary of the sample sets used in the study.   

ca/co series  Study setting  Study centre  Sampling  Genotyping platform  No. cases  No. controls 

UK1 
UK4 

CORGI (Colorectal Tumour Gene 
Identification Consortium) 

Oxford 
University 

Cases, most with family history 
of CRC ascertained through 
clinical genetics centres in the 
UK. Spouse controls with no 
personal family history of CRC. 

Illumina HumanHap 550 
KASPar 

940 
621 

965 
1,121 

VQ58  Cases: VICTOR, post treatment 
stage of a phase III, randomised 
controlled trial of rofecoxib 
(VIOXX) in CRC patients after 
potentially curative therapy. 
QUASAR2, multicentre study if 
capecitibine +/‐ bevacizumab as 
adjuvant CRC treatment. 
hhtp://www.octo‐
oxford.org.uk/alltrials. Controls: 
58BC (UK 1958 Birth Cohort) 
http://www.b58cgene.sgul.ac.uk 

Oxford 
University 

Cases recruited as a clinical‐
based series and controls as 
population‐based series. 

Illumina HumanHap 300 
Illumina HumanHap 370 

1,800  2,690 

UK2 
UK3 

NSCCG (National study of 
Colorectal Cancer). 
http://www.icr.ac.uk/research/re
search_divisions/Genetics_and_E
pidemiology/index.shtml 

Institute of 
Cancer 
Research 

Population‐based UK study. 
Spouse controls from NSCCG 
and GELCAPS (Genetic Lung 
Cancer Predisposition Study). 

Illumina iSelect and 
Goldengate 
KASPar 

2,873 
10,471 

2,871 
7,117 

Scotland1  COGS (Colorectal Cancer 
Genetics Susceptibility Study) 

Edinburgh 
University 

Population‐based incident case 
series aged <55 at diagnosis. 
Population‐bases controls 

Illumina HumanHap 300 
Illumina HumanHap240S 

1,012  1,012 

Scotland2  SOCCS (Scottish Colorectal 
Cancer Study) 

Edinburgh 
University 

Population‐based incident case 
series; Scotland. Cancer free 
population controls. 

Illumina iSelect and 
Goldengate 
 

2,057  2,111 

Scotland4  SOCCS3 (Edinburgh and Lothian 
CRC cases) 

Edinburgh 
University 

Cancer free population 
controls from Lothian 
(LBC1921 and LBC1936). 

Taqman  768  1,522 

COINNBS  COIN, COIN‐B 
http://public.ukcrn.org.uk/search
/ 
NBS UK National Blood Service 
Blood Donor samples) 
http://www.wtccc.org.uk/ccc1/p
articipants.shtml 

University of 
Cardiff 

Multicentre study of cetuximab 
and other therapies in 
metastatic CRC. Controls were 
unselected UK blood donors 

 Illumina Goldengate 
 

2,151  2,501 

Cambridge  UKSEARCH (Studies of 
Epidemiology and Risk Factors in 
Cancer Heredity) 
http://www.srl.cam.ac.uk/search
/Homepage/htm 

Cambridge 
University 

Population‐based case‐control 
study 

Taqman  2,248  2,288 

Helsinki  FCCPS (Finnish Colorectal Cancer 
Predisposition Study) 
http://research.med.helsinki.fi/g
sb/aaltonen 

University of 
Helsinki, 
Finland 

Population‐based study, south‐
eastern Finland 

 KASPar  988  864 



CCFR1  CCFR (Colon Cancer Family 
Registry) 
http://epi.grants.cancer.gov/CFR
/about_colon.html 

University of 
Southern 
California 

Recently diagnosed CRC cases 
reported to population 
complete cancer registries in 
the USA (Seattle Familial 
Colorectal Cancer Registry), 
Canada (Ontario Familial 
Cancer Registry) and Australia 
(Australasian Colorectal Cancer 
Family Study). Population 
based controls. 

 Illumina HumanHap 550 
 

1,290  1,055 

SWEDEN        Cases were ascertained from 

14 different surgical clinics in 
Sweden between 2004 and 
2006. Controls were blood 
donors or healthy volunteers 
from Uppsala. 

 Taqman  3,345  3,091 

CROATIA         Cases recruited from hospitals 
in Zagreb. Population based 
controls. 

 Taqman  420  1,077 

JAPAN         Cases ascertained from Cancer 
hospital in Tokyo. Healthy 
controls from Japanese 
biobank. 

 Illumina HumanHap 550  1,583  1,898 

 



Supplementary Table 2: Relationship between rs1321312 (6p21.2), rs3824999 (11q13.4), and rs5934683 

(Xp22.2) genotypes and sex, age, tumor site, family history and MSI status. *OR>1.0 indicative of 

predisposition to rectal disease.  

 

 

rs1321311 rs3824999 rs5934683 

 
Number of 
data sets OR (95% CI) p-value Sample size OR (95% CI) p-value Sample size OR (95% CI) p-value Sample size 

Sex 10 0.98 (0.94‐1.03)  0.533  23,227  1.04 (0.99‐1.10)  0.118  24,260  ‐  ‐  ‐ 

Age 10 0.97 (0.94‐1.00)  0.041  22,921  0.98 (0.96‐1.12)  0.399  22,953  0.99 (0.96‐1.02)  0.541  19,290 

Site* 7 1.06 (1.00‐1.13)  0.042  19,840  0.96 (0.90‐1.03)  0.244  19,886  0.88 (0.83‐0.94)  7.49x10‐5 16,284 

Family History 3 0.96 (0.87‐1.05)  0.387  11,868  0.93 (0.84‐1.03)  0.186  11,910  1.01 (0.91‐1.10)  0.916  11,769 

MSI 3 0.95 (0.77‐1.17)  0.635  4,453  1.08 (0.85‐1.36)  0.539  4,462  1.01 (0.80‐1.26)  0.949  3,048 

Stage 5 0.96 (0.90‐1.02)  0.226  5,681  1.00 (0.93‐1.07)  0.989  5,726  1.03 (0.97‐1.10)  0.359  4,314 



Supplementary Figure 1: Details of the quality control filters applied to each GWAS. Samples were excluded - call rate (<95%), Ethnicity (principle
components analysis or self-reported not to be of European descent), relatedness (duplicates or related within or between each case-control series),
sex discrepancy, other (cases found to carry a high-risk CRC mutation, controls with a 1st degree relative with CRC, low concordance of genotypes in
duplicates, subjects withdrawn from the study). *samples preferentially removed from these data-sets over GWAS datasets.

1,290 cases

1,055 controls

940 cases

965 controls

2,873 cases

2,871 controls

1,012 cases
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84 15 30 15 22 0

67 54 6 9 7 0

13 26 197* 9 30* 9

4 3 45 15 22 1

3 17 9 5 5 0

1,175 cases
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890 cases
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2,659 cases

2,798 controls
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998 controls

2,007 cases

2,075 controls

1,794 cases

2,686 controls
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pre-QC

post-QC
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Supplementary Figure 2: Quantile-Quantile (Q-Q) plots of 

observed and expected 
2 values of association between SNP 

genotype and colorectal cancer risk. (a) UK1, (b) Scotland1, (c) UK2, 

(d) Scotland2, (e) VQ58 and (f) CCFR1 
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Supplementary Figure 3: Identification of individuals in the GWAS of 
non-European ancestry in cases and controls. The first two principal 

components of the analysis are plotted, before exclusions, for the (a) UK1, (b) 
UK2, (c) Scotland1, (d) Scotland2, (e) VQ58, (f) CCFR1 and (g) All of the above 

cases and controls. HapMap CEU individuals are plotted in blue; CHB+JPT 
individuals are plotted in green; YRI individuals are plotted in red; GWAS cases 
are plotted as circles and controls as triangles. 
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