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ABSTRACT 

Primary SjšgrenÕs syndrome (pSS) is a systemic autoimmune disease affecting 0.2% of 
the population. Several B cell aberrances have been linked to pSS, such as autoantibody 
production, hypergammaglobulinemia and B cell associated genetic polymorphisms. In 
addition, pSS patients display a 16 fold increased risk to develop B cell lymphomas. 
Autoantibodies to TRIM21/ Ro52 are detected in approximately 70% of patients with 
pSS. The cellular role of TRIM21 was largely unknown when this thesis was initiated. 
However, TRIM21 had been implicated to belong to the TRIpartite Motif (TRIM) 
family, of which many proteins are E3 ligases, mediating ubiqiutination. The aims of 
this thesis were to characterize the role of B cells in primary SjšgrenÕs syndrome 
pathogenesis and to elucidate the cellular role of the autoantigen TRIM21.  
 
By using vaccination as a tool to study immune responses pSS in vivo, we detected a 
vigorous B cell hyperreactivity, specifically in IgG producing cells. Further, in vitro 
induction of IgG class switch revealed an increased response to endosomal Toll-like 
receptor (TLR) stimulation in B cells from patients. This phenomenon may explain the 
hypergammaglobulinemia observed in pSS patients, and possibly also the high 
autoantibody titers.   
 
In both in vivo and in vitro ubiquitination assays, we could show that TRIM21 is an E3 
ligase. To better understand its role in immunity, a TRIM21-/- IRES-GFP mouse was 
generated. Studies revealed a hyperresponsive immune system. Mild immune 
activation induced Th17-dependent dermatitis and subsequently systemic 
autoimmunity with hypergammaglobulinemia, anti-nuclear antibodies and 
glomerulonephritis. We observed that TRIM21 regulates several interferon regulatory 
factors (IRFs), central transcription factors of pro-inflammatory responses, by 
ubiquitination. The loss of TRIM21 expression therefore resulted in loss of negative 
regulation of the transcription factors, and thereby accentuated immune responses. 
 
By using GFP as a reporter in the TRIM21-deficient-IRES-GFP mice, we observed that 
TRIM21 protein is almost exclusively expressed in hematopoietic cells. Further, 
overexpression of TRIM21 in a B cell lymphoma cell line resulted in markedly reduced 
proliferation and increased apoptosis. These findings prompted us to study the role of 
TRIM21 in lymphomagenesis. In three independent cohorts of diffuse large B cell 
lymphomas (DLBCL), a strong correlation between low TRIM21 expression and short 
overall and progression-free survival was demonstrated.  
 
In conclusion, these studies show that endosomal TLR hyperreactivity underlie 
hypergammaglobulinemia in primary SjšgrenÕs syndrome. Further, the major 
autoantigen TRIM21 is an E3 ligase, negatively regulating interferon and TLR 
responses. Loss of TRIM21 expression is associated both to aggravated immune 
responses and poor outcome in lymphoma development, implicating a central role for 
TRIM21 in the development of both systemic autoimmune diseases and lymphomas. 
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1 INTRODUCTION  

 
This thesis focuses on the autoimmune pathology underlying primary SjšgrenÕs syndrome, 
as well as the cellular role of its major autoantigen TRIM21 (Ro52). As a background, this 
introduction will first give a general description of the immune system, in particular Toll-
like receptor activation, interferon signaling and B lymphocytes. Thereafter autoimmunity, 
and specifically the rheumatic disease SjšgrenÕs syndrome will be described. Subsequently 
the TRIM protein family, ubiquitination and TRIM21 are introduced and lastly, 
lymphomas will be described, as this is the most severe long-time effect of primary 
SjšgrenÕs syndrome.  
 
1.1 THE IMMUNE SYSTEM  

All eukaryotic organisms need to defend themselves against potential invading 
microorganisms. In humans, this defense can be divided into the rapidly responding, and 
rather unspecific innate immunity, and the somewhat slower, but highly specific acquired 
immunity. We are born with a functioning innate immunity, with pre-formed sensing 
receptors. In contrast, the receptors utilized in acquired immunity are developed through 
intricate gene re-arrangement, resulting in an effective and specific response. An elaborate 
combination of cells and signaling molecules form the immune system, and some of the 
key players will be reviewed below.   
 
1.1.1 Innate immunity 

The innate immunity is our first line of defense and is comprised of epithelia and its 
secreted factors, circulating proteins such as the complement system, and cells in tissues 
and circulation. The innate cells execute three main tasks: phagocytosis, killing of infected 
cells and recruitment of the acquired immunity. Monocytes/ macrophages and neutrophils 
are major phagocytic cells, which will be actively recruited from circulation to the site of 
inflammation upon infection. NK cells are specialized in detecting and killing infected 
cells and dendritic cells are residing in tissue and are both phagocytic and crucial in 
activating the acquired immunity. When sensing potential infections, two major types of 
pattern recognition receptors (PRRs) are utilized; the transmembrane Toll-like receptors 
(TLR) and the cytosolic retinoic acid-inducible gene-I (RIG-I) and nucleotide-binding 
oligomerization domain (NOD) proteins (Medzhitov, Nat Rev Immunol 2001; Meylan, 
Nature 2006). TLR signaling will be further described.  
  
 
 
1.1.1.1 Toll-like receptors 
Toll receptors were first identified in fruit flies, to be essential in establishing dorsoventral 
polarity during embryogenesis (Anderson, Cell 1985). Some ten years later a role for the 
toll receptors in immunity was proposed, initially in anti-fungal responses (Lemaitre, Cell 
1996). Since then, the knowledge in this field has grown enormously. To date, ten TLRs 
are known in humans and twelve in mice, all recognizing conserved molecular signatures 
in infectious microorganisms. The receptors localize either to the plasma membrane or in 
intracellular vesicles (Table 1). The four receptors TLR3, 7, 8 and 9 are expressed 
intracellularly in the endosomes, and sense motifs containing nucleic acids. TLR3, 7 and 8 
all recognize RNA, mainly from viruses and TLR9 recognizes unmethylated CG rich 
DNA. Interestingly, TLR9 can be activated by viral, bacterial, parasitic as well as 
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mammalian DNA (Bafica, J Immunol 2006; Parroche, Proc Natl Acad Sci U S A 2007; 
Yasuda, J Immunol 2005), it is the localization in the endosomal compartment that restrict 
TLR9 receptor activation to pathogen-derived DNA.  
 

 
 
Table 1. Toll-like receptors in human and mouse. 
Subcellular localization, main ligand and its pathogen for human and murine TLRs. 
TLR10 only exist in humans and TLR11 is only found in mice. 
 
 

 Toll-like receptors are constituted of a ligand-binding leucine-rich extracellular 
domain and an IL-1R-like intracellular domain Toll/IL-1R (TIR). All TLRs, except TLR3, 
require the adaptor protein myeloid differentiation primary-response protein 88 (MyD88) 
for their intracellular signaling. TLR4 can signal both via MyD88 and independent of 
MyD88 (Akira and Takeda, Nat Rev Immunol 2004).  
 
MyD88 dependent and independent TLR signaling is schematically illustrated in Figure 1. 
Briefly, in the MyD88 dependent pathway TLR ligation triggers association of MyD88, 
which recruits IL-1R associated kinase 4 (IRAK4). Subsequently, IRAK1 associates and 
undergoes IRAK4 mediated phosphorylation. TNF-receptor associated factor 6 (TRAF6) 
then binds the phosphorylated IRAK1, and the dimer dissociates and ultimately activates 
the inhibitor of nuclear factor ! B-kinase (IKK) complex, which in turn activates the NF-
! B pathway (described below), and initiates transcription of pro-inflammatory cytokines.  
 
In MyD88 independent TLR signaling TIR-domain-containing adaptor protein inducing 
IFN! (TRIF) and in TLR4 activation also TRIF-related adaptor molecule (TRAM) will 
associate to the TIR domain of the receptor and activate the non-typical IKKs, which in 
turn will initiate IRF3 mediated transcription of type I interferons.  

 
 
 
 

Toll -like receptors 
 
TLR    Localization Main ligands   Origin of ligand 
TLR1   Plasma membrane Triacylated lipopeptides  Bacteria 
TLR2   Plasma membrane Glycolipids, lipoproteins, zymosan Bacteria, Fungi 
TLR3   Endosome dsRNA   Viruses 
TLR4   Plasma membrane LPS, lipoteichoic acids, Hsp  Bacteria 
TLR5   Plasma membrane Flagellin   Bacteria 
TLR6   Plasma membrane Lipopeptides, zymosan  Bacteria, Fungi 
TLR7   Endosome ssRNA   Viruses 
TLR8   Endosome ssRNA   Viruses 
TLR9   Endosome CpG-containing DNA  Viruses, Bacteria 
TLR10 Endosome not determined   not determined 
TLR11 Plasma membrane Prolfilin   Protozoa 
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Figure 1. Toll-like receptor signaling 
A schematic overview of the MyD88 dependent and independent TRL signaling. In the 
MyD88 dependent pathway IRAK4 will be activated, phosphorylate IRAK1, which will 
bind TRAF6 and then initiate activation of the IKK complex, which will start a process 
whereby the I-! B will be degraded and the NF-! B complex will be released, and enter the 
nucleus to start transcription. In the MyD88 independent pathway activation of TRIF will 
in turn activate the non-typical IKKs, which will initiate IRF3 mediated transcription. 
TLR4 stimulation can also, via TRAM, activate the NF-! B complex. 

 
1.1.1.2 TLR signaling in B cells 
Human B cells express most of the TLRs. TLR6, 7, 9 and 10 are highly expressed and can 
be induced upon activation, whereas TLR1, 4 and 8 are expressed at low levels and can 
not be induced by B cell activation (Bernasconi, Blood 2003; Bourke, Blood 2003). What 
is unique for B cells is that they express both antigen specific receptors and TLRs. 
Integration between the two signaling pathways does occur. TLR signaling influences 
class switch recombination and promotes differentiation of memory B cells into plasma 
cells (He, J Immunol 2004; Meyer-Bahlburg, J Exp Med 2007). Interestingly, this also 
goes the other way, as B cell receptor stimulation in na•ve B cells rapidly induces TLR9 
expression (Bernasconi, Blood 2003). In a cardinal study Pasare and Medzithov showed 
that in MyD88 deficient mice IgG class switch is completely abrogated (Pasare and 
Medzhitov, Nature 2005). Further, patients with defects in crucial TLR signaling 
molecules, such as MyD88 and IRAK4, display an altered BCR repertoire with increased 
amount of autoreactive B cells (Isnardi, Immunity 2008).  
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1.1.1.3 NF- ! B signaling 
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF- ! B) is a key mediator 
of transcription in immunity. Four major types of genes are induced by the NF- ! B 
complex: inflammatory, anti-apoptotic, proliferation promoting and negative regulators of 
NF- ! B signaling (Karin, Nat Rev Cancer 2002). 
 
The NF-! B gene family consists of five related proteins, all of which bind the common 
sequence motif ! B. The proteins are tightly regulated and are in steady-state bound to the 
Inhibitor of NF-! B (I! B) proteins, and thereby inactivated. Upon inflammatory stimuli, 
the IKK complex, consisting of IKK", ! and #, will be activated, whereby I! B will be 
phosphorylated and subsequently degraded in the proteasome, whereby the NF- ! B is 
released and enters the nucleus to initiate transcription. 
 
NF-! B proteins form different homo- and heterodimers, mediating actions of two main 
pathways: the canonical and the non-canonical pathway. The canonical pathway, initiated 
upon infection and pro-inflammatory stimulation, is dependent on IKK! mediated 
phosphorylation (Li, J Exp Med 1999). Stimulation of receptors of the TNF family, e.g. 
Lymphotoxin " and RANK-L initiates the non-canonical pathway, where IKK" is 
selectively activated (Senftleben, Science 2001). This pathway is important in B cell 
development, as B cell activating factor belonging to the TNF family (BAFF) signals via 
the non-canonical pathway. 

 
1.1.1.4 Interferon regulatory factors  
Interferon regulatory factors (IRFs) are crucial transcriptions factors in immunity. The 
IRFs were initially, as the name indicates, found to be involved in type I interferon 
transcription. However, they have implicated in transcription of several genes important in 
both immunity and oncogenesis (Honda and Taniguchi, Nat Rev Immunol 2006). The 
mammalian IRF family comprises nine members, IRF1-9. The N-terminal part of IRFs 
consists of a highly conserved DNA binding domain, which recognizes and binds IFN-
stimulated response element (ISRE).  
 
Four IRFs are important in this thesis, and their function will therefore be described in 
more detail. IRF3 and 7 have both been demonstrated to be essential transcription factors 
initiating and maintaining type I IFN responses. IRF3 is constitutively expressed in the 
cytoplasm, and localizes to the nucleus upon viral infections, to initiate type I IFN 
transcription, especially IFN! (Sato, FEBS Lett 1998; Weaver, Mol Cell Biol 1998; 
Yoneyama, EMBO J 1998). Upon type I IFN receptor activation, IRF7 is expressed and 
will then efficiently promote both IFN" and IFN! expression (Honda, Nature 2005; Sato, 
FEBS Lett 1998). TLR7 and 9 stimulation activate IRF7, both via direct interaction with 
MyD88 and in a TRAF6-dependent manner (Honda, Proc Natl Acad Sci U S A 2004; 
Honda, Nature 2005; Kawai, Nat Immunol 2004). The transcription factor IRF5 is 
activated upon TLR4, 5, 7 and 9 ligation and is crucial in induction of several pro-
inflammatory cytokines, such as IL-6, IL-12p40 and TNF" (Takaoka, Nature 2005). IRF5 
also interact directly with MyD88 and TRAF6. IRF8 is an immune cell specific 
transcription factor downstream of TLR4 and 9 activation, which is involved in promoting 
Th1 responses. Interestingly, Irf8 -/- mice exhibit both impaired responses to viral 
infections and deregulated hematopoiesis (Holtschke, Cell 1996), similar to what is 
observed in TRIM21 deficiency, which will be discussed in this thesis. 
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1.1.1.5 Type I interferons 
Type I interferon is a large cytokine family consisting of 13 IFN" subtypes, IFN!, $, !  and 
% in humans. There are two other classes of interferons, the unrelated type II (IFN#) and 
the type III IFNs, which mediate similar responses as type I IFNs but are secreted by 
epithelial cells. The genes encoding type I IFNs are clustered on chromosome 9, 
implicating that gene duplication might underlie the large amount of cytokines (Pestka, 
Immunol Rev 2004). All type I IFNs signal via the heterodimeric type I IFN receptor 
(IFNAR), which primarily activates the JAK-STAT pathway, ultimately leading to 
complex formation of IRF9 and phosphorylated STAT1 and 2, which will bind to ISRE 
and initiate transcription (Darnell, Science 1994; Silvennoinen, Nature 1993). IFNAR 
stimulation can also initiate other intracellular pathways, such as CRKL, Nf-! B and 
MAPK cascades (Platanias, Nat Rev Immunol 2005).  
 
Almost all cells can produce IFN" and IFN! in response to intracellular infections, but the 
plasmacytoid dendritic cells (pDCs) are Òprofessional type I IFN producersÓ, with their 
ability to make up to 1000 times more interferons than other cells. pDCs only express 
TLR7 and 9, implicating that they are specialized to sense viral infections (Hornung, J 
Immunol 2002; Jarrossay, Eur J Immunol 2001). The high production of type I INFs is 
partly due to constitutively high expression of IRF7 (Ito, Blood 2006), by which pDCs 
circumvent the initial IRF3- IFN! route to directly utilize the potent IRF7. Further, the 
TLR ligands retained in the endosome for a longer time in pDCs compared to other APCs 
(Guiducci, J Exp Med 2006).  
 
Elevated levels of type I interferons are associated to systemic autoimmunity. Induction of 
anti-nuclear antibodies and in some cases also lupus-like symptoms is a well-known side 
effect in IFN" treated patients (Ronnblom, J Intern Med 1990). This indicates that IFN" it 
self drives many of the features of systemic autoimmunity. However, although deletion of 
dendritic cells in a murine lupus model leads to amelioration of disease, wild type mice 
lacking dendritic cells will develop autoimmunity (Ohnmacht, J Exp Med 2009; 
Teichmann, Immunity 2010). 

 
1.1.2 Acquired immunity 

B and T lymphocytes are the main players in the acquired immunity. A prominent 
characteristic for these cells are their epitope specific antigen receptors, the B cell receptor 
(BCR) and the T cell receptor (TCR). The antigen receptors are highly variable, and the 
multitude of receptors is generated by rearrangement of different V, D and J gene 
segments, via so-called VDJ rearrangement. In this way, a relatively small genetic region 
can give rise to a high numbers of specificities (Matthews and Oettinger, Nat Immunol 
2009; Rajewsky, Nature 1996).  
 
Lymphocytes are produced in the bone marrow, where B cells will mature, while T cells 
mature in the thymus. An essential feature of lymphocyte development is the clonal 
deletion, mediated by positive and negative selection. Simplified, this is a process where 
only cells properly recognizing foreign antigens will survive (Hayakawa, Science 1999; 
Rajewsky, Nature 1996). 
 
T cells are specialized in recognizing antigens and thereafter performing, or orchestrating 
immune responses. Activation of T cells is dependent of TCR activation by the major 
histocompatibility complex (MHC), accompanied by co-receptor triggering. T cells are 
divided into the CD8+ cytotoxic T cells, which are stimulated by MHC class I and the 
CD4+ helper T cells, which bind MHC class II. Cytotoxic cells recognize and kill infected 
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cells or tumor cells, which will present foreign intracellular proteins by MHC class I. T 
helper cells (Th) are activated by antigen presenting cells (APCs), which present antigens 
from the surrounding by their MHC class II receptor. Depending on the cytokine milieu, 
the cells will differentiate into different types of T helper cells. The major types are Th1, 2, 
17 and the regulatory T cell (Chen, J Exp Med 2003; Harrington, Nat Immunol 2005; 
Mosmann, J Immunol 1986; Park, Nat Immunol 2005; Sakaguchi, J Immunol 1995).  
 
1.1.2.1 B cells 
Three major na•ve mature B cell subsets are known, the follicular B cells and the innate 
B1 and marginal zone B cells. The majority (>90%) of mature B cells are follicular B cells 
(LeBien and Tedder, Blood 2008). These B cells constantly recirculate the body and will 
upon antigen encounter migrate to germinal centers in the spleen or lymph nodes, to 
interact with their T cell counterpart.  
 

 
 
Figure 2. B cell activation and plasma cell differentiation. 
Key mature follicular B cell populations and cell surface marker expression during 
plasma cell differentiation. Surface markers used in this thesis are included in this figure.   
 
Once activated, B cells will proliferate and induce changes in the Ig locus. Unlike T cells, 
B cells have the ability to fine-tune their antigen receptor upon encounter of an antigen. 
This mechanism is orchestrated by the enzyme activation induced cytidine deaminase 
(AID) and consists of both somatic hypermutation (SMH) and isotype class switch 
recombination (CSR) (Teng and Papavasiliou, Annu Rev Genet 2007). During SMH 
changes are induced in the variable region of the BCR. These mutations aim at improving 
binding affinity to the antigen, but do in most cases lead to a non-productive BCR, which 
will lead to apoptosis of the cell (Longo and Lipsky, Trends Immunol 2006). The second 
process where AID is involved is in CSR. This is an irreversible process of DNA 
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recombination whereby na•ve B cells switch isotype to IgG, IgA or IgE. Which isotype 
induced is dependent on the cytokine environment. Simplistically viruses and bacteria 
induce IgG class switch, protozoa induce IgE production and IgA is produced for 
protection mediated over mucosal membranes. More specific, IL-4 induces IgG4 and IgE 
production, IL-10 induces IgG1-3 and IgA and IL-21 induces IgE (Fujieda, Mol Immunol 
1996; Lebman and Coffman, J Exp Med 1988; Lundgren, Eur J Immunol 1989; Ozaki, 
Science 2002; Pene, Proc Natl Acad Sci U S A 1988). A limited number of factors have 
been observed to induce class switch, i.e. anti-CD40, BAFF and APRIL and TLR3, 8, and 
9 stimulation (Arpin, Science 1995; Castigli, J Exp Med 2005; Glaum, J Allergy Clin 
Immunol 2009; He, J Immunol 2004; He, Nat Immunol 2010; Krieg, Nature 1995; 
Litinskiy, Nat Immunol 2002; Ruprecht and Lanzavecchia, Eur J Immunol 2006). A 
possible role in CSR upon TLR4 stimulation has also been implicated (Yang, J Immunol 
2005). 
 
B cells that successfully go through the germinal center reaction can either develop into 
memory cells or plasma cells. Memory B cells are have undergone SHM upon antigen 
encounter, and are in most cases also class switched, although IgD+ memory B cells do 
exist (Lanzavecchia and Sallusto, Curr Opin Immunol 2009). These cells are recognized 
by their high MHC class II expression and the expression of CD27, although CD27- 
memory B cells exist. Memory B cells can be re-activated upon a new infection and will 
then undergo further SHM and some will also develop into plasma cells. 
 
Mature B cells first develop into plasmablasts, which will still express surface-bound 
antigen receptors, and later to plasma cells. Plasma cells are professional antibody 
producing cells, which can secrete up to several thousand antibodies per second (Ma and 
Hendershot, Nat Immunol 2003; van Anken, Immunity 2003). Differentiation into plasma 
cells is initiated by upregulation of the signature transcription factor Blimp-1, which is 
normally under strong repression by several protein, amongst them BCL6  (Kallies, 
Immunity 2007; Ranuncolo, Nat Immunol 2007; Tarlinton, Curr Opin Immunol 
2008).This repression is abrogated by the induction of IRF4, in response to NF-κB 
activation, which will downregulate the production of theses repressive elements, allowing 
for BLIMP-1 induction(Klein, Nat Immunol 2006). The cell will transform from being a 
non-secretory cell with a relatively small cytoplasmic component with surface-bound 
antigen receptors to a highly specialized secretory cells with a well-developed 
endoplasmatic reticulum (ER). One of the key actions mediated by BLIMP-1 is the 
induction of the protein Xbp-1, which allows the expansion of the ER to improve the 
cellular tolerance for large-scale protein production and secretion (Iwakoshi, Nat Immunol 
2003). Plasma cells are identified by the expression of CD138 and no MHC II expression 
and can either exist as short-lived clones that only survive for weeks, or long-lived plasma 
cells, which can, in the right microenvironment in the bone marrow survive for decades. 
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AUTOIMMUNITY  

A main feature of the immune system is to not recognize and react to self. Autoimmunity 
is the failure of the immune system to recognize own parts as self, these processes  
sometimes develop into autoimmune disease. There are more than 70 diseases with an 
identified autoimmune etiology and autoimmune diseases affect approximately 5% of the 
population worldwide. Autoimmune diseases can be divided into organ-specific, such as 
Myasthenia Gravis and Type I Diabetes, or systemic diseases, such as Rheumatoid 
Arthritis and SjšgrenÕs syndrome. Interestingly, almost all autoimmune diseases exhibit a 
sex-bias, with more women affected (Whitacre, Nat Immunol 2001). The greatest female 
predominance is found in the systemic autoimmune diseases, especially in systemic lupus 
erythematosus (SLE) and primary SjšgrenÕs syndrome, where more than 90% of all 
patients are women. Sex hormones as well as gene-dosage effect of X chromosome genes 
have been implicated to account for these differences, but much is still unexplored (Haga 
and Rygh, J Rheumatol 1999; Invernizzi, J Immunol 2005; Pauklin, J Exp Med 2009; 
Spector, Clin Rheumatol 1989).  
 
SLE is a prototypical systemic autoimmune disease with autoantibodies directed toward 
multiple antigens, many ubiquitously expressed, such as DNA and histones. As a 
consequence, several different organs can be affected, such as joints, skin, the central 
nervous system and kidneys. A feature of SLE is the formation of circulating immune 
complexes with antibodies, apoptotic material and complement factors, which cause 
disease by tissue deposition and by activating endosomal TLRs (Wallace, Nat Rev 
Rheumatol 2012). 
 
The autoimmune reaction is antigen-specific and presence of self-reactive lymphocytes is 
a pre-requisite for an autoimmune reaction. Autoreactive clones are constantly produced 
and 5-20% of the na•ve B cell repertoire in healthy humans are reacting towards self-
antigens (Wardemann, Science 2003). Most people nevertheless never develop 
autoimmune disease, thanks to the immune systems own regulatory mechanisms, which 
will be discussed below. 
  
  
1.1.3 Tolerance 

An important feature of lymphocyte development is the elimination of self-reacting, and 
thus potentially harmful cells. This mechanism occurs both in developing lymphocytes in 
bone marrow and thymus, denoted central tolerance, and in mature cells in secondary 
lymphoid organs, denoted peripheral tolerance. Central tolerance is maintained by the 
elimination of cells binding with high affinity to self-proteins, via the so-called negative 
selection (Goodnow, Nature 1989; Kappler, Cell 1987). 
 
Peripheral tolerance occurs by induction of anergy, deletion or immune suppression. To 
induce an immune response, both antigen receptor and the innate immune system must be 
activated. In the case of an autoreactive cell binding to its antigen, no second innate signal 
will occur, and the cell will therefore become anergic (Nossal and Pike, Proc Natl Acad 
Sci U S A 1980; Quill and Schwartz, J Immunol 1987). In some cases, when co-
stimulatory signals or survival signals are absent, cells will undergo activation-induced 
cell death instead (Russell, Proc Natl Acad Sci U S A 1991; Watanabe-Fukunaga, Nature 
1992). A third way in, which self-reactive clones are kept in control is via suppression by 
negative regulatory elements. Such sepression is mediated by regulatory T cells via cell-
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cell interaction or cytokine production (Sakaguchi, J Immunol 1995) or by IL-10 
producing regulatory B cells (Katz, Nature 1974; Mizoguchi and Bhan, J Immunol 2006). 
 
In addition to the central and peripheral tolerance, autoreactive clones can also be 
tolerized, a process in which autoreactive B cells undergo BCR editing (Radic, J Exp Med 
1993; Tiegs, J Exp Med 1993) and self-reactive CD4+ T cells develop into regulatory T 
cells (Jordan, Nat Immunol 2001). 
 
1.1.4 SjšgrenÕs syndrome 

SjšgrenÕs syndrome (SS) is a chronic, systemic autoimmune disease affecting 0.1-0.2% of 
the population. The disease mainly affects exocrine glands, with progressive focal 
mononuclear cell infiltrates replacing the glandular epithelium, resulting in dysfunction 
and later destruction of the gland (Jonsson, Immunol Lett 2011). Lacrimal and salivary 
glands are the primary sites for inflammation, but glands in the skin, gastro-intestinal and 
genital tracts might also be involved. As a result, patients suffer from debilitating dryness 
of eyes and mouth (sicca), as well as general symptoms of systemic inflammation such as 
fatigue, muscle and joint pain, low-grade fever and leukopenia. Approximately one third 
of the SS patients develop extraglandular symptoms including arthritis, leucopenia, 
vasculits and different skin manifestations. Development of extra-glandular manifestations 
is generally associated to a more aggressive disease course. The majority (>90%) of the 
patients are women and peak incidence is at 40-50 years of age. 
 
1.1.4.1 Diagnosis 
SjšgrenÕs syndrome is divided into two subsets; primary (pSS) when occurring alone and 
secondary (sSS), when diagnosed together with another rheumatic disease. Diagnosis is 
determined by criteria. No specific diagnosis criteria are currently in use, instead 
classification criteria initially developed for research cohorts are used in clinical practice. 
Currently the American-European consensus criteria (AECC) are the most widely used 
(Vitali, Ann Rheum Dis 2002), Table 2. As classification criteria are formulated for 
research purposes, where high specificity is of importance, they tend to favor symptoms of 
established disease. One consequence thereof is that a patient with a recently developed 
disease might not fulfill the AECC, since the glandular involvement might not be great 
enough to generate subjective and/or objective symptoms.  
 

 
 
 
 
 
 
 
 
 
 
 

Table 2. AECC classification criteria for SjšgrenÕs syndrome.  
For pSS, the patient must not have any other autoimmune disease and either a. !4 of the 
6 items, of which at least one of item 4 or 6 or b. 3 of the 4 objective criteria (item 3-6). 
The exclusion criterions are anticholinergic medication, previous head-neck radiation, 
HIV/ AIDS, GVHD, sarcoidosis and Hepatitis C.  
 

AECC classification criteria for Sjögren’s syndrome  
(adapted from Vitali, Ann Rheum Dis 2002)  
 
I Subjective ocular symptoms 
II  Subjective oral symptoms 
III  Objective ocular signs 
IV Histopathology in minor salivary glands 
V Salivary gland involvement 
VI  Presence of autoantibodies 
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1.1.4.2 Pathogenesis of primary Sjögren’s syndrome 
SjšgrenÕs syndrome is a complex disease, where multiple genetic disturbances, together 
with environmental factors, are thought to drive disease development and progression. 
However, no environmental factors triggering disease have been identified yet. Both 
acquired and innate immunity have been implicated to play important roles in the 
pathogenesis of pSS, as well as local factors in the targeted organs.  
 
Many features of the disease implicate the importance of B cells in the pathogenesis of 
pSS. Approximately 70% of patients have autoantibodies, of which most are specific for 
the major autoantigens SSA (Ro52/TRIM21 and Ro60) and SSB (La) and 
hypergammaglobulinemia is observed in about 50% of the patients. Altered peripheral B 
cell phenotype is observed with decreased frequencies of CD27+ memory B cells and 
increased frequencies of na•ve B cells. Local autoantibody production, ectopic germinal 
center formation and AID expression can be detected in inflamed salivary glands 
(Bombardieri, J Immunol 2007; Hansen, Arthritis Rheum 2002; Salomonsson, Arthritis 
Rheum 2003; Salomonsson and Wahren-Herlenius, Scand J Rheumatol 2003). T cell 
disturbances are also observed. The lymphocytic infiltrates in target organs mainly consist 
of oligoclonally expanded T cells (Sumida, Br J Rheumatol 1997). Further, CD4+ T cell 
lymphopenia is often present in patients with aggressive disease. 
 
Several pro-inflammatory cytokines are overexpressed in pSS. The type I IFNs are 
induced in approximately 70% of the patients (Bave, Arthritis Rheum 2005; Emamian, 
Genes Immun 2009). Also, an accumulation of plasmacytoid DCs is found in inflamed 
tissue, which might explain the high IFN levels (Gottenberg, Proc Natl Acad Sci U S A 
2006). The expression of B cell activating factor (BAFF) is induced by type I IFNs, and 
high levels of BAFF have been observed in pSS patients. Interestingly, transgenic mice 
overexpressing BAFF develop sSS like features with age (Groom, J Clin Invest 2002).  
 
Factors in the epithelium have been associated to disease. The muscarinic receptor, crucial 
for mucus production, is an autoantigen in pSS and the autoantibodies inhibit the function 
of the receptor (Dawson, Arthritis Rheum 2006). Also, disease associated single 
nucleotide polymorphisms (SNPs) are found in the muscarinic receptor 3 coding gene 
CHRM3 (Appel, Ann Rheum Dis 2011). Further, an uneven expression and distribution of 
the fluid-pumping channel Aquaporin 4 has been described in salivary epithelium of pSS 
patients (Steinfeld, Lab Invest 2001), implying pathological defects in target organs. 
 
1.1.4.3 Genetics of pSS 
The heritability has not been properly estimated in pSS. However, in a recent population-
based study in Taiwan the relative risk of disease when having an affected sibling was 
estimated to 15.51 (Kuo, Abstract at ACR conference 2012). Several genetic changes have 
been linked to disease development and the majority is found within or in close proximity 
of genes important in the immune system. The strongest association is found the human 
leukocyte antigen (HLA) region, especially the haplotypes HLA-DRB1*0301, -
DQA1*0501 and -DQB1*0201(Cruz-Tapias, Autoimmun Rev 2012; Papasteriades, J 
Autoimmun 1988). Interestingly, these HLA haplotypes bind linear epitopes of the 
autoantigens Ro52, Ro60 and La, and have been associated to the anti-Ro and -La 
antibody production (Gottenberg, Arthritis Rheum 2003; Reveille, J Immunol 1991; 
Tzioufas, Ann Rheum Dis 2002). So far the only larger genetic study of pSS published is a 
candidate gene study, where disease-associated SNPs were observed in TNPO3 (IRF5), 
TNFSF4 (ox40L), STAT 4, EBF1 and FAM167a-BLK (Nordmark, Genes Immun 2011). 
Currently two independent genome-wide association studies (GWAS) projects are 
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ongoing (Criswell, Abstract at ACR conference 2012; Lessard, Abstract at ACR 
conference 2012). In these studies, the strong HLA association IRF5, BLK and STAT4 
were replicated, as well as an association to IL-12A,.  
 
When interpreting GWAS data one must remember that a disease associated SNP do not 
have to generate impact on genes in the vicinity. Hence, to always interpret a SNP close to 
a gene as a proof that this gene product is altered in the disease is not correct. However, it 
is intriguing that all confirmed SNPs are located in or in the vicinity of immune genes, 
which are primarily involved in pro-inflammatory responses, B cell development and 
activation. Both IRF5 and STAT4 are involved in the induction of pro-inflammatory 
cytokines. The insertion-deletion in IRF5 associated to pSS results in higher transcript 
levels of IRF5 and induction of Th1 and Th17 responses (Krausgruber, Nat Immunol 
2011; Nordmark, Genes Immun 2009) and IL-12 signaling is mediated through STAT4 
activation. Further, the B lymphoid tyrosine kinase BLK is important in propagating BCR 
signaling and the Early B cell factor 1 (EBF1) is essential for lineage commitment during 
B cell development, as well as maintenance of several mature B cell subtypes (Vilagos, J 
Exp Med 2012).  
 
1.1.4.4 Treatment of pSS 
Due to the lack of evidence-based effective disease modulating drugs in SjšgrenÕs 
syndrome, standard management is focused on treating the sicca symptoms with topical 
agents (Ramos-Casals, JAMA 2010). In later years several studies with biological 
treatment have been undertaken. After the failure to modulate disease with anti-TNF 
blockade (Moutsopoulos, Ann Rheum Dis 2008), most effort has been put into B cell 
abrogation. Several small studies with anti-CD20 treatment indicate a reduction of fatigue 
and stimulation salivary flow rate (Dass, Ann Rheum Dis 2008; Meijer, Arthritis Rheum 
2010). Further, small open-label studies have indicated efficacy of both anti-CD22 and 
anti-BAFF treatment (Mariette, Abstract at ACR conference 2012; Steinfeld, Arthritis Res 
Ther 2006). Future will tell if any of these drugs will have enough positive effects in 
randomized controlled trials to balance their potentially severe side effects and high 
monetary cost. 
 
One major difficulty in the management of pSS patients is that many patients have had 
disease symptoms for years before diagnosis. As a consequence, the glandular 
inflammation has persisted for a long time, resulting in fibrosis development already at 
diagnosis. This, in turn, might lead to difficulties in treatment efficacy measured by 
restoration of exocrine gland function.  
 
Chloroquine (CQ) is a disease-modulating drug used in several rheumatic conditions. It 
acts on the endosomal compartment, and thereby inhibits TLR signaling. The mode of 
action has for long been thought to be by increasing the pH in the ensosome, and thereby 
blocking the activity of the acid-dependent TLRs (Fox, Lupus 1996). However, a recent 
study indicates that CQ acts by inhibiting signals by directly binding to endosomal TLRs 
(Kuznik, J Immunol 2011). The effects on the immune system are multiple: CQ reduces 
IFN" and TNF" production in pDCs in vivo (Sacre, Arthritis Res Ther 2012) and 
enhances IL-10 production in peripheral blood mononuclear cells (PBMC) in vitro 
(Hugosson, Scand J Immunol 2002). Further, reduced titers of both IgM and IgG have 
been observed upon CQ treatment in patients with primary SjšgrenÕs syndrome (Kruize, 
Ann Rheum Dis 1993). Chloroquine has repeatedly proven effective in SLE, as it reduces 
flares and reduces long-term effects of lupus (N Engl J Med 1991; Costedoat-Chalumeau, 
Ann Rheum Dis 2013; Wallace, Nat Rev Rheumatol 2012). Several small studies, both 
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retrospective and prospective, have shown efficacy of CQ in pSS (Dawson, Rheumatology 
(Oxford) 2005; Fox, Lupus 1996; Rihl, Rheumatology (Oxford) 2009), however in a 
recent randomized-controlled study no efficacy was observed in the HCQ treated group 
compared to placebo treated 24 weeks after treatment start (Gottenberg, Abstract at ACR 
conference 2012).  
 
1.1.4.5 Lymphoma in rheumatic patients, especially in pSS 
An increased risk of lymphoma is present in several different rheumatic diseases (Dias and 
Isenberg, Nat Rev Rheumatol 2011). Patients with RA are estimated to have a two-fold 
increased risk and SLE patients have a 4.6 fold increased risk compared to the general 
population. However, patients with SjšgrenÕs syndrome display an even greater risk, with 
a relative risk of lymphoma between 6.5 and 15.57 (Theander, Ann Rheum Dis 2006), 

(Ekstrom Smedby, Blood 2008). In a population-based study the relative risk for pSS 
patients of developing diffuse large B cell lymphoma was estimated to 9-fold and the risk 
for paratoid MALT lymphoma was 1000-fold, mainly due to the very low incidence in 
non-rheumatic patients (Ekstrom Smedby, Blood 2008).    
 
Disease activity is associated with lymphoma development in RA and SLE (Baecklund, 
Arthritis Rheum 2006; Bernatsky, Ann Rheum Dis 2013). The high-grade inflammation is 
thought to be associated to the high cell turnover and thereby higher risk for malignant 
clones to develop. A potential correlation to disease activity has not yet been studied in 
pSS, as the first disease activity indexes were published in 2010 (Seror, Ann Rheum Dis 
2010). However, major risk factors for lymphoma are associated to high disease activity, 
such as CD4+ lymphopenia, thrombocytopenic purpura, low C3 levels and germinal center 
formation in salivary glands at diagnosis (Theander, Ann Rheum Dis 2006; Theander, Ann 
Rheum Dis 2011). Neither age at diagnosis, nor immunosuppressive treatment has been 
correlated to the increased risk (Ekstrom Smedby, Blood 2008). In the case of pSS, one 
might however speculate that inherent B cell abnormalities might underlie the increased 
risk, as pSS in most cases is a relatively mild disease compared to RA and SLE. 
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TRIM21 / RO52 

TRIM21 was first recognized in rheumatology, as an autoantigen in pSS and SLE. 
Autoantibodies to the Ro/SSA complex have been known since the late 1960s (Alspaugh 
and Tan, J Clin Invest 1975; Clark, J Immunol 1969; Mattioli and Reichlin, Arthritis 
Rheum 1974). Later, the SSA antigen was observed to consist of two distinct proteins of 
approximately 52 and 60 kDa size, and the proteins were therefore denoted Ro52 and 
Ro60 (Ben-Chetrit, J Exp Med 1988; Wolin and Steitz, Proc Natl Acad Sci U S A 1984). 
Detection of anti-Ro52/ SSA autoantibodies was incorporated in the clinics long before 
the molecular identity of the protein was known. Therefore, the term Ro52 is commonly 
used when discussing autoantibodies. However, the official name for the gene and protein 
is TRIM21, a name based on its sequence, domains and functional properties belonging to 
the TRIM protein family (which will be discussed below). The name TRIM21 will be used 
when discussing the protein in this thesis hereof. When discussing the autoantibodies, anti-
Ro52 will be used.  
 
 
1.1.5 The TRIM protein family  

In 2001 Reymond and co-workers described the novel protein family TRIpartite Motif 
(TRIM) (Reymond, EMBO J 2001). This family, consisting of more than 70 different 
proteins, has a highly conserved N-terminal structure with a RING (Really Interesting 
New Gene) domain, one or two B-box domains, one coiled-coil domain and a variable C-
terminal domain (Borden, FEBS Lett 1993; Reddy, Trends Biochem Sci 1992; Reymond, 
EMBO J 2001). The N-terminal motif contains the enzymatically active site, whereas the 
C-terminal part mediates specificity. The motifs in the C-terminus are most commonly 
PRY or SPRY domains, alone or in combination (also called B30.2) (Grutter, FEBS Lett 
2006).  
 
TRIM genes are highly conserved in evolution and can be found in all vertebrae and even 
in C. elegans and fruit flies, indicating an essential role of this protein family. Humans 
have 72 TRIM genes, and mice 68, which cluster in the genome. A certain degree of 
plasticity within the family has been observed, as structurally similar proteins have been 
shown to compensate for related TRIMs if needed (Yoshimi, J Immunol 2009).  
 
TRIM proteins have been implicated in immune processes and most investigated TRIMs 
have effector functions regulating immune responses. Further, expression is often induced 
by IFNs (Rajsbaum, Eur J Immunol 2008). Interestingly, multiple TRIMs have been 
implicated to modify IFN responses by interacting with NF-3B and TLR signaling, both 
by enhancing and limit processes. TRIM25 promotes RIG-1 signaling, which is up-stream 
of NF-3B activation and type I IFN signaling (Gack, Nature 2007).  Also, TRIM27, 
TRIM28 and TRIM30 act as negative regulators of TRL signaling, by interacting with 
IRFs and NF-kB (Eames, Immunobiology 2012; Shi, Nat Immunol 2008; Zha, J Immunol 
2006). Several TRIM proteins have been uncovered as viral restriction factors, e.g. 
TRIM5, TRIM22, TRIM25 and TRIM28 (Barr, PLoS Pathog 2008; Gack, Nature 2007; 
Stremlau, Nature 2004; Wolf and Goff, Cell 2007).  
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1.1.6 The ubiquitin system  

Regulation of protein concentration, activity and location is of utmost importance for the 
cell. One way of protein regulation is via the ubiquitination system. Ubiquitination is an 
ATP-dependent mechanism whereby cellular processes are regulated by post-translational 
modification (Hershko, Proc Natl Acad Sci U S A 1980). Ubiquitination occurs via 
sequential steps of conjugation of ubiquitin (Ub) to a protein, catalyzed by the activating 
E1 and conjugating E2 enzymes and lastly the ligating E3. The 76 amino acid long 
ubiquitin is attached covalently to a protein (substrate) via ligation to lycine residues 
(Ciechanover, J Biol Chem 1980). Proteins can be either mono- or polyubiquitinated, 
resulting in different effects. For polyubiquitination, the lysine on the Ub used for 
attachment (eg. Lys48 or Lys63) will determine the fate of the protein. A chain of at least 
four UbÕs linked together via Lys48 will mark the protein for proteasomal degradation, the 
major pathway induced upon ubiquitination. Monoubiquitination and polyubiquitination 
via Lys63 will initiate the so-called non-proteolytic pathways, e.g. DNA repair, activation 
of the protein or shuttling between cytoplasm and nucleus. 
 
There is only one E1, approximately 50 E2, and over 600 E3 ligases, and the specificity of 
the reaction is mediated by E2 and E3 binding to the substrate (Zheng, Cell 2000). There 
are two major types of E3 ligases, those utilizing a HECT domain, and those that do not. 
Most E3 ligases belong to the second group and depend on a RING domain (Freemont, 
Cell 1991; Lovering, Proc Natl Acad Sci U S A 1993). RING containing proteins have 
been found all the way from yeast cells to humans, which have 616 potentially expressed 
genes in the genome. All investigated TRIM proteins so far have been demonstrated to be 
RING dependent E3 ligases.  
 
 
 

 
 
 

Figure 3.  The genomic structure of TRIM21. 
The exon/ intron structure of the mouse (top) and human (bottom) TRIM21 genes spans 
approximately 8 kilobases and is conserved between species. 

 
 

1.1.7 TRIM21 

TRIM21/ Ro52 belongs to the TRIM protein family, and has been demonstrated to be a 
RING dependent E3 ligase (Espinosa, J Immunol 2006; Reymond, EMBO J 2001; Wada 
and Kamitani, Biochem Biophys Res Commun 2006). The TRIM21 gene is located on 
chromosome 11 in humans and chromosome 7 in mice (Frank, Am J Hum Genet 1993), in 
a cluster together with TRIM 5, 6, 23 and 34. The gene consists of seven (human) or eight 
(mouse) exons (Fig 2). TRIM21 is an intracellular protein, which can be detected both in 
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cytoplasm and nucleus (Strandberg, J Clin Immunol 2008), and expression has been 
suggested to be ubiquitous (Reymond, EMBO J 2001).   
 
When the work for this thesis was initiated, little was known on the function of TRIM21. 
The potential role of TRIM21 in autoimmunity and lymphomagenesis will therefore be 
reviewed in the discussion. However, already when these studies were initiated, 
overexpression studies implicated TRIM21 in IL-2 and IL-12 production (Ishii, J Immunol 
2003; Kong, J Immunol 2007). Upon the discovery of the E3 ligase activity of TRIM21, 
several substrates have been proposed. Interaction between TRIM21 and the IgG heavy 
chain has been demonstrated repeatedly (Takahata, Mol Immunol 2008; Yang, Scand J 
Immunol 1999; Yang, Mol Immunol 2000). TRIM21 binds IgG with a high affinity, to a 
binding site also utilized by S. aureus protein A and protein G of various Streptococcus 
species (James, Proc Natl Acad Sci U S A 2007; Rhodes and Trowsdale, Mol Immunol 
2007; Yang, Scand J Immunol 1999). This indicates that TRIM21 might be involved in 
the combat against infections, by modulating functions of IgG. TRIM21 has also been 
implicated in viral responses. Expression is induced by type I interferons, influenza virus 
and LPS (Der, Proc Natl Acad Sci U S A 1998; Geiss, Proc Natl Acad Sci U S A 2002; 
Rhodes, Immunology 2002; Strandberg, J Clin Immunol 2008; Thomas, J Biol Chem 
2006). As the work for this thesis was performed, TRIM21 mediated ubiquitination was 
demonstrated in multiple IRFs, i.e. IRF3, 5, 7 and 8 (Espinosa, J Exp Med 2009; Higgs, 
PLoS One 2010; Higgs, J Immunol 2008; Kong, J Immunol 2007). Recently, TRIM21 
was also demonstrated to negatively regulate DDX41, an intracellular sensor of double-
stranded DNA, and upstream activation of type I IFN responses (Zhang, Nat Immunol 
2012). 
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LYMPHOMA  

The constant regulation of cellular proliferation and cell death is a finely tuned 
mechanism, preventing pathological events. In cell types with high turnover, e.g. epithelial 
cells and leukocytes this is of utmost importance. In this section, basic concepts for 
proliferation and cell death will be briefly introduced, followed by an introduction on 
lymphoma pathogenesis.  
 
 
1.1.8 Proliferation and cell death 

Eukaryotic cells multiply by cell division, initiated by the cell entering the cell cycle. 
Resting, non-dividing cells are found in the G0 phase. Upon stimulation, cells go into the 
interphase to prepare for cell division. The interphase is subdivided into three phases. In 
the first G1, diploid cells undergo considerable growth as important proteins for cell 
division are produced, all under tight control of the p53 protein. Thereafter, in the S phase, 
DNA replication commences, and ploid cells are thereafter found in the G2 phase where 
the cytoskeleton is rearranged in preparation for the cell division, the mitosis (the M 
phase). Increased, and uncontrollable proliferation is a key feature in tumorigenesis. In a 
meta-analysis of 40 published microarray data sets, comprising more than 3,700 different 
cancer samples, high proliferation was observed as the most striking common feature, 
when comparing healthy and cancer samples, and also differentiating low and high grade 
tumor samples (Rhodes, Proc Natl Acad Sci U S A 2004).  
  
Cell death occurs either through uncontrolled necrosis or programmed cell-death, via 
apoptosis or autophagy (Hotchkiss, N Engl J Med 2009). Necrosis is a consequence of 
non-physiological processes such as hypoxia, mechanical force or temperature change. 
During necrosis, cells undergo swelling, and later rupture, leading to release of 
intracellular components, which trigger danger-associated receptors, e.g. TLRs. 
Autophagy is a process by which organelles and abnormal intracellular proteins are 
degraded in the lysosome. Under stress and starvation, autophagy is accelerated and can 
result in cell death.  
 
Most cells die via apoptosis, a process characterized by activation of intracellular enzymes 
that initiate degradation of the cell. Early in the process nuclear blebbing is initiated, 
followed by cell shrinkage and DNA condensation and defragmentation. The intracellular 
degradation facilitates removal by other cells, but also recycling of cellular material. Two 
major pathways are involved in apoptotic cell death, the extrinsic and the intrinsic 
pathways. The extrinsic pathway is mediated via extracellular so called death-ligands. 
These are receptors, belonging to the TNF receptor family, and are recognized by their 
cytoplasmic death domain. Two important receptors in immune cells are Fas (CD95) and 
TNFR-I. The intrinsic, or mitochondrial, pathway is induced upon dangerous stimuli such 
as ultra violet irradiation, starvation or cytostatic drugs. Common for both pathways is the 
activation of intracellular enzymes cysteine-aspartic proteases (caspases). When apoptotic 
material is not cleared, secondary necrosis might occur, and thereby expose endogenous 
TLR ligands, such as DNA and RNA.  
 
In a pathological a setting, increased proliferation and, or decreased cell death can result in 
malignancies. 
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1.1.9 Lymphoma 

Two major types of neoplasms can arise in lymphocytes. Leukemias develop from 
immature cells preferentially in the bone marrow or the blood, and lymphomas develop 
from mature lymphocytes in the lymphatics. The focus of this thesis is on lymphomas. 
Healthy individuals have approximately equal amounts of B and T cells. However, more 
than 90% of all hematopoietic malignancies in the western world are B cell derived. Two 
physiological features of B cells have been suggested to drive the predominance of B cell 
neoplasms, as reviewed by KŸppers (Kuppers, Nat Rev Cancer 2005). Repeated gene 
rearrangement with DNA strand breaks during VDJ and class switch recombination and 
somatic hypermutation (SHM) predisposes for genetic translocations of oncogenes to the 
Ig locus. Further, strong BCR activation is a crucial survival signal in normal B cells 
(Kraus, Cell 2004) and it seems like BCR signaling also can drive tumor development. 
Virtually all B cell malignancies express BCR, indicating the importance of this pathway. 
Also, several neoplasms are thought to be antigen-driven, such as Chronic lymphatic 
leukemias, Mucosa associated lymphoid tissue (MALT) and Follicular lymphomas. 
Interestingly, translocations almost always happen in non-productive Ig genes, sparing a 
well-functioning BCR signaling (de Jong, J Exp Med 1989).   
 
Lymphoma, typically presenting as a solid tumor, is a common malignancy and 5.3% of 
all cancers are lymphomas (when excluding squamous cell and basal epithelial skin 
cancer). Lymphoma is a heterogeneous group of malignancies, with about 35 different 
forms. The most common subset is the diffuse large B-cell lymphoma (DLBCL), which 
will be discussed in depth below.  
 
1.1.9.1 Diffuse large B cell lymphoma  
DLBCL is the most common adult lymphoma type, constituting approximately 30% of all 
cases. It is a disease of all ages, but generally affects elderly with a mean age of 70 years at 
diagnosis (Smith, Br J Cancer 2011). Patients with DLBCL usually present with either 
lymphadenopathy without concomitant infection, or with the so-called B symptoms1. 
These are systemic symptoms indicating a high inflammatory activity and cell turnover, 
i.e. fever, night sweats and weight loss. Most DLBCL develop de novo, but other low-
grade lymphomas or leukemias can also transform into DLBCL. Few risk factors are 
known, however immunodeficiency has been associated to an increased risk, often 
coupled to EBV infection (Campo, Blood 2011). Diagnosis is entirely based on 
pathological assessment and the morphology of DLBCL displays large, lymphoblastic 
cells with a diffuse distribution. Cells usually express the B cell markers CD19, CD20, 
CD22 and CD79a. 
 
To assess severity and aggressiveness of the tumor, two clinical disease indexes are 
currently in use alongside the cytomorphic analysis. The Ann Arbor staging was originally 
developed for the Hodgkin lymphomas (Carbone, Cancer Res 1971), but is also used for 
other lymphoma sub-types. The tumor is graded I-IV depending on number of involved 
regions of lymph nodes, Table 3. Since the 1990s, the international prognostic index (IPI) 
has been used to assess disease activity in DLBCL, Table 4 (N Engl J Med 1993). IPI was 
initially developed for CHOP treated DLBCL patients, but has convincingly been 
associated to overall, event- and progression-free survival also in R-CHOP treated patients 
(treatment strategies are explained below) (Ziepert, J Clin Oncol 2010). 
                                                
1 The term ÒB symptomsÓ originates from the Ann Arbor classification, where the presence of 
these symptoms is denoted with a ÒBÓ, as opposed to when they are absent ÒAÓ. See Table 3. 
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Table 3. Ann Arbor classification.  
Patients are classified into stage I-IV, depending on how the disease has spread. All 
stages are also assessed according to; A: no symptoms or B: Fever (>38°C), drenching 
sweats, weight loss (10% body weight over 6 months). E: single extranodal site in the 
proximity of known nodal site 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4. International Prognostic Index (IPI) .  
The IPI utilizes the Ann Arbor classification, but takes other factors in account as well. 
ECOG = Eastern Cooperative Oncology Group, LDH = lactate dehydrogenase. 

 
 

1.1.9.2 Classification of DLBCL  
DLBCL is classified as an aggressive lymphoma, but the disease course is highly variable. 
In recent years sub-classification has emerged, based on cell of origin techniques. Analysis 
of gene expression profiling (GEP) has indicated that DLBCL could be divided into two 
major subsets: the germinal center like (GCB) and the activated B cell like (ABC) 
lymphomas (Alizadeh, Nature 2000). A third and rare form, the primary mediastinal B cell 
lymphoma, has also been suggested. Overall and progression-free survival is significantly 
better in the GCB than in the ABC group (Alizadeh, Nature 2000; Rosenwald, N Engl J 
Med 2002). As GEP analysis is not feasible to perform in clinical practice, effort has been 
put into developing algorithms of immunohistochemical staining patterns, which correlate 
to the subsets (Choi, Clin Cancer Res 2009; Hans, Blood 2004). However, these sub-
classifications are not yet incorporated into routine clinical practice (Campo, Blood 2011).  
 

Ann Arbor Classification  
(adapted from Carbone, Cancer Res 1971) 
  
Stage Feature (involvement of) 
I One lymph node or lymphoid structures 
II  Two or more lymph node regions on the same side of the diaphragm  
III  Lymph regions or structures on both sides of the diaphragm  
IV  Extranodal site(s) beyond that designated E  
 

 

International Prognostic Index  
(adapted from N Engl J Med 329:987-994, 1993 )  
 
Parameter   Adverse factor 
Age   >60 years 
Ann Arbor stage  III or IV  
Serum LDH level  Above normal 
Number of extranodal sites  &2  
Performance status   &ECOG 2 or equivalent 
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1.1.9.3 Pathogenesis 
The development of lymphomas, like other neoplasms, is a process occurring step-by-step. 
All DLBCL  display a clonal pattern, suggesting that the cancer originates from one 
malignified B cell. The presence of somatic hypermutations in variable regions of Ig 
genes, indicative of germinal center reactions and antigen selection pressure, is detected in 
almost all DLBCL tumors (Lossos, Blood 2000). Further, ongoing SMH is apparent is 
GCB lymphomas, but not in the ABC lymphomas, which, bear similarities to 
plasmablasts, cells which are no longer undergoing SMH (Lossos, Proc Natl Acad Sci U S 
A 2000). 
 
Translocation of oncogenes to Ig gene promoters is associated to DLBCL. Translocation 
of the 3q27 locus, which encompasses the BCL6 gene, occurs in 30-40% of all DLBCL 
tumors and point mutations in the BCL6 gene are found in 70% of DLBCL cases 
(Akasaka, Cancer Res 2000; Migliazza, Proc Natl Acad Sci U S A 1995). BCL6 
expression is normally tightly regulated and only induced in the germinal centers, where 
BCL6 blocks the normal transcriptional repression in B cells, and thereby facilitates rapid 
proliferation. Hence, BCL6 overexpression leads to differentiation arrest, increased 
cellular proliferation and survival. This effect is in part mediated by a direct repression of 
the tumor suppressor p53 by BCL6 (Phan and Dalla-Favera, Nature 2004). BCL6 
expression is downregulated following chemotherapy, with subsequent upregulation of 
p53. This has been proposed to underlie the better prognosis observed in GCB, where 
BCL6 translocations often occur (Lossos, Blood 2001). Further, translocation of the 
central transcription factor MYC (t8;14), which is involved several cellular functions 
amongst others proliferation is associated to poor prognosis (Barrans, Clin Cancer Res 
2003; Green, J Clin Oncol 2012). Loss of MHC expression, both class I and II, correlates 
with poor survival. In a small study, MHC downregulation was observed to associate to a 
low level of CD8+ cytotoxic T cell infiltration (Rimsza, Blood 2004), and a weak host 
immune response could explain the poor survival. 
 
Some pathological changes are associated to only one sub-group of DLBCL. 
Translocation of the anti-apoptotic BCL2 to the IgH locus, t(14; 18), inducing constitutive 
expression of BCL2 are associated to the GCB subtype (Iqbal, J Clin Oncol 2006). Patients 
belonging to the ABC group display an up-regulated NF-kB pathway. In approximately 
40% of ABC lymphomas mutations in MyD88 occur. Interestingly, many of the tumors 
with MyD88 polymorphisms also have mutations leading to activation of BCR pathway, 
and the innate and BCR pathways might potentiate each other (Ngo, Nature 2011). Most 
ABC lymphomas with MyD88 alterations have a gain-ofÐfunction mutation in the TIR 
domain, resulting in spontaneous complex-formation with IRAK1 and IRAK4, resulting in 
enhanced NF-kB signaling (Ding, Blood 2008; Lam, Blood 2008). Constitutive NF-kB 
activation confers a resistance to both chemotherapy and ionizing irradiation (Wang, Nat 
Med 1999). In the primary mediastinal subset amplifications of the JAK2 gene, together 
with a constitutive activation of STAT6 and IL-4/ IL-13 signaling are associated to disease 
(Guiter, Blood 2004).  

 
1.1.9.4 Treatment 
The fundament for DLBCL treatment is chemotherapy. First hand choice is the 
combination of cyclophosphamide, vincristine, doxorubicin and prednisone, the CHOP 
regimen (Fisher, N Engl J Med 1993; Miller, N Engl J Med 1998). Since the early 2000s 
patients have been treated with CHOP together with the monoclonal antibody rituximab, 
targeting the CD20 molecule (Miller, Semin Hematol 2006; Pfreundschuh, Lancet Oncol 
2006). As CD20 is expressed on all mature B cells, apart from plasma cells and 
plasmablasts, this effectively targets the malignant cell. This addition to the treatment 
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regimen has dramatically increased both overall and progression-free survival in DLBCL 
patients. 
 
Despite major improvements in outcomes of DLBCL, about one third of patients will 
relapse or develop a refractory disease (Sehn, J Clin Oncol 2005). Patients who fail first-
line therapy may be categorized into three distinct groups: those relapsing after complete 
remission, partial responders with persistent disease, and refractory patients. Between 
these patients, the relapse group has the best prognosis, and for these patients best outcome 
is reached when treated with autologous stem cell therapy (Philip, N Engl J Med 1995). 
 
Emerging data indicate the importance in cell of origin classification at diagnosis. 
Addition of the proteasome inhibitor Bortezomib to conventional chemotherapy in patients 
with relapsing disease has proven beneficial in the ABC group, but conversely 
disadvantageous in the GCB group, where the additions of Rituximab is advantageous 
(Dunleavy, Blood 2009). The ABC group is thought to be sensitive to proteasomal 
inhibition, due to the constitutively upregulated NF-3B pathway, a process maintained by 
constant degradation of inhibitory proteins.  
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2 AIMS OF THE THESIS 

 
SjšgrenÕs syndrome (pSS) is an autoimmune disease of unknown etiology. Several B cell 
abnormalities have been implicated in the pathogenesis. Hypergammaglobulinemia is 
observed in approximately 50% of the patients and more than two thirds have 
autoantibodies to the Ro and La antigens. Further, pSS patients have a markedly increased 
risk of developing B cell lymphomas. The major autoantigen in pSS is Ro52/TRIM21 and 
when this thesis was initiated the function of Ro52/TRIM21 was not known. 
 
The overall aim of this thesis was to study the immune dysregulation and pathogenesis in 
SjšgrenÕs syndrome, with a focus on B cells and the function of Ro52/TRIM21.  
 
The specific aims of the thesis were: 
 

- To delineate the B cell abnormalities underlying primary SjšgrenÕs syndrome, 
and more specifically the mechanisms underlying hypergammaglobulinemia. 
 

- To investigate the effect of vaccination in autoimmune patients in whom the 
immune system was not affected by immunomodulatory drugs. 

 
- To define the biochemical function of TRIM21 and it's tissue distribution. 

 
- To understand the role of TRIM21 in inflammation and autoimmunity. 

 
- To elucidate the cellular role of TRIM21 in proliferation and apoptosis, both 

under normal conditions and in lymphomas. 
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3 METHODS 

In the following section the main features of methods used will be described. Detailed 
description is found in each included paper. 
 
 
3.1.1 Patients (papers I, II and V) 

Clinical material was studied in three papers. In study I, II and V serum and/ or PBMC 
from autoantibody positive pSS and SLE patients and healthy controls were analyzed. 
PBMC were purified by Ficoll separation. Serum was stored in -70 C until further 
analysis. In study I subjects were vaccinated twice, three weeks apart with the H1N1 
influenza vaccine Pandemrix (GlaxoSmithKline) and sampled five times.  
 
In study V lymphoma biopsies from patients with DLBCL were included. All biopsies 
were reassessed by at least two independent pathologists according to the 2001 WHO 
classification (Campo, Blood 2011) before inclusion. In the group of rheumatic patients 
with lymphoma, the rheumatic diagnosis was confirmed by reviewing hospital charts. 

 
 

3.1.2 Mice (papers III and IV) 

TRIM21 knock-out GFP knock-in mice were generated by deleting exons 6-8 and parts of 
exon 5 and inserting a internal ribosome entry site (IRES) -green fluorescent protein 
(GFP) reporter cassette in C57Bl/6 embryonic stem cells. Mice were bread on a B6 
background. TRIM21-/- and p19-/- mice were intercrossed, to generate double knock-out 
mice.  
 
A delayed type hypersensitivity model was developed. Repeated sensitization with 0.3% 
oxasolone solutions on shaved back-skin and subsequent challenge with 0.1% oxasolone 
solutions on the ear was performed. Increased ear thickness, measured by comparing 
treated to untreated and vehicle treated ears, was analyzed. 
 
 
3.1.3 In vitro experiments (paper I-V) 

In vitro experiments were performed on primary cells, both murine and human, and 
transfected cell lines. 
 
3.1.3.1 Class switch recombination assays (paper I) 
FACS sorted human IgD+ B cells were stimulated with BAFF, anti-CD40, CpG or 
Imiquimod, all supplemented with IL-10, and cultured in duplicates for 8 days. Samples 
were analyzed by flow cytometry. IgG and IgM concentrations were determined in 
supernatants by ELISA. 
 
3.1.3.2 A20 transfection experiments (paper II) 
A20 cells were stably transfected with TRIM21-GFP, TRIM21-'RING -GFP, or empty 
vector containing only GFP, and kept under high selection pressure with G418. After 3-4 
weeks of selection, GFP positive cells were single sorted by flow cytometry, and thereafter 
expanded. Proliferation was measured by colony-forming assays and 3H-thymidin 
incorporation assays in CD40 stimulated and unstimulated cells. Activation-induced cell 
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death was measured by Propidium Iodide (PI) incorporation in the CD40 stimulated cells, 
and quantified by flow cytometry. A propidium exclusion assay was performed to assess 
cell death by decreased concentration of G418. 
 
3.1.3.3 Ubiquitination assays (paper II and III) 
Ubiquitination assays were performed both in vivo and in vitro. In the in vivo 
ubiqiutination assay, HEK 293T cells were transfected with FLAG tagged TRIM21 or 
TRIM21-'RING and 6xHis tagged ubiquitin. After 42 h of culture proteasome inhibitor 
was added to the culture and 6 h later, cells were lysed. His-tagged proteins were purified 
on a Ni-resin. Proteins were thereafter separated by SDS-PAGE followed by 
immunoblotting with an anti-FLAG antibody. In the in vitro ubiquitination assay purified 
His6-TRIM21 was mixed with E1, ubiquitin and different E2s in a buffer containing ATP 
and MgCl2 (paper II). After incubating at 25¡C for 1 h the reactions were stopped and the 
proteinswere separated by SDS-PAGE followed by immunoblotting against ubiquitin. 
 
3.1.3.4 Luciferase assay (paper III) 
293T cells were transfected with vectors containing TRIM21, GAL4 tagged IRF, TLR 3 
or 9 and Renilla. Cells were cultured for 16 h after stimulation, and Renilla luminescence 
was thereafter measured. 
 
3.1.3.5 Bone marrow-derived macrophages (BMDM) (paper IV) 
Bone-marrow derived macrophages were differentiated by culturing monocytes from 
TRIM21-/- and +/+ bone marrow with 10% L929 cell supernatant containing M-CSF. 
 
3.1.3.6 Pokeweed-mitogen (PWM) stimulation of PBMC (paper V) 
Freshly isolated PBMC from healthy donors were stimulated with PWM for five days. 
Proliferation was subsequently assessed by 3H-thymidin incorporation assays and cell 
cycle phase was determined by flow cytometry by staining cells with PI. TRIM21 
expression levels were determined by quantitative real-time PCR (see below).  
 
 
3.1.4 ELISA and Hemaggultinin assay (papers I and III) 

In this thesis antibody and cytokine concentrations were analyzed in serum, plasma and 
cell culture supernatants by ELISA. All samples were run in duplicates and compared to 
standard curves. In the hemagglutinin assay, the neutralizing capacity of antibodies was 
measured by mixing serum with influenza virus and sheep red blood cells. Clotting of the 
red blood cells indicated a positive reaction, and the lowest serum concentration where 
clotting still occurred was assessed.  
 
   
3.1.5 Multiplex assay (paper I) 

Bead-based multiplex assays are efficient ways of quantifying several protein 
concentrations simultaneously in a small volume of sample. In this study a Luminex assay 
was performed to quantify cytokine concentrations in serum.  
 
 
3.1.6 ELISPOT (paper I) 

The enzyme-linked immunospot assay (ELISPOT) was used to quantify total 
immunoglobulin secreting, as well as H1N1 specific, B cells. Plates were coated with anti-
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IgG and anti-IgM antibodies, as well as H1N1 vaccine and incubated over night with 
freshly isolated PBMC. 
 
 
3.1.7 Immunohistochemistry and immunocytochemistry (papers II, III and V) 

Immunocytochemistry was used for analysis of intracellular TRIM21 localization in study 
II. Further, in study III GFP expression was investigated by immunohistochemistry in 
formalin-fixed, paraffin embedded murine organs. Glomerulonephritis was detected by 
immunofluorescence and electron microscopy and the occurrence of anti-nuclear 
antibodies (ANA) was assessed with Hep-2 cells. 
 
Formalin-fixed, paraffin embedded lymphoma biopsies were retrieved from pathology 
departments and tissue microarrays were constructed prior to staining in study V. TRIM21 
expression was detected with two antibodies, recognizing different epitopes of the protein. 
Staining was analyzed in a blinded manner, both manually and by computerized image 
analysis. 
 
 
3.1.8 Flow cytometry (papers I-III and V) 

Human PBMC, as well as cells from murine spleens, lymph nodes and bone marrow were 
analyzed by flow cytometry. Both extracellular and intracellular stainings were performed. 
For intracellular cytokine staining cells were first cultured for 4 hours with PMA and 
Ionomycin to activate the cells and Golgi stop (Brefeldin A), to inhibit cytokine release. 
Cells were subsequently stained for cell surface markers, fixed, permeabilized and 
intracellular stainings were performed.  
 
Multicolor flow cytometry can generate much data but there are technical pitfalls and a 
well-performed analysis is of utmost importance. First, compensation and adjustment of 
voltage was performed, to minimize leakage between channels. Before analysis, doublets 
and dead and dying cells were gated away. To minimize unspecific binding cells were pre-
treated with an Fc receptor-blocking agent prior to staining.  
 
 
3.1.9 mRNA expression analysis (papers I-V) 

Quantification of mRNA concentrations was performed by real-time quantitative PCR 
(qPCR) and microarray analysis. For qPCR, mRNA was extracted and reversely 
transcribed to complimentary DNA (cDNA), which was amplified and quantified Òreal-
timeÓ in a PCR reaction utilizing the fluorescent dye SYBR green. Normalization was 
performed by comparing expression values to the housekeeping genes GAPDH and 
HPRT.  
 
VH spectratyping was performed by PCR on cDNA from PBMC from subjects in study I. 
By using a common primer in the JH region and different primers for different VH 
families, the distribution of the size of the CDR3 region was assessed. 
 
Chip-based microarray analyses, utilizing hybridization techniques to quantify the 
transcriptome, were performed in PBMC with the Human Exon Array 1.0 and in murine 
cells on the Gene Chip 1.0 ST (both Affymetrix). Data was normalized using robust multi-
array analysis (RMA), utilizing light intensity comparisons inter- and intra-chip.  
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3.1.10 Statistical analysis (papers I-V) 

Comparison of two unpaired groups was analyzed by non-parametric Mann-Whitney U 
test. Repeated samples were analyzed using an ANOVA mixed model. Comparison of 
frequencies in groups was calculated using FischerÕs exact test. Correlations were 
calculated using linear regression. Survival analyses were performed with the Kaplan-
Meier method using log-rank tests for significance testing. ROC analysis was performed 
using the Cox proportional hazards regression model. Microarray samples were processed 
according to the RMA algorithm, including an inter-array normalization step and log2 
transformation. Post-test correction for multiple testing was performed. Differences with a 
p value less than 0.05 was considered statistically significant. Analysis was performed 
with Prism Graph Pad or R.  
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4 RESULTS AND DISCUSSION  
PRIMARY SJ…GRENÕS SYNDROME 

4.1.1 Hyperreactive B cell compartment underlying pSS pathology  

Primary SjšgrenÕs syndrome is a systemic autoimmune disease of unknown etiology 
(Jonsson, Immunol Lett 2011). Patients are often untreated, due to a combination of a 
relatively mild disease course and few evidence-based treatments (Ramos-Casals, JAMA 
2010), which allows for studies of an unmanipulated immune system in autoimmune 
patients. In paper I we analyzed immune responses in untreated Sjšgrens patients and 
compared to healthy persons. Autoantibody positive pSS patients and age and gender 
matched healthy controls were recruited. Subjects were vaccinated twice with an H1N1 
influenza vaccine, and thereafter monitored by multiple blood sampling (Paper I, Fig 1a). 
Samples were analyzed for antibody titers, cytokine concentrations, lymphocyte 
phenotype, vaccine reactivity and gene expression. 
 
Previous studies have demonstrated weaker protective effect upon vaccination in 
autoimmune patients compared to healthy (Saad, Ann Rheum Dis 2011; Urowitz, Arthritis 
Care Res (Hoboken) 2011). In this study, all included subjects developed sufficient 
protective immunity, assessed by hemagglutinin assay (Paper I, Suppl Fig 1b). However, 
patients developed significantly higher H1N1 IgG titers. Vaccination further induced 
higher level of total IgG, activated B cells measured by HLA-DR expression, circulating 
IgG producing cells, and CD138+ plasmablasts in pSS patients (Paper I, Fig 1 and 2). This 
activation of IgG producing cells was not accompanied by higher induction of either IgM 
or IgA antibody titers or IgM producing cells (Paper I, Fig 1 Suppl fig 1). The discrepancy 
between previously published observations on protective immunity in autoimmune 
patients and our study could be explained by the fact that the pSS patients were untreated, 
and most reports have studied patients treated with immunosuppressants (Saad, Ann 
Rheum Dis 2011; Urowitz, Arthritis Care Res (Hoboken) 2011).  
 
Systemic inflammation, with upregulated expression of the pro-inflammatory cytokines 
INF", TNF"  and BAFF is a well-known feature of SjšgrenÕs syndrome(Jonsson, 
Immunol Lett 2011). We could confirm that these cytokines were elevated also in this 
study (Paper I, Fig 3). Further, IL-10, IL-6 and IL-7 were significantly stronger induced 
upon influenza vaccination in patients, compared to controls. None of the hallmark T 
helper cytokines IFN#, IL-4 or IL-17 were upregulated, indicating that the effects induced 
by vaccination did not primarily affect the T cell compartment. Notably, the majority of 
the upregulated cytokines have been implicated in B cell maturation. INF" has been 
observed to drive plasma cell differentiation together with IL-6 (Jego, Immunity 2003). 
BAFF is crucial in B cell development (Schneider, J Exp Med 1999), as observed in 
genetically modified mice, where BAFF deficiency results in an inability for mature B 
cells to develop, and BAFF overexpression results in systemic autoimmunity (Groom, J 
Clin Invest 2002; Schiemann, Science 2001). Both IL-10 and IL-6 are important B cell 
survival factor and induce class switch recombination (CSR) (Cerutti, J Immunol 1998; 
Fujieda, Mol Immunol 1996). IL-7 plays a central role in murine B cell development, and 
has been implicated also in human B cell development (Kikuchi, J Exp Med 2005).  
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Figure 4. B cell hyperreactivity in primary SjšgrenÕs syndrome.  
Anti-H1N1 IgG antibody titers in serum were significantly higher in pSS patients 
compared to healthy controls upon vaccination and boosting with an H1N1 influenza 
vaccine (A). Normalized autoantibody titers in pSS patients following influenza 
vaccination display significantly elevated titers of anti-Ro52, Ro60 and La (B). CD138 
expression on B cells from pSS patients or healthy, cultured for 8 days with anti-CD40, 
CpG or Imiquimod together with IL10. Cells from patients develop significantly higher 
levels of plasmablasts upon TLR7 and 9 stimulation, compared to cells from healthy. 
 
 
4.1.2 Accelerated B cell maturation upon endosomal activation  

We hypothesized that the induction of the IgG compartment observed in patients upon 
vaccination in paper I either could be due to clonal expansion or enhanced maturation by 
B cell class switch and plasma cell differentiation. Clonally skewed B cells have 
previously been reported in salivary glands, but not in peripheral blood in pSS (Jacobi, 
Arthritis Res 2002; Jacobi, Ann Rheum Dis 2001). A potential clonal expansion was 
investigated by VH spectratyping (Paper I, Suppl Fig 4). We did not detect any differences 
in CDR3 distribution between patients and controls, which therefore prompted us to 
investigate a potential enhanced B cell maturation.  
 
Freshly prepared IgD+ B cells from untreated patients and healthy controls were sorted by 
flow cytometry and subsequently cultured for eight days with anti-CD40, BAFF, 
Imiquimod or CpG, all supplemented with IL-10 (Paper I, Fig 5). Significantly more class 
switched cells and plasmablasts were detected in cultures from patients upon TLR7 and 9 
stimulations, detected by elevated IgM and IgG titers in culture supernatant and increased 
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CD138 surface expression in cells. No statistical difference was observed in anti-CD40 
and BAFF stimulated cultures between patient and healthy control derived cultures. 
 
Different chloroquine derivates (CQ) are commonly used in treatment of pSS are (Ramos-
Casals, JAMA 2010). Chloroquines have been described to inhibit endosomal nucleic acid 
binding TLRs in human PBMC in vitro and thereby inhibit TLR function (Kuznik, J 
Immunol 2011). Further, CQ treatment reduces both IgM and IgG antibody titers in 
primary SjšgrenÕs syndrome patients (Kruize, Ann Rheum Dis 1993). We hypothesized 
that CQ might act directly on B cells and thereby reduce class switch induction (Paper I, 
Fig 6). CSR was first studied in na•ve B cells from healthy donors. Cells were treated with 
physiological concentrations of CQ in vitro. Indeed, CQ treatment significantly reduced 
class switch and plasmacell differentiation in CpG and Imiquimod treated cells. Control 
cells, cultured in medium only or medium with IL-10 were unaffected by the CQ 
treatment. This indicates that the effect in the CpG and Imiquimod treated cells was due to 
direct endosomal action of the drug. Finally, CSR and plasmacell differentiation was 
studied in pSS patients treated with hydroxychloroquine or chloroquine. The class switch 
induction observed in CQ treated patients was significantly reduced compared to untreated 
primary SjšgrenÕs syndrome patients.  In conclusion, we could show that B cells from 
patients with pSS are sensitive to TLR7 and 9 stimulation and that this phenomenon could 
be abrogated by chloroquine treatment. 
  
 
4.1.3 Type I interferons are induced in pSS  

Type I interferons (IFN" and IFN!) are pro-inflammatory cytokines induced upon 
infection, typically in response to viral infections. The so-called type I interferon-
signature, characterized by overexpression of multiple interferon-inducible genes, is 
observed in 50-70% of patients with pSS or SLE (Baechler, Proc Natl Acad Sci U S A 
2003; Gottenberg, Proc Natl Acad Sci U S A 2006). Confirming pervious results, a type I 
IFN signature was detected in na•ve pSS patients (Paper I, Fig 4). Interestingly, influenza 
vaccination triggered an even stronger type 1 IFN response in patients compared to 
controls. The strongest induction was observed in the transcription factor IRF7.  
 
Endosomal TLRs have repeatedly been associated to systemic autoimmunity. TLR7 
deficiency results in amelioration of disease progression in lupus-prone mice and Tlr7 
duplication in mice leads to spontaneous lupus-like disease development (Christensen, 
Immunity 2006; Pisitkun, Science 2006) Anti-DNA antibody titers are reduced in Tlr9-/- 
lupus prone mice, but disease activity is unaffected (Christensen, Immunity 2006). 
Further, Concomitant BCR and TRL9 activation has been observed to induce high 
autoantibody titers (Leadbetter, Nature 2002). Alterations in endosomal TLR molecules 
have not been observed in pSS, however an insertion-deletion in the downstream 
transcription factor IRF5 has been associated to SjšgrenÕs syndrome (Nordmark, Genes 
Immun 2009). This results in higher expression levels of IRF5 and thereby induction of 
Th1 and Th17 responses (Krausgruber, Nat Immunol 2011). 
 
The factors underlying the high levels of type I IFNs in pSS are not known. However, 
impaired clearances of apoptotic cells have been observed, which could lead to immune 
complex formation (Bolstad, Arthritis Rheum 2003). Circulating immune complexes, 
typically found in SLE patients, have been demonstrated to activate pDCs and thereby 
induce type I IFN production. The antibody-containing immune complexes will be 
engulfed mediated by Fc#-receptors, and then transferred to the endosomal compartment, 
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where DNA from apoptotic material can trigger TLR9 and thereby activate pDCs (Barrat, 
J Exp Med 2005; Boule, J Exp Med 2004; Means, J Clin Invest 2005). 

 
  
4.1.4 Vaccination and autoimmunity 

Vaccination in autoimmune patients has proven to be safe, in terms of worsening of the 
underlying disease with for example flares (Saad, Ann Rheum Dis 2011; Urowitz, 
Arthritis Care Res (Hoboken) 2011). In our vaccination study (Paper I), subjects were 
followed by clinical questionnaires concerning symptoms of flares and vaccine side effects 
as well as routine blood sampling. No signs of flares were detected, either by subjective 
assessment via the questionnaires or in the routine lab tests, including CRP and blood 
count (data not shown).  
 
Despite no apparent clinical bouts, we observed a significant increase of anti-SSA and 
SSB titers in primary Sjšgren patients (Paper I, Fig 1d). Also other immunoreactivites, 
such as EBV and tetanus specific IgG were induced upon the influenza vaccination in 
patients, but not in healthy controls. Seemingly, the plasma cells in the patients were more 
sensitive to immune activation. It is intriguing that such mild trigger as a vaccination 
induces a significant titer increase of a broad spectrum of specificities. An open question is 
whether the titers stay at the novel increased level or whether they eventually subside and 
if so, when this occurs. This opens up for a possible role for infections in propagating and 
maintaining autoimmune responses, by non-specific activation of plasma cells with 
previously formed autoantigenic specificity. Hypothetically, the HLA epitopes might 
confer disease specificity in autoimmune disease, where autoreactive clones are 
propagated by TLR stimulation together with an underlying genetic susceptibility to 
produce vigorous immune responses. 
 
Interestingly, the swine flu vaccination has been associated to the autoimmune disease 
narcolepsy in adolescence (Aran, Sleep 2009; Zarocostas, BMJ 2011). Narcolepsy is sleep 
disorder of unknown etiology where the neurons producing the wake regulatory hormone 
hypocretin are destroyed and patients consequently suffer from extreme sleepiness and 
sleep attacks. A link between the vaccination and narcolepsy is not clear but the H1N1 
virus itself displays neurotrophism. In the last H1N1 influenza pandemic in 1918/ 1919, 
both Parkinsonism and encephalitis lethargica were observed in patients (Foley, J Neural 
Transm 2009). Narcolepsy is tightly related to HLA- DQA1*01:02/DQB1*06:0 and 
certain TCR" variants (Hallmayer, Nat Genet 2009), indicating that genetic predisposition 
is important in disease development. Primary SjšgrenÕs syndrome is associated to another 
HLA type, which may have contributed to protect the patients from narcolepsy. However, 
supporting the hypothesis that infections might propagate and perpetuate autoimmune 
reactions, a seasonal variance has been observed in narcolepsy, where the highest 
incidence is found during influenza season (Han, Ann Neurol 2011). 
 
 
TRIM21 FUNCTION AND EXPRESSION PATTERN 

4.1.5 TRIM21 is an E3 ligase. 

When the studies in this thesis were initiated, little was known on the cellular function of 
TRIM21/ Ro52. The protein domain organization, consisting of a RING-finger and a B-
box, a coiled-coil stretch and a B30.2-domain, has however been known since early 1990s 
(Ben-Chetrit, J Exp Med 1988; Chan, J Clin Invest 1991; Itoh, J Clin Invest 1991). Based 
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on protein sequence, Reymond and co-workers described the whole tripartite-motif 
(TRIM) family in 2001, and what was previously known as Ro52 was then denoted 
TRIM21 (Reymond, EMBO J 2001). As most RING containing proteins are E3 ligases 
(Freemont, Cell 1991), we hypothesized that TRIM21 also would have E3 ligase acivity, 
and addressing this question was one of the major aims in paper II . Shortly before this 
paper was published, the E3 ligase activity of TRIM21 was shown by another group 
(Wada and Kamitani, Biochem Biophys Res Commun 2006). Our study however added 
data on confinement of the E3 ligase activity to the RING domain, and the cellular 
function of the RING dependent E3 ligase. 
 
A well-known phenomenon of E3 ligases, is that they can perform autoubiquitination, 
whereby E3 ligases modify themselves by adding ubiquitin. Further, in autoubiquitination 
experiments a proteinÕs potential E3 ligase activity can be tested, although no substrates 
are known. To investigate whether TRIM21 is an E3 ligase both in vivo and in vitro 
ubiquitination experiments were performed (Paper II, Fig 2). First, TRIM21 was shown 
autoubiquitinate in an in vivo ubiquitination assay. When using mutated protein without 
the RING domain (denoted Ro52 'RING), no autoubiquitination occurred, indicating that 
the process is dependent on the RING domain. Further, autoubiquitination could also be 
observed in in vitro experiments.  
 

 
 
Figure 5. TRIM21 is an E3 ligase induced by interferons. 
In transfection experiments with FLAG tagged Ro52 (TRIM21) or Ro52-ΔRING, TRIM21 
was observed to be an E3 ligase mediating its activity via the RING domain (A). GFP MFI 
was measured in spleoncytes from TRIM21 -/- IRES-GFP mice. GFP expression was 
induced upon IFNα, IFNβ and IFNγ stimulation, indicating that also TRIM21 expression 
is induced by interferons. 
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4.1.6 TRIM21 is expressed in hematological cells  

By studying the expression pattern of a protein, useful information to understand the 
function can be provided. TRIM21 expression has previously been reported to be 
ubiquitous (Itoh, Arthritis Rheum 1990; Reymond, EMBO J 2001), as detected by in situ 
hybridization in tissue or by western blot. We generated TRIM21 deficient mice with an 
internal ribosome entry site (IRES) -green fluorescent protein (GFP) reporter cassette 
inserted in the disrupted gene. By using GFP expression as a surrogate marker for 
TRIM21, expression could be detected by both immunohistochemistry and flow cytometry 
(Paper III ).  
 
TRIM21 expression was predominantly found in leucocytes, and little or no expression 
was detected in non-lymphoid tissues, with weak expression in vascular endothelium 
(Paper III, Fig 1 and Suppl Fig 1). The GFP expression profile observed in mice was 
confirmed by publicly available gene expression data in both human and mice 
(http://biogps.org). The conflicting findings between the previously reported data the 
expression observed in TRIM21-/- mice might be explained in at least three ways. One 
possibility is that TRIM21 expression could be inducible in all cell types, but that such 
conditions were not examined in paper III. TRIM21 induction in tissue, which is negative 
in steady state, has for example been demonstrated in skin during inflammation (Oke, J 
Invest Dermatol 2009). Another possibility is that in previous studies, when western blot 
was performed on homogenized tissue, samples could have been contaminated by vascular 
endothelium and/ or immune cells, known to express TRIM21. Thirdly, antibody based 
techniques for detecting expression can be misleading, due to cross-reactivity. As the 
TRIM proteins are structurally related, detection of other TRIMs could occur, when 
analyzing a specific protein expression.  
 
TRIM21 expression was analyzed in leucocyte subsets in both humans and mice (Paper II 
and III ). In the murine studies highest expression of GFP was detected in CD8+ T cells 
and granulocytes, whereas B cells expressed lower levels than other lymphocytes (Paper 
III, Fig 1). Conversely, in human PBMC the highest TRIM21 expression levels were 
found in B cells (Paper II, Fig 1). These differences could partly be explained by the 
different detection methods used. In humans mRNA concentrations were measured by 
qPCR and mean fluorescence intensity of GFP was used to estimate TRIM21 expression 
in murine cells. As GFP structurally is not similar to any other protein in the eukaryote cell 
it will be inert and might therefore remain in the cell longer than TRIM21 would. The 
difference could also be due to a poor correlation between mRNA and protein levels. 
Lastly, there can of course be differences in expression in different species.  

 
 
4.1.7 Type I interferons regulate TRIM21 expression  

Many TRIM proteins are induced by both type 1 and 2 interferons, LPS and multiple 
viruses (Der, Proc Natl Acad Sci U S A 1998; Geiss, Proc Natl Acad Sci U S A 2002; 
Rhodes, Immunology 2002; Thomas, J Biol Chem 2006; Zimmerer, Cancer Immunol 
Immunother 2007). We have previously demonstrated that TRIM21 expression is 
induced in vitro upon INF" and viral stimulation (Strandberg, J Clin Immunol 2008).  
 
TRIM21 expression was investigated in PBMC from pSS and SLE patients, and healthy 
controls and expression was elevated in the majority of the patients (Paper II, Fig 1). 
We hypothesized that this induction was due to increased levels of type I IFNs in the 
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patients. To assess this hypothesis, we once again made use of the mouse model with the 
GFP gene inserted under the TRIM21 promoter (Paper III ). Indeed, INF", ! and # all 
induced TRIM21 expression, whereas neither TNF" nor TGF! did (Paper III, Fig 1). 
Induction of TRIM21 mRNA upon type I IFN stimulation suggests a direct effect on the 
promoter downstream of IFN signaling. Interferon-stimulated response elements (ISRE) 
have been reported in other TRIM proteins (Asaoka, Biochem Biophys Res Commun 
2005), and bioinformatics analysis has revealed a putative ISRE site also in the promoter 
region of the TRIM21 gene (data not shown).   

 
 

TRIM21 IN INFLAMMATI ON 

4.1.8 Interferon regulatory factors are regulated by TRIM21  

To study the role of TRIM21 in vivo we used our TRIM21-/- mouse in paper III . Based on 
our observations that TRIM21 is primarily expressed in leucocytes and induced by type I 
and type II IFNs, we hypothesized that, if any, phenotypic changes would be observed in 
the immune system. Mice were born at a Mendelian ratio, and developed normally. 
Further, lymphoid organs displayed normal architecture and composition, indicating that 
the presence of TRIM21 is not crucial in the development of the immune system.  
 
Metal ear clipping, a frequently used technique that normally induces a mild transient 
swelling and erythema, was initially applied to identify mice. In the TRIM21 deficient 
mice however, the inflammation did not seize, but rather progressed. A dermatitis evolved 
and in some cases spread over the back skin until the tag was either ripped off or mice had 
to be sacrificed due to the severity of the disease. At 25 weeks after ear tagging, >90% of 
the TRIM21-/- had developed dermatitis. In an analysis of the inflamed tissue an epidermal 
hyperplasia and inflammatory infiltrates, mainly consisting of neutrophils were observed. 
The local inflammation was accompanied by generalized lymphocyte activation, 
lymphadenopathy and splenomegaly. Cells of spleen and lymph nodes expressed high 
levels of several pro-inflammatory cytokines important in Th17-differentiation such as, 
IL-6, IL-12p40, IL-21 and IL-17. Interestingly, neither IFN#, IL-12p70 nor IL-4 were 
induced. These features were replicated in an oxasolone-induced delayed type 
hypersensitivity (DTH) reaction in non-tagged mice. Further, in mice lacking both 
TRIM21 and p19, an IL-23 subunit crucial for IL-17 induction, the dermatitis was 
completely abrogated.  
 
Following the dermatitis, ear-tagged mice developed signs of systemic inflammation with 
elevated IgG titers, anti-nuclear antibody production and glomerulonephritis. The 
uncontrolled immune reaction in the sick mice made us hypothesize that TRIM21 acts as a 
negative regulator of immune reactions. Indeed, while we were analyzing the mice, 
TRIM21 was reported to polyubiquitinate IRF3 and IRF8 (Higgs, J Immunol 2008; Kong, 
J Immunol 2007). We could confirm these findings, and could also show that IRF5 is a 
target for TRIM21 mediated ubiquitination. These IRFs are transcription factors that have 
been shown to induce pro-inflammatory cytokine production (Giese, J Exp Med 1997; 
Sakaguchi, Biochem Biophys Res Commun 2003; Sato, Immunity 2000; Takaoka, Nature 
2005). To confirm our findings, we stimulated splenocytes from na•ve TRIM21-/- and +/+ 

mice with TLR7 and 9 agonists. Indeed, the knock-out cells produced significantly more 
of the pro-inflammatory cytokines IL-6, IL12-p40, IL23-p19, IFN" and IFN!. Finally, the 
functional role of TRIM21 on IRF3 and 5 was analyzed in a luciferase based 
transcriptional activity assay. Co-transfection of TRIM21 and either IRF3 or IRF5 in TLR 
stimulated cells exhibited a reduced IRF-induced transcription. TRIM21 has been reported 
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to localize in both cytoplasm and in the nucleus and interect with different E2 enzymes in 
the different cellular compartments (Espinosa, J Biol Chem 2011; Strandberg, J Clin 
Immunol 2008). The protein can also shuttle between the compartments. Upon IFN" 
stimulation, TRIM21 localizes to the nucleus. Hyopthetically, this is where TRIM21 
interacts with the interferon regulatory factors. 
 
In conclusion, our data show that TRIM21 acts as a negative regulator of several 
interferon regulatory factors. Since TRIM21 expression is induced downstream of 
interferon stimulation, we conclude that the cellular role of TRIM21 is to act as negative 
feedback in interferon-mediated immune responses. 
 

 
 
Figure 6. TRIM21 deficiency results in uncontrolled inflammation. 
TRIM21 -/- mice tagged with a metal ear clip developed severe dermatitis, whereas wild 
type mice were unaffected (A). Draining lymph nodes from mice with dermatitis displayed 
higher levels of pro-inflammatory the cytokines IL-6, IL-12/ IL-23p40, IL-21 and IL-17A 
(B). Splenocytes from naïve TRIM21 deficient and sufficient mice were stimulated with 
TLR9 and 7 agonists. Cells from knock-out mice produced significantly more of the pro-
inflammatory cytokines IL-6, IL-12/ IL-23p40, IL-23p19 and IFNα (C). 
 

 
 

4.1.9 Redundancy between TRIM proteins  

Almost at the same time as paper III  was published, Yoshimi and colleagues published a 
study of another TRIM21 knock-out mouse (Yoshimi, J Immunol 2009). The authors had 
also generated a TRIM21 knock-out GFP knock-in mouse on a C57BL/6 background, but 
observed a somewhat different phenotype. Several fundamental features were similar 
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between the two mice strains. In both models, expression of TRIM21 was mainly detected 
in immune cells, TRIM21-/- cells produced high levels of pro-inflammatory cytokines upon 
TLR stimulation and IRF3 and 8 were identified as substrates for TRIM21 mediated 
ubiquitination. Interestingly, Yoshimi et al observed an increased expression of NF-! B in 
TRIM21-/- cells, compared to wild type cells upon TRL4 and 8 stimulation. This indicates 
an effect of TRIM21 upstream of, or specifically on NF-! B. The direct mechanism was 
not studied further, but the effect could possibly be explained by TRIM21 mediated 
monoubiquitination of IKK! , which was reported later that year (Wada, J Biochem 2009).  
 
While our TRIM21 deficient mice developed dermatitis and systemic autoimmunity upon 
immune triggering, no disease phenotype could be induced in the TRIM21 null mice 
generated by Yoshimi et al. Yoshimi reported a compensatory induced expression of other 
TRIM proteins encoded in the same cluster on chromosome 7. In our TRIM21 null mouse 
no compensatory induction of neighboring proteins was observed (paper IV), and the 
phenotype reported by Espinosa et al might therefore better mirror the specific role of 
TRIM21 in immunity (Espinosa, J Exp Med 2009). The partially different phenotypes are 
most probably attributed to the different gene disruption techniques (Espinosa A, J 
Immunol 2009; Ozato, J Immunol 2009). In the mouse generated by Espinosa et al an 
mRNA transcript and possibly also a truncated protein is expressed (Paper III, Fig 1) 
(Espinosa A, J Immunol 2009). Due to the lack of a C-terminal domain containing the 
substrate binding domain (Kong, J Immunol 2007), this hypothetical protein would not be 
able to effectuate any TRIM21 function, but it could potentially exercise a dominant 
negative effect, which would explain the lack of compensatory induction of neighboring 
genes. 
 

 
4.1.10 A possible role of anti-Ro52 autoantibodies in pathogenesis 

A longstanding question is whether the autoantibodies in autoimmune diseases are 
pathogenic, or merely bystanders of the immune reaction. Direct pathogenic mechanism of 
autoantibodies is only known in a few autoimmune diseases, such as anti-TPO antibodies 
in HashimotoÕs disease and anti-acetylcholine receptor antibodies in Myastheina Gravis. 
Further, some animal models, such as the collagen antibody induced arthritis model, where 
autoreactive antibodies can be transferred to a na•ve mouse and cause disease, also point at 
direct pathogenicity of the antibodies.  
 
Emerging data indicate a possible pathogenic role of the anti-Ro52 antibodies. It is well 
established that fetuses of pregnant women carrying anti-Ro52 autoantibodies are at risk 
of the passively acquired antibody-mediated disease neonatal lupus. Most features of this 
syndrome are transient, and very similar to systemic autoimmune disease. Newborns 
display skin and liver involvement and bone marrow depression (Lee, Arch Dermatol Res 
2009), indicating that these symptoms in SLE and pSS might be antibody-mediated. The 
most severe and irreversible symptom of neonatal lupus is the congenital heart block 
(CHB), where inflammation and subsequent fibrosis of the AV node impairs its function. 
Experimental evidence has clearly demonstrated that CHB is autoantibody mediated 
(Salomonsson, J Exp Med 2005). 
 
The TRIM21 knockout mice develop lupus-like features (Espinosa, J Exp Med 2009). 
Based on these observations, one could hypothesize that the autoantibodies in lupus and 
pSS, bind the TRIM21 protein and thereby create an artificial knockout setting, leading to 
disease features. In a first important study, Espinosa et al observed that RING-specific 
Ro52 autoantibodies could bind the TRIM21 protein in vitro and thereby inhibit the 
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interaction with E2 enzymes by steric hindrance (Espinosa, J Biol Chem 2011). Futher, 
TRIM21 has been suggested to interact with endocytosed antibodies, and thereby modify 
immune responses to adenovirus (Mallery, Proc Natl Acad Sci U S A 2010). However, 
more experiments are needed to support this hypothesis.  
 
As TRIM21 is not expressed on the cell surface, the antibodies would need to get 
intracellularly to mediate their action. One major concern is how the antibodies would get 
into the cell. Transport of antibodies over cell membranes can occur via the neonatal 
fragment crystallizable receptor (FcRn) (Dickinson, J Clin Invest 1999; Rodewald, J Cell 
Biol 1973; Spiekermann, J Exp Med 2002), but antibodies are usually recycled to the 
plasma membrane and the mechanism whereby the autoantibodies would interact with the 
antigen is thereby uncertain.  

 
 

TRIM21 IN LYMPHOMAG ENESIS 

4.1.11 TRIM21 is associated to proliferation and apoptosis  

The TRIM21 gene is located in a tumor suppression region associated to multiple cancers 
(Schiebe, J Cancer Res Clin Oncol 2001; Zenklusen, Genes Chromosomes Cancer 1995; 
Zhao and Bepler, Oncogene 2001). To investigate if TRIM21 might affect proliferation 
and apoptosis in lymphocytes, we performed over-expression experiments in the B cell 
lymphoma cell line A20 (Paper II ). Cells were stably transfected with either full-length 
TRIM21-GFP, a construct where the RING domain had been deleted (TRIM21-'RING -
GFP) or empty vector encoding only GFP. Cells transfected with full length TRIM21 
displayed reduced growth, but not cells transfected with GFP or TRIM21-'RING -GFP, 
quantified by colony forming assays and 3H-thymidine incorporation assays (Paper II, Fig 
3). Anti-CD40 stimulation can induce both proliferation and activation-induced cell death 
in B cells. The transfected A20 cells were therefore stimulated with anti-CD40 (Paper II, 
Fig 4). Significantly lower proliferation and higher cell death was induced in TRIM21 
transfected cells. To study the role of TRIM21 in proliferation in a more physiological 
setting, we stimulated human PBMC in vitro with the B cell stimulus pokeweed mitogen 
(PMW) and correlated TRIM21 expression to proliferative capacity (Paper V). Low 
TRIM21 mRNA expression was correlated to a high degree of proliferation, confirming 
results from the transfected A20 cell (Paper V, Fig 1). 
 
Since high TRIM21 expression leads to decreased proliferation, enhanced proliferation 
would be expected in TRIM21 deficient cells. Indeed, sick TRIM21 null mice did develop 
splenomegaly and lymphadenopathy (Paper III , Suppl fig 4). In an attempt to study the 
effects of TRIM21 over-expression in vivo transgenic mice overexpressing TRIM21 or 
TRIM21-'RING under the invariant chain promoter were produced (data not shown). 
High expression of the TRIM21-'RING transgene was observed, without any obvious 
phenotype in the mice. However, expression of the full-length transgene was barely 
detectable. This phenotype was observed in several independent lines of transgenes, 
suggesting that this might be due to active selection of low TRIM21 expressing B cells. 
Supporting this hypothesis, TRIM21 overexpression was difficult to maintain in A20 cells, 
as they rapidly lost expression despite being kept under strong selection pressure with 
gentamycin. This did not occur in the GFP only transfected cells, even when cultured 
without selection pressure. Taken together, these data indicate a toxic effect of high 
intracellular concentrations of TRIM21. 
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4.1.12 TRIM21 in proliferation and cell death 

E3 ligases commonly have many substrates, and following our initial observations, 
TRIM21 has been implicated in regulation of several pathways important for development 
of neoplasms. The role in proliferation, apoptosis and cellular differentiation will be 
described below. 
 
TRIM21-mediated regulation of proliferation has been proposed in one paper. Sabile et al 
have shown that TRIM21 interacts with Skp2, a component of the SCFskp2 multisubunit 
complex, involved in the degradation of regulatory proteins, including the cyclin-
dependent kinase inhibitor p27 (Sabile, Mol Cell Biol 2006). Knock-down of TRIM21 
leads to accumulation of p27 and impaired progression to the S phase of the cell cycle.  
 
Several factors involved in apoptosis are regulated by TRIM21. Jauharoh and colleagues 
have shown that BCL2 protein levels are regulated by TRIM21-mediated ubiquitination 
(Jauharoh, Biochem Biophys Res Commun 2012). Interestingly, TRIM21 has been 
proposed to monoubiquitinate IKK!, leading to altered function and increased levels of I-
3B (Wada, J Biochem 2009). This in turn leads to inhibition of the canonical NF-! B 
pathway and subsequently decreasing cellular resistance to apoptosis. Inhibition of the 
degradation of I-! B has also been suggested as the main mode of action of the 26S 
proteasome inhibitor Bortezomib, used in treatment for multiple myeloma and some 
lymphomas (Hideshima and Anderson, Nat Rev Cancer 2002). In addition, several 
proteins in the pathway downstream of Fas are regulated by TRIM21. The proteins 
FLASH and Daxx, responsible for recruitment of pro-Caspase-8 to Fas, are regulated by 
TRIM21 (Tanaka and Kamitani, Histochem Cell Biol 2010), however seemingly not via 
ubiquitination. Daxx, normally a nuclear protein, relocates to the cytoplasm with the help 
of TRIM21. Furthermore, TRIM21 negatively regulates expression of c-FLIP (cellular 
FADD-like IL1 beta-converting enzyme-inhibitory protein), a protein that binds FADD 
and/ or Caspase-8 and thereby inhibits apoptosis induction (Zhang, Cell Biol Int 2012). 
IRF8, a substrate of TRIM21 (Espinosa, J Exp Med 2009; Kong, J Immunol 2007; 
Yoshimi, J Immunol 2009), regulates the transcription of several apoptosis related genes, 
such as Bcl-2, c-FLIP and Bax (Burchert, Blood 2004; Yang, Cancer Res 2009; Yang, J 
Immunol 2011) and IRF8 deficient cells exhibit increased resistance to apoptosis 
(Gabriele, J Exp Med 1999; Holtschke, Cell 1996). 
 
Differentiation arrest or de-differentiation is an important factor in neoplastic 
transformation. The differentiation-inducing transcription factor CCAAT enhancer protein 
alpha (C/EBP") is required for proper differentiation in multiple tissues, and its function is 
abrogated in numerous cancers, including hematological neoplasms (Koschmieder, J Clin 
Oncol 2009). Grandetti and co-workers have studied C/EBP" suppression in non-small 
cell lung cancer and observed that TRIM21 downregulates the expression of C/EBP" by 
polyubiquitination, providing yet another pathway through which TRIM21 may regulate 
cellular homeostasis (Grandinetti, Oncogene 2011). In all, TRIM21 has been implicated in 
several different pathways important in normal cell division and cell death, but also in 
malignant transformation. 
 
 
4.1.13 TRIM21 expression correlates to survival in DLBCL  

The above-described findings prompted us to study TRIM21 expression in relation to 
lymphoma outcome. PFA-fixed, paraffin embedded lymphoma biopsies from three 
independent cohorts of patients with diffuse large B cell lymphoma were investigated for 
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TRIM21 expression by immunohistochemistry (Paper V). The first cohort consisted of 
anthracycline-treated rheumatic patients with lymphoma, the second of CHOP-treated 
patients and the third of Rituximab-CHOP treated patients. Protein expression was 
correlated to clinical parameters. A highly significant correlation between low TRIM21 
expression in lymphomas and short progression-free and overall survival was observed in 
all cohorts (Paper V, Figs 3, 4). The intracellular concentration of TRIM21 seems to be 
important in disease development, as lymphoma tissue containing 40-100% all have 
similar prognosis, estimated by ROC curves. Further, in TRIM21 -/+ mice a similar 
phenotype was detected as in -/- mice, indicating an abolished effect of the protein when 
the concentration is reduced by approximately 50%.  
 

 
 
Figure 7. TRIM21 expression affects proliferation and cell death and correlates to 
lymphoma survival. 
Overexpression of Ro52 (TRIM21) in A20 cells reduces proliferation (A) and increases 
activation-induced cell death (B), compared to cells transfected with Ro52-ΔRING or the 
empty vector only containing GFP. Low expression of TRIM21in DLBCL lymphomas at 
diagnosis correlates to poor overall (C) and progression-free survival (D). 
 
 
The observations that low TRIM21 expression correlates to poor survival were 
independent of disease indexes and other immunohistochemical markers (Paper V, Fig 4 
and Table 2). TRIM21 has been demonstrated to regulate Bcl2, a protein that has been 
associated to GCB lymphomas (Jauharoh, Biochem Biophys Res Commun 2012). As 
TRIM21 regulates several IRFs, a potential effect on IRF4, which is also associated to 
GCB, is plausible (Hans, Blood 2004). Further, alterations in the NF-(B pathway have 
been implicated in the ABC type of DLBCL (Wada, J Biochem 2009) and TRIM21 
ubiquitinates IKK!, an upstream regulator of the NF-! B cascade (Wada, J Biochem 
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2009). No correlation to protein expression of genes important in either ABC or GCB 
lymphomas was observed. However, if the ubiquitination mediated by TRIM21 induces 
altered function and not proteasomal degradation, this would not be associated to 
differential expression detected by immunohistochemistry. Interestingly, no correlation 
was observed between TRIM21 and Ki67 expression. This indicates that TRIM21 
expression correlates to other malignancy related parameters than just proliferation. The 
described regulation of C/EBP" (Grandinetti, Oncogene 2011) indicates that cellular 
differentiation might be one such parameter. In all, our data suggest an added value of 
TRIM21 expression analysis to DLBCL diagnosis.  
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5 CONCLUDING REMARK S AND FUTURE 
PERSPECTIVES 

In this thesis, the pathogenesis underlying the autoimmune disease SjšgrenÕs syndrome 
has been studied. Further, the cellular role of the major SjšgrenÕs syndrome associated 
antigen TRIM21 has been elucidated in steady state and during inflammation and 
lymphomagenesis. In the included studies we show that: 
 

- Na•ve B cells of pSS patients are sensitive to endosomal TLR stimulation, which 
induces increased immunoglobulin class switch and plasma cell differentiation. 
This hyperreactivity can be abrogated by both in vitro and in vivo treatment with 
chloroquine. 

 
- Influenza vaccination induces a strong activation of the immune system in pSS 

patients, especially in the IgG producing B cells. In addition, vaccination 
stimulates enhanced pro-inflammatory cytokine production and lymphocyte 
activation, which persist several weeks after immunization. 

 
- The SjšgrenÕs syndrome associated autoantigen TRIM21 is an E3 ligase, which 

negatively regulates interferon regulatory factors, key transcription factors 
downstream of TLR and interferon signaling.  

 
- Deletion of Trim21 in vivo results in increased sensitivity to immune triggers, 

ultimately leading to systemic autoimmunity with high levels of pro-
inflammatory cytokines, autoantibody production, hypergammaglobulinemia and 
glomerulonephritis. 

 
- Overexpression of TRIM21 leads to decreased proliferation and increased 

sensitivity to activation-induced cell death. Low expression of TRIM21 in the 
malignant lymphoma subtype DLBCL correlates to both poor overall and 
progression-free survival. 

 
 
In the first part of this study, B cell hyperreactivity in patients with primary SjšgrenÕs 
syndrome was characterized. The direct effect of chloroquine derivates on B cell 
activation and development emphasizes their important role in treatment of systemic 
autoimmunity. Lymphoma development in rheumatic disease is associated with high 
disease activity, and most probably also B cell activation. Treatment with chloroquines 
could possibly reduce the high risk of lymphoma development.  
 
The overactive B cells are potential targets for therapeutic interventions. Small clinical 
trials with biologic treatments targeting B cells in pSS have indicated efficacy, but larger 
randomized controlled trials are warranted. Furthermore, the potential efficacy of IFN" 
blockade is currently being investigated in clinical trials in SLE (McBride, Arthritis 
Rheum 2012). Based on these studies, it would therefore be very interesting to investigate 
the efficacy of anti-IFN" drugs also in pSS, as the type I IFN signature is even more 
prominent in pSS than in SLE. 
 
We, and others, have demonstrated that TRIM21 is a key negative regulator of pro-
inflammatory responses downstream of TLR and IFN receptor signaling. This process is 
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mediated via ubiquitination of interferon regulatory factors. Hypothetically, also other 
IRFs could be regulated by TRIM21. This has not been elucidated yet but the hypothetical 
role of TRIM21 in regulation of IRF4 is of interest, as IRF4 has been implicated in both 
Th17-induction (Brustle, Nat Immunol 2007) and lymphoma development (Hans, Blood 
2004). 
 
The fact that TRIM21 expression is overexpressed in systemic autoimmunity despite 
persistent high inflammatory load is a somewhat contradictory phenomenon. The role of 
TRIM21 in chronic inflammation needs to be elucidated further. Several possible 
mechanisms could explain this feature. Polymorphisms in the TRIM21 gene have been 
linked to both pSS and SLE (Frank, Am J Hum Genet 1993; Nakken, Arthritis Rheum 
2001) and one may speculate that the polymorphisms modulate TRIM21 function. 
Moreover, induced expression of TRIM21 in pSS and SLE could mirror a compensatory 
upregulation in a situation when TRIM21 no longer is sufficient to regulate type I IFN 
responses. Further, posttranslational modifications, such as phosphorylations or 
ubiquitinations, might alter the function of TRIM21.  
 
TRIM21 expression correlates to proliferation and activation-induced cell death and low 
expression of TRIM21 in DLBCL associates to short survival. The mechanism underlying 
low TRIM21 expression in these lymphomas has not been investigated. This could e.g. 
occur due to mutations in the TRIM21 locus, or in the upstream pathway. Epigenetic 
factors might also contribute.  
 
To study the mechanism underlying poor prognosis in lymphomas expressing low levels 
of TRIM21 in vitro experiments and animal models could be employed. By TRIM21 gene 
silencing and overexpression in lymphoma cell lines several features important for tumor 
cell survival could be studied, such as proliferation, differentiation and migratory capacity. 
Analysis of expression pattern in high and low expressing lymphoma cells would be of 
great interest, by which affected pathways could be elucidated. Pull-down assays could be 
performed, to investigate potential new targets for TRIM21 mediated ubiquitination.  
 
A challenging idea is that restoration of TRIM21 expression could improve survival in 
DLBCL patients. Type I interferons have repeatedly been associated to induction of 
TRIM21 expression in vitro (Gottenberg, Proc Natl Acad Sci U S A 2006; Strandberg, J 
Clin Immunol 2008). Expression could potentially be upregulated in lymphomas by 
administration of IFN". Interferon-" has been used in lymphoma treatment, together with 
chemotherapy (Andersen and Smalley, N Engl J Med 1993). This treatment has however 
been abandoned almost completely, due to its severe side effects in combination with 
difficulties in predicting who will  benefit from the treatment. A re-classification of 
lymphoma biopsies from patients who have been treated with interferon based on TRIM21 
expression would give important first clues.  
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