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Joy and woe are woven fine,  

A clothing for the soul divine. 

Under every grief and pine 

Runs a joy with silken twine. 

 
William Blake, Auguries of Innocence 
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ABSTRACT 

The ample supply of food, in conjunction with a sedentary lifestyle and certain genetic risk 

factors contribute to the rise in obesity, insulin resistance and type 2 diabetes mellitus. Reduced 

mitochondrial capacity for oxidative metabolism has been implicated as one possible cause of 

insulin resistance in several tissues; such as liver and skeletal muscle. The adipose-derived 

hormone leptin and the metabolic sensor 5’-AMP-activated protein kinase, are two key 

regulators that modulate intracellular fuel handling. The aim of this thesis is to investigate the 

effects of these metabolic signals on tissue-specific mitochondrial respiration and biogenesis.  

The aim of study I was to investigate the role of the AMPK γ3 subunit in determining 

mitochondrial function in glycolytic skeletal muscle. The AMPK signaling axis is a metabolic 

switch regulated by the intracellular energy charge. A single-nucleotide mutation (R225Q) in the 

AMPKγ3 subunit causes elevated basal enzyme activity. Transgenic expression in mice (Tg-

AMPKγ3
R225Q

) increased expression of regulators and mediators of substrate oxidation, as well 

as components of mitochondrial dynamics and electron transport. In summary, this single 

nucleotide mutation is associated with mitochondrial biogenesis, concomitant with increased 

expression of transcription factors that regulate mitochondrial proteins. 

The focus of study II was to characterize tissue-specific mitochondrial function in permeabilized 

tissue from lean and leptin receptor-deficient obese db/db mice. Respiratory capacity in oxidative 

soleus muscle was similar between genotypes, except for decreased complex II function in db/db 

mice. Oxidative function in glycolytic EDL muscle was higher in db/db mice than in lean 

littermates; likely as a result of increased mitochondrial biogenesis. Maximal respiratory capacity 

in liver from db/db mice was blunted, concomitant with increased mitochondrial fission. In 

summary, mitochondrial respiratory performance is controlled by tissue-specific mechanisms 

and is not uniformly altered in obesity. 

The aim of study III was to determine tissue-specific mitochondrial respiration in obese leptin-

deficient ob/ob mice, and lean littermates, following treatment with leptin or saline. Oxidative 

capacity in soleus muscle was unaffected in saline- and leptin-treated ob/ob mice, whereas 

maximal electron transport capacity was increased with obesity in EDL muscle. Regulation of 

transcription and mitochondrial fission in EDL was altered in saline-treated ob/ob mice, and only 

partially normalized with leptin repletion. In liver, maximal respiratory capacity and mediators of 

lipid oxidation were reduced with in saline- and leptin-treated ob/ob mice; while leptin treatment 

normalized indicators of mitochondrial stress.  

In conclusion, mitochondrial respiratory function is a dynamic process that is tightly regulated to 

meet the energy needs of the cell. Despite profound alterations in whole-body or intracellular 

energy sensing, mitochondrial adaptation can occur and respiratory adaptations are 

comparatively modest. This highlights the need to target several pathways of metabolic 

regulation to modulate mitochondrial function to improve systemic homeostasis. 

Key words: mitochondria, mitochondrial biogenesis, mitochondrial dysfunction, respirometry, 

insulin resistance, type 2 diabetes mellitus, AMPK, leptin.  
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1. RATIONALE 

The incidence of obesity, insulin resistance and type 2 diabetes mellitus (T2DM) is increasing 

worldwide, as are the secondary complications associated with these states (1; 2). Lifestyle 

intervention is important (3), but the development of insulin resistance and β-cell defects often 

go undetected until the severity is of such magnitude that T2DM develops and pharmacological 

treatment is unavoidable (4-7). All tissues involved in the regulation of whole-body glucose 

homeostasis – including hypothalamus (8), liver (9; 10), β-cells (11; 12), skeletal muscle (13; 14) 

and white adipose tissue (15) – are affected in a progressively deteriorating manner during the 

pathogenesis of insulin resistance (16). Mitochondrial function may play a causal or supportive 

role in these pathological processes (17-22). 

The aim of this thesis is to study how genetic alterations in energy metabolism influence 

mitochondrial function. Tissue-specific metabolic signaling and mitochondrial adaptations were 

studied using different mouse models, in which 5’-adenosine monophosphate-activated protein 

kinase (AMPK) or leptin signaling was altered. 

2. INTRODUCTION 

The link between obesity and T2DM was postulated in the late 19
th

 century, along with the 

differentiation between adult T2DM and childhood type 1 diabetes mellitus (23). The clustering 

of hypertension, glucose intolerance and aging was suggested in a series of publications around 

the early 20
th

 century (24). The association between traits of the metabolic syndrome (25) and 

insulin resistance is now widely accepted (1; 26; 27).  

2.1 METABOLIC DEREGULATION 

The core of insulin resistance and T2DM pathology is deregulation of whole-body glucose 

homeostasis. Decreased carbohydrate utilization in skeletal muscle and increased glucose 

production by liver are two key defects, which are propagated by the progressive inability to 

maintain appropriate levels of circulating glucose. Insulin resistance and T2DM are linked to 

obesity through increased lipid availability, in part through lifestyle and in part via insulin 

resistance in white adipose tissue; resulting in further metabolic derangements. 

A central theme implicating mitochondrial function in the etiology of insulin resistance is the 

concept of metabolic flexibility (28). Metabolic flexibility refers to the ability to switch between 

oxidation/storage of carbohydrates or lipids in the fed and fasted state. Over the course of disease 

progression this ability is lost (20; 29) due to the convergence of insulin resistance and regulation 

of intracellular metabolism. Insulin resistant subjects who are obese and hyperinsulinemic, have 

normal to elevated glucose uptake, while insulin-stimulated glucose handling is reduced (20). 

Conversely, fasting lipid oxidation is blunted compared to lean subjects and insulin-stimulation 

fails to suppress lipid oxidation in favor of glucose metabolism (19; 20). The intracellular link 

between the aberrations in carbohydrate and lipid metabolism may be the formation of malonyl 

coenzyme A (CoA), catalyzed by acetyl-CoA carboxylase (ACC). Malonyl CoA, a precursor or 

fatty acid synthesis that is produced when citric acid cycle intermediates are abundant (30), is a 

dose-dependent inhibitor of the mitochondrial lipid transporter carnitine palmitoyltransferase 1 

(31; 32). Hence, a relative increase in malonyl CoA suppresses fatty acid oxidation despite 
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increased lipid availability, thus exacerbating insulin resistance in a fashion dependent on 

mitochondrial oxidation efficiency. This thesis work is focused on mitochondrial oxidative 

function in liver and skeletal muscle because these organs hold a central place in whole-body 

metabolic homeostasis in both humans and mice Specific mitochondrial alterations in these 

tissues have also been implicated as a cause of metabolic dysfunction. 

 

Figure 1. The proposed influence of white adipose tissue on whole-body metabolism in obesity 
associated with adipocyte hypertrophy. Adipocytes secrete inflammatory mediators that attract and 
activate stromal immune cells, such as macrophages. The immune cells can then propagate the 
inflammatory signal. The inflammatory mediators can also have systemic effects, together with enhanced 
release of non-esterified fatty acids. Adipokine signaling and ectopic lipid accumulation in non-lipid 
storage organs may cause disruption in insulin signaling, as well as other defects in intracellular signaling. 
FA – fatty acids, IL-6 – interleukin 6, MCP-1 – monocyte chemotactic protein-1, NAFLD – non-alcoholic 
fatty liver disease, NEFA – non-esterified fatty acids, TNF-α – tumor necrosis factor α.  

2.1.1 Obesity 

Overweight and obesity are defined as abnormal or excessive fat accumulation that may impair 

health. Obesity is associated with severe accretion of adipose tissue mass caused by caloric 

intake in excess of energy expenditure. Obesity is closely associated with insulin resistance and 

traits of the so-called metabolic syndrome; including hypertension, dyslipidemia, low-grade 

systemic inflammation, atherosclerosis and increased risk of cardiovascular disease (1; 33). The 

correlation is stronger for visceral adiposity, compared to subcutaneous fat depots (34-36), which 
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may be due to increased secretion of inflammatory markers (37; 38) and leptin, and enhanced 

lipolysis rate (39). However, the causality of the association between visceral adiposity and 

increased risk of e.g. cardiovascular disease and insulin resistance is subject of debate (40-43).  

White adipose tissue has a nearly unlimited ability to expand in mass and is an important 

endocrine organ, secreting metabolic and immune cell regulators (44-47). Obesity and adipose 

cell hypertrophy  (Fig. 1) are closely associated with increased plasma levels of tumor necrosis 

factor α (TNF-α) (48; 49), interleukin 6 (50; 51) and C-reactive protein (52). These inflammatory 

mediators act as chemoattractants for tissue macrophages, which may propagate the signal (53; 

54). Expression of TNF-α and its receptor is upregulated in adipose tissue from obese subjects 

(55; 56) and circulating TNF-α has a negative systemic effect on insulin sensitivity by indirect 

inhibition of insulin receptor substrate 1 (IRS-1) (57-59). Localized TNF-α signaling in white 

adipose tissue reduces lipogenesis in favor of lipolysis (60) and increases the release of 

nonesterified fatty acids (NEFA), in part mediated by AMPK (61-63). Enhanced lipid 

mobilization is also associated with insulin resistance in white adipose tissue (10; 64), resulting 

in increased hepatic production of very low-density lipoproteins (65). In this manner obesity in 

itself contributes to, and is worsened by, the emergence of insulin resistance. 

2.1.2 Insulin Resistance and Type 2 Diabetes Mellitus 

Insulin resistance is a state in which insulin has less than the expected effect (66). Several 

intracellular defects causing reduced insulin response or sensitivity have been described in 

skeletal muscle; such as reduced IRS-1 phosphorylation and decreased activation of 

phosphoinositide 3-kinase and Akt (67-69). These impairments are also evident in otherwise 

healthy first-degree relatives of patients with T2DM (14; 70). Insulin resistance is often 

accompanied by compensatory hyperinsulinemia associated with increased β-cell mass (71) and 

function (72). Although the complete mechanism remains unresolved, it is likely stimulated by 

insulin itself (73), increased nutrient supply (74) and signaling by glucagon-like peptide 1 (75). 

With time, however, progressive plasma glucose derangement (25; 76-78) is followed by β-cell 

failure (79) due to functional impairments (11; 80-82) and progressive β-cell apoptosis (79) (Fig. 

2). 

T2DM is the point at which plasma glucose levels can no longer be controlled by compensatory 

mechanisms and hyperglycemia ensues (66). Diagnosis is made by repeated fasting plasma 

glucose measurements or measurement of the response to an oral glucose tolerance test (66; 83). 

The hyperglycemic state is characterized by pancreatic β-cell failure and a switch from 

hyperinsulinemia to relative hypoinsulinemia (11; 79-82) (Fig. 2). Altered regulation of lipid 

metabolism is also an early feature of T2DM pathology (84) and elevates the risk of 

cardiovascular disease (85), which may partly be explained by diabetes-associated 

atherosclerosis. In addition to elevated triglycerides and decreased high-density lipoprotein 

cholesterol in plasma, low-density lipoprotein particles are altered in T2DM (65). They are 

smaller, denser and more glycosylated in T2DM, which enhances their oxidation level and 

atherogenic properties (65). Thus, T2DM, as well as insulin resistance, constitutes profound 

deregulations in both lipid and carbohydrate homeostasis so that the integration of fuel 

metabolism and organ function is progressively disrupted. 
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Figure 2. A generalized view of the natural history of the development of insulin resistance and type 2 
diabetes. If left untreated, peripheral and central insulin resistance is continuously worsened so that 
higher concentrations insulin are required to maintain glucose homeostasis. As pancreatic β-cell function 
and number decline, insulin levels will eventually start to fall, with a concomitant rise in plasma glucose. 
Blue line – fasting plasma glucose, red line - relative postprandial insulin level (%) compared to normal, 
green line – relative maximal β-cell function (insulin secretion capacity per cell, %). Bold dashed line – the 
diagnostic plasma glucose level for diabetes (6.9 mM), thin dotted line – 100% referring to relative insulin 
level and β-cell function. The arrow marks time of diagnosis of type 2 diabetes mellitus.  

2.1.2.1 Liver 

Insulin signaling in liver inhibits hepatic glucose output (i.e. gluconeogenesis, ketogenesis and 

glygenolysis), increases fuel storage (glycogen and triglycerides), and biosynthesis of protein 

and very low-density lipoproteins (86-89). Hepatic insulin resistance results in increased 

gluconeogenesis and glucose output (9; 90). Hepatic glucose production is further increased by 

elevated glucagon (91) and accumulation of lipid and glucose. Indeed, the incidence of non-

alcoholic fatty liver disease parallels that of obesity and is now the most common chronic liver 

disease (92; 93). Ectopic lipid accumulation results in increased expression of 

phosphoenolpyruvate carboxykinase and pyruvate carboxylase (94), which are rate-limiting 

enzymes for gluconeogenesis, and glucose-6-phosphatase, the rate-limiting enzyme for glucose 

release.  

Many experimental animal models of obesity are characterized by ectopic hepatic lipid 

accumulation and are phenotypically similar to human non-alcoholic fatty liver disease. Severe 

non-alcoholic liver disease in humans is associated with reduced expression of genes regulating 

and encoding mitochondrial proteins (95; 96), reduced electron transport chain (ETC) enzyme 

activity (97), decreased resynthesis of adenosine 5’-triphosphate (ATP) (98) and altered 

mitochondrial structure (99). These aberrations are correlated with increased β-oxidation and 

elevated production of reactive oxygen species (ROS), as well as hepatocyte apoptosis due to 
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localized hypoxia (99; 100). In rodent models of obesity, β-oxidation is also enhanced with 

increased oxidative phosphorylation capacity in some studies (101-105), but not in others (106). 

The variation is likely due to methodological and strain/species differences, as well as adaptive 

responses that vary over time (107; 108). Animal models often develop severe obesity and 

pathology in a relatively short time-span, while human obesity develops in a more variable 

lifestyle setting against a complex background of genetic predisposition. The progressive tissue 

damage associated with hepatic lipid accumulation is however undisputed, regardless of study 

subject, although the specific molecular mechanisms may differ.  

2.1.2.2 Skeletal Muscle 

Skeletal muscle is central to glucose homeostasis in humans and is key to plasma glucose 

clearance (109). Obesity is correlated with muscle insulin resistance (110-112). Reduced glucose 

uptake in skeletal muscle can be caused by several intracellular deficiencies; insulin signaling 

(14; 67), and glucose transport (113; 114), phosphorylation (115) and oxidation (17; 116) are 

reduced to varying degrees in association with obesity, insulin resistance and T2DM (117); as 

well as glycogen synthesis (10; 118) and lipid oxidation (116). Insulin resistance and T2DM are 

further associated with excessive NEFA uptake, (119-121), dysregulated intramyocellular lipid 

handling in rodents (122-124), increased levels of intramyocellular lipids in humans (125) and 

inhibition of insulin signaling mediated by novel Ser/Thr protein kinase C (122; 126; 127). 

Enhanced secretion of inflammatory mediators from white adipose tissue and macrophages may 

also reduce muscle insulin sensitivity through the signaling pathway of Janus kinase 2/signal 

transducer and activator of transcription 3 (128; 129).  

The metabolic properties of skeletal muscle and its impact on whole-body metabolism vary with 

fiber type. Oxidative fibers are more insulin-sensitive (130) and contain more mitochondria than 

glycolytic, fast-twitch type IIb fibers (131). Oxidative type I fiber percentage is inversely 

correlated to adiposity (132-134) and waist/thigh circumference ratio (135); and positively 

correlated to insulin action (135) and high-density lipoprotein cholesterol (136). However, 

indirect calorimetry during exercise shows either no association between slow-twitch fiber 

percentage and substrate oxidation (134) or a positive correlation with fat oxidation, depending 

on the specific protocol (132). Type IIb fiber percentage is increased in first-degree relatives of 

patients with T2DM (137) and with aging (138). Furthermore, type IIb fiber percentage is 

positively correlated to insulin resistance (135; 139; 140) and obesity (138) in vastus lateralis 

skeletal muscle, but not in gastrocnemius muscle (139). The additional influence of muscle 

group on metabolic properties was confirmed in middle-aged T2DM patients (141); comparing 

mitochondrial respiration and fiber type composition in locomotor vastus lateralis and 

supportive deltoideus muscle, mitochondrial function was negatively correlated with T2DM only 

in the vastus lateralis (141). Hence, the contribution of skeletal muscle and mitochondrial 

function to insulin resistance may be secondary to disuse, in addition to genetic risk factors.  

2.2 LEPTIN AND AMPK SIGNALING 

2.2.1 Leptin Regulation of Metabolism 

Leptin is the product of the ob (obese) gene and is secreted from white adipose tissue (142-145). 

The leptin hormone regulates several aspects of whole-body metabolism; such as behavior (146), 
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fertility (147), food intake, metabolism and thermogenesis (Fig. 3) (145; 146; 148-150). 

Expression and secretion is in part regulated by hexosamine biosynthesis (151), a pathway 

sensing nutrient availability (152; 153), which is stimulated by both hyperglycemia and 

hyperlipidemia (151; 154). Plasma leptin levels are proportional to fat depot mass in healthy 

(155), obese (156) and insulin resistant humans (157). Key insulin-responsive tissues, such as 

liver (158), skeletal muscle (159) and white adipose tissue (160), as well as insulin-secreting β-

cells (161), express the leptin receptor, suggesting a regulatory cross-talk (162; 163). 

Mouse models of disrupted leptin signaling, such as the db/db (diabetes) (164; 165) and the 

ob/ob mouse (166), as well as humans with similar mutations (167), present severe symptoms of 

metabolic dysregulation; such as hyperphagia, obesity and reduced fertility. Leptin-mediated 

regulation of feeding occurs mainly at the level of the hypothalamus (148; 168-172), while 

thermogenic and metabolic control is exerted through both central and peripheral signaling (149; 

170; 173-180). Leptin signaling in skeletal muscle occurs in a biphasic manner with an early, 

direct activation of the AMPK/ACC pathway; followed by indirect signaling through the 

hypothalamic/sympathetic signaling axis (174). While studies on the effects of leptin on glucose 

uptake are contradictory, leptin increases both glucose (173) and lipid oxidation (181), while 

insulin-stimulated lipogenesis and glycogenesis are inhibited (182) (Fig. 3). However, several 

aspects of leptin signaling through peripheral pathways, e.g. the direct pathway between leptin 

signaling and AMPK activation, remain unclear. 

2.2.2 5’-AMP-Activated Protein Kinase 

AMPK is a key metabolic switch between energy sparing and energy consuming processes (183-

186). AMPK was first described as an enzyme regulating 3-hydroxy-3-methylglutaryl-CoA 

reductase (187), a key enzyme in hepatic cholesterol synthesis, and ACC (188). In addition to 

inhibiting biosynthesis of cholesterol, fatty acids (186), and glycogen (189); AMPK also 

enhances glucose (190-192) and lipid uptake (193) in response to contraction (194), glycolysis 

(195; 196), and fatty acid oxidation (32; 197).  

AMPK is a heterotrimeric Ser/Thr kinase that consists of one catalytic subunit (three isoforms; 

denoted α1-3) and two regulatory subunits (β1-2; and γ1-3, respectively) (198). Diversity in 

tissue function and response to stimuli is conferred by specific subunit combinations, as well as 

upstream regulators (199). When the ATP/AMP ratio falls, e.g. as a result of fasting or cellular 

stress, AMP replaces ATP in the allosteric site on the γ subunit. A conformational change 

exposes Thr172 on the α subunit to phosphorylation by upstream kinases (200). Acute 

stimulation with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR), an AMP 

analog, enhances the activity of mitochondrial enzymes in glycolytic skeletal muscle and inhibits 

ACC activity (201). The response in skeletal muscle to chronic changes in energy charge by 

AICAR treatment appears to be limited to glycolytic muscle and occurs in an AMPKα2-

dependent manner (202); overlapping with expression of the γ3 subunit (203).  

AMPK mediates changes in metabolism and mitochondrial function both directly, by 

phosphorylation of metabolic enzymes, and indirectly via gene expression. AMPK mediates 

contraction-induced translocation of glucose transporter 4 (GLUT4) to the plasma membrane 

independently of insulin action (204), as well as activation of hexokinase and inactivation of 

ACC (190). The stimulation of GLUT4 translocation increases glucose uptake, while ACC 
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phosphorylation inhibits fatty acid synthesis in favor of lipid oxidation (205). AMPK also 

phosphorylates peroxisomal proliferator-activated receptor γ co-activator 1α (PGC-1α) (206), 

which activates transcription of several mitochondrial genes in collaboration with nuclear 

respiratory factor 1 and 2 (NRF-1/2) (207). Thus, specific activation of AMPK signaling is a 

promising therapeutic target to improve fuel disposal by means of enhancing mitochondrial 

function, especially in skeletal muscle. 

 

 

Figure 3. Integration of metabolism by leptin and AMPK, in relation to insulin. Leptin secretion from white 
adipose tissue provides an important positive signal of energy storage status. Acting on a variety of 
tissues, leptin participates in whole-body metabolic integration and modulates insulin signaling. The 
intracellular response to leptin is mediated by AMPK, among others. Hormonal stimulation by leptin 
enhances peripheral glucose disposal and lipid oxidation (most notably in skeletal muscle), and increases 
hepatic lipid mobilization. Hypothalamic leptin signaling reduces food intake and is important for 
reproduction, growth and temperature regulation. 
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2.2.2.1 The Gamma Subunit Confers Sensitivity to Energy Charge 

The AMPK γ3 subunit is the predominant γ isoform in type II, fast-twitch glycolytic skeletal 

muscle fibers, as part of the α2β2γ3 heterotrimer (208). The γ3 subunit was implicated in skeletal 

muscle metabolism with the discovery of a spontaneous mutation in pigs. The phenotype, known 

as Rendement Napole (RN
-
), results in increased growth rate and meat content (209), but reduced 

meat quality and yield (210) because of increased skeletal muscle glycogen content. The 

mutation was identified as PRKAG3
R200Q

 (211), a point mutation in the AMPKγ3 gene, causing 

an Arg→Gln substitution in the AMP/ATP binding site (212). This mutation results in a 

conformational change, which renders the heterotrimer insensitive to AMP/ATP regulation 

(213). A homologous mutation, AMPKγ3
R225W

 with similar effects in skeletal muscle has been 

identified in humans (214). In contrast, an Ile→Val substitution at a neighboring site in the γ3 

subunit (215) causes reduced intramuscular glycogen content. Mutations in the γ2 subunit are 

linked to human cardiac disease (216); some of which are equivalent to the RN
-
 (217) in terms or 

aberrant glycogen storage. In contrast, a similar mutation in the γ1 isoform, AMPKγ1
R70Q

, 

confers increased PGC-1α expression, along with increased in slow-twitch glycolytic fiber 

percentage (218). Thus, exploring the role of the skeletal muscle-specific γ3 isoform could 

provide promising targets for pharmacological treatments of insulin resistance without 

interfering with AMPK activity in other tissues, such as the hypothalamus. 

2.3 MITOCHONDRIA AND METABOLISM 

Mitochondrial function was implicated in the development of insulin resistance and T2DM after 

observations of aberrant glucose and lipid oxidation in skeletal muscle (17; 219; 220). Reduced 

abundance of mitochondrial proteins (18; 221) and decreased mitochondrial respiratory capacity 

(19; 222) have been reported in skeletal muscle from obese insulin resistant humans or T2DM 

patients. Similar observations were made in first-degree relatives of T2DM patients, (20; 21), as 

well as in animal models of disease (101-104; 223). However, unaltered or even improved 

mitochondrial performance has been reported in skeletal muscle from T2DM patients (224; 225) 

and rodent models of obesity (108; 226-231). Furthermore, the capacity for exercise-mediated 

improvements in mitochondrial respiration, protein abundance (232-234), and metabolic 

adaptation (235; 236) are retained in human skeletal muscle. The disparity between these 

observations of reduced mitochondrial protein abundance and activity, and preserved 

mitochondrial function indicate alterations in mitochondrial quantity, as well as quality. Indeed, 

ATP synthesis (21) and citric acid cycle flux (237) are reduced by 30% in T2DM patients, 

compared to control subjects, along with a 38% decrease in mitochondrial density (70). 

Conversely, experimental models of respiratory chain dysfunction in skeletal muscle (caused by 

progressive reduction of mitochondrial transcription factor A, TFAM, expression), does not 

affect glucose homeostasis or peripheral insulin sensitivity in mouse (238). Hence, the 

pathogenic influence of mitochondrial adaptation in these disease states is far from clear and 

there are multiple factors (genetic or epigenetic predisposition, tissue-specificity, environment 

and behavior) that must be taken into account. 

Increasing mitochondrial respiratory function in skeletal muscle counteracts insulin resistance in 

both T2DM patients and animal models (239; 240). Indeed, several of the commonly used 

pharmacological treatments have an indirect effect on mitochondria by stimulating glucose or 

lipid disposal and oxidation. Fibrates normalize plasma lipid levels by targeting peroxisome 
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proliferator-activated receptor alpha (PPARα) (241; 242). PPARα, a lipid-induced transcription 

factor, regulates expression of genes involved in mitochondrial fatty acid oxidation (243) and 

interacts with the transcriptional co-activator PGC-1α (244). In contrast, the biguanides (e.g. 

Metformin), lower plasma glucose by reducing hepatic glucose production and improving insulin 

sensitivity (245; 246). Hence, the further development of treatment strategies that target 

mitochondrial function is promising. 

2.3.1 Mitochondrial DNA and Integration with the Nuclear Genome 

Mitochondrial DNA (mtDNA) encodes less than 3% of all mitochondrial proteins (247), and so 

expression is highly integrated with transcriptional regulation in the nucleus. One mitochondrion 

normally contains several mtDNA copies packaged into a nucleoid by regulatory proteins, such 

as TFAM and Lon protease (248-250). However, mtDNA copy number is highly variable (251) 

and not directly associated with cell proliferation (252-258), mitochondrial oxidative capacity or 

density (259). For example, heart mitochondria are twice as large and possess higher oxidative 

capacity than liver mitochondria, but have lower amounts of mtDNA; while brain mitochondria 

are smaller and contain fewer mtDNA copies compared to both liver and heart (251).  

The vast majority of all mitochondrial proteins are nuclear-encoded, including complex II and 

most of the constituents of complex I, III, IV and ATP synthase (247; 252; 260-262). Integration 

of cellular demand for mitochondrial activity and nuclear expression is primarily regulated on 

the transcriptional level (263) through gene-specific transcription factors and co-activators. 

Activation of PGC-1α (264) or PGC-1β (265) by reduced energy availability (266-269), 

adrenergic stimulation (264) or stimulation of gluconeogenesis (270), results in coordinated 

expression of specific gene sets, depending on the transcription factor partners. PGC-1α also 

participates in a positive transcriptional autoregulatory loop stimulated by sirtuin 1 (a sensor of 

nicotinamide adenine dinucleotide, NAD
+
/NADH, energy charge), and under the control of the 

transcription factors myocyte-specific enhancer factor 2 and myoblast determination protein 1 

(271). The PPAR family of transcription factors regulate lipid oxidation and membrane 

uncoupling (243; 244), while NRF-1 and NRF-2 induce genes mediating mitochondrial protein 

import and oxidative phosphorylation (207; 272). NRF-1/2 target sequences have been found in 

promoter regions of several mitochondrial enzymes and regulatory proteins; such as TFAM 

(273), cytochrome c (274; 275), δ-aminolevulinate synthase (ALAS) (276), and subunits of all of 

the electron transport system (ETS) complexes (277-282).  

2.3.2 Mitochondrial Structure and Dynamics 

Mitochondrial dynamics refers to intracellular distribution and fusion/fission of organelles. The 

importance of appropriate regulation is underscored by observations that many pathologies of 

mitochondrial dysfunction are also associated with abnormal mitochondrial shape and 

distribution, such as non-alcoholic fatty liver disease (283) and neurodegenerative conditions 

(284; 285).  

The balance of membrane fusion and fission events is regulated by guanosine triphosphate 

hydrolases (GTPases) that are located in the mitochondrial membranes. There they ensure 

appropriate membrane function, distribution of matrix and membrane protein organization (286). 

Correct expression of mediators of mitochondrial dynamics is crucial to cell survival. Mitofusin 
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1 and 2 (MFN-1/2) are required for outer membrane fusion (223), and mitochondrial dynamin-

like 120 kDa protein (OPA1) mediates fusion of the inner membranes (287; 288). MFN-2 

deficiency causes human neurodegenerative disease (284) characterized by reduced respiratory 

function and mitochondrial membrane potential (289), and failure to organize nucleoids between 

organelles (290). Specific OPA1 mutations cause the most common form of hereditary optic 

nerve atrophy (285; 291), and deletion causes mitochondrial fragmentation and apoptosis (292). 

Mitochondrial fission is mainly dependent on the activity of dynamin-1-like protein (DNM1L) 

(293). DNM1L is required for both cell survival and regulated apoptosis in development (294). 

DNM1L
-/-

 is embryonic lethal (295); not due to reduced energy production, but failed 

distribution of mitochondria into daughter cells (294). Interfering with fission events can delay, 

or even halt, apoptosis; e.g. by inhibiting DNM1L activity (296; 297) or overexpressing MFN-1 

or MFN-2 (298). Downregulation of OPA1 protein abundance, or increased OPA1 proteolysis, 

however, results in enhanced apoptosis (292).  

Appropriate mitochondrial structure and function are disrupted in hepatocytes (299), β-cells (81; 

300; 301) and skeletal muscle (19; 302; 303) from humans and rodents with obesity, insulin 

resistance or T2DM. Thus, delineating mitochondrial structural regulation may be crucial to 

understanding how mitochondrial function influences tissue-specific adaptations to insulin 

resistance. 

2.3.3 Reactive Oxygen Species and Antioxidant Defense 

Mitochondrial ROS is generated when oxygen interacts with transient free radicals formed 

during electron transfer through complex I and III (304; 305). Excessive ROS production induces 

deleterious vascular effects associated with hyperglycemia (306). Intracellular ROS formation 

can cause damage in a number of ways: DNA damage, modifications of amino acids, chemical 

transformation of membrane lipids, or oxidation of lipids and proteins. However, a number of 

signaling processes are also associated with transient increases in ROS production; such as 

growth factor signaling (307) and exercise (308). Insulin signaling generates small ROS bursts 

(309), which serve as second messengers (310; 311) by oxidizing critical residues on target 

enzymes (312-314).  

Antioxidant defense is performed by enzymes and compounds that are themselves oxidants, but 

less reactive (315; 316). Mitochondrial manganese superoxide dismutase 2 (SOD2) (317), 

glutathione peroxidase (318) and catalase (319) are key, antioxidant enzymes, which sequentially 

disarm the oxygen anion radical by the formation of water and molecular oxygen, via hydrogen 

peroxide. Mitochondrial DNA oxidative damage is implicated in several pathological conditions 

(320-323) and ageing (324) and mtDNA is particularly susceptible to oxidative damage by ROS 

(325). Consequently, mutations caused by oxidative damage are proposed to influence 

development of complications of insulin resistance and T2DM (326-329).  

2.3.4 Oxidative Phosphorylation and Mitochondrial Respirometry 

Mitochondrial respirometry is a method of directly measuring mitochondrial oxygen 

consumption, by supplying mitochondria with citric acid cycle substrates. Using permeabilized 

tissue, where the cell membrane is disrupted and soluble cytosolic components are lost, electron 

transport and oxidative phosphorylation can be studied independently of cytosolic metabolism.  
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Oxygen Flux  
Mediator 

 
Symbol 

 
State* 

Substrate/ 
Inhibitor 

 
Comment 

Proton leak LEAK 2/4 M & P (+) Very low, NADH-dependent respiration due to 
absence of ADP.  

Complex I,  
coupled 

Coupled,  
OXPHOS  

3 ADP (+) Low respiration due to partial feedback inhibition 
of the citric acid cycle by high malate 
concentration. Can be used to calculate P/O 
ratio 

Complex I,  
coupled 

C I 3 G (+) High respiration due to saturating amount of 
complex I substrate and ADP. 

Complex I+II, 
coupled  

C I+II 3 S (+) Continued high respiration due to saturating 
amounts of ATP synthase, complex I and 
complex II substrates. 

Electron transport 
system, complex I+II, 
uncoupled  

ETS I+II 3u FCCP (u) High, uncoupled respiration (complex I-IV) 
independent of ATP synthase activity. 

Electron transport  
system, complex II, 
uncoupled  

ETS II 3u Rot (-) High uncoupled respiration (complex II-IV) 
independent of ATP synthase activity. 

Residual respiration ZERO** - AnA (-) Oxygen consumption in the absence of 
mitochondrial electron transfer. 

Table 1. Comparison of oxygen flux and respiratory state. (+) = substrate, (-) = inhibitor, (u) = membrane 
uncoupler. ADP = ADP+ Mg

2+
, AnA = Antimycin A, G = glutamate, M = malate, P = pyruvate, Rot = 

rotenone, S = succinate, *The conventional protocol (330) of respiratory states: State 1 – mitochondria 
alone, 2 – substrate, no ADP, 3 – limited amount of ADP, 4 – ADP depletion, 5 – anoxia. **Residual 
respiration is not presented in figures. 

2.3.4.1 Oxidative Phosphorylation 

The first step in respiration supported by NADH is the transfer of 2 electrons (e
-
) from one 

NADH to ubiquinone (UQ) by ETC complex I, NADH-ubiquinone oxidoreductase. 

Simultaneously, 4 protons (H
+
) are relocated to the intermembrane space (331-334). Electron 

transport supported by mitochondrial matrix-derived flavin adenine dinucleotide (FADH2) starts 

at complex II, succinate dehydrogenase. Succinate dehydrogenase is part of the citric acid cycle 

and catalyzes the conversion of succinate to fumarate. In so doing, it transfers 2e
-
 to UQ without 

any charge movement across the membrane (335-338). Complex III, ubiquinol cytochrome c 

reductase, is a funnel through which complex I, II and other mitochondrial electron transferring 

complexes feed electrons to complex IV. It catalyzes the UQ/UQH2 cycle, which returns one UQ 

and one UQH2 to the quinone pool. During this process 2e
-
 are transferred to cytochrome c, and 

2H
+
 per UQH2 are moved to the intermembrane space (339). The final step of the ETC, mediated 

by cytochrome c and complex IV, cytochrome c oxidase, results in the transfer of 2e
-
 from 

cytochrome c by complex IV, reducing one half O2 to H2O and moving 2H
+
 into the 

intermembrane space. Complex IV function is crucial to the functionality of the entire electron 

transport chain as it catalyzes the reduction of the final electron acceptor (340-344). The proton-

motive force generated by the ETC is then used to drive ATP synthesis by ATP synthase (345-

351). 

2.3.4.2 Mitochondrial Respirometry 

The respirometry experiments included in this thesis employ the substrate-uncoupler-inhibitor 

protocol as outlined in Table 1. This protocol is designed to investigate endogenous uncoupling, 
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oxidative phosphorylation capacity, and maximal coupled and uncoupled respiratory capacity, 

with particular focus on complex I. The first substrate, malate, cannot support respiration since 

there is no acetyl CoA present for the synthesis of citrate (352). Subsequent addition of pyruvate 

results in three important reactions to consider: the conversion of pyruvate to acetyl CoA in the 

mitochondrial matrix, allowing citrate production; and the fates of malate and the α-ketoglutarate 

formed by the citric acid cycle. Malate reaches equilibrium with fumarate, which blocks 

oxidation of succinate to fumarate through feedback inhibition of succinate dehydrogenase (353). 

Citrate and α-ketoglutarate are exchanged for extra-mitochondrial malate by the tricarboxylate 

carrier (354); reducing the amount of substrates which would otherwise feed complex I. Addition 

of excess adenosine 5’-diphosphate (ADP) enables oxidative phosphorylation and oxygen 

consumption to increase. NADH production is still suboptimal because of the loss of citrate and 

α-ketoglutarate. ADP is followed by addition of cytochrome c as a test of inner mitochondrial 

membrane integrity (355; 356). Next, glutamate is added and readily converted to α-

ketoglutarate and ammonia (357). However, fumarate-mediated feedback inhibition of succinate 

dehydrogenase persists; along with active exchange of glutamate (in) for aspartate (out) and 

malate (in) for inorganic phosphate (Pi) and α-ketoglutarate (out) by the malate-aspartate shuttle 

(358). Respiration rises as the conversion of α-ketoglutarate allows for another NADH-

producing step (359). Subsequent addition of high concentrations of succinate will meet the 

levels of the other citric acid cycle intermediates and succinate dehydrogenase inhibition by 

fumarate is relieved (360). This protocol, combined with the appropriate tissue preparation and 

permeabilization, enables analysis of tissue-specific mitochondrial respiratory capacity in a 

variety of tissues. 

3. AIMS 

3.1 GENERAL AIM 

The overall aim of this thesis was to investigate pathways that regulate mitochondrial biogenesis 

and to identify points of regulation of mitochondrial function, with an emphasis on ameliorating 

insulin resistance. 

3.2 SPECIFIC AIMS 

Study I: To determine if the γ3 subunit of the AMPK enzyme has a role in signaling pathways 

mediating mitochondrial biogenesis in skeletal muscle and if it is necessary for mitochondrial 

function. 

Study II: To characterize tissue-specific mitochondrial function in leptin-receptor deficient db/db 

mice and lean littermates. 

Study III: To characterize tissue-specific mitochondrial function in leptin-deficient ob/ob mice 

and lean littermates, and to determine if mitochondrial function can be modulated by exogenous 

leptin-repletion. 

4. MATERIAL AND METHODS 

Reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless stated otherwise. 



 

13 

 

4.1 GENETICALLY MODIFIED MICE 

All animal experiments were approved by the regional animal ethical committee, Stockholm 

North, and mice were treated in accordance with regulations for protection of laboratory animals. 

Mice were housed in a temperature-, humidity- and light-controlled environment. They were 

maintained under a 12:12 h light:dark cycle and had free access to nesting material, water and 

standard rodent chow (4% fat, 16.5% protein, 58% carbohydrates, 3.0 kcal/g; Lantmännen, 

Stockholm, Sweden). Prior to tissue dissection, mice were anesthetized with an intraperitoneal 

injection of 2.5% (v/v) Avertin (0.02 ml/g body weight; 3.5 M 2,2,2-tribromoethanol in tertiary 

amyl alcohol). In study I, transgenic (Tg-AMPKγ3
WT

 and Tg-AMPKγ3
R225Q

) or knock-out 

(AMPKγ3
-/-

) homozygous mice were compared with homozygous wild-type littermates. In study 

II, homozygous db/db mice were compared with non-homozygous (lean, +/?) littermates. In 

study III, saline-treated ob/ob mice were compared with saline-treated non-homozygous (lean, 

+/?) littermates; and leptin-treated mice were compared with saline-treated mice of the same 

genotype. 

All mouse models used in the described studies were bred into a C57Bl/6J background, making 

comparisons easier, albeit not without problems. The importance of genetic background is 

especially clear in the ob/ob and db/db mouse strains, which are commonly maintained on a 6J or 

Ks/J background. These “background genomes” have a profound effect on the homozygous 

mutant phenotype in both strains, which complicates data comparison between studies using 

strains from different genetic backgrounds. Both db/db and ob/ob mice bred into the Ks/J 

background have a more severe diabetic phenotype resulting in significantly shortened life span. 

Compared to 6J-bred mice, pancreatic islet function and atrophy, hyperglycemia and 

hyperinsulinemia are worse, and body weight and tissue accumulation of lipids is increased in 

C57BK/KsJ-ob mice (168; 361). When maintained on a 6J background, however, these 

characteristics are similar in the two genotypes (361). The phenotype of lean mice (heterozygous 

and wild-type, +/?) remains similar irrespective of breeding background (362). The precise 

source(s) of the differences due to genetic background is unknown, but the KsJ genome diverges 

from its 6J origin by almost 30% (363). 

Circulating leptin levels in the lean, wildtype mouse is 3-12.5 ng/ml (364-366) and is increased 

up to tenfold in mouse and rat models of obesity (364). Leptin levels in lean humans lie in the 

range of 1-12 ng/ml and is lower in men, due to lower degree of adiposity (367). Obese humans 

typically have circulating leptin levels of 20-35 ng/ml (367; 368). A dose-response study 

performed in lean and ob/ob mice using peritoneal minipumps showed that doses of 1-42 µg/day 

correspond to 1.6-8.0 ng/ml in plasma (369). In the present study the dose was 1 mg/kg, which 

equals 30 µg/individual/day, but the leptin was administered as a bolus dose once per day. After 

a subcutaneous injection in humans, the half-life of the protein was estimated to 3 hours (370), 

while an intravenous injection in rat resulted in a plasma half-life of 21 minutes (369). However, 

the effects of hormonal signaling is not only dependent on the physical presence of the hormone, 

but are mediated by downstream effects on post-translational modification and gene expression. 

4.1.1 AMPKγ3 Transgenic and Knock-Out Mice 

Study I aimed to investigate the effect of the AMPKγ3 subunit on mitochondrial function and 

biogenesis in glycolytic skeletal muscle. For this purpose three different strains of mice were 
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used; AMPKγ3 wild-type transgenic (Tg-AMPKγ3
WT

), AMPKγ3
R225Q

 transgenic (Tg-

AMPKγ3
R225Q

) and AMPKγ3 knock-out (AMPKγ3
-/-

). The two transgenic strains express the 

transgene specifically in glycolytic skeletal muscle, under the control of the myosin light chain 

promoter. The AMPKγ3
-/-

 strain is a whole-body knock-out model, but the AMPKγ3 isoform is 

specific to skeletal muscle and the predominant isoform in glycolytic fibers (213). All 

experiments were carried out on the white, glycolytic portion of the gastrocnemius skeletal 

muscle, unless state otherwise. All three strains were generated by using conventional gene 

targeting techniques (213). 

The effects of these genetic modifications on whole-body metabolism and skeletal muscle fuel 

handling are described elsewhere (213). Briefly, AMPKγ3 is absent in the AMPKγ3
-/-

 mice, 

while the transgene is expressed to varying degrees in skeletal muscle from the Tg-AMPKγ3
WT

 

and Tg-AMPKγ3
225Q

 mice. Transgenic expression of AMPKγ3
R225Q

 is dominant over the 

endogenous AMPKγ3 and does not alter the expression of the other subunits (213; 371). AMPK 

basal and AICAR-stimulated activity was elevated in glycolytic skeletal muscle from Tg-

AMPKγ3
225Q

 mice, and glycogen content increased. Following acute exercise, glycogen was 

depleted to a similar degree in all strains, but glycogen repletion was higher in Tg-AMPKγ3
225Q

 

and lower in AMPKγ3
-/-

, compared to controls. After high-fat diet, Tg-AMPKγ3
225Q

 mice had 

enhanced skeletal muscle fatty acid oxidation, reduced intramuscular lipid accumulation and 

were protected from insulin resistance (213). 

4.1.2 Mouse Models of Obesity - The db/db and ob/ob Mouse 

In study II, obese diabetic db/db mice and their lean littermates (+/?) were studied at 16-19 

weeks of age. The db/db mouse is a model of obesity and T2DM and it expresses a nonfunctional 

splice variant of the long isoform of the leptin receptor; Lepr
db

 (372). This renders cells 

insensitive to leptin signaling. Mice homozygous for the mutation are hyperphagic and markedly 

heavier than control mice at a very young age. Furthermore, db/db mice present mild 

hyperglycemia, hyperinsulinemia, infertility and cold sensitivity (373; 374) due to inefficient 

brown adipose tissue response to noradrenaline (375).  

In study III, obese ob/ob mice and lean littermates (+/?) were studied at 14-20 weeks of age. The 

ob/ob mouse has a point mutation in the ob gene, Lep
ob

, which results in a premature stop codon 

and complete lack of the leptin hormone (142). Similar to the db/db mouse, the homozygous 

ob/ob mice are hyperphagic, obese, subfertile and incapable of cold adaptation (361; 374; 376). 

This is due to abnormal brown adipose tissue mitochondria. The ob/ob mouse also has reduced 

brown adipose tissue response to adrenergic signals (377), hypothyroidism (378) and reduced 

bone mass (379).  

4.2 LEPTIN TREATMENT 

In study III, ob/ob mice and lean (+/?) littermates were used to elucidate the effect of leptin 

repletion on mitochondrial function. The mice were matched for age and weight (within 

genotypes), and randomized to receive once-daily intraperitoneal injections with either sterile 

0.9% saline or 1 mg/kg body weight of sterile leptin (Preprotech, Rocky Hill, NJ). Recombinant 

leptin was reconstituted according to the manufacturer’s instructions (AMI) in sterile PBS, 

sterilized by filtration (0.2 µm acetate membrane; VWR) and stored at -20°C until use. Great 
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care was taken to avoid repeated freeze-thawing. Following a two-day lead-in with sterile 0.9% 

saline, the mice were treated with saline or leptin for five days at 15:00-17:00 for maximum 

effect during the wake period. Body weight, food intake and water consumption was monitored 

daily. Body composition (fat, lean, fluid and free water mass) was measured by magnetic 

resonance imaging (EchoMRI™, Houston, TX) before and after treatment. Tissues were 

collected the morning after the last treatment.  

4.3 HISTOCHEMISTRY 

Gastrocnemius, plantaris, soleus and extensor digitorum longus (EDL) skeletal muscles were 

dissected and frozen together in Tissue-Tek O.C.T. compound (Sakura Finetek Europe, 

Zoeterwoude, Netherlands) in isopentane cooled in N2 (l). 10 µm serial cross-sections were 

generated using a Microstat HM 500M cryostat (MICROM Laborgeräte GmbH, Walldorf, 

Germany). Sections were mounted on SuperFrost glass slides (Menzel GmbH & Co., 

Braunschweig, Germany) and stored at -20°C. Unless stated otherwise, all reagents were from 

Sigma-Aldrich. 

4.3.1 Myosin Heavy Chain Isoform Immunohistochemistry 

Immunohistochemical staining for myosin heavy chain (MyHC) isoforms was performed using 

rabbit anti-mouse monoclonal MyHC type IIa (SC-71) and MyHC type I (D-5) antibodies, kindly 

donated by Professor Stefano Schiaffino, together with the Vector M.O.M Immunodetection Kit 

(Vector Laboratories Inc.) AMI. Briefly, after allowing the sections to air dry, they were blocked 

with an Avidin/Biotin Blocking reagent (Vector Laboratories Inc.) as instructed. The sections 

were then incubated with mouse immunoglobulin (Ig) blocking reagent for 1 hour, briefly pre-

incubated with antibody diluent and probed with primary antibody diluted 1:500-1:1000 for 30 

min. Subsequently, slides were incubated in biotinylated rabbit anti-mouse IgG reagent for 10 

min, followed by fluorescein Avidin DCS for 5 min. Each step was followed by washing in PBS 

(10 mM Na3PO4, 0.15 M NaCl, pH 7.4-7.8). Finally, slides were mounted using 

VECTASHIELD® mounting medium (Vector Laboratories Inc., Burlingame, CA) for image 

capture. 

4.3.2 Succinate Dehydrogenase Staining 

Succinate dehydrogenase (SDH), ETC complex II, is an indicator of oxidative capacity. 

Histochemical staining intensity of SDH differs between skeletal muscle fiber types IIb, IIa, and 

I; the latter staining the darkest. Slides were treated with incubation solution for 8 min at RT (6.5 

mM NaH2PO4, 43.5 mM Na2HPO4, 0.6 mM nitro blue tetrazolium, 50 mM sodium succinate, pH 

7.6), washed in 0.9% saline and fixed in 15% ethanol. Coverslips were then mounted using 

aqueous mounting medium (Dako, Glostrup, Denmark). 

4.3.3  Myosin ATPase Staining 

Myosin II ATPase staining exploits the differential sensitivity of ATPase I, IIa, IIx and IIb 

eznymes to inhibition by acidic or alkaline conditions. Acidic preincubation inhibits type IIa, IIx 

and IIb enzymatic activity, resulting in dark staining (cobalt sulfide) of only type I fibers. 

Skeletal muscle fiber sections were preincubated under acidic conditions for 4 min (0.2 M 

sodium acetate, 0.1 M KCl, pH 4.43), washed (0.1 M NaOH, pH 9.4) and incubated with ATP 
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(90 mM glycine, 65 mM CaCl2, 90 mM NaCl, 3 mM ATP, pH 9.4) for 20 min at 37°C. 

Differential fiber type staining was then resolved by sequential incubation with 1% (w/v) CaCl2 

(aqeous solution) for 3 min and 2% (w/v) CoCl2 (aq) for 3 min. Following a wash in dH2O and 

1% (v/v) (NH4)2S for 1 min, the slides were again rinsed thoroughly with dH2O and air dried. 

Coverslips were mounted using aqueous mounting medium (Dako, Glostrup, Denmark). 

4.3.4  Image Capture and Analysis 

Image capture in study I was performed using an Olympus DP70 camera (Olympus Corporation, 

Japan) and Cast software (Visiopharm, Horsholm, Denmark), unless stated otherwise. 

Quantification of fiber type composition was performed using Image J software (National 

Institutes of Health). Fiber types were assigned based on threshold values of particle density: 

type I fibers <40, type IIa 40 - 210, and type IIb >210, as determined by Image J. Approximately 

100 fibers counted per muscle section and the percentage of each fiber type was calculated. 

4.4 ELECTRON MICROSCOPY 

In study I, mitochondrial ultrastructure in white gastrocnemius skeletal muscle was evaluated by 

transmission electron microscopy (TEM; Morgagni 268, FEI Co., Hillsboro, OR). The muscle 

was perfused-fixed (2.5% [v/v] glutaraldehyde, 300 mM sucrose, 0.1 M cacodylate, pH7.2–7.4), 

dissected, cut into approximately 1x1x2-mm pieces, incubated in the same fixative overnight and 

post-fixed for 1 hour in 1% (v/v) osmium tetroxide. Samples were then dehydrated through a 

graded series of ethanol and acetone (30% ethanol for 10 min, 50% ethanol for 20 min, 70% 

ethanol for 30 min, 70% ethanol for 20 min, 85% ethanol for 20 min, 95% ethanol for 20 min, 

99% ethanol 3 x 20 min, 99% ethanol:acetone 1:1 for 20 min, and 100% acetone x3). Samples 

were pre-embedded in acetone/Durcupan resin (Fluka, Sigma-Aldrich) 3:1 for 1 hour with 

rotation, followed by acetone:Durcupan 1:1 with rotation overnight. Samples were then 

embedded in Durcupan for 4 hours with rotation, placed in Durcupan-filled moulds, de-gassed 

for 10-20 min at 50°C and left to harden at 50°C for 24 hours. Ultrathin 70 nm sections were cut 

with a Leica Ultracut UCT (Leica Microsystems, Wetzlar, Germany) and placed on copper mesh 

grids (Electron Microscopy Sciences, Hatfield, PA). Sections were then post-fixed with 2% 

(w/v) uranyl acetate for 6 min, and counterstained with lead citrate (80 mM Pb[NO3]2, 160 mM 

sodium citrate, 160 mM NaOH) in the presence of NaOH (s) for 3 min in a closed container. 

Post-fix and counterstaining were both followed by gentle wash in dH2O. Grids were air dried 

and stored until viewing by TEM. TEM image capture was done using an AMT camera system 

(Advance Microscopy Techniques Corp., Danvers, MA) at x 20,400 magnification. 

Quantification of mitochondrial volume, area percentage and number was performed using 

Image J software (National Institutes of Health), version 1.37. 

4.5 MITOCHONDRIAL RESPIROMETRY 

Mitochondrial function was assessed using a closed, two chamber, high-resolution respirometry 

system (Oroboros Oxygraph-2k; Oroboros Instruments, Innsbruck, Austria) (355; 356; 380; 

381). In study I, mitochondrial respirometry was measured in white gastrocnemius. In study II 

and III, respiration was measured in glycolytic EDL and oxidative soleus skeletal muscle, as well 

as in liver.  
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Skeletal muscle samples in all three studies were processed the same manner. Following 

dissection, sample were placed in ice-cold BIOPS relaxing solution (2.8 mM Ca2K2EGTA, 7.2 

mM K2EGTA, 5.8 mM ATP, 6.6mM MgCl2, 20mM taurine, 15mM sodium phosphocreatine, 20 

mM imidazole, 0.5 mM dithiothreitol, and 50 mM MES, pH 7.1). Using fine forceps and a 

microscope, the muscle samples were cleaned of fat, blood and tendons; and fibers were 

separated to expose maximum surface area. The muscle samples were then transferred to ice-

cold BIOPS supplemented with 0.005% (w/v) saponin for permeabilization of the sarcolemma, 

and incubated on ice with agitation for 10 min. This was followed by equilibration in ice-cold 

MiR05 respirometry medium (0.5 mM EGTA, 3 mM MgCl2, 60 mM potassium lactobionate, 20 

mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, and 0.1% [w/v] bovine serum 

albumin, pH 7.1) with agitation for 30 min. Muscle samples were blotted for 30 sec before 1-2 

mg of tissue was added to the experimental chamber. Liver (biopsy from the right lobe) samples 

were subjected to mild mechanical permeabilization (355) in amino-acid depleted MiR05 (20 

µl/mg body weight), to allow for later protein concentration measurement. The equivalent of 1 

mg of tissue was added to the experimental chamber. All respirometry experiments were 

performed using MiR05.  

Oxygen flux caused by endogenous uncoupling, denoted “LEAK” in figures (see Table 1 and Fig. 

4), was measured by adding malate (final concentration 2 mM) and pyruvate (10 mM), in the 

absence of ADP. Oxidative phosphorylation capacity, an indication of coupling efficiency, was 

quantified by adding ADP (5 mM, OXPHOS), followed by glutamate (20 mM) for additional 

complex I-supported oxidation (C I), and succinate (10 mM) for convergent electron flow 

through both complex I and II (C I+II). For maximum flux through the electron transfer system 

(ETS I+II), the exogenous protonophore carbonylcyanide-4-(trifluoromethoxy)-phenyl-

hydrazone (FCCP) was titrated, to a final concentration of 0.7 µM for liver and 0.3 µM for 

skeletal muscle. Finally, electron transport through complex I was inhibited (ETS II) by adding 

rotenone (0.1 µM), followed by complex III inhibition (ZERO, data not shown in figures) by 

antimycin A (2.4 µM). ZERO oxygen flux, which is independent of the electron transfer system, 

was subtracted from the values of each of the previous steps. Absolute oxygen flux values are 

expressed relative to tissue wet weight per second (JO2, [pmol O2/mg/s]). The flux control ratio 

(FCR) describes the relative contribution of each state to maximum oxygen flux, and is 

expressed as a ratio over ETS I+II. 

The implications of comparing data from studies using isolated mitochondria versus 

permeabilized tissue mainly concern aspects of processes directly dependent on membrane 

intactness. The first is complex I function; all citric acid cycle enzymes, except for succinate 

dehydrogenase (complex II), are soluble and located in the mitochondrial matrix. In the process 

of mitochondrial isolation, it is unavoidable that some of the matrix contents will leak out, while 

components of the cytosol and the experimental buffer leak in, as shearing forces disrupt parts of 

the mitochondrial networks and membranes (382-384). A second concern related to membrane 

damage is that ADP availability, one key controller of oxidative phosphorylation, is regulated by 

transporters in the outer mitochondrial membrane (385). Studies on isolated mitochondria (385) 

and permeabilized skeletal muscle fibers (386) provide evidence that mitochondrial isolation 

reduced the ADP Km (concentration at half maximum reaction speed) approximately by a factor 

of ten (387). Finally, there is a risk that the mitochondrial isolation process results in differential 

recovery of mitochondria, which would lead to a selection bias in terms of actual versus 

measured respiratory capacity. 
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Figure 4. Schematic depiction of compounds added during the respirometry experiment, their targets and 
the corresponding respiratory flux as presented in figures. Mal – malate, Pyr – pyruvate, Suc – succinate, 
AnA – antimycin A, FCCP - carbonylcyanide-4-(trifluoromethoxy)-phenyl-hydrazone.  

4.5.1.2 Sample Handling 

In study I, all measurements were made in duplicate. The duplicate measurements were highly 

reproducible. However, interexperimental variation was identified as an important issue to 

address. Therefore tissues, rather than sample duplicates, were run in parallel in study II and III. 

If an experiment had to be terminated prematurely, or results diverged greatly from the expected, 

the experiment was repeated whenever possible. Examples of such circumstances are extremely 

low respiratory rates or response to substrate, unexplained “spikes” in the respiration 

measurements, or human error. 

If the skeletal muscle samples could not be used for respirometry right away, they were kept in 

MiR05 at 4°C for up to 6 hours (381), following permeabilization. Previous studies in muscle 

have demonstrated that appropriate storage for up to 24 hrs does not affect mitochondrial 

performance. Analysis of our own data sets did not reveal any differences in mitochondrial 

function between muscle samples that had been used for respirometry immediately following 

equilibration and those that had been properly stored in this manner. Although one would 

normally strive to use all samples immediately, there were several reasons for this compromise 

in study II and III. First, we planned to measure mitochondrial respiration in several tissues from 
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the same mouse, and preferably analyze tissues representing more than one genotype or 

treatment condition per day to minimize experimental variation. Second, the time required for 

experiments in different tissues vary; experiments on liver and brain samples normally take half 

the time (45-60 min) of a typical muscle experiment (1.5-3 hrs). Third, the viability of liver 

samples is poor with respiratory responses to substrates being visibly lower after less than 1 hour 

(unpublished observations). A typical experimental design would then be to run storage-sensitive 

tissues from the first preparation while collecting tissues from the second. Following appropriate 

between-experiment cleaning, the second round of storage-sensitive tissues is performed while 

keeping processed skeletal muscle from both donors in MiR05 on ice. Finally, the muscle 

experiments are performed, starting with the first set in order to equalize storage times. 

4.5.1.3 Data Presentation – Flux Control Ratio 

The FCR is a means of obtaining a theoretical minimum and maximum limit of oxygen 

consumption capacity, by normalizing the oxygen flux for each state by that of the maximum (in 

our case, ETS I+II). Importantly, the FCR is independent of mitochondrial mass. However, 

changes in ETS I+II will be propagated to all FCR values. An alternative means of normalization 

is substrate control ratio, in which the measured states of oxygen flux are normalized by a 

common coupled reference state. This method presents the same problem with calculation 

artifacts as the FCR, with the additional limitation that substrate control ratio only provides 

relative values without an absolute maximum. 

4.6 BIOCHEMICAL ANALYSES OF GLYCOGEN AND TRIGLYCERIDE CONTENT 

In study II and III, glycogen and triglyceride content was measured in liver and skeletal muscle 

(soleus and gastrocnemius in study II, gastrocnemius in study III).  

4.6.1 Glycogen Content Measurement 

Glycogen content was measured using a standardized fluorometry-based biochemical method. In 

this method, intracellular glucose is phosphorylated in vitro by hexokinase, and subsequently 

converted to gluconic acid by glucose-6-phosphate dehydrogenase. This reaction produces 

nicotinamide adenine dinucleotide phosphate (NADPH), which is measured fluorometrically. To 

determine glycogen, tissue samples were lysed in 1 N HCl at 100°C for 2 hours and centrifuged 

at 2,000 x g. Liver samples required a further dilution of 1:4 with 1 N HCl. Samples were then 

mixed 1:200 with fluorometry assay buffer (50 mM Tris-HCl [pH 8.1], 300 µM ATP, 2 mM 

MgCl2, 0.02% (w/v) fatty acid-free bovine serum albumin [BSA], 40 µM NADP, and 1 µg/ml 

glucose-6-phosphate dehydrogenase, supplemented with 1 µl/ml hexokinase in dilution buffer 

[20 mM imidazole, 0.02% (w/v) fatty-acid free BSA]), followed by fluorometry (TD-700, Turner 

Design, Sunnyvale, CA). Glycogen content was calculated using a standard curve.  

4.6.2 Triglyceride Measurement 

Triglyceride content was measured by a standard enzymatic colorimetric method. In this 

procedure, free glycerol is first eliminated enzymatically, followed by enzymatic hydrolysis of 

triglyceride in the presence of lipase and 4-aminophenazone. Liberated glycerol is determined 

spectrophotometrically (Libra S22, Biochrom Ltd., Cambridge, UK). Samples were 

homogenized in a 3:2 heptane-isopropanol solution with 1% (v/v) Tween-20. Thereafter, a 
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Trig/GB kit (triglycerides/glycerol blanked kit; Roche Diagnostics Scandinavia, Bromma, 

Sweden) was used AMI along with a Precinorm L standard (Roche Diagnostics Scandinavia). 

4.7 ANALYSIS OF PROTEIN ABUNDANCE 

Reagents for denaturing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) and precast gels were purchased from Bio-Rad, Hercules, CA. 

4.7.1 Western Blot 

Tissue samples used for protein analysis were homogenized in ice-cold lysis buffer (study I - 50 

mM HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 7.5], 10% [v/v] glycerol, 

1% [v/v] Triton X-100, 2 mM dithiotreitol, 1 mM ethylenediaminetetraacetic acid [EDTA], 1 

mM benzamidine, 1 µg/ml aprotinin, 0.2 mM phenylmethylsulfonyl fluoride, 1 µg/ml leupeptin, 

1 µM microcystin, 5 mM Na4P2O7, 10 mM NaF, 0.5 mM Na2VO4; study II and III – 20 mM 

Tris-HCl [pH 7.8], 1 mM MgCl2, 2.7 mM KCl, 135 mM NaCl, 10 mM NaF, 0.5 mM Na2VO4, 

1% [v/v] protease inhibitor cocktail [VWR]). Following homogenization, samples were rotated 

end-over-end for 1 h at 4°C and subjected to three freeze/thaw cycles to disrupt the 

mitochondria; freezing at -80°C overnight, defrost for 1-2 hours at +4°C, vortex → two cycles of 

-80°C for 30 min, defrost and vortex). Samples were then centrifuged at 10,000 x g for 15 min at 

4°C. Supernatants were removed for protein determination using Pierce BCA protein assay kit 

AMI (Nordic Biolabs, Täby, Sweden). Finally, samples were diluted to equal concentrations 

using lysis buffer and Laemmli sample buffer (62.5 mM Tris-HCl [pH 6.8], 2% [w/v] sodium 

dodecyl sulphate, 10% [w/v] glycerol, ~0.002% [w/v] bromophenol blue and 5% [v/v] β-

mercaptoethanol). 

To examine protein abundance, Western blot analysis and chemiluminescent detection were 

performed. Proteins were separated by SDS-PAGE, transferred to polyvinylidene difluoride 

membranes (PVDF; Millipore, Billerica, MA) (transfer buffer: 0.03 M Tris base, 0.24 M glycine, 

20% methanol) and blocked in 5% (w/v) nonfat dry milk in Tris-buffered saline with Tween 

(TBST; 20 mM Tris base, 137 mM NaCl, pH 7.6, containing 0.1% (v/v) Tween-20). SDS-PAGE 

in study I was performed using gels prepared as follows: stacking gel: 0.12 M Tris-HCl [pH 6.8], 

3.8% [v/v] 37.5:1 acrylamide/bis, 0.1% [v/v] sodium dodecyl sulphate [SDS], 0.1% [v/v] 

ammonium persulphate [APS], 1‰ tetramethylethylendiamine [TEMED]; resolving gel: 0.375 

M Tris-HCl [pH 8.8], 7.5% [v/v] 37.5:1 acrylamide/bis, 0.1% [v/v] SDS, 0.045% [v/v] APS, 

0.5‰ TEMED. Proteins were separated overnight at 14-20 mA with water cooling, with running 

buffer (0.025 M Tris-base, 0.19 M glycine, 0.1% [w/v] SDS, pH 8.3). Membrane transfer was 

conducted on ice at 500 mA for 3 hours with transfer buffer (0.03 M Tris base, 0.24 M glycine, 

20% [v/v] methanol). In study II and III, precast Criterion gradient gels were used for protein 

separation (4-12%, Tris-based; XT-MES running buffer; approximately 500 mA at room 

temperature for 45 min) and transfer was performed on ice for 90 min at approximately 600 mA. 

Additionally, in study III the membranes were stained with Ponceau S solution (2 min staining 

and 1 min + 2 min wash in distilled water) and scanned prior to blocking. 

The PVDF membranes were treated with methanol pre- and post-transfer AMI. After a quick 

wash with TBST, the membranes were probed with primary antibody (overnight at 4°C or 1 hour 

at room temperature), washed thoroughly in TBST, and incubated with the appropriate 
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horseradish peroxidase (HRP)-conjugated anti-IgG antibody for 1 hour at room temperature. 

Antibody-bound protein was detected using enhanced chemiluminescence AMI (GE Healthcare, 

Little Chalfront, UK), and quantified by densitometry (Quantity One analytical software in 

conjunction with GS-710 calibrated densitometer  in study I, and a GS-800 Calibrated 

Densitometer in study II and III; both densitometer and software were from Bio-Rad). For 

repeated probing, the membrane was stripped of bound antibodies in stripping buffer (0.06 M 

Tris-HCl [pH 6.8], 2% [w/v] SDS, 0.7% [v/v] β-merkaptoethanol) for 45 min at 56°C, followed 

by thorough washing in TBST and blocking at 4°C overnight. Each membrane was probed a 

maximum of three times.  

Target  Alternative name Function/ Pathway Manufacturer Specificity 

ATP5A1  ATP synthesis Molecular Probes/ 
Invitrogen 

M 

Cyt c  ETC PharMingen International M 
DNM1L DRP1 Mitochondrial fission Santa Cruz Biotech., Inc. P 
GAPDH  Glycolysis Santa Cruz Biotech., Inc. P 
MFN-2  Mitochondrial fusion Santa Cruz Biotech., Inc. P 
MT-CO1 COX1 ETC complex IV Molecular Probes/ 

Invitrogen 
M 

NDUFA9  ETC complex I Molecular Probes/ 
Invitrogen 

M 

NRF-1  TF, nuclear Santa Cruz Biotech., Inc. P 
OPA1  Mitochondrial fusion Abnova M 
PEPCK  Gluconeogenesis Santa Cruz Biotech., Inc. P 
PGC-1  Transcription Chemicon International/ Millipore P 
PPARα  TF, nuclear Santa Cruz Biotech., Inc. P 
SDHA  ETC complex II Molecular Probes/ 

Invitrogen 
M 

SOD2  ROS scavenging Abcam M 
TFAM  TF, mito. 

 
Santa Cruz Biotech., Inc. (study I) 
Abnova (study II) 

P 
M 

Tubulin  Structural Millipore P 
UCP3  Transport Chemicon International/ Millipore P 
UQCRC1  ETC complex III Molecular Probes/ 

Invitrogen 
M 

UQCRC2  ETC complex III Molecular Probes/ 
Invitrogen 

M 

Table 2. Antibodies used for Western blot protein detection. ETC – electron transport chain, TF – 
transcription factor. ROS – reactive oxygen species, M – monoclonal, P – polyclonal. 

The primary antibodies used are listed in Table 2. In study I, commercially available secondary 

HRP-conjugated goat anti-mouse, and donkey anti-rabbit/goat/mouse IgG antibodies were 

obtained from the Jackson ImmunoResearch Laboratories (West Grove, PA). In study II and III, 

HRP-conjugated goat anti-mouse and anti-rabbit IgG were purchased from Bio-Rad.  

In all three studies, total protein abundance is expressed as fold change compared to the 

appropriate control group. Data for OPA1 represents a ratio of long (a-b) to short (c-e) isoforms. 

The appearance of OPA1 proteolytic cleavage isoforms is an indicator of mitochondrial stress 

(388; 389). Values presented are mean ± standard error of the mean (S.E.). 
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4.7.2 Myosin Heavy Chain Isoform Abundance 

The separation of MyHC isoforms was performed to examine muscle fiber type composition of 

mouse models. The white skeletal muscle portion of the gastrocnemius skeletal muscle was 

homogenized in ice-cold lysis buffer (20 mM Tris-HCl [pH 7.8], 10% [v/v] glycerol, 1 mM 

MgCl2, 2.7 mM KCl, 137 mM NaCl, 1% [v/v] Triton X-100, 1 mM EDTA, 1 µg/ml aprotinin, 

0.2 mM phenylmethylsulfonyl fluoride, 1µg/ml leupeptin, 1 µM microcystin, 5 mM Na4P2O7, 10 

mM NaF, 0.5 mM Na3VO4) and 50 µl was removed for electrophoretic separation. Total protein 

content was assessed using a Pierce BCA protein assay kit AMI (Nordic Biolabs) and the sample 

aliquots were diluted to equal concentrations using lysis buffer and Laemmli sample buffer (62.5 

mM Tris base, 2% [w/v] sodium dodecyl sulphate, 10% [w/v] glycerol, ~0.002% [w/v] 

bromophenol blue and 5% [v/v] β-merkaptoethanol; pH 6.8). Separation of MyHC isoforms by 

glycerol SDS-PAGE (stacking gel: 4% [v/v] 40:1 acrylamide/bis, 0.8% [v/v] 2:1 bis, 37% [v/v] 

glycerol; resolving gel: 8% [v/v] 40:1 acrylamide/bis, 0.2% [v/v] 2:1 bis, 37% glycerol) was 

performed with upper (100 mM Tris base, 150 mM glycine, 0.1% [w/v] SDS; pH 8.6) and lower 

running buffer (50 mM Tris base, 75 mM glycine, 0.05% [w/v] SDS) at equal levels (390). One 

µg of total protein was loaded and separated at 4°C for 28 hrs at 5-10 mA. Gels were then fixed 

overnight (10% (v/v) acetic acid, 40% (v/v) ethanol), and stained using the SilverQuest™ silver 

staining kit (Invitrogen) AMI. Finally, the gels were scanned with a GS-710 calibrated imaging 

densitometer (Bio-Rad), the different MyHC isoforms identified according to migration 

characteristics as described (390) and their relative proportion determined using Quantity One 

software (Bio-Rad).  

4.8 GENE EXPRESSION ANALYSES 

4.8.1 Quantitative PCR 

Skeletal muscle total mRNA was extracted using TRIzol (Invitrogen). The mRNA was purified 

further using the RNeasy Mini Kit AMI (Qiagen, Hilden, Germany). Liver total mRNA was 

extracted using QIAshredder (Qiagen) AMI, followed by purification with the Rneasy Mini Kit. 

The mRNA concentration and purity was measured spectrophotometrically (study I: Eppendorf 

BioPhotomer, Eppendorf AG, Hamburg, Germany; study II and III: Nanodrop 1000, Thermo 

Scientific, Wilmington, MA). Samples were diluted to equal concentrations with sterile and 

RNase-free water prior to cDNA synthesis. Converson of mRNA to cDNA was performed AMI 

using the SuperScript First Strand Synthesis System (oligo[dT] primers; Invitrogen) in study I, 

and SuperScript III First-Strand Synthesis Supermix (oligo[dT2] primers; Invitrogen) in study II 

and III, according to the manufacturer’s instructions. Quantitative polymerase chain reaction 

(PCR) was then performed in duplicate in a 96-well format (SYBR Green: 1X SYBR green mix, 

0.7 µM each of forward and reverse primer; TaqMan assay [Applied Biosystems, Foster City, 

CA]: 1X TaqMan PCR Master Mix, 1X primer/probe mix; 10-25 ng cDNA) using an ABI Prism 

7000 Sequence Detector (Applied Biosystems). 

In study I, quantitative PCR was performed with SYBR Green primer/probe sets selected using 

the Primer Express software (Applied Biosystems). Relative expression was normalized against 

acidic ribosomal phosphoprotein PO (36B4). In study II and III, mRNA expression quantitative 

PCR was performed in multiplex with predesigned TaqMan assays (Applied Biosystems, Foster 

City, CA) and normalized against β-actin. Primer sequences are shown in Table 3. Quantification 
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of mRNA expression was normalized to a designated housekeeping gene and calculated using 

the standard curve method (391). 

SYBR green primers 

Target Forward Primer Reverse Primer 
36B4 CCCTGAAGTGCTCGACATCA TGCGGACACCCTCCAGAA 

ALAS CGCCGATGCCCATTCTT ACAACAGAGACTTTCCTGCCTTCT 

β-actin GCCCTGAGGCTCTTTTCCAG TGCCACAGGATTCCATACCC 

Catalase TGAGAAGCCTAAGAACGCAATTC CCCTTCGCAGCCATGTG 

COX4 GCAGCCTTTCCAGGGATGA TCTCGGCGAAGCTCTCGTTA 

CS TGTCCTGCCCCTCCTCATC GTGCTGGAGTTGGGTTCCA 

Cyt c GGAAAAGGGAGGCAAGCATAA GCAGCCTGGCCTGTCTTC 

Drp-1/Dnm1l GCCCAGCCTACGGTGTGT GCTGTAATTGCTACAATGCTGAATG 

ERRα GGGAAGCTAGTGCTCAGCTCTCT CAGGATGCCACACCGTAGTG 

LonP GTGGGCAAGACCAGCATTG CACCAACACTGAAACGGAAGTATT 

LPL  CTGGGCTATGAGATCAACAAGGT AGGGCATCTGAGAGCGAGTCT? 

MCAD TTCCCAAGGAAATGAGATCAAAG TCCTCCGCCATGGGAAT 

MFN-2 TGAAAGTCACTGTGCATTTGATAAAGT GGCGCCCATCAGTCATTC 

MT-CO1 TCAGTATCGTATGCTCAACAAATTTAGA TGGTTCCTCGAATGTGTGATATG 

MyHC I TTGTGCTACCCAGCTCTAAGGG CTGCTTCCACCTAAAGGGCTG 

MyHC IIa AAGCGAAGAGTAAGGCTGTC CTTGCAAAGGAACTTGGGCTC 

MyHC IIb GAAGAGCCGAGAGGTTCACAC AGGACAGTGACAAAGAACGTC 

MyHC IIx GAAGAGTGATTGATCCAAGTG ATCTCCCAAAGTTATGAGTACA 

NRF-1 CCACGTCCTTCACCAAAGCT CACGCTGTGTCCTGGATCTTC 

NRF-2 CAAGAGCAACAGATGAATGAG ACTTTAATCGTAGTCGGTGTAG 

OPA1 GGCATTTTATAGATTCTGAGCTGGAA GCGAGCATGCGCTGTATTC 

PDK4 GAAAGTCGAGTTCAAAAGGGAGAT TTTCCCAACATGCACAATCCT 

PGC-1α CATTTGATGCACTGACAGATGGA CCGTCAGGCATGGAGGAA? 

PGC-1β TGCTCTGCCCTCGATGTGCC GACTACTGTCTGTGAGGCTGCCC 

PPARα CGATGCTGTCCTCCTTGATGA CTCGCGTGTGATAAAGCCATT 

PPARβ/δ TCTCCGCAAGCCCTTCAGT TCCAGCGCATTGAACTTGAC 

SOD2  CACTCACGGCCACATTGAGT CAGTCATAGTGCTGCAATGCTCTA 

TFAM  AGGCTTGGAAA AATCTGTCTC TGCTCTTCCCAAGACTTCATT 

TaqMan assays 

Target Accession number/Custom primer set 
ATP5A1 Mm00431960_m1  

β-actin Mm00607939_s1  

Cyt b  FWD: AAAGCCACCTTGACCCGATT 
TAMRA probe: CGCTTTCCACTTCATCTTACCATT 

REV: GATTCGTAGGGCCGCGATA 

Drp-1/Dnm1l Mm01342903_m1  

MFN-2 Mm00500120_m1  

MT-CO1 Mm04225243_g1  

NDUFA9 Mm00481216_m1  

OPA1 Mm00453879_m1  

SDHA Mm01352366_m1  

SOD2 Mm01313000_m1  

TFAM Mm00447485_m1  

UQCRC1 Mm00445911_m1  

Table 3. Primers used for quantification of mRNA expression. 
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5. RESULTS AND DISCUSSION 

The aim of this thesis is to dissect out pathways which regulate mitochondrial biogenesis and to 

identify molecular targets that can modulate mitochondrial function, with an emphasis on 

ameliorating insulin resistance.  

5.1 TISSUE-SPECIFIC MITOCHONDRIAL FUNCTION 

Tissue-specific mitochondrial respiration in glycolytic and oxidative skeletal muscle, and liver 

was characterized in wild-type mice. This question has been addressed previously by others (18; 

141; 392-397), but investigations of permeabilized biopsies from various tissue collected from 

the same animal have not been performed.  

Comparing mitochondrial respiration in glycolytic EDL and oxidative soleus skeletal muscle, 

and liver, these tissues are easily distinguished by their respiratory phenotypes. The oxygen 

consumption in oxidative soleus muscle is consistently 80-90% higher than in glycolytic EDL 

muscle (Fig. 1A), which is in line with previous findings of oxidative muscle having more 

mitochondria with a higher oxidative phosphorylation activity (394; 396; 398; 399). In both 

muscle types, C I+II (maximal coupled respiration) is nearly equal to ETS I+II (maximal 

uncoupled respiration); indicating that in the resting state, membrane uncoupling may not be a 

significant feature of skeletal muscle mitochondrial function.  

 

Liver respiration is low in the LEAK, OXPHOS and C I states. The comparatively low response 

to ADP appears to be consequent of low C I activity, demonstrating that the liver preferentially 

uses glucose for lipogenesis and other biosynthesis processes (400), while only a small 

proportion is used for oxidation. Maximal coupled and uncoupled electron transport capacity, in 

contrast, is comparable to that of EDL muscle; proving the liver to be a highly metabolically 

active tissue (395). 

 

Apart from the difference in scale between EDL and soleus respiratory capacity, they can also be 

distinguished by FCR, the contribution of each respiratory state to maximal electron transport 

capacity (Fig. 1B). Complex I dominates respiration in both EDL and soleus. The complex I 

contribution is also somewhat higher in EDL, which corresponds to its glycolytic properties. 

Liver, in contrast, is more reliant on complex II; C I+II contribution to maximal electron 

transport capacity is three times higher than that of C I alone (Fig. 1A). Consequently, the 

response to complex I inhibition in liver (ETS II) is low. The low degree of endogenous 

uncoupling (LEAK) in liver is further emphasized by the marked increase in respiration by 

uncoupling (Fig. 1A and B).  
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Figure. 4. Tissue-specific mitochondrial 
respiratory capacity in wild-type mice 
studied in Holmström et al, 2012 (401). A. 
Mitochondrial respiratory capacity expres-
sed as mass-specific oxygen flux (JO2, 
pmol·mg

-1
·s

-1
). B: Flux control ratio (FCR). 

Open bar - liver; gray bar - EDL, closed 
bar - soleus. Data are presented as 
mean±S.E. (N = 6–8). *p˂0.05 vs. liver 
and EDL muscle; ‡p˂0.05 vs. EDL and 
soleus muscle. 

 

 

 

 

 

 

 

 

The functional implication of the C I+II FCR value is that a value below 1.0 means that ATP 

synthesis, the main site for proton re-entry, is rate-limiting for electron transport. In both 

glycolytic and oxidative skeletal muscle, the FCR for C I+II is close to 1.0, suggesting that the 

electron transport efficiency of the oxidative phosphorylation system, from complex I to ATP 

synthase, under these conditions, is close to 100%. Thus, electron transport cannot be further 

enhanced by membrane uncoupling. This is reasonable for skeletal muscle, an organ where both 

frequency and amplitude of energy output may be intermittent. Conversely, in liver, the C I+II 

FCR is closer to 0.7, leaving almost 30% of “spare capacity”. The biological rationale for this 

phenomenon is incompletely resolved, but there are clues. One study investigated the hepatic 

transcriptional response to high-fat diet in two mouse strains; one sensitive (C57Bl/6J) and the 

other resistant (A/J) to high fat diet-induced non-alcoholic liver disease (402). A key difference 

between the two strains appeared to be the ability of the A/J mouse to induce expression of genes 

associated with mitochondrial uncoupling (402; 403). This uncoupling flexibility could be a 

mechanism of dissipating surplus charge elicited by increased fuel supply in the absence of 

increased need for ATP synthesis. Also, increased coupling efficiency (i.e. low proton leak) has 

implications for production of ROS, which act as signaling molecules in several cell types. In 

liver, ROS are important signaling molecules for induction and activation of detoxifying 

pathways (404-406); e.g. mediated by NRF-2 (407).  
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5.2 AMPK ACTIVITY INCREASES MITOCHONDRIAL BIOGENESIS, BUT NOT 
FUNCTION IN GLYCOLYTIC SKELETAL MUSCLE 

AMPK is a metabolic switch which enables the cell to favor energy production in times when the 

energy charge falls, i.e. the ATP/AMP ratio decreases (408-410). The AMPKγ3
R225Q

 mutation 

transgenically expressed in the mouse introduces a conformational change that surpasses the 

allosteric regulation by AMP and ATP. Hence, the degree of phosphorylation and activation of 

the catalytic AMPKα subunit is increased (213). The aim of this study was to determine if the γ3 

subunit of the AMPK enzyme has a role in signaling pathways mediating mitochondrial 

biogenesis in skeletal muscle and if the AMPKγ3 subunit is necessary for mitochondrial function 

Three mouse strains were used; AMPKγ3
-/-

, expressing no γ3 subunit, and Tg-AMPKγ3
WT

 and 

Tg-AMPKγ3
R225Q

 expressing a transgene containing the wild-type γ3 subunit and the mutated 

γ3
R225Q

 subunit (213), respectively.  

5.2.1 AMPKγ3R225Q Induces Robust Changes in Gene Expression 

The mRNA expression of several markers of mitochondrial function and biogenesis, intracellular 

metabolism and transcriptional control was investigated. Removal of the AMPKγ3 subunit did 

not result in altered transcription of any of the targets measured, compared to wild-type 

littermates. Overexpression of AMPKγ3
WT

 reduced transcription of PGC-1β only. Expression of 

AMPKγ3
R225Q

, in contrast, was associated with marked changes in transcriptional profile, 

increasing expression of the transcriptional regulators PGC-1α, NRF-1, NRF-2 and TFAM; the 

metabolic markers medium-chain acyl-CoA dehydrogenase (MCAD), citrate synthase and 

ALAS; the ROS scavengers SOD2 and catalase, and the mediators of mitochondrial dynamics 

MFN-2, OPA1, DNM1L and Lon protease. Furthermore, the mitochondrial-to-nuclear DNA 

ratio was unchanged in AMPKγ3
-/-

 and Tg-AMPKγ3
WT

 muscle compared to wild-type 

littermates, but increased in Tg-AMPKγ3
R225Q

. Although the link between mRNA transcription 

and protein expression is tenuous and subject to translational regulation that varies greatly 

between targets, the general increase in transcription of genes related to mitochondrial dynamics 

and function, as well as the mitochondrial to nuclear DNA ratio, could indicate increased 

mitochondrial mass. 

Protein abundance analysis of key markers of transcriptional regulation and metabolic function, 

and the mitochondrial oxidative phosphorylation system revealed no alterations in skeletal 

muscle from AMPKγ3
-/-

 mice. A marker of ETC complex II was reduced in Tg-AMPKγ3
WT

 

mice, but the remaining targets were similar compared to wild-type littermates. In Tg-

AMPKγ3
R225Q

 mice, protein abundance of PGC-1α, uncoupling protein 3 (UCP3) and pyruvate 

dehydrogenase kinase 4 (PDK4), as well as markers of ETC complex I-IV was increased; further 

underscoring the possibility of increased mitochondrial density and function. The marker of ATP 

synthase, PPARα and PPARδ, were unaltered.  

5.2.2 Increased AMPKγ3 Signaling is not associated with Altered Fiber Type 
Profile 

AMPK signaling partly overlaps with that of the protein phosphatase calcineurin; activation of 

these enzymes in response to reduced ATP/AMP ratio and increased intracellular Ca
2+

 release, 

respectively, results in changes in gene expression mediated by PGC-1α (265) and PPARs (411). 
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They both stimulate mitochondrial biogenesis and lipid oxidation, and enhance insulin 

sensitivity. Overexpression of calcineurin in mouse skeletal muscle reduces AICAR-induced 

glucose uptake and is specifically associated with decreased AMPKγ3 expression (412); while 

inducing fiber type reprogramming to a more slow-twitch profile (413). Furthermore, although 

protein abundance of PPARδ was unaltered, enhanced activity is implicated in a switch to type I 

fibers (414). The changes in mRNA and protein abundance in Tg-AMPKγ3
R225Q

 mouse skeletal 

muscle could therefore be associated with a change in fiber type profile towards a more slow-

twitch, oxidative phenotype. This was also indicated by SDH staining, which was unaltered in 

AMPKγ3
-/-

 and Tg-AMPKγ3
WT

 muscle, but increased in Tg-AMPKγ3
R225Q

 compared to wild-

type littermates.  

 

Figure 5. Mitochondrial protein expression studied in Garcia-Roves et al, 2008 (415). A. Protein content of 
markers of ETS complexes and mediators of oxidative metabolism (N=8). B. Representative blots. C. 
SDH staining in white gastrocnemius. Open bar – wild-type, closed bar – Tg-AMPKγ3R225Q. Data are 
presented as mean±S.E.. *p<0.05 vs. wild-type mice. 
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Analysis of MyHC isoform mRNA transcription (Fig. 3A) and protein abundance in white 

gastrocnemius revealed similar expression patterns in Tg-AMPKγ3
R225Q

 mice compared to wild-

type littermates. Furthermore, quantification of immunocytochemical staining of MyHC 

isoforms and myosin II ATPase staining in EDL (fast-twitch, mainly glycolytic) and soleus 

(slow-twitch, mainly oxidative) (Fig. 3B and C), as well as plantaris (fast-twitch, mainly 

glycolytic) and gastrocnemius (mixed, but primarily fast-twitch, glycolytic) (416), demonstrated 

no change in fiber type percentages in wild-type and Tg-AMPKγ3
R225Q

 mice.  

 

Figure 6. Fiber type composition in skeletal muscle from Tg-AMPKγ3R225Q mice studied in Garcia-
Roves et al, 2008 (415). A. MyHC isoform mRNA expression in white gastrocnemius muscle (N=7-9). B. 
Myosin ATPase staining in soleus and EDL. C. Quantification of skeletal muscle fiber types in soleus and 
EDL based on myosin ATPase staining (N=4). Open bar – wild-type, closed bar - Tg-AMPKγ3R225Q. 
Data are presented as mean± S.E. 

5.2.3 The γ3R225Q Mutation Increases Mitochondrial Dynamics, but not 
Respiratory Function 

AMPK enhances mitochondrial biogenesis (201; 269), and substrate oxidation induced by 

exercise (204) and energy deprivation (32). The changes in gene expression and SDH staining in 

Tg-AMPKγ3
R225Q

 mice suggested enhanced mitochondrial oxidative capacity or structural 

adaptations in sedentary mice. Mitochondrial area density was increased in Tg-AMPKγ3
R225Q

 

mice compared to wild-type littermates (Fig. 4A) and, consistent with increased mRNA 

expression of markers of mitochondrial dynamics, the degree of mitochondrial clustering was 

increased. However, mitochondrial respiration and the relative contribution of each respiratory 
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flux state were unchanged between genotypes (Fig. 4B). This is in contrast to results from 

studies using chronic AICAR injections in rats (201). Chronic treatment with this AMP analogue 

increased abundance of cytochrome c and ALAS, and activity of enzymes of the citric acid 

cycle. This discrepancy may be explained by the fact that AICAR provides an artificial signal of 

increased energy demand for all AMP-regulated processes (eg. phosphofructokinase) (417). In 

contrast, the signaling through the AMPKγ3
R225Q

 heterotrimer is subject to posttranslational 

modifications and downstream regulation. 

 

Figure 7. Mitochondrial biogene-
sis and respiratory capacity in 
white gastrocnemius muscle 
studied in Garcia-Roves et al, 
2008 (415). A. Transmission 
electron microscopy of 
mitochondrial ultrastructure. B. 
Mitochondrial respiration (N=8-
10). Open bar – wild-type, 
closed bar - Tg-AMPKγ3R225Q. 
Data are pre-sented as mean± 
S.E. CIb = malate + pyruvate, 
CIc = ADP + glutamate, CI+IIc = 
succinate. ETSI+II  = FCCP, CIi = 
rotenone. 

 

 

 

 

 

5.2.4 Summary of Mitochondrial Biogenesis and AMPKγ3R225Q 

The single-point mutation R225Q in the AMPKγ3 subunit stimulates mitochondrial biogenesis 

and mass in glycolytic skeletal muscle from sedentary mice, along with increased abundance of 

enzymes of lipid oxidation. These adaptations were not caused by increased subunit availability, 

as no major changes were evident after overexpressing the wild-type γ3 subunit. However, the 

AMPKγ3 subunit is also not strictly necessary for normal mitochondrial function, since whole-

body ablation did not result in altered expression of mitochondrial proteins or factors regulating 

mitochondrial function. 

The primary importance of skeletal muscle AMPK activation is to favor energy production under 

conditions of metabolic stress, as well as glucose and NEFA salvage in the recovery phase. 

Taken together with our results, this indicates that the functional enhancements caused by the 

γ3
R225Q

 mutation are superfluous in the absence of metabolic challenge (as evidenced by the lack 
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of enhanced protein abundance of ATP synthase). However, increased signaling by AMPK may 

prime the cell for such a challenge. A previous study demonstrated increased lipid oxidation 

capacity in vitro, reduced intramuscular lipid accumulation and protection from insulin resistance 

in high-fat fed Tg-AMPKγ3
R225Q

 mice compared to wild-type littermates. Conversely, high-fat 

feeding in AMPKγ3
-/-

 mice resulted in enhanced lipid accumulation and reduced lipid oxidation 

in skeletal muscle, while insulin resistance was not significantly affected (213). In the present 

study, abundance of PPARδ, an AMPK signaling target (418), was unaltered. In contrast, PPARδ 

abundance is increased following endurance exercise (234) and after long-term low-intensity 

exercise (419) in obese humans. This suggests that the elevated basal activity of the 

AMPKγ3
R225Q

 holoenzyme does not result in downstream increases in lipid oxidation in the 

absence of metabolic challenge.  

The AMPK β subunit contains a carbohydrate-binding module (420; 421). This subunit binds to 

glycogen in vitro (422) and in cells (420), in addition to mediating glycogen-dependent 

inhibition of AMPK activity (423). As part of the α2β2γ3 heterotrimer, the β2 subunit 

predominates in human skeletal muscle (208) and has increased affinity for glycogen, compared 

to the β1 isoform (424). The activating γ3
R225Q

 mutation is associated with increased 

intramuscular glycogen and glycogen resynthesis after strenuous exercise (425), as well as 

glycogen content-sensitive AMPK activity in vitro. AMPKγ3 ablation was associated with 

reduced glycogen resynthesis, but did not affect resting state glycogen levels (425). In both 

strains, muscle ergogenics were positively correlated with glycogen content (425). A whole-body 

knockout mouse model exploring the role of the AMPKα2 subunit displayed normal cardiac 

function, in spite of aberrations in mitochondrial ultrastructure, cardiolipin content and complex I 

function (426). Hence, the α2 subunit, and corresponding heterotrimers, modulate insulin action 

in tissues other than muscle, but plays an integral role in tissue-specific capacity to adapt to 

energy deprivation (427). In conclusion, in the sedentary state the activating R225Q mutation in 

the AMPKγ3 subunit stimulates mitochondrial biogenesis, but does not enhance oxidative 

capacity. These findings provide the molecular basis for one key pathway mediating the 

improvements in skeletal muscle metabolism in response to decreased energy charge, such as 

fasting or exercise. 

5.3 TISSUE-SPECIFIC MITOCHONDRIAL FUNCTION IS NOT UNIFORMLY 
ALTERED IN LEPTIN RECEPTOR-DEFICIENT db/db MICE 

5.3.1 Leptin-Receptor Deficiency Increases Mitochondrial Function in Glycolytic 
Skeletal Muscle 

Mitochondrial respiration in db/db mouse EDL muscle was increased in all flux states 

investigated (Fig, 5A), while FCRs were similar between genotypes. This indicates a quantitative 

increase rather than a change in function directly. Elevated circulating NEFA is associated with 

enhanced mitochondrial respiration and density in skeletal muscle from high-fat fed animal 

models (124; 226; 227; 231) and in leptin receptor-deficient rats (230). EDL protein abundance 

of ETC complex I-IV markers was increased in db/db mice, as was TFAM and MFN-2 

abundance and OPA1 proteolytic cleavage (Fig. 5B and C). TFAM plays a role in maintenance 

of the mitochondrial genome (428; 429), in addition to interacting directly with the 

mitochondrial transcription machinery (430). Together with unaltered DNM1L abundance and 

mitochondrial-to-nuclear DNA ratio, this could be interpreted as an adaptation to emerging 
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mitochondrial stress. Interestingly, even in light of the limitations of our protocol in terms of 

analyzing complex II-mediated function, there does not appear to be any additional functional or 

translational adaptations affecting it. Therefore, the EDL muscle in db/db mice does not appear 

to increase lipid oxidation, but rather oxidative capacity as a whole. Furthermore, since cell 

permeabilization (or mitochondria isolates) precludes glycolytic activity, an assessment of 

adaptations in the s,n-glycerophosphate shuttle, which is an important contributor of glycolysis-

derived electrons to FADH2 (431) in glycolytic skeletal muscle, is not possible.  

 

Figure 8. Mitochondrial respiratory capacity and protein abundance in glycolytic EDL muscle studied in 
Holmström et al, 2012 (401). A. Mitochondrial respiration (N=9–13). B. Protein abundance of markers of 
the ETS and mediators of biogenesis (N=6–9). C. Representative blots. Open bar – lean mice, closed bar 
- db/db mice. Data are presented as mean±S.E. *p<0.05 vs. lean mice. 

5.3.2 Mitochondrial Dynamics are enhanced in Oxidative Skeletal Muscle from 
db/db Mice 

The db/db mice have decreased OXPHOS respiration in comparison to lean littermates in soleus 

muscle. The other respiratory states and FCRs were unaltered. OXPHOS respiration is only 
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partly coupled with limited NADH production. Although there was a tendency for decreased C I 

respiration, this is not reflected in the FCR or in protein abundance of the complex I marker. The 

regulation of ETC complexes subunits is incompletely resolved, but mitochondrial NADH 

dehydrogenase 1α subcomplex 9 (NDUFA9) and subunits of complex III and IV are subject to 

inhibitory posttranslational modification in the form of added N-acetylglucosamine units (O-

GlcNAcylation) in cultured cardiomyocytes under conditions of hyperglycemia (432). 

Furthermore, complex I activity and complex III structure is dependent on interaction with the 

inner mitochondrial membrane phospholipid cardiolipin (433; 434).  

 

Figure 9. Mitochondrial respiratory capacity and protein abundance in liver, studied in Holmström et al, 
2012 (401). A. Mitochondrial respiration (N=9–13). B. Protein abundance of markers of the ETS and 
mediators of biogenesis (N=6–9). C. Representative blots. Open bar – lean mice, closed bar - db/db mice. 
Data are presented as mean±S.E.. *p<0.05 vs. lean (+/?) mice. 

Abundance of markers of the other ETS complexes was similar between genotypes. MFN-2 and 

DNM1L abundance, as well as OPA1 long-to-short ratio were enhanced, while PGC-1α was 

decreased. The net result of this would appear to be increased mitochondrial dynamics, in the 

absence of direct stimulation of biogenesis. Also, both TFAM abundance and mitochondrial-to-
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nuclear DNA ratio were reduced; demonstrating a concerted reduction in mitochondrial DNA 

content. However, the maintained mRNA expression of the mitochondria-encoded gene MT-

CO1 would indicate that mtDNA transcriptional activity persists. The db/db mouse skeletal 

muscle is insulin resistant (435; 436), resulting in reduced glucose uptake under conditions of 

high lipid availability. Maintaining ETS complex abundance with active mitochondrial turnover, 

could be an adaptation to these conditions. In that context, decreased OXPHOS respiration is in 

line with a notion of enhanced efflux of citric acid cycle intermediates for purposes other than 

ATP production and, in accordance with that hypothesis; soleus triglyceride content is markedly 

increased. 

5.3.3 Reduced Mitochondrial Function in db/db Mouse Liver 

Mitochondrial respiration was similar in db/db mice and lean littermates, with the exception of 

maximal electron transport capacity, ETS I+II, which was reduced (Fig. 6A). The C I+II FCR in 

db/db mice, in contrast, was increased. In the absence of altered FCR for states C I or ETS II, or 

succinate dehydrogenase complex subunit A flavoprotein (SDHA) protein abundance, this may 

reflect other means of regulation of complex II activity that is not sensitive to membrane 

uncoupling. The protein abundance of ETC complex I and III was decreased in db/db mice, 

while markers of the remaining ETS were unaltered. Reduced complex III abundance may be 

correlated to the blunted response to exogenous membrane uncoupling, whereas the decrease in 

complex I does not appear to translate into a functional impairment. However, the liver relies 

primarily on complex II function in the healthy state, so it is possible that in the steatotic liver of 

the db/db mouse, insulin resistance and other pathological processes combine to maintain 

complex I function in spite of protein downregulation. A study comparing mitochondrial gene 

expression and mitochondrial function in two mouse strains resistant (A/J) or sensitive (C57Bl/6) 

to high-fat diet-induced liver non-alcoholic liver disease revealed that protection against steatosis 

appeared associated with the ability to induce mitochondrial uncoupling (402). Furthermore, 

functional analysis confirmed this hypothesis since the A/J strain has increased state 2, 3 and 4 

respiration after high-fat feeding, without increased ATP synthesis. Liver from C57Bl/6 mice, 

however, had unaltered respiratory capacity, but enhanced P/O ratio; an indication of increased 

coupling efficiency (403). 

PGC-1α and MFN-2 protein abundance was decreased in the db/db mice, with a concurrent 

increase in DNM1L (Fig. 6B and C); suggesting enhanced mitochondrial fission and reduced 

signaling for biogenesis. OPA1 proteolytic isoforms were also altered, but with no clear long-to-

short isoform shift. SOD2 and TFAM protein levels were unaltered, while the mitochondrial to 

nuclear DNA ratio was increased. Hence, the apparent stimulation of mitochondrial fission is 

likely a controlled adaptive process in the db/db mouse although mitochondrial stress cannot be 

excluded. Previous analyses on hepatocytes and isolated liver mitochondria from fa/fa rats, with 

an equivalent genetic defect in the leptin receptor, showed no difference in mitochondrial 

performance (437). However, in difference to the db/db mouse, the fa/fa rats in that particular 

study also had no sign of increased liver weight, lipid accumulation or steatosis. In contrast, rats 

fed a high-fat diet had decreased respiratory function in isolated mitochondria, hepatic steatosis, 

insulin resistance and increased oxidative stress (103). Complex I- and II-mediated respiratory 

capacity, as well as complex IV enzymatic activity in conjunction with oxidative damage to 

mitochondrial proteins and hypoxic stress were also reduced in high-fat fed mice (104). 
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5.4 LEPTIN REPLETION ALTERS MITOCHONDRIAL DYNAMICS, BUT NOT 
FUNCTION IN ob/ob MICE 

The aim study III was to characterize tissue-specific mitochondrial function in leptin-deficient 

ob/ob mice and lean littermates, and to determine if it can be modulated by exogenous leptin-

repletion.  

5.4.1 Increased Respiratory Capacity in ob/ob Mouse Glycolytic Skeletal Muscle 

Glycolytic EDL muscle is shorter and 26% lighter in ob/ob mice bred on an Aston background 

(438), compared to lean littermates. Furthermore, ob/ob mice have a higher oxidative type IIa 

fiber percentage and fiber cross-sectional area, with a corresponding decrease in glycolytic type 

IIb fibers (438). Chronic leptin treatment did not modify these parameters. Nevertheless, acute 

leptin treatment stimulates lipid oxidation through AMPKα2 activation in skeletal muscle (174). 

Therefore, leptin treatment may also induce mitochondrial functional adaptations in EDL and 

soleus muscle. 

In EDL muscle from saline-treated ob/ob mice, ETS I+II was increased, along with a similar 

trend in ETS II (Fig. 7A). The FCR for C I and C I+II was reduced, which could be an artifact of 

the increase in the factor used for normalization; especially considering the changes in ETS 

protein abundance (Fig. 7B-D). Markers of complex II and IV, and ATP synthase were increased 

– explaining the enhanced maximal electron transport capacity – while complex I and III were 

unaltered compared to saline-treated lean mice. Leptin treatment in ob/ob mice revealed a trend 

for enhanced C I FCR (Fig. 7A), which could be an effect of leptin-modulation of insulin 

signaling. Lean leptin-treated mice had increased OXPHOS respiration, while ETS II FCR 

decreased, along with a similar trend in C I+II FCR. In the absence of altered complex II 

abundance, this indicates decreased complex II contribution to maximal electron transport 

capacity. Leptin treatment also reduced body weight and fat mass, which indicates enhanced 

white adipose tissue lipid mobilization. However, there were no changes in intracellular 

glycogen or triglyceride stores. Taken together, this implies that the leptin treatment-mediated 

stimulation of lipid oxidation in lean mice is superseded by other pathways signaling sufficient 

intracellular energy charge.  

DNM1L (Fig. 7F) and total OPA1 abundance was increased in saline-treated ob/ob mice, along 

with an OPA1 long-to-short isoform shift and reduced TFAM (Fig, 7E). This strongly suggests 

mitochondrial fission or fragmentation, since there is no corresponding response in MFN-2 

compared to saline-treated lean littermates. In leptin-treated ob/ob mice DNM1L abundance was 

normalized.  

5.4.2 Minor Mitochondrial Adaptations in Oxidative Skeletal Muscle from ob/ob 
Mice 

Oxidative soleus muscle from ob/ob mice on the Aston genetic background is smaller in the 

ob/ob mouse and has a lower glycolytic type IIb fiber percentage (438). Type IIb fibers also have 

increased cross-sectional area in the ob/ob mouse soleus compared to lean littermates. Chronic 

leptin treatment increased type IIa and IIb fiber percentage in both ob/ob and lean mice (438). 
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On the B101 background, ob/ob mice have smaller slow, oxidative fibers, with no difference in 

fast, glycolytic fibers (439). 

 

Figure 10. Mitochondrial respiration 
and abundance of mitochondrial 
proteins in glycolytic EDL muscle, 
studied in Holmström et al. A. 
Mitochondrial respiratory capacity. 
B-D. Protein abundance of markers 
of ETS complexes I, IV and ATP 
synthase. E-F. Protein abundance 
of mediators of mitochondrial 
biogenesis. Open bar - saline-
treated; closed bar - leptin-treated. 
Data are presented as mean±S.E 
(N=6-8). *p<0.05, †p<0.01 vs lean 
(+/?), saline-treated mice; §p<0.05 
vs ob/ob, saline-treated mice. 

 

 

 

 

 

 

 

 

 

 

 

 

Mitochondrial respiration in soleus (Fig. 8A) and FCRs were unchanged between saline-treated 

ob/ob and lean mice. The similarities persisted in both ob/ob and lean mice following leptin 

treatment. This would suggest pathways regulating muscle substrate oxidation are intact even in 

obesity. Thus, further leptin stimulation through peripheral and neuronal pathways seems to be 

superfluous. Accordingly, protein abundance of markers of the ETS complexes and 

mitochondrial dynamics was unaltered after leptin treatment. TFAM was reduced in both groups 

of ob/ob mice. Leptin-treatment did not alter protein abundance of markers of the ETS in neither 

lean nor ob/ob mice. Leptin-treatment was insufficient to rescue TFAM abundance in ob/ob 
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mice. In lean mice, leptin treatment itself reduced TFAM abundance. Hence, these results 

provide evidence to suggest that severe obesity does not induce mitochondrial respiratory 

dysfunction in oxidative soleus muscle, and that short-term leptin treatment is insufficient to 

further improve oxidative phosphorylation. 

 

Figure 11. Mitochondrial function (A) and TFAM protein abundance (B) in oxidative soleus muscle, 
studied in Holmström et al. Open bar - saline-treated; closed bar – leptin-treated. Data are presented as 
mean±S.E. (N=6-8). †p<0.01, ‡p<0.001 vs lean (+/?), saline-treated mice 

5.4.3 Reduced Complex II Function in Liver from ob/ob Mice, and Improved 
Biogenesis with Leptin Treatment 

In the saline-treated ob/ob mice (Fig. 9A), both ETS I+II and ETS II were depressed compared to 

saline-treated lean littermates, with a similar trend in C I+II. Leptin treatment in ob/ob mice was 

insufficient to alter the reduced respiratory capacity, although there was a strong trend for 

increased ETS II, compared to saline-treated ob/ob mice. Thus, these results provide evidence to 

suggest that ATP synthesis may be limiting to electron transfer capacity. This was compatable 

with our finding in db/db liver. In addition, the respirometry data suggests that the reduced 

electron transfer capacity is dependent on complex II function and that leptin-repletion in ob/ob 

mice enhances FADH2 generation (e.g. lipid or amino acid oxidation).  

Protein abundance of markers of complex III and IV, and ATP synthase were unaltered; so the 

cause of reduced maximal electron transport capacity is not immediately clear. However, the 

marker of succinate dehydrogenase (SDHA) (Fig. 9C) was reduced in saline-treated ob/ob mice 

and there was a trend towards increased levels of complex I NDUFA9; which is consistent with 

the functional data. SDHA is the catalytic subunit of complex II, mediating the conversion of 

succinate to fumarate and a decrease would affect FADH2 supply and citric acid cycle efficiency. 

Hence, the source of reduced electron transport capacity in the uncoupled state appears to be 

different in ob/ob mice, compared to db/db – i.e. reduced FADH2 electron supply through 

complex II, rather than turnover capacity at complex IV. Furthermore, the abundance of PPARα 

was reduced in saline-treated ob/ob mice and unaltered by leptin treatment in both genotypes 

(Fig. 9F). This transcription factor is central to hepatic β-oxidation gene expression (241; 440) 
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and the lack of enhanced expression further supports the hypothesis that the hepatic response to 

leptin treatment is focused on lipid mobilization over oxidation. Accordingly, increased lipid 

export (180) and reduced lipogenesis (176; 180) has been reported with leptin treatment. Hence, 

reduced electron transport capacity in liver from ob/ob mice is mediated by reduced complex II 

activity, which may be partly restored with leptin repletion in ob/ob mice.  

 

Figure 12. Mitochondrial 
respiration and abundance of 
mediators of mitochondrial 
function in liver, studied in 
Holmström et al. A. Mitochondrial 
respiratory capacity. B-C. Protein 
abundance of markers of ETC 
complexes I and II. D-F. Protein 
abundance of mediators of 
mitochondrial biogenesis and 
lipid oxidation. Open bar - saline-
treated; closed bar - leptin-
treated. Data are presented as 
mean±S.E. (N=6-8). *p<0.05, 
†p<0.01, ‡p<0.001 vs. lean (+/?), 
saline-treated mice; §p<0.05 vs. 
ob/ob, saline-treated mice. 

 

 

 

 

 

 

 

 

 

 

The FCR for OXPHOS and C I+II was increased in saline-treated ob/ob mice; whereas only 

OXPHOS was increased in ob/ob mice treated with leptin. The increased C I+II FCR value is 

likely a mathematical artifact, caused by the fact that the tendency for C I+II respiration (Fig. 

9A) to decrease was smaller than the significant decrease in ETS I+II respiration. The rise in 

OXPHOS FCR cannot be as easily explained. OXPHOS respiration is measured under conditions 

of partial citric acid cycle NADH production. Hence, its contribution to maximal electron 

transport capacity could be subject to alterations caused by endogenous uncoupling or 
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components affecting NADH supply. The latter seems more likely, because LEAK oxygen flux 

(Fig. 9A) and LEAK FCR remain unaltered. Also, once glutamate is added the difference 

disappears. These data imply that OXPHOS NADH production may be affected by reduced 

citrate and/or α-ketoglutarate exchange. Indeed, the tricarboxylate carrier, which provides citrate 

for lipogenesis, is downregulated in rats fed a high-fat diet inducing insulin resistance (441) and 

its activity is reduced in starved rats (442); both conditions in which lipogenesis is reduced in 

favor of gluconeogenesis and hepatic glucose production. Furthermore, citrate is an allosteric 

activator or ACC (443) and an allosteric inhibitor of phosphofructokinase (444), suggesting that 

reduced efflux is a means of reducing lipogenesis in favor of gluconeogenesis. Thus, 

mitochondrial respiratory function under non-saturating conditions in the ob/ob mouse may be 

subject to additional regulation at the level of mitochondrial substrate transport, which is not 

affected by leptin treatment. 

MFN-2 and DNM1L were unaltered in saline-treated ob/ob compared to saline-treated lean 

littermates, while TFAM (Fig. 9D) was reduced with obesity. Leptin treatment in ob/ob mice 

normalized TFAM abundance and improved the OPA1 ratio (Fig. 9E). Hence, the degree of 

mitochondrial stress appears to be reduced by leptin treatment in ob/ob mice, along with 

improved mtDNA stabilization.  

5.4.4 Summary of Mitochondrial Function and Leptin Signaling Deficiency 

In studies II (db/db) and III (ob/ob), mitochondrial function and markers of biogenesis in db/db 

and ob/ob mice were investigated. Interestingly, even though the overall physiology is similar in 

the db/db and the saline-treated ob/ob mice – blunted ETS capacity in liver, enhancements in 

ETS capacity in EDL and modest to no alterations in soleus – the specific molecular adaptations 

are different. The first obvious source of difference is the fact that the molecular background to 

the db and ob pathologies is different; lack of the long isoform (isoform b) of the leptin receptor, 

and lack of the leptin hormone, respectively. The precise configuration of some of the leptin 

receptor isoforms with leptin, as well as possible interactions with other cytokine receptors, 

remain to be determined (445). Thus, the ob/ob mouse should perhaps be considered to be the 

more profound model, as absence of the hormone would imply a complete ablation of leptin 

receptor signaling, regardless of receptor isoform. However, even in the ob/ob mouse, the 

receptors are still expressed (446). The second source of difference lies in the experimental 

design. Study I and II were performed using mice taken straight from the animal facilities, 

whereas the mice in study III were subject to comparatively intensive handling and once-daily 

treatment, as well as separate housing in smaller cages. These are all factors which could 

influence stress and activity levels, and, by extension, whole-body metabolism.  

5.5 WHOLE-BODY EFFECTS OF LEPTIN TREATMENT IN ob/ob MICE 

Leptin treatment had profound effects on food intake, body weight and body composition in 

ob/ob mice. Lean mass, fat mass and body weight were reduced in the lean mice as well, but to a 

smaller degree than in ob/ob mice. The effect of leptin treatment on body weight and 

composition in ob/ob mice is well established (144; 145; 438; 447); body weight is decreased as 

a result of reduced food intake and increased energy expenditure. Importantly, these effects are 

functionally separate as doses too low to elicit depressed food intake still decrease body weight 

(146). Conversely, pair-feeding to the levels of lean littermates does not affect thermogenesis 
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(374), nor does it improve cold adaptation or skeletal muscle growth (448). The effect of leptin 

treatment in lean mice, in contrast, is more varied. Using a similar design as the present study, 

reduced food intake, body weight and fat mass after five days of leptin treatment of lean ob/ob 

mouse littermates has been reported (144). The same was found in young (5 wks) mice (145). 

However, reduced body weight was demonstrated in lean mice in the absence of food intake 

reduction after intracerebroventricular leptin-administration (449). Hence, the reduction in lean 

mass is an unusual finding, but not unique; in the ob/ob mice reduced lean mass could be caused 

by reduced food intake and enhanced thermogenesis, whereas the lean littermates may be further 

affected by reduced ambulatory behavior (146), and single-housing in smaller cages.  

 

Figure 13. Effect of leptin treatment on fuel storage, studied in Holmström et al, 2012 (401). A. 
Triglyceride content in liver and gastrocnemius muscle. B. Glycogen content in liver and gastrocnemius. 
Open bars - saline-treated; closed bars - leptin-treated. Data are presented as mean± S.E. N=6-8. 
†p<0.01, ‡p<0.001 vs. lean (+/?), saline-treated mice; §p<0.05, łłp<0.01 vs. ob/ob, saline-treated mice. 

The degree of leptin action in hypothalamus and periphery is in part dose-dependent in vivo; 

plasma and cerebrospinal concentrations are correlated up to circulating levels of 15 ng/ml, but 

this association is lost with increasing levels (450; 451). While the hypothalamic feeding 

regulation plateaus after further increases in leptin concentrations, peripheral action on lipid 

metabolism continues (450). Although circulating leptin was not measured in the present study, 

the lean mice may transiently experience a higher dose of hormone than the ob/ob mice, because 

the exogenous leptin is added to endogenous production.  

Measurement of tissue-specific fuel storage showed that while there was no leptin-treatment 

effect in the lean mice, liver weight, liver triglyceride (Fig. 10A), and muscle glycogen (Fig. 

10B) were reduced in leptin-treated ob/ob mice, in the absence of reduced muscle triglyceride. 

This suggests that reduced fat mass and lean mass in ob/ob mice could then be caused by 

increased lipid mobilization from white adipose tissue and, possibly, increased protein 

breakdown in skeletal muscle, respectively. This is also consistent with the mitochondrial 

respirometry data showing enhanced maximal electron transport capacity in EDL from ob/ob 

mice (Fig. 7A), with no further potentiation in oxidative capacity after leptin treatment, and no 
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change with neither obesity nor leptin in soleus (Fig. 8A). Peripheral leptin action is evident in 

rats in which the ventromedial hypothalamus has been ablated, indicating that the hypothalamic 

leptin target site is not necessary for peripheral effects (452). Leptin action is also evident in fa/fa 

leptin receptor-deficient rats expressing the receptor only in liver, demonstrating functional 

signaling pathways and that hypothalamic unresponsiveness is inconsequential to local leptin 

signaling (453). Hepatic leptin-mediated stimulation of lipid disposal is mediated partly by 

inhibition of stearoyl-CoA desaturase 1, causing increased lipid export (176; 180) and reduced 

hypertriglyceridemia (162). This was associated with increased hepatic glucose production in 

conjunction with increased uptake in brain, brown adipose tissue and heart (454). In lean mice, 

however, acute leptin infusion caused increased glucose turnover and uptake, dominated by EDL 

muscle and brown adipose tissue, without altering circulating insulin or glucose (455). Likely, 

these differences can be traced to both the profound insulin resistance in ob/ob skeletal muscle 

and white adipose tissue, and differential regulation of lipid mobilization (180). 

6. PERSPECTIVES AND CONCLUDING REMARKS 

The aim of this thesis was to investigate the pathways regulating mitochondrial biogenesis and 

function, as well as to identify potential molecules that can be targeted in order to modulate 

mitochondrial function in insulin resistance. 

Study I provides evidence that the AMPKγ3 subunit can influence mitochondrial biogenesis in 

sedentary mice. Although, the γ3 subunit does not appear to be required for fully functional 

mitochondria in glycolytic skeletal muscle, elevating the basal activity in the heterotrimer by 

introducing the γ3
R225Q

 mutation markedly increases markers of biogenesis and regulators of 

lipid oxidation. However, in the sedentary state, these adaptations do not translate into alterations 

in mitochondrial respiratory function. In study II, data are presented that show that respiratory 

function is markedly different in oxidative and glycolytic skeletal muscle, and liver, from 

sedentary wild-type mice. These results from intact permeabilized cell, using high-resolution 

respirometry, are in line with previous studies on mitochondrial protein expression, enzyme 

activity, and respiration measured in isolated mitochondria. Furthermore, tissue-specific 

adaptations in obese and insulin resistant db/db mice were demonstrated. The mitochondrial 

functional adaptations vary in accordance with metabolic characteristics; glycolytic EDL skeletal 

muscle has increased mitochondrial biogenesis and oxidative capacity, while mitochondrial 

function in oxidative soleus muscle is similar in lean and db/db mice. Finally, the db/db liver has 

blunted maximal electron transport capacity, possible due to an ETC complex IV bottleneck and 

decreased abundance of complex I. In study III, evidence is provided supporting tissue-specific 

differences in mitochondrial adaptations in ob/ob mice versus db/db mice; especially in liver. 

Liver mitochondrial respiration was depressed to a similar degree as found in db/db mice, but 

protein abundance of specific targets differed; the complex II marker was decreased, with a trend 

for increased abundance of the complex I marker. EDL muscle from ob/ob mice has enhanced 

maximal electron transport capacity, with corresponding increases in markers of complex II, IV 

and ATP synthase. In oxidative soleus muscle, mitochondrial respiratory capacity was unaltered 

in response to both obesity and leptin-treatment.  
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Figure 14. Summary of the findings presented in this thesis. Obesity caused by deficient leptin signaling 
results in tissue-specific adaptations in mitochondrial function and biogenesis. Hepatic mitochondrial 
function is blunted, which is reflected in specific electron transport chain complexes, in addition to extopic 
lipid accumulation and increased mitochondrial fission. Glycolytic skeletal muscle adapts to this condition 
by enhancing glycogen storage, mitochondrial respiration, electron transport chain proteins and 
mitochondrial fusion. Oxidative muscle mitochondrial function remains unaltered, while biogenesis and 
fuel storage is enhanced. AMPK activation in glycolytic muscle also stimulates glycogen storage, electron 
transport chain protein abundance and mitochondrial biogenesis, but does not alter respiratory function. 
ETC – electron transport chain, NEFA – non-esterified fatty acids, TG – triacylglyceride. 

In conclusion (Fig. 14), these three studies provide evidence that mitochondrial biogenesis, in 

terms of dynamics and regulators of substrate oxidation, is sensitive to both chronic and more 

acute perturbations in metabolic status. Mitochondrial respiratory function appears more stable in 

the tissues investigated and does not readily change in response to short-term leptin treatment, in 

spite of profound whole-body effects on fuel mobilization. Monogenetic obesity, in contrast, 
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results in notable and tissue-specific adaptations. Leptin and AMPK signaling are interconnected 

in the central nervous system and peripheral tissues. These studies show that tissue-specific 

AMPK activation and systemic stimulation of the leptin/AMPK signaling axes are insufficient to 

induce improvements in mitochondrial respiratory function in the absence of increased energy 

demand. 

There are several aspects of mitochondrial function terms of substrate oxidation that remain to be 

explored in light of metabolic disease – especially in peripheral tissues. First, the apparent 

disconnect between white adipose mass and centrally stimulated food intake may constitute a 

central deficiency in obesity. Hence, the combined effect of restored leptin signaling and 

exercise warrants further study, as this would alter both signals of systemic energy storage and 

tissue-specific energy demand. Although leptin treatment has proven inefficient in people (likely 

due to saturation of transporters and cellular desensitization), there may be promising 

pharmaceutical targets in terms in leptin sensitizers. Second, the integration of the complex 

network of mitochondrial substrate transporters, mtDNA maintenance and membrane dynamics 

remains to be elucidated in both human and experimental obesity. Of the targets investigated in 

this thesis, the ones most responsive to obesity induced by leptin resistance/deficiency, short-

term leptin treatment and tissue-specific AMPK activation were proteins mediating membrane 

dynamics and mitochondrial DNA maintenance. Furthermore, mitochondrial ultrastructural 

alterations have been identified in various tissues in association with human obesity and T2DM. 

Since the function of the electron transfer system complexes is affected by mitochondrial 

membrane structure and composition, it would be of great interest to determine the temporal 

relationship between alterations in mitochondrial biogenesis and function, and how they can be 

modulated by exercise, diet and pharmacological treatment. Third, there is much to be 

discovered in the field of posttranslational modification of ETS complex activity – especially in 

terms of ROS signaling – and how it is affected by metabolic deregulation or improvements. 

Experimental obesity is correlated with mitochondrial protein hyperacetylation, and ROS-

mediated oxidation exerts functional regulation of specific mitochondrial enzymes; including 

ETC complex I. Hence, regulation of enzymatic activity by substrate oxidation intermediates 

may play an important role in mitochondrial metabolism. Finally, tissue-specific mitochondrial 

function may be an important issue to address in light of the multi-organ nature of insulin 

resistance; investigating oxidative phosphorylation in white adipose tissue, gut, specific regions 

of the brain, and vascular tissue may expand our understanding of the integration and timing of 

pathological processes in different tissues throughout the body, 
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