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ABSTRACT 

Primary hyperparathyroidism (PHPT) is a common endocrine disorder characterized by 
abnormally excessive secretion of parathyroid hormone (PTH) and elevated serum 
calcium. PHPT patients can develop a wide range of complications affecting many 
body organs such as the skeleton, kidneys and heart. In the majority of patients, PHPT 
is due to a solitary adenoma and less frequently due to multiglandular disease. Very 
rarely PHPT is caused by a parathyroid carcinoma. 
This thesis aimed at a better understanding of the genetic as well as epigenetic 
mechanisms involved in this disease in order to improve future patients management. 
In study I we have investigated large parathyroid adenomas (≥ 4 grams) and detected 
frequent MEN1, but rare HRPT2/CDC73 mutations and low MIB1 proliferation index. 
The majority of the tumors had loss of parafibromin expression and positive APC 
expression. Furthermore, gain of chromosome 5 was the most unique and frequent copy 
number alteration detected in this group, while very rarely detected in unselected 
adenomas. We concluded that a subset of large parathyroid adenomas have distinct 
genetic profile and pronounced clinical features reflected by significantly higher serum 
calcium.  
In study II we examined the role of constitutional APC mutations in parathyroid 
tumors from two patients with APC mutation-associated familial colorectal cancers. 
Pathological revision confirmed the benign nature of both tumors. None of them had 
somatic mutations or DNA copy number alterations of the APC gene and both tumors 
displayed strong APC and parafibromin expression with low MIB index. Although the 
APC 1A promoter was hypermethylated, promoter APC 1B was unmethylated and this 
was consistent with normal APC mRNA expression. Our results supported the benign 
nature of the parathyroid tumors and excluded a possible association between 
constitutional APC mutations and parathyroid tumorigenesis. 
In study III we defined the molecular cytogenetic profile of CDC73/HRPT2-mutated 
parathyroid tumors. All the carcinomas displayed frequent DNA copy number losses on 
chromosome 1p and 13 while the adenomas did not display any significant alterations. 
All the carcinomas were diploid at the CDC73 gene locus, but three adenomas had loss 
at this locus. The CDC73 promoter was unmethylated in all the tumors. The carcinomas 
displayed more loss of heterozygosity (LOH) events than the adenomas, and two 
carcinomas had LOH at the CDC73 locus. These results suggest that CDC73-mutated 
parathyroid adenomas exhibit a partly unique cytogenetic profile in addition to that of 
carcinomas and unselected adenomas. 
In study IV analyses of promoter methylation status in a panel of benign and malignant 
parathyroid tumors revealed frequent hypermethylation of APC 1A, β-catenin and 
RASSF1A promoters in the adenomas which correlated with reduced mRNA 
expression. Parathyroid carcinomas were hypermethylated for APC 1A and exclusively 
for SFRP1. No changes in global methylation could be detected and tumor groups with 
known MEN1 or CDC73 mutations did not display different methylation profile. We 
concluded that aberrant promoter methylation of APC 1A, β-catenin, RASSF1A and 
SFRP1 can play a role in parathyroid tumorigenesis and hypermethylation of SFRP1 
can act as a potential epigenetic marker for parathyroid carcinomas. 
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INTRODUCTION 
 

DISCOVERY OF PARATHYROID GLANDS  
 
The parathyroid gland is the last major organ identified and described in the human 

body [1]. This could be attributed to the anatomical position as well as the small size of 

these glands. Parathyroid glands were first observed by Richard Owen in 1850, 

however, Owen did not make any description of the nature of these glands and did not 

even name them. In his published article in Transactions in 1852, Owen described the 

glands as “small compact yellow glandular body attached to the thyroid to the point 

where the vein merges” [2]. Following Owen, the surgeon Robert Remark and the 

pathologist Rudolf Virchow have observed the glands, but again they did not make any 

descriptions apart from naming the anatomical location. It was not until 1852 when the 

medical student Ivar Sandström (Figure 1) from Uppsala University in Sweden made 

the first detailed description of the parathyroid glands and named them as “Glandulae 

Parathyroideae” [3]. 

 

                                 
      Figure 1. Ivar Victor Sandström (1852-1889). 

 

Ivar described the origin of the parathyroid glands as undeveloped embryonic remnants 

from the thyroid glands. His discovery was later published in the local journal Uppsala 
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Läkareförenings Förhandlingar [4]. Being parathyroid glands the last organs 

discovered, the recognition of parathyroid disease came late in 1908 when  

WG MacCallum and Carl Voegtlin attributed symptoms previously linked to the 

thyroid gland to the pathology of parathyroid glands [5]. Thereafter, signs and 

symptoms of parathyroid diseases were gradually recognized. 

 

EMBRYOLOGY AND ANATOMY OF THE PARATHYROID GLANDS 
 
Parathyroid glands develop during the fourth week of gestation. They originate from 

the third and the fourth pharyngeal pouches of the endoderm. They are usually four in 

number, two superior and two inferior and are situated in the anterior aspect of the neck 

just behind the thyroid gland (Figure 2). Supernumerary glands are not uncommon and 

have been reported in about 13% of cases [6]. Parathyroid glands are oval shaped, light 

yellow to reddish brown in color and are small in size with an average weight of 40 to 

60 mg [7, 8]. The inferior glands have a common origin with the thymus, as they are 

both derived from the third pharyngeal pouch. They start to migrate together with the 

thymus inferiorly and medially in the neck and get separated from the thymus just 

before the thymus localizes into the anterior mediastinum [9]. 

 

 
Figure 2. Locations of the parathyroid glands in the neck (posterior view). Modified 

from reference [9]. 
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The superior glands have a shorter migration path in the neck. They arise from the 

fourth pharyngeal pouch and migrate with the thyroid. They localize to the posterior 

mid-portion of the thyroid lobe [10]. The blood supply for the superior and the inferior 

parathyroid glands primarily comes from the inferior thyroid artery [11]. 

 

Ectopic localization of the parathyroid glands and especially the inferior glands are not 

uncommon [12]. This variation in the anatomical location can be simply explained by 

their origin and migration path in the neck. They can be found anywhere between the 

angle of the mandible and the upper mediastinum. In about 5% of the ectopic cases, the 

inferior parathyroid glands are found in the anterior mediastinum [9]. As the superior 

glands have a much shorter migration path in the neck, they are very seldom found at 

ectopic sites in the neck. 

 

HISTOLOGY OF NORMAL PARATHYROID GLANDS 
 
Parathyroid gland tissue is surrounded by a thin connective tissue capsule and consists 

mainly of two cell types, chief and oxyphil cells [10]. Chief cells are small polygonal 

cells with a rounded centrally located nucleus and a weak acidophilic cytoplasm and 

they are the predominant cell type (Figure 3A). In contrast, oxyphil cells are much less 

abundant, rounded, and larger in size and have more intense acidophilic cytoplasm.  

 

While the main function of chief cells is to secrete parathyroid hormone (PTH), the 

function of the oxyphil cells is still unknown. However, oxyphil cells are proposed to 

secrete PTH in chronic kidney diseases (CKDs) [13]. Chief cells stain positive for PTH, 

glycogen, cytokeratin and chromogranin A [14, 15]. In addition to chief and oxyphil 

cells, the parathyroid gland also contains adipocytes. While the number of chief cells 

decreases by age, the number of oxyphil cells and adipocytes increases in number 

during adulthood and adipocytes may constitute up to 50% of the cells in older people. 
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Figure 3. (A) Normal parathyroid gland. (B) Parathyroid adenoma with normal rim. 

(C) Parathyroid carcinoma. (D) Atypical parathyroid adenoma. 

 

FUNCTIONS OF THE PARATHYROID GLANDS 
 
The endocrine function of the parathyroid glands is primarily calcium homeostasis 

(regulation of extracellular calcium level) through the secretion of PTH. The 

extracellular calcium is regarded as the main determinant of PTH secretion and 

parathyroid glands are very sensitive to even slight variations in baseline ionized serum 

calcium (S-Ca2+) levels. PTH secretion has an inverse sigmoidal relationship with  

S-Ca2+ level and the midpoint between minimal and maximal PTH secretion is the set 

point of calcium which changes in parathyroid diseases (Figure 4) [16]. Similar to other 

endocrine organs, parathyroid glands lack ducts and they release PTH directly into the 

blood stream. PTH regulates S-Ca2+ mainly through its action on three major organs, 

namely the kidneys, skeleton and the small intestine (Figure 5). Any drops in the 

normal level of S-Ca2+ will be sensed by the calcium sensing receptor (CASR) 

expressed on parathyroid cell surface [17]. This will lead to downstream signaling and 

activation of the parathyroid glands to secrete or increase PTH secretion into the blood 

stream. PTH acts via the kidneys by enhancing calcium resorption from the distal 

tubules and reducing phosphate absorption from the proximal tubules [18].  
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In addition, PTH enhances the conversion of the inactive form of vitamin D  

(25-hydroxyvitamin D) to the active metabolite, 1, 25-dihydroxyvitamin D-3 via the 

activation of 1α-hydroxylase enzyme in the proximal tubules of the kidney. The active 

form of vitamin D in turn acts on the small intestine to increase intestinal absorption of 

calcium. The effect of PTH on skeleton is mainly through the induction of bone 

resorption which leads to increased release of calcium into the blood stream and causes 

immediate elevation of the extracellular calcium. The net effect of secreted PTH on 

kidneys, bones and the small intestine is increase in the S-Ca2+ level which will be 

perceived by the parathyroid glands through the CASR as a negative feedback signal to 

reduce PTH secretion to a level keeping S-Ca2+ within the normal physiological level. 

 

 
Figure 4. Illustration of the sigmoidal relationship between PTH release and level of  

                 S-Ca2+. 
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Figure 5. Calcium homeostasis. Regulation of extracellular calcium by PTH. 
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DISEASES OF THE PARATHYROID GLANDS – HYPERPARATHYROIDISM 
 
Hyperparathyroidism is a disorder of increased parathyroid gland activity characterized 

by abnormally increased secretion of PTH and elevation of S-Ca2+. The PTH-calcium 

sigmoidal curve is shifted to the right and the calcium set point is increased (Figure 4). 

Based on the underlying pathology of hyperparathyroidism the parathyroid hyperactive 

state is classified into three different types: primary, secondary and tertiary 

hyperparathyroidism [19]. 

 

Primary hyperparathyroidism (PHPT) 

 

PHPT is defined as excessive production of PTH by the parathyroid glands due to 

disorders arising from within the glands themselves and causing abnormally high  

S-Ca2+ [19]. The most common cause of PHPT is a single parathyroid adenoma which 

is detected in about 85% of the cases. Less commonly (~10-15%), PHPT is due to 

multiglandular disease. Fortunately, PHPT is rarely (< 1%) due to an underlying 

parathyroid carcinoma [20]. PHPT is the third most common endocrine disorder 

following diabetes and thyroid diseases [21]. Based on published data, there is a wide 

variation in the prevalence of PHPT. This variation can reflects the population studied 

as well as S-Ca2+ cut offs used for disease recognition. While the most recent Swedish 

study estimated a prevalence of 3.4% in postmenopausal women [22], other studies 

estimated a prevalence of 0.3% in the general population [23, 24]. The exact etiology of 

PHPT is still unknown; however a number of risk factors are identified such as female 

gender, age, family history and history of radiation exposure. The prevalence increases 

with age and postmenopausal women are specifically more prone to develop PHPT [22, 

25]. 

 

Clinical features and diagnosis of PHPT 

 

The clinical presentation of PHPT has changed significantly over the last 20-25 years. 

This is attributed to the introduction of automated calcium measurement which has 

contributed dramatically to the easy and early detection of the disease. Symptomatic 

patients usually represent a minority (~ 20%) of PHPT patients. They usually present 

with clinical features secondary to abnormally high S-Ca2+ such as weakness, lethargy 

and signs and symptoms of renal diseases, most commonly renal stones [26, 27].  
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The skeleton is an important target for PTH and skeletal complications such as bone 

pain and pathological fractures due to loss of bone mass can also be present [28, 29]. 

Other skeletal complications such as osteitis fibrosa cystica are very rarely detected 

nowadays as most patients are diagnosed early in the course of the disease. 

Psychological manifestations such as depression and dementia are also common in 

PHPT patients [30]. Disturbances in the cardiovascular system such as hypertension 

and arrhythmias have been described more commonly in severe forms of PHPT [31, 

32]. However, the majority of PHPT patients are asymptomatic and diagnosed 

incidentally based on high S-Ca2+ [33, 34]. 

 

The diagnosis of PHPT starts with the clinical suspicion in any patients with elevated 

S-Ca2+ (Normal ionized S-Ca2+ range 1.15-1.33 mmol/L). The combination of high  

S-Ca2+ and high or upper normal limit serum PTH (normal PTH range 10-65 ng/L) 

should always indicate hyperparathyroidism until proved otherwise [35]. Except for 

hyperparathyroidism caused by lithium and thiazide treatment, all other causes of 

hypercalcemia are associated with suppressed PTH. Other laboratory findings include 

reduced or lower limit serum phosphate and increased or upper limit 1,25 dihydroxy 

vitamin D. Concurrent vitamin D deficiency may also be detected and can exacerbate 

the hyperparathyroid status [36, 37]. Imaging studies such as ultrasound and 

Technitium99 sestamibi scanning are used to localize the enlarged gland prior to the 

operation [38]. Other imaging techniques such as CT-scan and MRI are also used, but 

less frequently. 

 

Biochemical investigations such as measurement of serum vitamin D, phosphate and 

creatinine as well as 24-hour urinary calcium should be part of the initial evaluation of 

PHPT patients. In addition, as PTH has significant anabolic effect on the skeleton, 

measurement of bone mass (bone densitometry) using dual energy X-ray 

absorptiometry (DXA) has become an important and integral part in the management of 

hyperparathyroidism patients and is recommended for all PHPT patients. 

 

Surgical treatment 

 

Surgical removal of the pathologically enlarged parathyroid gland/glands 

(parathyroidectomy) is the only curative treatment available so far. The decision for 

parathyroidectomy in symptomatic PHPT patients with no concurrent contraindications 
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for anesthesia is usually straight forward; however, since the majority of PHPT patients 

are asymptomatic, controversy exist regarding parathyroidectomy. A practical clinical 

guideline was established to help in selecting patients for surgical treatment [39]. Based 

on this guideline, patients with the following criteria are recommended for 

parathyroidectomy: (1) elevated S-Ca2+ 1 mg above the upper normal limit; (2) 

markedly reduced cortical bone density (T score < - 2.5); or (3) age < 50 years. Patients 

having any of these criteria should be entitled for surgery. The details of the surgical 

approach depend on the underlying pathology. The half life of PTH is short about  

3-5 minutes and intraoperative PTH measurement within 5-10 minutes following gland 

removal has proven to be of clinical use [40, 41]. Several studies have suggested a 

reduction of 50% of intraoperative PTH from baseline measurements as an indication 

for a successful operation [42, 43]. 

 

About 30% of asymptomatic patients will have disease progression on follow-up [44]. 

Bone mass density is not stable over time and monitored patients may experience more 

bone mass loss over time. Parathyroidectomized patients have increased bone mass 

density due to reduced bone turnover [39]. Evidences from postoperative patients 

indicate increased bone mass and reduced fractures [45, 46], reduced incidence of renal 

stones in those with a history of nephrolithiasis and improved neuromuscular 

symptoms. Furthermore, advances in surgical approaches and techniques combined 

with reduced postoperative complications all support the clinical benefits of parathyroid 

surgery over medical and/or monitoring strategies in asymptomatic patients. 

 

Non-surgical treatment 

 

Parathyroidectomy is not always possible or indicated in patients with PHPT. When 

patients do not meet the criteria for surgical removal or have concurrent co-morbid 

conditions, or refuse surgery due to personal decisions, they are monitored regularly by 

annual measurements of S-Ca2+, serum creatinine and bone density and they may be 

offered some sort of medical treatment [39].  

 

Vitamin D supplementation is required for all the patients with a goal of a serum level 

of 20 ng/dl of 25-hydroxyvitamine D and it has been shown to reduce PTH level 

without significant increase in S-Ca2+ level [47]. Dietary calcium restriction is not 

recommended as this may further elevate the serum PTH level [48]. However, 



 

17 
 

excessive intake of calcium should also be avoided. In general, it is advisable to keep 

the dietary calcium intake within the range of 1000-1500 mg/day. In addition to these 

measures, some patients may be offered medical treatment with one or more of the 

following agents: estrogen, selective estrogen receptor blockers, calcimimetic 

cinacalcet and bisphosphonates. However, none of the currently available medical 

treatments are regarded as an advisable alternative to surgery. Furthermore, all the 

available medical therapies need further extended studies to make a final 

recommendation of any of them. 

 

Long term follow up of non-surgically treated patients have showed that about 20-30% 

of them will eventually have disease progressions either as elevated S-Ca2+ or urinary 

calcium and/or reduced bone mass density [46]. Therefore, these patients will have one 

or more of the criteria required for parathyroidectomy and may need to proceed to 

surgery. This finding re-enforces the need for regular long term follow-up of PHPT 

patients treated conservatively. 

 

Secondary hyperparathyroidism (SHPT) 

 

Chronic and persistent stimulation of the parathyroid glands by concurrent decreased 

level of the active form of vitamin D and of S-Ca2+ along with elevated serum 

phosphate leads to hyperplasia of the parathyroid glands and abnormally elevated PTH 

level, a condition called Secondary hyperparathyroidism (SHPT) [49]. The 

overactivation of the parathyroid glands in SHPT represents a compensatory 

mechanism toward any external factor causing deregulation of calcium homeostasis.  

 

The most common cause of SHPT is CKDs where three well recognized biochemical 

changes drive the hyperactivation of the parathyroid glands in these patients and further 

exacerbated by reduced sensitivity of both CASR and vitamin D receptor (VDR) to 

PTH. These changes are represented by declining level of 1,24 dihydroxy vitamin D 

which acts as the earliest stimulus for PTH secretion, followed by hyperphosphatemia 

and hypocalcemia. The sequences of the main biochemical changes are believed to 

correspond to the drop in the glomerular filtration rate (GFR) and therefore decline in 

renal function [49-51]. 
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Patients with SHPT usually suffer from higher morbidity and mortality as compared to 

PHPT patients and this is attributed to the underlying pathology which in most cases is 

a long standing CKD. Therefore signs and symptoms of SHPT patients are those of the 

CKD. These patients usually have higher levels of serum PTH, increased resistance to 

PTH and more severe biochemical disturbances accompanied by severe skeletal and 

sometimes cardiovascular complications. It is very frequent to find some degree of 

SHPT in patients undergoing renal replacement therapy with uncontrolled 

hyperphosphatemia and/or vitamin D replacement [52]. A high incidence of SHPT 

ranging from 30 to 57% among patients with low vitamin D has been reported [53, 54].  

 

Treatment of SHPT is primarily aimed at preventing the deterioration of the condition 

by correcting the biochemical changes and treating the underlying pathology such as 

CKD. Replacement of vitamin D, correction of calcium and phosphate imbalances by 

controlling dietary intake and dialysis as well as treatment with calcimimetics are 

important cornerstones in the prevention of irreversible, tertiary hyperparathyroidism. 

Today, surgical removal of parathyroid glands is reserved for severe cases of SHPT 

patients in which medical interventions fail or when hyperparathyroidism persist after 

renal transplantation. 

 

Tertiary hyperparathyroidism (THPT) 

 

Patients with long standing SHPT can go through a state of progressive hyperactive 

parathyroid gland associated with elevated serum PTH and S-Ca2+, even when the 

underlying pathology was treated. This progressive state of hyperactivity is called 

tertiary hyperparathyroidism (THPT) [52]. This is a very infrequent condition and the 

frequency is even further reduced with improved therapeutic approaches of SHPT. 

 

Familial hyperparathyroidism 

 

Although in the majority of PHPT patients the disease is sporadic, in about 5%, PHPT 

is part of familial syndromes such as multiple endocrine neoplasia type 1 (MEN1) and 

type 2A (MEN2A), hyperparathyroidism-jaw tumor (HPT-JT) syndrome, familial 

isolated hyperparathyroidism (FIHP), familial hypocalciuric hypercalcemia (FHH) and 

severe neonatal hyperparathyroidism (SNHPT). In the following section, these familial 

conditions will be discussed individually. 



 

19 
 

Multiple endocrine neoplasia type 1 (MEN1) 

 

MEN1 is a heritable autosomal dominant syndrome characterized by tumors involving 

the parathyroid glands, the pituitary and endocrine pancreas (MEN1; OMIM # 131100) 

[55]. It is a rare syndrome with a prevalence of 2-3/100,000. However, it is the most 

common cause of familial PHPT and constitutes about 2% of all the causes [56]. The 

penetrance for parathyroid adenoma is very high in this group of patients and may 

reach up to 90% by the age of 50 years. The syndrome has a similar sex distribution 

and usually occurs between the second and the fourth decades of life. In contrast to 

sporadic adenomas, parathyroid disease in patients with MEN1 syndrome is usually 

multiglandular (multiple adenomas or four-gland hyperplasia). These patients are also 

treated surgically; however tumors are more likely to recur following removal [57, 58].  

 

The etiology behind this syndrome is a constitutional mutation of the tumor suppressor 

gene (TSG) MEN1 on chromosome 11q13 (discussed later) [59]. While germline 

mutations inactivate one allele of MEN1 gene, the other allele is usually inactivated by 

the second sporadic hit. Mutations in MEN1 gene can be identified in 70-95% of 

MEN1 patients [60]. In a small percentage of MEN1 patients no mutations can be 

detected in MEN1 gene and this could be due to mutations in the non-coding regions or 

mutations in other related genes which inactivate the menin protein (encoded by MEN1 

gene) as a result. 

 

Multiple endocrine neoplasia type 2A (MEN2A) 

 

PHPT develops in about 20-30% of patient with type 2A of the autosomal dominant 

multiple endocrine syndrome (MEN2A; OMIM #171400). Patients with this syndrome 

carry germline mutations of the RET proto-oncogene [61] and develop tumors in 

multiple endocrine glands such as medullary thyroid carcinoma (MTC), 

pheochromocytoma, and parathyroid adenomas [62]. Hyperparathyroidism in MEN2A 

is usually mild, clinically resembles sporadic cases of PHPT and is almost always 

caused by underlying benign parathyroid tumors [63]. 
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Hyperparathyroidism-jaw tumor (HPT-JT) syndrome 

 

HPT-JT is an autosomal dominant syndrome characterized by tumors of parathyroid 

glands, jaw bones, uterus as well as various kidney lesions (HPT-JT; OMIM 607393). 

Most of PHT-JT patients are presenting with features of PHPT and in about 10-15% of 

the cases, it is due to a parathyroid carcinoma [64-66]. This syndrome is caused by 

constitutional mutation of CDC73/HRPT2 gene (discussed later) [66] which is 

identified in about 50-75% of the patients. Numerous mutations, most of which are 

expected to cause inactivation of the gene, have been identified scattered through the 

CDC73 gene, but no hotspot has been reported thus far [67]. In contrast to MEN1, 

somatic mutations in CDC73 are uncommon in parathyroid adenomas while they are 

frequently detected in parathyroid carcinomas [66-69]. 

 

Familial hypocalciuric hypercalcemia (FHH) 

 

FHH is an autosomal dominant condition (FHH; OMIM #145980) characterized by 

slightly elevated or upper normal serum PTH, elevated S-Ca2+ and reduced excretion of 

urinary calcium. Patients with FHH carry a heterozygous germline mutation in the 

CASR gene rendering the receptor much less sensitive to changes in the extracellular 

calcium [70, 71]. Two other loci on chromosome 19p and 19q have been reported to be 

linked to other families with FHH [72, 73]. 

 

Severe neonatal hyperparathyroidism (SNHPT) 

 

This is a very rare variant of FHH due to homozygous mutations in CASR and results in 

a fatal condition in the newborn [74]. 

 

Familial isolated hyperparathyroidism (FIHP)  

 

FIHP is a clinical entity identified when there is hyperparathyroidism without any 

specific features of MEN1, HPT-JT or FHH syndromes (OMIM #146200) [75]. In a 

subset of families the patients exhibit mutations of MEN1, CDC73 or CASR [76]. 

However, in most families no causative mutations have been identified. One study has 

suggested an additional locus on chromosome 2 as potentially involved in the 

pathology of FIHP [77]. 
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DISEASES OF THE PARATHYROID GLANDS – HYPOPARATHYROIDISM 
 
In contrast to hyperparathyroidism, the condition hypoparathyroidism refers to reduced 

glandular activity with abnormally reduced PTH secretion leading to hypocalcemia. 

Hypoparathyroidism is most commonly encountered after neck surgery due to 

inadvertent damage to the parathyroid glands or removal of all parathyroid glands with 

failure of re-implantation. In the majority of the cases, hypoparathyroidism is sporadic, 

however, it also occurs as a part of complex autoimmune diseases or as an isolated 

entity such as the autosomal dominant familial isolated hypoparathyroidism [78, 79]. 

The clinical signs and symptoms of hypoparathyroidism are predominantly related to 

hypocalcemia such as muscle spasms, numbness and paresthesias. In severe cases, the 

patient may experience life threatening complications such as seizures, tetany and 

laryngeal spasm [80]. The diagnosis is mainly based on the detection of concurrently 

low PTH and low S-Ca2+. The standard treatment of hypoparathyroidism is correction 

of hypocalcemia and the accompanying reduced vitamin D by the supplementation of 

oral calcium and vitamin D [81]. 

 

TUMORS OF THE PARATHYROID GLANDS 
 
Tumors of the parathyroid glands can be benign or malignant and are broadly classified 

as adenomas, carcinomas and atypical adenomas. 

 

Parathyroid adenoma  

 

Parathyroid adenoma is the most common type of parathyroid tumors and responsible 

for about 85% of PHPT cases [20]. In sporadic cases, one single parathyroid gland is 

usually enlarged and has hyperactive state causing excessive secretion of PTH. Double 

adenomas are also reported, but they are rare [82].Parathyroid adenomas are more 

frequently detected in postmenopausal women [20]. The median glandular weight 

reported is 650 mg [83]; however, parathyroid adenomas as large as 110 grams have 

been reported [84]. Typical parathyroid adenomas appear as reddish brown in color 

with soft consistency encapsulated in a thin fibrous layer (Figure 6). In about 50-60% 

of the cases there is also a yellowish brown rim of glandular tissue most often found 

close to the vascular hilus of the gland and it represents the remnant of the normal 

parathyroid gland commonly referred to as “normal rim” [20]. 
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The majority of parathyroid adenomas are composed of chief cells, with a smaller 

proportion consisting mainly of oxyphil cells [85]. Microscopically, the cells usually 

have mild degree of nuclear polymorphism with reduced intracytoplasmic fat contents 

as well as an overall reduction in the number of adipocytes. Identification of an intact 

thin fibrous capsule surrounding the parenchyma cells and the presence of a “normal 

rim” can be of great diagnostic value in differentiating adenomas from malignant 

parathyroid tumors and hyperplasia, respectively (Figure 3B) [20]. 

 

                       
 

     Figure 6. Macroscopic appearance of a parathyroid adenoma. 

 

Parathyroid carcinoma 

 

Carcinoma of the parathyroid gland is a rare malignancy and it accounts for less than 

1% of PHPT causes [86, 87]. Parathyroid carcinoma has no gender preferences and it is 

usually diagnosed at younger ages as compared to adenomas. However, it can occur at 

any age. The clinical presentation of patients with parathyroid carcinoma is usually 

very aggressive and characterized by a palpable neck mass, hoarseness of voice, very 

high S-Ca2+ (3.5 mmol/L) and serum PTH (usually 4 fold normal). Patients may also 

have skeletal, kidney and other body organs complications. However, none of the 

clinical features are exclusive and parathyroid adenomas could have any of these 

features. Certain pathological features such as large tumor size, marked nuclear atypia, 

trabecular growth pattern and thick fibrous bands are more frequently seen in 
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parathyroid carcinomas (Figure 3C), but again these features can be also seen in 

atypical adenomas (discussed below) which further complicate the diagnosis.  

However, only capsular penetration and invasion of the surrounding tissue, local 

recurrence and distant metastasis can set the final diagnosis. Unfortunately, these 

diagnostic criteria can only be detected in advanced stages of the disease [88]. The 

difficulty in correct diagnosis and therefore difficulty in selecting best treatment 

modality and follow-up protocol urged the need for molecular markers which can 

identify carcinomas in pre or intraoperative time. Studies have identified a number of 

potential markers each with different sensitivity and specificity for the detection of 

carcinoma cases. Loss of parafibromin expression, the protein product of HRPT2 gene, 

is a well studied marker which is integrated into the diagnostic work up whenever 

parathyroid carcinoma is suspected [89-91]. Along with parafibromin, the proliferation 

marker Ki67 is also used as additional diagnostic aid as parathyroid carcinomas usually 

have a higher proliferation index than adenomas [92]. 

 

Atypical parathyroid adenoma 

 

Atypical adenomas refer to a group of parathyroid tumors with histopathological 

features that overlap with parathyroid carcinomas [93, 94]. The differentiation between 

parathyroid carcinoma and atypical parathyroid adenoma is a diagnostic challenge and 

yet very important since parathyroid carcinoma requires a more extensive surgery and a 

closer follow-up [93]. The diagnosis of atypical adenoma is based on the identification 

of any two of the following histological features: incomplete capsular invasion, fibrous 

bands, pronounced trabecular growth pattern, mitotic activity more than one mitosis per 

10 high-power fields and tumor necrosis (Figure 3D) [94].  

 

Atypical parathyroid adenomas were previously referred to as equivocal carcinomas 

and several studies raised the question whether these atypical cases carry any malignant 

potential [20]. These uncertainties necessitate close follow-up of patients diagnosed 

with atypical adenomas in order to avoid any possible misdiagnosed parathyroid 

carcinoma [61]. 
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MOLECULAR GENETIC BACKGROUND OF PARATHYROID TUMORS 
 
Clonal development is a prominent feature of cancer as it provides selective growth 

advantage to the tumor cell. The debate on whether parathyroid tumors are monoclonal 

or polyclonal in growth lasted for a long time until a number of studies showed 

experimentally the monoclonal nature of parathyroid tumors using chromosome X 

inactivation [95, 96].  

Many studies investigated the molecular genetic mechanisms involved in parathyroid 

tumors development and they had considerable contribution to the current insight into 

this disease (Table 1). Studies of familial cases of PHPT provided valuable information 

on the genetic of sporadic cases of parathyroid tumors and have led to the identification 

of two important TSGs which are: 

 

Multiple endocrine neoplasia type 1 (MEN1) gene 

 

The tumor suppressor MEN1 is a located in chromosomal region 11q13. MEN1 has 10 

exons and it is about 9.8 kb in size and encodes for a 610 amino-acid nuclear protein 

called menin (Figure 7). The MEN1 gene was first mapped to 11q13 in family studies 

[59]. This gene was subsequently identified as the underlying etiology in MEN1 

patients and MEN1 mutations were detected in the majority of the cases [97, 98]. This 

has motivated the search for MEN1 mutations in sporadic cases of PHPT which 

identified mutations in about 25% of the cases [99, 100]. A more recent study using 

whole exome sequencing has identified MEN1 mutation in 6/16 (35%) of sporadic 

parathyroid adenomas [101]. Mutational analyses have revealed more than 400 

different MEN1 mutations in parathyroid tumors, most commonly of the type that 

inactivates the protein such as truncating deletions or insertions and/or nonsense type 

which inactivate the gene [102]. Constitutional MEN1 mutations have been also 

reported in clinically apparent sporadic cases of parathyroid adenomas [103, 104]. 

Furthermore, loss of heterozygosity (LOH) at the MEN1 gene locus is frequently 

detected in parathyroid adenomas in about 30% of cases, half of which have MEN1 

mutations [100, 105]. In contrast to adenomas, MEN1 mutations are rare in parathyroid 

carcinomas and it has only been reported in four cases so far [106-109]. 
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The nuclear protein menin is involved in key cellular functions such as growth, 

proliferation and cell cycle control as well as DNA repair [111]. Menin acts as a 

transcription repressor through the interaction with Jun D, a member of the 

transcription factor family AP-1/fos Jun and also through recruitment of histone 

deacetylase complex [112-115]. Menin has histone methyltransferase activity which is 

involved in controlling cell growth through upregulation of the cyclic dependant kinase 

inhibitors p16 and p18 [116]. In addition, menin promotes gene transcription via the 

interaction with an important member of the TGF-beta family, Smad3. While in 

parathyroid glands, TGF-b inhibits cellular proliferation and PTH production, 

inactivation of menin will remove this inhibition and will therefore enhances cellular 

proliferation and increases PTH secretion [117, 118]. 

 

 
 

Figure 7. Diagrammatic representation of MEN1 gene and its product, menin with 

proposed functions. 

 

Hyperparathyroidism 2 (HRPT2)/CDC73 gene 

 

The CDC73 gene is a known TSG located on chromosome 1q32 and has 17 coding 

exons. Similar to MEN1, mutations of the CDC73 gene were first detected in familial 

forms of PHPT, namely the HPT-JT syndrome where the majority of patients were 

found to harbor an inactivating CDC73 mutation [66]. As parathyroid tumors within 
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HPT-JT syndrome carry a high risk of malignancy, CDC73 mutations were also 

expected to have a role in parathyroid carcinomas. This speculation was then supported 

by studies showing CDC73 mutations in the majority of sporadic parathyroid 

carcinomas [119]. The reported frequencies of somatic CDC73 mutations detected in 

sporadic parathyroid carcinomas vary between 67% up to 100% [68, 69, 119]. In 

contrast to carcinomas, CDC73 mutation is rare (~4%) in sporadic parathyroid 

adenoma [68, 120, 121]. Constitutional mutations of CDC73 have been also detected in 

clinically apparent sporadic cases of parathyroid carcinomas [122, 123].  

 

 
Figure 8. Diagrammatic representation of HRPT2/CDC73 gene and its product, 

parafibromin with proposed functions. Modified from reference [91]. 

 

The CDC73 gene encodes a 531 amino-acid tumor suppressor protein called 

parafibromin. Parafibromin has multiple important cellular functions (Figure 8). It is 

part of the of RNA polymerase II-regulatory Paf1 complex which is involved in gene 

transcription mediated by histone methylation in the promoter and coding regions of 

specific genes [124]. It also regulates the cell cycle via the regulation of cyclin D1 

expression [125]. Parafibromin is a ubiquitously expressed protein and it is mainly 

located in the nucleus where it acts as a transcription factor and regulates transcription 

of certain genes such as cMYC [126]. It can be also found in the cytoplasm where it is 

involved in the organization of the cytoskeleton through binding to actin binding 

proteins actinin-2 and actinin-3 [127]. Studies have shown that over-expression of 

parafibromin by transfected cells can induce apoptosis [128] while parafibromin null 

mice do not survive and die in utero [129]. 
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Other genetic alterations reported in parathyroid tumors 

 

One of the earliest genetic abnormalities identified in parathyroid adenomas is the 

chromosomal rearrangement of cyclin D1/PRAD1 (parathyroid adenomatosis 1) proto-

oncogene [130-132]. This rearrangement is a pericentromeric inversion on 

chromosome 11 that positions the 5' PTH regulatory region, originally located on 11p, 

to the upstream of the cyclin D1 gene located on 11q, leading to over-expression of 

cyclin D1 (Figure 9). Although this genetic alteration has been reported infrequently, 

overexpression of cyclin D1 is more commonly observed in about 20-40% of sporadic 

parathyroid adenomas and even more frequently in parathyroid carcinomas [133-135]. 

Cyclin D1 is a proto-oncogene that plays a major role in regulation of the cell cycle and 

over-expression of this gene leads to proliferation and cell growth [136]. However, no 

cyclin D1 mutations have been reported in parathyroid tumors [137]. 

 

Mutations of RET (REarranged during Transfection) oncogene is detected in patients 

with MEN2A. Although no RET mutations have been reported in sporadic parathyroid 

tumors, over-expression of this gene has been demonstrated in sporadic cases [138]. 

 

Reduced expression of CASR has been repeatedly reported in parathyroid tumors. 

However, only very few studies have reported mutations in this gene [75, 139-141]. In 

a recent retrospective study, reduced CASR expression was associated with 

significantly poorer prognosis in parathyroid carcinoma patients [142]. 

 

A number of potential candidate genes known to be commonly mutated in other tumor 

types such as RAS, RB, TP53 have also been investigated in parathyroid tumors and 

apart from only one study which reported TP53 mutation in a single anaplastic 

parathyroid carcinoma, no other mutations have been reported [131, 143-147]. 

 

 In addition to mutations, other genetic aberrations such as recurrent DNA copy number 

alterations (CNAs) and LOH have been also reported in parathyroid tumors. Examples 

of the most commonly detected recurrent CNAs and LOH are losses in 1p, 3q, 6q, 9p, 

11p, 11q, 13 and 15q and gains of 16p and 19p [148-154]. Furthermore, two different 

chromosomal translocations have been reported in parathyroid adenomas including a 

t(1;5)(p22;q32) [155] and a t(4;13)(q21;q14) [156]. However, the functional 

consequences of these translocations have not been identified yet. 
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Figure 9. Illustration of cyclin D1/PRAD1 chromosomal rearrangement. Modified from 

reference [137]. 

 
EPIGENETICS 
 
Epigenetics is the study of heritable and potentially reversible changes in cellular 

information which are not due to alterations in DNA sequence [157]. The field of 

epigenetics has undergone a rapid and considerable development over the last 20 years 

and its role is clearly demonstrated in both normal and pathological conditions 

including human cancers [158]. Epigenetic mechanisms regulate gene function 

independent of the DNA sequence and can be regarded as the interface between 

genotype and phenotype. Consequently, epigenetics can explain the functional and 

morphologic differences between different cell types in any organism, although these 

cells all have identical genetic material. 

 

Epigenetic mechanisms are involved in many important cellular processes such as 

embryonic development, cellular growth and differentiation, X chromosome 
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inactivation and genomic imprinting as well as protection against viral genome 

integration [159, 160]. Different epigenetic mechanisms exist, all of which are essential 

for regulation of gene function. These mechanisms include: DNA methylation, histone 

modifications and chromatid remodeling, and RNA-mediated gene silencing. 

 

DNA methylation 

 

DNA methylation is the most studied and the best characterized epigenetic mechanism. 

It involves covalent binding of a methyl group to the C-5 position of cytosine base of a 

cytosine-guanine (CpG) dinucleotide (Figure 10) [158]. 

 

 
 

Figure 10. DNA 5-methylcytosine methylation. Modified from reference [161]. 

 

DNA methylation usually occurs at clusters of CpG dinucleotides known as CpG 

islands (CGIs) [158]. They are defined as clusters of CpG dinucleotides stretching for 

about 200 to 500 bp with GC contents of over 50% and observed/expected GC contents 

of 60%. CGIs are localized at the promoters of more than half of the human genes and 

they are usually unmethylated under normal conditions [162, 163]. The co-localization 

of the CGIs with gene promoters provide a more chromatin permissive state [164] and 

can act as a distinguishing mark for transcriptional start sites [165]. While CGI 

promoter hypermethylation leads to transcriptional repression and gene silencing [166], 

hypomethylation of CGIs is associated with reactivation of repressed genes [167]. 

However, the later mechanism is less well characterized. Many TSGs involved in 

different cellular processes such as DNA repair, cell cycle, apoptosis and angiogenesis 

are frequently silenced by aberrant DNA promoter methylation in various human 
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cancers and at different stages of tumor development [168]. There are many examples 

of TSGs that are inactivated by promoter methylation, for e.g. RB, VHL, hMHL1, 

BRCA1 and p16INK4 a [169-172]. Aberrant CGI methylation is recognized as a hallmark 

of cancer [159]. In addition to gene-specific DNA methylation changes, alterations in 

DNA methylation can also occur at genomic regions other than gene promoters and 

cause alterations in global methylation status [164]. Global hypomethylation occurs 

mainly at repetitive sequences such as long interspersed nuclear elements-1 family 

member L1 (LINE-1), inducing chromosomal instability, translocations, gene 

disruption and reactivation of endoparasitic sequences [164]. Hypomethylation of 

LINE-1 has been reported in many human cancers such as cancers of breast, lung, 

bladder and liver [165]. More recent genome-wide methylation analyses in colon 

cancer have revealed frequent hypermethylation of CpGs at genomic regions of less 

dense GC contents located at about 0.5-2 kb upstream to the promoter and have been 

termed “CpG shores” [173]. This study found that most tissue-specific DNA 

methylation occurs at CGI shores, rather than on the islands themselves. 

 

DNA methylation induced gene transcriptional repression occurs through a number of 

proposed mechanisms. Two different, but biologically relevant DNA methylation 

mechanisms are described (Figure 11). First methylation of CGIs at gene promoters can 

act as a physical hindrance and block the access of transcription factors to the 

transcription starting site and prevent the initiation of transcription [174]. A second 

proposed mechanism suggests that DNA methylation will recruit histone modifying 

and chromatin-remodeling complexes to methylated sites which act as repressor 

proteins and therefore trigger gene silencing [175, 176]. Among these repressor 

proteins are four members of the methyl binding proteins (MBD1, MBD2, MBD3 and 

MeCP2), which act as methylation-dependant transcription repressors [161].  

 

Methylation of CpGs is mediated by members of the DNA methyltransferase (DNMTs) 

family of enzymes which catalyze the transfer of a methyl group from S-adenosyl 

methionine to DNA. DNMTs are mainly classified into de novo and maintenance 

DNMTs [177]. De novo DNMTs include DNMT3A and DNMT3B which are highly 

expressed in embryonic stem cells and downregulated in differentiated cells and are 

responsible for establishing the pattern of methylation during embryonic development 

[175]. DNMT1 acts as a maintenance DNMT and is responsible for maintaining the 

methylated state during cell division [178]. 
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Figure 11. Mechanisms of gene silencing by DNA methylation. (A) Transcriptionally 

active, unmethylated gene promoter. (B) Silenced gene due to promoter 

hypermethylation. (C) Silenced gene due to methylation-recruited transcription 

repressors. Modified from reference [179]. 

 

Histone modifications and chromatid remodeling 

 

This describes posttranscriptional modifications of N-terminal of histone tail protruding 

from the nucleosomes. Various histone modifications are identified and include 

acetylation, methylation, phosphorylation, ubiquitination, SUMOylation and ADP 

ribosylation which will modify the chromatin state to be active or repressive (according 

to the type of the modification) [180]. Studies have shown that histone modifications 

are correlated and occur in connection to each other, a process that has later been 

termed as the “histone code” [181]. Although histone modifications are not as well 

studied as DNA methylation, the interest to investigate this modification is growing. 

Different patterns of histone modifications have been identified in a variety of human 

tumors and are found to be correlated with tumor stage and prognosis [182, 183]. 
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RNA-mediated gene silencing 

 

Posttranscriptional silencing by small non-coding RNAs has become increasingly 

recognized as an epigenetic mechanism of gene function control. Example of non 

coding small RNAs are microRNA (miRNA) (Figure 12) which are about 20-22 

nucleotides long usually located in the introns or exons of the protein coding genes in 

70% of the cases [184]. They can also be found in the intergenic regions in about 30% 

of the cases [158, 160]. miRNA can directly interact with mRNA causing either its 

degradation or repression [185] and they have important functions such as regulation of 

cellular proliferation, differentiation, apoptosis, and development [186]. The number of 

known miRNAs has dramatically increased in the last 5-10 years. Interestingly, 

miRNAs can function as tumor suppressors or as oncogenes and many studies have 

shown that deregulation of miRNAs are involved in different pathological conditions 

including cancer [187]. This class of small non-coding RNAs is now being explored to 

have great cancer diagnostic and prognostic potentials as emerging evidence revealed 

that the pattern of miRNAs expression correlate well with clinicopathological 

characteristics and outcome of different cancer types [188]. 

 

 
 

Figure 12. MicroRNA and posttranscriptional regulation of gene expression via RISC 

(RNA-induced silencing complex). Modified from reference [189]. 
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Epigenetic background of parathyroid tumors 
 
Studies of epigenetic mechanisms have also been conducted in parathyroid tumors, 

however with a much lesser frequency than genetic studies. Among the earliest 

published report is a study which investigated tissue and gene-specific expression of 

PTH by parathyroid glands using a restriction enzyme-based method [190]. They 

reported hypomethylation of DNA sequences in proximity to the PTH gene while the 

same sequences were hypermethylated in control non-PTH expressing tissues. 

Although this study analyzed only normal parathyroid tissues and did not find any 

correlation with PTH secretion in the parathyroid glands themselves, it suggested a role 

of DNA methylation in association with PTH gene and tissue-specific expression. Few 

studies have specifically analyzed methylation of CDC73/HRPT2 and all [191, 192], 

but one [193], excluded hypermethylation as a silencing mechanism. Taken together, 

the overall data do not support regulation of HRPT2 by methylation. This will be 

further discussed in this thesis (study III and IV). We have analyzed parathyroid tumors 

for promoter methylation of several genes and we found frequent hypermethylation of 

APC and RASSF1A [194]. On a genome-wide scale, a recently published study 

identified a number of hypermethylated genes with possible involvement in parathyroid 

tumorigenesis [195]. Among the significantly hypermethylated genes were CDKN2B, 

CDKN2A, WT1, SFRP1, SFRP2, and SFRP4.  

 

In addition to DNA methylation, genome-wide miRNA profiling of parathyroid tumors 

has revealed interesting patterns with potential capability of distinguishing carcinomas 

from benign parathyroid tumors [196, 197]. For example, one study found the 

expression of miR-296 and miR-222 was significantly different between carcinomas 

and adenomas. More interestingly, a recent study has identified a miRNA cluster called 

C19MC located on 19q13.4 which was significantly associated with parathyroid 

carcinoma and positively correlated with S-Ca2+, PTH and tumor weight [198]. 

Furthermore, this study also found C19MC promoter hypomethylation in 50% of the 

tumors which significantly associated with S-Ca2+ and metastatic disease, further 

supporting the role of epigenetic mechanisms in parathyroid tumor development. More 

studies are required to validate and identify potential genes that are regulated by 

methylation as well as to define the methylation profile of different parathyroid tumor 

types and subtypes. 
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AIMS OF THE STUDIES 
 

The general aim of this thesis was to contribute for better understanding of the genetic 

as well as epigenetic alterations involved in parathyroid tumors development. More 

specifically, the studies have aimed at the following: 

 

• Defining the genetic profile of large parathyroid adenomas (LPTAs) and 

determining whether LPTAs display malignant potential (study I). 

 

• Identifying recurrent minimal regions of DNA copy number alterations which 

may harbor potential tumor suppressor genes and oncogenes (study I). 

 

• Investigating a possible association between constitutional APC mutations and 

parathyroid tumors (study II). 

 

• Characterizing the genetic alterations in parathyroid tumors with established 

CDC73 mutations (study III). 

 

• Understanding mechanisms of CDC73 gene inactivation in parathyroid tumors 

(study III). 

 

• Studying the role of DNA promoter methylation in the regulation of genes 

potentially involved in parathyroid tumorigenesis and determining whether the 

mutational status of MEN1 or CDC73 gene can alter gene-specific as well as 

global methylation profile in parathyroid tumors (study IV). 
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METHODS 
 

Mutational analysis by Sanger sequencing 

 

DNA sequencing is the golden standard approach for mutation screening. In our studies 

(study I, II and III) we have used the dye-terminator Sanger sequencing method for 

mutational screening of APC, MEN1 and CDC73. The principle of this method relies 

on the use of fluorescently labeled chain terminator dideoxynucleotides (ddNTP’s) 

(Figure 13) [199]. This ddNTP differs from normal deoxynucleotides as it has a 

hydrogen group at the 3´carbon instead of a hydroxyl group. The advantage of this 

modification is that when ddNTP is incorporated into the synthesized DNA sequence it 

immediately terminates the reaction and blocks further addition of any ddNTPs. The 

protocol starts with amplification of the target sequence with specific primers using 

PCR. The PCR product is then purified to remove any unincorporated dNTPs using 

either chemical or enzymatic cleanup processing.  

 

 
Figure 13. Principle of chain terminator DNA sequencing.  
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The sequencing reaction mixture contains: DNA polymerase, the four ddNTPs (G, A, T 

and C) labeled in one fluorescent dye color each, the single stranded template of the 

specifically amplified PCR product, a specific sequencing primers, unmodified dNTPs, 

and other buffers required for the sequencing reaction. The sequencing reaction is run 

in the sequencing machine and it is a semi-automated process. When incorporated by 

DNA polymerase each labeled ddNTP will emit light at different wavelengths that will 

be captured and reported as a colored peak in the chromatogram. The reaction 

continues until the specified region has been fully sequenced. The resulted 

chromatogram will be cross-referenced with a reference genome and any mismatch in 

the target sequence will be further analyzed for possible mutations. 

 

Array comparative genomic hybridization (a-CGH) 

 

Tumors are characterized by DNA copy number alterations (CNAs) that are the 

consequences of structural chromosomal alterations of various types and complexity 

such as amplifications, deletions, translocations or gain and loss of a chromosome 

[200]. Knowledge of CNAs can have immediate clinical use in diagnosis and in 

some cases provide useful prognostic information such as in assessing the prognosis 

in breast [201] and prostate cancers [202]. Furthermore, it can aid in therapeutic 

judgments such as in chronic lymphocytic leukemia treatment [203].  

 

Different techniques exist for the study of CNAs, each with its own advantages and 

disadvantages. Examples of such techniques are fluorescence in-situ hybridization 

(FISH), karyotyping and CGH. In the recent years tremendous improvement in the 

resolution and throughput has occurred. While next generation sequencing currently 

provide the most comprehensive information of the whole genome, some of these 

techniques are still successfully used in both research and clinical practice such as 

FISH and microarray. 

 

Array CGH (a-CGH) is a powerful and a precise tool developed to detect and 

quantify genomic aberrations and map them directly onto the sequences of the 

human genome. It is a tool for cancer gene discovery and understanding disease 

pathogenesis. The main advantage of a-CGH is that the entire genome can be 

scanned for CNAs in a single experiment [204, 205]. The primary goal is to identify 

regions of recurrent CNAs of losses and gains where TSGs and oncogenes can 
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reside, respectively. Different a-CGH platforms exist. The main differences lie in the 

type, size and spacing of the genomic sequence printed on the microarray slides. 

These features will determine the final resolution of the applied microarray platform. 

An early platform which we also used in our studies is BAC arrays. This type of 

microarray platform implement large inserts of DNA produced from bacterial 

artificial chromosome (BAC) inserts. The resolution varies based on the type of the 

BAC arrays and it has developed from 24K to 38K which is the latest for BAC tiling 

arrays. We have used human BAC 38K arrays (study I & III) generated at the 

SCIBLU Genomics Centre at Lund University, Sweden (www.lu.se/sciblu). These 

arrays contain about 38,000 BAC clones (CHORI BACPAC resources) 

(http://bacpac.chori.org/ genomicRearray.php) arranged in a tiling fashion resulting 

in a final resolution of about 100-150 kb. This platform can provide sufficient signal 

intensity to quantitatively detect single copy number changes as well as homozygous 

deletions and high-level amplifications. However, one main disadvantage of a-CGH 

in general, is the inability to detect balanced translocations and other copy number 

neutral alterations. 

 

Array CGH method basically relies on hybridization where DNA will only bind to 

complementary genomic sequences spotted on the array slides (Figure 14). Tumor 

and normal DNA are fluorescently labeled in different colors. Both tumor and 

normal DNA will compete for binding to the genomic sequences on the slide. When 

there are no CNAs in the tumor, i.e. diploid, theoretically the combined color will 

give a yellow fluorescent signal. When the tumor has a deletion or a gain, the 

fluorescent color will be either red or green based on the initial labeling. In a-CGH, 

genomic DNA is labeled in vitro by random priming to incorporate fluorescently 

labeled nucleotides, usually Cy3 (green) or Cy5 (red). The hybridized microarray 

slide will be scanned and the features will be extracted using special feature 

extractions software. The extracted raw data will be further analyzed after several 

steps of normalization and smoothing to remove unwanted background and avoiding 

false positive effects. The signal intensity log2 ratio will be calculated for each 

single feature on the array slide and the expected log2 ratio of a single copy gain in a 

diploid genome, when hybridized versus normal genomic DNA, would be + 0.58, 

and -1 for a single copy loss. In practice, log2 ratios can range from – 4 for 

homozygous deletions to log2 ratio > 6 for high-level amplifications [206]. 
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 Figure 14. Principle of a-CGH 

 

Single nucleotide polymorphism microarray (SNP array) for loss of 

heterozygocity (LOH) analysis 

 

LOH is a common type of alteration and refers to a change from heterozygous to 

homozygous state in a paired tumor genome as compared to constitutional genome. 

LOH is a common mechanism of TSG inactivation and are frequently identified in 

human tumors (Figure 15) [207]. Several methods are available for identifying 

LOH, for example SNP-based analysis, microsatellite DNA analysis and SNP-based 

Pyrosequencing. SNPs are very common human genetic variations and are highly 

conserved during evolution making these polymorphic loci excellent markers for 

studying LOH. SNP-based microarrays provide a high throughput genome-wide 

technique for screening LOH events. This technique can also simultaneously 

provide genome-wide DNA copy number information in a single experiment.  

This method involves hybridization-based microarray analysis, where the chip 

contains highly condensed SNPs and is hybridized to fluorescently labeled samples. 

The resolution of SNP microarrays rely on the density of the SNPs printed on the 

microarray chip.  
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We have used the Affymetrix 250K genotyping chip (Affymetrix Inc., Santa Clara, 

CA, USA) in our study (study III). This platform has about 25,000 SNPs distributed 

randomly throughout the genome. Four rows of 25-mer oligonucleotides are used as 

a detector for each SNP loci in the chip. Two of them perfectly match SNP allele A 

or SNP allele B, while the other two contain single-base mismatch at various 

positions. SNP-based LOH analysis requires that tumor and normal samples being 

allelotyped on separate chips. However, with current SNP databases, comparison to 

non-paired online SNP databases generated from normal individuals is feasible. 

Following hybridization, the chips are scanned and the genotyping calls (LOH, 

retention of heterozygosity, uninformative or no call) are made using a special 

software which will calculate the ratio of allelic imbalance at each individual loci 

investigated. 

 
Figure 15. Principle of loss of heterozygosity (LOH). Redrawn from reference 

[208].  
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Bisulfite Pyrosequencing 

 

Different techniques are available for DNA methylation analysis. However, the 

majority of these methods lack enough sensitivity and have time consuming labor-

intensive protocols. In addition, some of these methods such as restriction enzyme-

based techniques require large amount of DNA for analysis and the sensitivity is 

limited to those sites recognized by the enzyme. Bisulfite (BS) Pyrosequencing was 

developed to circumvent those issues and has become the standard method for 

quantitative DNA methylation analysis. Pyrosequencing is principally a sequencing 

by synthesis method which provides a powerful analytic tool for accurate 

quantification of multiple successive CpG dinucleotides with high resolution and 

reproducibility. This method uses a simple and easy to follow protocol which 

requires a very small amount of DNA for analysis. It relies on BS modification 

which will convert unmethylated cytosine bases in CpG dinucleotides to uracil (U) 

and then to thymine (T) in the subsequent PCR amplification step, while methylated 

cytosine will remain methylated (Figure 16).  

 

 
 

Figure 16. Bisulfite modification and subsequence processes in Pyrosequencing. 

Redrawn from Pyrosequencing database, Qiagen. 
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BS converted DNA is amplified with specific methylation primers designed to 

specifically amplify the target CpG sites. For Pyrosequencing reaction, a single 

stranded BS modified DNA will be hybridized to specific sequencing primer and 

run in the Pyrosequencing machine. The Pyrosequencing reaction itself consists of a 

cascade of very well synchronized enzymatic reactions including four enzymes, 

DNA polymerase, ATP sulfurylase, luciferase, and apyrase (Figure 17).  

 

Upon the addition of the first complementary nucleotide by DNA polymerase, there 

will be release of a pyrophosphate (ppi) in a quantity equimolar to the amount of the 

incorporated nucleotide. The released ppi will be converted to ATP by the action of 

ATP sulfurylase. The enzyme luciferase catalyzes the conversion of luciferin to 

oxyluciferin which will generate light in an amount proportional to the amount of 

ATP generated. The light is captured by a charge coupled device (CCD) camera and 

presented as a peak in the resulting Pyrogram. The height of the peak is proportional 

to the number of nucleotides incorporated and will be recorded graphically as a 

Pyrogram. The role of the apyrase enzyme is to remove any unincorporated 

nucleotides from the reaction mixture. This process will be continued until the target 

genomic region is sequenced. The resulting raw data generated from the 

Pyosequencing reaction will be analyzed using pyromark software to quantify the 

methylation status. The ratio of the methylated to the unmethylated cytosine at each 

CpG dinculeotide will represent the percentage of methylation for that particular 

CpG site.  

 

For our studies, we have compared the average methylation density of tumor 

samples for each gene to the methylation density of the normal parathyroid samples. 

A difference of more than 10% in the mean methylation density was regarded as 

significant. 
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Figure 17. Principle of Pyrosequencing reaction. 

 

Immunohistochemistry (IHC) 

 

IHC is a well established and a widely used technique for the detection and sub-

cellular localization of proteins using labeled antibodies specifically directed against 

the proteins of interest. The methodology of IHC can vary widely depending on the 

tissue type studied, the targeted protein as well as the required degree of detection 

sensitivity and specificity. However the basic principle of IHC remains the same 

involving a specific antigen-antibody reaction. In general, the protocol starts with 

fixation of the tissue most commonly using formalin fixation to produce formalin-

fixed paraffin embedded tissue block. The paraffin block will be further processed 

and cut into sections of about 5μm thickness and fixed onto the surface of a glass 

slide. In order to uncover the antigenic sites, the slides are treated for what is called 

antigen retrieval were the slides are preheated allowing breakage of the protein 

cross-links created by the fixation step. 
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Two protein detection methods are used in IHC (Figure 18). The direct method uses 

only one labeled primary antibody to detect the target protein. This method has the 

advantages of being quick and short, but has the drawback of reduced sensitivity. In 

contrast, the indirect method uses two sets of antibodies. The first primary antibody 

is not labeled and used to detect the target antigen while the secondary antibody are 

labeled and directed to detect the first primary antibody. The indirect method has 

amplified signal intensity therefore has increased sensitivity; however it is more 

time consuming and has longer protocols. Stained IHC slides are examined under 

light microscope or scanned with special scanner for visualization, detection and 

sub-cellular localization. In study I and II, we used the indirect avidin-biotin 

complex (ABC) method. 

 

 
 

Figure 18. Immunohistochemistry (IHC). Direct and indirect methods of protein 

detection. 

 

TaqMan DNA copy number analysis 

 

This method is used for DNA copy number prediction at a specific genomic locus. 

We have used this method in our studies (study I, II and III) for validation of 

selected loci with recurrent CNAs as well as for CDC73 and APC copy number 

estimations. This is a quantitative PCR-based method implementing Taqman 
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chemistry with a similar approach to standard real time based qPCR. The target and 

reference primers are labeled with FAM and VIC dyes, respectively and both are run 

simultaneously in a duplex real-time PCR. The reference primer is designed to 

detect genomic sequence with known diploid copy number and used as an internal 

control. The reaction is run in triplicates in a qRT-PCR machine using standard 

amplification method and target DNA copy number is predicted using relative 

quantification method (ΔΔ Ct) [209]. In order to estimate ΔΔ Ct, the difference 

between target Ct and reference Ct (ΔCt) is calculated and compared to a calibrator 

known to have two copies of the target loci. The copy number of the target is 

calculated to be two times the relative quantity. Raw data is extracted from the RT-

PCR machine after the run using Sequence Detection Software SDS (Applied 

Biosystems) and automatically analyzed for DNA copy number prediction using a 

special software called CopyCaller software (Applied Biosystems). 

 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

 

Reverse transcriptase real-time PCR (qRT-PCR) is a very sensitive, specific and 

reproducible method for the detection and the quantification of mRNA [210]. This 

method allows real-time measurement of the PCR product while they accumulate 

during the exponential phase which is directly proportional to the amount of template 

prior to the start of the PCR process (Figure 19A). 

 

There are two main chemistries used for probe labeling and mRNA detection in qRT-

PCR, Taqman probes and SYBR green. Taqman probes only bind single stranded DNA 

molecules (Figure 19B) and is more specific, while SBYR green can bind any double 

stranded DNA molecule (Figure 19C) and hence is less specific. In qRT-PCR, mRNA 

is quantified using either a standard curve or relative quantification. The standard curve 

is usually used for absolute quantification such as for the quantification of viral loads. 

This method uses a series of dilutions of a known standard such as a plasmid for the 

target gene to generate a standard curve and the final mRNA quantity is estimated from 

the linear regression of the standard curve. In relative quantification, the gene 

expression is quantified relative to the reference samples such as normal tissue or 

untreated samples using 2-ΔΔCt method where ΔΔCt = ΔCt (sample) – ΔCt (calibrator), 

and ΔCt is the Ct of the target gene subtracted from the Ct of the housekeeping gene 

[209]. 
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The standard protocol for qRT-PCR starts with the cDNA library synthesis from total 

RNA using commercially available reverse transcriptase cDNA synthesis kits. The 

samples are run in triplicates with the target assay in a qRT-PCR machine. In order to 

quantify the target mRNA, the Ct value is measured using either a standard curve or 

relative quantification with an endogenous control. For our studies (study I, II and IV), 

we have used Taqman probes and relative quantification (2-ΔΔCt) method. 

 

 

 
 

Figure 19. (A) Principle of QRT-PCR (B) Taqman probe (C) SYBR green probe. 
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MATERIALS 
 

This thesis was based on the study of parathyroid tumors. Parathyroid tumor tissues 

were obtained from patients operated for PHPT and immediately snap frozen. The final 

histopathological diagnoses were established according to World Health Organization 

(WHO) [20] criteria and aided by clinical, surgical and pathological findings. Unless 

mentioned otherwise, all parathyroid tumor samples were sporadic as none of the 

patients’ clinical features or family history were suggestive of familial parathyroid 

diseases. Three non-tumorous parathyroid tissues were used as reference samples (N1, 

N2 and N3) in all the four studies. None of the patients from whom normal parathyroid 

tissues obtained had hypercalcemia and/or elevated PTH level. 

All samples were collected with informed consent and approved by the local Research 

Ethics Committee. Table 2 summarizes all the tumor samples used for the studies 

included in this thesis. 

 

Study I  

This study included 21 parathyroid adenoma samples obtained from patients operated 

for primary hyperparathyroidism at Karolinska university hospital during 2005-2009. 

All the 21 adenomas weighed ≥ 4 grams and ranged between 4.07-12.30 grams. They 

were referred to as large parathyroid adenomas (LPTAs) in this study. Eight of the 

patients were males and 13 were females and their ages at diagnosis ranged from 37 to 

84 years. The histopathological classification was based on the WHO criteria [20] 

which identified three cases of atypical adenomas among the 21 LPTAs. 

 

Study II 

In this study, we have investigated two parathyroid tumor samples obtained from two 

patients. The first patient was a 78 year old female with APC mutation-associated 

familial adenomatosis polyposis (FAP) diagnosed and operated on for an ectopic 

parathyroid tumor in Hospital de Santa Maria, Lisbon, Portugal. The excised 

parathyroid tumor measured 21 X 11 X 9 mm and histopathological examination 

established the diagnosis of a single parathyroid adenoma based on WHO criteria. 

The second patient was an 83 year old male with a history of colon polyps, colon 

cancer and Lynch syndrome and was operated for a parathyroid tumor in Karolinska 
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university hospital, Stockholm, Sweden. Similarly, this patient had histopathological 

diagnosis of parathyroid adenoma. The adenoma weighed 7.01 grams. 

Apart from the reference parathyroid samples (N1-3), this study also included two 

atypical parathyroid adenomas used as a negative control for APC immunostaining. 

The control parathyroid samples were also obtained from Karolinska university 

hospital, Stockholm, Sweden. Corresponding blood leukocytes were obtained from 

both patients for mutational analysis of APC. 

 

Study III 

The tumor panel investigated in this study included 9 parathyroid tumors with 

established CDC73/HRPT2 mutations. Three tumors had confirmed diagnosis of 

parathyroid carcinoma (one primary lesion, one from a local recurrence and one from a 

lung metastasis). The remaining tumors included 5 adenomas and one atypical 

adenoma. The atypical adenoma along with one adenoma were obtained from the same 

patient during different time intervals with the atypical tumor being excised last. Only 

one of the patients with parathyroid adenoma was regarded as familial and had FIH. 

The 3 carcinomas and the remaining tumors were obtained from Tokyo women’s 

medical hospital in Japan and Karolinska university hospital in Stockholm, Sweden, 

respectively, during 1994-2006. 

 

Study IV 

A panel of 72 parathyroid tumors including 66 adenomas, 3 atypical adenomas and 3 

carcinomas was investigated in this study. Twenty-one tumors including the 3 atypical 

ones were from the previous study (study I). Six of the adenomas had cystic features. 

Apart from the three carcinomas which were obtained from Tokyo women’s medical 

hospital in Japan and used in study III too, all the other samples were from Karolinska 

university hospital, Stockholm, Sweden. 
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RESULTS AND DISCUSSION 

  Study I: Genetic analysis of large parathyroid adenomas (LPTAs) 

 

LPTAs were defined as the 5% largest sporadic parathyroid adenomas identified among 

the 590 cases operated in our institution during 2005–2009. In this study we asked two 

questions:  What is the genetic profile of parathyroid adenomas with large glandular 

weight? And do large parathyroid adenomas carry malignant potential? To answer 

these questions, we investigated 21 LPTAs weighing ≥ 4 grams. 

 

Correlation of adenoma weight with clinical and biochemical parameters 

LPTAs had a higher relative number of male cases and a more pronounced clinical 

picture reflected by significantly higher S-Ca2+, an observation supporting previous 

reports [211, 212]. 

 

Screening for MEN1 and CDC73 mutations 

Mutational analyses revealed MEN1 mutation in 5 cases and CDC73 mutation in one 

case only, a finding in agreement with previous reports of frequent MEN1, but rare 

CDC73 mutations in parathyroid adenomas [68, 119, 120, 213]. 

 

Staining for MIB-1, APC and Parafibromin 

IHC analyses revealed low MIB1 proliferation index of 1.5% in all the LPTAs favoring 

a benign nature of the tumors. On the other hand, loss of parafibromin staining was 

observed in 10 cases; two of them were also negative for APC. Since loss of APC and 

parafibromin expression are associated with parathyroid carcinoma [214], our 

observations suggest that a subset of LPTAs share molecular characteristics with this 

entity. 

 

CNAs in LPTAs 

Recurrent gross copy number losses of chromosome 1 and 11 and gains of 

chromosome 5 were the most frequently detected CNAs in the LPTAs screened using 

array CGH. Overall, gain of chromosome 5 was the most interesting and unique finding 

as frequent losses on chromosome 1 and 11, but not gain of chromosome 5, are known 

in parathyroid adenomas [150, 152]. Gain of chromosome 5 was reported in 

parathyroid carcinomas [148, 215] and in several other tumors such as low grade renal 
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cell carcinoma, adrenocortical tumors as well as bronchial and gastrointestinal 

carcinoids [216-218]. Unsupervised clustering of the array CGH data clearly identified 

those with gain of chromosome 5 as one group and those with loss of chromosome 11 

as another group, further supporting the that gain of chromosome 5 reflect a distinct 

genetic pathway for a subset of LPTAs that is independent of chromosome 11 loss. 

 

CARD6 as a candidate oncogene 

Taqman DNA copy number analysis validated gain of several candidates genes located 

within minimal overlapping regions on chromosome 5, among them gain of the CARD6 

gene. Over-expression of this gene detected by qRT-PCR further confirmed this 

finding. CARD6 plays an important role in activation of NF-kB signaling, involved in 

proliferation, differentiation and apoptosis [219] and is deregulated in many tumor 

types including parathyroid tumors [220]. The present observations of CARD6 over-

expression as well as copy number gains suggest that evaluation of the protein 

expression could be valuable to further study the possible involvement of this gene in 

parathyroid tumors. 

Finally, we concluded that LPTAs represent a group of patients with pronounced 

parathyroid hyperfunction and associated with specific genomic features. 

  Study II: Molecular characterization of parathyroid tumors from two patients                                                

with hereditary colorectal cancer syndromes 

The primary aim of this study was to investigate possible association between APC 

mutations in hereditary colorectal cancer syndromes and parathyroid tumor 

development. For this purpose, we investigated two parathyroid tumors obtained from 

two patients with familial colon cancers; one with familial adenomatous polyposis 

(FAP) and an established constitutional APC mutation, and second one with Lynch 

syndrome with an underlying germline MLH1 mutation and a non-classified missense 

alteration of the APC gene. 

Histopathological re-examination confirmed the benign nature of both parathyroid 

tumors initially diagnosed as adenomas. To further assess any malignant potential, we 

studied the expression of Ki67, parafibromin and APC as potential molecular markers 

of parathyroid cancer [214, 221] using IHC. Both tumors had low MIB-1 proliferation 

index, negative parafibromin and strongly positive APC staining. Furthermore, while 

both patients carried constitutional APC mutations, no somatic APC mutation could be 
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detected.  To further investigate other possible alterations of the APC gene, we 

analyzed APC gene copy number and promoter methylation using qPCR and bisulfite 

Pyrosequencing, respectively. Both tumors were diploid for APC. While promoter APC 

1B was unmethylated in both tumors, promoter APC 1A was hypermethylated. 

Hypermethylation of the APC 1A promoter has been previously reported in parathyroid 

adenomas and carcinomas [194, 222]. However, this did not seem to affect the 

expression of APC as it was not altered when determined by qRT-PCR. This is possibly 

due to unmethylated transcriptionally active APC 1B promoter, a finding in agreement 

with previous studies [194, 223]. In addition, global methylation level represented by 

LINE-1 analysis did not show any alterations compared to reference parathyroid 

samples. 

The findings in this study supported the benign nature of the parathyroid tumors and 

did not suggest a role for deregulated APC in parathyroid tumors from these two 

patients. 

   Study III: Characterization of CDC73/HRPT2-mutated parathyroid tumors 

 

In this study we aimed to characterize the genetic profile of CDC73/HRPT2 mutated 

parathyroid tumors as well as to investigate possible mechanisms of the CDC73 gene 

inactivation. To accomplish that, we investigated 9 parathyroid tumors (3 carcinomas, 5 

adenomas and one atypical adenoma) with established CDC73 gene mutations for 

CDC73-specific as well as genome-wide alterations. 

 

Screening for CDC73 mutations 

Bi-allelic mutations were detected in 3 tumors and the remaining tumors had 

monoallelic mutations. In 7 tumors the CDC73 mutations were predicted to 

prematurely truncate parafibromin. For the remaining two tumors the mutations were 

predicted to involve the first intron sequence and the first nucleotide of the consensus 

donor splice site of intron 1. 

 

DNA copy number analysis of CDC73 gene using qPCR 

DNA copy number analysis displayed only one copy of the CDC73 gene in 3 of the 

adenomas, which, in previous studies, also exhibited loss of parafibromin expression 

using Western blot and IHC [213] and hence representing the second hit. On the other 
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hand, all the carcinomas were diploid or presented with copy number gain of CDC73 

gene. These results might suggest that parathyroid tumors can develop malignant 

features even with one remaining functional copy of CDC73. 

Global and CDC73 promoter methylation analyses 

All the tumors were unmethylated at the CDC73 promoter, a finding in line with a 

previous report [191]. On the global level, all the tumors were methylated and no global 

hypomethylation could be detected. These findings suggest that promoter methylation 

is an unlikely mechanism of CDC73 gene inactivation and CDC73 mutation itself does 

not induce alterations in global methylation assessed by LINE-1 analysis. 

 

Array-CGH profile in the CDC73-mutated parathyroid tumors 

The a-CGH profiles of the carcinomas and the adenomas were significantly different 

and further confirmed using unsupervised clustering analysis where the carcinomas and 

the adenomas fell into two different clusters. The carcinomas displayed gross deletions 

of 1p, entire chromosome 13 deletions and gain of chromosome 20, with absence of 

any significant CNAs on chromosome 11. These findings are generally similar to 

previously published studies using conventional CGH [148, 215] and possibly reflect 

the aggressive clinical behavior and could correlate with the malignant nature of these 

tumors. On the other hand, and in contrast to previous CGH studies [148, 149, 152, 

154], the adenomas displayed small extent of CNAs with the absence of any significant 

CNAs on chromosome 1 and 11. These results are interesting and support the 

hypothesis that CDC73 gene mutations possibly direct the parathyroid adenomas 

towards a different genetic pathway. 

 

Genome-wide and CDC73 locus LOH analysis using SNP array 

The carcinomas displayed more frequent LOH events than the adenomas with 

chromosome 1 being the most commonly affected in both tumor types. Previous studies 

reported frequent losses on chromosome 1p in parathyroid tumors regardless of the 

CDC73 mutational status and for which no candidate genes have been found [224, 

225]. Furthermore, LOH at the CDC73 locus was only detected in two tumors, one of 

which also displayed copy number loss by TaqMan copy number analysis.  

Our results suggest that CDC73 mutations drive parathyroid tumors into a partly 

distinct cytogenetic pathway different from unselected parathyroid tumors. 
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  Study IV: DNA methylation profiling in parathyroid tumors  

 

Here, we wanted to study the promoter methylation status of several candidate genes 

and see whether aberrant promoter methylation of these genes are involved in 

parathyroid tumorigenesis. For this purpose, we have determined gene-specific 

promoter methylation status of 10 candidate genes including APC (promoter 1A, and 

1B), β-catenin (CTNNB1), CASR, CDC73/HRPT2, MEN1, P16 (CDKN2A), PAX1, 

RASSF1A, SFRP1, and VDR; as well as global methylation level (LINE-1) in 66 

parathyroid adenomas, 3 atypical adenomas and 3 parathyroid carcinomas using 

bisulfite Pyrosequencing. 

 

Gene-specific methylation analysis in parathyroid adenomas and atypical adenomas 

We detected frequent hypermethylation of APC 1A, RASSF1A and β-catenin promoters 

in the adenomas. Frequent hypermethylation of APC 1A and RASSF1A are in line with 

previous studies [194, 195]. The majority of hypermethylated adenomas had reduced 

mRNA expression of the same gene. This association suggests a silencing effect by 

methylation on these genes. None of the other genes had altered methylation status. 

Promoter hypermethylation was detected in only one atypical adenoma for APC 1A. 

 

Gene-specific methylation analysis in parathyroid carcinomas 

Interestingly, all the 3 carcinomas were hypermethylated for RASSF1A and SFRP1, but 

only one was hypermethylated at the APC 1A promoter and none for β-catenin. 

Hypermethylation of APC 1A and RASSF1A have been reported in many other tumors 

such as colorectal [226] and head and neck cancers [227]. Hypermethylation of SFRP1 

has been reported in parathyroid tumors [195] as well as in other tumors such as 

colorectal [228], head and neck [229] and as an independent poor prognostic feature in 

breast cancers [230]. SFRP1 is a potent antagonist of the Wnt signaling pathway and 

hypermethylation of this gene without hypermethylation of β-catenin, might suggests a 

constitutive activation of the canonical Wnt/β-catenin signaling in this subgroup. 

 

Global methylation analysis using LINE-1 

Regardless of tumor type, estimation of LINE-1 methylation density did not reveal any 

change in the global methylation status, a finding in line with our previous studies [194, 

231]. 
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Correlation of the methylation profile to the MEN1 and CDC73/HRPT2 mutational 

status 

Tumors with known MEN1 (5 tumors) or CDC73 mutations (8 tumors) had similar 

methylation profiles suggesting that the mutational status of these two genes is unlikely 

to direct the tumors toward a different methylation profile. 

 

Correlation between clinical/biochemical parameters and gene-specific methylation 

The methylation status of APC 1A was significantly correlated with adenoma weight  

(r = 0.306, P = 0.019). This finding suggests that large parathyroid adenomas could 

have a different DNA methylation pattern in addition to previously reported specific 

genetic profile linked to adenoma size [232]. Furthermore, a statistically significant 

correlation was observed between the methylation status of RASSF1A and with both of 

APC 1A and β-catenin. 

 

These findings support our previous study [194] and reinforce the role of aberrant 

hypermethylation of APC, RASSF1A and β-catenin in the tumorigenesis of a subgroup 

of parathyroid adenomas. It also motivates further studies into the role of aberrant 

methylation of SFRP1 in parathyroid carcinoma development and its role as a potential 

epigenetic marker. 
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CONCLUSIONS 

 

• Large parathyroid adenomas may constitute a subset of parathyroid lesions 

associated with pronounced PHPT features and specific genomic aberrations. 

 

• Large parathyroid adenomas are associated with significantly higher serum 

calcium and therefore more pronounced clinical features. 

 

• The frequency of MEN1 and CDC73 mutations in large parathyroid adenomas 

is similar to those reported for parathyroid adenomas of smaller glandular 

weights. 

 

• CARD6 gene could have oncogenic potential and may play a role on the 

development of a subset of large parathyroid tumors. 

 

• APC gene is unlikely to be involved in parathyroid tumors development in 

patients with APC-mutated associated familial colorectal cancers. 

 

• CDC73 mutations direct parathyroid adenomas in a different genetic pathway 

from those adenomas without established CDC73 mutations. 

 

• Aberrant promoter methylation is an operational mechanism in parathyroid 

tumorigenesis. 

 

• Methylation of APC A1, β-catenin and RASSF1A promoters are deregulated in 

parathyroid tumors and could trigger potential therapeutic targets in the future. 

 

• SFRP1 is a potential epigenetic marker for parathyroid carcinomas and can be 

of important diagnostic aid along with already established molecular markers.  
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