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“Den mätta dagen, den är aldrig störst. 
  Den bästa dagen är en dag av törst.” 

 
    Karin Boye 



 

 

ABSTRACT 

Objective biomarkers tracing alcohol consumption are demanded in many situations 

when alcohol drinking is in focus, e.g. during monitoring of patient in a treatment 

program, in forensic medicine, workplace testing or biochemical validation of self-

report in research. Phosphatidylethanol (PEth) is an abnormal phospholipid formed 

only in the presence of ethanol that can be used as a sensitive and specific alcohol 

biomarker to detect current risky alcohol consumption. The aim of this project was to 

develop an liquid chromatography-mass spectrometry (LC-MS) method for PEth that is 

suitable for routine use. 

 PEth was extracted from whole blood and separated by LC-MS using a C4 

column in a reversed phase system by gradient elution. The limit of detection (S/N ≥ 3) 

and limit of quantification (S/N ≥ 10) were ≤ 0.02 and ≤ 0.1 µmol/L, respectively. The 

calibration curve was linear in the concentration range 0.2-20 µmol/L and the intra-

assay CV % for total PEth was ≤ 8.6 % and the inter- assay CV was < 11 %. The CV 

was lower using isotope labeled PEth as internal standard in the MS/MS mode. 

 Nine of the most common PEth forms were evaluated by both LC-MS and LC-

MS/MS. PEth-16:0/18:1 and PEth-16:0/18:2 were found to be the major forms in blood 

from alcoholic patients. The correlations of PEth-16:0/18:1 and PEth-16:0/18:2 to total 

PEth were good (R2 = 0.973) and PEth-16:0/18:2 (R2= 0.983) but together they 

correlated even better with total PEth. In 200 blood samples from blood donors and 

3023 from the routine pool, the majority had a total PEth concentration ≤ 0.5 µmol/L. 

The amount of PEth formed in whole blood samples that were incubated in the 

presence of ethanol varied considerably between individuals. The value of PEth as an 

alcohol biomarker was compared with ethyl glucuronide (EtG), ethyl sulfate (EtS) and 

carbohydrate deficient transferrin (CDT) in an outpatient treatment program for 

alcohol-dependent subjects. Compared with CDT, PEth was found to be a more 

sensitive biomarker.  

 In conclusion, a sensitive and specific LC-MS method was developed for the 

routine measurement of PEth in whole blood samples. The measurement of PEth-

16:0/18:1 alone or in combination with PEth-16:0/18:2 did not affect test sensitivity 

compared with total PEth. The use of PEth in combination with other biomarker is 

preferred, due to inter-individual variation in PEth formation. 
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1 INTRODUCTION 

Alcohol is a drug that is socially accepted and is deeply rooted in our society as far 

back as to the ancient history of mankind. People in many parts of the world are light to 

moderate drinkers and to them alcohol is not considered harmful. But chronic excessive 

alcohol intake leads to health and social problems to the individual [1]. To the society, 

the abuse of alcohol consumption not only increases the health care costs but also 

causes loss in productivity [2].  

Chronic alcohol consumption leading to severe injury or death is a problem all 

over the world (www.can.se, www.who.int/mediacentre/factsheets/fs349/en/). 

Therefore, screening for alcohol related problems is an important task to detect early 

alcohol dependence or risky alcohol habits in connection to e.g. health care controls. 

This can be accomplished by structured interviews based on self-report [3, 4]. Due to 

the risk of underreport and denial leading to under-diagnosis of alcohol problems, 

laboratory tests offers a more objective method to trace alcohol intake and can be used 

as a complement to self-report measures [5, 6].  

 

1.1 ETHANOL METABOLISM 

The bioavailability is high for ethanol and it can access different organs quite readily. 

When absorbed in the gastrointestinal tract, ethanol is instantly distributed in the body. 

For men the volume of distribution is about 60 % and for women about 50 % body 

weight. The blood ethanol concentration after a given dose of alcohol varies from 

person to person depending on the body weight and water content. Usually women 

have less body water than men [7].  

The major part (95 %) of the ingested ethanol is oxidatively metabolized in the 

liver following zero order kinetics. The elimination rate is constant with an average of 

about 0.1 g ethanol/kg body weight/hour. Hence, for a person with a body weight of 75 

kg it takes approximately 10 h to metabolize the ethanol content in a bottle of wine 

(about 80 g). In the oxidation pathway ethanol is first degraded to acetaldehyde, 

catalyzed by the enzyme alcohol dehydrogenase (ADH). In the next step, acetaldehyde 

is further metabolized by aldehyde dehydrogenase (ALDH) to acetate. There is a 

genetic variation in ALDH causing deficiency in enzyme activity that is common in 

Asian populations. If these subjects consume alcohol it leads to accumulation of 

acetaldehyde that is very toxic to the body [8]. The oxidative metabolism also includes 

two minor pathways involving the enzymes CYP2E1 and catalase [9]. Besides, the 
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There are two important factors, the sensitivity and the specificity that needs to be 

considered when evaluating biomarkers. An ideal alcohol biomarker is 100 % sensitive 

and 100 % specific. However, the sensitivity and specificity can be influenced by other 

factors than ethanol such as disease, smoking, gender, drugs or the diet. Sensitivity and 

specificity are calculated according to the formula below: 

 

   
      

 

 

   
      

 

 

 

1.2.1 Short-term alcohol biomarkers 

Ethyl glucuronide (EtG) and ethyl sulfate (EtS)  

EtG and EtS are two conjugated ethanol metabolites that are stable and water soluble 

[13, 14]. Both EtG and EtS are useful as sensitive short-term alcohol markers that can 

be detected in urine even after a small ethanol intake. Depending on the amount 

consumed, EtG and EtS can be detected for up to 2-3 days after ethanol is not 

measurable [15-17]. Both EtG and EtS share the same excretion profiles and display 

the same sensitivity pattern [18]. As a biomarker for short-term alcohol intake, EtG and 

EtS are extensively used in routine clinical work [6,19,20]. 

 

5-Hydroxytryptophol (5-HTOL) and 5-hydroxyindole-3-acetic acid (5-HIAA) 

During normal conditions most of the serotonin (5-HT) is metabolized to 5-HIAA and 

only a small part to 5-HTOL. However, under the influence of ethanol, these portions 

shift resulting in a higher concentration of 5-HTOL and this metabolic shift can be used 

as short-term alcohol biomarker [21]. As a biomarker it is better expressed the ratio of 

5-HTOL/5-HIAA because this compensates for urine dilution and for the possible 

influence of dietary 5-HT [22]. 5-HTOL/5-HIAA is measured in urine [23], it 

correlates to ethanol intake [21] and has a maximum detection window of 24 h. 

The only known substance that represses the 5-HTOL/5-HIAA ratio is Antabuse 

(disulfiram) an ALDH inhibitor used in alcohol detoxification therapy [24]. The 5-

HTOL/5-HIAA test is not affected by age, gender and ethnicity or common diseases or 

medications [25]. Hence, the urinary 5-HTOL/5-HIAA ratio is a sensitive and specific 
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biomarker for short-term alcohol intake but the detection window is shorter compared 

with EtG and EtS [26]. 

 

Fatty acid ethyl esters (FAEE)  

FAEE are produced from fatty acids and ethanol in an esterification reaction. FAEE are 

measured in blood and are detectable for at least 24 h after the last ethanol intake [27]. 

Also, FAEE can be measured in tissues in post-mortem sampling tracing ethanol intake 

prior to death [28]. As a short-term biomarker FAEE are rather sensitive and specific. 

There are gender differences where the FAEE level is more elevated in men [29].  

 

1.2.2 Long-term alcohol biomarkers 

Mean corpuscular volume (MCV)  

MCV is the mean volume of the red blood cells and it has been extensively used in 

clinical practice as a long term biomarker for alcohol abuse. It takes months of heavy 

alcohol intake to increases the MCV value. After alcohol cessation it also takes long 

time to reach a normal MCV value, considering the life time for red blood cells is 120 

days. The specificity of MCV is low for alcohol because other factors can also 

contribute to high values such as smoking, some medications or liver diseases [30]. 

 

γ-Glutamyl transferase (GGT), alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) 

GGT, AST and ALT are liver enzymes measured in serum or plasma. The specificity 

and sensitivity of GGT, AST and ALT as alcohol biomarkers are low due to other 

factors such as hepatitis, liver metastasis, some medications or liver cancer that can also 

increase the enzyme levels. GGT, AST and ALT are poor biomarkers for early 

detection of risky alcohol consumption and are more used as indicators of liver 

dysfunction in general in a later phase [31, 32].  

 

Carbohydrate-deficient transferrin (CDT)  

Transferrin is a glycoprotein that is synthesized in the liver and transports Fe3+ ions in 

the body [33]. Normally, transferrin comprises of different glycoforms and following 

prolonged ethanol consumption, some glycoforms called carbohydrate-deficient 

transferrin (CDT) become elevated. One of these glycoforms, disialotransferrin is used 

diagnostically to evaluate alcohol abuse [34].  



 

  5 

CDT is measured in serum and is extensively used in clinics as a long-term 

biomarker to indicate alcohol abuse in an early stage. The sensitivity of CDT as a 

biomarker of chronic alcohol abuse is high to moderate (Arndt 2001). However, the 

main advantage of CDT compared to liver enzymes is the very high specificity for 

long-term alcohol consumption. The half-life for CDT is 10-15 days and consuming 

50-80 g ethanol daily in 1-2 weeks is considered required to become positive in CDT.  

 

1.3 PHOSPHATIDYLETHANOL (PETH) AS AN ALCOHOL BIOMARKER 

In 1983, during a study on phospholipids in rat organs after treatment with ethanol, an 

abnormal phospholipid was detected [35]. Later this abnormal phospholipid was 

characterized as PEth [36]. Subsequently, experiments were conducted both in animals 

and humans and PEth was quantified in various organs such as kidney, brain and the 

gastrointestinal tract [37, 38]. PEth was not detectable in blood from some animal 

species, [38]. However, PEth is present in both erythrocytes and leucocyte of human 

blood with the majority being membrane bound in red blood cells [39]. Attempts to 

detect PEth in plasma have not been successful [36]. 

As an alcohol biomarker, PEth has been detected in blood from heavy consumers 

for at least 14 days after cessation [40, 41]. Using a liquid chromatography-evaporative 

light scattering detector (LC-ELSD) method PEth is measurable in blood after 

consumption of 50 g ethanol/day for three weeks [42]. However, by a selective liquid 

chromatography-mass spectrometry (LC-MS) method, PEth is detected after one drink 

per day [43]. PEth and CDT correlate significantly with amount of ethanol intake 

where PEth is the most sensitive and specific metabolite [44].  

PEth formation varies between individuals both for moderate and heavy drinkers 

[45]. Likewise, in-vitro study of PEth in whole blood that was incubated in the presence 

of ethanol indicted a substantial variation in PEth formation between samples [46, 47]. 

Hence, the PEth value cannot be used to determine the exact amount of previous 

ethanol intake, due to the inter-individual variability in PEth formation. 

 

1.3.1 Formation and degradation of PEth 

PEth is an ethanol metabolite and is formed from phosphatidylcholine (PC) only in the 

presence of ethanol by the action of the enzyme phospholipase D (PLD). PLD was first 

recognized in plants [48, 49] . The enzyme catalyzes the hydrolysis reaction of the 

membrane bound PC using water as substrate and producing phosphatidic acid (PA). A 
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the degradation path is not fully elucidated [39]. No gender difference has been 

identified for PEth elimination [61].  

 

1.3.2 Molecular species of PEth 

PEth is a lipophilic compound comprising of a glycerol head and two fatty acids of 

varying carbon length and saturation grade. Some of the common fatty acids are 

presented in Table 1. The structural composition of PEth is considered to mirror the 

molecular species of PC. There have been many studies on the structural composition 

of PC where chain lengths can vary from 14 to 24 carbons with the most common 

length (90 %) being 16 and 18 [62-64]. However, the molecular structure of PC is 

dependent on the fatty acid composition in the diet. A study on fatty acid intake from 

fish oil showed an increase in the fatty acids with a carbon chain of 20 and 22 by 3-4 

mol % [62]. 

 

Table1.  

There are many different ways of naming fatty acids with different chain lengths. Here 

a few of the more common fatty acids present in PC species are listed. 

Common 
name  Chemical structure  C:D* 

Palmitic acid  CH3(CH2)12COOH  16:0

Oleic acid  CH3(CH2)7CH=CH(CH2)7COOH  18:1

Linoleic acid   CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH  18:2

Arachidonic 
acid   CH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH  20:4

  
*C = carbon numbers, D = number of double bounds 

 

1.3.3 Bioanalysis of PEth  

PEth was first detected using a thin layer chromatography (TLC) method. TLC was not 

suitable in clinical practice for PEth measurement and therefore, an LC-ELSD method 

was developed [40, 65]. The LC-ELSD method requires a long analysis time, a large 

sample volume, has relatively low sensitivity and measures all PEth forms (“total 

PEth”) as a single chromatographic peak. An alternative PEth method using capillary 

electrophoresis with ultra violet detection (CE-UV) has been developed [66] and an 

antibody technique is under development [67, 68].  

The measurement of PEth in whole blood is performed in a number of complex 

pre-analytical and analytical steps. The first step is to disrupt the cell membrane and 
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1.4 METHOD VALIDATION 

Method validation is a fundamental part in developing new analytical methods used 

either in the forensic-, or clinical laboratory or in research. The analytical method must 

be reliable and reproducible. The following validation parameters needed to be 

elucidated in a quantitative bioanalytical procedure according to the validation of ICH 

tripartite guideline (www.ich.org): 

 

Calibration curve (linearity) 

The calibration curve should be in the same matrix as the analytes and linear in the 

clinical relevant concentration range. At least six different concentrations should be 

included in the calibration. The standard deviation of the calibration curves based on 

six replicates needs to be evaluated.  

Matrix effect 

Different biological samples such as, serum, whole blood or urine in which the analytes 

are present can interfere in the ionization process by either enhance or suppress the 

dose-response signal. The matrix effect needs, therefore, to be considered in the method 

evaluation. 

Reproducibility and repeatability 

The variability of sample measurement between different days is expressed as 

reproducibility whereas repeatability is the imprecision of the same samples measured 

within the same day. The repeatability and reproducibility are investigated by repeated 

analysis of the same samples on different occasions. In this way various concentrations 

should be studied and at each occasion samples are prepared from scratch in triplicate 

prior to analysis.  

Limit of detection (LoD) and limit of quantification (LoQ) 

LoD is the lowest concentration detectable based on the analyte peak signal (S) that is 

three times higher than the base line, the noise (N; 3* S/N). LoQ is the lowest 

quantifiable concentration estimated as ten times the signal-to noise, (10* S/N).  

LoQ can also be set at the lowest concentration with the coefficient of variation (CV) ≤ 

20 %.  

Recovery 

Recovery is the percentage loss of the analyte during sample pretreatment prior to 

detection. If the analytes is in a complex matrix and requires sample clean-up by liquid-
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liquid or solid phase extraction, the percentage loss of the analyte in the preparation 

steps needs to be considered. 

Carry-over 

Carry-over is a chromatographic problem caused by a previous sample with high 

concentration that is not totally washed away from the system and affects the next 

injected sample(s).  

Stability 

 The stability is dependent on storage conditions and also how stable the analytes are 

during the sample preparation prior to analysis, such as multiple freeze-thawing cycles.  

Impurities 

Components from the assay that co-elutes in the chromatographic system together with 

the analyte should be evaluated. A pure substance is used to spike the impurity 

compound to indicate the retention time. 
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2 AIMS 

- Development of PEth analysis using a selective LC-MS and LC-MS/MS 

method suitable for routine usage. 

- To evaluate different PEth forms that are suitable to use in routine 

- To compare stable isotope labeled PEth with phophatidylpropanol (PProp) 

as internal standards in the MS analysis. 

- To study the inter-individual variation of PEth formation in vitro in whole 

blood in the presence of ethanol. 

- To evaluate PEth as an alcohol biomarker in combination with other short-

term and long-term biomarkers.  
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3 MATERIAL AND METHODS 

3.1 COLLECTION OF WHOLE BLOOD SAMPLES  

All blood samples used in paper I-IV were deidentified whole blood samples collected 

in EDTA tubes sent to the laboratory for PEth analysis, or of samples from blood 

donors. PEth was stable at least three weeks in blood samples if stored refrigerated. The 

procedure of using surplus volumes of anonymous blood samples for method 

development has been approved by the ethics committee at the Karolinska University 

Hospital. 

 

3.2 EXTRACTION OF PETH FROM WHOLE BLOOD 

To extract PEth from cell membranes, a solvent extraction method was applied. Whole 

blood (100 µL) was added drop wise to 600 µL isopropanol. The samples were then 

mixed using a shaker for 10 min. Subsequently, heptane was added (450 µL x 2) to 

extract the lipids to the organic phase. The samples were again extracted another 10 

min on the shaker before centrifugation (10 min). The resulting organic phase was 

evaporated to dryness at 37 °C using nitrogen gas. The residue was dissolved in 50 µL 

heptane followed by 50 µL acetonitrile and 75 µL isopropanol. The aliquot was 

centrifuged (10 min) prior to LC-MS analysis. Noteworthy, since heptane was less 

toxic this solvent replaced hexane. The extraction procedure was based on previous 

publications [65, 70]. 

 

3.3 QUANTIFICATION OF UNKNOWN SAMPLES USING INTERNAL 

STANDARD TECHNIQUE  

The MS quantification of PEth in samples was facilitated by the use of an internal 

standard (IS). The same amount of IS was added to the calibration, quality control and 

blood samples. Both the calibration and quality control samples were prepared in PEth 

negative whole blood. The dose-response signals from internal standard and samples 

were used to quantify PEth values. The concentrations used for quality controls were 

0.1 and 6.85 µmol/L for PEth-16:018:1 and 16:0/18:2 standards. 

  

3.4 SYNTHESIS OF ISOTOPE LABELED INTERNAL STANDARD (PAPER 

II) 

PC-16:0/18:1 and PC-16:0/18:2 and deuterated ethanol were used to synthesize the 

corresponding PEth forms (PEth-16:0/18:1-d5 and PEth-16:0/18:2-d5) used as internal 
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standards. The reaction was started by adding the enzyme PLD. The reaction was 

stopped after 4 h by addition of acetonitrile that precipitates the protein. 

 

3.5 INCUBATION OF WHOLE BLOOD (PAPER III) 

In a first experiment, whole blood was incubated with ethanol in the range 0.25-2.0 g 

for 24 h, 48 h and 72 h, respectively. Then whole blood from clinical routine laboratory 

was incubated for 24 h and 1.0 g ethanol was added. All blood samples were incubated 

at 37 ºC on a heated metal block. 

 

3.6 INSTRUMENTATION 

LC-MS (paper I-IV) 

The LC-MS system was an Agilent 1100 series. In MS the electrospray ionization 

(ESI) was used operating in negative ion mode. Analyte separation was achieved using 

a 50 x 3 mm, 5-µm HyPurity C4 column (Thermo Scientific) by gradient elution in a 

reversed phase system.   

 

LC-MS/MS (paper I-II) 

The LC-ESI-MS/MS system was a Perkin-Elmer series 200 LC system connected to 

Sciex API 2000 MS, with the ESI operated in negative ion mode and Analyst 1.1 

software (Applied Biosystem). 

 

Analysis of CDT (paper IV) 

CDT was analyzed by an LC-UV method on an Agilent 1100 LC system. The 

transferrin glycoforms were detected at 470 nm [34]. 

 

Analysis of EtG and EtS (paper IV) 

Both EtG and EtS were measured using an LC-ESI-MS method in SIM mode and 

negative ionization. The LC-MS system was an Agilent 1100 series [20]. 
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All PEth forms were further evaluated by MS/MS in SRM mode that measures the 

fragmented fatty acids. Some PEth forms that have identical masses were separated by 

their unique fragment ions see (Table 2). PEth was detected in all samples (n = 39) 

from heavy alcohol consumers and PEth-16:0/18:1 and PEth-16:0/18:2 were the most 

dominated forms. 

 

Table 2.  

In SIM the selected PEth molecular ions are measured by their individually masses and 

in SRM mode the stable fragment ions are measured. 

 

PEth molecular species  SIM (m/z)  SRM (m/z) 

PEth‐16:0/16:0  675.6  255.6 (16:0) 

PEth‐16:0/18:2 
 

699.6 
 

255.6 (16:0) 
279.5 (18:2) 

PEth‐16:0/18:1 
 

701.6 
 

255.6 (16:0) 
281.6 (18:1) 

PEth‐16:0/20:4 
 

723.6 
 

255.6 (16:0) 
303.5 (20:4) 

PEth‐16:0/20:3, 
PEth‐18:1/18:2 

 
 

725.6 
 
 
 

255.5 (16:0) 
305.5 (20:3) 
279.5 (18:2) 
281.5 (18:1) 

PEth‐18:1/18:1 
 

727.6 
 

281.5 (18:1) 
 

 

The PEth forms measured by LC-MS and MS/MS in this study were selected 

from the composition of PC molecular species in human erythrocytes. In agreement 

with previous studies on the species distribution for PC, the present study concluded the 

PEth-16:0/18:1 and PEth-16:0/18:2 were the predominate forms in human whole blood. 

Thus, the PEth formation from PC is apparently not limited to certain molecular 

species.   

For clinical use of LC-MS and MS/MS methods measuring PEth, focusing only 

on PEth-16:0/18:1, alone or in combination with PEth-16:0/18:2, is recommended. 

Also, the cut-off value of 0.7 µmol/L for total PEth that is presently used in clinical 

practice by LC-ELSD method might need to be reconsidered, since the MS methods are 

able to measure much lower PEth levels (LoQ ≤ 0.1 µmol/L). 
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4.3 PAPER III 

In a first set of experiments, the PEth formation was found to correlate linearly to the 

ethanol concentration (0.25-2 g/L ethanol) following incubation at 37 ºC. At an ethanol 

concentration of 0.5 g/L and higher, the PEth formation increased linearly with the 

increasing ethanol amount up to 24 h (Fig. 8). At higher ethanol concentration and 

longer incubation times, the PEth formation was indicated to level off.  

 

 

Fig. 7. The  PEth formation increased linearly with increasing ethanol concentration. It 

seems that. Incubation time longer than 24 h had little effect on PEth formation. At 

each time interval, a zero control of a blood sample was incubated. 

 

Hence, the inter-individual variability of the PEth formation in whole blood was 

studied in 46 blood samples that were incubated at 37 ºC for 24 h in the presence of 1 

g/L ethanol. The initial PEth concentration in the samples (0-3.0 µmol/L) was corrected 

to get the actual PEth amount formed. The amount PEth formed was in the range 0-0.50 

µmol/L with a mean value of 0.21 µmol/L and median of 0.23 µmol/L.  

The in-vitro formation of PEth varied considerably between different samples, 

according to previous work. However, in this experiment a clinically more relevant 

ethanol concentration was used and a much larger number of blood sample were 

investigated. An interesting observation in this study was that some samples seemed 

not to form PEth or only trace amounts after incubation in the presence of ethanol. 

Whether this is really the case or an artifact due to the design of the in-vitro 

experiment needs to be followed up in further studies. Clinical studies involving PEth 

have indicated a very high sensitivity (at or close to 100 %) of this alcohol biomarker 

[45, 61, 71]. The formation of PEth in human blood is lower (<0.01 %) than in rat brain 

(0.05–0.1 %) [60]. This could depend on lower PLD enzyme activity in blood 
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compared with in organs. High PEth concentrations are detected in various organs in 

human post-mortem samples [37]. 

 

Table 3.  

CDT and PEth values on admission and during outpatient treatment 

Biomarkers 

 

On admission1  

n (%) 

 

During treatment2 

n (%) 

Cutoffs: CDT (>1.7 %) and total PEth (>0.1 µmol/L)3   

CDT and total PEth negative 11 (27.5 %) 9 (34.6 %) 

CDT and total PEth positive  13 (32.5 %) 94 (34.6 %) 

CDT positive, PEth negative 1 (2.5 %)  

CDT negative, PEth positive  15 (37.5 %) 8 (30.8 %) 

Cutoffs: CDT (>1.7 %) and total PEth (>0.7 µmol/L)3   

CDT and total PEth negative 17 (42.5 %) 13 (50.0 %) 

CDT and total PEth positive  13 (32.5 %) 84 (30.8 %) 

CDT positive, PEth negative 1 (2.5 %) 15 (3.8 %) 

CDT negative, PEth positive  9 (22.5 %) 4 (15.4 %) 

Cutoffs: CDT (>1.7 %) and PEth-16:0/18:1 (>0.2 µmol/L)3   

CDT and PEth-16:0/18:1 negative 13 (32.5 %) 12 (46.2) 

CDT and PEth-16:0/18:1 positive  13 (32.5 %) 84 (30.8 %) 

CDT positive, PEth-16:0/18:1 negative 1 (2.5 %) 15 (3.8 %) 

CDT negative, PEth-16:0/18:1 positive  13 (32.5 %) 5 (19.2 %) 

 
1 All patients (N = 40). 
2 Only patients from which ≥3 blood samples were obtained (N = 26). 
3 The cut-offs used to indicate a positive test result was >1.70 % for CDT (% disialotransferrin) in serum 

[72, 73], and >0.10 µmol/L (any drinking) and >0.70 (excessive drinking) for total PEth and >0.20 

(excessive drinking) for PEth-16:0/18:1 in whole blood [74].  
4 One of these patients consistently showed incomplete separation between disialo- and trisialotransferrin 

(i.e., a C2C3 genotype or di/tri-bridging pattern) [72, 75] that prevented reliable quantification of the % 

disialotransferrin level. 
5 In this female patient, pregnancy was the likely cause for two borderline positive CDT samples during the 

third trimester [76]. Immediately after the delivery, her values returned to normal. 
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However, the substantial inter-individual variation in PEth formation complicates 

the diagnosis of risky drinking using this test alone. The combination of PEth with 

short-term and long-term biomarkers appears more valuable. Measuring PEth- 

16:0/18:1 alone instead of total PEth did not affect the test sensitivity significantly. To 

be able to focus only on one PEth subform facilitates the LC-MS method and opens for 

future standardization of the PEth assay.  
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5 GENERAL DISCUSSION 

PEth is a metabolite formed only in the presence of ethanol. Previously, the 

measurement of PEth in whole blood in clinical practice was accomplished using an 

LC-ELSD method that was developed in 1998. Both the pre-analytical and analytical 

steps were complicated and required a large sample volume and long analysis time. The 

quantification of PEth was also complex. LC-MS method for quantification of PEth 

was only used in research and for evaluation purposes.  

In our first paper, in 2009 we developed an LC-MS method for PEth 

measurement in clinical routine use. By LC-MS the different PEth forms are separated 

and selectively detected, and 48 different PEth homologues have been identified in 

autopsy material from a heavy drinker [77]. When measuring PEth in routine, the two 

common forms PEth-16:0/18:1 and PEth-16:0/18:2 were most prominent. Nevertheless, 

focusing on only one or two out of all PEth forms in routine by LC-MS could be 

problematic when encountering situations where PEth-16:0/18:1 or PEth-16:0/18:2 

were not the dominating forms.  

The fatty acid composition of PC, which is the precursor of PEth, is influenced by 

the fatty acid intake from the diet. No scientific report has yet been conducted on the in-

direct effect of the PEth forms by nutritional intake. For example, vegans and 

vegetarians are two groups that get most of the fatty acids from fish oil and vegetables 

with other fatty acids chain lengths than 16 and 18 carbons. Thus, ethanol consumption 

by people on special diets needs to be investigated for the common PEth forms by LC-

MS [78].  

The interest of using PEth in blood as an alcohol biomarker is growing and new 

methods have been developed on more selective instrument [79-82]. The LC-MS 

method increases the sensitivity of PEth analysis leading to a detection of low 

concentrations and is thereby able to pick up moderate alcohol consumers. A new 

reporting limit needs to be determined that distinguish low-moderate to heavy alcohol 

consumers. Another aspect that also should be investigated is compounds that inhibit 

PLD, since it has a direct effect of the PEth formation. Also, the present LC-MS 

method needs to be further improved for routine use by decreasing the total analysis 

time and facilitate the extraction procedure for PEth from whole blood. 
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6 CONCLUSIONS 

- A simplified LC-MS and LC-MS/MS method suitable for routine PEth analysis 

was developed. Both sample pre-treatment and the analysis time were facilitated 

using MS detection. By MS, PEth-16:0/18:1 and PEth-16:0/18:2 were mainly 

evaluated.  

- PEth-16:0/18:1 and PEth-16:0/18:2 alone displayed good correlation to total 

PEth but together the correlation was even better. However, in clinical samples 

both from blood donors and the routine sample pool, PEth-16:0/18:1 was the 

most sensitive form for alcohol consumption.  

- The test sensitivity was increased by LC-MS allowing for detection of much 

lower PEth concentrations.  

- The % CV was much lower using isotope labeled PEth compared to PProp as 

internal standard in SRM mode.  

- Incubation of whole blood at 37 °C in the presence of ethanol displayed 

significant variation in the PEth formation between different samples.  

- PEth was indicated to be a more sensitive alcohol biomarker than CDT. 

However, in routine clinical use, PEth may preferably be combined with other 

long-term (CDT) and/or short-term (EtG/EtS) biomarkers. 
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