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ABSTRACT 

Plasmodium falciparum malaria is one of the most important infectious diseases in the 

world. Following invasion of the human red blood cell (RBC), the P. falciparum 

parasite dramatically remodels its host cell by introducing a parasite-derived trafficking 

machinery in RBC cytosol, interacting with the RBC cytoskeleton and expressing 

adhesins on the RBC surface. All host cell modifications are mediated by a subset of 

parasite-encoded proteins, which are exported beyond the confines of the parasite – a 

feature that is fundamental to the malaria pathogenesis. Central to this thesis is the 

Pf332 protein, the largest protein exported into the host cell cytosol. Although 

identified more than two decades ago, the function of Pf332 still remains elusive. 

Regardless, the location of Pf332 in close proximity to the RBC plasma membrane, its 

potential surface expression, characteristic protein structure and immunogenic nature 

make it an important antigen to study. We have revised the structure of the gene 

encoding Pf332, and identified a previously unknown first exon encoding an RBC-

binding Duffy binding-like (DBL)-domain homologous to DBL-domains present in a 

family of invasion proteins. Studies on Pf332 have been hampered by the cross-reactive 

nature of antibodies generated against the molecule due to its high content of glutamic 

acid-rich repeats. In an attempt to evaluate the potential of the DBL-domain as a 

specific marker for Pf332, we set out to analyze the tertiary structure of the domain and 

the specificity of naturally acquired antibodies. Although the predicted structure of the 

DBL-domain was similar to that of the homologous domains present in invasion 

proteins, acquired antibodies were specific for Pf332. Thus, the DBL-domain can be 

used as a specific Pf332 marker and we expect this to facilitate further investigations of 

the antigen. Subunit vaccines based on recombinant proteins are often hampered by low 

antigenicity, thus adjuvants are of major importance. We set out to study the 

immunogenicity of a recombinant Pf332 DBL-domain in combination with adjuvants 

compatible for human use, in rodents and rabbits. The domain was found to be 

immunogenic and of the three adjuvants evaluated, Montanide ISA 720 appeared to be 

the most suitable adjuvant, as it induced a more long-lasting Th2-biased antibody 

response. Thus, the results support the use of Montanide ISA 720 for future 

immunization studies of other malaria vaccine candidates. To investigate the 

subcellular location and the solubility characteristic of Pf332, we employed a 

biochemical approach in combination with immunofluorescence microscopy. We found 

Pf332 to be a host cytoskeleton interacting protein that is synthesized as a peripheral 

membrane protein and associates with the cytosolic side of Maurer’s clefts via protein-

protein interactions throughout trophozoite maturation and schizogony. Importantly, 

our data show that Pf332 is not expressed on the surface of the host cell, but may have 

important functions in host cytoskeleton remodeling at the end of the intraerythrocytic 

developmental cycle. The gene encoding Pf332 is duplicated in the HB3 parasite, 

having only slight sequence variation between the two gene copies. This enabled us to 

develop a sensitive allelic discriminative assay, which can be used to study 

transcriptional activity of duplicated genes in the P. falciparum genome. We employed 

the assay to study the maternal malaria associated var gene var2csa, which is similarly 

found duplicated in the HB3 parasite. Both var2csa paralogs were simultaneously 

transcribed in a single cell, thus contradicting the mutually exclusive expression of var 

genes in P. falciparum. In conclusion, by using Pf332 as a model protein for studying 

malaria pathogenesis, we have not only obtained novel information regarding the 

protein itself, but gained important knowledge and developed versatile techniques, 

which can be used to study a wide array of other malaria antigens.  
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1 INTRODUCTION 
 

1.1 THE GLOBAL BURDEN OF MALARIA 

Malaria is one of the most important infectious diseases worldwide. In 2010, 

WHO estimated that 3.3 billion people (half the world’s population) are at risk of 

contracting malaria in 106 countries (WHO, 2010). Every year this leads to 225 million 

clinical cases of malaria and close to 800 000 deaths. The disease burden is greatest in 

sub-Saharan Africa and the vast majority of the fatal cases occur in children under the 

age of five (Figure 1).  

It is obvious that the burden of malaria extends well beyond morbidity and 

mortality, as the disease poses a major hindrance for economic development (Sachs and 

Malaney, 2002). In Africa today, malaria is recognized as both a disease of poverty and 

a cause of poverty (RBM, 2011). For low-income countries this has meant that the gap 

in wealth between countries with and those without malaria become wider each year. A 

number of direct and indirect costs can be attributed to the disease – for both families 

and households, and national economies. Examples are doctor’s fees, antimalarial 

drugs, spending by government on maintaining health facilities and vector control, 

negative impact on trade, and productivity losses associated with malaria-attributed 

illness or death. Malaria also hampers children’s schooling and cognitive development 

through absence from school and permanent neurological damages (Sachs and 

Malaney, 2002).  

Although global control efforts have resulted in a reduction in the estimated 

number of deaths from nearly 1 million in 2000 to 781 000 in 2009, there has been 

evidence of an increase in malaria cases in some African countries (WHO, 2010). This 

highlights the fragility of malaria control and the need to maintain control programs 

even where the number of malaria cases is reducing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
Figure 1. Malaria distribution. Although eliminated in wealthier countries, malaria is still persistently 

remaining in low-income countries. (Adopted from Malaria Atlas Project (MAP; www.map.ox.ac.uk) 

and published with permission from MAP under a Creative Commons Attribution 3.0 License 

(http://creativecommons.org/licenses/by-sa/3.0/)). 
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1.2 THE ORIGIN OF MALARIA 

Malaria is one of the most ancient diseases of man. The first descriptions of the 

illness appear in the classical Chinese medical writing Nei Ching (2700 B.C.) and the 

Egyptian medical text Ebers Papyrus (1550 B.C.) (Desowitz, 1991, Sherman, 2007). 

Also the Greek physician Hippocrates recognized malaria, detailing the symptoms that 

hallmark the disease in his writings. He noted an association between the disease and 

people living close to marshes, and therefore considered the causative agent of malaria 

to be the Miasma (harmful or poisonous atmosphere; from Greek Miasma meaning 

“pollution”).  

From its origin in tropical Africa, malaria spread all across the globe to become 

one of the world’s most important diseases (Sherman, 2007). It was probably 

introduced in Europe via the Nile Valley and the close contact between Europeans and 

the people of Asia Minor (Sherman, 2007). Over the centuries malaria spread across 

Europe and the disease was so prevalent in the marshlands of Roman Campagna that 

the condition was called the “Roman fever”. The Romans believed that vapors and bad 

smells emanating from stagnant swamp water caused the disease and the Miasma 

theory is evident even today, as malaria literally means “bad air” (mal´aria) in Italian.  

Although the Miasma theory is not accurate, it had some good consequences. It 

prompted efforts to improve housing and drain swamplands, and as a side effect, it 

reduced the reservoirs of stagnant water in which mosquitoes could breed. “Bad air” 

was considered the cause of malaria until 1880. That year, military physician Alphonse 

Laveran discovered crescent formed bodies (the sexual form of the malaria parasite) 

while examining blood samples from Algerian soldiers in his microscope. Laveran 

realized that he had found the cause of malaria: a small, living organism. It was, 

however, left for British physician Ronald Ross to solve the problem of malaria 

transmission. Ross had spent a great deal of time trying to find a definite link between 

malaria and the mosquito, and in India 1897, he discovered the oocyst of a malaria 

parasite in the gut wall of a female Anopheles mosquito.  

In the 1900s, larvicides along with drainage were introduced to limit mosquito-

breading sites in water. This was very successful in reducing malaria transmission in 

some parts of the world. In 1939, work by the Swiss chemist Paul Hermann Müller lead 

to the synthesis of the pesticide dichlorodiphenyltrichloroethane (DDT), and it was 

introduced as part of a malaria eradication campaign. As such it was very successful 

and DDT led to malaria elimination on many island areas. However, the use of DDT 

had to be interrupted due to the emergence of DDT-resistant mosquitoes and the 

negative environmental side effect of the pesticide. The work of Ronald Ross, 

Alphonse Laveran and Paul Hermann Müller was recognized in 1902, 1907 and 1948, 

respectively, when they were awarded the Nobel Prize in Physiology and Medicine for 

their important discoveries. 

 

1.3 APICOMPLEXAN PROTOZOA 

Malaria is caused by the infection of a protozoan parasite belonging to the 

phylum apicomplexa. This phylum comprises a wide spectrum of eukaryotic organisms 

causing major human and veterinary diseases, of which some of the most important are 

listed below. 
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- Plasmodium species (spp.) are the causative agents of malaria. There are over 

100 Plasmodium spp. having vertebrates such as mammals, reptiles and birds as 

hosts; however, out of these only five are infective to man. P. falciparum, P. 

vivax, P. ovale, and P. malariae have for long been known to cause human 

malaria. The fifth species, P. knowlesi, causes malaria in macaques but has 

recently proven to also infect and cause disease in man and is therefore 

considered to be an important zoonotic human pathogen.  

- Toxoplasma gondii causes toxoplasmosis in rodent, felids and humans. 

Congenital toxoplasmosis in humans can result in severe eye and brain damage 

in the fetus. 

- Theileria spp. cause east coast fever or tropical theileriosis in cattle and pose a 

major constraint on the development of cattle industry and production.  

- Babesia spp. cause babesiosis or red-water fever in cattle, horses, dogs and 

occasionally humans. 

- Eimeria spp. infect birds and are a major cause of morbidity in poultry. 

- Cryptosporidum spp. mainly infect the intestines of mammals, usually resulting 

in a self-limiting diarrhea. The effects of cryptosporidiosis can be fatal in 

immunocompromised individuals. 

Common to the apicomplexan, is their complex life cycles often involving 

several species as hosts, with some, including Toxoplasma, Eimeria, and 

Cryptosporidium, passing directly between vertebrate hosts. In contrast, the life cycle 

of others, including Plasmodium, Babesia and Theileria involve an arthropod vector 

that transmits the parasite to a vertebrate host during blood feeding. Regardless of 

their host or mode of transmission, all apicomplexan parasites share features such as 

the presence of a specialized apical complex (for which the group is named), 

consisting of intricate structures that enable the parasite to penetrate the tissues of their 

hosts. 

 

1.3.1 Life cycle of Plasmodium species 

The life cycle of the malaria parasite is highly complex, involving a number of 

different asexual and sexual developmental stages in both the insect vector and the 

vertebrate host (Figure 2).  

 

In the human host- The malaria parasite is transmitted to the human host when an 

infected female Anopheles mosquito takes a blood meal as a prelude to the reproductive 

process. At the same time, 15-120 sporozoite forms of the parasite are injected along 

with her saliva. Most sporozoites are injected into the dermal tissue and not directly 

into the circulation (Medica and Sinnis, 2005, Sidjanski and Vanderberg, 1997). Real 

time imaging using the P. berghei rodent model has revealed that sporozoites actively 

glide through the dermis until they encounter a blood vessel and move into the 

circulatory system, which will take them to the liver (Amino et al., 2006). Once in the 

circulatory system, the sporozoites reach the liver within minutes. After traversing the 

Kupffer cell lining of the liver sinusoids and the space of Disse, sporozoites migrate 

through several hepatocytes before invading a final hepatocyte in which a 

parasitophorous vacuole is formed (Frevert et al., 2005, Pradel and Frevert, 2001, Baer 

et al., 2007b, Mota et al., 2001, Mota et al., 2002). Over 5-15 days (depending on 

Plasmodium species), each sporozoite differentiates and divides into thousands of 

merozoite forms of the parasite. These are then released from the hepatocyte in 

merozoite-filled vesicles referred to as merosomes, which bud off from the parasitized 

cell into the lumen of the liver sinusoids (Sturm et al., 2006, Baer et al., 2007a). In P. 
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vivax and P. ovale infection, some sporozoites convert to dormant forms called 

hypnozoites, which can cause relapses after weeks, months or even years. These resting 

stages do not appear in P. falciparum, P. malariae or P. knowlesi.  

Once released into the blood-stream, the merozoite quickly invades circulating 

red blood cells (RBC) and thereby initiates the blood-stage or the intraerythrocytic 

developmental cycle (IDC). Within the new host cell, the parasite undergoes a 24-72 h 

(depending on Plasmodium species) maturation process from a ring-stage trophozoite 

to a pigmented trophozoite before finally undergoing mitotic nuclear divisions into 

daughter merozoites at the schizont stage. At this point, the parasitized RBC (pRBC) 

ruptures and releases 8-16 daughter merozoites into the circulation to resume another 

round of asexual reproduction. This leads to an exponential growth in parasitemia that 

will continue until the parasite is controlled either by the host’s immune response or by 

antimalarial medication.  

A small subset of parasites develops into male or female sexual forms, termed 

gametocytes. This dramatic developmental switch may be predetermined genetically or 

reflect a response to some specific stimuli of host or parasitic origin (reviewed in (Day 

et al., 1998a, Talman et al., 2004)). Previous work in P. falciparum has demonstrated 

that all merozoites emerging from a single schizont either continue the asexual cycling 

or develop into gametocytes (Bruce et al., 1990). Furthermore, gametocytes originating 

from a single schizont become either all male or all female (Smith et al., 2000b, 

Silvestrini et al., 2000). This indicates that trophozoites from the preceding asexual 

generation are already committed to produce a progeny of parasites with the same 

developmental fate. The sexual forms of P. falciparum can remain in the circulation for 

a period of 10-15 days. The details of how gametocytes survive in the human body for 

such a prolonged period of time is not completely understood, but it is believed in part 

to be the result of immune evasion through sequestration (Rogers et al., 2000, Day et 

al., 1998b, Smalley et al., 1981). When a feeding female Anopheles mosquito takes a 

blood meal from an infected individual, both male and female gametocytes may be 

ingested; hence the sexual forms of the parasite are responsible for parasite 

transmission. 

 

 
Figure 2. Life cycle of P. falciparum. (Adopted from Ménard, 2005 and published with permission from 

Nature Publishing Group). 
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In the mosquito vector- Ingested gametocytes rapidly mature into gametes within the 

mosquito gut. The male microgametocyte divide into eight flagellated microgametes in 

a process called exflagellation. The microgamete then break out of the RBC, become 

motile and fertilize the female macrogamete, resulting in a zygote, which develops into 

a motile and invasive ookinete that penetrates the mosquito gut wall. Upon reaching the 

outside wall of the mosquito stomach, the ookinete encysts in bodies known as oocysts. 

Yet again, the parasite undergoes an asexual expansion resulting in thousands of 

sporozoites. Following rupture of the oocyst, sporozoites migrate to the salivary glands 

where they become infective (Touray et al., 1992, Vanderberg, 1975). The mosquito 

stage is now completed and the new sporozoites are ready to be injected into a new 

human host at the next encounter.  

 

1.4 DISEASE CHARACTERISTICS  

Out of the five species of Plasmodium infective to man, P. falciparum is 

responsible for most of the malaria associated morbidity and mortality. In contrast, P. 

ovale and P. malariae generally give rise to a benign malaria. P. vivax has traditionally 

been considered a benign infection; however, although less often fatal, it is now evident 

that P. vivax constitute an important burden on public health (Anstey et al., 2009, 

Poespoprodjo et al., 2009, Barcus et al., 2007, Tan et al., 2008). P. knowlesi has often 

been misdiagnosed by microscopy as P. malariae (Cox-Singh et al., 2008, Singh et al., 

2004). Most P. knowlesi cases respond well to treatment and resolve without 

complications; however, severe and fatal cases have been reported (Daneshvar et al., 

2009, Cox-Singh et al., 2008). 

 

1.4.1 General clinical manifestations 

The liver-stage of the parasite’s life cycle is clinically silent and all pathological 

manifestations of malaria are associated with the asexual blood-stage or IDC.  

Plasmodium infection can exhibit non-specific symptoms a few days before the 

first febrile attack. These symptoms are usually described as flu-like, and include 

headache, slight fever, weakness, diarrhea, nausea, muscular discomfort and malaise 

and they tend to correlate with increasing numbers of parasites. These symptoms are 

followed by febrile attacks known as the malarial paroxysm, which is most notable for 

its periodicity; occurring every 24, 48 or 72 h (depending on the species of parasite; 

Table 1). The regularity of the fever is due to the synchronous development of the 

malaria parasite, where the onset of fever corresponds to the rupture of pRBC at the end 

of the IDC. The fever is believed to the cause of released proinflammatory cytokines, 

such as tumor necrosis factor (TNF) (Kern et al., 1989, Molyneux et al., 1991, Scuderi 

et al., 1986), which are liberated as a response to RBC destruction and parasite-derived 

pyrogens. The pattern of regular periodic fever, however, often does not occur until the 

illness has continued for a week or more. 

The malaria paroxysm has a sudden onset and usually begins with chills in which 

the patient experiences vigorous shivering and a feeling of cold, despite having an 

elevated temperature. This lasts for an hour and is often referred to as the “cold stage”. 

Immediately following the cold stage, the patient typically feels an intense heat in 

combination with headache, muscle pain and dizziness, which typically lasts for 2-6 h. 

This is referred to as the “hot stage”. Vomiting and convulsions are common. Next a 

period of profound sweating will ensue and the fever will start to decline. This stage is 

commonly referred to as the “sweating stage”, and is typically followed by exhaustion 

and weakness. Upon awakening, the patient generally feels well until the onset of the 

next paroxysm. Another typical feature of malaria infection is splenomegaly, where the 
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spleen enlarges in response to the infection. Also haemolytic anemia is often noted, and 

it is assumed to be the result of hemolysis in combination with failure of the 

erythropoesis to compensate for the RBC losses (Jakeman et al., 1999, Lamikanra et al., 

2007). 

 

Parasite (disease) IDC, hours Typical fever pattern 

P. falciparum (Malignant tertian 

malaria/Semi-tertian malaria) 

48 h  Peaks every  

2
nd

 day /irregular 

P. vivax (Tertian malaria) 48 h Peaks every 2
nd

 day 

P. ovale (Benign tertian malaria) 48 h Peaks every 2
nd

 day 

P. malariae (Benign quartan malaria) 72 h Peaks every 3
rd

 day 

P. knowlesi (Quotidian malaria) 24 h Peaks every day/ irregular 
 

Table 1. Disease characteristics exerted by different Plasmodium spp. The name of the fever 

(quotidian; daily, tertian; three and quartan; four) refers to the number of days from the beginning of the 

first fever attack to the end of the second. (IDC; intraerythrocytic developmental cycle). 

 

1.4.2 Severe malaria  

Complications and severe manifestations due to P. falciparum are numerous and 

diverse. A patient may progress from relatively minor symptoms to having severe 

disease within a few hours. This usually manifests itself with one of the following: 

severe anemia, unrousable come (cerebral malaria), pulmonary edema or acute 

respiratory distress syndrome (ARDS), multiple convulsions, renal failure, circulatory 

collapse, abnormal bleeding, hypoglycemia, acidosis and hyperlactamia. Severe and 

complicated malaria has a mortality rate of 15-30%, even with intensive care 

management. If left untreated, severe malaria is almost always fatal. P. falciparum also 

gives rise to pregnancy associated malaria (PAM), which is associated with both 

maternal and infant complications. 

 

1.4.2.1 Severe anemia 

Severe anemia, defined as having a hemoglobin level lower than 5 g/dl or a 

hematocrit beneath 15%, is the most common complication of severe malaria. It is seen 

most frequently in areas of high malaria transmission and most commonly among 

young children and pregnant women (Lamikanra et al., 2007). Severe anemia has been 

suggested a consequence of destruction of both parasitized and unparasitized RBC, in 

combination with erythropoetic suppression and bone marrow dyserythropoiesis (Clark 

and Chaudhri, 1988, Jakeman et al., 1999, Lamikanra et al., 2007). 

 

1.4.2.2 Acute respiratory distress syndrome 

Pulmonary edema or ARDS is a severe complication of malaria with a high 

mortality rate. It may develop at any time during the course of infection, either after 

some days of treatment or when the patient’s general condition is improving and 

parasitemia has fallen. Pregnant women with severe malaria are particularly prone to 

develop ARDS (Taylor and White, 2002). Previously called “adult respiratory 

distress syndrome”, the condition is now called “acute respiratory distress syndrome” 

as it can occur also in children, although this is considered to be rare (Mohan et al., 

2008, Waller et al., 1995). Typical manifestations include abrupt onset of dyspnea, 

cough and tightness in the chest, which may progress rapidly over a few hours to 

cause life-threatening hypoxia. The pathogenesis of ARDS is not fully understood, 

but ultrastructural studies from individuals with fatal malaria have revealed 

sequestered pRBC in the capillaries, a marked interstitial edema of the alveolar septa, 
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mononuclear cells in the capillary lumen and endothelial swelling that caused 

narrowing of the capillary lumen (Duarte et al., 1985, MacPherson et al., 1985).  

 

1.4.2.3 Cerebral malaria 

Cerebral malaria (CM) is one of the most serious complications of P. falciparum 

malaria and has a mortality rate of 15-20% (Mishra and Newton, 2009). The prognosis 

of CM is particularly grave when presented in combination with other complications 

such as severe metabolic acidosis, ARDS, renal failure or hypoglycemia. The WHO 

definition of CM is unrousable coma in a patient where P. falciparum parasites have 

been demonstrated, after other causes of encephalopathy have been excluded (WHO, 

2000). In children with CM, coma usually has a sudden onset after one to three days of 

fever, and often follows seizures. In adults, seizures are only occasionally observed and 

coma tends to have a more gradual onset (Mishra and Newton, 2009). Earlier studies 

have suggested that surviving patients fully recover from CM (Muntendam et al., 

1996), but over the years it has become evident that many children sustain significant 

brain injury. Although some deficits (e.g., ataxia and cortical blindness) may improve 

with time, many children demonstrate long-term neurological or cognitive deficits, 

including memory disturbances, motor deficits, epilepsy, speech and language 

difficulties, and disorders of concentration and attention (Ngoungou and Preux, 2008, 

John et al., 2008, van Hensbroek et al., 1997). Indeed, CM has been associated with 

long-term cognitive impairments in as many as one out of four surviving children (John 

et al., 2008). In adults, neurological sequelae are less common (Mishra and Newton, 

2009).  

Parasite sequestration in the cerebral microvasculature is thought to be central to 

the CM pathogenesis and the resulting pathophysiological changes in tissue around the 

sequestered parasites (MacPherson et al., 1985, Pongponratn et al., 1991). The 

obstruction of blood flow caused by sequestered parasites could lead to hypoxia, 

reduction of metabolic exchange as well as release of proinflammatory mediators. 

Cytokines and chemokines play a complex role in CM pathogenesis and can be either 

protective or detrimental to the infected individual. Elevated levels of proinflammatory 

cytokines TNFα and IFN  have been extensively studied, and have for a long time been 

implicated in the pathogenesis of CM both in humans and murine models (for review 

see (Hunt and Grau, 2003)). Anti-inflammatory cytokines, such as IL-10, have instead 

been proposed to have a protective role against CM (Hunt and Grau, 2003).  Also nitric 

oxide has been implicated in CM pathogenesis (Clark et al., 1992, Anstey et al., 1996). 

 

1.4.2.4 Pregnancy associated malaria (PAM) 

Despite pre-existing protective immunity (see Section 1.4.3), women once again 

become susceptible to severe disease during pregnancy. Epidemiological data have 

shown that the susceptibility to malaria declines with increasing parity (McGregor, 

1984, Brabin, 1983), hence, primigravidae are particularly at risk. PAM can severely 

affect the fetus and newborn and increases both maternal and infant mortality. PAM 

often leads to premature deliveries, low birth weight babies, miscarriages and stillbirths 

(Guyatt and Snow, 2004, Menendez et al., 2000, Fischer, 2003, Duffy and Fried, 2005). 

Women residing in areas of unstable or low transmission suffer an increased risk of 

severe syndromes like CM and respiratory distress, whereas women residing in areas of 

stable or high transmission commonly suffer from severe anemia (Duffy and Fried, 

2005). 

The increased susceptibility to malaria during pregnancy is believed to be 

dependent on the introduction of a new organ; the placenta, which presents a new niche 

for the parasite to sequester in. PAM is characterized by an accumulation of pRBC in 
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the intervillous space of the placenta (Walter et al., 1982, Moshi et al., 1995) where 

they bind to chondroitin sulfate A (CSA) present on placental syncytiotrophoblast 

cells (Fried and Duffy, 1996). Besides the damage caused by parasite sequestration 

through obstruction of blood flow, histological observations have demonstrated that 

malaria infected placentas are infiltrated by maternal monocytes and macrophages 

(Ismail et al., 2000, Rogerson et al., 2003, Walter et al., 1982). There is also evidence 

for increased levels of proinflammatory cytokines such as TNFα, IFNγ, and IL-2 

(Rogerson et al., 2007). 

 

1.4.3 Determinants of severe disease 

The severity of disease depends on various factors, such as age, genetic 

constitution, state of immunity and general health and nutritional status of the infected 

individual. In general, severe anemia is more common among young children, whereas 

CM more often occurs in older children and adults (Snow et al., 1997). Furthermore, 

there are considerable differences in the manifestation of disease between areas with 

different rates of malaria transmission. In areas of high transmission, severe malaria is 

usually confined to children under the age of five, whereas in areas of lower 

transmission severe malaria may occur at all ages (Snow et al., 1997, Snow et al., 1994, 

Mbogo et al., 1993). The most plausible explanation for the observed pattern is the 

natural acquisition of clinical immunity, which is acquired faster in areas of intense 

malaria transmission as a consequence of more frequent exposure to the parasite. 

Accordingly, in areas of high malaria transmission, older children and adults rarely 

experience life-threatening complications. Clinical immunity can take years or even 

decades of exposure to develop and most likely never develops into a sterile immunity 

(Doolan et al., 2009).  

 

1.4.4 Malaria vaccines 

Few public health interventions have had such an impact on global health as 

vaccinations. It has been used to tackle diseases such as smallpox, polio, rabies, 

diphtheria, tetanus, yellow fever, measles, mumps, rubella and hepatitis B. While 

antimalarial drugs, insecticide-treated bednets and indoor residual spraying are 

currently being used to reduce the burden of malaria, the parasite is highly complex and 

adaptable. A safe, efficient and affordable vaccine would therefore provide a much-

needed way of alleviating the toll of malaria in the world.  

Vaccines can be classified into three general categories: modified live, 

killed/inactivated, or subunit vaccines. Inoculations with irradiated sporozoites can lead 

to protection against subsequent challenge (Nussenzweig et al., 1967, Hoffman et al., 

2002); however, the cost, manufacturing problems and logistic difficulties in delivering 

such a vaccine to individuals in endemic areas are substantial. Subunit vaccines contain 

only a portion of the pathogen and can be based on peptides, recombinant proteins or 

nucleic acids. In general, subunit based vaccines are easier to produce, more cost 

efficient and considerably safer than live or inactivated vaccines. Moreover, they can be 

genetically or synthetically engineered to only include desired epitopes while at the 

same time excluding epitopes that are inducing non-protective antibodies. Despite these 

advantages, there are some major drawbacks associated with the development of 

subunit vaccines. In general, these are poor immunogens when used alone and require 

multiple doses and co-administrations of an adjuvant that can stimulate the immune 

system (Wilson-Welder et al., 2009). The choice of an adjuvant depends on the desired 

type of immune response in terms of humoral or cell-mediated immunity, as adjuvants 

can bias the response to either Th1 (cell mediated immunity) or Th2 (humoral 

immunity) type.  
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Today, several malaria subunit vaccine candidates are in clinical trials (Arevalo-

Herrera et al., 2010, Anders et al., 2010, MVI, 2007). It is unlikely that any single 

antigen will meet all the criteria for a perfect vaccine. Thus, an effective malaria 

vaccine is likely to contain a combination of antigens from the same stage of the 

parasite’s life cycle or from different stages. Furthermore, no single adjuvant will be 

effective for all vaccine applications, hence there is extensive research conducted also 

on the suitability of different adjuvants to be included in a malaria vaccine. 

 

1.5 PARASITE INVASION 

Blood-stage infection is initiated when the extracellular merozoite-stage parasite 

invades the RBC. The whole process of merozoite invasion can be divided into five 

main steps: (I) merozoite egress from the parasitized host cell, (II) initial attachment 

(reversible binding of the merozoite to a new host cell), (III) reorientation of the 

merozoite, (IV) formation of a junction (the irreversible commitment of the parasite 

to invade) and (V) parasite entry.  

 

Merozoite egress - To invade the host cell, the parasite must first initiate egress from 

its host cell. Video microscopy have illustrated that merozoite egress is a rapid and 

therefore tightly regulated process (Glushakova et al., 2005). Particularly two models 

of egress are currently in discussion, the inside-out model, in which the 

parasitophorous vacuole membrane (PVM) ruptures before the RBC plasma 

membrane (RBC PM) (Wickham et al., 2003), and the outside-in model, in which the 

RBC PM is degraded first (Salmon et al., 2001, Soni et al., 2005). Proteases 

implicated in egress include the cytoskeleton-degrading cysteine protease falcipain-2 

(Dua et al., 2001, Hanspal et al., 2002) and aspartic protease plasmepsin II (Le 

Bonniec et al., 1999), as well as a family of PVM degrading SERA proteins (Miller et 

al., 2002b, Hodder et al., 2003), which are regulated by serine protease PfSUB1 and 

cysteine protease DPAP3 (Yeoh et al., 2008, Arastu-Kapur et al., 2008). Also kinases 

are expected to play a role in merozoite egress and a plant like calcium-dependent 

protein kinase, PfCDPK5, has been shown to be essential in the process (Dvorin et 

al., 2010). Using high-speed video-microscopy and epifluorescence, a recent report 

has revealed a rather surprising new mechanism of RBC rupture (Abkarian et al., 

2011). At the initial opening the RBC first curls back and then buckles, turning itself 

inside-out after which it spontaneously vesiculates. 

 

Initial attachment - The reversible initial contact between the merozoite and the 

RBC may occur on any side of the extracellular parasite. The surface of the merozoite 

is covered by a coat mainly consisting of glycosylphosphatidylinositol (GPI) 

anchored membrane proteins and their associated partners (Sanders et al., 2005). 

Currently there are nine known GPI-anchored proteins on the merozoite surface, of 

which merozoite surface protein-1 (MSP1) is the most abundant antigen. MSP1 is 

thought to mediate the initial contact to the host RBC and is today a major vaccine 

candidate (Cowman and Crabb, 2006). 

 

Reorientation and tight junction formation - After binding to the RBC, the 

merozoite reorients itself such that the apical end is in contact with the RBC 

membrane. Apical membrane protein-1 (AMA1), a protein that is highly conserved 

throughout the phylum, is thought to be essential in establishing this interaction 

(Triglia et al., 2000, Mitchell et al., 2004). Once reorientation has occurred, a tight 

junction is formed and the rhoptry and micronemal proteins are discharged, indicating 

the irreversible commitment of the merozoite to invasion. Two protein families, the 
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Erythrocyte binding-like (EBL)-family (Adams et al., 2001, Adams et al., 1992, 

Miller et al., 2002a) and P. falciparum reticulocyte binding protein homologs (PfRh) 

(Rayner et al., 2001, Duraisingh et al., 2003b, Stubbs et al., 2005, Triglia et al., 2005) 

are prime candidates in tight junction formation. Members of the EBL-family localize 

to the micronemes, but are believed to be exported to the merozoite surface during 

invasion (Adams et al., 1990, Sim et al., 1992). The EBLs will be discussed in more 

detail below. The PfRhs were identified as homologs of rhoptry proteins in P. vivax 

(Galinski et al., 1992) and P. yoelii (Preiser et al., 2002) and have been implicated in 

determining the specificity of host cell invasion. The PfRh family consists of six 

members in P. falciparum; PfRH1, PfRH2a, PfRH2b, PfRH3, PfRH4 and PfRH5 

(Iyer et al., 2007, Gaur et al., 2004), where PfRh4 has been shown to bind 

complement receptor 1 on the RBC (Tham et al., 2010). While the EBLs and PfRh 

proteins are important in merozoite invasion, they are clearly not essential, as the 

corresponding genes can be disrupted without an apparent effect on parasite growth 

(Duraisingh et al., 2003a, Duraisingh et al., 2003b, Gilberger et al., 2003, Maier et al., 

2003, Stubbs et al., 2005, Triglia et al., 2005, Lopaticki et al., 2011). However, they 

each mediate invasion through different receptors and thereby give rise to highly 

redundant invasion pathways, which is believed to guarantee parasite invasion.  

 

Parasite-entry - The subsequent movement into the RBC involves an active actin-

myosin motor. This motor complex has been studied most extensively in T. gondii, 

and the proteins involved appear to be highly conserved across the apicomplexa, 

including Plasmodium spp. (Baum et al., 2006). The link between the merozoite and 

the motor complex is not known; however, the trombospondin related apical protein 

(TRAP) appears to provide the crucial link in sporozoites (Sultan et al., 1997). 

Following invasion, P. falciparum resides within a membrane enclosed parasitophorous 

vacuole (PV). The PV membrane (PVM) is formed from invaginations of the RBC PM 

during invasion. Upon completion of parasite entry the PVM fuses and separates, hence 

forming a biochemical and physical barrier between the host cell cytosol and the 

parasite. The content of the dense granules are believed to be discharged only after the 

parasite has completed its entry, and to be implicated in the modification of the host 

cell (Torii et al., 1989, Culvenor et al., 1991). Babesia and Theilera quickly degrade 

their PVM resulting in a free moving parasite within the host cell cytosol. In contrast, 

Toxoplasma and Plasmodium remain enclosed within the PVM throughout parasite 

maturation.  

 

1.5.1 The Duffy binding-like (DBL)-domain of the EBLs 

Species of Plasmodium differ in their requirements for RBC surface molecules in 

host cell invasion. The Duffy blood group antigen (DARC) is obligatory for P. vivax 

and RBCs lacking the antigen are refractory to parasitic infection. This Duffy null 

phenotype, long known to be common among certain sub-Saharan African populations, 

provides an explanation for the evident absence of P. vivax among these populations 

(Langhi and Bordin, 2006). Interestingly,  some cases of P. vivax infection have been 

reported in Duffy-negative individuals in Kenya (Ryan et al., 2006), Brazil (Cavasini et 

al., 2007) and Madagascar (Menard et al., 2010). The protein giving P. vivax such 

specific requirements for invasion was identified in the late 1980s (Wertheimer and 

Barnwell, 1989), and named Duffy binding protein (DBP). In a subsequent study, the 

region responsible for Duffy/DARC-binding was identified in PvDBP and its homolog 

in P. knowlesi, and the region was termed the Duffy binding-like (DBL)-domain 

(Chitnis and Miller, 1994). P. falciparum exhibits no such dependence on Duffy blood 

group antigen and parasites can utilize different receptors for invasion.  



 

 

 

11 

DBL-domains can be found in two distinct protein families in Plasmodium that 

together form a DBL-superfamily: (I) the EBL-family of invasion proteins (including 

PvDBP and PkDBP), and (II) the PfEMP1 (var)-family of antigenic variable 

sequestration proteins (discussed in more detail in Section 1.6.2). Common to all 

members is the presence of one or more DBL-domains, homologous to the 

Duffy/DARC-binding domain of PvDBP and PkDBP. In P. falciparum the EBL family 

has expanded by duplication and diversification and a repertoire EBL paralogs are 

present, including EBA-175, EBA-181 (JESEBL), EBA 140 (BAEBL), EBA-165 

(PEBL) and EBL-1 (Adams et al., 2001). MAEBL is an additional EBL paralog; 

however, a distinct cysteine-rich region with similarity to AMA1 replaces the DBL-

domains in this protein. The expansion of EBLs in P. falciparum provides ligand 

diversity and potential usages of different host receptors for the parasite. For example, 

the receptors of EBA-175, EBL-1, and EBA-140 is glycophorin A (Orlandi et al., 

1992), glycophorin B (Mayer et al., 2009), and glycophorin C (Maier et al., 2003), 

respectively. Of the six EBLs present in P. falciparum, EBA-175 appears to be of 

most importance.  

 

1.5.1.1 Gene structure of the EBLs 

The ebl genes have a similar exon-intron structure with conserved splicing 

boundaries, indicating a common evolutionary origin (Adams et al., 1992). The four 

consensus exons encode: (I) an extracellular domain with a signal peptide (SP), a 

conserved 5′ cysteine rich-region and a conserved 3′ cysteine-rich region (referred to as 

c-cys); (II) a transmembrane domain (TM); (III) and (IV) a putative cytoplasmic 

domain. A separate exon encoding the SP is always present in the maebl gene and is 

commonly seen also in the dbp gene of P. vivax and P. knowlesi (Adams et al., 1992). 

The 5′ cysteine rich-region functions as the RBC-binding domain (Chitnis and Miller, 

1994, Sim et al., 1994), and in P. vivax and P. knowlesi it consists of a single DBL-

domain (PvDBL and PkDBL, respectively), whereas the P. falciparum EBLs and the 

homolog in P. reichenowi encode tandem copies of the DBL-domain (referred to as 

F1 and F2) (Adams et al., 1992, Michon et al., 2002), (Figure 3).  

 

 
 

Figure 3. Simplified gene structure of the EBLs. Exon I: encodes the extracellular domain (light 

gray) including the SP (dark gray), DBL-domains (white, referred to as F1 and F2 in P. falciparum) 

and c-cys domain (dotty), Exon II: encodes the TM (black), Exon III and IV: the C-terminal domain 

(striped). In DBP, a separate exon encodes the signal peptide. Note that maebl have been excluded 

from the illustration. (The presence of the three last exons has not been defined in EBL-1 (Adams et 

al., 2001)).  

 

1.5.1.2 Protein structure of the DBL-domains 

The DBL-domains of the EBLs possess twelve cysteine residues that are 

conserved in location for PvDBL, PkDBL and the tandem P. falciparum domains F1 

and F2 (Adams et al., 1992). Out of these, ten align with cysteines in the var-DBLs 

(Smith et al., 2000a). The F1-domain of EBA-175 has one extra cysteine residue and 

the F2-domain two extra cysteine residues, of which none are seen in PvDBL and 
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PkDBL. One of the extra cysteines found in F2 is completely conserved in all var-

DBLs and in all F2-domains of the EBL-DBLs (Michon et al., 2002, Smith et al., 

2000a), whereas the second extra cysteine is located in a region not shared with the 

var-DBLs. Interestingly, all F1-domains of the EBL-DBLs appear more closely 

related to the single DBL-domain of PvDBP and PkDBP than to the F2-domain 

present in the same molecule (Adams et al., 1992, Michon et al., 2002). This has lead 

to speculations about the F2-domain being the progenitor of the var genes (Michon et 

al., 2002). Hence, the DBL-domains of PfEMP1 may have derived by duplication of 

the F2-domain in an ancestral ebl gene followed by sequential diversification 

(Michon et al., 2002, Smith et al., 2000a). The presence of several invariant cysteines 

implies a conserved tertiary structure of the DBL-domains. In 2005, the tandem 

F1/F2 of P. falciparum EBA-175 was crystallized (Tolia et al., 2005). The overall 

structure resembled an elongated molecule, comprising mainly -helices as well as 

two -hairpins. The F1/F2 crystallized as a dimer, in where the domains interacted 

with each other in an antiparallel orientation resembling a handshake. Glycan binding 

was shown to be scattered at the dimer interface, thus dimerization appear crucial for 

receptor recognition. The following year, the structure of the monomeric DBL-

domain of Pk DBP was solved (Singh et al., 2006). Interestingly, the DBL-domain 

displayed a very similar overall structure consisting mainly of -helices connected by 

loops. The disulfide bonding pattern of Pk DBL was found to be identical to that of 

the F1/F2 domains of EBA-175, although F2 has an additional disulfide bridge. 

Mapping the DARC binding sites, previously determined by domain deletion (Singh 

et al., 2003) and site-directed mutagenesis (VanBuskirk et al., 2004, Hans et al., 

2005), illustrated that binding occurs on the opposite face of the molecule compared 

to EBA-175 F1/F2. In 2008, the tertiary structure of the DBL3x domain of 

VAR2CSA (a PfEMP1 variant implicated in PAM) was solved (Higgins, 2008, Singh 

et al., 2008). Again the structure was highly similar to that of EBA-175 F1/F2 and 

Pk DBL. The receptor binding region was observed on the face of the molecule 

corresponding to the glycan binding region of EBA-175 F1/F2, but separated from 

the DARC binding region of Pk DBL. Hence despite having poor sequence identity, 

the crystallized DBL-domains display a similar overall structure, illustrating the 

importance of the invariant cysteine residues in maintaining the DBL fold. 
 

1.6 PLASMODIUM FALCIPARUM VIRULENCE 

P. falciparum is by far the deadliest of the five species causing human malaria 

and two special aspects contribute to this virulence. Firstly, P. falciparum achieves 

much higher levels of parasitaemia than the other species due to high asexual 

multiplication rates and the ability of the parasite to invade RBC of all ages. Secondly, 

P. falciparum possesses the unique capacity to sequester in the deep vasculature and the 

ability to evade the host immune system by expressing variant parasite-derived 

adhesins on the RBC surface (Miller et al., 1994). The ability of the parasite to 

sequester and evade host immunity will here be reviewed.  

 

1.6.1 Sequestration 

Crossing the spleen is the most stringent challenge on RBC deformability in the 

human body as this is a site of RBC quality control. Senescent, rigid and parasitized 

cells are routinely retained in the spleen before being permanently removed from the 

blood circulation (Quinn and Wyler, 1979). In order to circumvent this event, the 

parasite sequesters in the deep tissue. As a consequence, only RBCs parasitized with 

young forms of the parasite are found in the peripheral circulation, whereas RBCs 

containing the more mature and rigid form of the parasite accumulate in the deep 
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vasculature. The sequestered mass of pRBC leads to microvascular obstruction, 

metabolic disturbances, and release of damaging inflammatory mediators, which can 

combine to cause severe disease and death of the human host. Two different events are 

thought to bring about the accumulation of pRBC in the vascular microciruclation; (I) 

the binding of pRBC to endothelial cells (cytoadhesion) and (II) the binding of pRBC 

to unparasitized RBC (rosetting). 

 

1.6.1.1 Cytoadhesion 

P. falciparum pRBC are capable of adhering to vascular endothelium seen in 

various organs such as brain, intestine, liver, lung, skin and the syncytiotrophoblast of 

the placenta. Via the cytoadhesion mechanism, pRBCs are not only removed from the 

peripheral circulation and thus prevented from splenic clearance, but also gain access to 

a relatively hypoxic environment preferred by the parasite for proliferation and RBC 

invasion. A number of endothelial receptors have been identified as targets for pRBC 

including CD36, intercellular adhesion molecule-1 (ICAM-1), chondroitin-sulfate A 

(CSA), thrombospondin (TSP), VCAM and E-selectin, PECAM-1/CD31, heparan 

sulfate and P-selectin. Although several studies have attempted to correlate the 

binding phenotype of pRBC with clinical outcome (Newbold et al., 1997, Ho et al., 

1991b, Rogerson et al., 1999), the importance of adhesion to specific endothelial 

receptors in severe malaria has so far not been proven. CSA may be the exception, as 

this receptor is intimately linked with PAM. 

CD36 is a glycoprotein that is expressed on the endothelium of various organs 

(not the brain), platelets, monocytes and dendritic cells, and it was one of the first 

endothelial pRBC receptors described (Barnwell et al., 1989, Ockenhouse et al., 1989). 

The molecule seems to be widely used by the parasite since the vast majority of clinical 

P. falciparum isolates are capable of adhering to CD36 and the binding appears stable 

under in vitro flow conditions (Cooke et al., 1994). However, CD36 binding is frequent 

in parasite isolates both from patients with mild and severe malaria (Turner et al., 

1994), and there is subsequently no strong evidence for a specific role for CD36 in 

severe disease (Heddini et al., 2001, Newbold et al., 1997, Rogerson et al., 1999).  

ICAM-1 is a member of the immunoglobulin superfamily and is present on the 

surface of endothelial cells and monocytes. It is a candidate for pRBC binding to brain 

endothelial cells and fatal malaria has been associated with a widespread induction of 

ICAM-1 and E-selectin on brain endothelial cells (Turner et al., 1994). Expression of 

ICAM-1 is upregulated by proinflammatory cytokines TNFα, IL-1 and IFN  (Berendt 

et al., 1994, Dustin et al., 1986). Although capable of supporting pRBC binding under 

static in vitro conditions, ICAM-1 cannot support pRBC binding under in vitro flow 

conditions, thus ICAM-1 binding appears to be in need of synergism with additional 

receptors  (McCormick et al., 1997). 

CSA is a sulfated glucosaminoglycan present on the syncytiotrophoblast in the 

intervillous space of the placenta where it normally functions as an immobilizer for 

cytokines, hormones and other molecules (Rogerson et al., 2007). CSA is the dominant 

receptor involved in PAM, which is illustrated by the observation that placental parasite 

isolates commonly bind CSA but not CD36, whereas non-placental isolates rarely bind 

CSA (Beeson et al., 1999, Fried and Duffy, 1996, Maubert et al., 2000). Furthermore, 

sera from multi-gravidae women are able to block CSA-binding (Maubert et al., 1999, 

Fried et al., 1998). It is by now well established that the adhesion of pRBC to CSA 

depends on a particular PfEMP1 variant called VAR2CSA (Salanti et al., 2004, 

Salanti et al., 2003, Viebig et al., 2005) and that the decreasing risk of malaria with 

subsequent pregnancies can be attributed to a parity-dependent acquisition of antibodies 

towards placental VAR2CSA expressing parasites (Ricke et al., 2000, Staalsoe et al., 
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2004). Also hyaluronic acid has been demonstrated to serve as a receptor for pRBC in 

the placenta (Beeson et al., 2000, Rasti et al., 2006) and non-immune immunoglobulins 

(Igs) have been suggested to bridge pRBC to the syncytiotrophoblast cell-lining (Flick 

et al., 2001, Rasti et al., 2006). 

 

1.6.1.2 Rosetting 

The discovery that P. falciparum pRBC can bind to unparasitized RBCs to form 

rosette-like clumps, was first made in the late 1980s (Udomsangpetch et al., 1989b, 

Handunnetti et al., 1989). The phenomenon was first observed in vitro but later 

confirmed in ex vivo blood samples examined directly after sampling (Carlson et al., 

1990, Wahlgren et al., 1992, Wahlgren et al., 1990, Ho et al., 1991a, Hasler et al., 

1990). Defined as one mature trophozoite-stage pRBC binding two or more 

unparasitized RBCs, rosettes first become apparent approximately 16-18 h post 

invasion (p.i.), but persist throughout trophozoite maturation and schizogony until they 

finally disappear upon rupture (Treutiger et al., 1998). The occurrence of rosettes in 

small blood vessels in the brain and other vital organs is thought to contribute to 

malaria pathogenesis by causing obstruction to blood flow leading to hypoxia and 

tissue damage. In contrast to cytoadhesion, rosetting has repeatedly been associated 

with severe disease (Carlson et al., 1990, Heddini et al., 2001, Rowe et al., 1995, Rowe 

et al., 2002, Ringwald et al., 1993, Treutiger et al., 1992). A number of different RBC 

surface receptors as well as serum factors have been identified to be involved in 

rosetting.  

Rosetting levels and the size of the rosette have been shown to vary with different 

RBC blood groups, and a preference to either A, B or AB over O RBC have been 

reported for both laboratory parasite strains and field isolates (Udomsangpetch et al., 

1993, Barragan et al., 2000b, Rowe et al., 1995). In particular blood group A has been 

associated with severe malaria (Pathirana et al., 2005, Fry et al., 2008), whereas blood 

group O seems to give some protection to severe disease and is overrepresented in 

uncomplicated cases of malaria (Rowe et al., 2007, Loscertales et al., 2007).  

Complement receptor 1 (CR1) is an immune regulatory molecule that is 

expressed by all peripheral blood cells except platelets, natural killer cells and most T 

lymphocytes. The importance of CR1 in rosetting was first demonstrated through the 

use of blood from CR1 deficient donors, in which a number of rosetting laboratory 

strains failed to form rosettes (Rowe et al., 1997). This finding was later confirmed by 

the use of soluble CR1 and monoclonal anti-CR1 antibodies, which were both shown to 

disrupt rosettes in laboratory strains and clinical isolates (Rowe et al., 2000). CR1 

deficiency is highly frequent in populations in endemic region of Papua New Guinea 

and has been linked with protection against severe disease (Cockburn et al., 2004). 

Levels of CR1 on RBC have also been reported to influence the outcome of disease 

(Stoute et al., 2003, Waitumbi et al., 2004, Waitumbi et al., 2000).  

Heparan sulfate (HS) and other sulfated glycans have been shown to inhibit 

rosette formation and to disrupt rosettes (Carlson et al., 1992, Barragan et al., 2000a). 

Modified heparin, devoid of its anti-coagulant activity, is capable of efficiently 

disrupting rosettes (Vogt et al., 2006). 

Serum proteins are essential for the formation of rosettes both in laboratory 

strains and field isolates (Treutiger et al., 1999, Rogerson et al., 2000, Somner et al., 

2000). Fibrinogen, von Willebrand’s factor and non-immune Igs have all been reported 

to support rosette formation (Scholander et al., 1996, Clough et al., 1998, Treutiger et 

al., 1999, Flick et al., 2001, Heddini et al., 2001). Binding of non-immune Igs has also 

been reported as a common phenotype among field isolates from patients with severe 
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malaria (Scholander et al., 1998, Heddini et al., 2001). Although the role of IgM seems 

generally accepted, the role of IgG is more controversial. 

 

1.6.2 Surface antigens of P. falciparum 
 

1.6.2.1 PfEMP1 

P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main surface-

adhesin responsible for rosetting and sequestration of pRBC in the deep vasculature, 

and its surface expression coincides with the withdrawal of pRBC from the peripheral 

circulation. Early on it became evident that PfEMP1 is a target of protective antibodies 

and that acquired immunity develops in response to extended infections with pRBC 

expressing different PfEMP1 variants (Marsh et al., 1986, Bull et al., 1998).   

PfEMP1 are large multi-domain proteins (ranging between 200 and 350 kDa), 

encoded by the hypervariable var gene family that undergoes antigenic variation and 

thereby allows for the generation of various adhesive phenotypes (Su et al., 1995, 

Baruch et al., 1995, David et al., 1983, Smith et al., 1995). The P. falciparum genome 

contains approximately 60 var genes mainly located in the highly polymorphic 

subtelomeric region but also in the central parts of the 14 chromosomes (Rubio et al., 

1996, Hernandez-Rivas et al., 1997, Gardner et al., 2002, Su et al., 1995). var genes are 

between 6-14 kb and have a two-exon structure that is separated by a conserved intron. 

The first exon encodes a hypervariable extracellular binding region, which comprise the 

N-terminal segment (NTS), multiple adhesive domains of DBL-type or cysteine-rich 

interdomain region (CIDR)-type sometimes interspersed with C2 interdomains. The 

second exon encodes a more conserved acidic terminal segment (ATS), which also 

harbors a C-terminal TM. Although all var genes maintain this basic architecture, there 

is significant sequence variation when comparing PfEMP1 proteins among paralogs 

and across parasite isolates, indicating that there is an enormous repertoire of PfEMP1 

variants. Gene conversions and recombination events within the family is probably held 

accountable for maintaining this high level of sequence diversity (Flick and Chen, 

2004, Freitas-Junior et al., 2000) 

The chromosomal location and transcriptional orientation of var genes have been 

shown to correspond to similarities in the 5′ upstream open reading frame of the genes. 

Based on this conservation, the 5′ promoter regions can be defined into four major 

upstream (Ups) sequence groups, UpsA, UpsB, UpsC, and UpsE (Lavstsen et al., 

2003). The former UpsD is now grouped with UpsA (Kraemer et al., 2007). 

Interestingly, rosetting parasites more frequently express var genes belonging to group 

A, whilst both group A and B are more often transcribed in patients suffering from 

severe malaria (Jensen et al., 2004, Kaestli et al., 2006, Normark et al., 2007, Bull et al., 

2005). Based on the Ups region and the domain architecture, yet another (although 

similar) grouping is used, with three major (A, B, and C) and two intermediate (B/A 

and B/C) groups. Two unique genes have been characterized in all sequenced isolates, 

which do not fit into the classification above. The highly conserved var2csa gene is 

flanked by a 5′ UpsE and have been linked to CSA binding and PAM. The conserved 

varcommon (also known as var1csa) is flanked by a 5′ UpsA2 and is transcribed in 

almost all clinical isolates but has an unusual transcription pattern (Kyes et al., 2003, 

Lavstsen et al., 2003, Winter et al., 2003). 

Finer mapping of the extracellular domains of PfEMP1 has enabled the 

attribution of certain adhesive phenotypes to different domains. For example, DBL1 

has been shown to bind CR1, blood group A and HS on both endothelial cells and 

RBCs (Vogt et al., 2003, Barragan et al., 2000a, Barragan et al., 2000b, Rowe et al., 

1997), whereas CIDR1 has been shown to bind CD36 and IgM (Baruch et al., 1996, 
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Chattopadhyay et al., 2004). VAR2CSA contains six DBL-domains of which at least 

three (DBL2x, DBL3x, and DBL6ε) exhibit some affinity for CSA in vitro, whereas the 

other three domains show limited or no binding (for review see (Dahlbäck et al., 

2010)).  

 

1.6.2.2 Other surface antigens 

In addition to PfEMP1, other proteins of parasite origin have been suggested to 

be exposed on the pRBC surface. Surface iodination experiments have revealed a 

trypsin sensitive variant family with two TMs named RIFINs, encoded by the repetitive 

interspersed family (rif) genes (Kyes et al., 1999, Fernandez et al., 1999). The rif family 

holds approximately 160 copies in the genome and they can be subdivided into two 

sub-classes; group A and group B, primarily depending on a 25 nucleotide deletion in 

group A (Gardner et al., 2002, Joannin et al., 2008). Whereas A-type RIFINs appear to 

be exported into the host cell via Maurer’s clefts (MCs), B-type RIFINs are mostly 

retained inside the parasite (Petter et al., 2007). The function of RIFINs remains 

elusive, but the high gene copy numbers and clonal variations imply that they are 

involved in immune evasion.  

The RIFINs are structurally related to the subtelomeric variable open reading 

frame (STEVOR) family. There are approximately 30-40 stevor genes per haploid 

genome, and they are located to a large extent adjacent to the rif genes in the 

subtelomeric regions of the chromosomes (Gardner et al., 2002). Stevor and rifin show 

a very similar two-exon gene structure, where the short exon I encodes a signal peptide 

and the larger exon II codes for a polypeptide possessing two predicted TMs flanking a 

hypervariable region. Recently, STEVORs were demonstrated to be clonally variant on 

the surface of schizont-stage pRBC, indicating that they play a role in creating 

antigenic diversity of schizont-stage parasites (Niang et al., 2009). STEVORs have also 

been detected on the apical end of the merozoite (Khattab et al., 2008, Khattab and 

Meri, 2011). 

The surface associated interspaced gene (SURFIN) family of proteins was 

identified by mass spectrometric analysis of peptides cleaved off the surface of live 

pRBC with trypsin (Winter et al., 2005). They are encoded by a family of ten surf 

genes, including three predicted pseudogenes, located within or close to the 

subtelomeres of five of the 14 chromosomes. SURFINs have been associated with 

merozoites, MCs, and the pRBC surface (Mphande et al., 2008, Winter et al., 2005). 

SURFINs share a tryptophan-rich region (WRD) with other proteins such as PfEMP1, 

Pf332, and PkSICAvar, suggesting a potential ancestral relationship (Winter et al., 

2005). 

 

1.6.3 Antigenic variation 

The expression of parasitic antigens on the pRBC surface renders the parasite 

vulnerable to the host immune system. However, the host’s efforts to eliminate the 

malaria pathogen are constantly counteracted by the parasites capability of switching 

their surface expressed PfEMP1 molecules. Hence, P. falciparum infections are often 

characterized by waves of parasitemia, with each wave representing the rise and fall of 

distinct populations of parasites expressing a particular set of surface antigens (Miller et 

al., 1994). This fascinating strategy of immune evasion is a key survival mechanism 

employed by a wide range of infectious organisms including Trypanosoma brucei 

(Turner, 1999) and Giardia lamblia (Nash, 1997, Prucca et al., 2008), as well as by 

many others. 
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1.6.3.1 Molecular basis of var gene regulation 

While multiple transcripts of the var genes can be seen in the early stages of 

parasite development, only one dominant transcript is believed to be present in more 

mature stages. Furthermore, only a singular PfEMP1 type is expressed on the pRBC 

surface at a time (Chen et al., 1998, Scherf et al., 1998). This phenomenon is referred to 

as mutually exclusive expression, and studies have revealed that it is transcriptionally 

regulated and independent on protein production (Dzikowski et al., 2006, Voss et al., 

2006). Several lines of evidence suggest that regulation of var gene transcription is a 

multi-layered system involving: (I) DNA control elements and the regulatory proteins 

that bind them, (II) histone modifications and epigenetic memory, and (III) subnuclear 

positioning.  

The first level of regulation involves the two promoters found in virtually all var 

genes; the 5′ Ups region and the intron (Deitsch et al., 2001). The upstream promoter is 

responsible for the mRNA transcription, whereas the intron promotor produces non-

coding sterile RNA (Calderwood et al., 2003, Su et al., 1995). While a single var gene 

is transcribed from the Ups promotor and the rest of var genes are transcriptionally 

silent, most of the intron promoters seem to be active simultaneously (Calderwood et 

al., 2003). These introns are believed to function as transcriptional silencers via 

promoter pairing, thereby controlling antigenic variation (Frank et al., 2006, Dzikowski 

et al., 2007, Voss et al., 2006). While there is a paucity in transcription factors in the P. 

falciparum genome, a group of conserved proteins containing putative AP2 DNA-

binding domains, now known as the apicomplexan AP2 (ApiAP2) protein family, was 

recently identified (Balaji et al., 2005). The ApiAP2 family may be important for 

regulation of var gene transcription since a member of the family has been shown to 

bind the regulatory upstream regions of UpsB var genes (De Silva et al., 2008).  

The second level of regulation involves chromatin modifications, and among 

these have acetylated histone H3 and H4, and methylated H3K27 and H3K4 been 

found at active genes, whereas tri-methylated H3K9 has been observed at silent loci 

(Freitas-Junior et al., 2005, Lopez-Rubio et al., 2007, Duraisingh et al., 2005, 

Chookajorn et al., 2007). A P. falciparum homolog of the histone deacetylase SIR2 

(PfSIR2) has been shown to associate with silent var 5′ promoter types UpsE and 

UpsB, but not UpsC (Freitas-Junior et al., 2005), consistent with a telomere-silencing 

association for this protein. Genetic disruption of the PfSir2 gene resulted in activation 

of only certain subtelomeric var genes (UpsA and UpsE) (Duraisingh et al., 2005), 

which suggests that the UpsB-type var genes are subject to a further layer of silencing. 

The third level of regulation involves perinuclear repositioning of var genes upon 

activation. Silent genes tend to localize to the periphery of the nucleus, which contain 

primarily heterochromatin, whereas active transcription generally takes place in 

euchromatic internal regions in which chromatin is loose and open for transcription 

(Ralph et al., 2005). However, the periphery of the nucleus contains distinct regions 

that are clear of heterochromatin, possibly representing active expression sites. Using 

RNA-FISH, Ralph and coworkers demonstrated that when var2csa is silent, it co-

localizes with telomeric clusters, whereas upon activation it moves to another location 

of the nuclear periphery apart from these clusters (Ralph et al., 2005). Conflicting 

findings have however been observed when using transgenic parasite lines with drug 

inducible var gene promoters (Voss et al., 2006). There is also recent evidence for the 

existence of a var specific subnuclear expression site, which can accommodate more 

than one active gene at a time, indicating that mutually exclusive expression of var 

genes is regulated at a different level than simply nuclear architecture (Dzikowski and 

Deitsch, 2008).  
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1.7 MALARIA PATHOGENESIS BY HOST CELL REMODELING 

P. falciparum is rather unusual in its choice of a host cell. In contrast to most 

pathogens, which invade and multiply in nucleated host cells, P. falciparum invades 

mature human RBC. These nearly metabolically inert cells are devoid of a nucleus, 

internal organelles, a functional trafficking machinery, and surface expressed major 

histocompatibility complex (MHC) molecules. At first, this may seem like a perfect 

hideaway from the host’s immune system; however, it comes with a trade-off. Firstly, 

as the RBC does not readily take up nutrients, the parasite is forced to gain its own 

access to nutrients from the extracellular milieu. Secondly, as the parasite matures, the 

pRBC becomes vulnerable to splenic clearance mechanisms. To overcome these 

problems, the parasite dramatically remodels its host cell by: (I) introducing new 

permeation pathways in the RBC PM for nutrient uptake, (II) establishing a parasite-

derived trafficking machinery in the host cell cytosol, (III) interacting with the host cell 

cytoskeleton, and (IV) expressing parasite-derived adhesins on the RBC surface 

(summarized in Figure 4). All these host remodeling properties are mediated by a 

subset of parasite-derived proteins, which are exported beyond the confines of the 

parasite – a feature that is central to the malaria pathogenesis. 

 

1.7.1 New permeation pathways 

Approximately 12-18 h p.i., the pRBC undergoes a profound increase in its 

permeability to low-molecular-weight solutes. This has been attributed to the induction 

of channels in the RBC PM, referred to as new permeation pathways (NPPs), which 

allow the uptake of nutrients and excretion of metabolic waste products (Ginsburg, 

1994, Kirk, 2001). Using the patch-clamp technique, Desai and co-workers 

demonstrated that the membrane conductance of pRBC is 150 times greater than that 

measured in unparasitized RBC and that this increase in conductance results from 

activation of small anion channels (Desai et al., 2000). The origin of the NPPs is quite 

controversial and they have been suggested to be both parasite and host cell derived 

(reviewed in (Kirk, 2001)). NPPs are of interest as potential drug targets, since they are 

believed to play an important role in providing the parasite with essential nutrients, 

such as the vitamin pantothenic acid (Saliba et al., 1998) and the amino acid isoleucine 

(Martin and Kirk, 2007). 

 

1.7.2 The tubulovesicular network 

Transmission electron microscopy of pRBC has revealed a variety of 

membranous structures in the host cell cytosol. The most prominent structure is the 

tubulovesicular network (TVN) comprised of an interconnected network of tubular and 

vesicular membranes that extend from the PVM into the cytoplasm towards the RBC 

PM of trophozoite-stage pRBC (Elmendorf and Haldar, 1994, Behari and Haldar, 

1994). The TVN harbors the Golgi marker sphingomyelin synthase and has therefore 

been suggested to possess secretory properties (Elmendorf and Haldar, 1994, Lauer et 

al., 1995). Other reports argue for the involvement of the TVN in nutrient import at 

junctions between the TVN and the RBC PM (Lauer et al., 1997).  

 

1.7.3 Maurer’s clefts 

In 1898, using light microscopy, German physician Wilhelm Schüffner was the 

first investigator to describe a stippled pattern within the host cell cytoplasm of stained 

P. vivax pRBC. In honor of his work, the stippling were later termed Schüffner’s dots. 

German physician Georg Maurer confirmed and extended the work by Schüffner, and 

in 1902, using a refined staining protocol, he described stipplings and dots in the RBC 
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cytosol of P. falciparum pRBC. William Trager, known for establishing the continuous 

in vitro culture conditions for P. falciparum parasites, was the first to associate the 

stipplings in P. falciparum with long and slender clefts, predominately located in close 

proximity to the RBC PM (Trager et al., 1966). These were subsequently named 

Maurer’s clefts (MC). Since then, cleft-like membranous structures have been 

identified in most Plasmodium spp. (Aikawa, 1988b).  

MCs first appear in the cytosol of late ring-stage pRBC (Langreth et al., 1978, 

Bannister et al., 2004) although, a recent study has demonstrated that they are present 

already at 2-6 h p.i. (Grüring et al., 2011). MCs appear as convoluted disk-like 

compartments with an electron-dense coat and an electron-lucent lumen (Hanssen et 

al., 2008b, Aikawa, 1988b). Long, slender membrane extensions connect neighboring 

clefts and stalk-like “tethers” attach them to the RBC PM and PVM, although no 

continuum exists to allow molecules to freely flow between the three compartments 

(Hanssen et al., 2010, Spycher et al., 2006, Tilley et al., 2008, Hanssen et al., 2008b). 

The latter, however, has been heavily debated over the years. Also the molecular 

mechanism involved in MC biogenesis is a matter of discussion, but it is now generally 

accepted that MCs originate through budding from the PVM or the TVN (Spycher et 

al., 2006, Tilley et al., 2008). Using four-dimensional imaging, MCs were recently 

shown to be mobile in ring-stage pRBC, whereas they were fixed following transition 

into trophozoite-stage (Grüring et al., 2011). Moreover, MCs were shown to collapse a 

few hours before merozoite egress, implying that host cell modifications are 

disassembled prior to rupture, possibly with the aim of facilitating merozoite egress 

(Grüring et al., 2011). There is growing evidence that MCs are anchored to the host cell 

cytoskeleton in mature-stage pRBC. Firstly, MCs are often found in close proximity to 

the inner leaflet of the host RBC PM in mature-stage pRBC (Waterkeyn et al., 2000, 

Hinterberg et al., 1994b, Wickham et al., 2001). Secondly, MCs stay attached to pRBC 

ghosts after lysis by osmotic shock or merozoite egress (Martinez et al., 1998, Blisnick 

et al., 2000). Skeleton binding protein 1 (SBP1) has been suggested to anchor MCs to 

the RBC cytoskeleton in a phosphorylation-dependent manner and to prevent 

premature rupture of the host cell by interacting with the host protein LANCL1 

(Blisnick et al., 2000, Blisnick et al., 2005, Blisnick et al., 2006). SBP1 has further been 

associated with the stalk-like structures that tether MCs to the RBC PM (Hanssen et al., 

2008b). 

There are several integral membrane proteins resident in MCs. These include 

previously mentioned SBP1 (Blisnick et al., 2000, Cooke et al., 2006), the membrane-

associated histidine-rich protein-1 (MAHRP1) (Spycher et al., 2003), the ring exported 

protein 2 (REX2) (Spielmann et al., 2006), the MC two TM proteins  (MC-2TM) (Sam-

Yellowe et al., 2004), STEVORs (Kaviratne et al., 2002, Przyborski et al., 2005) and 

some members of the RIFINs (Khattab and Klinkert, 2006, Kyes et al., 1999). REX1 

and MAHRP2 are two MC residents that appear to be peripherally associated with the 

cytoplasmic surface of the clefts (Dixon et al., 2008b, Hawthorne et al., 2004, 

Pachlatko et al., 2010, Spielmann et al., 2006). Interestingly, a truncation of REX1 

resulted in distortion of MC morphology and stacking of the clefts, indicating that the 

protein plays a structural role in MCs (Hanssen et al., 2008a). 

It has been postulated that MC are parasite-induced secretory organelles that 

concentrate and traffic parasite proteins beyond the confines of the parasite 

(Bhattacharjee et al., 2008, Lanzer et al., 2006). A number of exported proteins, 

including PfEMP1 (Knuepfer et al., 2005), KAHRP (Rug et al., 2006), PfEMP3 

(Waterkeyn et al., 2000) and Pf332 (Hinterberg et al., 1994b) transiently associate with 

the clefts en route to the RBC PM, consistent with this hypothesis. Furthermore, 

targeted gene disruption of residential proteins of the clefts, including SBP1 (Cooke et 

al., 2006, Maier et al., 2007) and MAHRP1 (Spycher et al., 2008) has been shown to 
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abrogate export of PfEMP1 to the RBC surface. Taken together, this points to a crucial 

role for MCs in protein trafficking across the host cell cytoplasm to the RBC PM. MCs 

may also play a role in merozoite egress, cell signaling and phospholipid biosynthesis 

(Lanzer et al., 2006).  

 

1.7.4 Knobs 

Electron-dense protrusions that typically measure 30-40 nm in height and 90-100 

nm in width appear on the surface of the pRBC during trophozoite and schizont 

development (Aikawa, 1988b). These structures, termed knobs, have been shown to act 

as attachment points of sequestered parasites in the blood vessels (Aikawa, 1988b) and 

electron microscopy from autopsies of CM patients have demonstrated pRBCs that are 

attached to the endothelium via knobs (Aikawa, 1988a). Also RBCs parasitized with 

the monkey malaria parasite P. brasilianum display knob-protrusions on the pRBC 

surface; however, the function of the knobs in this Plasmodium species remains unclear 

since all stages of P. brasilianum pRBC are found in the peripheral circulation 

(Aikawa, 1988b). 

On the cytoplasmic side of the RBC PM, knobs are composed of the P. 

falciparum knob-associated histidine-rich protein (KAHRP), which is essential for 

knob formation (Culvenor et al., 1987, Crabb et al., 1997, Pologe and Ravetch, 1986, 

Leech et al., 1984) and serves as a platform to anchor PfEMP1 to the RBC 

cytoskeleton (Waller et al., 1999). Parasites with a disrupted kahrp gene still display 

PfEMP1 on the surface; however, the cytoadhesion to CD36 under flow conditions is 

dramatically impaired (Crabb et al., 1997), implying that KAHRP is essential for 

anchoring of PfEMP1, but does not play a role in trafficking and assembly of the 

cytoadhesion complex.  

 

1.7.5 Cytoskeleton remodeling 

The primary function of the mature RBC is to carry oxygen from the lungs to the 

cells of the body, followed by the return of carbon dioxide from the tissues to the lungs. 

To be able to transport high amounts of oxygen and at the same time withstand the 

enormous pressure of being repeatedly squeezed through the small capillaries of the 

body, the RBC contains a high concentration of hemoglobin and has a strong but very 

deformable submembrane cytoskeleton.  

 

1.7.5.1 The RBC cytoskeleton 

The RBC cytoskeleton is organized as a polygonal network formed by spectrin 

tetramers that are cross-linked at junctional points by short actin filaments. Each 

junctional point (or junctional complex) is composed of actin, adducin, tropomyosin, 

and tropomodulin, where the latter two strengthen the network by preventing the actin 

filament from depolymerizing. The final outcome is a highly deformable actin-spectrin 

meshwork that underlies the inner leaflet of the RBC PM. The stability of the spectrin 

network is not only influenced by the component proteins but can also be modulated 

by the levels of protein phosphorylation (Ling et al., 1988, Manno et al., 1995). The 

spectrin-actin network is coupled to the lipid bilayer primarily by association of the 

central region of spectrin with peripheral membrane protein ankyrin, which in turn is 

bound to the cytoplasmic domains of integral membrane protein band 3. Other proteins, 

such as protein 4.2 and glycophorin A have been shown to be associated with the band 

3–ankyrin complex, but their roles remain unclear. Additional membrane connections 

are provided at the junctional point by a ternary complex involving glycophorin C, 

protein p55, protein 4.1 and membrane-associated guanylate kinase (MAGUK). 
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Together, this intricate cytoskeleton network is responsible for the high degree of 

cellular deformability of the RBC (Bennett, 1983).  

 

1.7.5.2 Parasite proteins and the RBC cytoskeleton 

Previous studies have clearly demonstrated that the deformability of intact pRBC 

is profoundly reduced compared to unparasitized RBC (Cranston et al., 1984, Nash et 

al., 1989). Using the micropipette aspiration technique, ring-stage pRBC were shown to 

have a slightly impaired deformability, whereas mature-stage pRBC displayed no 

deformation at all under the same conditions (Nash et al., 1989). Although some of the 

increased rigidity of pRBCs can be explained by the presence of the growing 

intracellular parasite, it is generally believed to be the result of parasite-derived proteins 

that are exported into the RBC cytoplasm where they then associate with the host cell 

cytoskeleton. By engaging parasite proteins in such interactions, P. falciparum can 

prevent premature egress and merozoite invasion into an already parasitized cell, 

increase thermal stability of the host cell membrane, anchor the PfEMP1 

cytoadhesion complex in the RBC PM, and destabilize the RBC PM at completion of 

the IDC. Many of the exported and cytoskeleton-interacting proteins are large 

(ranging in size from 100 to 700 kDa) and they generally contain extensive regions of 

low complexity sequence, often occurring in tandem repeats (Cooke et al., 2001). 

Furthermore, the repeats are typically highly charged, either positively or negatively. 

Already after invasion, P. falciparum targets protein to the cytoskeleton and ring 

parasite–infected erythrocyte surface antigen (Pf155/RESA) is one of the first proteins 

detectable in the host cell cytosol where it binds spectrin (Culvenor et al., 1991, Coppel 

et al., 1984, Foley et al., 1991, Ruangjirachuporn et al., 1991). RESA contains two 

blocks of glutamic acid-rich repeats (5′ and 3′), which are degenerate along the 

molecule and highly conserved between different parasite isolates (Cowman et al., 

1984, Favaloro et al., 1986, Coppel et al., 1984). Between the two repeat regions is a 

segment of 70 residues with similarity to the J domain of Escherichia coli and human 

DnaJ chaperone proteins, suggesting that RESA may have some chaperone-like 

properties, perhaps while bound to the RBC cytoskeleton (Bork et al., 1992). 

Biochemical studies using recombinant RESA fragments have demonstrated that the 

interaction with spectrin leads to a degree of protection against heat-induced 

denaturation of spectrin, thus implying that RESA protects the RBC cytoskeleton from 

heat-induced damage during febrile episodes (Da Silva et al., 1994). This hypothesis 

was supported by two independent reports where transgenic parasites with a disrupted 

RESA gene were used (Mills et al., 2007, Silva et al., 2005). Mature parasite-

erythrocyte surface antigen (MESA, also known as PfEMP2) has been reported to 

compete with host protein p55 for binding to protein 4.1 in trophozoite-stage pRBC, 

and in turn modulate the 4.1-glycophorin C-p55-MAGUK ternary complex resulting in 

a more rigid host cell (Bennett et al., 1997, Waller et al., 2003). Using recombinant 

proteins, the spectrin-binding region of MESA was mapped to an N-terminal 19-

residue region (Bennett et al., 1997). Interestingly, both RESA and MESA bind the host 

cytoskeleton via non-repetitive regions. By micropipette aspiration, the membrane 

rigidity of transgenic parasites with a kahrp or a pfemp3 deletion was shown to be 

significantly reduced compared to the corresponding wild-type parasite (Glenister et al., 

2002). Current evidence suggests that KAHRP binds spectrin, actin and ankyrin 

(Magowan et al., 2000, Pei et al., 2005, Kilejian et al., 1991), as well as the negatively 

charged ATS-region of PfEMP1 (Waller et al., 1999). The positively charged 

histidine-rich region and the 5′ repeats appear to be important for cross-linking to the 

host cytoskeleton and is required for knob formation (Rug et al., 2006, Waller et al., 

1999). Using recombinant fragments and inside-out-vesicles, PfEMP3 was 
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demonstrated to bind spectrin via a non- repetitive 14-residue region in the N-terminus 

of the protein (Waller et al., 2007). As mentioned in Section 1.7.3., also MC resident 

protein SBP1 has been shown to interact with the cytoskeleton in mature-stage pRBC.  

 

 
 

Figure 4. Summary of host cell modifications induced by P. falciparum parasites. (TVN; 

tubulovesicular network, PV; parasitophorous vacuole, PVM; parasitophorous vacuole membrane, 

PTEX; Plasmodium translocon of exported proteins, NPPs; new permeation pathways, FV; food vacuole, 

ER; endoplasmatic reticulum). Note that Pf332 has been excluded from the illustration, since its 

subcellular localization will be discussed in Paper IV. 

 

1.8 PROTEIN SECRETION AND EXPORT 

Trafficking of parasite proteins into the host cell is a multi-step process involving 

entry into the secretory pathway of the parasite and trafficking to the PV, followed by 

translocation across the PVM into the host cell cytosol. Some parasite-derived proteins 

then associate with MCs present in the host cell cytosol for further transport to either 

the cytoplasmic side of the RBC PM or translocation onto the RBC surface.  

 

1.8.1 General features of the secretory pathway in P. falciparum 

The secretory and endocytic pathways in eukaryotic cells serve as major routes 

for protein transport out of and into the cell. These are very selective pathways and only 

a subset of proteins and lipids are given access to the machinery. A classical protein 

secretory pathway required some key components, such as an endoplasmatic reticulum 
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(ER) and a Golgi apparatus. Proteins destined for secretion are typically co-

translationally inserted into the ER via a hydrophobic N-terminal SP, and by the 

anterograde secretory pathway proteins are directed from the ER to the Golgi, 

endosomes, lysosomes, or to the PM for secretion into the extracellular milieu, which in 

mammalian cells is the default pathway. Proteins generally move between 

compartments by budding and fusion of COPI, COPII and clathrin-coated vesicles. The 

outward secretory pathway is counteracted by an inward (retrograde) endocytic 

pathway originating from the PM. The two pathways interconnect at various steps and 

together they form a complex intracellular trafficking system. 

There are several lines of evidence for a classical secretory pathway in P. 

falciparum. Firstly, several conserved characteristics of the secretory pathway have 

been identified in the parasite, including homologs of BiP, ERD2, Sec61 components, 

as well as various trafficking-associated Rab GTPases (for review see (Przyborski and 

Lanzer, 2005, Foley and Tilley, 1998)). Secondly, many P. falciparum proteins contain 

a classical SP of approximately 15 hydrophobic amino acids commencing 3-17 amino 

acids from the N-terminus, similar to the SP that target proteins to the secretory 

pathway in mammalian cells. Thirdly, the fungal metabolite Brefeldin A (BFA), which 

in mammalian cells inhibits the anterograde transport between ER and Golgi resulting 

in redistribution of Golgi proteins back to the ER (Lippincott Schwartz et al., 1989), 

blocks secretion of numerous parasite proteins (Hinterberg et al., 1994b, Wickham et 

al., 2001). However, although the secretory pathway seems to be present in P. 

falciparum, it is clearly unusual in several aspects. Firstly, it has been difficult to 

identify an obvious Golgi apparatus, suggesting that this organelle is either absent or 

highly rudimentary. It now appears as if an “unstacked” apparatus is present, where the 

cis Golgi is spatially separated from the trans Golgi (Struck et al., 2005, Van Wye et 

al., 1996). Secondly, not all secreted P. falciparum proteins contain a classical SP. 

Thirdly, the P. falciparum parasite has a range of unique intracellular organelles fed by 

the secretory pathway. These include a food vacuole, an apicoplast and three different 

types of secretory granules used by the merozoite during RBC invasion (rhoptries, 

dense granules and micronemes). Protein trafficking in malaria pRBC also has an 

added level of complexity in that the parasite exports proteins beyond the confines of 

its own PM. The secretory system of P. falciparum must therefore differentially target 

proteins to a wide array of diverse subcellular organelles and compartments. 

 

1.8.2 Export of P. falciparum proteins into the host cell cytosol 

In contrast to proteins that remain within the parasite, parasite proteins destined 

for export typically have a longer (up to 30 amino acids) hydrophobic region that can 

be recessed by up to 80 amino acids, and this non-canonical SP is required to traffic 

proteins to the PV (for review see (Lingelbach, 1993)). The parasite’s secretory 

machinery appears to be able to recognize both the classical and the recessed SP, and in 

absence of any additional signaling information, the proteins follow the default 

pathway, which in P. falciparum pRBC leads to the PV (Wickham et al., 2001). Since 

malaria proteins destined for export into the host cell cytosol must first pass the PV, 

this compartment may be conceptually viewed as an additional station for protein 

sorting. 

 

1.8.2.1 Translocation across the PVM 

A major advance in our understanding of parasite protein export came with the 

discovery that exported Plasmodium proteins possess a conserved amino acid motif 

located 15-20 amino acids downstream of the N-terminal hydrophobic SP. This motif, 

called the Plasmodium export element (PEXEL) (Marti et al., 2004) or vacuolar 
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transport signal (VTS) motif (Hiller et al., 2004), consists of a pentameric sequence 

with the consensus R/KxLxE/Q/D, where x is any non-charged amino acid. Arginine in 

position 1 and leucine in position 3 are the most conserved residues, and alanine 

replacement of the two abrogates export into the host cell (Hiller et al., 2004, Marti et 

al., 2004). PEXEL proteins are not unique to P. falciparum; they are also predicted in 

the exportome of many other Plasmodium spp. (Hiller et al., 2004, Marti et al., 2004, 

Sargeant et al., 2006, van Ooij et al., 2008).  

A motif similar to the PEXEL has been identified in the plant pathogen 

Phytophora infestans, within proteins that enter the plant cell (Whisson et al., 2007). 

The N-terminal motif consists of a highly conserved core, RxLR, positioned within 60 

amino acids of the ER-type SP. Intriguingly, the RxLR motif and an E/D rich domain 

further downstream could efficiently export P. falciparum fusion proteins out of the PV 

into the host RBC cytosol (Bhattacharjee et al., 2006). Similarly, the PEXEL motif 

could efficiently substitute for the P. infestans export motif in driving protein 

translocation into the host plant cell (Grouffaud et al., 2008). This is of particular 

interest, as it suggests that deep branching eukaryotes belonging to distinct groups share 

conserved secretion strategies to access host cells. However, recent data have 

demonstrated that the machinery for delivering P. infestans proteins into the plant cell 

is host cell derived, casting some doubts on the close resemblance of the export 

pathways used by P. infestans and Plasmodium spp. (Dou et al., 2008).  

The discovery of the Plasmodium PEXEL motif has allowed for an in silico 

prediction of the P. falciparum “exportome”. The term “secretome” has also been used, 

although the term exportome is to prefer as it describes a subset of secreted proteins. 

Depending on the algoritm used, 5-8% of the P. falciparum genome is predicted to be 

exported (Hiller et al., 2004, Marti et al., 2004, Sargeant et al., 2006, van Ooij et al., 

2008). The majority of these genes are located in subtelomeric regions, and apart from 

the var, rif, and stevors, are genes predicted to encode proteins involved in host cell 

remodeling overrepresented (Maier et al., 2008, Sargeant et al., 2006).  

Surprisingly, the fate of proteins destined for export is determined much earlier 

along the trafficking pathway than originally believed. By the time PEXEL-containing 

proteins reach the PV, the PEXEL motif has already been cleaved in the ER after the 

leucine residue, generating a new N-terminus, xE/Q/D, which becomes N-acetylated 

(Chang et al., 2008, Boddey et al., 2010). An aspartic protease, Plasmepsin V, has in 

two separate studies been demonstrated to be responsible for PEXEL cleavage (Boddey 

et al., 2010, Russo et al., 2010). Attempts to disrupt the gene in P. berhei and 

genetically alter the active site in P. falciparum have both been unsuccessful, thus the 

gene appears to have an essential function in the parasite. The critical role of 

Plasmepsin V in protein export provides an important target for development of novel 

antimalarials. It is currently unknown how the N-acetylated xE/Q/D-proteins destined 

for export reach the PV. They may be transported via bulk flow or chaperone 

recruitment in the ER. Alternatively, proteins may be transported via distinct trafficking 

pathways in the ER that ultimately lead to specialized regions of the parasite PM 

closely connected to the PVM (Crabb et al., 2010). The machinery responsible for 

protein translocation into the host cell was until recently unknown. By combining 

proteomic analysis with strict prediction criteria, de Koning-Ward and colleagues 

identified a translocon of parasitic origin residing on the cytosolic side of the PVM (de 

Koning-Ward et al., 2009). This machinery, termed the “Plasmodium translocon of 

exported proteins” or PTEX, is an ATP-powered complex comprised of a heat shock 

protein (Hsp 101), a known integral membrane protein of the PVM (EXP2), 

thioredoxin 2 and two novel proteins (PTEX150 and PTEX88). Apart from thioredoxin 

2, the PTEX components are absent from any other organism, including other 

apicomplexans, which is in accordance with the lack of PEXEL motifs in other 
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organisms. This is indicative of a unique requirement for Plasmodium spp. to have an 

efficient export machinery capable of translocating proteins into the host cytosol.  

 

1.8.2.2 Do multiple pathways exist? 

Several well-documented exported proteins such as SBP1, MAHRP1, MAHRP2, 

REX1, and REX2 lack the PEXEL motif and these proteins have been collectively 

termed PEXEL-negative exported proteins, or PNEPs (Spielmann and Gilberger, 

2010). Interestingly, all currently identified PNEPs localize to MC. However, there 

may be many more hidden in the Plasmodium genome, but since no systematic 

approach to search for additional PNEPs is available, this remains speculative. PNEPs 

lack a classical SP, but are in any case believed to be trafficked into the host cytosol via 

the classical secretory pathway, involving translocation into the ER. Although several 

studies have attempted to address the sequence requirements for PNEP export (Dixon 

et al., 2008a, Haase et al., 2009, Saridaki et al., 2009, Spycher et al., 2008), these 

proteins do not appear to share an obvious motif that promotes their export. However, 

the TM and sequences in the N-terminus of the protein have been shown to be 

involved. SURFINs and Pf332 could represent additional PNEPs, although both 

proteins have sequences that resemble PEXEL motifs (Spielmann and Gilberger, 2010). 

Interestingly, SURFIN4.2 was recently shown to be trafficked into the host cell cytosol 

in a PEXEL-independent manner involving the TM but not sequences in the N-

terminus of the protein (Alexandre et al., 2011). The presence of PNEPs raises the 

important question of whether Plasmodium parasites have more than one export 

pathway into the host cell? 

 

1.8.2.3 Trafficking beyond the PVM 

How exported proteins are trafficked within the host cell cytosol is a matter of 

debate (Przyborski and Lanzer, 2005). Some studies have suggested that vesicles 

budding from the PVM bridge the gap between the PVM to MC, and possible onwards 

to the RBC PM (Trelka et al., 2000, Taraschi et al., 2003, Wickham et al., 2001). P. 

falciparum homologs of COPII secretory proteins have been shown to be exported and 

to associate with MCs, consistent with a vesicular model (Albano et al., 1999, Adisa et 

al., 2001, Wickert et al., 2003a) although this view was challenged in a more recent 

report (Adisa et al., 2007). So far have no COPI vesicle coat proteins been detected in 

the RBC cytosol, which may indicate that trafficking of parasite proteins to the RBC 

PM or MCs is unidirectional, i.e. with no retrograde pathway; however, additional 

work is required to confirm this (Cooke et al., 2004). Others have proposed a model 

where proteins move by lateral diffusion along a continuous membrane network that 

encompasses MC and connects the PVM to the RBC PM (Wickert et al., 2003b). 

Soluble proteins are most likely trafficked across the host cell cytosol by diffusion or as 

part of a soluble protein complex, as has been shown for KAHRP, PfEMP3 and MESA 

(Wickham et al., 2001, Howard et al., 1987, Knuepfer et al., 2005) (Figure 4). 

That the PTEX acts as a common gateway for both soluble and membrane 

proteins, is supported by both classes of proteins harboring PEXEL motifs (Hiller et al., 

2004, Marti et al., 2004). It has been postulated that membrane proteins may arrest 

during their translocation across the PVM via their hydrophobic TM, after which they 

are loaded into nascent MCs (Spielmann et al., 2006, Spycher et al., 2006) or vesicles 

budding from the PVM. For PfEMP1, which also harbors a TM/hydrophobic region, 

the situation appears to be somewhat different. Evidence obtained from studies 

employing either a FRAP (fluorescence recovery after photobleaching) GFP-chimera 

approach or biochemical methods suggests that PfEMP1 passes through the PVM 

translocon in a soluble state after which it is transported in a multimeric protein 
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complex (possible involving chaperones) to MCs before reaching the RBC PM 

(Knuepfer et al., 2005, Papakrivos et al., 2005). Whether other TM proteins can be 

trafficked in a similar manner remains elusive. 

 

1.9 GLUTAMIC-ACID RICH PROTEINS IN PLASMODIUM 

Several P. falciparum blood-stage antigens were originally identified by 

screening recombinant DNA libraries with immune sera from individuals residing in 

malaria endemic areas. Many of these antigens contain low complexity sequences with 

blocks of tandem repeats rich in glutamic acid (Glu), giving the proteins a negative net 

charge. While these Glu-rich repeats are highly immunogenic, they do not necessarily 

induce protective antibodies. Indeed, it has been proposed that proteins containing 

tandem repeats may serve as smokescreens to divert the immune response away from 

other more important epitopes (Anders, 1986). Consistent with this hypothesis, many 

Glu-rich proteins are exported into the host cell cytosol, are highly abundant and can 

typically be found in close proximity to the RBC PM. Presumably, they are released 

and exposed to the immune system at time of schizont rupture. Furthermore, many of 

the Glu-rich proteins induce cross-reactive antibodies (Mattei et al., 1989, Ahlborg et 

al., 1991, Wåhlin et al., 1990), and the frequently occurring pairs of Glu found in most 

of these antigens are considered responsible for this. The Glu-rich proteins may 

additonally be important in host cell remodeling, since some of them interact with the 

host cell cytoskeleton. While in association with the RBC PM, many Glu-rich antigens 

become phosphorylated (Wiser et al., 1983), and this may influence protein-protein 

associations, induce relaxation of the cytoskeleton, or alter the structure and mechanical 

properties of the RBC PM. Examples of Glu-rich antigens include P. falciparum 

antigens; Pf155/RESA, Pf332 (also known as antigen 332) (Mattei et al., 1989, Mattei 

and Scherf, 1992a), GLURP (Borre et al., 1991), MESA (Coppel, 1992), Pf11-1 

(Scherf et al., 1992), and D260 (Barnes et al., 1995), P. chabaudi; Pc(em)93 (Giraldo et 

al., 1999) and P. berghei; Pb(em)65 and Pb(em46) (Wiser and Plitt, 1987). 

 

1.9.1 Pf332 

Although identified more than two decades ago, the function of Pf332 still 

remains elusive. Studies on Pf332 have been hampered by the cross-reactive nature of 

antibodies generated against the molecule due to its high content of Glu-rich repeats. 

Pf332 was originally identified from a genomic expression library using human 

immune sera, which led to the characterization of a single exon gene (Mattei and 

Scherf, 1992a). One of the most striking characteristics of Pf332 is its extremely high 

content of negatively charged repeats that are not identical but with the consensus (X)3-

EE-(X)2-EE-(X)2-3, where X is any hydrophobic amino acid and E is Glu (Mattei and 

Scherf, 1992b). Together, the repeats make up more than 90% of the protein and the 

total Glu-content of the antigen is 28%. The Pf332 gene is located in the subtelomeric 

region on chromosome 11 and has been detected in all clinical parasite isolates 

surveyed to date. Subtelomeric genes are prone to frequent gene recombination event, 

and the Pf332 gene displays a marked sequence variation as demonstrated by RFLP. 

Pf332 is present as a single copy gene in all parasite strains analyzed so far, with the 

exception being the HB3 parasite, in which the gene is duplicated and the second copy 

is present in the subtelomeric region on chromosome 13 (Hinterberg et al., 

1994a)(Paper V).  

Pf332 was early on considered to be a malaria vaccine candidate. This was 

based on the observation that a Pf332-reactive human monoclonal antibody (mAb 

33G2) was able to inhibit both parasite growth and cytoadherence of pRBC to 

melanoma cells in vitro (Udomsangpetch et al., 1986). However, detailed analysis of 
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the specificity of the antibody reveled that it was cross-reactive with other Glu-rich 

antigens including Pf155/RESA and Pf11-1 (Udomsangpetch et al., 1989a, Ahlborg et 

al., 1991, Mattei et al., 1989, Iqbal et al., 1993a). However, an invasion inhibitory 

effect of anti-Pf332 antibodies has been supported in several studies where both human 

affinity-purified and polyclonal animal antibodies targeting different regions of Pf332 

were used (Wåhlin et al., 1992, Ahlborg et al., 1993, Ahlborg et al., 1995, Balogun et 

al., 2009)(Paper I). A detailed morphological analysis of pRBC grown in the presence 

of anti-Pf332 antibodies, revealed an abundance of abnormal schizonts with tightly 

clumped merozoites and dispersed hemozoin, suggesting that the antibodies induced 

parasite growth arrest (Ahlborg et al., 1996). Collectively, these findings led to the 

suggestion that Pf332 may play a role in parasite invasion/growth. The interpretation 

of these results is, however, complicated by the extensive serological cross-reactivity 

of Pf332, since most studies have used a highly Glu-rich and repetitive fragment of 

the molecule, denoted EB200 (Mattei and Scherf, 1992b), for both antibody 

production and affinity purification. In 2009, two transgenic parasite lines were 

described in which the Pf332 gene had been disrupted (Glenister et al., 2009, Hodder 

et al., 2009). Interestingly, complete ablation of Pf332 expression had no effect on 

parasite growth or replication. 

Pf332 is highly immunogenic and antibodies reactive with the antigen have 

frequently been identified in sera from malaria exposed individuals (Iqbal et al., 1993b, 

Warsame et al., 1997, Israelsson et al., 2008, Balogun et al., 2009, Kulane et al., 1999). 

In areas of intense malaria transmission, antibodies appear to be acquired at an early 

age (Paper II) and increased titers of Pf332-reactive IgG antibodies in humans have 

been associated with a decreased number of malaria incidents (Ahlborg et al., 2002, 

Giha et al., 2010). Experimental animal immunizations using the EB200 fragment of 

Pf332, have further been shown to induce opsonizing antibodies in Samiri monkeys 

(Gysin et al., 1993).  
 

1.9.1.1 Subcelllular localization 

The 700 kDa Pf332 protein is the largest known P. falciparum protein exported 

to the RBC PM. Export of the antigen is sensitive to treatment with BFA (Hinterberg et 

al., 1994b)(Paper IV), indicating that Pf332 is trafficked via the classical secretory 

pathway. Pf332 is a mature-stage antigen that is first detectable within the parasite at 

18-24 h p.i. after which it can be visualized in MCs together with PfEMP1 and RIFINs 

en route to the RBC PM (Haeggström et al., 2004). Interestingly, both Pf332 knockout- 

and truncation mutant parasites (missing the C-terminus) display larger and less 

numerous MCs that tend to aggregate and form multilamellar stacks rather than 

individual lamellae (Glenister et al., 2009). This was particularly evident in schizonts 

where over 60% of pRBC displayed this abnormal phenotype. A deletion of Pf332 has 

also been reported to affect PfEMP1 export, although this appears to be parasite strain 

dependent. While CS2 parasites with a Pf332 deletion expressed less PfEMP1 on the 

surface (Glenister et al., 2009), 3D7 parasites with a Pf332 deletion expressed PfEMP1 

at similar levels as the wild-type parasite (Hodder et al., 2009). Immunofluorescence 

microscopy assays (IFA) of mature-stage pRBC using anti-Pf332 antibodies have 

revealed a rim-like fluorescence staining along the RBC PM and Pf332 was therefore 

suggested to be exposed on the surface of mature-stage pRBC (Hinterberg et al., 

1994b). A surface location of Pf332 was further supported by IFA of live mature-stage 

pRBC using anti-Pf332 antibodies (Hinterberg et al., 1994b, Mattei and Scherf, 1992a). 

Based on IFA observations where the Pf332 fluorescence signal disappeared shortly 

before merozoite egress, Wiesner et al. have suggested that Pf332 is proteolytically 

cleaved and that this may activate a putative membrane destabilizing and host cell 
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rupture function of the antigen (Wiesner et al., 1998).  

 

1.9.1.2 Cytoskeleton binding properties of Pf332 

Parasites with a Pf332 deletion (Glenister et al., 2009, Hodder et al., 2009) or 

truncation (Glenister et al., 2009) appear to be more rigid, indicating that Pf332 

interacts with the host cell cytoskeleton. Intriguingly, whereas most cytoskeleton 

binding proteins make the pRBC more rigid, Pf332 apparently do the opposite. Using 

a series of recombinant Pf332 fusion proteins in combination with purified actin or 

inside-out vesicles of human RBCs, an actin-binding region was identified in the C-

terminus of the protein (a Glu-rich sequence encompassing residues 5155-5201) 

(Waller et al., 2010). Biochemical analyses of pRBC have; however, brought about 

contradicting results concerning the solubility of Pf332 within the pRBC. Mattei et al. 

observed the protein mainly in the Triton X-100 (TX-100) soluble fraction of lysed 

pRBC (Mattei and Scherf, 1992a), which implies that Pf332 is associated with 

membranous structure within the pRBC, but speaks against an association with the 

RBC cytoskeleton. In contrast, Glenister et al. found Pf332 to be largely TX-100 

insoluble but SDS soluble (Glenister et al., 2009), which supports a direct association 

between Pf332 and the RBC cytoskeleton. Thus, although data obtained from knockout 

studies and recombinant protein binding assays support an interaction between Pf332 

and the cytoskeleton, a biochemical confirmation using endogenous protein is missing. 
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2 SCOPE OF THE THESIS 
 

The overall objective of the investigations presented in this thesis was to further the 

understanding of the massive Pf332 antigen of the malaria parasite Plasmodium 

falciparum. The Pf332 gene structure, immunogenicity, subcellular localization, host 

cell remodeling properties, and transcriptional activity were particular targets in this 

context. 

 

Specific aims: 

 

The specific objectives of the presented papers were as follows: 

 

I. To characterize the structure of the gene encoding Pf332 and the Duffy binding-

like (DBL)-domain encoded by exon I. 

 

 

II. To describe the DBL-domain of Pf332 in terms of three-dimensional structure, 

naturally acquired immunity and antibody specificity. 

  

 

III. To evaluate the immune response in different animals immunized with the 

DBL-domain of Pf332 in combination with a set of different adjuvants. 

 

 

IV. To investigate the subcellular localization and cytoskeleton interacting 

properties of the endogenous Pf332 protein. 

 

 

V. To elucidate transcriptional activity of duplicated P. falciparum genes, 

including Pf332 and var2csa, by allelic discrimination. 
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3 EXPERIMENTAL PROCEDURES  
 

Material and methods are detailed in each respective study included in this thesis 

(Paper I-V). This chapter will highlight some of the more important methods from each 

of the studies included. 

 

3.1 PARASITE IN VITRO CULTURE CONDITIONS 

In vitro adapted parasites used in these studies were the Plasmodium falciparum 

laboratory strains FCR3, FCR3S1.2, HB3, 3D7AHI, NF54, and 7G8. Parasites were 

kept in continuous culture according to standard procedures with red blood cells (O+) 

at 5% hematocrit and 10% A+ serum in buffered malaria culture medium. Parasites 

were synchronized with 5% sorbitol for 10 min and kept at static conditions for all the 

described experiments (Moll et al., 2008).  

 

3.2 RBC BINDING ASSAYS 

In order to investigate the RBC-binding properties of the Pf332-DBL domain, 

recombinant proteins (tagged with Glutathione-S-Transferease; GST) corresponding to 

the DBL-domain, a region downstream of the DBL-domain referred to as nonDBL of 

Pf332 (both regions encoded by exon I) and an unrelated protein, were generated in E. 

coli. Recombinant protein (200 pmol) was incubated with 5 µl of washed RBCs in 

RPMI-1640 for 2.5 h at 4ºC and thereafter washed in PBS. RBCs were subsequently 

collected by centrifugation, and bound protein was visualized by Western blot using 

anti-GST monoclonal antibodies. To further illustrate the binding properties of Pf332-

DBL, Chinese hamster ovary (CHO) cells were transfected with the DBL-domain of 

Pf332 or the nonDBL-region using the FuGENE 6 transfection reagents. Surface 

expression of the domains was confirmed by IFA 48 h later. For detection of RBC-

binding, transfected CHO-cells were detached and stained with PKH67 (green) and 

human RBC were stained with PKH26 (red). CHO-cells were incubated with RBCs at 

a ratio of 1:5 for 1 h at room temperature and RBC-binding was evaluated by 

fluorescence microscopy. 

 

3.3 INVASION ASSAYS 

Invasion inhibition assays were performed with laboratory adapted strains 

FCR3S1.2, 3D7AH1 and 7G8. Trophozoite-stage pRBC were synchronized and the 

hematocrit was set to 2.5% and the starting parasitemia to 1%. Assays were performed 

in 96-well U-bottom culture plates and 3/4 of the total volume constituted pRBC in 

suspension, whereas the remaining 1/4 corresponded to the added antibody/PBS 

control. Parasites were cultivated until reinvasion of merozoites was completed, after 

which pRBC were stained with acridine orange and counted by flow cytometry. 

Investigated antibodies included purified IgG from Pf332-DBL/nonDBL or GST 

immunized rabbits. PBS was included in all plates as a non-inhibitory control and an 

anti-AMA1/MSP-1 antibody was included as an inhibitory control. Antibodies were 

titrated and used at a final concentration of 1, 0.5 and 0.25 mg/ml. Results are presented 

as percentage of invasion and calculated as follows: 100 x (mean parasitemia of culture 

grown with test antibodies/mean parasitemia of culture grown with PBS). Experiments 

were performed in duplicates in three separate assays. 

 



 

 

 

31 

3.4 STRUCTURE MODELING OF PF332-DBL 

In order to assess structural similarities of Pf332-DBL with the EBL-DBLs, a 

homology model of 3D7 Pf332-DBL (PF11_0506 amino acids 1-255) was constructed 

using the HHpred server with default settings. The crystal structure of the EBA-175 F2-

domain was used as a template (Protein Data Bank code 1ZRO, chain A). The 

alignment was manually adjusted at positions 180 and 254 to align two cysteines that 

were in close proximity, to allow for the modeling of two disulphide bridges conserved 

in the DBL-domains of PfEBA-175 and Pk DBP. MODELLER 9v3 and the MPI-

toolkit were used to create the model and structural visualizations were made in PyMol. 

The model was validated by using the PROCHECK program available in the SWISS-

MODEL Workspace and Verify3D, available in the HHpred server toolkit. 

 

3.5 IMMUNIZATION REGIMEN AND ANTIBODY DETECTION 

Immunogenicity and antibody responses to most malaria antigens are tested in 

either rodents or rabbits. BALB/c mice, C57BL/6 mice, New Zealand white rabbits and 

Sprague-Dawley rats were immunized with E. coli expressed recombinant Pf332-DBL 

protein carrying a His-tag in combination with any of the following adjuvants; 

Montanide ISA 720, aluminum hydroxide, levamisole or complete Freund’s 

adjuvant/incomplete Freund’s adjuvant. Animals were immunized intramuscularly with 

the antigen-adjuvant formulation on week 0, 3, 6 and 9. The amount of recombinant 

protein in the immunizations was 10 g/mouse, 50 g/rat or 100 g/rabbit. Blood was 

collected prior to the first immunization and two weeks after each immunization, as 

well as on week 13, 15 and 17. Antibody responses were subsequently measured by 

ELISA, and IgG1/Ig2a ratios were determined as an indication of the type of immune 

response that was elicited. 

 

3.6 DIFFERENTIAL PROTEIN EXTRACTION 

Peripheral membrane proteins are extracted from the membrane by treatment 

with alkaline sodium carbonate and urea, whereas these solutions leave the lipid bilayer 

and integral membrane proteins intact. The latter proteins are only extracted by 

treatment with a detergent, such as the non-ionic detergent TX-100. Cytoskeleton-

interacting proteins are typically insoluble in TX-100, but soluble in the ionic detergent 

SDS, and this property is commonly used as a biochemical definition of a cytoskeleton 

association. Trophozoite or schizont-stage pRBC were enriched by magnetic cell 

sorting, which yielded a parasitemia of approximately 90%. Parasitized cells were 

subsequently resuspended in a hypotonic solution (7.5 mM Tris-HCl pH 8.0) and freeze 

thawn. Following an ultracentrifugation step (100 000 x g for 60 min), aqueous proteins 

(soluble in the hypotonic solution) were separated from membrane proteins (pellet 

proteins). The latter were extracted by one of the following solutions; 100 mM sodium 

carbonate pH 11.5, 6 M urea, 1% TX-100 or 2% SDS plus 1% TX-100, followed by 

centrifugation to separate soluble and insoluble proteins. Equal amount of parasite 

extracts (2.5x10
6
 – 3.3x10

6
 pRBC/lane) were subsequently separated by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) and subjected to Western blot 

analysis. 

 

3.7 SELECTIVE PERMEABILIZATION AND TRYPSIN DIGESTION 

To verify the subcellular localization and extraction profile of Pf332, we used a 

biochemical approach based on the accessibility of the protein to trypsin digestion after 

selectively permeabilizing membranes using detergents Equinatoxin II (EqtII) and 

saponin. EqtII is a eukaryotic pore-forming toxin from the venom of the sea anemone 
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Actinia equin (Schon et al., 2008), which selectively forms pores (up to 100 nm) in the 

sphingomyelin-containing RBC PM, whilst leaving the membranes of MCs and PV 

intact. Saponin on the other hand, is a plant-derived glycoside that interacts with 

cholesterol and forms pores (up to 30 nm) in the RBC PM, MCs and PVM, but leaves 

the parasite PM intact. By adding trypsin to selectively permeabilized cells, the 

subcellular localization of a protein can be determined. For example, in EqtII-treated 

cells, proteins/parts of proteins present in the lumen of MC will be protected from 

digestion by trypsin as a result of the intact MC membrane, whereas proteins/parts of 

proteins located in the RBC cytosol will be digested. In EqtII/saponin-treated cells, 

proteins will be completely digested by trypsin regardless of a luminal or a cytosolic 

location, as saponin also disrupts the MC and PV membrane. Subsequently, a TM 

protein with the N-terminus facing the MC lumen and the C-terminus facing the host 

cell cytosol will be truncated in EqtII-lysed cells, whereas it will be completely 

digested in EqtII/saponin-lysed cells. By using antibodies targeting both the N- and the 

C-termini, the topology of a protein can thus be determined. A simplified outline of the 

method (with a focus on MCs) is depicted in Figure 5. 

 

 
 
Figure 5. Selective permeabilization of membranes followed by trypsin digestion. In EqtII-

permeabilized pRBCs, the RBC PM is permeabilized, but the MC membrane is left intact (left). 

Accordingly, when adding trypsin, proteins/parts of proteins located in the lumen of MCs are protected 

(full line) from digestion, whereas proteins/parts of proteins located in the RBC cytosol are sensitive 

(dashed line). A membrane spanning protein will subsequently be truncated in EqtII-lysed cells. In 

EqtII/saponin-permeabilized pRBCs, the RBC PM and the MC membrane are permeabilized (right). 

Accordingly, a membrane spanning protein will be completely digested (dashed lines) when adding 

trypsin. Note that the illustration only shows MC.  

 
 

3.8 ALLELIC DISCRIMINATION 

Real-time PCR allelic discrimination primers and probes (MGB probes labeled 

with either FAM or VIC) were manually designed using Primer Express 3.0. The risk 

of primer dimerization and secondary structure formation of all primers and probes 

were assessed using G estimations in NetPrimer. Allelic discrimination assays were 

designed based on the sequenced genome of 3D7, FCR3, Dd2 and HB3 parasites and 

validated with amplification of dilution series of HB3 gDNA and mixtures of FCR3 

and NF54 gDNA. Allelic discrimination was conducted on both gDNA and cDNA 

from whole parasite cultures and single cells, using the above described primers and 

discriminative probes. Amplifications were performed in at least triplicates in an ABI 

7500 real-time PCR system, starting with a pre-read (for background fluorescence 

measurements), followed by 40 cycles of amplification, and a final post-read (for total 

fluorescence emission measurement after amplification). The relative allele frequency 

was evaluated from fluorescence ratios from the allele specific probes. 
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4 RESULTS AND DISCUSSION 
 

Results are detailed and discussed in each respective study included in this thesis (Paper 

I-V). The original results and interpretations are also summarized here. 

 

4.1 PAPER I 

 “The gene encoding Pf332 is comprised of two exons, one of which is encoding 
a DBL-domain” 
 

Previous to this investigation, the gene encoding Pf332 was believed to have a 

single exon structure. During a bioinformatical search for open reading frames (ORFs) 

predicted to encode RBC-binding domains, the ORF PF11_0506, located only 280 base 

pairs (bp) upstream of the start codon of adjacent gene encoding Pf332 (PF11_0507), 

was identified. The length of the intergenic region was very short compared to the 

mean length in P. falciparum (1694 bp) (Gardner et al., 2002), thus we hypothesized 

that the region was an intron rather than an intergenic region. To test our hypothesis, we 

designed primers towards the 3′ end of PF11_0506 and the 5′ end of PF11_0507. The 

size of the reverse-transcriptase PCR product from cDNA was 350 bp, whereas the 

PCR product from gDNA was 600 bp, indicative of a splicing event. Comparing the 

sequences of the PCR and RT-PCR products further revealed an intron sequence 

possessing the typical gt-ag splicing site at its ends. Northern blot hybridizations using 

a probe located at the 5′ end of PF11_0506 and a probe covering the splicing site, 

confirmed that PF11_0506 and PF11_0507 constitute a single mRNA. Thus, Pf332 is 

encoded by a two-exon gene composed of a 5′ exon with a size of 1704 bp 

(PF11_0506) and a 3′ exon with a size of 16 578 bp (PF11_0507), separated by a short 

intron of 236 bp (Figure 6). The 3′ exon of Pf332 was initially identified from a gDNA 

expression library containing only a region of repetitive sequence without additional 5′-

RACE sequencing to identify the 5′-end of the transcript. The existence of the 

additional upstream exon has therefore previously been overlooked and the 5′ exon of 

Pf332 was as a consequence annotated in the P. falciparum genome as a separate gene 

encoding a hypothetical protein.  

Exon I did not encode an N-terminal SP or a classical PEXEL motif, but encode a 

PEXEL-like motif (RSLAD) commencing 78 amino acids downstream of the N-

terminus. When performing a BLASTP search and an alignment of the amino acid 

sequence encoded by exon I, the exon was found to encode a region homologous to the 

Duffy binding-like (DBL)-domains of the Erythrocyte binding-like (EBL)-family of 

invasion proteins. In order to investigate the RBC-binding properties of the newly 

identified DBL-domain of Pf332, we generated E. coli recombinant proteins 

corresponding to both the DBL-domain and a region downstream of the DBL-domain. 

By Western blot, it was evident that only the DBL-domain and not the downstream 

region was able to bind RBCs, and this was subsequently verified when using CHO-

cells transiently expressing the DBL-domain or the downstream region. Sequencing of 

11 laboratory strains and field isolates revealed that the DBL-domain is conserved as 

only a few point mutations were found. 

Although having a homologous DBL-domain in common, Pf332 differs 

considerably from the EBL-DBLs in three important aspects. Firstly, Pf332 lacks the 

N-terminal segment (NTS) containing a SP, two tandem DBL-domains, the C-terminal 

c-cys region and TM. The revised structure of Pf332 contains an N-terminal DBL-

domain followed by an adjacent predicted TM and a large number of negatively 

charged Glu-repeats, which make up the major part of the molecule. A tryptophan-rich 
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domain (WRD) with similarities to WRDs found in SURFINs, PkSICAvar and 

PfEMP1  (Winter et al., 2005) is also present in the C-terminus of the protein (Figure 

6). Secondly, by real-time PCR, it was evident that the Pf332 gene was activated at 

approximately 16 h p.i., reaching a maximum transcription at 24 h p.i.. In contrast, 

most EBL-members are activated at approximately 38 h p.i., in line with their role in 

merozoite invasion. Thirdly, the EBL-members are localized to the micronemes, 

whereas Pf332 is exported into the host cell cytosol where it associates with MCs and 

the RBC PM. The interaction of Pf332 with the host cell PM appeared to be very close, 

as anti-Pf332 antibodies were able to detect Pf332 on unfixed live schizont-stage 

pRBC. Collectively, these observations led us to hypothesize about the DBL-domain of 

Pf332 being involved in binding to RBCs and thereby causing rosetting of mature-stage 

pRBCs, potentially as a mean to provide close proximity of new host cells and thus 

indirectly facilitating merozoite invasion. To test this hypothesis, we carried out 

invasion inhibition assays where three different laboratory strains were cultivated for a 

complete IDC in the presence of anti-Pf332-DBL antibodies. Indeed, antibodies to 

Pf332-DBL were found to reduce the invasion efficiency when used at a concentration 

of 1 mg/ml and this effect was concentration dependent.  

Taking into account more recent data (Paper IV), do the findings in Paper I 

support a surface expression and a role for Pf332 in invasion/parasite growth? 

Localization studies of mature-stage pRBC are notoriously difficult due to the 

increased permeability of the RBC PM, which can allow antibodies to gain access to 

parasite proteins on the cytoplasmic face of the membrane. This can result in a staining 

resembling surface reactivity, leading to the conclusion of surface exposure of a 

molecule that is really located in close proximity to the inner leaflet of the RBC PM. A 

cytoplasmic location of Pf332 is further supported by the observed lack of variation in 

the DBL-domain, which indicates that the protein is not under any selective pressure. In 

contrast, nonsynonomous SNPs are frequently detected in the EBL-DBLs, in line with 

the antigens being under diversifying selection from the human immune system (Baum 

et al., 2003, Ozwara et al., 2001). Moreover, compared to antibodies targeting proteins 

critical for the invasion process, the anti-Pf332-DBL antibodies investigated in the 

present study had to be used at a relatively high concentration in order to give a 

significant effect.  

The comparison of the Pf332-DBL and EBL-DBLs raised the issue of their 

structural similarities and furthermore as to what extent antibodies towards Pf332-DBL 

and members of the EBL-family cross-react; questions that were addressed in Paper II.  

  

 
Figure 6. Schematic representation of the revised structure of the Pf332 protein. Residues 1-570 are 

encoded by the first exon, which contains the DBL-domain (white), a PEXEL-like sequence RSLAD and 

the predicted TM (black). The second exon encodes an extensive Glu-rich repeat region (dark grey) with 

the consensus (X)3-EE(X)2-EE-(X)2-3 and the tryptophan-rich region (WRD; striped). (X=hydrophobic 

amino acid, E=Glu). 
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4.2 PAPER II 

“The DBL-domain of Pf332 generates antigen specific antibodies, which do not 
cross-react with DBL-domains of other malaria antigens” 

 

EB200, a 157 amino acid long sequence of Pf332, was the first region of the 

molecule to be cloned. To this date, EB200 is the most extensively used region for both 

antibody production and immunorecognition studies of Pf332. However, EB200 

contains arrays of tandemly repeated 11-mers having a high frequency of Glu residues, 

often occurring in pairs. Due to the presence of Glu-rich repeats in a wide array of 

malaria antigens, there is a significant risk of cross-reactivity when using the EB200 

region as a Pf332 marker. We therefore wanted to evaluate the usefulness of the 

conserved DBL-domain (Paper I), as a specific marker for Pf332. Moreover, we were 

interested in investigating any potential cross-reactivity of antibodies towards Pf332-

DBL with other EBL-DBLs. 

Firstly, we assessed the structural similarities between the DBL-domain of Pf332 

and the homologous Pk DBL and the tandem DBL-domains of EBA-175 (F1 and F2), 

which structures have recently been solved. Using the crystal structure of F2 as a 

template, we constructed a 3D model of Pf332-DBL by comparative modeling on the 

basis of the 3D7 sequence (PF11_0506, residues 1-255). According to our 3D model, 

Pf332 has a scaffold of -helices surrounded by flexible loops. Thus Pf332 shares the 

basic DBL fold despite having only 24-29% sequence identity with the Pk DBL and 

EBA-175 DBLs. The high content of -helices observed in our 3D model was in 

accordance with the secondary structure content of a recombinant Pf332-DBL protein 

expressed in E. coli, as determined by circular dichroism. Sequence alignment revealed 

that of the twelve cysteine residues present in Pf332-DBL, eight corresponded in 

location to cysteines found in F1, F2 and Pk DBL. Two cysteines were found to be 

unique to Pf332-DBL, whereas the remaining two cysteines were shared only with 

EBA-175 F2. Interestingly, one of the latter is shared with all var DBL-types. All 

cysteines except for the two that are unique for Pf332-DBL were predicted to form 

conserved disulphide bridges, illustrating the importance of the cysteines in 

maintaining the DBL fold. Although the overall fold of Pf332-DBL was similar to that 

of the EBL-DBLs, structural differences were observed, implying that Pf332-DBL 

could have a different dynamical behavior leading to differences in its receptor 

specificity or binding preferences. The presence of a DBL-domain in Pf332 is 

intriguing. The F1-domain of EBA-175 is related to the single DBL-domain of P. vivax 

and P. knowlesi, and the domain is common to all EBLs. In contrast, the F2-domain of 

EBA-175 has so far only been found in EBLs in P. falciparum and P. reichenowi and 

the domain has been suggested to be the progenitor of var DBLs. It is therefore 

interesting to note that the DBL-domain of Pf332 has more similarities to F2 than to F1, 

as the DBL-domain of Pf332 so far only has been identified in P. falciparum, although 

Pf332-like proteins are present in species such as P. berghei and P. yoelii. 

Secondly, we analyzed the presence of naturally acquired antibodies to Pf332-

DBL in individuals residing in distinct malaria endemic regions (Uganda, Burkina Faso 

and Mali). Antibodies were highly prevalent in adults and they were frequently of high 

titer. In an area of intense malaria transmission (Apac, Uganda), antibodies were 

acquired early in life, but there was no difference in prevalence or titer when comparing 

plasma from children suffering from either mild or severe malaria. Similarly, there was 

no difference in prevalence and antibody titer when comparing plasma from individuals 

belonging to distinctive sympatric tribes having different susceptibility to malaria. This 

shows that Pf332-DBL is highly immunogenic and is in accordance with the domain 

having a conserved sequence (Paper I). As Pf332 appears to be an intracellular protein 
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(Paper IV), we hypothesize that antibodies towards the antigen are generated upon 

schizont rupture, at which time the protein becomes accessible to the immune system. 

The assumption is then that the high levels of anti-Pf332 antibodies are a reflection of 

parasite exposure rather than malaria protection, as has been suggested for other Glu-

rich antigens. 

Finally, we set out to evaluate the antigen-specificity of naturally acquired 

antibodies in order to exclude the possibility of cross-reactivity between Pf332-DBL 

and EBL-DBLs. Following affinity purification using the recombinant Pf332 DBL-

domain, the human antibodies were probed on a peptide microarray of overlapping 

15-mers, where they were found to only react with peptides present in Pf332-DBL but 

not in the EBL-DBLs, here represented by the tandem DBL-domains of EBA-175. 

The peptide array only takes liner epitopes into consideration; however, it gives a 

strong indication that there is little or no cross-reactivity between the DBL-domains 

of Pf332 and the EBL-family. To confirm that this was true also for native and 

conformational protein, we carried out IFA. The anti-Pf332-DBL antibodies gave a 

typical Pf332 fluorescence pattern as demonstrated by the co-localization of the 

antibodies with MC marker MAHRP1. There was no cross-reactivity with native 

EBA-175, as the anti-Pf332-DBL and anti-EBA-175 antibodies gave very distinct 

immunofluorescence pattern. Thus, we conclude that the conservation and distinct 

sequence of the Pf332 DBL-domain (Paper I) and the antigen specificity of generated 

antibodies, make Pf332-DBL an attractive region for future studies on the molecule 

Pf332.  
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4.3 PAPER III 

“Immunizations with Pf332-DBL in combination with adjuvant Montanide ISA 
720 generate significant levels of Pf332 specific antibodies in mice” 
 

The first recombinant subunit vaccine approved for human use was the hepatitis 

B vaccine, which was expressed in yeast cells. Advantages of recombinant subunit 

vaccines are numerous; however, they are often poor immunogens and proper 

adjuvants are therefore essential. The main targets for a malaria blood-stage vaccine 

are invasion ligands and surface expressed antigens, but these often undergo antigenic 

variation or are polymorphic. Increased titers of anti-Pf332 antibodies have been 

associated with fewer clinical malaria attacks in individuals residing in malaria 

endemic regions, as well as a reduced parasite growth in vitro. Based on these previous 

observations, together with the findings from Paper I, we set up to assess the 

immunogenicity of Pf332-DBL in different animals. Additionally, in order to find a 

suitable adjuvant for malaria antigen immunizations, we compared the effect of 

different adjuvants in combination with the Pf332-DBL antigen.  

To get a more complete view of the immunogenicity of Pf332-DBL, we included 

four different animal species; BALB/c mice (Th2-prone), C57BL/6 mice (Th1-prone), 

New Zealand white rabbits and Sprague-Dawley rats. Groups of eight (mice) or four 

(rabbits and rats) were immunized on four consecutive occasions with a His-tagged 

Pf332-DBL recombinant protein expressed in E. coli in combination with the human 

compatible adjuvants Montanide ISA 720 (M-ISA 720), aluminum or levamisol. 

Control groups received the antigen either alone (negative control) or in combination 

with Freund’s adjuvant (positive control). 

 Specific antibodies towards Pf332-DBL were generated in all animal species 

investigated, reaching a maximum after the final immunization. Antibody levels were 

in general of highest magnitude in BALB/c mice. Formulations of Pf332-DBL in 

combinations with Freund’s adjuvant, M-ISA 720 or aluminum generated significantly 

higher antibody levels compared to when the antigen was used alone, and M-ISA 720 

and aluminum generated even significantly higher antibody level than did Freund’s 

adjuvant. Eight weeks after the final immunization, BALB/c mice still had a 

significantly higher IgG level in groups that had received Freund’s adjuvant, M-ISA 

720 or aluminum compared to mice immunized with protein alone. Particularly M-ISA 

720 stood out, since IgG levels were more stable over time. Moreover, M-ISA 720 and 

aluminum induced a Th2-biased immune response, whereas Freund’s adjuvant 

generated a mixed Th2/Th1 response.  

In C57BL/6 mice, Pf332-DBL formulations containing Freund’s adjuvant or M-

ISA 720 generated significantly higher antibody levels compared to when the antigen 

was used alone. Eight weeks following the final immunization, the groups which had 

received Freund’s adjuvant and M-ISA 720 had significantly higher antibody levels 

compared to when the antigen was used alone; however, IgG levels were gradually 

declining after the final immunization. Similar to in BALB/c mice, M-ISA 720 and 

aluminum induced a Th2 response, whereas Freund’s adjuvant generated a mixed 

Th2/Th1 response. 

After the final immunization, rabbits that had received antigen in combination 

with Freund’s adjuvant gave a more prominent antibody response compared to rabbits 

that had received antigen alone; however, this was not significant. In general, rabbits 

generated lower antibody responses towards the Pf332-DBL adjuvant formulations 

than did any of the other animals.  

In rats, IgG levels gradually increased with each immunization; however, IgG 

levels quickly declined after the final immunization. Nevertheless, the rat group that 

had received the antigen/M-ISA 720 formulation had significantly elevated antibody 
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levels compared to the group that had received the antigen alone. In general, rats 

displayed more variation within the group than did any of the other animals. 

Levamisole did not show any obvious adjuvant effect in any of the immunized animals. 

Montanide adjuvants (including M-ISA 720) are formulated as water-in-oil 

emulsions and are similar to incomplete Freund’s adjuvant in physical characteristics, 

but biodegradable. Formulations containing M-ISA 720 have been shown to be safe, 

well tolerated and capable of eliciting high antibody responses in combination with 

several malarial antigens in both human vaccination trials and animal immunization 

studies. In the present study, M-ISA 720 proved to be the best-suited adjuvant of the 

three different types investigated, as it induced a significant antibody response in both 

BALB/c mice and C57BL/6 mice with IgG1 as the prominent isotype produced. 

Moreover, elicited antibodies were antigen specific as determined by their ability to 

recognize native Pf332 from the FCR3S1.2 parasite by Western blot analysis. Thus, our 

findings support the use of Montanides as an adjuvant in additional immunization 

studies of malaria antigens. Importantly, this study illustrates that there may be a 

marked variation in response to the same antigen/adjuvant formulation by different 

animal species, which should be taken into consideration when designing animal 

immunization studies.  
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4.4 PAPER IV 

“Pf332 associates with the cytosolic side of Maurer’s clefts via protein-protein 
interactions and interacts with the host cytoskeleton in mature parasite stages” 
 

The solubility characteristics and subcellular localization are two highly 

informative clues as to what function a certain protein may exert. We therefore set up to 

examine these properties in the context of Pf332, using biochemical, IFA and flow 

cytometry based methods. 

To elucidate if or when Pf332 interacts with the cytoskeleton, we conducted a 

time-course where enriched pRBC were collected and extracted with TX-100 at three 

different time-points. At 26-30 and 32-36 h p.i., Pf332 was mainly found in the TX-100 

soluble fraction as examined by Western blot. In contrast, at 38-42 h p.i. the entire 

Pf332 population was found in the TX-100 insoluble fraction, thus Pf332 appears to be 

interacting with the cytoskeleton only in schizont-stage pRBC. To be able to correlate 

the observed biochemical profile of Pf332 with the subcellular localization of the 

antigen, samples were collected for IFA at each of the above described time-points. 

Pf332 co-localized with the MC marker MAHRP1 at all three time-points, indicating 

that the association with MC is not transient, but permanent. At 26-30 and 32-36 h p.i., 

MCs were located throughout the RBC cytosol, whereas at 38-42 h p.i. (and Pf332 had 

shifted to become TX-100 insoluble), MCs were closely associated with the RBC PM. 

This is in accordance with Pf332 interacting with the cytoskeleton in mature parasite 

stages. The insolubility of Pf332 in TX-100 in mature-stage pRBCs could not be 

explained by a surface-expressed population, as no live schizont-stage pRBC stained 

positively for Pf332 by flow cytometry. These findings led us to conclude that Pf332 is 

closely associated with MCs throughout trophozoite maturation and schizogony, and 

that the interaction of Pf332 with the cytoskeleton increases as the parasite matures. 

The obtained results provide an explanation for the conflicting findings presented by 

Mattei et al. and Glenister et al. regarding TX-100 solubility of Pf332 and highlight the 

importance of assaying parasite-lysates collected from more than one time-point.  

Because Pf332 is expressed in very mature pRBCs and appears to make the host 

cell less rigid, it is tempting to speculate that Pf332 is involved in cytoskeleton 

destabilization upon completion of the IDC, possible as a mechanism to prepare the 

host cell for merozoite egress. By interacting with the cytoskeleton, Pf332 may reduce 

the cytoskeletal affinity to junctional complex components or parasite proteins. 

Alternatively, the massive size of Pf332 may sterically hinder other cytoskeleton-

interacting proteins from binding. Pf332 may also become the target of specific 

proteases activated at schizont-stage, whose actions ultimately lead to pRBC rupture. 

The Western blot observation of an increasing number of smaller sized Pf332 

polypeptides as the parasite matures, supports this view. Furthermore, when using the 

PEST finder program, which identifies proline (P), glutamic acid (E), serine (S) and 

threonine (T) rich regions present in proteins targeted for proteolysis (Rogers et al., 

1986), 17 predicted PEST-domains were identified throughout the Pf332 molecule. 

Due to the cysteine-rich nature of the DBL-domain and the proposed TM region 

(Paper I), we hypothesized that Pf332 is a membrane spanning protein with the N-

terminal DBL-domain located in the lumen of MC and the C-terminal repeat region 

facing the RBC cytosol. Intriguingly, Pf332 was completely extractable by urea and 

alkaline sodium carbonate, which is indicative of a peripheral membrane association, 

but speaks against an integral membrane association. This was further verified when 

using a biochemical approach based on the accessibility of the protein to trypsin 

digestion after selectively permeabilizing membranes of enriched trophozoite/schizont-

stage pRBC using the detergents saponin and/or EqtII. If the DBL-domain was located 

in the lumen of MCs, it would be protected from digestion by trypsin in EqtII-
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permeabilized cells, whereas the C-terminus would be accessible, resulting in a 

truncated protein. However, by Western blot it was evident that the Pf332-DBL signal 

was lost completely, demonstrating that the entire antigen must be present in the host 

cell cytosol. Hence, Pf332 appears to be a peripheral membrane protein of MCs 

attaching via protein-protein interactions (Figure 7). On the basis of the above 

mentioned findings, the predicted TM of Pf332 does not appear to be a membrane 

spanning region, but rather a hydrophobic stretch/recessed SP, possibly involved in 

protein trafficking and/or MC association, although this needs to be experimentally 

confirmed. 

A peripheral membrane location of Pf332 implies that the antigen is synthesized 

and trafficked in a water-soluble state. However, in the presence of BFA, Pf332 resisted 

extraction by a hypotonic solution, but was readily solubilized by alkaline sodium 

carbonate. This led us to conclude that Pf332 was rather trafficked as a peripheral 

membrane protein, possibly interacting in a multimeric protein-complex. Given the 

extremely large size of Pf332, it seems reasonable to assume that correct trafficking of 

this massive antigen requires additional help from chaperones. Indeed, Pf332 was 

recently proposed to interact with two putative co-chaperones in a yeast two-hybrid 

screen (Pavithra et al., 2007). Comparable protein solubility results have been observed 

also for PfEMP1 (Papakrivos et al., 2005), implying that Pf332 and PfEMP1 may be 

synthesized and trafficked in a similar manner, possibly involving chaperones. 

The present study establishes Pf332 as an intracellular antigen, resident at MCs. 

The cytoskeleton interacting property of Pf332 only near completion of the IDC may 

have important implications in host cell remodeling exerted by the P. falciparum 

parasite. 

 

 
 

Figure 7. Proposed model of the subcellular localization of Pf332 in P. falciparum pRBC. Pf332 

(dotty) is located on the cytosolic side of MC and interacts with the cytoskeleton in very mature parasite 

stages.  
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4.5 PAPER V 

“Duplicated var2csa genes are simultaneously transcribed in individual 
parasites” 
 

Gene duplications are frequent in P. falciparum parasites. Previous findings of 

copy number polymorphisms (CNPs) in genes related to drug resistance and parasite 

invasion, suggest that parasites employ gene duplications as a strategy to enhance their 

survival, thus gene duplications may play an important role in malaria pathogenesis. 

Single nucleotide polymorphisms (SNPs) are often introduced into the duplicated gene, 

either during the duplication event or through subsequent mutations. These 

modifications can lead to the formation of either pseudogenes or functional genes, and 

in case of the latter the gene product may retain its original function or display an 

altered function (loss of function, gain of function or dominant-negative effect). Hence, 

one cannot assume that there is a linear correlation between gene transcription and gene 

dosage or biological function. The Pf332 and var2csa genes have been found 

duplicated in the genome of the HB3 parasite; however, it is currently unknown 

whether both gene copies are transcriptionally active or not.  

In an attempt to study transcriptional activity of duplicated genes, we developed 

an allele discriminative real-time PCR assay based on slight sequence variations in the 

duplicated Pf332 and var2csa genes in HB3. Laboratory parasite strains FCR3, 3D7 

and Dd2 were used as negative controls for the assay, as they contain singly copy genes 

of both var2csa and Pf332. To be able to discriminate between the duplicated var2csa 

genes in HB3, we designed allele-specific primers towards conserved regions and FAM 

and VIC labeled TaqMan MGB probes towards variable regions, resulting in two 

assays (towards DBL2x and DBL4 ). A third assay was similarly designed to identify 

different Pf332 variants in NF54 and HB3, and the discriminative probes were designed 

towards a nonsynonomous SNP (S326P) present in exon I. Using the allelic 

discriminating assay, we first analyzed the presence of the sequence-variable alleles in 

gDNA from the different laboratory strains, resulting in the amplification of both alleles 

in HB3 and the single alleles in FCR3, NF54 and Dd2 parasites. var2csa transcripts 

were subsequently analyzed in HB3, FCR3 and NF54 both before and after CSA-

selection, and both var2csa alleles were actively transcribed in HB3. Transcripts of 

both the wild-type and the mutant Pf332 genes were similarly present and actively 

transcribed in HB3. Taken together, the allelic-discrimination assay proved to be 

specific, efficient and straightforward. This approach can be extended to study other 

issues related to genetic polymorphisms, thus providing a useful tool for further 

investigations regarding the impact of gene duplications on P. falciparum biology. 

The transcription of var genes at trophozoite-stage is presumed to be mutually 

exclusive, with a single expressed var gene at a time. Thus the finding of 

simultaneously transcribed var2csa genes on a population level was of particular 

interest. However, this did not provide information about whether both genes copies are 

expressed in single cells. In an effort to elucidate transcriptional activity in individual 

cells, single HB3CSA parasites were collected by micromanipulation and analyzed in a 

nested PCR/real-time PCR approach. Interestingly and somewhat surprisingly, both 

alleles of var2csa were transcribed in individual parasites collected at 24±4 h p.i.. 

These results were confirmed by RNA-FISH using probes designed towards one of the 

most sequence-variable regions of the var2csa paralogs in order to discriminate 

between them. This also enabled us to use NF54CSA and FCR3CSA as controls for 

one of the var2csa sequences. Indeed, most HB3CSA parasites displayed a high 

abundance of var2csa transcripts from both paralogs, whereas the control parasites 

displayed only transcripts from their single allele types. The RNA-FISH further 
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revealed exclusive nuclear co-localization of the two transcripts, despite being located 

on different chromosomes. Also the active genes were found to co-localize in the 

majority of cells by DNA-FISH. The co-localization of var2csa genes and the 

corresponding transcripts supports a previously suggested specific site for var gene 

expression that can accommodate more than one active var gene at a time. Whether 

both transcripts are translated into protein that will be surface expressed remains to be 

elucidated; however, both alleles were detected using only oligo(dT) primers in the 

reverse transcription, suggesting that the transcripts were destined for translation.  

The simultaneously transcribed var2csa genes challenge the dogma of mutually 

exclusive expression of var genes, at least in respect to the duplicated var2csa genes. In 

should be noted that this may represent a special case since the sequence similarity 

among different var2csa variants is high compared to that of other var genes. 

Interestingly, whereas one of the var2csa genes is found on chromosome 12, the other 

copy is found on chromosome 1, which could suggest the presence of var2csa specific 

transcription factors with preserved DNA-binding regions in the duplicated gene 

copies. Indeed, the upstream regions of the var2csa paralogs are highly similar. Further 

studies on potential var2csa specific transcription factors will be of great interest in this 

context. 

These findings were supported by a recent study in where Joergensen and 

colleagues reported simultaneously transcribed var genes in a single cell using limiting 

dilution real-time PCR and RNA-FISH (Joergensen et al., 2010). Interestingly, by using 

confocal immunofluorescence microscopy they could detect two different PfEMP1 

molecules simultaneously expressed on a single cell, illustrating that not only can two 

var genes be simultaneously transcribed, these can also be translated into protein and 

become surface expressed. Whether this is an artifact of in vitro adapted parasite lines, 

or a reflection of the selection process employed by Joergensen et al. remains elusive. It 

would be of great interest to see if also clinical parasite isolates can express more than a 

single var gene at a time, also with regard to var2csa. 
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5 CONCLUDING REMARKS AND FUTURE ASPECTS 
 

Based on the papers included in this thesis, the following conclusion can be drawn and 

future aspects proposed: 

 

I. The gene encoding Pf332 consists of two exons, where exon I encodes a Duffy 

binding-like (DBL)-domain homologous to the Erythrocyte binding-like (EBL) 

family of invasion proteins. Pf332 lacks a canonical SP and a classical PEXEL 

motif. Although the DBL-domain appears capable of binding RBCs in vitro, the 

function of the domain still remains elusive. Hence, additional studies are 

needed in order to get a more complete picture of what role the Pf332 DBL-

domain plays in P. falciparum biology. 

 

 

II. Antibodies towards the DBL-domain of Pf332 are readily acquired in 

individuals residing in malaria endemic areas and do not cross-react with the 

DBL-domains of the EBL-family of invasion proteins. Previous studies of 

Pf332 have been hampered by the cross-reactive nature of the antigen. Thus, the 

conserved DBL-domain of Pf332 is an attractive marker to use in future studies 

of the antigen, and we expect this to facilitate more antigen-specific 

investigations of the molecule. It would be interesting to see whether the DBL-

domain of Pf332 can form the characteristic EBL-DBLs disulphide bridges, 

since the endogenous antigen appear to be present in a reducing cytosolic 

environment (Paper IV). The structural and sequence similarities of Pf332-DBL 

and the EBL-DBLs is from an evolutionary perspective of significant interest. 

 

 

III. The Pf332 DBL-domain is immunogenic in combination with different 

adjuvants currently used in human vaccination studies. Of the different 

adjuvants evaluated, Montanide ISA 720 appears to be the best suited adjuvant 

for immunization studies using recombinant proteins. Importantly, there may be 

a marked variation in response to the same antigen/adjuvant formulation by 

different animal species, which should be taken into consideration when 

designing animal immunization studies.  

 

 

IV. Pf332 is a host cytoskeleton interacting protein that is synthesized as a 

peripheral membrane protein and associates with the cytosolic side of MCs via 

protein-protein interactions throughout trophozoite maturation and schizogony. 

The antigen is not exposed on the host cell surface. Taken together, this implies 

that the TM is not a membrane spanning region. Instead, this region may 

represent a recessed SP and/or an MC attachment domain. It would be 

interesting to investigate if GFP-Pf332 chimeras containing the 

TM/hydrophobic stretch alone or in combination with the DBL-domain are 

exported and correctly targeted to the MC. This would provide some much-

needed additional insight into the trafficking mechanism employed by PEXEL-

negative exported proteins. The interaction of Pf332 with the submembrane 

cytoskeleton only in mature-stage pRBC implies that the protein participates in 

host cell modifications at completion of the IDC, possibly to destabilize the 

submembrane skeleton and the RBC PM. It would be of great interest to 
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investigate the molecular nature and importance of such an interaction in P. 

falciparum biology. 

 

 

V. Real time allelic discrimination and discriminative RNA-FISH can be used to 

distinguish between highly similar gene copies in P. falciparum, including 

Pf332 and var2csa. The assay provides a robust and straightforward tool to 

study the impact of gene duplications on the biology of P. falciparum and this 

versatile approach can be extended to study other issues related to 

polymorphisms and gene regulation. In this context, it is of interest to study 

regulation of var genes, which play a pivotal role in host cell remodeling and 

malaria pathogenesis. 

 

 

Protein export and host cell remodeling is central to the malaria pathogenesis. 

Although much information has been gained during the past decades, there are 

currently many aspects that remain obscure. Pf332, the largest exported antigen in 

malaria, is certainly of interest in this context due to its characteristic protein 

structure, immunogenicity, and host cell remodeling properties. Taken together, 

the papers presented in this thesis has opened up for more detailed analyses of 

Pf332. Future studies of this massive antigen are expected to provide important 

information regarding evolution of DBL-domains in Plasmodia, protein 

trafficking pathways of PEXEL-negative exported proteins, and molecular 

processes that underlie parasite-induced host cell modifications. Ultimately, this 

may lead to an improved understanding of malaria pathogenesis, and perhaps, 

suggest new approaches how to combat the disease. 
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