THE ROLE OF STEROID HORMONES IN SKELETAL MUSCLE METABOLISM

AKADEMISK AVHANDLING
som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i Farmakologens föreläsningssal, Nanna Svartz väg 2 på engelska språket

Tisdagen den 14 juni 2011, kl. 9:00

av

Firoozeh Salehzadeh

Huvudhandledare:
Med Dr Lubna Al Khalili
Karolinska Institutet
Institutionen för molekylär medicin och kirurgi

Bihandledare:
Professor Anna Krook
Karolinska Institutet
Institutionen för fysiologi och farmakologi

Professor Juleen Zierath
Karolinska Institutet
Institutionen för molekylär medicin och kirurgi

Fakultetsopponent:
Professor Tommy Olsson
Umeå Universitet
Institutionen för folkhälsa och klinisk medicin

Betygsämnd:
Docent Lena Sahlin
Karolinska Institutet
Institutionen för kvinnors och barns hälsa

Docent Olav Rooyackers
Karolinska Institutet
Institutionen för klinisk vetenskap, intervention och teknik

Professor Agneta Holmäng
Göteborg Universitet
Institutionen för neurovetenskap och fysiologi

Stockholm 2011
ABSTRACT

Steroid hormones play important roles in the regulation of whole body metabolism. Skeletal muscle is an insulin-responsive organ with a key role in overall substrate metabolism. Disturbances in skeletal muscle metabolism, as a result of hormonal imbalance may be an underlying defect in metabolic disease. Reduced insulin-responsive glucose disposal in skeletal muscle is a characteristic feature of metabolic syndrome. The overall aim of this thesis work is to identify the role of steroid hormones on glucose and lipid metabolism; and to dissect the impact of sex steroid hormones on insulin signaling pathways in human skeletal muscle. A further goal is to understand how sex differences impact on skeletal muscle metabolism.

Whole body metabolism differs between men and women, and sex-dependent differences in gene expression are evident in skeletal muscle biopsies. Some sex-dependent differences in gene expression are retained in vitro in cultured human skeletal muscle. In contrast, glucose and lipid metabolism did not show any sex-dependent differences. Chronic exposure of muscle cell cultures to physiological doses of testosterone or 17 β-estradiol resulted in sex-dependent responses. Exposure to testosterone enhanced palmitate oxidation, AMP dependent protein kinase phosphorylation and IRS2 gene expression in myotubes from both sexes, while 17 β-estradiol exposure increased palmitate oxidation in myotubes from male donors only and PDK4 gene expression from female donors only. Testosterone or 17 β-estradiol treatment enhanced insulin-stimulated glucose incorporation into glycogen and AKT phosphorylation only in myotubes from female donors. Acute supra-physiological doses of testosterone or 17 β-estradiol reduced glucose metabolism, independent of sex origin of the cells. Moreover, acute testosterone treatment increased basal palmitate oxidation and disrupted the insulin-suppressive effect on palmitate oxidation.

Increased glucocorticoid action leads to reduced whole body insulin action and may predispose to type 2 diabetes. Local conversion of cortisone to active cortisol by the enzyme 11β-hydroxysteroid dehydrogenase in target tissues may regulate tissue-specific roles of glucocorticoids in patho-physiological states. Chronic high dose exposure to cortisol or cortisone reduced glucose metabolism, and enhanced palmitate oxidation, via induction of PDK4 expression in myotubes. siRNA-mediated reduction or pharmacological inhibition of HSD1 prevented the effects of cortisone, but not cortisol, on metabolic responses.

In conclusion, steroid hormones exert diverse effects in a dose and time dependent manner. Modulation of steroid hormone actions at specific regulatory steps may provide potential therapeutic entry points for metabolic disease and Type 2 diabetes. Moreover, attention should be focused on understanding sex-dependent differences in metabolic disease, and sex-origin of cells is important to consider when assessing hormonal responses in culture.