THE ROLE OF MULTIFUNCTIONAL SCAFFOLDING PROTEINS IN THE SYNAPTIC VESICLE CYCLE

Wei Jiao

Stockholm 2011
Cover Drosophila neuromuscular junctions stained with antibody against Fasciclin II (Fas II) and the presynaptic dense projection reconstructed in 3D using electron tomography.

All previously published papers were reproduced with permission from the publishers.

Published by karolinska Institutet and printed by Larserics, Sundbyberg

© Wei Jiao, 2011
ISBN 978-91-7457-396-1
青春的美丽与珍贵，就在于它的无邪与无瑕，在于它的可遇而不可求，在于它的永不重回。

——席慕容
Fast synaptic transmission occurs at specialized junctions between neurons referred to as chemical synapses. Action potentials induce an influx of calcium ions into presynaptic terminals, which contain neurotransmitter-filled synaptic vesicles (SVs), triggering fusion of the vesicles with the plasma membrane and resulting in the release of neurotransmitters. After fusion SVs have to be recycled and refilled to maintain neurotransmission for a certain period of time.

Clathrin-mediated endocytosis serves as a major mechanism for synaptic vesicle recycling. It occurs at the periactive zone and relies on a set of proteins such as clathrin and clathrin adaptors, which are essential for clathrin coat assembly, and the GTPase dynamin, which is required for budding of the newly formed vesicles from the plasma membrane. Multiple accessory and scaffolding proteins coordinate the assembly of the clathrin vesicles. In this thesis, the functional role of the scaffolding proteins Dap160 and Eps15 in the synaptic vesicle cycle was investigated. The genetically tractable Drosophila neuromuscular junction (NMJ) was used as an experimental model.

Several new methodological approaches, such as high pressure freezing, freeze substitution, and a correlative immunogold technique were developed or adapted in this work to study the Drosophila synapse. These approaches allowed for the characterization of the structure of the synapse and the organization of vesicles, and for the first time provided 3-dimensional reconstruction of the presynaptic specialization. The subcellular localization of Dap160 and Eps15 was determined. Biochemical experiments revealed that they form a molecular complex. Structural and functional analysis of Drosophila dap160 and eps15 mutants showed that these proteins have a dynamic localization in the nerve terminal: both molecules reside in distal pool of SVs at rest and relocate to the periactive zone during synaptic activity. dap160 and eps15 single and double mutants display defects in synaptic vesicle recycling. Physiological experiments show that both proteins are required to maintain synaptic transmission at high activity rates. Genetic disruption of the interaction between the Dap160-Eps15 complex and the GTPase dynamin results in abnormal distribution of dynamin immunoreactivity at the periactive zone during stimulation. We conclude that the Dap160-Eps15 molecular complex is essential to concentrate dynamin at the periactive zone during synaptic activity.
LIST OF PUBLICATIONS

This thesis is based on the following papers, which are referred to in the text according to their Roman numerals:

TABLE OF CONTENTS

1 INTRODUCTION
1.1 The synaptic active zone 1
1.2 Synaptic vesicle pools 1
1.3 Synaptic vesicle recycling 2
1.31 Clathrin-mediated endocytosis 3
1.32 Clathrin and clathrin adaptors 3
1.33 Dynamin and scaffolding proteins 4
1.4 Model system-Drosophila neuromuscular junction 5

2 AIMS

3 METHODS
3.1 Generation of transgenic flies 8
3.2 Dissection procedures 9
3.3 Immunohistochemistry 9
3.4 Pre-embedding immunocytochemistry 10
3.5 TEM and 3D reconstruction of TEM images 10
3.6 High pressure freezing and freeze substitution 10
3.7 Electron tomography 11
3.8 Biochemistry 11
3.9 Electrophysiology 11
3.10 Behavioural tests 12

4 ULTRASTRUCTURAL ORGANIZATION OF THE ACTIVE ZONE IN THE DROSOPHILA NEUROMUSCULAR JUNCTION 13

5 RECRUITMENT OF SCAFFOLDING PROTEINS DAP160 AND EPS15 FROM THE SV CLUSTER TO THE PERIACTIVE ZONE DURING SYNAPTIC ACTIVITY 17

6 DAP160 AND EPS15 FORM A MOLECULAR COMPLEX AND ARE ESSENTIAL IN THE MAINTENANCE OF SYNAPTIC TRANSMISSION 19

7 ROLE OF THE DAP160-EPS15 MOLECULAR COMPLEX IN DYNAMIN TARGETING 21

8 THE MODEL FOR DYNAMIN TARGETING 25

9 CONCLUSIONS 26

ACKNOWLEDGEMENTS 27
REFERENCES 29
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP2</td>
<td>Adaptor protein 2</td>
</tr>
<tr>
<td>AP-180</td>
<td>Adaptor protein 180kDa</td>
</tr>
<tr>
<td>AZ</td>
<td>Active zone</td>
</tr>
<tr>
<td>BAR</td>
<td>BIN-amphiphysin-RVS</td>
</tr>
<tr>
<td>BRP</td>
<td>Bruchpilot</td>
</tr>
<tr>
<td>CAZ</td>
<td>Cytomatrix of the active zone</td>
</tr>
<tr>
<td>CME</td>
<td>Clathrin-mediated endocytosis</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CSP</td>
<td>Cystein string protein</td>
</tr>
<tr>
<td>Dap160</td>
<td>Dynamin-associated protein 160kD</td>
</tr>
<tr>
<td>EH</td>
<td>Eps15 homology</td>
</tr>
<tr>
<td>EJP</td>
<td>Excitatory junctional potential</td>
</tr>
<tr>
<td>Eps15</td>
<td>Epidermal growth factor receptor pathway substrate clone 15</td>
</tr>
<tr>
<td>Fas II</td>
<td>Fasciclin II</td>
</tr>
<tr>
<td>FM1-43</td>
<td>N-(3-triethylammoniumpropyl)-4-(4-[(dibutylamino)styryl]pyridinium dibromide</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-Aminobutyric acid</td>
</tr>
<tr>
<td>GED</td>
<td>GTPase effector domain</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-S-transferase</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine-5’-triphosphate</td>
</tr>
<tr>
<td>HPF</td>
<td>High pressure freezing</td>
</tr>
<tr>
<td>LM</td>
<td>Light microscopy</td>
</tr>
<tr>
<td>NMJ</td>
<td>Neuromuscular junction</td>
</tr>
<tr>
<td>NT</td>
<td>Neurotransmitter</td>
</tr>
<tr>
<td>PDP</td>
<td>Presynaptic dense projection</td>
</tr>
<tr>
<td>PRD</td>
<td>Proline-rich domain</td>
</tr>
<tr>
<td>PSD</td>
<td>Postsynaptic density</td>
</tr>
<tr>
<td>RP</td>
<td>Reserve pool</td>
</tr>
<tr>
<td>RRP</td>
<td>Readily releasable pool</td>
</tr>
<tr>
<td>SH3</td>
<td>Scr homology 3</td>
</tr>
<tr>
<td>STED</td>
<td>Stimulated emission depletion</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>SV</td>
<td>Synaptic vesicle</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>3D</td>
<td>3-dimensional</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Synapses are specialized sites for signal transduction between neurons and their targeted cells. They consist of presynaptic nerve terminals and postsynaptic compartments, separated by an extracellular space: the synaptic cleft. Fast neurotransmitters (NTs), such as glutamate, GABA, or glycine are stored in synaptic vesicles (SVs), which accumulate in presynaptic terminals in clusters. These vesicles are released into the synaptic cleft during synaptic activity, and the neurotransmitter receptors on the postsynaptic membrane become activated. Upon arrival of action potentials to the nerve terminal, Ca\(^{2+}\) ions enter through voltage-gated Ca\(^{2+}\) channels on the presynaptic membrane and trigger exocytosis. SVs dock and fuse, release NTs, and are rapidly recycled through endocytosis (Betz and Angleson 1998). The release is restricted to a specialized area of presynaptic membrane, called the active zone (AZ) (Couteaux and Pecot-Dechavassine 1970). The AZ is precisely aligned with the postsynaptic neurotransmitter reception apparatus, which referred to as the postsynaptic density (PSD) (Landis, Hall et al. 1988).

1.1 The synaptic active zone

Electron microscopy identifies the AZ as an electron dense structure, consisting of an electron dense membrane and an associated cytomatrix, often recognized as projections extending into the cytoplasm (Zhai and Bellen 2004). In different synapses, the projections may appear as different shapes. In the mammalian central nervous system (CNS), the cytomatrix of the active zone (CAZ) was shown as a web-like pattern, consisting of 50 nm pyramid shaped particles and interconnected by thin fibrils (Bloom and Aghajanian 1968; Landis, Hall et al. 1988; Phillips, Huang et al. 2001). However, a different structure has been revealed in the frog neuromuscular junction (NMJ) (Harlow, Ress et al. 2001). There, the CAZ is organized in an array-like structure. SVs are connected with ‘ribs,’ extending from the ‘beams,’ which run along the midline of the presynaptic ridge. ‘Pegs’ represent putative Ca\(^{2+}\) channels and connect directly to the ‘ribs.’ Functionally, the projections are thought to tether SVs and guide them to the presynaptic membrane (Brodin, Low et al. 1997; Muresan, Lyass et al. 1999; Harlow, Ress et al. 2001).

1.2 Synaptic Vesicle pools
In chemical synapses, all SVs look morphologically alike under the electron microscope, although some are closely apposed to the active zone, and others are further away. In 1961, Briks and MacIntosh, who investigated cat sympathetic ganglia, first suggested the existence of two distinct presynaptic vesicle pools: a ‘readily releasable’ fraction, which is depleted during low frequency stimulation, and a ‘non-readily releasable’ fraction. In the following years, a number of techniques including FM dye application, total internal reflection fluorescence microscopy, flash photolysis, and electrophysiological recordings, have been employed to determine functional properties of SV pools (Cochilla, Angleson et al. 1999; Schneggenburger, Meyer et al. 1999; von Gersdorff and Matthews 1999; Steyer and Almers 2001). These studies have confirmed the existence of the two SV pools in the Drosophila NMJ: the exo/endo cycling pool, which responds to mild stimulation (10Hz) or high K\(^+\), and the reserve pool (RP), which cycles only under intense stimulation (30Hz) (Kuromi and Kidokoro 2003). Research done in frog NMJs has led to a similar conclusion (Rizzoli, Richards et al. 2003). Recently a further distinction was made and a SV pool that releases more slowly than the readily releasable pool (RRP) but prior to the RP was identified (Rizzoli and Betz 2005). As a result, the concept of three SV pool has emerged. These three pools include: 1) the RRP, consisting of a few vesicles (~1%) docked and primed for release, 2) the recycling pool, containing about 5-20% of all vesicles and maintaining release during moderate stimulation, and 3) the RP, which includes the majority of vesicles (~80-90%) and becomes activated only upon intense stimulation.

1.3 Synaptic vesicle recycling

SVs fuse with the presynaptic membrane during neurotransmitter release. In order to sustain synaptic transmission, the incorporated membrane needs to be retrieved rapidly to replenish the vesicle pools and restore the functionality of the presynapse. Several different mechanisms of membrane retrieval have been proposed: clathrin-mediated endocytosis (CME), kiss-and-run, and bulk endocytosis (Royle and Lagnado 2003). Among these processes, CME is the best characterized. It was first described by Heuser and Reese in the frog NMJ in 1973 (Heuser and Reese 1973). They proposed that SVs are retrieved from the presynaptic membrane as clathrin-coated pits, which become uncoated and fuse with an additional cellular recycling compartment, the endosome. An additional budding event leads to formation of a new SV. This set of events occurs in a minute scale at the lateral area of the active zone, which is referred to as the periactive zone (Heuser and Reese 1973; Sudhof 1995; Richards, Guatimosim et al. 2000).
alternative hypothesis has been proposed by Ceccarelli and coworkers (Ceccarelli, Hurlbut et al. 1973). According to their model, SVs release neurotransmitters through an open fusion pore that closes before fully collapsing into the presynaptic membrane. This process is presumably fast and has time constant ranging from a few hundred milliseconds to several seconds (Klingauf, Kavalali et al. 1998; Pyle, Kavalali et al. 2000; Sara, Mozhayeva et al. 2002). Existence of this recycling pathway in synapses is still a matter of debate. Bulk endocytosis may also occur in synapses. Contrary to CME, this involves budding of large membrane invaginations or cisternae. It is believed that newly formed SVs pinch from these endosomal structures. The recycling of SVs through this pathway is presumably a slow process (Richards, Guatimosim et al. 2000).

1.31 Clathrin-mediated endocytosis
CME occurs both in neuronal and non-neuronal cells. It is important for many cell functions, including the uptake of nutrients, the internalization of receptors from the plasma membrane, as a defence against microorganisms, or synaptic vesicle recycling in nerve terminals (Slepnev and De Camilli 2000). Clathrin-mediated endocytosis is highly regulated and can be separated into several morphologically distinct steps: docking of clathrin molecules to the plasma membrane, invagination, formation of a deeply invaginated pit with a neck, fission, release of a free clathrin-coated vesicle and uncoating. These steps require coordination of a number of proteins that sort the cargo, assemble clathrin, bend the presynaptic membrane, and constrict and cleave the invaginated pit (Robinson 1994; Schmid 1997; Slepnev and De Camilli 2000).

1.32 Clathrin and clathrin adaptors
Clathrin is the key building block of the clathrin coat. It consists of a heavy chain and a light chain, and three of each can form the triskelion, which can be assembled into polyhedral lattices or cages (Smith and Pearse 1999). The recruitment of clathrin requires the adaptor protein, AP2, which links chathrin to the presynaptic membrane (Hirst and Robinson 1998). AP2 is a heterotetrameric complex composed of four subunits: α, β2, µ2 and σ2 adaptin. The C terminals of α and β2 adaptin form two ear domains, and bind various accessory proteins, which coordinate endocytosis (Traub, Downs et al. 1999). AP2 also interacts with the integral membrane protein synaptotagmin and membrane lipids, and such interactions are required for recruiting AP2 to the fused SV membrane (Zhang, Davletov et al. 1994; Gaidarov and Keen...
1999). AP-180 binds to both clathrin and AP2, and is proposed to regulate the size of newly formed vesicles (Ye and Lafer 1995; Hao, Luo et al. 1999).

1.33 Dynamin and scaffolding proteins

Fission of clathrin-coated pits releases vesicles from the membrane into the terminal, and dynamin has been shown to play a key role at this step (Schmid, McNiven et al. 1998; McNiven, Cao et al. 2000). The GTPase dynamin, together with BIN-amphiphysin-RVS (BAR)-domain proteins and possibly actin, form a helical structure around the neck of the invaginated pit. It hydrolyzes GTP and then undergoes a conformational change leading to fission of constricted coated pits from the presynaptic membrane (Hinshaw and Schmid 1995; Takei, McPherson et al. 1995; Sweitzer and Hinshaw 1998; Sundborger, Soderblom et al. 2011). Apart from the N-terminal GTPase domain, which binds and hydrolyzes GTP (Sweitzer and Hinshaw 1998), dynamin contains several other domains: the middle domain together with the GTPase effector domain (GED) forms a mechanochemical core and mediates self-assembly of dynamin (Okamoto, Tripet et al. 1999; Smirnova, Shurland et al. 1999; Mears, Ray et al. 2007); the PH domain interacts directly with the membrane bilayer (Salim, Bottomley et al. 1996); and the C-terminal proline-rich domain (PRD) binds to the Scr homology 3 (SH3) domain of various accessory/scaffolding proteins including amphiphysin, endophilin, and intersectin (Wigge, Vallis et al. 1997; Simpson, Hussain et al. 1999). Amphiphysin and endophilin both contain BAR domains, which dimerize into banana-shaped modules and mediate membrane bending (Peter, Kent et al. 2004; Masuda, Takeda et al. 2006). Amphiphysin is proposed to target dynamin to coated pits through the SH3 domain (Shupliakov, Low et al. 1997) in vertebrate synapses. It also binds clathrin heavy chain and α-adaptin through its central region, promoting clathrin polymerization (Farsad, Slepnev et al. 2003; Miele, Watson et al. 2004). Endophilin is believed to regulate membrane curvature at the early steps of vesicle budding (Schmidt, Wolde et al. 1999; Sundborger, Soderblom et al. 2011). A recent study has shown that endophilin localizes to the rim of the clathrin coat and a restricted part of the neck of the pits, and aids in recruiting dynamin into a tight complex, thus promoting fission (Sundborger, Soderblom et al. 2011). Intersectin (Dap160 in Drosophila) is a large multidomain protein, which is composed of two Eps15 homology (EH) domains, a central coiled-coil domain, and five SH3 domains (four in Drosophila), through which it interacts with several endocytic proteins, including dynamin, Eps15, epsin, and Stoned B (Roos and Kelly 1998; Yamabhai, Hoffman et al. 1998; Martina,
Studies performed in *Drosophila* mutants proposed that intersectin/Dap160 might function as a molecular scaffold for the endocytic machinery at the periactive zone (Roos and Kelly 1998; Koh, Verstreken et al. 2004). A model has been proposed, which suggested that intersectin/Dap160 is required for positioning and coordination of dynamin and for the actin matrix formation at the endocytic zone (Roos and Kelly, 1998; Broadie 2004). Another endocytic scaffold, epidermal growth factor receptor substrate 15 (Eps15), has also been shown to bind multiple endocytic proteins, such as intersectin/Dap160, AP2 and Stoned B (Benmerah, Gagnon et al. 1995; Marie, Sweeney et al. 2004; Majumdar, Ramagiri et al. 2006). Mutant studies in *Drosophila* and mammalian cells indicate its role in neurotransmission and CME (Benmerah, Bayrou et al. 1999; Majumdar, Ramagiri et al. 2006).

1.4 Model system—Drosophila neuromuscular junction

The *Drosophila* NMJ serves as one of the key model systems utilized to study synaptic transmission, and mostly the larval NMJ is used. Body wall muscles in *Drosophila* larvae can be easily identified. The majority of the muscle cells lining the body wall are innervated by type-I motoneuron nerve terminals, which can be subdivided into type-Ib (big) and type-Ia (small) terminals (Johansen, Halpern et al. 1989; Gramates and Budnik 1999). Type-I terminals are glutamatergic, embedded in the muscle and surrounded by muscle membrane. These membranes, also referred to as the subsynaptic reticulum, are extensively folded. This organization is suggested to be favourable for glutamate diffusion (Johansen, Halpern et al. 1989; Atwood, Govind et al. 1993). In addition, another type of nerve endings containing proctolin or octopamine modulates the glutamatergic response (Anderson, Halpern et al. 1988; Monastirioti, Gorczyca et al. 1995). A variety of experiments, such as electrophysiology, FM dye uptake, and behaviour assays can be easily performed in *Drosophila* NMJs (Zhang 2003).

The most attractive and powerful feature of the *Drosophila* NMJ as a biological model system is the possibility for broad genetic manipulations. Techniques for deleting, mutating, or overexpressing genes of interest are available. The UAS-GAL4 system makes it possible to conditionally express a transgene or a modified transgene in specific tissues (Brand and Perrimon 1993; Parks, Cook et al. 2004). A variety of mutant flies with defects in synaptic function are currently available, including the *shibire* mutant, in which dynamin is not able to hydrolyze GTP at non-permissive temperatures, resulting in block of SV recycling (Ikeda, Ozawa et al. 1976; Koenig and Ikeda 1989; van der Biek and Meyerowitz 1991; Ramaswami, Krishnan et al. 1994;
Grant, Unadkat et al. 1998); the α-adaptin mutant d-ada, which is deficient of the α-
subunit of AP2 and completely devoid of SVs (Gonzalez-Gaitan and Jackle 1997); and
the endophilin mutant endo, in which a severe loss of SVs is observed, which is
correlated with depletion of excitatory junctional potentials (EJPs) during repetitive
stimulation (Guichet, Wucherpennig et al. 2002; Verstreken, Kjaerulff et al. 2002).
2 AIMS

The major goal of this thesis is to elucidate the functional role of the scaffolding proteins Dap160 and Eps15 in the synaptic vesicle cycle in *Drosophila* NMJs.

Specific goals:

- To develop approaches to localize synaptic proteins at subcellular resolution in *Drosophila* NMJs.
- To investigate the subcellular organization of *Drosophila* NMJs and determine the ultrastructural localization of the scaffolding proteins Dap160 and Eps15 at the synapse.
- To explore possible interactions between Dap160 and Eps15, and determine the role of these proteins in sustaining neurotransmitter release at NMJs.
- To elucidate the role of the scaffolding proteins Dap160 and Eps15 in dynamin targeting to the sites of endocytosis during synaptic vesicle recycling.
3 METHODS

3.1 Generation of transgenic flies

Drosophila melanogaster is a useful and attractive model organism for genetic studies, because it has a short life cycle and because it can be genetically manipulated much more easily than other organisms (Venken and Bellen 2005). The following strains were used in our experiments: *w*¹¹¹⁸ control line (referred to as wt), *shibire*[^1] (shi[^1]), a temperature sensitive dynamin mutant, and *dap160* null mutant, *dap160*[^1]/Df(2L)bur-K1 (obtained from the cross: w; *dap160*[^1]/CyO,KrGFP x w; Df(2L)bur-K1/CyO,KrGFP, as described earlier (Koh, Verstreken et al. 2004)).

In order to determine the function of Eps15, *eps15* null mutants were generated (Paper I). Transposable element insertion line EP2513(Rorth 1996) was used for P element excisions (Paper I, Figure 1B) and an imprecise deletion allele *eps15*[^75] was achieved by crossing it with *CyO, H*[^wmc]=PΔ2-3]HoP2.1/Bc′Egfr[^E] (Gerlitz, Nellen et al. 2002). For FRT-mediated site-specific deletion, *P{XP=FRT}d00445* and *PBac{WH=FRT}f02085* were used and two FRT-bearing transposon insertions were placed in *trans* in the presence of heat shock-driven FLP recombinase (*hs-FLP*) (Paper I, Figure 1B). Allele *eps[^A29]* was then achieved (Parks, Cook et al. 2004). *eps15*[^75]/*eps15[^A29]*, *eps15[^A29]/eps15[^A29]*, *eps15*[^75]/ Df(2R)Dll-MP, and *eps15[^A29]/Df(2R)Dll-MP* were tested and double mutants *dap160[^1]* *eps15*[^75]/Df(2L)bur-K1 *eps15[^A29]* were generated to elucidate the functional relationship between Eps15 and Dap160.

In order to study the function of different SH3 domains of Dap160, transgenic flies with a specific SH3 domain deletion were required (paper IV). Genomic DNA of *dap160* without SH3B or SH3AB domain was amplified by PCR and cloned into P-element plasmids, downstream of the UAS sequence (which responds to GAL4 transcriptional activation). Both constructs were introduced into *w¹¹¹⁸* by P-element mediated transformation (Rubin and Spradling 1982). The pan-neural driver line, *elav[^C155-Gal4]*, Df(2L)bur-K1/CyO,twi-GFP was used here to activate the expression of Dap160 with SH3B or SH3AB deletion in neurons. Thus, the following genotypes were used in our studies: *elav[^C155-Gal4]/UAS-dap160[^H3B]*; *dap160[^1]/Df(2L)bur-K1* (from cross: *elav[^C155-Gal4]*; Df(2L)bur-K1/CyO,twi-GFP x UAS-dap160[^H3B]; *dap160[^1]/CyO,twi-GFP*) and *elav[^C155-Gal4]/w*; *dap160[^1]/Df(2L)bur-K1*; UAS-dap160[^SH3AB]/+ (from cross: *elav[^C155-Gal4]*; Df(2L)bur-K1/CyO,twi-GFP x w; *dap160[^1]/CyO,twi-GFP*; UAS-dap160[^SH3AB]).
Flies were maintained at room temperature on normal food. *dap160* mutant larvae were separated from the larvae bearing balancer chromosomes by the absence of GFP fluorescence and cultured on grape juice agar with yeast paste at 25°C to prevent overcrowding and competition from the larvae without mutations (Loewen, Mackler et al. 2001).

3.2 Dissection procedures

Third instar *Drosophila* larvae were used in our experiments. The larvae were briefly washed with HL3 buffer, and transferred onto Sylgard lined plates. The head and the tail were pinned to Sylgard with the dorsal side up. To access NMJs in larvae, the whole larvae were opened up. The gut, fat bodies and salivary glands were removed, and tissue debris was washed away with HL3 buffer. The body wall, brain, and connecting nerves were kept as a fillet.

3.3 Immunohistochemistry

Using immunohistochemistry we were able to visualize the morphology of NMJs with synaptic markers and detect the localization of proteins of interest. Fillets from third instar larvae were fixed in 4% paraformaldehyde, washed with PBS and permeabilized with 0.4% Triton X-100, and then incubated with primary antibodies and secondary antibodies conjugated to Alexa 488 or 555 (Invitrogen), sequentially. Fillets were mounted in Vectashield mounting medium (Vector Laboratories) and studied under a Zeiss 510 confocal microscope.

The following antibodies were used to determine the localization of synaptic proteins in NMJs: NC82, anti-Bruchpilot mouse monoclonal antibody served as the T-bar marker; anti-CSP mouse monoclonal antibody and anti-synaptotagmin rabbit antibodies were used to label SVs, anti-Fas II mouse antibody labeled boundaries of the active zone at rest, and anti-Dlg rabbit antibodies stained the postsynaptic compartment in NMJs.

The resolution of the conventional light microscopy is limited to 200 nm. In order to improve the resolution in our immunofluorescence studies of single synaptic boutons, we utilized a super-resolution optical approach, stimulated emission depletion (STED) microscopy. In the experiments described in Paper IV, the resolution about 90-100 nm was achieved. Z-stack serial images were also collected to obtain the 3D-information on the spatial organization of release sites (Papers II and IV).
3.4 Pre-embedding immunocytochemistry

Even though the resolution of the STED microscope is improved to the subdiffractional level, the electron microscope still provides a higher resolution. Since we aimed at relating the distribution of proteins of interest to subcellular structures, an immunogold technique was employed. We designed a semi-correlative technique that allowed us to localize proteins at the ultrastructural level in *Drosophila* synapses (Papers I, II and IV). Prior to immunogold staining, the muscle containing NMJs was cut on a Vibratome. The presynaptic boutons were cut opened, making them better accessible to antibodies. Fluoronanogold conjugated secondary antibodies (Nanoprobe) were used. Serial confocal images and/or 3-D confocal reconstructions were collected and analyzed to select best-stained areas for further EM analysis. Selected samples were post-fixed and silver enhanced. The samples were then dehydrated and embedded in Durcupan ACM resin (Fluka) for EM analysis.

3.5 TEM and 3D reconstruction of TEM images

In order to examine samples with transmission electron microscopy (TEM), ultrathin sections were prepared. Embedded samples were trimmed and sectioned with a diamond knife (Diatome). Ultrathin sections (50 nm) were collected onto Formvar-coated copper grids. Uranyl acetate and lead citrate were used for counterstaining to increase contrast. The sections were examined and photographed in a Tecnai 12 electron microscope (FEI).

After collecting images from serial ultrathin sections, we reconstructed positions of gold particles in 3D (Papers II and IV). Serial ultrathin sections were photographed using a bottom mounted 2k x 2k TemCam F224 CCD Camera (TVIPS) and images were aligned with Adobe Photoshop Software (CS4). Membrane contours were traced using a digitizer and transferred into Maya 8.0® 3D-reconstruction program and surface rendered. Spheres in the 3D-reconstructions represent weights of the silver enhanced particles.

3.6 High pressure freezing and freeze substitution

TEM is a common tool to visualize the subcellular organization of tissues. Conventional methods of sample preparation often involve the application of chemical fixation and dehydration, which both introduce artifacts into the specimen. In order to characterize the near-native structure and subcellular architecture of the presynaptic
bouton in *Drosophila* NMJs, high pressure freezing (HPF) and freeze substitution protocols were adapted for our *Drosophila* studies (Paper III).

HPF is able to cryo-immobilize biological samples as thick as 200 µm. Beyond this, ice crystals forms and the ultrastructure is destroyed. Since the thickness of the *Drosophila* body wall fillet is around 200µm, it is advantageous to use HPF for this preparation. During freeze substitution the frozen water was replaced with acetone at -90°C, and the samples were then embedded into Durcupan ACM resin. Since samples were cryo-fixed at low temperature prior to the embedding, no evident distortion of the native organization of NMJs occurred.

3.7 Electron tomography
Electron tomography is a powerful method for obtaining 3-D structural information from 2-D images of cellular organelles. We applied electron tomography in our studies to elucidate the 3-D architecture of *Drosophila* PDPs (Paper III). After HPF and freeze substitution, samples were cut into 200 nm or 50 nm thick sections, and prepared for tomography. Sections were tilted in the electron microscope from -65° to +65° at 1° increments. In order to reduce reconstruction artifacts, another tilt series on the same region in the direction perpendicular to the first tilt were collected. After alignment of all tilt series, image intensity values were converted to electron density and tomographic reconstructions were produced by the weighted backprojection approach (Skoglund, Öfverstedt et al. 1998). Amira 4 software (Mercury Computer Systems Inc.) was used for rendering and segmentation. With electron tomography, we were able to slice the sample 100 times finer than the original section thickness and characterize structures that were previously impossible to resolve using conventional EM (McDonald and Auer 2006).

3.8 Biochemistry
Different *dap160* mutations and *eps15* null mutations were verified by absence of Dap160 or Eps15, or by the presence of different Dap160 deletions on Western blots of head extracts from different mutants (Papers I and IV). His-tagged and GST fusion proteins were expressed in BL21 cells and purified from soluble fraction using Ni-NTA and glutathione beads, respectively. To investigate protein-protein interactions, pull-down assays and immunoprecipitation experiments were performed (Paper I).

3.9 Electrophysiology
An essential objective in our studies was to examine the functional transmission in our mutants in order to define the role of proteins of interest in the SV cycle. Electrophysiological recordings were performed (Paper I). Third instar larvae were dissected and recordings were performed in HL3 saline with variable Ca$^{2+}$ concentrations. Current clamp recordings were performed from muscle fibers with resting membrane potentials ranging from -65 mV to -75 mV. NMJs were activated with single action potentials and at 10-Hz. Motoneuron axons were stimulated extracellularly through a suction electrode.

3.10 Behavioural tests

A locomotion assay (Yang, Shaver et al. 2000) was used (Paper IV) to reveal defects in behaviour in different *dap 160* mutants. 24-27 third instar larvae for each genotype were picked up and tested. Distance travelled by each larva during a three minute period was measured by placing a Petri dish over a grid of 25 mm2 squares and scoring the number of grid squares entered. Experiments were performed at 25°C and 34°C. At 34°C, a long protocol with a testing time of 13 minutes was also used.
NMJs in *Drosophila* contain a characteristic presynaptic structure, also referred to as T-bar. Earlier electron microscopic studies have proposed that it is composed of two structural blocks, a “pedestal” attached to the presynaptic membrane and a wide “platform” residing on the pedestal (Feeney, Karunanithi et al. 1998; Zhai and Bellen 2004). SVs are present around this structure and are attached to it (Figure 1A). Our TEM experiments revealed a more complex structure of this presynaptic specialization (Figure 1B and Paper III, Supplemental Figure 1A and B), indicating that the T-shape does not represent the native structure of this specialization, and chemical fixation and dehydration applied during EM preparation procedures cause a distortion of its morphology.

![Figure 1](image)

Figure 1. Electron micrographs of *Drosophila* presynaptic dense projections (PDPs) embedded for conventional EM. (A) A PDP has a characteristic “T-bar” shape, composed of a pedestal and a platform. (B) An image of a PDP, which displays complex extensions (arrow) emerging from the T-bar platform. v: synaptic vesicles; pm: plasma membrane. Scale bars: 50 nm.

To preserve the native structure of the NMJ, we froze *Drosophila* third instar larvae with a high pressure freezer EMPACT 2, and a freeze substitution protocol was used to substitute water in the tissue. Structures no longer resembling the T-bar were revealed. Our images display a dense central core with extensions of variable shape and length stretching into the vesicle pool (Figure 2 and Paper III, Supplemental Figure 1C-F).

![Figure 2](image)

Figure 2. TEM image of a *Drosophila* PDP after HPF and freeze substitution. Note regular extensions (e) emerging from the central core (cc) of the presynaptic density, and legs (l) linking the central core to the plasma membrane. v: synaptic vesicles; Scale bars: 50 nm.
Since the presynaptic dense projection is a relatively large structure, 200 nm thick sections were cut to capture most of it in the middle. Tomographic reconstructions of dense projections revealed a number of new details: an irregular central dense mass—“central core,” a grid of connections linked the central core to the presynaptic membrane—“legs,” and dense clouds connecting to the upper lateral part of the central core—“cytoplasmic extensions” (Figure 3A and Paper III, Figure 1B-D). Double-tilt electron tomography of 50 nm-thick sections was performed to resolve the fine morphology of the extensions, which were found to be composed of filaments and to form bundles that are seen as electron-dense clouds in thick sections (Figure 3B and Paper III, Figure 2B-D).

Figure 3. (A) 3D architecture of the PDP in *Drosophila* NMJs, illustrating three major blocks composing the dense projection: “central core” (cc; magenta), “extensions” (e; green) and “legs” (l; red). (B) Image of a digital section (7.8 Å) from the tomographic reconstruction of the 50 nm thick section. Black arrow points to a filament in the red rectangle. Legs are shown in white rectangles. Red star marks the vesicle connected to the filament by a small connector (red arrow). Scale bars: 50 nm.

SVs accumulate around the dense projection. 3D reconstructions of digital sections revealed that SVs positioned close to the projection are linked to the filaments/extensions by thin connections (Figure 3B and Paper III, Figure 2G-H, Supplemental Figure 1G-I). Most of these vesicles are connected to other vesicles in the vesicle pool (Figure 4A and Paper III, Figure 3), while a small group is linked to the filaments extending from the plasma membrane of the active zone, referred to as tethers assembled as triads (Figure 4B and Paper III, Figure 4A).

Previous studies suggested that Ca\(^{2+}\) channels cluster at the active zone between the presynaptic membrane and CAZ (Fouquet, Owald et al. 2009), thus the legs revealed in our studies most probably correspond to the protein complexes that include the Ca\(^{2+}\) channel. Depolarization causes a Ca\(^{2+}\) influx through the voltage-gated Ca\(^{2+}\) channels, resulting in a local elevation of intracellular Ca\(^{2+}\) concentration in a limited range (~tens of nanometers) around the channels, which triggers exocytosis (Heidelberger, Heinemann et al. 1994; von Gersdorff and Matthews 1994). The tethered vesicles reside within 50 nm from the putative Ca\(^{2+}\) channels, indicating that
they may undergo fusion after single action potential (Paper III, Figure 4B and C). Other vesicles connected to the dense projection possibly lose their connections and translocate along the filaments to the plasma membrane during stimulation (Paper III, Figure 4D). It leads to the suggestion that the tethered vesicles are immediately available for release. The other groups of vesicles, which are not connected to the projection, presumably have slower release kinetics and might represent a different functional vesicle pool (Rizzoli and Betz 2005; Hallermann, Kittel et al. 2010).

Figure 4. (A) 3D reconstruction of an area indicated by white rectangle in the EM image of a 200 nm thick section through a PDP (inset) from a sample embedded after high pressure freezing. Only one of the vesicles attached to the cytoplasmic extension and connected to other vesicles in the cluster is reconstructed. The reconstruction shows the relationship between the synaptic vesicle (v) associated with the cytosolic extension (e) and neighboring vesicles in the cluster (v). Connections between vesicles in the cluster are depicted by yellow bars. (B) 3D organization of vesicles (v) tethered to the presynaptic membrane, in relation to extensions (e). Reconstruction of an area marked with white rectangle in the inset, showing the TEM image of a 200 nm thick section through the whole PDP from a sample embedded after high pressure freezing. Connections (brown cylinders) link three vesicles to a density (yellow) extending from the plasma membrane.

The active zone is often defined by the electron dense membrane and the attached dense projection that extends into the cytoplasm (Zhai and Bellen 2004). Bruchpilot protein (BRP) is often used as a marker for active zones in *Drosophila* NMJs in immunocytochemical studies. *Drosophila* BRP has been shown to be involved in active zone assembly and is important for Ca\(^{2+}\) channel clustering. Genetic elimination of BRP results in the loss of presynaptic densities (Kittel, Wichmann et al. 2006; Wagh, Rasse et al. 2006). However, there is no correlation between the size of the dense projection and the size of the electron dense membranes in *Drosophila* NMJs. Some active zones only contain the dense membranes without the projections, which makes BRP hardly a precise component of the active zone. Fas II has been shown to accumulate at periactive zone in adult NMJs (Marie, Sweeney et al. 2004; Ashley, Packard et al. 2005). In order to test if this protein outline the active zones and can be
used as a reliable active zone marker, a semi-correlative immunogold technique was applied to visualize Fas II-immunolabeling at the EM level. We found that gold particles signalling for Fas II indeed associates with neuronal membranes at NMJs (Paper II). Gold particles were found both at the pre- and post- synaptic sides with equal distance to the membrane surface, corroborating with the suggestion that it links the pre- and post- elements in a symmetric fashion (Figure 5A-B and Paper II, Figure 2B and 3) (Kristiansen and Hortsch 2008; Mao and Freeman 2009). 3D reconstruction of Fas II labeling pattern shows that it indeed delineates the active zone area (Figure 5C and Paper II Figure 3E-G). Thus, Fas II can be used as a reliable marker for the active zone size under resting conditions.

Figure 5. (A) High magnification EM image showing Fas II immunogold labeling from the area where pre- and post-synaptic membranes were cut transversally. Note that gold particles are symmetrically accumulated at the membranes in the cytoplasm of the presynaptic terminal (p) and the muscle (M). (B) Bar graph showing quantification of distances of gold particle from the membranes from seven areas. (C) 3D reconstruction of the Fas II labeling pattern in eight 50 nm serial sections of a neuromuscular junction. The presynaptic membrane is depicted in grey and is half transparent. Blue areas demark active zones. Yellow structures show positions of PDPs. Black spheres indicate position of geometrical centers of gold particles signaling for Fas II at the pre- and post- synaptic membrane. The muscle is not depicted. The spheres are grey when they are viewed through the membrane. Note that Fas II labeling delineates borders of active zones. Scale bar: 100nm.
5 RECRUITMENT OF SCAFFOLDING PROTEINS DAP160 AND EPS15 FROM THE SV CLUSTER TO THE PERIACTIVE ZONE DURING SYNAPTIC ACTIVITY

Previous experiments have shown that Dap160 is present at “hot spots” of endocytosis and co-localizes with dynamin. It has also been found that it directly binds dynamin and in addition to an array of other effector molecules, such as synaptojanin, and synapsin. This has led to the suggestion that Dap160 is a scaffolding protein that clusters effector molecules that are required for endocytosis at the periactive zone (Roos and Kelly 1998; Broadie 2004). Interestingly, at the resolution of a light microscope Dap160 immunolabeling does not overlap with Fas II, which was found at the periactive zone (Paper II, Figure 2A) (Marie, Sweeney et al. 2004). This strongly indicates that Dap160 is localized in a different compartment. To test this, immunogold labeling for Dap160 was performed and the protein was found in the vesicle pool and not at the periactive zone at rest (Figure 6, Paper II, Figure 2C and Paper IV, Figure 1D and 2C). Its binding partners, Eps15 and dynamin, which co-localize with Dap160 at the LM level (Paper IV, Supplemental Figure 1C), were also found in the vesicle pool at rest (Paper I, Figure 2G and H; Paper IV, Figure 1G and H).

Careful analysis of labeling patterns for Dap160, Eps15 and dynamin revealed that a small group of vesicles close to the dense projection is not labeled, while antibody against the vesicle associated protein, cystein string protein (CSP), stains the whole vesicle pool (Figure 7A, Paper II, Figure 1D and Paper IV, Supplemental Figure 2D-E). We also labeled the NMJs with NC82 antibody against the C-terminal of BRP, and found that the extensions coming from the dense projection are labeled (Figure 7B, Paper II, Figure 2D-E and Paper IV, Supplemental Figure 2B-C). The extensions penetrate into a few rows of SVs in the vesicle pool surrounding the dense projection, which appears to be not labeled with Dap160, Eps15 and dynamin antibodies. Thus, the differential distributions of immunoreactivities characterize different pools of vesicles.
Only the distal pool contains Dap160, Eps15 and dynamin, and the vesicles in the proximal pool do not.

Figure 7. EM images of wt NMJs stained with CSP (A) and NC82 (B) antibodies. Scale bars in (A), 100nm; (B) 50nm.

SVs undergo the exo- and endocytosis cycle during synaptic activity. We then investigated what happens to the localization of the scaffolding molecules during synaptic activity. During stimulation with high K\(^+\), all three proteins relocalize to the periactive zone (Figure 8B, Paper I, Figure 2I and Paper IV, Figure 2A and F). The dynamin mutant, *shibire* \(^{ts1} \) was also tested in these experiments. *shibire* \(^{ts1} \) is a temperature sensitive dynamin mutant, in which one amino acid of dynamin is mutated, making it unable to hydrolyze GTP at temperatures above 29°C. This results in a block of endocytosis in NMJs. Prolonged stimulation of *shibire* \(^{ts1} \) NMJs at 29°C leads to the depletion of SVs at the active zone and an accumulation of endocytic intermediates (invaginated pits) at the presynaptic membrane around AZs (Koenig and Ikeda 1989). Immunogold labeling for Dap160, Eps15 and dynamin in stimulated *shibire* \(^{ts1} \) NMJs showed that gold particles are predominantly associated with the invaginated pits (Figure 8C, Paper I Figure 3 and Paper IV, Figure 2B and G). The redistribution of these three proteins from the SV pool to the periactive zone is shown in 3D in Figure 8 (Paper IV Figure 2C-E). All these observations suggested a mechanism that is triggered by synaptic activity, which controls the location of Dap160, Eps15 and dynamin. We proposed that this relocalization is important to coordinate the efficiency of the endocytic machinery in NMJs.

Figure 8. 3D reconstruction of the subcellular localization of Dap160. The plasma membrane is gray. Active zones (az) are colored violet. Silver-enhanced immunogold particles are shown as black spheres.
6 DAP160 AND EPS15 FORM A MOLECULAR COMPLEX AND ARE ESSENTIAL IN THE MAINTENANCE OF SYNAPTIC TRANSMISSION

The relationship between two scaffolding proteins Dap160 and Eps15 in Drosophila synapses has not been characterized. To investigate if Eps15 is engaged in a molecular complex with Dap160, immunoprecipitation experiments were performed from fly head extracts using Eps15 antibodies. Our experiments show that Eps15 binds to Dap160, and that Dap160 is a major binding partner of Eps15 (Figure 9 and Paper I, Figure 1A). This is in a good agreement with co-localization of these proteins in NMJs (see last section). All these experiments lead to a suggestion that Dap160 and Eps15 work together to coordinate the synaptic vesicle cycle in NMJs. Direct interactions between mammalian orthologs have previously been reported (Sengar, Wang et al. 1999). All these findings indicate that the Dap160-Eps15 molecular complex is functionally important and evolutionary conserved.

![Figure 9](image)

Earlier studies on *dap160* null mutants revealed that DAP160 protein has important functions in SV membrane endocytosis. Genetic deletion of Dap160 from Drosophila synapses results in reduced vesicle numbers at active zones, reduced styryl dye uptake during synaptic activity, and a decrease in the amplitude of excitatory junctional potentials (EJPs) during high-frequency stimulation (Koh, Verstreken et al. 2004; Marie, Sweeney et al. 2004). Endocytic intermediates and large cisternae were observed in *dap160* null mutant NMJs (Koh, Verstreken et al. 2004). *eps15* null mutants were generated to test whether the genetic removal of Eps15 will also lead to an endocytic defect (Paper I). Physiological experiments demonstrated that *eps15* null mutant synapses are unable to sustain neurotransmitter release during stimulation at 10 Hz (Figure 10 and Paper I, Figure 5). Additionally, FM1-43 dye uptake is impaired in these mutants (Paper I, Figure 6). EM analysis revealed an increased number of large
vesicles and cisternae under resting conditions. During stimulation a complete depletion of SVs and a profound accumulation of large cisternae and membrane invaginations occurred (Paper I, Figure 7). These data indicate that Eps15 is an important component of the Dap160-Eps15 molecular complex.

To investigate if Dap 160 and Eps15 belong to the same functional pathway, a dap160 and eps15 double knockout was generated and defects in synaptic transmission in NMJs were investigated using the same paradigm as for dap16 and eps15 mutants. Interestingly, dap160 and eps15 double mutant displayed similar depression kinetics as observed in dap160 and eps15 null mutants (Figure 10 and Paper I Figure 10B). Moreover, the impairment of the FM dye uptake was also quite similar (Paper I Figure 10C). dap160 and eps15 single and double mutants all show normal evoked EJPs when stimulated at low frequency, indicating the Dap160-Eps15 complex has an essential role in maintaining synaptic transmission at high activity rates.

![Figure 10](image_url). When stimulated at 10 Hz in 5 mM Ca2+, dap160- and eps15-null double mutants show synaptic depression kinetics that overlap with eps15 null and dap160 null single mutants.
Since the Dap160-Eps15 complex interacts with dynamin, we investigated if this molecular complex may control the function of this protein during the synaptic vesicle cycle. The GTPase dynamin has been shown to function at the fission step of the SV membrane endocytosis (Schmid, McNiven et al. 1998; McNiven, Cao et al. 2000). Dap160 co-precipitates with dynamin, and the GST pull-down experiments revealed that Dap160 binds to dynamin PRD domain through its SH3 A and B domains (Roos and Kelly 1998; Verstreken, Koh et al. 2003).

We first examined the level of dynamin in dap160 and eps15 mutant terminals and found that it is severely reduced (to 30% in dap160 mutants and 10% in eps15 mutants). Dap160 levels are reduced to 25% in eps15 mutants (Koh, Verstreken et al. 2004). This leads to the conclusion that Dap160 and Eps15 are important for proper delivery of dynamin to nerve terminals during development.

We then investigated how these proteins control dynamin function in synaptic vesicle recycling in third instar larvae. Our immunofluorescence experiments revealed that contrary to stimulated wt synapses, in dap160 mutant NMJs Eps15 and dynamin are no longer co-localized. Eps15 accumulates in spots at the presynaptic membrane, while dynamin is diffused over the whole bouton (Paper IV, Figure 3E and F). This implies that breaking of the interaction between dynamin and the Dap160-Eps15 complex results in the abnormal localization of dynamin. To examine whether the recruitment of dynamin to the periactive zone is impaired, immunogold experiments were performed in mutants. Immunogold labeling for dynamin in dap160 mutants revealed that dynamin is associated with the SV pool at rest (as in wt NMJs). However,
upon high K⁺ stimulation, it is no longer concentrated at the periactive zone. Instead, it
distributes evenly over the whole terminal membrane (Figure 12A₁-2 and Paper IV,
Figure 3 A₁-3 and B₁-2). Constricted pits were found to accumulate at the presynaptic
membrane in dap160 mutants. Very few of them, however, appeared to be labeled by
dynamin antibodies (a three-fold reduction compared to shibire⁺¹), indicating that
locating dynamin to the constricted pits is impaired (Figure 12B₁-2 and Paper IV, Figure
3B₁-4).

![Figure 12. Mislocalization of dynamin from the periactive zone in dap160 mutants. (A₁-2)
EM images showing mistargeting of dynamin to the plasma membrane in dap160
mutant NMJs upon stimulation. (B₁-2) High
magnification images showing constricted
pits (arrows) accumulated at the periactive
zone upon stimulation. Only few pits are
labeled for dynamin. The labeled constricted
pit is indicated by arrow in B₂. Scale bars:
(A₁), 500nm; (A₂) 200nm; (B₁-2), 50nm.]

Immunogold labeling for Eps15 in dap160 mutants was also examined. The
pattern for Eps15 immunoreactivity is not changed and is similar to the pattern
observed in wt. We also found that it associates with the SV pool at rest and is recruited
to the periactive zone during stimulation (Paper IV, Supplemental Figure 4D-G). AP2
also shows a similar spot-like pattern in stimulated dap160 mutant NMJs, and co-
localizes strongly with Eps15, indicating they are both accumulated at the sites of
endocytosis during synaptic activity (Paper IV, Figure 3G and H).

Drosophila Dap160 possesses four SH3 domains, in which SH3A and SH3B
bind to dynamin, and SH3B binds it preferentially (Roos and Kelly 1998). To test if
this binding is important for targeting of dynamin to the periactive zone, SH3B (ΔB)
and SH3AB domain-deletion (ΔAB) rescue mutants were generated in the dap160 null
background.
Studies of these mutants using immunofluorescence revealed that ΔAB shows a strong mislocalization of dynamin upon high K⁺ stimulation (Figure 13 and Paper IV, Figure 4B and C). Eps15 localization remains unchanged as compared to wt. Thus, interactions with these domains of Dap160 are essential to concentrate dynamin at the periactive zone.

Figure 13. Confocal images of NMJs from ΔAB rescue line at rest and during stimulation. Scale bars: 2µm.

We further investigated functional defects in ΔB and ΔAB mutants in behavioural tests. A locomotion assay was employed. At 25°C and 34°C (3min), both ΔB and ΔAB show slightly decreased locomotion activities, but not significantly different compared to wt (Paper IV, Figure 4D). Since dap160 mutants show significant depression of synaptic activity under intense stimulation (Koh, Verstreken et al. 2004), we extended the duration of the test to 13 minutes. Impaired locomotion was clearly seen in ΔAB at 34°C (Figure 14 and Paper IV, Figure 4E), indicating the importance of the interaction between dynamin and the Dap160-Eps15 complex in synaptic activity under high frequency stimulation.

Figure 14. Bar graphs illustrating differences in locomotion behaviour in dap160 mutants. (A) At 25°C only dap160 null mutants (Δ1/df) are significantly different. (B)
At elevated temperature (34°C; 13mins), a significant reduction (~24%) in grids squares entered was detected in ΔAB. **, P<0.01; ***, P<0.001 (ANOVA).

Repetitive stimulation of shibireα NMJs at non-permissive temperature results in a complete block of SV recycling, while dap160 and eps15 single or double mutants only show moderate slow-down of endocytosis (Paper I, Figure 5D). This is due to both a reduced level of dynamin in the mutants and an inability to concentrate dynamin at the periactive zone. Removing Dap160 or its dynamin interacting domains results in mislocalization of dynamin during stimulation. Dynamin is no longer accumulated at the periactive zone and not efficiently recruited to constricted pits. SV endocytosis may occur even at reduced levels of dynamin, but this is not sufficient to support sustained activity. In the stimulated dap160 mutant, Eps15 is still able to relocate to the periactive zone, indicating other proteins such as AP2 or/and stonin, may target Eps15 to the endocytic site. In summary, our experiments show that the Dap160-Eps15 complex is essential to concentrate dynamin at the sites of endocytosis during synaptic vesicle recycling.
8 THE MODEL FOR DYNAMIN TARGETING

Our experiments allow us to propose a model, which explains the role of the Dap160-Eps15 molecular complex in endocytosis (Figure 15 and Paper IV, Figure 5). At rest, the Dap160-Eps15 complex and dynamin reside in the distal pool of SVs in the NMJ. Upon stimulation, the Dap160-Eps15 molecular complex recruits and concentrates dynamin at the periactive zone, the sites of endocytosis, to aid its fast assembly to promote the budding of newly formed vesicles from the presynaptic membrane. Removing Dap160 breaks the molecular link between dynamin and the Dap160-Eps15 complex, resulting in mistargeting of dynamin at the periactive zone.

Figure 15. Schematic illustration of the mechanism for dynamin targeting to the periactive zone during the synaptic vesicle cycle.

Recent studies have shown that the Dap160-Eps15 complex is recruited early to the periactive zone (Henne, Boucrot et al. 2010). In agreement with this, we propose that this complex concentrates dynamin at hot spots of endocytosis via the interactions of Dap 160 SH3AB domain. Since the rate of dynamin oligomerization is concentration dependent (Roux, Koster et al. 2010), an increase in dynamin concentration accelerates dynamin spiral formation and the subsequent vesicle-budding reaction. The function to concentrate dynamin becomes critical during high-frequency stimulation, when SV membrane accumulates at the periactive zone and a proper dynamin concentration required for fission complex assembly at endocytic sites is more difficult to achieve.
9 CONCLUSIONS

- Immunogold and electron tomography protocols were developed, making it possible to localize synaptic proteins in *Drosophila* NMJs and to study the structural organization of this synapse at high resolution.
- Fas II delineates the active zone area in the *Drosophila* NMJ under resting conditions and immunolabeling for this protein can be reliably used to evaluate changes in the size of the active zone region.
- The presynaptic dense projection of the active zone consists of three distinct components: the central core, legs connecting the central core to the plasma membrane, and cytoplasmic extensions emerging from the central core.
- The SV pool in the *Drosophila* synapse is structurally composed of the proximal pool attached to the dense projection by thin filaments and distal pool constituted by interconnected vesicles. Vesicles tethered to the presynaptic membrane are able to release immediately in response to stimulation.
- The scaffolding molecules Dap160 and Eps15 and the GTPase dynamin reside in the distal pool of SV at rest and relocate to the periactive zone during synaptic activity.
- Dap160 and Eps15 directly interact and form a complex, which is required to maintain synaptic transmission in the *Drosophila* NMJ at high activity rates. This complex is essential to concentrate dynamin at the periaactive zone during synaptic activity.
ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor Oleg Shupliakov for taking me as a PhD student and introducing me to the field of neuroscience. Thanks for giving me the guidance, encouragement and telling me to be strong to face any problem.

Big thanks go to former and present labmates: Nikolay, for all the EM teaching; Peter, for all the care and nice tea time; Fredrik and Joel, for helping me with moving and being great lunch companies; Cynthia, for all the fun together and keeping in touch from so long distance, and also your proofreading; Lennart, for all the knowledge I have learned from you; Kristin, for the comfort and company the first couple of years here; Frauke, for the support and believe in my graduation; Sevi, for the nice time in the office and meeting in Greece; Anna and Arndt, for all the funny stories during lunch time; Åsa, for helping me with fly work during the busy thesis writing time; Olga, for the help with biochemistry; Elena, for continuing my EM work and warm greetings; Emma, Felicia, Malin, Joshua, Sara and Ronia, for creating a friendly working environment; All members from Neurovetenskap, CMB and CEDB/DBRM for being enthusiastic and helpful.

Thanks to my collaborators: Professor Hugo J. Bellen, Tong-Wey and Karen, for the work of generating all the mutant flies. Sergej and Oscar, for the help with tomography and reconstruction.

I also want to thank Professor Christos Samakovlis, for kindness and support for my fly work.

所有在瑞典相识的朋友，这个寒冷的国度，半年的白雪，一季的阳光，因为有你们，才显得温暖。

戴琦，汪春妹，谢谢你们对刚来瑞典的我的照顾，为了打升级而手制的纸牌依旧是我美好的回忆。

巧琳，谢谢你姑娘一样的关怀，血拼的时候也总是不忘记帮我注意到好东西。金哲，你的好手艺让我很饱口服啊。

绍波，曾几何时，来去路上都有你做伴，现在住的远了，一个人等公车的时候还是会想到你。赵建，很想偷师你的川菜手艺啊。（好吧，我承认我是吃货。）

李宁，还记得两人在Gotland东走走，西看看的悠闲，谢谢你时不时来自旧金山的问候。
赵斌，尤记得那些互相宽慰的茶余饭后时光，你需要新的茶友和饭友啦。王柠
莎，我喜欢你湘妹子的个性，够直爽够呛，就像那火红的辣椒。

我在Lappis认识的朋友：丽如，我们做了两年的室友，一起走过大半个欧洲，虽然
现在你远在台湾，还是希望有再见的时候。崔威和李静，你们是快客的男女主人，
你们家的客厅曾经容纳了多少我们的欢声笑语。简亮，曾经任劳任怨的司机，希望你
心想事成。老朱，武汉和长沙不远，有机会探望探望。姜岩，谢谢你的好脾气和包
容。

我的青梅——糖粒子（谭丽），永远记得分别八年后异国的重逢，希望在纽约的
你幸福安好。

亲爱的小猪（朱莹），酒逢知己千杯少，我虽然不会喝酒，也愿意为了你饮下几
杯伏特加。

洁欣，羡慕你的勤劳和贤惠，谢谢你总是做好吃的点心给我打牙祭（再次声明，
我是吃货）。玉兰，谢谢狮子座之间的理解和寄自非洲的明信片，满足我收集的热
衷。施耀，你的光辉形象总是和美餐联系在一起的（吃货……）。新蕊，谢谢在我暗
无天日论文时期的关心和照顾。立群，谢谢你不辞辛苦的帮我订果蝇食物。还有所有
我认识的朋友：燕羚，王迪，李昱，万敏，薛远，颜沁子，王恒，新松，新明，嘉
琪，宋辞，畅征，宋直勋，陆明，晓伟，晓峰，李芳，钱禹，睿雪，Sofia，相逢既是
有缘。

一路行来，除了朋友给予的温暖，最让我感动与牵挂的是我的父母。来瑞典念书
其实是我任性的决定。当时年纪小，不懂父母心，现在长大了，尤感父母恩。这么多年,
因为有你们，艰难困苦才可以走过，我只想说：爸爸妈妈，我爱你们！
REFERENCES

