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To My Family





trans. Betty Jean Craige in Selected 

Poems of Antonio Machado (1979)

from Proverbios y Cantares

by Antonio Machado (1912)

“Wanderer, your footsteps are

the road, and nothing more;

wanderer, there is no road,

the road is made by walking.

By walking one makes the road,

and upon glancing behind

one sees the path

that never will be trod again.

Wanderer, there is no road,

only wakes upon the sea.”

“Caminante, son tus huellas

el camino, y nada más;

caminante, no hay camino:

se hace camino al andar.

Al andar se hace camino,

y al volver la vista atrás

se ve la senda que nunca

se ha de volver a pisar.

Caminante, no hay camino,

sino estelas en la mar.”





ABSTRACT
Thioredoxin and related systems regulate many biological processes in diverse 

species. In mammals, in addition to protecting against oxidative damage, they also 
play key roles as regulators of transcription factors, signaling cascades and immune 
responses. Many discoveries made in mammalian models have contributed to the 
description of numerous functions for the thioredoxin and related systems. How-
ever, studies performed in mammalian models offer limited information and ver-
satility with respect to how the thioredoxin system dynamically interacts with the 
surrounding environment in living animals. For instance, in vivo examination of 
mammalian mutants is severely restricted since systemic mutations for thioredoxin 
and thioredoxin reductase result in embryonic lethality. In the invertebrate animal 
model Caenorhabditis elegans, survival programs during post-embryonic develop-
ment and aging are plastic, and modifiable by the environment. Hence, C. elegans 
provides a framework for the use of effective cell-biological and genetic tools to 
investigate in vivo the biology of thioredoxins and related proteins in the context of 
a changing environment.

Here, we show that the C. elegans genome contains many putative homologs 
of the mammalian thioredoxin system and related molecules. Moreover, we report 
for the first time in any metazoan that a thioredoxin gene (trx-1) is expressed only 
in the nervous system and is involved in the regulation of aging (Paper I). In ad-
dition, we show that the selenoprotein, thioredoxin reductase (TRXR-1), instead 
of protecting against oxidative stress, is responsible, together with glutathione re-
ductase (GSR-1), for the removal of old cuticle during molting in C. elegans. Our 
findings suggest that TRXR-1 and GSR-1 regulate molting likely by activating glu-
tathione (GSH) function in the cuticle (Paper II). Next, we demonstrate that the 
thioredoxin TRX-1 is involved in ASJ neuron-dependent signaling pathways that 
regulate dauer formation in C. elegans. Our data suggest that redox-independent 
functions of TRX-1 in ASJ neurons are necessary to modulate neuropeptide ex-
pression, including that of the insulin-like neuropeptide gene daf-28, during dauer 
formation (Paper III). Lastly, we show for the first time in an in vivo animal model 
that a thioredoxin (TRX-1) is necessary for the metabolic changes triggered by di-
etary restriction (DR) to extend adult lifespan. We are also the first to show that DR 
upregulates thioredoxin (trx-1) expression in the nervous system. We propose that 
DR activates TRX-1 in ASJ neurons of aging adults to then stimulate the metabolic 
changes necessary to extend adult lifespan (Paper IV).

In conclusion, we show evidence for the crucial role of conserved members of 
the thioredoxin system in controlling aging and survival in C. elegans. Furthermore, 
the data presented suggest the plastic nature of molting, dauer formation and aging 
in C. elegans and how the thioredoxin system and related molecules assist to main-
tain such environmental sensitivity. Basic cell-biological processes and the thiore-
doxin and related systems possess a substantial degree of functional conservation 
between mammals and invertebrates. Hence, the novel roles discovered for thiore-
doxins and related molecules to regulate aging and survival in C. elegans, might lead 
the way in disclosing similar mechanisms in mammals.
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1.	 Introduction

1.1.	 The Thioredoxin System

1.1.1.	 General Aspects

Members of the thioredoxin (Trx) family of proteins are defined by two con-
served structural motifs: (i) the Trx fold, and (ii) the -Cys-X-X-Cys- catalytic active 
site. The basic Trx fold consists of a three-layer α/β/α sandwich, with a 4–5 stranded 
β-sheet and 2–4 α-helices, depending on the protein (Holmgren et al., 1975; Qi and 
Grishin, 2005). The -Cys-X-X-Cys- motif contains a pair of amino acids flanked by 
two redox-active cysteines (Cys), which can be replaced by other amino acid resi-
dues depending on the redox protein (Fomenko and Gladyshev, 2003).

These two structural motifs are shared by many proteins essential for cellular 
thiol-redox pathways. These include reductants, like Trx and glutaredoxin (Grx), 
and oxidants, like protein disulfide isomerase (PDI). The Trx and Grx systems share 
many functions as antioxidants and signaling regulators to maintain the redox ho-
meostasis inside the cell. However, each system has its own unique functions. For 
instance, it is known that Grxs are more flexible than Trxs in terms of target protein 
diversity and catalytic mechanism [reviewed in (Fernandes and Holmgren, 2004; 
Lillig et al., 2008)]. The Trx system consists of nicotinamide adenine dinucleotide 
phosphate (NADPH), thioredoxin reductase (TrxR) and Trx; whereas the Grx sys-
tem is composed of NADPH, glutathione reductase (GSR), glutathione (GSH) and 
Grx. 

Thioredoxins and related molecules catalyze oxidoreductase reactions by us-
ing the cysteinyl residues in the -Cys-X-X-Cys- motif to break disulfide groups into 
free thiols in oxidized target proteins (Figure 1). In the Trx system, oxidized Trx is 
reverted to the reduced state by TrxR, using electrons from NADPH (Figure 1A, 
top). In the Grx system, oxidized Grx is reduced by two molecules of GSH, which 
are oxidized to form glutathione disulfide (GSSG). Electrons are transferred from 
NADPH to GSSG via GSR (Figure 1A, bottom). In some organisms, the classical 
Trx and Grx systems described above have been shown to possess a remarkable cat-
alytic flexibility [reviewed in (Arnér, 2009)]. For instance, the genome of Drosophila 
melanogaster encodes TrxR, Trx and Grx, but not GSR (Figure 1B). Interestingly, 
this organism completes the reduction of GSSG to form GSH by using Trx, which 
thus substitutes for GSR function. While GSSG fails to be a substrate for TrxR, Trx 
acts as an efficient electron carrier between TrxR and GSSG in this organism (Fig-
ure 1B) (Cheng et al., 2007; Kanzok et al., 2001).
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In addition to the Trx and Grx systems introduced above, the mammalian 
genome also encodes other Trx homologs. Some of these Trx-related proteins are 
testis-specific, such as SpTrx1, SpTrx2, SpTrx3 and Txl-2 (Jiménez et al., 2004; Mi-
randa-Vizuete et al., 2001; Sadek et al., 2001; Sadek et al., 2003). The rod-derived 
cone viability factor, RdCVF, is another tissue-specific mammalian Trx-like protein, 
which is localized to photoreceptors in the retina (Léveillard et al., 2004). In addi-
tion, there are members of the Trx family of proteins that specifically function in 
the endoplasmic reticulum (ER) as disulfide bond catalysts, such as PDI and ERdj5 
[reviewed in (Benham, 2005; Kruusma et al., 2006)]. PDIs function as facilitators of 
protein folding in the ER and regulate target proteins via oxidation and isomeriza-
tion reactions [reviewed in (Ellgaard and Ruddock, 2005; Wilkinson and Gilbert, 
2004)]. The ER-resident chaperone ERdj5 is required for redox-dependent degrada-
tion of misfolded proteins and modulation of the unfolded protein response (UPR) 

Figure 1. Redox cascades of the thioredoxin (Trx) and glutaredoxin (Grx) systems. (A) 
Classical Trx and Grx systems: the Trx system comprises nicotinamide adenine dinucleotide 
phosphate (NADPH), thioredoxin reductase (TrxR) and Trx. The Grx system consists of 
NADPH, glutathione reductase (GSR), glutathione (GSH) and Grx. (B) Catalytic mechanism 
in D. melanogaster. This organism lacks GSR; instead, Trx is responsible for reducing 
glutathione disulfide. See text for details. Figure adapted from (Arnér, 2009; Holmgren and Lu, 
2010; Lillig and Holmgren, 2007).
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in the ER (Cunnea et al., 2003; Dong et al., 2008; Thomas and Spyrou, 2009; Ushi-
oda et al., 2008). Other mammalian Trx-like proteins include Txl-1 and nucleore-
doxin (Nrx). Txl-1 is an ubiquitously expressed cytosolic Trx-like protein (Lee et 
al., 1998), recently found to be functionally connected to the proteasome (Anders-
en et al., 2009; Wiseman et al., 2009). Nrx is expressed in all tissues and functions 
as a redox regulator of several transcription factors and the Wnt/β-catenin pathway 
(Funato et al., 2006; Hirota et al., 2000; Kurooka et al., 1997).

1.1.2.	 Mammalian Thioredoxin

In addition to their role as regulators of diverse transcription factors and sign-
aling pathways, Trxs are generally regarded as essential components of the oxidative 
stress resistance apparatus and the immune system. The fold of Trxs is composed of 
five β-strands with two α-helices on each side (Holmgren et al., 1975). Trxs reduce 
target molecules with the two cysteinyl residues of the conserved -Trp-Cys-Gly-
Pro-Cys- active site. The mammalian genome encodes two Trx proteins: the cyto-
solic Trx1 and the mitochondrial Trx2.

Mammalian Trx1 is probably one of the most thoroughly studied proteins in 
the Trx family. The gene encoding human Trx1 (termed TXN) has been shown to 
undergo alternative splicing. The alternatively spliced mRNA variants do not trans-
late into functionally different proteins. Instead, they have been proposed to act in 
a regulatory mechanism, in which they could contribute to modulate the levels of 
TXN expression (Berggren and Powis, 2001; Hariharan et al., 1996; Jiménez and 
Miranda-Vizuete, 2003).

Trx1 acts as an electron donor for different metabolic enzymes, including 
ribonucleotide reductase (RNR), peroxiredoxin (Prx) and methionine sulfoxide 
reductase (Msr). RNR catalyzes the synthesis of deoxynucleotides by using nucle-
otides as substrates (Nordlund and Reichard, 2006). The fact that inactivation of 
Trx1 induces embryonic lethality in mice (Matsui et al., 1996), confirms that Trx1 
is essential for cell proliferation and DNA synthesis. Prxs are H2O2-neutralizing en-
zymes involved in antioxidant defense and redox regulation of signaling pathways 
and cell differentiation (Rhee et al., 2005). The function of Trx1 as electron donor 
for Msr has been proposed to impact antioxidant defense and aging (Lillig and 
Holmgren, 2007; Stadtman et al., 2005).

In addition, Trx1 interacts with many transcription factors and signaling 
proteins to regulate multiple biological functions. The list of interacting factors 
includes apoptosis signal-regulating kinase 1 (ASK1), nuclear factor-κB (NF-κB), 
Trx binding protein 2 (TBP-2), hypoxia-inducible factor 1 (Hif-1), tumor suppres-
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sor p53, apurinic/apyrimidinic endonuclease 1 (APE1/Ref-1), activator protein 1 
(AP-1) and estrogen receptor (ESR), among others [reviewed in (Holmgren and Lu, 
2010; Lillig and Holmgren, 2007; Meyer et al., 2009)].

Trx1 has also been linked to multiple pathologies, such as cancer, cardiovas-
cular or degenerative diseases. In addition, Trx1 has been proposed to have a role 
in the aging process. The first report to demonstrate a direct effect of mammalian 
Trx1 on aging showed that overexpression of human Trx1 in mice extends lifespan 
(Mitsui et al., 2002). Subsequently, other studies were designed to understand how 
dietary restriction (DR) affects Trx1 function during aging. These studies found 
that DR modulates the expression of Trx1 in aged kidney and muscle cells (Cho et 
al., 2003; Jung et al., 2009; Rohrbach et al., 2006).

Similarly to Trx1, mutation of the gene encoding mitochondrial Trx2 in mice 
(termed Txn2) causes embryonic lethality (Nonn et al., 2003). Interestingly, the em-
bryonic stage at which homozygous Txn2 mutants die corresponds to the start of 
mitochondrial maturation. Although Txn1 and Txn2 homozygous mutant mice die 
during embryogenesis, their phenotypes do not completely overlap, suggesting that 
each Trx performs at least some functions independently of one another (Lillig and 
Holmgren, 2007). 

In sum, the functions of Trxs are extensive and mostly depend on their di-
sulfide oxidoreductase activity. However, in some cases, Trxs execute their func-
tions in a redox-independent manner. For instance, human truncated Trx (Trx80) 
acts as a mitogenic cytokine (Pekkari et al., 2003) and human Trx1 binds and inhib-
its ASK1 (Liu and Min, 2002) by functions performed independently of their redox 
activity. Moreover, Trxs have been shown to facilitate the folding of proteins in a 
redox-independent fashion [reviewed in (Berndt et al., 2008)]. These observations 
manifest the potential of mammalian Trxs to adopt multiple functions in many 
diverse contexts.

1.1.3.	 Mammalian Thioredoxin Reductase

Mammalian TrxRs belong, together with GSR, to the pyridine nucleotide di-
sulfide oxidoreductase family of proteins (Williams, 1992). TrxRs exhibit specific 
functions beyond serving as a mere electron donor for Trx [reviewed in (Arnér, 
2009)]. The two subunits of the homodimeric mammalian TrxR arrange in a “head-
to-tail” mode. Each monomer contains a flavin adenine dinucleotide (FAD)-bind-
ing domain, an NADPH-binding domain and an interface domain (Sandalova et 
al., 2001). The active site used to reduce Trx, as well as other specific target proteins, 
consists of a C-terminal -Gly-Cys-Sec-Gly-COOH motif (Cheng et al., 2009; Zhong 
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et al., 2000; Zhong et al., 1998). Sec in this motif represents the 21st amino acid 
selenocysteine, which is analogous to Cys and contains selenium in place of sul-
fur. TrxR has another FAD-associated -CVNVGC- active site, which is mainly used 
during the early steps of the catalytic mechanism as an intermediate step for elec-
trons that flow from NADPH to the main Sec-containing active site (Arnér, 2009).

Selenoprotein translation requires that Sec be inserted at the recoded stop co-
don UGA by a specifically designed translation machinery (Berry, 2005). Incorpo-
ration requires among other factors a cis-acting RNA secondary structure, termed 
Sec incorporation sequence (SECIS); a unique selenocysteinyl-tRNA, referred to as 
tRNA[Ser]Sec; and a translation elongation factor, SelB/EFsec.

Three different mammalian genes encode the diverse gene products of TrxR1, 
TrxR2 and TGR. Both TrxR1 and TrxR2 are ubiquitously expressed, while TGR 
is mainly expressed in testis. Moreover, TrxR1 primarily constitutes the cytosolic 
form of TrxR, while TrxR2 is mainly mitochondrial (Arnér, 2009). Alternative tran-
script variants have been identified for the genes encoding mammalian TrxR1 and 
TrxR2 [(Miranda-Vizuete and Spyrou, 2002; Osborne and Tonissen, 2001; Rundlöf 
et al., 2004; Su and Gladyshev, 2004); and reviewed in (Arnér, 2009)]. The splice 
variants corresponding to the gene encoding mammalian TrxR1 (TXNRD1) are to 
date the most extensively studied. Each alternative TXNRD1 transcript has been 
proposed to have a defined expression pattern in terms of cell, tissue or growth 
condition (Arnér, 2009).

TrxR1 and TrxR2 are essential for development, since inactivation of either 
of them results in embryonic lethality (Bondareva et al., 2007; Conrad et al., 2004; 
Jakupoglu et al., 2005). In order to ascertain the role of TrxR in different organs, 
tissues or cells, a number of research groups have used conditional knockout mice 
to target Txnrd deletions to the nervous system (Soerensen et al., 2008), heart 
(Conrad et al., 2004; Jakupoglu et al., 2005; Kiermayer et al., 2007) or lymphocytes 
(Geisberger et al., 2007). Only two out of eight tissue- or cell-specific knockout 
mice generated so far have been reported to cause obvious phenotypes [reviewed in 
(Conrad, 2009)]. In particular, heart-specific deletion of Txnrd2 was identified to 
induce heart failure and postnatal death (Conrad et al., 2004). Furthermore, mice 
harboring a nervous system-deletion of Txnrd1 develop to adulthood, but exhib-
it evident cerebellar defects (Soerensen et al., 2008). These findings suggest that 
TrxR1 and TrxR2 are differentially required for the development of specific organs, 
tissues or cells.

TrxRs have been associated to numerous human pathologies, ranging from 
cancer to male infertility, and including Alzheimer’s disease [reviewed in (Arnér, 
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2009)]. In addition, TrxR function, and that of GSR, have been connected to the 
biological cause of aging in mammals. For instance, it is generally acknowledged 
that cataract formation and skin deterioration increase with age. Thus, different 
agents (e.g. UV light) that promote age-related skin deterioration have been shown 
to induce TrxR activity in mouse skin (Kumar and Holmgren, 1999; Schallreuter 
and Wood, 2001). Moreover, GSR activity in the crystalline lens decreases with ag-
ing and cataract formation and can be reactivated by the Trx system (Yan et al., 
2007). In addition, aging induces a reduction of TrxR2 levels in rat muscle, which 
is reverted by the anti-aging effects of DR (Rohrbach et al., 2006). These findings 
clearly implicate TrxR, together with GSR, in mechanisms that regulate aging and 
age-related diseases.

1.2.	 Formulation of the Problem

A remarkable number of studies designed so far to understand the biology of 
the thioredoxin and related systems have been performed using mammalian mod-
els [reviewed in (Lillig and Holmgren, 2007)]. The main reason for using mamma-
lian models, such as the mouse, has been that they share many similarities in terms 
of genome homology, anatomy, cell biology and physiology with humans. Most of 
these studies are based on in vitro and ex vivo experimentation, since genetic and 
cell-biological in vivo studies are time-consuming and expensive in these animal 
models. In vitro and ex vivo approaches in mammalian models are still expanding 
at a fast pace, and have contributed to the discovery of many of the functions de-
scribed so far for the thioredoxin system. However, they offer limited information 
with regard to how cellular pathways interplay with environmental and internal 
cues in the context of a living animal. These limitations delay the advent of new 
discoveries at the genetic and cell-biological levels.

In addition, post-embryonic in vivo examination of mutants for the thiore-
doxin system cannot be performed in mammals because systemic mutation of 
thioredoxin and thioredoxin reductase results in embryonic lethality (Bondareva 
et al., 2007; Conrad et al., 2004; Jakupoglu et al., 2005; Matsui et al., 1996; Nonn 
et al., 2003). Furthermore, most members of the thioredoxin and related systems 
in mammals are expressed ubiquitously; only SpTrx1, SpTrx2, SpTrx3, Txl-2 and 
TGR are testis-specific [reviewed in (Miranda-Vizuete et al., 2004)] and RdCVF 
is retina-specific (Léveillard et al., 2004). This ubiquitous expression pattern in 
mammalian animal models hinders the effort to identify the in vivo function of 
thioredoxins and related molecules in a specific organ, tissue or cell (e.g. the nerv-
ous system). Such a goal would require a highly laborious experimental setup in 
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order to allocate the specific functions that pertain to, e.g., the nervous system, and 
discriminate from those that originate from other organs, tissues or cells [e.g. by 
generating nervous system-specific Cre-mediated deletions of the target mamma-
lian thioredoxin system gene (Soerensen et al., 2008)]. As described in the previous 
section, six out of eight tissue- or cell-specific knockout mice generated so far lack 
any obvious phenotype [overviewed in (Conrad, 2009)], which argues against the 
efficiency of this approach.

Therefore, not only evolutionary proximity and anatomical similarity should 
be taken into account as the main factors when selecting an experimental animal 
model. In fact, many basic cell-biological processes and the way they respond to 
environmental and inter-cellular cues share a high degree of functional conserva-
tion across phyla, despite the inter-specific morphological variation [reviewed in 
(Fontana et al., 2010; Hariharan and Haber, 2003)]. Consequently, new insights into 
the biology of thioredoxins and related molecules in vivo could be gained by reduc-
ing the level of complexity of the experimental platform. Hence, the use of a simple, 
versatile and inexpensive in vivo model organism would further contribute to the 
discovery of novel mechanisms of action for the thioredoxin and related systems at 
a genetic and cell-biological level.

1.3.	 Caenorhabditis elegans: a Toolbox for in vivo Discovery

Over the years, the nematode Caenorhabditis elegans has emerged as an in-
creasingly acknowledged and powerful invertebrate model organism, used to study 
important biological processes associated with human health in vivo. Since the 
original studies performed by Sydney Brenner on the genetics of behavior (Brenner, 
1973), the list of biological processes studied by the C. elegans research community 
has expanded enormously. C. elegans is used today to study apoptosis, cell signaling, 
gene regulation, synaptic transmission, neural plasticity, metabolism and aging, in 
addition to many other biological processes (Kaletta and Hengartner, 2006; Riddle 
et al., 1997). Moreover, significant discoveries in the fields of biology and medi-
cine were first made in C. elegans, including those concerning organ development 
and programmed cell death (Brenner, 1974; Ellis and Horvitz, 1986; Sulston, 1976), 
RNA interference (RNAi) (Fire et al., 1998) and the use of green fluorescent protein 
(GFP) for in vivo microscopy (Chalfie et al., 1994). Therefore, it is not surprising 
that the value of C. elegans as a model organism has been recognized by awarding  
the Nobel Prize to six C. elegans researchers on three occasions during the last dec-
ade (Nobel Prize web site, http://www.nobelprize.org).

C. elegans displays a number of qualities that make it a powerful tool for in 
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vivo discovery. First, many of the basic molecular and cellular pathways present 
in mammals are conserved in C. elegans, and its genome has been completely se-
quenced (The C. elegans Sequencing Consortium, 1998). In particular, C. elegans 
homologs have been determined for over 60% of the human proteins (Kuwabara 
and O’Neil, 2001; Lai et al., 2000; Sonnhammer and Durbin, 1997). Moreover, 12 
out of 17 known signaling pathways are conserved between C. elegans and human 
(The National Research Council, 2000; Leung et al., 2008). Remarkably, it has been 
reported on many occasions that a specific human gene can functionally replace 
the endogenous putative homolog when expressed in C. elegans (Kao et al., 2007; 
Pierce et al., 2001).

Second, C. elegans is a sophisticated multicellular animal framed in an appar-
ently simple body plan. The adult hermaphrodite consists of only 959 somatic cells 
(Riddle et al., 1997; Wood, 1988). However, cells assemble into many tissues and or-
gans that ultimately form complex systems, including epithelial, nervous, muscular, 
excretory, alimentary and reproductive systems (Altun and Hall, 2008). In addition, 
the complete wiring diagram of the 302 neurons present in the hermaphrodite is 
known (White et al., 1986), which allows for better understanding of processes such 
as neural plasticity and synaptic transmission.

Third, C. elegans can easily be maintained in laboratory conditions by feeding 
on Escherichia coli (Stiernagle, 2006). Adult hermaphrodites of ~1 mm in length 
take ~3 days to develop from the egg stage (Figure 2) and have a large brood size 
of over 300 progeny. These attributes favor large-scale in vivo studies, which can be 
performed in 96-well microtiter plates because of the small size of adult C. elegans 
(Hope, 1999; Riddle et al., 1997). Moreover, hermaphrodites complete the process 
of development and senescence in over 2 weeks (Figure 2) (Riddle et al., 1997), 
which qualifies C. elegans as one of the preferred in vivo animal models for aging 
research. 

Fourth, because C. elegans is transparent, fluorescent reporters can be used 
to visualize in vivo many cell-biological processes, such as axon growth or fat me-
tabolism. 

Last, the combination of powerful online and experimental tools with the pre-
disposition of C. elegans to large-scale, genome-wide genetic screens [reviewed in 
(Antoshechkin and Sternberg, 2007)], highlight C. elegans as one of the models of 
choice for in vivo biomedical discovery.

Despite the advantages described above, C. elegans lacks many organs and 
tissues present in mammals, which imposes a limitation when attempting to model 
functions of the thioredoxin and related systems in such organs or tissues. How-
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ever, the strength of C. elegans, as highlighted above, resides in the fact that high-
throughput cell-biological and genetic manipulations can be performed at better 
cost-effectiveness than in mammalian models. Hence, combining the knowledge 
acquired using C. elegans as an in vivo experimental platform with that achieved 
using mammalian models, can contribute to clarify complex aspects of the biology 
of thioredoxins and related proteins that would otherwise remain cryptic.

1.4.	 The plasticity of Aging and Survival: 
Lessons from C. elegans

1.4.1.	 General Aspects

The attributes of Caenorhabditis elegans as a model system for biomedical re-
search, not only favor high-throughput, genome-wide examination of fundamental 
genetic and cell-biological processes. In addition, these advantageous resources can 

Figure 2. The life cycle of C. elegans at 22°C. Fertilization denotes time point zero. Numbers 
in parenthesis represent the time span of the indicated life stage. Figure adapted from (Altun 
and Hall, 2008; Braendle et al., 2008; Riddle et al., 1981)
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also be applied to understand how the whole organism interacts with a changing 
environment from a cell-biological and genetic perspective. The relevance of un-
derstanding these questions are being progressively acknowledged in developmen-
tal and evolutionary biology, as well as in more applied fields of study like pharma-
ceutical and toxicological research [reviewed in (Braendle et al., 2008; Leung et al., 
2008)].

Animals interact with their surrounding environment and consequently un-
dergo a number of adaptive responses, which are modulated by the environment 
depending on the plasticity of the biological processes that regulate such dynamic 
responses. For instance, DR has been hypothesized to extend life in humans, based 
on recent studies conducted on a specific human cohort from Okinawa, Japan 
(Willcox et al., 2007; Willcox et al., 2006). In animal models, it has been shown that 
different nutrient regimens, which can even be administered at different time inter-
vals, trigger an array of varying longevity outcomes (Piper and Bartke, 2008). In ad-
dition, a number of mammals can exhibit acute adaptive responses (e.g. metabolic 
rate depression, cell preservation or decrease in immune system function) to drastic 
changes in the environment by undergoing a state of natural torpor, termed hiber-
nation (Bouma et al., 2010; Storey, 2010). Therefore, the environment stretches the 
potential capabilities of an organism’s genotype to adapt and respond by exhibiting 
a dynamic range of genetic and cell-biological responses during development and 
aging, which can differentially affect survival outcomes throughout life. 

However, very little is known about how the plasticity of biological processes 
upon environmental changes is regulated at the genetic and cell-biological levels 
during development and aging, and how it affects survival. In the next sections, 
I briefly overview the current knowledge on relevant aspects of development and 
aging in C. elegans, and integrate that knowledge in the context of other organisms. 

1.4.2.	 Molting

Molting has evolved as a mechanism adopted by many species to provide the 
means for increased reproductive success, and consequently, for population sur-
vival. Nematodes and arthropods, together with other members of the animal clade 
Ecdysozoa (Aguinaldo et al., 1997), share the ability to undergo molting. Arthro-
pods are among the most successful organisms on earth in ecological terms. This 
achievement is in part due to the advantage of having an external skeleton, termed 
cuticle or exoskeleton (Ewer, 2005; Page and Johnstone, 2007). The cuticle is a rela-
tively rigid structure to which epidermis and muscles are attached. Therefore, these 
animals need to replace their old cuticle with a newly secreted one (i.e. molt) in or-
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der to grow. Apart from contributing to progress in biological research, the study of 
molting in C. elegans can lead to advances in our understanding of dermatological 
processes at the cellular and genetic levels, with clear parallels in higher organisms.

Molting provides clear evolutionary and biological advantages in C. elegans 
in the context of survival. For instance, the ability to form the long-lived, stress-
resistant dauer larva in unfavorable environments requires that molting be tightly 
coordinated (see Dauer Formation section below). Similarly, when the environ-
ment is favorable, four molts occur at the end of each larval stage (L1–L4) between 
hatching and adulthood (Figure 2) (Singh and Sulston, 1978). Before each molt, 
animals experience a gradual decrease in activity and feeding (lethargus) (Raizen 
et al., 2008). Then, the old cuticle separates from the epidermis (apolysis), while 
de novo synthesized components are deposited to form the new cuticle. Next, the 
worm completes apolysis by performing fast rotations around its longitudinal axis. 
Finally, the worm sheds and emerges from the old cuticle (ecdysis), and completes 
the molting process (Page and Johnstone, 2007).

The molecular control of molting is best known in insects. In brief, secre-
tion of the neuropeptide prothoracicotropic hormone from the brain stimulates 
synthesis and secretion of the steroid hormone ecdysone, which is converted into 
the active hormone 20-hydroxyecdysone. This active hormone is the key regula-
tor of molting in insects. 20-hydroxyecdysone stimulates transcriptional pathways 
that regulate molting by forming a complex with the ecdysone receptor (EcR) and 
ultraspiracle (USP) (Dubrovsky, 2005; Ewer, 2005). This signaling cascade involves 
the timely activation of members of the conserved nuclear receptor family of pro-
teins (Ashburner, 1974; Huet et al., 1995; Sullivan and Thummel, 2003).

Comparatively less is known about the molecular control of molting in 
C. elegans. The C. elegans genome does not encode a homolog of EcR or of USP 
(Ewer, 2005; Magner and Antebi, 2008). Among the genes that affect the process 
of molting identified by genome-wide RNAi screens (Frand et al., 2005), no obvi-
ous equivalent to 20-hydroxyecdysone has been found. However, it is known that 
both cholesterol and steroid hormones are required to trigger molting (Entchev 
and Kurzchalia, 2005; Kuervers et al., 2003; Yochem et al., 1999), by a mechanism 
that likely operates through regulation of nuclear hormone receptors (Gissendan-
ner and Sluder, 2000; Kostrouchova et al., 2001; Magner and Antebi, 2008). The 
process of ecdysis involves considerable tissue remodeling, which is facilitated by 
metalloproteases and other proteases (Brooks et al., 2003; Davis et al., 2004). In ad-
dition, different tissues have been shown to regulate molting (Frand et al., 2005). 
For instance, lethargus is regulated by epidermal growth factor signaling in neurons 
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(Van Buskirk and Sternberg, 2007), while proteins in the muscle dense bodies were 
recently shown to regulate apolysis (Zaidel-Bar et al., 2010).

The degree of environmental sensitivity of the molting process in C. elegans 
has not been examined in detail. A priori, the fact that many different tissues are 
involved in the control of molting (Frand et al., 2005), suggests that the process is 
robustly regulated and probably insensitive to environmental changes. Moreover, 
complete removal of exogenously supplied cholesterol can stop growth at early lar-
val stages (Merris et al., 2003), indicating that the plasticity of this essential process 
might be limited.

1.4.3.	 Dauer Formation

Many vertebrate and invertebrate species have acquired the ability to en-
dure periods of reduced metabolism and enhanced stress tolerance, which favor 
long-term survival when environmental conditions worsen (MacRae, 2010; Storey, 
2010). This strategy of reversibly arresting into a hypometabolic state for survival is 
a common characteristic of hibernating and diapausing organisms (Storey and Sto-
rey, 2004). Hibernation has been reported in different groups of mammals (Geiser, 
2004), while mostly invertebrates such as insects and nematodes undergo diapause 
(MacRae, 2010). The molecular mechanisms that regulate the dauer diapause of 
nematodes, including that of C. elegans, have been proposed to be conserved across 
phyla. Hence, knowledge obtained from studies on hypometabolism and cell pres-
ervation of the C. elegans dauer diapause, could potentially aid in developing new 
strategies for medical routines, such as organ transplantation or surgery (Storey, 
2010).

The dauer diapause has evolved as an alternative developmental stage intend-
ed for increased survival in adverse environmental conditions. The advantages of 
this survival mechanism have proven successful, since it has been adopted by di-
verse nematode species (Cassada and Russell, 1975; Yarwood and Hansen, 1969). 
Under favorable conditions, the worm develops from embryo to adult through four 
larval stages (L1–L4) (Figure 2) (Singh and Sulston, 1978). If exposed to adverse 
conditions early during development (i.e. around the late L1 stage), animals di-
vert development to form the dauer larva (Cassada and Russell, 1975). After the 
L1-to-L2 molt, worms already undergoing morphological and metabolic changes 
toward becoming dauers, develop to a distinct pre-dauer L2 stage (L2d) (Figure 
2). Although L2d larvae are programmed to develop into dauer larvae, L2d larvae 
can develop into normal L3 larvae if environmental conditions improve (Riddle et 
al., 1997; Wood, 1988). Once formed, dauers can remain developmentally arrested 
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for several months, until favorable conditions are encountered. Upon return to fa-
vorable environments, commitment to dauer recovery occurs, the animal resumes 
growth and molts into a post-dauer L4 larva (Figure 2) (Cassada and Russell, 1975; 
Golden and Riddle, 1984).

Dauer formation causes broad, tightly regulated changes in the whole body 
(Riddle et al., 1997). Morphologically, dauers appear thinner than their L3 larva 
counterparts, their pharynxes are constricted (i.e. feeding is suppressed), and pos-
ses a specialized cuticle with longitudinal ridges called alae adapted for fast move-
ment. With regard to their metabolic changes, a shift towards anaerobic fermenta-
tion occurs during dauer formation (Holt and Riddle, 2003; Vanfleteren and De 
Vreese, 1996) and dauers accumulate fat and carbohydrate reserves (Riddle et al., 
1997). In general, dauer larvae are resistant to many forms of stress, such as starva-
tion, heat, oxidative stress or desiccation.

Genetic studies and laser-mediated cell ablations have clarified the function of 
specific sensory neurons and neuroendocrine signaling pathways in the regulation 
of dauer formation (reviewed in (Braendle et al., 2008; Fielenbach and Antebi, 2008; 
Hu, 2007). During dauer formation, genes characteristic of reproductive growth are 
inactivated, while other genes important for survival are upregulated (Burnell et al., 
2005; Wang and Kim, 2003). Initial genetic screens identified two opposite pheno-
types with respect to dauer formation (Gottlieb and Ruvkun, 1994; Riddle et al., 
1981; Thomas et al., 1993; Vowels and Thomas, 1992). Dauer formation defective 
mutants (Daf-d) show decreased sensitivity toward adverse environmental condi-
tions and bypass dauer formation. On the other hand, dauer formation constitutive 
mutants (Daf-c) commit to dauer formation even under favorable conditions. 

Different neuroendocrine signaling pathways that regulate dauer formation 
have been identified. The early steps of the signaling cascade take place in specific 
sets of amphid sensory neurons (Figure 3) (Bargmann and Horvitz, 1991). These 
neurons respond and process environmental stimuli that govern dauer formation, 
such as food, temperature and pheromone (Golden and Riddle, 1982; Golden and 
Riddle, 1984). The sensory neurons ADF, ASI and ASG inhibit dauer entry in fa-
vorable environments, while ASJ neurons are required for dauer recovery upon re-
turn to favorable external conditions. In addition, ASJ neurons, and mildly ASK 
neurons, promote dauer entry in unfavorable environments (Schackwitz et al., 
1996). The signaling pathways participating in early sensory transduction in these 
sets of neurons include cilia components and associated regulatory factors (Hay-
craft et al., 2001; Shakir et al., 1993; Swoboda et al., 2000), G-protein-coupled re-
ceptor (GPCR) signaling (Kim et al., 2009; Zwaal et al., 1997) and cyclic guanosine 
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monophosphate (cGMP) signaling (Figure 3) (Birnby et al., 2000; Schackwitz et 
al., 1996). These early components of the signaling cascade couple the integrated 
environmental inputs onto the transforming growth factor β (TGF-β) (Murakami 
et al., 2001; Ren et al., 1996), insulin-like (Cornils et al., 2011; Kimura et al., 1997; 
Li et al., 2003), serotonergic (Sze et al., 2000) and steroid hormone (Gerisch and 
Antebi, 2004; Mak and Ruvkun, 2004) signaling pathways (Figure 3). Next, these 
neuroendocrine signaling pathways rely on downstream transcriptional regulators, 
which are responsible for implementing the dauer/non-dauer switch. Important 
transcription factors that regulate dauer formation include the C. elegans homologs 
of SMAD (DAF-3, -8, -14), (Inoue and Thomas, 2000; Park et al., 2010a; Patter-
son et al., 1997), SKI (DAF-5) (da Graca et al., 2004), FOXO (DAF-16) (Gottlieb 
and Ruvkun, 1994; Ogg et al., 1997; Vowels and Thomas, 1992) and nuclear hor-

Figure 3. Simplified overview of a model for the regulatory pathways involved in dauer 
formation. NHR denotes nuclear hormone receptor. See text for details. Figure adapted from 
(Braendle et al., 2008; Fielenbach and Antebi, 2008).
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mone receptors LXR or VDR (DAF-12) (Figure 3) (Antebi et al., 2000; Ludewig 
et al., 2004; Magner and Antebi, 2008; Snow and Larsen, 2000). Consistent with 
a neuroendocrine regulatory mechanism, both insulin-like signaling and nuclear 
hormone receptor pathways have been shown to operate, at least in part, in a cell-
non-autonomous fashion (Apfeld and Kenyon, 1998; Gerisch and Antebi, 2004; 
Mak and Ruvkun, 2004). In addition, the neuroendocrine signaling pathways and 
transcription factors that regulate dauer formation likely do not function in a sim-
ple hierarchical fashion. In fact, they have been proposed to work through feedback 
mechanisms and molecular cross talk (Gerisch and Antebi, 2004; Lee et al., 2001; 
Liu et al., 2004; Mak and Ruvkun, 2004; Vowels and Thomas, 1992). However, the 
mechanisms by which these complex signaling pathways communicate with each 
other remain largely unknown.

The signaling pathways that regulate the dauer/non-dauer switch during de-
velopment in response to changes in the environment represent a well-recognized 
form of plasticity (Braendle et al., 2008; Fielenbach and Antebi, 2008). For instance, 
temperature and other environmental parameters (e.g. cholesterol or dauer phero-
mone levels) modulate the penetrance of the Daf phenotypes. Thus, a number of 
Daf-c mutants only form dauers at moderately elevated temperatures (25°C) (Gems 
et al., 1998), while certain Daf-d mutants, and even wild type worms, have been 
shown to form dauers at 27°C (Ailion and Thomas, 2000). Furthermore, although 
the dauer/non-dauer switch is classically depicted as a decision between two discrete 
morphs, intermediate morphs, commonly referred to as partial dauers or dauer-like 
larvae, have also been reported (Ohkura et al., 2003; Vowels and Thomas, 1992). In 
addition, diapause stages other than dauer, termed L1 diapause and L2 diapause, 
have also been described (Baugh and Sternberg, 2006; Ruaud and Bessereau, 2006). 
These few examples reveal the powerful developmental plasticity exhibited by C. el-
egans to cope with adverse environments. Still, many of the regulatory mechanisms 
that contribute to this developmental plasticity are ripe for discovery.

1.4.4.	 Aging

Humans have long been interested in extending their lives, although not at 
any cost: such life extension must also guarantee a delay in age-associated diseases. 
This basic idea has inspired major research efforts over the last decades, which in 
turn have provided important new perspectives on how we understand aging as 
a biological process today. Paradoxically, aging was for many years thought to be 
a passive, casual event driven by arbitrary deterioration. However, discoveries in 
lower organisms (including yeast, flies and worms) have identified signaling path-
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ways and transcription factors that are involved in the regulation of aging [reviewed 
in (Haigis and Yankner, 2010; Kenyon, 2005; Kenyon, 2010)]. One could argue that 
these lifespan pathways shown to act in lower organisms might not regulate aging 
in more complex animals, such as mammals or humans. Interestingly, the effect of 
many of these signaling pathways on adult lifespan has been shown to be evolution-
arily conserved (Harrison et al., 2009; Jia et al., 2004; Kaeberlein et al., 2005; Kapahi 
et al., 2004). Hence, new findings obtained from aging studies in C. elegans, could 
provide the knowledge necessary to develop drugs that may extend youthfulness 
and adult lifespan (Kenyon, 2010).

DR is an environmental intervention that extends lifespan in many species, 
from yeast to mammals (Klass, 1977; Lin et al., 2002; Loeb and Northrop, 1917; Mc-
Cay et al., 1935), and corresponds to a reduction in food intake without malnutri-
tion. Sensory neurons of C. elegans (Bishop and Guarente, 2007b; Park et al., 2010b) 
and D. melanogaster (Libert et al., 2007) have been proposed to play important roles 
in regulating DR-mediated lifespan extension. In particular, nutritional deficit cues 
are sensed by sensory neurons, which trigger a global induction of mitochondrial 
respiration through activation of neuroendocrine signals (Bishop and Guarente, 
2007a).

During the process of aging, a number of nutrient-sensing pathways regu-
late the function of stress response genes. These nutrient-sensing pathways include 
sirtuins, AMP-activated protein kinase (AMPK), the insulin-like signaling path-
way and the target of rapamycin (TOR) signaling pathway (Haigis and Yankner, 
2010; Kenyon, 2010). The molecules involved in these pathways operate by sensing 
physiological changes, such as energy status, hypoxia or DNA and protein damage. 
DR has been shown to induce differential up- or downregulation of each of these 
nutrient-sensing pathways. This effect ultimately increases global stress resistance 
against subsequent stress, or nutritional deficit, and results in extended lifespan 
(Haigis and Yankner, 2010; Kenyon, 2010; Ristow and Zarse, 2010). Interestingly, 
studies performed in C. elegans suggest that the requirement for each nutrient-sens-
ing pathway to extend lifespan varies depending on the DR protocol used (Figure 
4) (Greer and Brunet, 2009; Kenyon, 2010). In particular, extreme, or moderate, 
life-long DR extends lifespan through TOR inhibition, or sirtuin activation, respec-
tively (Hansen et al., 2007; Wang and Tissenbaum, 2006). Moreover, mid-life onset 
of DR extends lifespan through AMPK activation (Greer et al., 2007), while mid-
life onset of intermittent fasting extends lifespan through inhibition of insulin-like 
signaling (Honjoh et al., 2009). The hormetic response elicited by DR induces glob-
al stress resistance and repair pathways, which include mitochondrial respiratory 
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metabolism, protein homeostasis, DNA damage repair and autophagy (Haigis and 
Yankner, 2010; Kenyon, 2010; Ristow and Zarse, 2010). In C. elegans, the changes 
in gene expression triggered by DR have been found to be mediated by a number 
of transcription factors (Figure 4), including the FOXO homolog DAF-16 (Greer 
et al., 2007; Honjoh et al., 2009), the FOXA homolog PHA-4 (Hansen et al., 2008; 
Panowski et al., 2007), the nuclear factor erythroid-derived (Nrf2) homolog SKN-
1 (Bishop and Guarente, 2007b) and the heat shock factor family homolog HSF-1 
(Steinkraus et al., 2008). DAF-16, HSF-1 and SKN-1 have been found to regulate 
aging cell-non-autonomously, suggesting that their effect likely involves neuroen-
docrine signaling (Bishop and Guarente, 2007b; Libina et al., 2003; Morley and Mo-
rimoto, 2004). Thus, cell protection and maintenance mechanisms can be closely 
coordinated by coupling DR to neuroendocrine signaling during aging (Park et al., 

Figure 4. Different dietary restriction methods extend lifespan through specific nutrient-sensing 
pathways and transcription factors in Caenorhabditis elegans. eat-2 mutants represent a 
classical genetic dietary restriction method in the worm (Lakowski and Hekimi, 1998). These 
mutants exhibit reduced food intake throughout life because of a pharyngeal pumping defect 
(Avery, 1993; Raizen et al., 1995). Different eat-2 mutant alleles display the feeding-defective 
phenotype at varying strengths, resulting in either strong or weak (Avery, 1993). See text for 
details. Figure adapted from (Greer and Brunet, 2009; Kenyon, 2010).
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2010b). In addition, feedback communication among tissues and molecular cross-
talk likely favor this level of coordinated action (Libina et al., 2003; Murphy et al., 
2003; Tullet et al., 2008). However, the mechanisms by which these nutrient-sensing 
pathways and transcription factors interplay and communicate in various tissues to 
regulate DR-mediated lifespan extension remain largely unknown.

The plasticity exhibited by the processes that regulate aging, is not unique 
to DR-mediated lifespan extension (cf. above). In addition, other external stimuli, 
such as chemical agents and temperature, can modify the rate of aging in a co-
ordinated and plastic manner (Kenyon, 2005). For instance, some DR mimetics 
have been reported to extend lifespan in C. elegans and other species (Ingram et al., 
2006). One of these DR mimetics, the anti-diabetic drug metformin, has recently 
been studied in C. elegans (Onken and Driscoll, 2010). In this report, increasing 
concentrations of metformin have been shown to extend lifespan, and this lifes-
pan extension requires AMPK and SKN-1 function. Moreover, it has been recently 
shown that adult lifespan is very sensitive to changes in temperature, and that this 
process is orchestrated in C. elegans thermosensory neurons (Lee and Kenyon, 
2009). In summary, the importance of these plastic responses to nutritional deficit, 
DR mimetics and temperature is sustained by the fact that these responses are not 
mere passive consequences of environmental changes, but, instead, are influenced 
by regulatory processes that contribute to such plasticity.

These examples show that lifespan, and consequently aging, retain a remark-
able level of plasticity in C. elegans. The genetic and cell-biological processes that 
control adult lifespan and aging are considerably conserved across species. Thus, 
the plastic attributes of C. elegans favor the use of this animal model as a powerful 
in vivo platform to provide innovative insights into the biology of the thioredoxin 
and related systems and their impact on the aging process.
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2.	 Aims of this Thesis

The main aspiration of this thesis has been to establish the invertebrate model 
organism Caenorhabditis elegans as a novel in vivo experimental platform to eluci-
date the role of the thioredoxin system in general physiology, survival and aging.

Specifically, the aims have been to:

Paper I: 	 First, undertake a systematic survey of the C. elegans genome to iden-
tify putative homologs of the mammalian thioredoxin and related 
systems. Subsequently, accomplish at the molecular, cellular and ge-
netic levels the initial characterization of the C. elegans thioredoxin 
gene trx-1, whose encoded protein has the highest amino acid iden-
tity compared to human Trx1.

Paper II:	 First, investigate whether the thioredoxin reductase TRXR-1, the 
only selenoprotein found in C. elegans, is involved in general protec-
tion against oxidative stress. Subsequently, understand how TRXR-
1 functions together with the single glutathione reductase protein 
found in the worm, GSR-1, to regulate molting.

Paper III:	 Test whether the C. elegans thioredoxin protein TRX-1 participates 
in survival mechanisms associated with the ASJ sensory neurons. 
Therefore, the initial goal has been to determine whether it plays a 
role in formation of the stress resistant, long-lived dauer larva, a de-
velopmental stage triggered during unfavorable conditions.

Paper IV:	 Understand the mechanisms by which the thioredoxin protein TRX-
1 regulates aging in C. elegans. More specifically, the goal has been 
to test whether TRX-1 regulates adult lifespan extension induced by 
dietary restriction, an environmental intervention known to extend 
lifespan in diverse model systems.
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3.	 Results

3.1.	 Paper I

Lifespan decrease in a Caenorhabditis elegans mutant lacking 
TRX-1, a thioredoxin expressed in ASJ sensory neurons.

Growing evidence shows that the thioredoxin system is implicated in the 
regulation of multiple aspects of normal physiology, pathology and aging in higher 
organisms. However, the in vivo mechanisms underlying these processes remain 
unclear, since knocking out components of the thioredoxin system in mammals re-
sults in lethality during embryogenesis, as mentioned above. In this paper, we make 
use of the invertebrate animal model C. elegans to perform the initial description 
of the thioredoxin system, and in particular of the thioredoxin gene trx-1, at the 
biochemical, cell biological and genetic levels.

First, using multiple sequence alignment methods we show that the C. elegans 
genome contains many putative homologs of the mammalian thioredoxin and re-
lated systems (summarized in Table 1). These include Trx1, Trx2, Txl-1 and ERdj5, 
together with the thioredoxin reductases TrxR1 and TrxR2. However, a number 
of other thioredoxins and related molecules in mammals are not present in the 
C. elegans genome. Examples of these are the testis-specific thioredoxin proteins 
SpTrx1, SpTrx2, SpTrx3 and Txl-2, and the testis-specific thioredoxin glutathione 
reductase TGR. 

Following this initial overview of the C. elegans thioredoxin and related sys-
tems, we have focused on the C. elegans gene trx-1, since the protein it encodes has 
the highest amino acid identity compared to human Trx1. It had previously been 
reported in WormBase (http://www.wormbase.org), that trx-1 consists of two splice 
variants: trx-1a and trx-1b. However, no experimental proof had been reported to 
demonstrate that the two splice variants are transcribed into mRNA. Thus, we de-
cided to analyze the 5’ and 3’ UTRs of the two trx-1 splice variants, by using RT-
PCR and 5’ RACE. We found that the two splice variants are indeed transcribed. 

To further examine whether both splice variants are translated into proteins, 
we performed Western blots on worm extracts using specific antibodies for the 
proteins TRX-1a and TRX-1b. Detection of only TRX-1b, but not of TRX-1a, in 
worm extracts of transgenic worms expressing the trx-1::GFP translational fusion, 
suggests that the TRX-1b protein is the main product translated in worms. We next 
performed a classical enzymatic activity assay (Luthman and Holmgren, 1982), 
to investigate whether C. elegans TRX-1b can reduce disulfide bonds in vitro. As 
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expected, this assay showed that TRX-1b retains its disulfide-reducing enzymatic 
activity.

We then asked whether C. elegans trx-1 is expressed in all tissues, as is its hu-
man counterpart (Lillig and Holmgren, 2007). For that purpose, we analyzed the 
expression pattern of transgenic lines expressing a trx-1::GFP translational fusion. 
Interestingly, the expression pattern of trx-1 is limited to a pair of neurons in the 
head of the worm: the ASJ sensory neurons. This expression pattern is consistent 
throughout life, from embryo to adult.

ASJ neurons participate in the regulation of dauer larva formation and in the 
control of aging (Alcedo and Kenyon, 2004; Bargmann and Horvitz, 1991; Schack-
witz et al., 1996). To understand the role of TRX-1 in these functions associated with 
ASJ neurons, we analyzed trx-1 mutants carrying the ok1449 allele. Using Western 

Human protein C. elegans homolog
Trx1 TRX-1
Trx2 TRX-2
Grx1 GLRX-10
Grx2 GLRX-21, -22
Grx3 D2063.3
Grx5 GLRX-5
SpTrx1 n.f.
SpTrx2 n.f.
SpTrx3 n.f.
PDIA1 PDI-1, -2
PDIA3 PDI-3
ERdj5 DNJ-27
Txl-1 Y54E10A.3
Txl-2 n.f.
RdCVF n.f.
Nrx* C32D5.8
TrxR1 TRXR-1
TrxR2 TRXR-2
GSR GSR-1
TGR n.f.

Table 1. Thioredoxins and related proteins in humans, 
with their corresponding C. elegans homologs.

Not all C. elegans Trx-like proteins are shown. Source: 
WormBase (http://www.wormbase.org) and NCBI (http://www.
ncbi.nlm.nih.gov) web sites; except for *, (Funato and Miki, 
2007). n.f., not found. See text for further details.
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blot analyses we determined that the ok1449 allele is a null mutation. While trx-
1(ok1449) animals are similar to wild type with regard to dauer formation phe-
notypes, their adult lifespan is shorter than that of wild type. Moreover, wild-type 
animals overexpressing trx-1::GFP in ASJ neurons show extended adult lifespan.

In conclusion, TRX-1 arises as the first thioredoxin reported in animals that 
is expressed solely in neurons. In addition, the shortened lifespan phenotype exhib-
ited by trx-1(ok1449) mutants endorses the use of C. elegans as a model organism 
to further investigate the in vivo functions of thioredoxins during stress and aging.
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3.2.	 Paper II

Selenoprotein TRXR-1 and GSR-1 are essential for removal of 
old cuticle during molting in Caenorhabditis elegans

Although mammalian thioredoxin reductase TrxR1 has been proposed to 
protect against oxidative damage accumulated during aging (Arnér, 2009), its in 
vivo function is still unknown. Exposure of mammalian epidermis to different tu-
morigenic agents induces thioredoxin reductase activity (Kumar and Holmgren, 
1999; Schallreuter and Wood, 2001). However, its role in the epidermis remains 
unclear. In this paper, we show how the C. elegans thioredoxin reductase TRXR-1 
functions, in combination with the glutathione reductase GSR-1, to regulate both 
apolysis (i.e. separation of old and new cuticle) and ecdysis (i.e. shedding and emer-
gence from the old cuticle) during molting.

We investigated the possibility that molting requires reduction of disulfide 
bonds in cuticle components to proceed. To understand this question, we made 
use of four different externally applied reagents during molting and at intermolt 
(i.e. the period between two consecutive molts). Using the thiol-reactive fluores-
cent reporter Alexa Fluor 488 C5 maleimide (AF488CM) (Sahaf et al., 2003), the 
thiol-reducing agent dithiothreitol (DTT) (Cleland, 1964), the thiol-blocking agent 
N-ethylmaleimide (NEM) (Cadenas et al., 1961), and the thiol-oxidizing agent di-
amide (Kosower et al., 1969), we find that reduction of disulfide bonds in cuticle 
components is required for molting to succeed.

We then tested whether the thioredoxin reductase TRXR-1, the sole seleno-
protein in C. elegans (Buettner et al., 1999; Gladyshev et al., 1999; Taskov et al., 
2005), is required for the reduction of disulfide bonds in cuticle components dur-
ing molting. Since oxidative stress sensitivity and molting appeared to be normal 
for trxr-1(sv47) null mutants, we investigated whether TRXR-1 acts together with 
other redox proteins to regulate molting. We only observed growth arrest specifi-
cally at molt when trxr-1(sv47) animals were subjected to RNAi of the single glu-
tathione reductase gene gsr-1. Further examination of trxr-1(sv47); gsr-1(RNAi) 
animals by using DTT and AF488CM supports that TRXR-1, together with GSR-1, 
are required for the reduction of cuticle components during molting. In addition, 
using GFP reporters, we observed that both trxr-1 and gsr-1 are expressed in the 
hypodermis and in the pharynx. Moreover, trxr-1 is also expressed in the nervous 
system, while gsr-1 is not. Hypodermis and pharynx are involved in the secretion of 
cuticle components during molting (Frand et al., 2005; Page and Johnstone, 2007). 
Using tissue-specific promoters to genetically rescue the associated molting arrest 
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phenotypes, we arrived at the conclusion that both TRXR-1 and GSR-1 are required 
in pharynx and hypodermis (but not in the nervous system) for molting to succeed. 

One could argue that the growth arrest observed in trxr-1(sv47); gsr-1(RNAi) 
is due to synthesis defects of cuticle components during molting. To investigate this 
possibility, we performed a comparative analysis of the phenotypes exhibited by 
mutants for the C. elegans protein disulfide isomerase genes pdi-2 and pdi-3, which 
manifest synthesis defects of cuticle components (Winter et al., 2007), and those 
observed in trxr-1(sv47); gsr-1(RNAi) animals. Together with electron microscopy 
studies of the cuticle, the comparative analysis suggests that cuticle synthesis is not 
disrupted in trxr-1(sv47); gsr-1(RNAi) animals. Similarly, expression of a GFP re-
porter for the cuticle components QUA-1 (Hao et al., 2006) and LON-3 (Nyström et 
al., 2002) in trxr-1(sv47); gsr-1(RNAi) animals appear to be normal. These findings 
suggest that TRXR-1 and GSR-1 regulate molting by means other than affecting 
synthesis of cuticle components during molting.

Since glutathione (GSH) is an important target molecule for the thioredox-
in system (Kanzok et al., 2001; Muller, 1996), we next tested on the assumption 
that GSH might be one of the reducing agents acting downstream of both TRXR-1 
and GSR-1 to promote molting success. Exposing wild-type and trxr-1(sv47); gsr-
1(RNAi) worms to exogenously administered GSH, we could observe that this small 
molecule not only is essential for ecdysis, but also for apolysis. These findings were 
supported by staining with AF488CM and by inactivating the gene gcs-1, which is 
implicated in glutathione synthesis (An and Blackwell, 2003).

Using 75Se-labeled Escherichia coli bacteria to grow C. elegans trxr-1 deletion 
mutants and wild-type animals, we could confirm that the C. elegans gene trxr-1 
encodes a selenoprotein (Buettner et al., 1999; Gladyshev et al., 1999; Taskov et al., 
2005). Next, we wanted to understand how crucial is selenocysteine for TRXR-1 
function in the worm. For this purpose, we designed a strategy to indirectly block 
incorporation of selenocysteine into C. elegans TRXR-1. To do this, we fed wild-
type and gsr-1(RNAi) worms with an E. coli strain unable to incorporate selenocyst-
eine itself (selD–) (Leinfelder et al., 1990). Furthermore, we performed phenotypic 
and biochemical studies on a deletion mutant of selb-1, the C. elegans homolog of 
the selenoprotein-specific elongation factor SelB/EFsec (Fagegaltier et al., 2000). 
We also analyzed the consequences of replacing selenocysteine with cysteine, both 
in living C. elegans and in the classical insulin reduction assay (Holmgren and 
Bjornstedt, 1995). Together, these studies show that selenocysteine incorporation is 
essential for TRXR-1 function in vivo and in vitro.

C. elegans provides a unique toolbox to test whether molting is less efficient 
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in aged animals. This is represented by the postdauer molt: long-lived dauer lar-
vae undergo the postdauer molt when good environmental conditions are restored. 
Analyzing the effect of silencing gsr-1 by RNAi in wild-type and trxr-1 (or selb-1) 
mutant young dauers, we could anticipate that TRXR-1 and GSR-1 are also required 
for the postdauer molt. Comparing the ability of young and old wild-type dauers to 
proceed through molt and resume growth upon food availability, we could deduce 
that age and molting efficiency are inversely correlated. Similarly comparing the 
levels of AF488CM staining in young and old dauers, we could see that age cor-
relates with a decrease in sulfhydryl groups in the cuticle. We observed a similar 
inverse correlation between age and the expression levels of a gsr-1::GFP reporter 
in the hypodermis. Together, these findings suggest that molting is less efficient in 
aged animals and that this reduced efficiency correlates with a decrease in TRXR-1 
and GSR-1 function.

In conclusion, our findings suggest a novel regulatory role for the selenopro-
tein TRXR-1 and GSR-1 in apolysis and ecdysis during molting in C. elegans, and 
that their contribution to the removal of old cuticle strongly decreases with age.
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3.3.	 Paper III

The thioredoxin TRX-1 modulates the function of the insulin-like 
neuropeptide DAF-28 during dauer formation in Caenorhabditis 
elegans

For Paper I, we had performed the initial characterization of the C. elegans 
thioredoxin TRX-1. We decided to explore the possibility that TRX-1 participates 
in regulatory functions associated with ASJ neurons. In particular, we examined 
whether TRX-1 regulates formation of the stress-resistant, long-lived dauer larva 
in the worm.

First, we asked whether trx-1 affects dauer formation. Since trx-1(ok1449) 
null mutants appear to be normal for dauer formation, we investigated whether 
TRX-1 affects the function of genes required for dauer formation. We analyzed the 
effects of trx-1(ok1449) on the dauer formation constitutive (Daf-c) phenotypes 
caused by mutation in members of the three classical pathways that regulate dauer 
formation in C. elegans (Fielenbach and Antebi, 2008; Hu, 2007). Combining the 
trx-1(ok1449) allele with mutations in the genes daf-11 and tax-4, members of the 
cGMP signaling pathway, we could show that loss of trx-1 causes a synthetic Daf-c 
phenotype. In addition, these observations also suggest that TRX-1 affects dauer 
formation mostly independently of the cGMP signaling pathway. We then analyzed 
genetic interactions of trx-1(ok1449) with daf-c mutations in the TGF-β signaling 
pathway, which suggests that TRX-1 affects dauer formation also independently of 
the TGF-β signaling pathway.

Next, we tested whether TRX-1 affects the insulin-like signaling pathway for 
dauer formation. We first analyzed double mutants of trx-1 with the insulin-like 
neuropeptide gene daf-28. The latter was anticipated to be a good candidate for the 
genetic interaction with trx-1 because both genes are expressed in ASJ neurons [Pa-
per I; (Li et al., 2003)]. Our genetic interaction studies suggest that TRX-1 function 
is required for the Daf-c phenotype of daf-28 mutants. Analysis of double and triple 
mutants of trx-1 with the insulin-like receptor gene daf-2 showed that TRX-1 re-
quirement for the Daf-c phenotype of daf-28 mutants depends on DAF-2 signaling. 
These results were confirmed by analyzing the genetic interaction of trx-1(ok1449) 
with mutations in the gene pdk-1. This gene encodes a homolog of the mammalian 
Akt/PKB kinase PDK1 (Paradis et. al., 1999), which regulates dauer formation by 
transducing DAF-2 signals onto DAF-16, a member of the FOXO family of tran-
scription factors.

We next attempted to validate whether the genetic interactions observed 
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between trx-1(ok1449) and daf-28 mutants were caused by loss of trx-1. For this 
purpose, we performed genetic rescue experiments by expressing the trx-1::GFP 
translational fusion from an array of tissue-specific promoters. Our findings sug-
gest that loss of trx-1 is indeed responsible for the genetic interactions observed 
between trx-1(ok1449) and daf-28 mutants, and that TRX-1 functions specifically 
in ASJ neurons for dauer formation. We also analyzed the consequences of replac-
ing trx-1:GFP active-site cysteines with serines for the genetic rescue experiments. 
Interestingly, these data suggest that TRX-1 does not require its redox activity for 
dauer formation.

We completed our genetic interaction studies with a cell-biological approach, 
in which we measured GFP fluorescence intensity in ASJ or ASI neurons for trx-1 
and daf-28. Comparing the GFP expression levels of trx-1 and daf-28 in wild-type 
and daf-c dauers, we could show that trx-1 and daf-28 have an opposing expression 
pattern in dauers, which is not manifested in normally growing L2/L3 larvae. Fur-
ther analysis of their expression pattern in trx-1 and daf-28 mutant dauers, suggests 
a model in which TRX-1 contributes to the downregulation of daf-28 expression 
during dauer formation, a process likely controlled by DAF-28-mediated feedback 
regulation.

In conclusion, we show for the first time that TRX-1 is implicated in the regu-
lation of dauer formation in C. elegans. Our findings suggest that TRX-1 functions 
in ASJ neurons as a novel modulator of the insulin-like neuropeptide DAF-28 dur-
ing dauer formation.
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3.4.	 Paper IV

The thioredoxin TRX-1 regulates adult lifespan extension 
induced by dietary restriction in Caenorhabditis elegans

For Paper I, we had used C. elegans as a model organism to investigate the 
function of TRX-1 during aging. Despite the fact that thioredoxins have been impli-
cated in the regulation of the pro-longevity effects of dietary restriction (DR), their 
in vivo function remains unknown. For paper IV, we use C. elegans to understand 
in vivo the mechanisms elicited by TRX-1 in the nervous system to promote DR-
mediated adult lifespan extension.

First, we examined whether TRX-1 regulates DR-mediated adult lifespan ex-
tension. For this purpose, we performed epistasis analysis with a mutation in eat-
2, which represents a classical genetic model of DR in C. elegans (Lakowski and 
Hekimi, 1998). We compared the results obtained with eat-2, with those seen with 
mutations in the insulin-like receptor gene daf-2, which regulates lifespan inde-
pendently of eat-2 (Lakowski and Hekimi, 1998), and the sensory cilia gene osm-5, 
which regulates lifespan partially through DAF-2 signaling (Apfeld and Kenyon, 
1999). We completed this genetic analysis by performing rescue studies in which we 
expressed trx-1 either in ASJ neurons or in the intestine. Together, our data suggest 
that TRX-1 regulates adult lifespan extension induced by a genetic model of DR. 
Our interpretation was confirmed by overexpressing trx-1 in ASJ neurons of wild 
type and eat-2 mutants.

Next, we tested whether TRX-1 is required for adult lifespan extension in-
duced by other, non-genetic DR methods. Since dietary deprivation (DD) and mu-
tation of eat-2 extend lifespan by influencing the same pathway (Kaeberlein et al., 
2006; Lee et al., 2006), we used DD as a representative non-genetic, nutrient-based 
model of DR. Our findings suggest that TRX-1 regulates adult lifespan extension 
induced by a non-genetic, nutrient-based model of DR.

We completed the studies described above by measuring fluorescence intensi-
ty of a GFP reporter for trx-1 or the control gpa-9 (Jansen et al., 1999). These meas-
urements were performed in ASJ neurons of aging wild-type adults subjected to 
conditions of DD, and compared with siblings fed ad libitum. The results obtained 
suggest that trx-1 is increased in ASJ neurons of aging adults in response to DR.

In conclusion, we report that TRX-1 is a novel regulator of DR-mediated adult 
lifespan extension in C. elegans. Our data suggest that DR activates TRX-1 in ASJ 
neurons during aging and consequently triggers TRX-1-dependent mechanisms 
that promote adult lifespan extension.
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4.	Discussion

Multiple sequence alignment studies have revealed that the C. elegans genome 
contains many putative homologs of the mammalian thioredoxin system (Table 1 
and Paper I; WormBase web site, http://www.wormbase.org). In recent years, we 
and others have begun to characterize these C. elegans thioredoxins and related 
molecules in order to gain insight into how their conserved biological functions are 
governed in vivo.

The first reports describing the C. elegans thioredoxin reductase TRXR-1 date 
back to 1999 (Buettner et al., 1999; Gladyshev et al., 1999). In these reports, it was 
demonstrated that the C. elegans thioredoxin reductase gene trxr-1 encodes a se-
lenoprotein. Later on, it was shown that TRXR-1 is the only selenoprotein found 
in the C. elegans genome (Taskov et al., 2005). In Paper II, we show that TRXR-
1, together with the glutathione reductase GSR-1, are required for molting in the 
worm, a process that ensures reproductive success and survival. Subsequently, the 
biochemical characterization of the mitochondrial thioredoxin reductase TRXR-2 
(Lacey and Hondal, 2006), revealed that its cysteine-containing active site is as cata-
lytically active as it was previously reported for the cysteine-containing thioredoxin 
reductase of Drosophila melanogaster (Kanzok et al., 2001). However, apart from 
the fact that TRXR-2 appears to be dispensable for growth, development and molt-
ing in C. elegans (Paper II), its biological function is still unknown.

We (Paper I) and others (Jee et al., 2005) show that TRX-1 is implicated in 
the regulation of aging and oxidative stress resistance in C. elegans. The Morcos 
group recently proposed a linked role for the apurinic/apyrimidinic endonucle-
ase 1 (APE1/Ref-1) homolog EXO-3, the tumor suppressor p53 homolog CEP-1 
and thioredoxins TRX-1 and TRX-2 in the regulation of neuronal function and 
adult lifespan in C. elegans (Schlotterer et al., 2010). We propose that TRX-1 acts 
in ASJ neurons to adjust neuropeptide expression during formation of long-lived, 
stress-resistant dauer larvae (Paper III). Moreover, we also propose that activation 
of TRX-1 in ASJ neurons is required for the pro-longevity mechanisms triggered 
by DR during aging in C. elegans (Paper IV). These data together indicate that the 
thioredoxin TRX-1 likely acts in the nervous system to integrate multiple regula-
tory pathways devoted to countering the effects of aging and promoting survival in 
C. elegans.

The C. elegans genome contains putative homologs of the mammalian glu-
taredoxins Grx1, Grx2, Grx3 and Grx5 [Table 1; WormBase web site, http://www.
wormbase.org; (Lillig et al., 2008)]. So far, only the C. elegans glutaredoxin gene 
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glrx-21, which encodes a homolog of mammalian Grx2, has been studied in detail 
(Morgan et al., 2010). The Estevez group has thus shown that GLRX-21 is involved 
in oxidative stress resistance mechanisms induced by selenium in C. elegans. On 
the other hand, we show that the C. elegans thioredoxin reductase TRXR-1 is not 
required for protection against acute oxidative damage (Paper II). In addition, we 
propose that the thioredoxin TRX-1 likely regulates neuroendocrine signaling lo-
cally in ASJ neurons to affect dauer formation and adult lifespan remotely in the 
whole organism (Papers III and IV). Therefore, thioredoxin reductases and thiore-
doxins likely play minor roles in protecting against acute oxidative stress. Since 
glutaredoxins and thioredoxins are genetically redundant for many functions in 
diverse species (Lillig et al., 2008), it might be possible that the redoxins involved 
in such global protective function against acute oxidative stress in C. elegans are 
likely glutaredoxins. Altogether, our findings described in Papers I through IV, and 
those generated in other laboratories (see above), qualify C. elegans as a versatile in 
vivo model organism to continue studying the function of thioredoxins and related 
molecules in general physiology.

Molting, dauer formation and aging are evolving through natural selection 
toward becoming tightly regulated and hard-wired biological processes. Still, they 
manage to retain the necessary plasticity to allow for adaptation to a changing en-
vironment (Braendle et al., 2008; Fielenbach and Antebi, 2008; Kenyon, 2005). The 
data presented in this thesis shows that molting, despite its regulatory robustness, 
retains modest levels of plasticity, which are modulated by TRXR-1 and GSR-1. In 
addition, our findings confirm the plastic nature of dauer formation and aging and 
how TRX-1 contributes to such plasticity.

Molting in C. elegans ensures that the animal grows and reaches adulthood to 
contribute to the gene pool. For that reason, it is subject to robust regulation, which 
occurs at regular intervals throughout development. However, we show in paper II 
that this regulatory robustness can be modified by the environment, and that mod-
ulators like TRXR-1 and GSR-1 participate in this adaptive process. Exogenously 
supplied GSH (the proposed target for TRXR-1 and GSR-1 during molting) gener-
ates a reducing environment, which can promote apolysis at intermolt and ecdy-
sis in arrested worms in a dose-response manner. Moreover, the molting process 
can be modulated by externally adding the reducing agent DTT, the thiol-blocking 
agent NEM or the oxidizing agent diamide. Together, these results show that molt-
ing in C. elegans is a robust process regulated by TRXR-1 and GSR-1, which can 
become moderately plastic when challenged by changes in the environment.

The developmental switch between forming dauers or non-dauer, L3 larvae 
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in response to changing environmental conditions represents a classical example of 
plasticity in C. elegans (Braendle et al., 2008; Fielenbach and Antebi, 2008). Simi-
larly, the rate of aging is highly sensitive to variation in the environment and can 
substantially deviate in response to temperature, chemical agents and dietary re-
gimes (Kenyon, 2010). In papers III and IV, we observe a phenomenon that fulfills 
the principles of plasticity: trx-1 expression in ASJ neurons fluctuates in response to 
signals of nutrient availability and/or overcrowding. This plastic response to chang-
ing environments occurs both during dauer formation and during aging (Papers 
III and IV). In paper IV, we also show that overexpression of trx-1 has the ability to 
extend lifespan (cf. Paper I as well), a process that is modulated by the rate of food 
intake. Similarly plastic is the adult lifespan of wild-type C. elegans in response to 
distinct dietary regimes (Paper IV). Interestingly, this sensitivity shown by wild-
type C. elegans toward food availability in the environment is abolished by mutation 
in trx-1, suggesting that TRX-1 is an essential contributor to the plasticity exhibited 
by the processes that regulate aging.

In summary, it is tempting to suggest that studies in lower organisms like C. 
elegans might provide important insights into how the situation is in mammals. 
The thioredoxin and related systems and the cellular processes they regulate are 
highly conserved across phyla. In this thesis, we show evidence for the crucial role 
of conserved members of the thioredoxin system in controlling aging and survival 
in C. elegans. Our work suggests that understanding how animals age and adapt to a 
changing environment in vivo can, at least in parts, be simplified to a cell-biological 
question. Therefore, deciphering the role of thioredoxins and related molecules in 
aging and survival in C. elegans, might bring us closer to solving that enigma in 
mammals than commonly thought.
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5.	 Conclusions

With regard to the aims of this thesis, the main conclusions are summarized 
below:

Paper I:	 Multiple sequence alignment shows that the C. elegans genome con-
tains many putative homologs of the mammalian thioredoxin sys-
tem and related molecules. In addition, we show for the first time in 
any metazoan a thioredoxin gene (trx-1) that is expressed only in the 
nervous system and is involved in the regulation of aging.

Paper II:	 We show that the selenoprotein, thioredoxin reductase (TRXR-1) 
does not participate in protection against oxidative stress. Instead, 
it contributes, together with glutathione reductase (GSR-1), to the 
regulation of apolysis and ecdysis during molting in C. elegans. Our 
findings suggest a novel molecular mechanism of action for TRXR-1 
and GSR-1 in the epidermis: both reductases regulate molting likely 
by activating GSH function in the cuticle.

Paper III:	 We demonstrate that the thioredoxin TRX-1 is involved in ASJ neu-
ron-dependent signaling cascades that govern formation of long-
lived, stress-resistant dauer larvae in C. elegans. Our findings sug-
gest that redox-independent functions of TRX-1 in ASJ neurons are 
necessary to modulate neuropeptide expression, including that of the 
insulin-like neuropeptide gene daf-28, during dauer formation in re-
sponse to a changing environment.

Paper IV:	 We provide the first in vivo observation that a thioredoxin (TRX-1) 
is necessary for the metabolic changes triggered by dietary restric-
tion (DR) that extend adult lifespan. We are also the first to show 
that DR upregulates thioredoxin expression in the nervous system. 
We propose a model whereby TRX-1 activation in ASJ neurons of 
aging adults constitutes an essential early stimulus for the metabolic 
pathways that translate DR into adult lifespan extension.



33

The Plasticity of  Aging and Survival: a Role for the Thioredoxin System in Caenorhabditis elegans

6.	 Future Perspectives

A continued effort for the characterization of the thioredoxin system in C. 
elegans will contribute to clarify important aspects of biology that need to be elu-
cidated in vivo. In the following paragraphs, I provide suggestions that could con-
stitute the foundation for new studies, based on ideas that derive from the work 
presented in this thesis.

In Papers I through IV, we have experimentally examined in vivo the biologi-
cal functions of thioredoxin TRX-1, thioredoxin reductase TRXR-1 and glutathione 
reductase GSR-1 in C. elegans. Our contributions clearly provide new insights into 
the biology of thioredoxins and related molecules in vivo and their interactions 
with the surrounding environment. However, they might only constitute the tip of 
the iceberg. Meanwhile, other laboratories have mostly focused on the biochemical 
characterization of the different members of the thioredoxin system in C. elegans, 
as already discussed in a previous section. Therefore, future work is still needed to 
dissect the remaining putative homologs of the mammalian thioredoxin and related 
systems in C. elegans (Table 1). These include Trx2, TrxR2, Txl-1, ERdj5, and glutar-
edoxins Grx1, Grx3 and Grx5 among others.

In Paper I, we have performed an initial characterization of the two splice 
variants of thioredoxin trx-1. Analysis of the data presented in this thesis, prompted 
the following questions: Why a thioredoxin gene expressed in a sole pair of neurons 
has two splice variants? Could one of them be relevant during larval development 
and the other act during aging? Could it be that one of them acts locally in ASJ 
neurons, while the other is secreted [cf. Trx80 (Pekkari et al., 2000; Pekkari and 
Holmgren, 2004)] to affect distant tissues? The fact that only TRX-1b protein was 
detected in worm extracts (Paper I), suggests that the alternatively spliced trx-1a 
mRNA might not translate into a gene product. Instead, the trx-1a mRNA vari-
ant could participate in regulatory mechanisms devoted to control the fluctuations 
of trx-1b expression in response to nutrient availability and/or overcrowding (cf. 
Papers III and IV), in line with previously proposed mechanisms in humans (Berg-
gren and Powis, 2001; Hariharan et al., 1996; Jiménez and Miranda-Vizuete, 2003). 
Therefore, future work is still needed to understand the differences in function be-
tween the two trx-1 splice variants.

In Paper II, we show that trxr-1 is expressed in hypodermis, pharynx and 
nervous system. Our genetic rescue experiments suggest that TRXR-1 function in 
the pharynx and hypodermis, but not in the nervous system, promotes molting in 
C. elegans. There are a number of cases in multicellular organisms in which a pro-
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tein may perform distinct functions in multiple different tissues. For example, it has 
been shown that the C. elegans nuclear factor erythroid-derived (Nrf2) homolog 
SKN-1 functions in ASI neurons to regulate dietary restriction (DR)-mediated 
adult lifespan extension, while its role in the intestine is to protect against oxidative 
stress (Bishop and Guarente, 2007b). Thus, it will be of high interest to determine 
whether TRXR-1 has two distinct functions in C. elegans that are specified by tissue 
of expression: one in the hypodermis/pharynx and the other in the nervous system.

Although thioredoxins mostly depend on their oxidoreductase activity to 
perform their functions, they regulate certain biological processes in a redox-in-
dependent manner (Berndt et al., 2008; Lillig and Holmgren, 2007; Meyer et al., 
2009). We show that C. elegans TRX-1 modulates the insulin-like neuropeptide 
DAF-28 in ASJ neurons during dauer formation through a mechanism independ-
ent of its redox activity (Paper III). We also demonstrate that TRX-1 is required 
for the extended adult lifespan exhibited by animals grown under DR (Paper IV). 
However, it is still not known whether TRX-1 requires its oxidoreductase activity 
to regulate adult lifespan in C. elegans. Further research will elucidate whether C. 
elegans TRX-1 regulates aging independently of its redox activity.

Genetic rescue studies suggest that TRX-1 acts in ASJ neurons and modifies 
dauer formation and aging remotely by affecting distant tissues cell-non-autono-
mously. This cell-non-autonomous effect most likely occurs via a neuroendocrine 
response (Papers III and IV). Whether the neuroendocrine signal is TRX-1 itself 
(see above), an ASJ-derived molecule [e.g. DAF-28, INS-1, -9, NLP-3 or FLP-21 (Li 
and Kim, 2008; Nathoo et al., 2001; Pierce et al., 2001)], or both, still needs to be 
fully investigated.

We have shown that TRX-1 acts in ASJ neurons to adjust daf-28 expression 
during dauer formation (Paper III). In addition, we have also demonstrated that 
trx-1 regulates DR-mediated adult lifespan extension (Paper IV). Recent studies 
suggest that DAF-28 secretion from neurons is modulated by mitochondrial func-
tion (Billing et al., 2011). Mitochondrial function regulates aging in C. elegans (Feng 
et al., 2001; Hartman et al., 2001; Tsang et al., 2001), and it has recently been pro-
posed to mediate the pro-longevity effects induced by DR (Bishop and Guarente, 
2007b; Schulz et al., 2007). Therefore, integrating our results and those provided 
by others, it could be possible that nutritional deficit activates TRX-1 in ASJ neu-
rons during dauer formation and aging, to then modify neuroendocrine signaling. 
Subsequently, these neuroendocrine signals [e.g. mitokines (Durieux et al., 2011)] 
could activate mitochondrial function in distant tissues (e.g. intestine, pharynx) 
(Bishop and Guarente, 2007b). Consequently, activation of stress pathways in the 
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whole organism could maintain long-term stress resistance and thus promote long 
life in dauers and adults. Further investigation will clarify whether TRX-1 couples 
DR to increased mitochondrial function in order to promote stress resistance and 
long life.
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